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INFERENCE IN A CLASS OF OPTIMIZATION PROBLEMS:
CONFIDENCE REGIONS AND FINITE SAMPLE BOUNDS ON

ERRORS IN COVERAGE PROBABILITIES

JOEL L. HOROWITZ1 AND SOKBAE LEE2 3

Abstract. This paper describes a method for carrying out inference on partially
identified parameters that are solutions to a class of optimization problems. The
optimization problems arise in applications in which grouped data are used for es-
timation of a model’s structural parameters. The parameters are characterized by
restrictions that involve the unknown population means of observed random vari-
ables in addition to the structural parameters of interest. Inference consists of
finding confidence intervals for the structural parameters. Our theory provides a
finite-sample bound on the difference between the true and nominal probabilities
with which a confidence interval contains the true but unknown value of a param-
eter. We contrast our method with an alternative inference method based on the
median-of-means estimator of Minsker (2015). The results of Monte Carlo experi-
ments and empirical examples illustrate the usefulness of our method.

Keywords: partial identification, normal approximation, finite-sample bounds

1. Introduction

We present a method for carrying out inference about a partially identified function

of structural parameters of an econometric model. Our method applies to models that

impose shape restrictions (e.g., Freyberger and Horowitz, 2015; Horowitz and Lee,

2017), a variety of partially identified models (e.g., Manski, 2007a; Tamer, 2010), and

models in which a continuous function is inferred from the average values of variables

in a finite number of discrete groups (e.g., Blundell, Duncan, and Meghir, 1998; Kline

and Tartari, 2016). The specific inference problem consists of finding upper and lower
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2 HOROWITZ AND LEE

bounds on the partially identified function f(ψ) under the restrictions g1(ψ, µ) ≤ 0

and g2(ψ, µ) = 0, where ψ is a vector of structural parameters; µ is a vector of

unknown population means of observable random variables; f is a known, real-valued

function; and g1 and g2 are known possibly vector-valued functions. The inequality

g1(ψ, µ) ≤ 0 holds component-wise.

Most existing methods for inference in our framework are based on asymptotic

theory. They provide correct inference in the limit n → ∞ but do not provide

information about the accuracy of finite-sample inference. Our theory also relies

on asymptotic approximations to form confidence intervals. However, in contrast

to existing asymptotic methods, it provides a finite-sample bound on the difference

between the true and nominal coverage probabilities of a confidence interval for f(ψ).

Thus, our results provide information about the accuracy of finite-sample inference.

There are several approaches to carrying out non-asymptotic inference in our frame-

work. In some cases, a statistic with a known finite-sample distribution makes finite-

sample inference possible. For example, the Clopper–Pearson (1934) confidence in-

terval for a population probability is obtained by inverting the binomial probability

distribution function. We use the Clopper-Pearson confidence interval in the empiri-

cal example presented in Section 5 of this paper. Manski (2007b) used the Clopper-

Pearson interval to construct finite-sample confidence sets for counterfactual choice

probabilities. A second method consists of using a finite-sample concentration in-

equality to obtain a confidence interval. This method is useful for applications only

if the inequality provides a bound that does not depend on unknown population pa-

rameters. Hoeffding’s inequality for the mean of a scalar random variable with known

bounded support provides such a bound. Syrgkanis, Tamer, and Ziani (2018) used

Hoeffding’s inequality to construct a confidence interval for a partially identified popu-

lation moment. Hoeffding’s inequality cannot be used if the (bounded) support of the

underlying random variable is unknown. The generalization of Hoeffding’s inequality

to confidence intervals for sub-Gaussian random variables requires information about

a certain parameter of the distribution of the underlying random variable that is typ-

ically unavailable in applications. Minsker (2015) developed a confidence set for a

vector of population means using a method called “median of means.” This method

depends on certain tuning parameters. There are no data-based, efficient ways to

choose these parameters in applications. Section 4 of this paper presents the results

of Monte Carlo experiments comparing the widths of confidence intervals obtained

by using Minsker’s (2015) method and our method.



INFERENCE IN A CLASS OF OPTIMIZATION PROBLEMS 3

The approach that we use here consists of making a normal approximation to the

unknown distribution of a sample average. A variety of results provide finite-sample

upper bounds on the errors made by normal approximations. The Berry-Esséen in-

equality for the average of a scalar random variable is a well-known example of such

a bound. Bentkus (2003) provides a bound for the error of a multivariate normal

approximation to the distribution of the sample average of a random vector. Other

normal approximations are given by Spokoiny and Zhilova (2015); Chernozhukov,

Chetverikov, and Kato (2017); and Zhilova (2020); among others. The method de-

scribed in this paper uses the normal approximation of Raič (2019), which is a refined

version of Bentkus (2003) that does not require boundedness of the random variables

involved and treats random vectors. When µ is high-dimensional, Chernozhukov,

Chetverikov, and Kato (2017) may provide a tighter bound; however, the bound of

Bentkus-Raič is narrower than that of Chernozhukov, Chetverikov, and Kato (2017)

when the dimension of µ is fixed, which is the case we treat in this paper. In contrast

to conventional asymptotic inference approaches, our theory provides a finite-sample

bound on the difference between the true and nominal coverage probabilities of a

confidence interval for the partially identified function f(ψ). In sum, our approach is

a hybrid of normal approximations and non-asymptotic theory in that critical values

are determined by normal approximations and a lower bound on the finite-sample

coverage probability of a confidence interval is available. In general, the lower bound

depends on unknown population quantities and can be loose because it is a worst-case

bound. Nonetheless, this non-asymptotic lower bound provides information about in-

ference based on asymptotic approximations.

Our work is broadly related to the literature on inference in partial identified mod-

els. See Tamer (2010), Canay and Shaikh (2017), Ho and Rosen (2017), and Molinari

(2020) for recent surveys. Chen, Christensen, and Tamer (2018) describe a Monte

Carlo method for carrying out asymptotic inference for a class of models that includes

our framework. Bugni, Canay, and Shi (2017) and Kaido, Molinari, and Stoye (2019)

develop asymptotic inference methods for subvectors of partially identified parame-

ters in moment inequality models. Chernozhukov, Chetverikov, and Kato (2019) and

Belloni, Bugni, and Chernozhukov (2018) construct confidence regions by inverting

pointwise tests on a hypothesis about the (sub)vector of parameters that are partially

identified by a large number of moment inequalities. The inference problem we treat

is different from those in the aforementioned papers in that we focus on the infer-

ence on parameters that are solutions to a class of optimization problems. A more
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closely related working paper is Hsieh, Shi, and Shum (2017), who propose a method

for asymptotic inference about estimators defined by mathematical programs. How-

ever, their inference method is different from ours because they recast their inference

problem into one based on a set of inequalities with pre-estimated coefficients.

Our work is also related to the econometrics literature on finite-sample inference.

Syrgkanis, Tamer, and Ziani (2018) consider finite-sample inference in auction models.

Their framework and method are very different from those in this paper. In differ-

ent context, Chernozhukov, Hansen, and Jansson (2009) and Rosen and Ura (2019)

propose finite-sample inference for quantile regression models and for the maximum

score estimand, respectively. Their methods are distinct from ours.

The remainder of this paper is organized as follows. Section 2 describes our method

for obtaining confidence intervals and describes three empirical studies that illustrate

how the inferential problem the method addresses arises in applications. Section 3

describes computational procedures for implementing our method. Section 4 reports

the results of a Monte Carlo investigation of the numerical performance of our method,

and Section 5 presents two empirical applications of the method. Section 6 gives

concluding comments. Appendix A presents the proofs of theorems. Appendix B

provides additional details on our computational procedures. Appendix C describes

Minsker’s (2015) median of means method.

2. The Method

Section 2.1 presents an informal description of inferential problem we address, and

Section 2.2 generalizes the form of the objective function. Section 2.3 gives two

examples of empirical applications in which the inferential problem arises. Section

2.4 provides a formal description of the method for constructing confidence intervals.

Section 2.5 treats the possibility that g1 and g2 depend on a continuous covariate in

addition to (ψ, µ).

2.1. The Inferential Problem. Let {Xi : i = 1, . . . , n} be a random sample from

the distribution of the random vector X ∈ Rp for some finite p ≥ 1. Define µ =

E(X) and Σ = cov(X). Let ψ be a finite-dimensional parameter and f(ψ) be a

real-valued, known function. We assume throughout this section that f(ψ) is only

partially identified by the sampling process, though our results also hold if f(ψ)

is point identified. We seek a confidence interval for f(ψ), which we define as an

interval that contains f(ψ) with probability exceeding a known value. Let g1(ψ, µ)

and g2(ψ, µ) be possibly vector valued known functions satisfying g1(ψ, µ) ≤ 0 and
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g2(ψ, µ) = 0. Define

J+ := max
ψ

f(ψ) and J− := min
ψ
f(ψ)(2.1)

subject to the component-wise constraints:

g1(ψ, µ) ≤ 0,(2.2a)

g2(ψ, µ) = 0,(2.2b)

ψ ∈ Ψ,(2.2c)

where Ψ is a compact parameter set.

In this setting, we are interested in the identification interval J− ≤ f(ψ) ≤ J+.

However, this interval cannot be calculated in applications because µ is unknown.

Therefore, we estimate µ by the sample average X̄ = n−1
∑n

i=1Xi, and we estimate

J+ and J− by

Ĵ+(X̄) := max
ψ,m

f(ψ) and Ĵ−(X̄) := min
ψ,m

f(ψ)(2.3)

subject to

g1(ψ,m) ≤ 0,(2.4a)

g2(ψ,m) = 0,(2.4b)

ψ ∈ Ψ,(2.4c)

and

n1/2(X̄ −m) ∈ S,(2.4d)

where S is a set, specified in Section 2.3, for which n1/2(X̄ − µ) ∈ S with high

probability. Since µ is unknown, we replace it with a variable of optimization in

(2.3)–(2.4) but restrict that variable to S. The resulting confidence interval for f(ψ)

is

Ĵ−(X̄) ≤ f(ψ) ≤ Ĵ+(X̄).(2.5)

Section 2.4 provides a finite-sample lower bound on the probability that this interval

contains f(ψ). That is, Section 2.4 provides a finite-sample lower bound on

P
[
Ĵ−(X̄) ≤ J− ≤ f(ψ) ≤ J+ ≤ Ĵ+(X̄)

]
.(2.6)
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2.2. Generalizing the Form of the Objective Function. It is straightforward

to allow the objective function f(ψ) to depend on µ. For the lower bound Ĵ−(X̄),

we introduce an auxiliary variable t that performs as an upper bound on f(ψ, µ) and

solve: minψ,m,t t subject to f(ψ,m) ≤ t and (2.4). Analogously, for the upper bound

Ĵ+(X̄), we introduce a lower bound on the objective and solve: maxψ,m,s s subject to

f(ψ,m) ≥ s and (2.4). We focus on the original formulation in the previous section

since the new formulation can be rewritten as the original form by redefining f , g1

and g2.

2.3. Examples of Empirical Applications.

Example 1. Blundell, Duncan, and Meghir (1998) use grouped data to estimate labor

supply effects of tax reforms in the United Kingdom. To motivate our setup, we

consider a simple model with which Blundell, Duncan, and Meghir (1998) describe

how to use grouped data to estimate β in the labor supply model with no income

effect:

hit = α + β lnwit + Uit,(2.7)

where hit and wit, respectively, are hours of work and the post-tax hourly wage rate of

individual i in year t, and Uit is an unobserved random variable that satisfies certain

conditions. The parameter β is identified by a relation of the form

β = β(hgt, lwgt),

where hgt and lwgt are the mean hours and log wages in year t of individuals in group

g. There are 8 groups defined by four year-of-birth cohorts and level of education.

The data span the period 1978-1992.

A nonparametric version of (2.7) is

hit = f(wit) + Uit,(2.8)

where f ∈ F is an unknown continuous function and F is a function space. A

nonparametric analog of β is the weighted average derivative

β̃ =

∫
∂f(u)

∂u
w(u)du,

where w is a non-negative weight function. The average derivative β̃ is not iden-

tified non-parametrically by the mean values of hours and wages for finitely many

groups and time periods. It can be partially identified, however, by imposing a shape

restriction such as weak monotonicity on the labor supply function f . Assume, for
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example, that E[hit − f(wit)|g, t] = 0. Blundell, Duncan, and Meghir (1998) set

E[hit− f(wit)|g, t] = ag +mt, where ag and mt, respectively, are group and time fixed

effects. These are accommodated by our framework but we do not do this in the

present discussion.

The identification interval for β̃ is β̃− ≤ β̃ ≤ β̃+, where

β̃+ = max
f∈F

∫
∂f(u)

∂u
w(u)du and β̃− = min

f∈F

∫
∂f(u)

∂u
w(u)du(2.9)

subject to

f(wgt)− f(wg′t′) ≤ 0 if wgt < wg′t′ ,(2.10a)

hgt − f(wgt) = 0.(2.10b)

The continuous mathematical programming problem (2.9)-(2.10) can be put into

the finite-dimensional framework of (2.3)-(2.4) by observing that under mild condi-

tions on F , f can be approximated very accurately by the truncated infinite series

f(u) ≈
J∑
j=1

ψjφj(u),(2.11)

where the ψj’s are constant parameters, the φj’s are basis functions for F , and J

is a truncation point. In an estimation setting, J can be an increasing function of

the sample size, though we do not undertake this extension here. The approximation

error of (2.11) can be bounded. Here, however, we assume that J is sufficiently large

to make the error negligibly small. The finite-dimensional analog of (2.9)-(2.10) is

J+ = max
ψj :j=1,...,J

J∑
j=1

ψj

∫
∂φj(u)

∂u
w(u)du and J− = min

ψj :j=1,...,J

J∑
j=1

ψj

∫
∂φj(u)

∂u
w(u)du

(2.12)

subject to

J∑
j=1

ψj [φj(wgt)− φj(wg′t′)] ≤ 0 if wgt < wg′t′ ,(2.13a)

hgt −
J∑
j=1

ψjφj(wgt) = 0.(2.13b)

J+ and J− can be estimated, thereby obtaining Ĵ+ and Ĵ−, by replacing hgt and wgt

in (2.12)-(2.13) with within-group sample averages and adding the constraint (2.4d).
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Example 2. Building on the theory of revealed preferences, Ho and Pakes (2014, HP

hereafter) develop an inequality estimator for hospital choices using data from pri-

vately insured births in California. We consider a simplified setup of HP here.

Following closely the notation used in HP, let p(ci, h) denote the price an insurer

is expected to pay at hospital h for a patient with condition ci. Let li denote patient

i’s location, lh hospital’s location, and d(·, ·) the distance between the two locations.

For hospitals h 6= h′, define

∆p(ci, h, h
′) := p(ci, h)− p(ci, h′),

∆d(li, lh, lh′) := d(li, lh)− d(li, lh′).

That is, ∆p(ci, h, h
′) is the price difference between hospitals h and h′ given patient

condition ci and ∆d(li, lh, lh′) is the distance difference between hospitals h and h′

given patient location li. Define

ui,i′(ψ, h, h
′) := ψ [∆p(ci, h, h

′) + ∆p(ci′ , h
′, h)]− [∆d(li, lh, lh′) + ∆d(li′ , lh′ , lh)] ,

where ψ is a scalar parameter that determines price sensitivity relative to distance.

Note that the coefficient for distance is normalized to be −1. ψ is the key parameter

in HP.

Define the four-dimensional vector of instruments based on distance:

zi,i′(h, h
′) :=


max{∆d(li, lh, lh′), 0}
−min{∆d(li, lh, lh′), 0}
max{∆d(li′ , lh′ , lh), 0}
−min{∆d(li′ , lh′ , lh′), 0}

 .

Here, the instruments are based on distance measures and constructed to be positive

to preserve the sign of inequalities.

Let S(h, h′, s) be the set of patients with severity s who chose hospital h but had

hospital h′ in their choice set. The identifying assumption in HP is that

E
[
ui,i′(ψ, h, h

′)zi,i′(h, h
′)
∣∣∣i ∈ S(h, h′, s), i′ ∈ S(h′, h, s)

]
≥ 0(2.14)

for all s, h, h′ such that h 6= h′. We can rewrite (2.14) as

ψµp(h, h
′, s)− µd(h, h′, s) ≥ 0 for all (h, h′, s) such that h 6= h′,
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where

µp(h, h
′, s) := E

[
zi,i′(h, h

′){∆p(ci, h, h′) + ∆p(ci′ , h
′, h)}

∣∣∣i ∈ S(h, h′, s), i′ ∈ S(h′, h, s)
]
,

µd(h, h
′, s) := E

[
zi,i′(h, h

′){∆d(li, lh, lh′) + ∆d(li′ , lh′ , lh)}
∣∣∣i ∈ S(h, h′, s), i′ ∈ S(h′, h, s)

]
.

To see the connection between our general framework and HP’s inequality estimator,

let f(ψ) = ψ, µ = (µp, µd), and g1 be a collection of inequalities such that

g1(ψ, µ) = {µd(h, h′, s)− ψµp(h, h′, s) for all (h, h′, s) such that h 6= h′}.

There is no element in g2 (no equality constraints here). Since each element in µ

can be estimated by a suitable sample mean, our general framework includes HP’s

estimator as a special case.

Example 3. Kline and Tartari (2016, KT hereafter) study the impact of Connecti-

cut’s Jobs First (JF) welfare reform experiment on women’s labor supply and welfare

participation decisions. KT compare behavior under the JF and federal Aid to Fam-

ilies with Dependent Children (AFDC) regimes. The parameters of interest in KT

are the probabilities with which a woman makes certain choices. The choice set un-

der each regime (JF and AFDC) is denoted by {0n, 1n, 2n, 0r, 1r, 1u, 2u}, where 0

denotes no earnings, 1 denotes earnings below the poverty line, 2 denotes earnings

above the poverty line, n denotes non-participation in welfare, r denotes welfare par-

ticipation with truthful reporting of earnings, and u denotes welfare participation

with under-reporting of earnings. Let πsA,sJ denote the probability of a woman’s

choosing alternative sJ under JF conditional on her choosing alternative sA under

AFDC. The possible choice probabilities and parameters of interest in KT are

πsA,sJ = [π0n,1r, π0r,0n, π2n,1r, π0r,2n, π0r,1r, π0r,1n, π1n,1r, π0r,2u, π2u,1r]
′ .

The observable choices are welfare participation status and reported earnings under

JF and AFDC. The population probabilities of observable choices are

pt :=
[
pt0n, p

t
1n, p

t
2n, p

t
0p, p

t
1p, p

t
2p

]′
for t = A or J and the subscript p denotes welfare participation. These probabilities

do not identify πsA,sJ .
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To illustrate inference about the partially identified parameter πsA,sJ in our frame-

work, consider the lower bound on π2n,1r. By inequality (15) of KT,

π2n,1r ≥ max

{
0,
pA2n − pJ2n
pA2n

}
.

Therefore,

pA2n − pJ2n − pA2nπ2n,1r ≤ 0.

Random sampling error is due to estimation of pA2n and pJ2n, which are population

moments. Let p̂A2n and p̂J2n be estimates of these moments. Then the estimated lower

bound on π2n,1r is

Ĵ− = min
ψ,mA,mJ

ψ(2.15)

subject to

mA −mJ −mAψ ≥ 0,(2.16a)

ψ ≥ 0,(2.16b)

ψ ∈ Ψ,(2.16c)

[n1/2(p̂A2n −mA), n1/2(p̂J2n −mJ)] ∈ S.(2.16d)

This example is continued in the empirical application of Section 5, where we specify

the set S and find Ĵ− satisfying P(π2n,1r ≥ Ĵ−) ≥ 0.95. Since ψ is a probability, we

can set Ψ = [0, 1] in this example.

2.4. Analysis. This section presents the main result of the paper, which is a finite-

sample lower bound on

P
[
Ĵ−(X̄) ≤ J− ≤ f(ψ) ≤ J+ ≤ Ĵ+(X̄)

]
.

All proofs are in Appendix A. We begin with the following theorem, which forms

the basis of our approach.

Theorem 2.1. Assume that g1(ψ, µ) ≤ 0 and g2(ψ, µ) = 0 for some ψ. Then

P
[
Ĵ−(X̄) ≤ J− ≤ f(ψ) ≤ J+ ≤ Ĵ+(X̄)

]
≥ P

[
n1/2(X̄ − µ) ∈ S

]
.(2.17)

Now define

Zi := Xi − µ and Z̄ := n−1/2

n∑
i=1

Zi = n−1/2

n∑
i=1

(Xi − µ).
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Then E(Z̄) = 0. Define Σ := cov(Zi) = cov(Z̄) = cov(X). If Σ is non-singular, let

[Σ−1/2(Xi − µ)]j denote the j’th component of Σ−1/2(Xi − µ) and Σ−1
jk denote the

(j, k) component of Σ−1. Let µj denote the j’th component of µ and Xij denote the

j’th component of Xi. Make the following assumptions.

Assumption 1. (i) {Xi : i = 1, . . . , n} is a random sample from the distribution of

X. (ii) S is compact and convex. (iii) Ψ is compact. (iv) f(ψ) is bounded on Ψ.

Assumption 2. (i) Σ is non-singular, and its components are all finite. (ii) There

is a constant µ3 < ∞ such that E
(∣∣[Σ−1/2(Xi − µ)]j

∣∣3) ≤ µ3 for all i = 1, . . . , n

and j = 1, . . . , p. (iii) There is a constant CΣ < ∞ such that
∣∣Σ−1

jk

∣∣ ≤ CΣ for each

j, k = 1, . . . , p.

Assumption 3. There is a finite constant κ1 such that

E [|Xij − µj|r] ≤ κr−2
1

r!

2
,

E [|(Xij − µj)(Xik − µk)− Σjk|r] ≤ κr−2
1

r!

2

(2.18)

for every r = 2, 3, . . . and j, k = 1, . . . , p.

Assumption 3 requires the distribution of X to be thin-tailed. We use Assumption

3 to apply Bernstein’s inequality (see, e.g., Lemma 14.13 Bühlmann and Van De Geer,

2011).

Suppose for the moment that Σ is known. Define the independent random p-

vectors Wi ∼ N(0,Σ) (i = 1, . . . , n) and W̄ := n−1/2
∑n

i=1Wi ∼ N(0,Σ). The

multivariate generalization of the Lindeberg-Levy central limit theorem shows that Z̄

is asymptotically distributed as N(0,Σ), so the distribution of Z̄ can be approximated

by that of W . The following lemma bounds the error of this approximation.

Lemma 2.1. Let Assumptions 1, 2(i), and 2(ii) hold. Then∣∣P(Z̄ ∈ S)− P(W ∈ S)
∣∣ ≤ (42p1/4 + 16)p3/2µ3

n1/2
.

In applications, Σ is unknown. Let Σ̂ be the following estimator of Σ:

Σ̂ := n−1

n∑
i=1

XiX
′
i − X̄X̄ ′.

Define the random vector Ŵ ∼ N(0, Σ̂). We now approximate the distribution of W

by the distribution of Ŵ with Σ̂ treated as a non-stochastic matrix. Define P(S,Σ) :=
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P(W ∈ S) for W ∼ N(0,Σ) and

rn(t) := 8

√
2t

n
, wn(t) := CΣp

32p+1rn(t), and κ∗ := min
{
κ−1

1 , 2κ−2
1 , 1/2

}
.(2.19)

The following lemma gives a finite-sample bound on the error of the approximation.

Lemma 2.2. Let Assumptions 1-3 hold and that

9

4
log(2p) ≤ t ≤ κ∗n.(2.20)

Then, ∣∣∣P(S, Σ̂)− P(W ∈ S)
∣∣∣ ≤ wn(t)

with probability at least 1− 2e−t.

The condition (2.20) is a mild technical condition that can be satisfied easily. The

conclusion of Lemma 2.2 holds, that is,∣∣∣P(S, Σ̂)− P(W ∈ S)
∣∣∣ ≤ wn(t)

only if Σ̂ satisfies certain conditions that are stated in the proof of the lemma in

Appendix A. These conditions are satisfied with probability at least 1 − 2e−t, not

with certainty.

Define

δ∗n := min
t

[
wn(t) + 2e−t

]
subject to (2.20).(2.21)

Now combine Lemmas 2.1 and 2.2 to obtain the following theorem.

Theorem 2.2. Let Assumptions 1-3 and (A.2) hold. Then,∣∣∣P(Z̄ ∈ S)−P(S, Σ̂)
∣∣∣ ≤ (42p1/4 + 16)p3/2µ3

n1/2
+ δ∗n.

Theorem 2.2 provides a finite-sample upper bound on the error made by approxi-

mating P
[
n1/2(X̄ − µ) ∈ S

]
by P(S, Σ̂). Combining Theorem 2.1 and 2.2 yields

Theorem 2.3. Assume that g1(ψ, µ) ≤ 0 and g2(ψ, µ) = 0 for some ψ. Further, let

Assumptions 1-3 and (A.2) hold. Then,

P
[
Ĵ−(X̄) ≤ J− ≤ f(ψ) ≤ J+ ≤ Ĵ+(X̄)

]
≥ P(S, Σ̂)−

{
(42p1/4 + 16)p3/2µ3

n1/2
+ δ∗n

}
.

(2.22)
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Theorem 2.3 provides a finite-sample lower bound on P
[
Ĵ−(X̄) ≤ J− ≤ f(ψ) ≤ J+ ≤ Ĵ+(X̄)

]
.

Theorems 2.2 and 2.3 are the main results of this paper.

Like other large deviation bounds in statistics and the Berry-Esséen bound, the

bounds in Theorems 2.2 and 2.3 can be loose unless n is large because they accom-

modate worst-case distributions of the observed variables. The numerical performance

of our method in less extreme cases is illustrated in Section 4.

2.5. Continuous Covariates. In this section, we consider the case in which g1 and

g2 depend on a continuous covariate ν in addition to (ψ, µ). This situation occurs,

for example, in applications where some observed variables are group averages and

others are continuously distributed characteristics of individuals. If ν is discrete,

the results of Section 2.4 apply after replacing problem (2.3)-(2.4) with (2.25)-(2.26)

below. When there is a continuous covariate, ν, (2.3)-(2.4) become

Ĵ+(X̄) := max
ψ,m

f(ψ) and Ĵ−(X̄) := min
ψ,m

f(ψ)(2.23)

subject to

g1(ψ,m, ν) ≤ 0 for every ν,(2.24a)

g2(ψ,m, ν) = 0 for every ν,(2.24b)

ψ ∈ Ψ,(2.24c)

n1/2(X̄ −m) ∈ S.(2.24d)

Thus, there is a continuum of constraints. We form a discrete approximation to

(2.24a)-(2.24b) by restricting ν to a discrete grid of points. Let L denote the number

of grid points. We give conditions under which the optimal values of the objective

functions of the discretized version of (2.23)-(2.24) converge to Ĵ+(X̄) and Ĵ−(X̄)

as L → ∞. To minimize the notational complexity of the following discussion we

assume that ν is a scalar. The generalization to a vector is straightforward. We also

assume that ν is contained in a compact set which, without further loss of generality,

we take to be [0, 1].

To obtain the grid approximation, let 0 = v0 < v1 < v2 < . . . < vL = 1 be a

grid of equally space points in [0, 1]. The distance between grid points is 1/(L − 1).

Approximate problem (2.23)-(2.24) by

J̃+(X̄) := max
ψ,m

f(ψ) and J̃−(X̄) := min
ψ,m

f(ψ)(2.25)
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subject to the constraints:

g1(ψ,m, ν`) ≤ 0; ` = 1, . . . , L,(2.26a)

g2(ψ,m, ν`) = 0; ` = 1, . . . , L,(2.26b)

ψ ∈ Ψ,(2.26c)

and

n1/2(X̄ −m) ∈ S.(2.26d)

We then have

Theorem 2.4. Assume that f is continuous, ν ∈ [0, 1], and m in (2.26) is contained

in a compact set M. Moreover,

|gj(ψ,m;x)− gj(ψ,m; v`)| ≤ C |x− v`|

|gj(ψ,m;x)− gj(ψ,m; v`+1)| ≤ C |x− v`+1|

for j = 1 or 2, some C < ∞, and all ψ ∈ Ψ, all m ∈ M, all x ∈ [v`, v`+1] ∈ [0, 1].

Then

lim
L→∞

J̃+ = Ĵ+ and lim
L→∞

J̃− = Ĵ−.(2.27)

Theorem 2.4 implies that under weak smoothness assumptions, a sufficiently dense

grid provides an arbitrarily accurate approximation to the continuously constrained

optimization problem (2.23)-(2.24).

2.6. Alternative Approaches. Two natural choices for S are an ellipsoid and a

hypercube or box. The ellipsoid produces a narrower nominal confidence interval for

f(ψ) than the hypercube does. The results of Monte Carlo experiments, presented

in Section 4, illustrate this. However, the hypercube makes it possible to replace

the multivariate Bentkus (2003) inequality with the one-dimensional Berry-Esséen

inequality, which reduces the upper bound on the difference between the true and

nominal coverage probabilities of the confidence interval. Horowitz (2020) provides

details in a different but related setting.

To provide finite-sample bounds on errors in coverage probabilities, we have focused

on the simple case that µ is a vector of unknown population means. In applications,

it might be useful to extend to a more general case that µ is a vector of population

quantities, including the mean as special case. Our inference method provides as-

ymptotic coverage, provided that a suitable S is constructed via standard asymptotic
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theory. It is an open question how to quantify finite-sample coverage probabilities in

such a case.

3. Computational Algorithms

Recall that our general framework is to obtain the bound

[min
ψ,m

f(ψ),max
ψ,m

f(ψ)]

subject to

g1(ψ,m) ≤ 0, g2(ψ,m) = 0, ψ ∈ Ψ, and n1/2(X̄ −m) ∈ S.

3.1. Objective function f(ψ). In many examples, f(ψ) is linear in ψ. For example,

ψ is the vector of all the parameters in an econometric model and f(ψ) is just one

element of ψ or a linear combination of elements of ψ.

3.2. Restrictions g1(ψ, µ) ≤ 0, g2(ψ, µ) = 0, and ψ ∈ Ψ. The restrictions g1(ψ, µ) ≤
0 include shape restrictions among the elements of ψ. Equality restrictions are im-

posed via g2(ψ, µ) = 0. The easiest case is that gj(ψ, µ) is linear in (ψ, µ) for each

j = 1, 2. In some of examples we consider, gj(ψ, µ) is linear in ψ, holding µ fixed,

and linear in µ, keeping ψ fixed, but not linear in (ψ, µ) jointly. This corresponds to

the case of bilinear constraints. For example, gj(ψ, µ) may depend on the product

between one of elements of ψ and one of elements of µ. In practice, Ψ can always

be chosen large enough that the constraint ψ ∈ Ψ is not binding additionally and

can be ignored. For example, suppose that ψ is a probability and the constraints in

g1(ψ, µ) ≤ 0 and g2(ψ, µ) = 0 impose a restriction on ψ such as [a, b] for 0 ≤ a < b ≤ 1.

Then, it is not necessary to impose ψ ∈ Ψ = [0, 1] additionally.

3.3. Restrictions n1/2(X̄ − µ) ∈ S. There are two leading cases of S: an ellipsoid

and a box. We start with the case that S is a box (that is, the Cartesian product

of intervals). Let D̂ denote the diagonal matrix consisting of diagonal elements of Σ̂.

Choose κ(1− α) such that

√
nmax

{∣∣∣D̂−1/2
j (X̄j − µj)

∣∣∣ : j = 1, . . . , 2J
}
≤ κ(1− α)

with probability 1− α. Here, the subscript j denotes the j-th element of a vector or

the (j, j) element of a diagonal matrix. Note that when S is a box, the critical value

can be easily simulated from the N(0, Σ̂) and the restriction n1/2(X̄ − µ) ∈ S can be

written as linear constraints.
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Consider now the case that S is an ellipsoid. Choose κ(1− α) such that

n(X̄ − µ)′Σ̂−1(X̄ − µ) ≤ κ(1− α)

with probability 1− α.

When S is an ellipsoid, the critical value κ(1− α) can be obtained from the χ2(J)

distribution, where J is the dimension of µ. Then, the restriction n1/2(X̄ − µ) ∈ S
can be written as

µ′Σ̂−1µ− 2µ′Σ̂−1X̄ ≤ n−1κ(1− α)− X̄ ′Σ̂−1X̄.

This is a convex quadratic constraint in µ.

3.4. Mathematical programming for leading cases. Table 1 gives the scheme of

mathematical programming we use for leading cases of f(ψ), g1(ψ, µ) ≤ 0, g2(ψ, µ) =

0, and n1/2(X̄ − µ) ∈ S. In the table, LP, QP and QCP refer to linear program-

ming, quadratic programming, and quadratically constrained programming, respec-

tively. MILP, MIQP and MIQCP correspond to mixed integer linear programming,

mixed integer quadratic programming, and mixed integer quadratically constrained

programming, respectively.

Table 1. Class of Optimization Problems

Case f(ψ) g1(ψ, µ) ≤ 0 n1/2(X̄ − µ) ∈ S Programming
g2(ψ, µ) = 0

1 linear linear box LP
2 linear linear ellipsoid QCP
3 quadratic linear box QP
4 quadratic linear ellipsoid QCP
5 linear bilinear box MILP/LP
6 linear bilinear ellipsoid MIQCP/QCP
7 quadratic bilinear box MIQP/QP
8 quadratic bilinear ellipsoid MIQCP/QCP

When some of the constraints g1(ψ, µ) ≤ 0 and g2(ψ, µ) = 0 are bilinear, the result-

ing problem may not be convex. To deal with non-convexity, we rely on a sequence of

convex relaxations to obtain an outer bound for f(ψ) and use a set of restricted inner

bounds. When the union of restricted inner bounds matches the best outer bound by

convex relaxations, we obtain the exact solution to the problem. Even if they do not

match exactly, the best outer and inner bounds will give an approximate solution to

the problem. The convex relaxations for bilinear constraints are implemented using
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mixed integer optimization (MIO). In Case 5, MILP/LP refers to the use of MILP

for the outer bound and that of LP for the inner bound. Cases 6-8 are similar. Ap-

pendix B gives a detailed description of dealing with bilinear constraints. By virtue

of the developments in MIO solvers and fast computing environments, the MIO has

become increasingly used in recent applications. For example, Bertsimas, King, and

Mazumder (2016) adopted an MIO approach for obtaining `0-constrained estimators

in high-dimensional regression models and Reguant (2016) used mixed integer linear

programming for computing counterfactual outcomes in game theoretic models.

4. Monte Carlo Experiments

4.1. Identification Problem. Suppose that

Y ∗i = h(Zi) + ei,(4.1)

where h : R 7→ R is an unknown function and the error term ei satisfies E[ei|Zi] = 0

almost surely. Assume that for each individual i, we do not observe Y ∗i , but only

the interval data [Li, Ui] such that Y ∗i ∈ [Li, Ui] along with Zi. Here, Li and Ui are

random variables.

Assume that the support of Zi is finite, that is, Z ∈ {z1, . . . , zJ}. Denote the values

of h(·) on Z by {ψ1, . . . , ψJ}. That is, h(u) =
∑J

j=1 ψj1(u = zj) for u ∈ Z.

Suppose that the object of interest is the value of ψ∗ ≡ h(z∗), where z∗ is not in

the support of Zi but zj−1 < z∗ < zj for some j. This type of extrapolation problem

is given as a motivating example in Manski (2007a, pp. 4-5).

To partially identify ψ∗, assume that h(·) is monotone non-decreasing. Specifically,

we impose the monotonicity on Z ∪ {z∗}. That is, h(z1) ≤ h(z2) whenever z1 ≤ z2

for any z1, z2 ∈ Z ∪ {z∗}. In addition, we have the following inequality constraints:

E[Li|Zi = zj] ≤ ψj ≤ E[Ui|Zi = zj](4.2)

for any 1 ≤ j ≤ J . Note that (4.2) alone does not provide a bounded interval on ψ∗

since z∗ is not in Z. The monotonicity assumption combined with (4.2) provides an

informative bound on ψ∗.
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To write the optimization problem in our canonical form, let µ denote the popula-

tion moments of the following X̄:

nX̄ =



∑n
i=1 Li1(Zi = z1)

...∑n
i=1 Li1(Zi = zJ)∑n
i=1 Ui1(Zi = z1)

...∑n
i=1 Ui1(Zi = zJ)∑n
i=1 1(Zi = z1)

...∑n
i=1 1(Zi = zJ)



.

Then, we can rewrite the constraints (4.2) in a bilinear form:

E[Li1(Zi = zj)] ≤ ψjE[1(Zi = zj)] ≤ E[Ui1(Zi = zj)](4.3)

for any 1 ≤ j ≤ J . To deal with the bilinear constraints, we rely on a method called

piecewise McCormick relaxation, which is given in Appendix B.

4.2. Results of a Monte Carlo Experiment. Suppose that (4.1) holds with

h(z) = 2z, the covariate Zi is uniformly distributed on

Z = {−3/2,−1,−1/2, 1/2, 1, 3/2},

and ei ∼ Unif[−1/2, 1/2]. The interval data are generated from Li = Y ∗i +Vi1(Vi < 0)

and Ui = Y ∗i + Vi1(Vi ≥ 0), where Vi ∼ N(0, 1). Here, Vi and ei in (4.1) are

independent of each other. The parameter of interest is ψ∗ = h(0). Note that zero is

not included in Z. The monotonicity constraint is imposed as

1 0 0 0 −1 0 0

−1 0 0 1 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 1 −1





h(0)

h(−3/2)

h(−1)

h(−1/2)

h(1/2)

h(1)

h(3/2)


≤ 06×1.

The simulation design here is similar to that of Bontemps, Magnac, and Maurin

(2012) except that the support of Xi is discrete and the linearity of h(·) is not used in
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estimation. The sample size was 200, 500, 1000 and 2000. There were 100 repetitions

for each Monte Carlo experiment. The identified set containing h(0) is −1.40 ≤
h(0) ≤ 1.40. The reported coverage probability is the frequency that the estimated

lower bound is smaller than or equal to the true lower bound (-1.40) and the estimated

upper bound is greater than or equal to the true upper bound (1.40). The nominal

coverage probability was 0.95.

We consider both cases that S is a box and an ellipsoid. We take Ψ = {ψj ∈
[−5, 5] for each j = 1, . . . , J}. The outer bounds were computed with piecewise lin-

ear relaxations with K = 10 that is described in Appendix B. To describe how to ob-

tain inner bounds, first partition µ and X̄ into µ ≡ (µ1, µ2) and X̄ ≡ (X̄1, X̄2), where

µ1 ≡ (E[Li1(Zi = z1)], . . . , E[Li1(Zi = zJ)], E[Ui1(Zi = z1)], . . . , E[Ui1(Zi = zJ)]),

µ2 ≡ (E[1(Zi = z1)], . . . , E[1(Zi = zJ)]), and X̄1 and X̄2 are corresponding sample

moments. In other words, only components of µ2 appear as bilinear terms in (4.3)

and those of µ1 are linearly separable. Then, to obtain a lower bound, we fix µ2 at its

feasible value and optimize with respect to (ψ, µ1). When S is a box, it is straight-

forward to obtain a lower bound since the feasible value of µ1 does not depend on

that of µ2. When S is an ellipsoid, recall that the restriction n1/2(X̄ − µ) ∈ S can be

written as

µ′Σ̂−1µ− 2µ′Σ̂−1X̄ ≤ n−1κ(1− α)− X̄ ′Σ̂−1X̄.(4.4)

Following µ and X̄, partition Σ̂−1 into blocks such that Σ̂−1 ≡ {Σ̂−1
(k,`), k = 1, 2, ` =

1, 2}. Now rewrite (4.4) as

µ′1Σ̂−1
(1,1)µ1 + 2µ′1

[
Σ̂−1

(1,2)µ2 − Σ̂−1
(1,1)X̄1 − Σ̂−1

(1,2)X̄2

]
≤ n−1κ(1− α)− X̄ ′Σ̂−1X̄ − µ′2Σ̂−1

(2,2)µ2 + 2µ′2

[
Σ̂−1

(2,1)X̄1 + Σ̂−1
(2,2)X̄2

]
.

(4.5)

Given µ2, this is a convex, quadratic constraint. First, we generate a random grid

of µ2 using the box version of S. Then we optimize with respect to (ψ, µ1) under

the restrictions g(ψ, µ) ≤ 0 and (4.5). In both cases, the inner bounds were obtained

with a random grid search with G = 1000. As an alternative to the outer and inner

bounds, we also consider the bounds when µ2 is fixed at X̄2. These correspond to

the bounds when the observed covariates Z1, . . . , Zn are regarded as non-stochastic.

These bounds will be tighter than those constructed under the random design. In

each Monte Carlo repetition when S is a box, the number of simulations to draw

N(0, Σ̂) was 1,000. The χ2 critical value is used when S is an ellipsoid.
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Table 2. Results of Monte Carlo Experiments

Type Type Avg. of Avg. of Coverage
of of sample estimated estimated probability
S bounds size lower bound upper bound

Box Outer 200 -3.87 3.78 1
bounds 500 -2.59 2.54 1

(K = 10) 1000 -2.14 2.14 1
2000 -1.89 1.89 1

Box Inner 200 -3.89 3.75 1
bounds 500 -2.59 2.54 1

(G = 1000) 1000 -2.14 2.14 1
2000 -1.89 1.89 1

Box Fixing 200 -2.07 2.12 1
Z1, . . . , Zn 500 -1.83 1.84 1

1000 -1.71 1.69 1
2000 -1.62 1.61 1

Ellipsoid Outer 200 -2.34 2.35 1
bounds 500 -1.90 1.91 1

(K = 10) 1000 -1.78 1.76 1
2000 -1.67 1.66 1

Ellipsoid Inner 200 -2.25 2.19 1
bounds 500 -1.84 1.81 1

(G = 1000) 1000 -1.68 1.68 1
2000 -1.59 1.59 1

Ellipsoid Fixing 200 -1.92 1.93 0.99
Z1, . . . , Zn 500 -1.72 1.73 1

1000 -1.64 1.62 1
2000 -1.57 1.56 1

Note: “Box” and “Ellipsoid” are our proposed methods with a box S and an
ellipsoidal S, respectively.

Table 2 presents the simulation results. First, we comment on the results with

a box. When n = 200, there are minor discrepancies between the outer and inner

bounds. For all other large sample sizes, averages of the bounds are identical. As

the sample size increases, the length of the estimated bounds decreases rapidly. We

now look at the results with an ellipsoid. The estimated bounds are much tighter

with an ellipsoid than with a box. There are more noticeable differences between the

average values of the outer and inner bounds when S is an ellipsoid. However, these

differences shrink as the sample size gets larger. The bounds with fixed Zi’s are tighter

especially when n is relatively small or if a box is used for S. The empirical coverage
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probabilities are all larger than the nominal probability of 0.95. This is consistent

with Theorem 2.3, which provides a lower bound on the coverage probability, not a

point probability.

4.3. Comparison with Minsker’s Method. In this subsection, we provide the

results of a small Monte Carlo experiment that is designed to compare our main pro-

posal with Minsker’s method described in Appendix C. We make two changes in the

experimental design of Section 4.2. First, in addition to the standard normal distri-

bution, the errors Vi are generated from the t-distribution with degrees of freedom

equal to 3 to consider a fat-tailed distribution. Note that the fat-tailed distribution

is adopted here since the median-of-means approach is robust to outliers. Second,

we set n = 10000 or 20000 because Minsker’s method requires a relatively large sam-

ple size. The estimated bounds obtained with Minsker’s method were uninformative

when n = 200, 500, 1000, 2000. Specifically, they were [−5, 5] for all of these sample

sizes. We consider coordinate-wise medians for the median of means since µ is rel-

atively low-dimensional. For simplicity, we consider only the outer bounds with 10

repetitions for each experiment.

Table 3. Comparison with Minsker’s Method

Distribution Type Type Avg. of Avg. of Coverage
of Vi of of sample estimated estimated probability

S bounds size lower bound upper bound
N(0, 1) Ellipsoid Outer 10000 -1.52 1.53 1

bounds 20000 -1.49 1.48 1
N(0, 1) Minsker Outer 10000 -3.87 3.86 1

bounds 20000 -3.20 3.22 1
t(3) Ellipsoid Outer 10000 -1.71 1.73 1

bounds 20000 -1.67 1.67 1
t(3) Minsker Outer 10000 -4.19 4.17 1

bounds 20000 -3.48 3.46 1

Note: “Ellipsoid” is our proposed method with an ellipsoidal S.

Table 3 reports the experimental results. The true lower and upper bounds are

−1.40 and 1.40 for the N(0, 1) errors and −1.37 and 1.37 for the t(3) errors, re-

spectively. The estimated bounds for Minsker’s method are much wider than the

bounds estimated by our proposed method, although they shrink from n = 10000 to
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n = 20000. Moreover, Minsker’s method does not produce a better result for the t-

distribution. Even with the t-distribution, Minsker’s method gives wider bounds than

our method does. The bounds from the ellipsoid, which is our proposed method, pro-

vides much tighter bounds but they also seem conservative, as noted in the previous

section.

5. Empirical Examples

5.1. Bounding the Average of Log Weekly Wages. The example in this sub-

section mimics the Monte Carlo Experiments. Suppose that Y ∗i is the log weekly

wage. In the 1960 and 1970 US censuses, hours of work during a week are measured

in brackets. As a result, weekly wages are only available in terms of interval data.

Let Zi be the years of schooling.

We use a sample extract from the US 2000 census to illustrate our methods. The

sample is restricted to males who were 40 years old with educational attainment at

least grade 10, positive wages and positive hours of work. In the 2000 census, variable

WKSWORK1 is the hours of work in integer value, whereas WKSWORK2 is weeks worked in

intervals. As a parameter of interest, we focus on the average log wage for one year

of college. In our estimation procedure, we drop all observations with those with one

year of college. The resulting sample size is n = 15, 647.

Table 4. 95% Confidence Interval for the Average of Log Weekly Wages

method lower bound upper bound
outer box 6.10 7.66
inner box 6.11 7.62
inner box covariate fixed 6.24 7.17
outer ellipsoid 6.32 6.84
inner ellipsoid 6.32 6.83
inner ellipsoid covariate fixed 6.34 6.81
oracle 6.56 6.61

In estimation, the latent Y ∗i is log(INCWAGE/WKSWORK1), where INCWAGE is total

pre-tax wage and salary income and WKSWORK1 is weeks worked in integer value. We

observe brackets [Li, Ui] of log(INCWAGE/WKSWORK2), where WKSWORK2 is weeks worked

in intervals: [1,13], [14,26], [27,39], [40,47], [48,49], [50,52]. The brackets [Li, Ui] are

random because the numerator INCWAGE is random. The set Z includes 7 different

values: 10th grade, 11th grade, 12th grade, 1 year of college, 2 years of college, 4 years
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of college and 5 or more years of college. Since we drop observations with those with

1 year of college, we have a missing data problem as in the Monte Carlo experiment.

Table 4 shows estimation results. The nominal level of coverage is 0.95. The

oracle refers to the confidence interval of the average log wage for one year of college

using the actual value of weekly wages for those with one year of college. As in the

Monte Carlo experiments, ellipsoid-based confidence intervals are tighter than box-

type confidence intervals and fixing covariates tightens the confidence intervals as

well. All the ellipsoid intervals are only slightly wider than the oracle interval.

5.2. Kline and Tartari (2016) Revisited. This section provides an empirical ex-

ample based on the study of KT that is described in Section 2.3. Specifically, we

use the information in Table 4 of KT to obtain the set S in (2.16d) and the lower

endpoint of a 95% confidence bound for π2n,1r. We consider only the lower endpoint

because KT found the upper endpoint to be 1 and, therefore, uninformative.

KT used the JF welfare reform experimental data and pooled all person-quarter

observations in the seven quarters following randomization of participants. They

treated each person-quarter observation as a potentially separate decision, allowing

time-varying behaviors. Because assignment of individuals to the JF treatment and

AFDC control groups was random, we assume that observations in each regime are

independent of the observations in the other. We further assume that observations

within the JF and AFDC regimes are independently and identically distributed (iid).

The set S can be expressed as a confidence region for pA2n and pJ2n. We used the

Clopper–Pearson (1934) procedure to construct the rectangular 95% confidence region

LA ≤ pA2n ≤ UA,

LJ ≤ pJ2n ≤ UJ ,

where LA, UA, LJ , and UJ are random lower and upper bounds chosen so that

P
(
LA ≤ pA2n ≤ UA;LJ ≤ pJ2n ≤ UJ

)
≥ 0.95.

The sample sizes in KT are nA = 16, 268 and nJ = 16, 226 for the AFDC and

JF regimes, respectively. The estimated values of pA2n and pJ2n are p̂A2n = 0.099 and

p̂J2n = 0.068. The resulting confidence region for pA2n and pJ2n is 0.092 ≤ pA2n ≤ 0.106

and 0.062 ≤ pJ2n ≤ 0.074. Solving (2.15)-(2.16) yielded 0.195 as the lower endpoint

of a 95% confidence region for π2n,1r. KT obtained a lower endpoint of 0.198, which

is similar to ours. However, there are important differences between our method

and that of KT. KT used a block bootstrap procedure that resamples a woman’s
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entire profile of choices for the first seven quarters after randomization, whereas we

used the non-asymptotic inference method for iid data. The method of KT relies on

asymptotic arguments but allows serial dependence of the observations of the same

woman. Our method is valid for any sample size but does not take account of any

serial dependence. It turns out that the conservative nature of our inference method

is offset by our assumption of independence, thereby yielding a confidence interval of

approximately the same size as that of KT.

6. Conclusions

This paper has described a method for carrying out inference on partially identified

parameters that are solutions to a class of optimization problems. The parameters

arise, for example, in applications in which grouped data are used for estimation of

a model’s structural parameters. Inference consists of obtaining confidence intervals

for the structural parameters. The method of this paper provides a finite-sample

upper bound on the difference between the true and nominal probabilities with which

a confidence interval based on an asymptotic approximation contains the true but

unknown value of a parameter. The paper has described computational algorithms

for implementing the method. The results of Monte Carlo experiments and empirical

examples illustrate the method’s usefulness.

Appendix A. Proofs of Theorems

Proof of Theorem 2.1. Suppose n1/2(X̄ − µ) is in S. Any feasible solution of (2.3)–

(2.4) is also a feasible solution of (2.1)–(2.2). Therefore, the feasible region of (2.1)–

(2.2) contains the feasible region of (2.3)–(2.4). Consequently,

Ĵ−(X̄) ≤ J− ≤ J+ ≤ Ĵ+(X̄),

which in turn proves (2.17). �

Proof of Lemma 2.1. Define the random p-vector V̄ := Σ−1/2Z̄. Then E(V̄ ) = 0 and

cov(V̄ ) = Ip×p. Define the set

SΣ :=
{
ξ : ξ = Σ−1/2ζ; ζ ∈ S

}
.(A.1)
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Then SΣ is a convex set. Define the random vectors Ui ∼ N(0, Ip×p) and Ū :=

n1/2
∑n

i=1 Ui. It follows from Assumption 2(ii) and the generalized Minkowski in-

equality that

E

( p∑
j=1

[Σ−1/2(Xi − µ)]2j

)3/2
 ≤ p3/2µ3.

In addition, it follows from Theorem 1.1 of Raič (2019) that∣∣P(V̄ ∈ SΣ)− P(Ū ∈ SΣ)
∣∣ ≤ (42p1/4 + 16)p3/2µ3

n1/2
,

which proves the lemma. �

Proof of Lemma 2.2. Define

∆n := sup
S

∣∣∣P(S, Σ̂)− P(W ∈ S)
∣∣∣ .

Now

P(S, Σ̂)− P(W ∈ S) = P(Σ−1/2Ŵ ∈ SΣ)− P(ξ ∈ SΣ),

where ξ ∼ N(0, Ip×p) and SΣ is defined in (A.1). Therefore,

∆n = sup
S

∣∣∣P(Σ−1/2Ŵ ∈ SΣ)− P(ξ ∈ SΣ)
∣∣∣

≤ TV
[
N(0, Ip×p), N(0,Σ−1Σ̂)

]
,

where TV(P1, P2) is the total variation distance between distributions P1 and P2. By

Example 2.3 of Dasgupta (2008),

TV
[
N(0, Ip×p), N(0,Σ−1Σ̂)

]
≤ p2p+1

∥∥∥Σ−1Σ̂− Ip×p
∥∥∥

F

where for any matrix A,

‖A‖2
F :=

p∑
j=1

p∑
j=1

a2
jk.

Define ω := Σ̂− Σ. Then,

Σ−1Σ̂− Ip×p = Σ−1(Σ̂− Σ) = Σ−1ω,∣∣(Σ−1ω)jk
∣∣ ≤ p∑

`=1

∣∣Σ−1
j` ω`k

∣∣ ≤ CΣ

p∑
`=1

|ω`k|

and ∥∥∥Σ−1Σ̂− Ip×p
∥∥∥

F
≤ CΣp

1/2

 p∑
k=1

(
p∑
`=1

|ω`k|

)2
1/2

.
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To obtain the conclusion of the lemma, it remains to show that |ωjk| ≤ rn(t) with

probability at least 1− 2e−t. We prove this claim below.

Write

ω = n−1

n∑
i=1

[(Xi − µ)(Xi − µ)′ − Σ]− (X̄ − µ)(X̄ − µ)′.

Then, we have that

P
[
max
j,k
|ωjk| ≥ rn(t)

]
≤ P

[
max

1≤j,k≤p

∣∣∣∣∣
n∑
i=1

[(Xij − µ)(Xik − µ)′ − Σjk]

∣∣∣∣∣ ≥ rn(t)

2

]
+ P

[{
max
1≤j≤p

∣∣X̄j − µj
∣∣}2

≥ rn(t)

2

]
.

Define

λ(κ1, n, p) :=

√
2 log(2p)

n
+
κ1 log(2p)

n
.

By Bernstein’s inequality for the maximum of p averages (see, e.g., Lemma 14.13

Bühlmann and Van De Geer, 2011),

P

[
max
1≤j≤p

∣∣X̄j − µj
∣∣ ≥ κ1t

n
+

√
2t

n
+ λ(κ1, n, p)

]
≤ exp (−t)

and

P

[
max

1≤j,k≤p

∣∣∣∣∣
n∑
i=1

[(Xij − µ)(Xik − µ)′ − Σjk]

∣∣∣∣∣ ≥ κ1t

n
+

√
2t

n
+ λ(κ1, n, p

2)

]
≤ exp (−t) .

Suppose that

max{t, log(2p)} ≤ min

{
n

κ1

,
n

2

}
.(A.2)

Under (A.2),

P

[{
max
1≤j≤p

∣∣X̄j − µj
∣∣}2

≥ κ1t

n
+

√
2t

n
+ λ(κ1, n, p)

]

≤ P

{max
1≤j≤p

∣∣X̄j − µj
∣∣}2

≥

{
κ1t

n
+

√
2t

n
+ λ(κ1, n, p)

}2


≤ exp (−t) .



INFERENCE IN A CLASS OF OPTIMIZATION PROBLEMS 27

Therefore, if we can choose rn(t) by

rn(t) := 2

√
2t

n
+ 3

√
2 log(2p)

n
+

2κ1t

n
+

3κ1 log(2p)

n
(A.3)

for t > 0, we have that

P
[
max
j,k
|ωjk| ≤ rn(t)

]
≥ 1− 2e−t.

To simplify the upper bound rn(t), we now strengthen (A.2) to (2.20) stated in the

lemma. Then, we can take

rn(t) := 8

√
2t

n
,

which proves the claim. �

Proof of Theorem 2.2. Write∣∣∣P(Z̄ ∈ S)−P(S, Σ̂)
∣∣∣ =

∣∣∣[P(Z̄ ∈ S)− P(W ∈ S)
]
−
[
P(S, Σ̂)− P(W ∈ S)

]∣∣∣
≤
∣∣P(Z̄ ∈ S)− P(W ∈ S)

∣∣+
∣∣∣P(S, Σ̂)− P(W ∈ S)

∣∣∣ .
Thus, the theorem follows immediately by combining Lemmas 2.1 and 2.2. �

Proof of Theorem 2.3. Combining Theorem 2.1 and 2.2 yields Theorem 2.3. �

Proof of Theorem 2.4. We focus on the maximization problem since the minimization

problem can be analyzed analogously.

Let (ψL, µL) denote the optimal solution to the maximization version of (2.25)-

(2.26). Define g(ψ, µ; ν) = [g1(ψ, µ; ν), g2(ψ, µ; ν),−g2(ψ, µ; ν)], so that g(ψ, µ; ν) ≤ 0

componentwise. Define `(ν) := arg min` |ν − ν`|. Then

sup
ν∈[0,1]

|g(ψ, µ; ν)− g(ψ, µ; `(ν))| ≤ C/(L− 1)

and g(ψ, µ; ν`) ≤ 0 implies that

g(ψ, µ; ν) ≤ C/(L− 1)

componentwise uniformly over ν ∈ [0, 1]. Therefore, (ψL, µL) is a feasible solution to

J∗+ := max
ψ,µ

f(ψ)(A.4)

subject to the new constraint:

g(ψ, µ; ν) ≤ C/(L− 1) for all ν ∈ [0, 1], ν = rational, and n1/2(X̄ − µ) ∈ S.
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Consequently, J∗+ ≥ J̃+ ≥ J+, where J+ = max f(ψ) subject to g1(ψ, µ, x) ≤ 0,

g2(ψ, µ, x) = 0 , and ψ ∈ Ψ. Define

Π :=
{
ξ ≥ 1, η : there is (ψ, µ) such that n1/2(X̄ − µ) ∈ S, f(ψ) ≤ η,

and g(ϕ, µ; ν) ≤ C/ξ for all ν ∈ [0, 1]
}
.

Note that Π is a closed set. Therefore, by Proposition 3.3 of Jeyakumar and Wolkowicz

(1990), J∗+ → J+ as L → ∞ if the constraints are restricted to rational values of

ν ∈ [0, 1]. It follows from continuity of g as a function of ν that the constraints hold

for all ν ∈ [0, 1]. �

Appendix B. Details about Computation with Bilinear Constraints

To explain how to deal with the constraints in a bilinear form, suppose that we have

a cross product term µjψ` in g(ψ, µ) ≤ 0 for some j and `, where µ = (µ1, . . . , µJ)′

and ψ = (ψ1, . . . , ψL)′.

The existence of the bilinear term µjψ` can make the corresponding optimization

problem non-convex. As mentioned in the main text, we rely on a sequence of convex

relaxations to obtain an outer bound for f(ψ). Specifically, we use piecewise-linear

relaxations that are called piecewise McCormick relaxation in the operation research

and engineering literature.

There exist a number of different formulations for piecewise McCormick relaxations.

For instance, Gounaris, Misener, and Floudas (2009) applied 15 different formulations.

We follow the formulation called ‘nf4l’ in Gounaris, Misener, and Floudas (2009). This

formulation was one of recommended formulations in Gounaris, Misener, and Floudas

(2009). To simplify the notation, we will drop dependence on the subscripts and write

µjψ` as µψ. In practice, one has to apply piecewise McCormick relaxation to each

bilinear term.

For any two positive terms a ∈ [0, a] and b ∈ [0, b], McCormick relaxation of c ≡ ab

consists of the following four inequalities:

c ≥ 0, c ≥ ab+ ab− ab, c ≤ ab, c ≤ ab,(B.1)

which is known as the tightest possible convex relaxation.

To explain how to apply McCormick relaxation to µψ, we introduce a new variable

ϕ and replace µψ with ϕ. Then instead of imposing the bilinear constraint that

ϕ = µψ, we relax this in a piecewise fashion.
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Suppose that ψ belongs to a known interval [ψ, ψ]. Assume that µ ∈ [µ, µ] with

known end points. In practice, they can be deduced from S since S will be imposed

simultaneously.

We now partition the space [ψ, ψ] for ψ by a grid of (K + 1) points {mk : k =

0, . . . , K,m0 = ψ,mK = ψ}. Define λk to be a set of binary variables such that

λk =

{
1 if mk−1 ≤ ψ ≤ mk

0 otherwise

for k = 1, . . . , K. Since we would like to ensure that ψ belongs to only one of segments

[mk−1,mk], we impose the summing up constraint such that

K∑
k=1

λk = 1.(B.2)

To reflect that [ψ, ψ] is partitioned as described above, we introduce a set of continuous

variables δk, k = 1, . . . , K, where 0 ≤ δk ≤ (mk−mk−1). Then we impose the following

set of restrictions

ψ =
K∑
k=1

{mk−1λk + δk} ,

0 ≤ δk ≤ (mk −mk−1)λk ∀k.

(B.3)

It can be seen that δk = 0 if λk = 0 and δk = ψ − mk−1 for the index k such that

λk = 1. For µ, we also introduce a set of continuous variables ηk, k = 1, . . . , K, where

0 ≤ ηk ≤ (µ− µ). Impose the following restrictions

µ = µ+
K∑
k=1

ηk,

0 ≤ ηk ≤ (µ− µ)λk ∀k.

(B.4)

As before, ηk = 0 if λk = 0 and ηk = µ− µ for the index k such that λk = 1.

Using newly defined variables δk and ηk, we now write

ϕ = µψ +
K∑
k=1

mk−1ηk +
K∑
k=1

δkηk.(B.5)

The first two terms on the right-hand side of (B.5) are linear in ψ and ηk; whereas,

the third term involves K bilinear terms of δkηk. Applying McCormick relaxation
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(B.1) to δkηk gives four inequalities for each k:

δkηk ≥ 0,

δkηk ≥ (mk −mk−1)ηk + (µ− µ)δk − (µ− µ)(mk −mk−1),

δkηk ≤ (µ− µ)δk,

δkηk ≤ (mk −mk−1)ηk.

(B.6)

Instead of introducing a k-specific variable for each δkηk, define a single continuous

variable ∆, where 0 ≤ ∆ ≤ maxk=1,...,K(mk −mk−1)(µ− µ). Then rewrite (B.5) as

ϕ = µψ +
K∑
k=1

mk−1ηk + ∆(B.7)

and aggregate equations in (B.6) over k to yield the following restrictions

∆ ≥
K∑
k=1

(mk −mk−1)ηk + (µ− µ)

(
K∑
k=1

[δk − (mk −mk−1)λk]

)
,

∆ ≤ (µ− µ)
K∑
k=1

δk,

∆ ≤
K∑
k=1

(mk −mk−1)ηk.

(B.8)

In summary, the formulation of piecewise McCormick relaxation consists of (B.2),

(B.3), (B.4), (B.7), and (B.8). The variables of optimization are µ, ψ, ϕ, ∆, λk ∈
{0, 1}, δk ∈ [0, (mk−mk−1)], ηk ∈ [0, (µ−µ)], where k = 1, . . . , K. The total number

of variables for optimization has increased from 2 to 4 + 3K, but a bilinear constraint

is relaxed to mixed integer linear constraints. A modern optimization solver (e.g.

Gurobi) can handle efficiently mixed integer linear constraints.

We now describe how to construct inner bounds. Recall that (ψ, µ) ∈ [ψ, ψ]×[µ, µ].

When the bilinear term µψ exists in the optimization problem and we fix µ at one of

values on its feasible set, the corresponding constrained optimization problem becomes

convex but sup-optimal. Hence, solving the constrained optimization problem yields

an inner bound. To obtain a tighter inner bound, we can create a grid of points for

possible values of µ with size G and solve a constrained problem at each value of the

grid. Taking the union of all these inner bounds gives a tight inner bound.

Note that K and G are tuning parameters to choose in implementation. To imple-

ment the method described above, we can start with small K and G and increase K
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and G gradually up to the point that the set difference between the resulting outer

and inner bounds is negligible up to some tolerance level. Even if the algorithm does

not converge in a fixed time, we can compute the gap between the outer and inner

bounds. This optimality gap is useful for evaluating the quality of the solution.

We state the proposed algorithm as follows.

Algorithm 1: Algorithm for outer and inner bounds

1. Select the type of S and choose tuning parameters K and G.
2. Obtain the outer bounds by solving [minψ,µ f(ψ),maxψ,µ f(ψ)] subject to

g(ψ, µ) ≤ 0, ψ ∈ Ψ, and n1/2(X̄ − µ) ∈ S,(B.9)

while replacing each incidence of a bilinear term with the formulation of
K-piecewise McCormick relaxation consisting of (B.2), (B.3), (B.4), (B.7),
and (B.8).

3. Construct a G-dimensional grid for components of µ, say µ2, appearing in
the problem as bilinear terms. Obtain the lower bounds by solving
[minψ,µ f(ψ),maxψ,µ f(ψ)] subject to (B.9), while fixing µ2 at a fixed value of
the grid points. Take the union of all G inner bounds to construct the best
inner bounds.

4. If the gap between outer and inner bounds is small, terminate. If not,
increase K and G to see whether the gap can decrease further. Repeat the
last step only fixed number of times.

5. Report the resulting outer and inner bounds.

Appendix C. Minsker’s (2015) Median of Means Method

In this appendix, we describe how to carry out inference based on Minsker (2015).

In particular, we consider two versions of the median of means: the one based on

geometric median and the other using coordinate-wise medians. Lugosi and Mendel-

son (2019) propose a different version of the median of means estimator that has

theoretically better properties but is more difficult to compute.

First, for the case of geometric median, let α∗ := 7/18 and p∗ := 0.1. Define

ψ(α∗; p∗) = (1− α∗) log
1− α∗
1− p∗

+ α∗ log
α∗
p∗
.

Let 0 < δ < 1 be the level of the confidence set and set

k :=

⌊
log(1/δ)

ψ(α∗; p∗)

⌋
+ 1.(C.1)
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Assume that δ is small enough that k ≤ n/2. Divide the sample X1, . . . , Xn into k

disjoint groups G1, . . . , Gk of size
⌊
n
k

⌋
each, and define

µ̂j :=
1

|Gj|
∑
i∈Gj

Xi, j = 1, . . . , k,

µ̂ := G.med(µ̂1, . . . , µ̂k),

where G.med refers to the geometric median. See Minsker (2015) and references

therein for details on the geometric median. The intuition behind µ̂ is that it is a

robust measure of the population mean vector µ since each subsample mean vector µ̂j

is an unbiased estimator for µ and the aggregation method via the geometric median

is robust to outliners. Because of this feature, it turns out that the finite sample

bound for the Euclidean norm distance between µ̂ and µ depends only on tr(Σ), but

not on the higher moments (see Corollary 4.1 of Minsker, 2015). This is the main

selling point of the median of means since the finite sample probability bound for the

usual sample mean assumes the existence of a higher moment (e.g. the third absolute

moment in Bentkus (2003) and Lemma 2.1 in Section 2.4).

Second, Minsker (2015) also considered using coordinate-wise medians instead of

using the geometric median. In this case, let α∗ = 1/2 and p∗ = 0.12. Then k is

redefined via (C.1). Let µ̂∗ denote the vector of coordinate-wise medians.

To estimate tr(Σ), Minsker (2015) proposed the following:

T̂j :=
1

|Gj|
∑
i∈Gj

‖Xi − µ̂j‖2 , j = 1, . . . , k,

T̂ := med(T̂1, . . . , T̂k).

where ‖a‖ is the Euclidean norm of a vector a. Let B(h, r) denote the ball of radius

r centered at h and let

rn := 11
√

2

√
T̂

log(1.4/δ)

n
,

rn,∗ := 4.4
√

2

√
T̂

log(1.6dµ/δ)

n− 2.4 log(1.6dµ/δ)
,

where dµ is the dimension of µ.

Lemma C.1 (Minsker (2015)). Assume that

15.2

√
E ‖X − µ‖4 − (tr(Σ))2

(tr(Σ))2
≤
(

1

2
− 178

log(1.4/δ)

n

)√
n

log(1.4/δ)
.(C.2)
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Then

P [µ ∈ B(µ̂, rn)] ≥ 1− 2δ and P [µ ∈ B(µ̂∗, rn,∗)] ≥ 1− 2δ.(C.3)

Proof of Lemma C.1. The result on the geometric median is the exactly the same as

Corollary 4.2 of Minsker (2015). The case for the vector of coordinate-wise medians

follows from combining equation (4.4) in Minsker (2015) with Proposition 4.1 of

Minsker (2015). �

Lemma C.1 indicates that S in our setup can be chosen as

(µ̂− µ)′(µ̂− µ) ≤ r2
n,

or

(µ̂∗ − µ)′(µ̂∗ − µ) ≤ r2
n,∗,

either of which gives the bound with probability at least 1−2δ. The former produces

a tighter bound than the latter only when the dimension of µ is sufficiently high.

Note that (C.2) requires the existence of fourth moments due to the fact that tr(Σ) is

estimated by the median of means as well. The inequality in (C.2) is a relatively mild

condition when n is large. In Section 4, we provide a numerical comparison between

our main proposal and Minsker’s method.
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