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1 Introduction

In a revealed preference framework, choices made by agents reflect their underlying prefer-

ences, thus are the key ingredients to further economic analysis. In reality, however, agents’

decisions may not always be observed by researchers, and there are multiple reasons why this

may occur. For example, in many panel survey datasets, some choice variables of interest

(such as individuals’ investment decisions on human capital, health, and child development,

etc.) are not included as a result of the survey design. Data on consumer choices could

be proprietary or highly regulated by the government due to privacy concerns. Moreover,

there may be more than one dimension of choices (e.g., whether individuals search and the

intensity of search) but not all are observed.1 In some other scenarios, individuals may have

inherent incentives not to disclose (or truthfully report) their choices. For instance, an exec-

utive officer or a politician may not be willing to reveal the actual amount of time and effort

they spend promoting the growth of the company or the economy. In such contexts where

a potential moral hazard problem exists, it is even more difficult for researchers to observe

or collect data on agents’ choices. An important research question therefore arises: when

choices are unobserved (or at least not fully observed), can we still uncover the decision-

making process and infer agents’ preferences from the data?

In this paper, we provide novel identification results for dynamic structural models with

unobserved choice variables, which have received little attention in the literature.2 We fo-

cus on identifying the “first-step” objects, i.e., conditional choice probabilities (CCP’s) and

state transition rules, when agents’ choices are not observed by econometricians.3 In the

baseline analysis, we consider a single-agent finite-horizon dynamic discrete choice model

with a continuous state variable. The state transition process is specified through a non-

parametric regression model with an additive error. We assume that the unobserved choices

may shift the distribution of the future state but are independent with the error term con-

ditional on the current state. The key intuition of our identification results is as follows.

In a finite-horizon model, agents’ choice probabilities are inherently time-varying.4 If the

1We thank an anonymous referee for suggesting this.
2 In the existing literature on dynamic discrete choice models, researchers mainly focused on the cases in

which choices are observable. Classic examples include engine replacement decisions in Rust (1987), parental
contraceptive choices in Hotz and Miller (1993), occupational choices in Keane and Wolpin (1997), employee
retirement decisions in Rust and Phelan (1997), retail firm inventory strategies in Aguirregabiria (1999),
and water authority pricing behavior in Timmins (2002), etc. See Eckstein and Wolpin (1989), Rust (1994),
Aguirregabiria and Mira (2010), and Arcidiacono and Ellickson (2011) for comprehensive surveys on dynamic
discrete choice structural models.

3Once these are identified, we can apply the results in Magnac and Thesmar (2002) and Arcidiacono and
Miller (2020) to nonparametrically identify utility functions.

4For example, when an executive in a firm is close to retirement, s/he may have fewer incentives to exert
effort; the probability of shirking may exhibit an upward trend.
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state transition process is stationary, which is typically assumed in the literature, then the

differences in the observed state transition process across periods are driven purely by the

differences in choice probabilities.5 Therefore, exploiting variations in moments of observed

future state distributions across periods helps identify the unobserved choice probabilities

and the latent state transition process.

We consider several extensions to our baseline model. First, we incorporate individual

serially correlated unobserved heterogeneity into the dynamic discrete choice model when

choices are unobserved. Existing papers by Aguirregabiria and Mira (2007), Houde and Imai

(2006), Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011), and Hu and Shum

(2012) have provided solutions to deal with unobserved heterogeneity. Following Hu and

Shum (2012), we use the joint distribution of the observed state variable at four consecutive

periods to identify the transition of the observed state conditional on the unobserved hetero-

geneity, to which we can further apply our method to deal with unobserved choices. Second,

we discuss identification for infinite-horizon models. In finite-horizon models, time essentially

serves as an exclusion restriction. We show that as long as there exists an excluded variable

that only shifts choice probabilities but does not affect the latent state transition process,

the baseline identification results remain valid for infinite-horizon models. Third, we pro-

vide conditions under which unobserved choice probabilities and the latent state transition

process are identified when only discrete state variables are available. Our results rely on

the assumption that the transition processes of two discrete state variables are independent

conditional on the agent’s choice. When this assumption holds, intuitively, the future states

can be viewed as “measurements” of the unobserved choice.6 Fourthly, we show that similar

identification arguments apply given partial unobservability of choices.

Our identification results are not limited to single-agent dynamic models. We show in this

paper that the proposed approach can be extended to dynamic discrete games of incomplete

information when choice data are not available.7 In a game setting, multiple players interact

with each other and make decisions simultaneously. Their choices naturally depend on the

actions and states of other players; however, the state transition process for a player may only

depend on his own actions and state variables in the past.8 In that case, the state of other

5 For the identification of dynamic discrete choice models when the data generating processes are nonsta-
tionary and the panels are short (i.e., the time horizon of the agent extends beyond the length of the data),
see Arcidiacono and Miller (2020).

6If two continuous state variables are available, it’s possible to extend our results to continuous choices.
7Existing papers that develop estimation techniques for dynamic discrete games generally require the

observation of choices (Jofre-Bonet and Pesendorfer, 2003; Aguirregabiria and Mira, 2007; Bajari, Benkard,
and Levin, 2007; Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008, etc.)

8For example, in a dynamic oligopoly game where the state variable is the firm’s capacity levels and the
choice is incremental changes to capacity, it is reasonable to assume that the firm’s future capacity levels
only depend on its own decisions, not on other firms’ choices. See Aguirregabiria, Mira, and Roman (2007),
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players can be treated as an excluded variable (i.e., it only affects the choice probabilities,

but not the state transition process); hence, our identification results for single-agent models

can be applied to unobserved choices in dynamic discrete games.

Following the identification results, we propose a sieve maximum likelihood estimation

strategy to jointly estimate primitives in agent’s utility functions and state transition rules.

We conduct Monte Carlo simulations to examine the finite sample performances of our

estimator under different data generating processes. Overall, our Monte Carlo simulations

perform well. Compared to the estimation results assuming that the choices are observed by

the econometricians, the results assuming choices are unobserved exhibit slightly larger finite

sample biases. In addition to the simulations, for illustration purposes, we apply our method

to a publicly available dataset containing all gubernatorial elections in the United States

from 1950–2000. We estimate a dynamic discrete choice model for governors’ effort exerting

decisions, which are not observed by econometricians. Our empirical analysis suggests that

the probability of shirking increases as the governors approach the end of their terms.

Our paper is closely related to the literature on the identification of dynamic discrete

choice models (Rust, 1994; Magnac and Thesmar, 2002; Abbring, 2010; Norets and Tang,

2014; Arcidiacono and Miller, 2020, etc.), which unexceptionally requires the observation of

agents’ choices. Arcidiacono and Miller (2020) summarize the necessary and sufficient condi-

tions for identifying a certain class of models, where the utility function is time-separable, the

unobserved states are conditionally independent and additively separable, and the agents’

beliefs are rational.9 Several papers have explored using additional assumptions (e.g., para-

metric assumptions on utility functions, exclusion restrictions on which state variables affect

payoffs, availability of terminating actions, etc.) to identify the discount factor, or counter-

factual policies without normalizing per period payoffs (Aguirregabiria, 2010; Bajari et al.,

2016; Abbring and Daljord, 2020, etc.). Our paper in general fits into this literature and we

focus on relaxing the assumption of full data coverage (i.e., observations of state and choice

variables for a random set of agents for a sufficient period of time). Relatedly, Arcidiacono

and Miller (2020) study identification of dynamic discrete choice models when the panels are

short, so that the choices and state transitions after the sample period are not observed. In

this paper, we impose assumptions on the state transition process to achieve identification

of model primitives when the data do not cover agents’ choices.

For the estimation of dynamic discrete choice models in the existing literature, agents’

Ryan (2012), Collard-Wexler (2013), and Takahashi (2015) for more details on empirical models of oligopoly
dynamics.

9An, Hu, and Xiao (2018) studies identification of dynamic discrete choice models allowing subjective
beliefs; Aguirregabiria and Magesan (2020) studies identification and estimation of dynamic discrete games
allowing the players’ beliefs are not in equilibrium.
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choices are usually needed to construct (pseudo) likelihood or to do first-stage nonparametric

estimation of the conditional choice probabilities and the state transition probabilities (see

Rust, 1987; Hotz and Miller, 1993; Hotz et al., 1994; Aguirregabiria and Mira, 2002, etc.).

Our paper complements this literature by developing estimation strategies that do not rely

on the availability of agents’ choices.

There are few empirical papers focused on models with unobserved choices (Misra and

Nair, 2011; Copeland and Monnet, 2009; Gayle and Miller, 2015; Gayle, Golan, and Miller,

2015; Perrigne and Vuong, 2011; Xin, 2020, etc.) In this paper, we incorporate unobserved

choice variables into a general framework of dynamic discrete choice models. Different from

the papers cited above, our identification strategies do not rely on multiple measurements of

the unobserved choice, exogenous variations in incentive schemes, one-to-one mapping be-

tween the choice and observables, or variations in the support of observables across different

choices. In addition, our framework allows the realization of distinct choices in the data

generating process.10

The rest of the paper is organized as follows. We outline a standard dynamic discrete

choice model in Section 2. Identification and estimation results for the baseline model are

provided in Sections 3 and 4, respectively. Section 5 provides simulation results. We consider

extensions to the baseline model in Section 6 and apply our methods to study moral hazard

problems in gubernatorial elections in Section 7. Section 8 concludes.

2 A Baseline Model

We first fix the notation for a standard single-agent dynamic discrete choice model with t =

1, 2, · · · , T <∞. Let st ∈ S represent the observed state variable and yt ∈ Y = {1, 2, · · · , J}
denote the agent’s choice. We use εt = (εt(1), εt(2), · · · , εt(J)) ∈ RJ to represent the state

variable that is unobserved by econometricians, such as utility shocks. An agent’s flow utility

depends on the current state and the choice, i.e., ut(st, εt, yt). The sum of the discounted

utility stream of the agent is therefore defined as

U(s, ε, y) =
T∑
t=1

βt−1ut(st, εt, yt), (2.1)

where s = (s1, · · · , sT ), ε = (ε1, · · · , εT ), y = (y1, · · · , yT ), and β is the discount factor. The

agent’s problem is to choose an optimal decision rule δ = (δ1, · · · , δT ) that maximizes the

10Gayle, Golan, and Miller (2015) studies the executives’ effort choice problems and focuses on the equi-
librium in which all executives choose to work.
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expected sum of the discounted utility, i.e.,

max
δ=(δ1,··· ,δT )

E(U(s, ε,y)),

where expectation is taken with respect to the partially controlled stochastic process of

{st, εt, yt} induced by the decision rule δ. We now introduce the first assumption to restrict

attention to certain classes of models.

Assumption 1. The dynamic process of {st, εt, yt} satisfies the following conditions.

(i) First-order Markov: fst+1,εt+1,yt+1|st,εt,yt,Ω<t = fst+1,εt+1,yt+1|st,εt,yt ,

where Ω<t ≡ {st−1, · · · , s1, εt−1, · · · , ε1, yt−1, · · · , y1}.

(ii) Conditional independence: the distribution of st+1 given (st, εt, yt) only depends on

(st, yt) and is denoted by fst+1|st,yt; the distribution of εt+1 given (st+1, st, εt, yt) only

depends on st+1 and is denoted by fεt+1|st+1.

(iii) Time-invariance: state transition probabilities fst+1|st,yt are time-invariant.

Assumption 1(i), which imposes the first-order Markov property on the transition process

of {st, εt, yt}, is commonly adopted in the dynamic discrete choice framework and may be

relaxed to allow for a higher-order Markov process. Following Rust (1987), Assumption 1(ii)

highlights two types of conditional independence: (1) given the state st, ε’s are independent

over time and (2) conditional on the current state st and choice yt, the future state st+1 is

independent of the unobserved state εt. The relaxation of this assumption is discussed in

recent literature on identification and estimation of dynamic discrete choice models when the

unobserved state variables are serially correlated.11 In Section 6.1, we show that our iden-

tification results can be extended to models that incorporate serially correlated unobserved

heterogeneity when at least five periods of data are available.12 In order to highlight the

identification intuition related to unobserved choice variables and for clarity of exposition,

we first focus on the case when Assumption 1(ii) is invoked. Assumption 1(iii) guarantees

that the state transition process does not change over time and is usually invoked in dy-

namic models.13 When choice variables are available, this assumption can be directly tested

using the data. The dynamic process of the state and choice variables (st, yt) that satisfies

Assumption 1 is illustrated in Figure 1.

11See Aguirregabiria and Mira (2007), Houde and Imai (2006), Kasahara and Shimotsu (2009), and Hu
and Shum (2012) for examples.

12When the unobserved heterogeneity is fixed over time, we show that only four consecutive periods are
needed.

13Bajari et al. (2016) impose the same assumption of time-homogeneous state transition for finite-horizon
dynamic discrete choice models; see Rust (1987) for a discussion on stationary infinite-horizon models.
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Figure 1: The Dynamic Process of (st, yt)

We further impose the additive separability assumption on the per-period utility function.

Assumption 2 (Additive Separability). ut(st, εt, yt) = u∗t (st, yt) + εt(yt).

Under Assumptions 1–2, we represent the agent’s optimization problem using the Bell-

man’s equation as follows.

Vt(st, εt) = max
y
u∗t (st, y) + εt(y) + β E[Vt+1(st+1, εt+1)|st, y]. (2.2)

The agent’s decision rule is hence defined by

δt(st, εt) = arg max
y

{
u∗t (st, y) + εt(y) + β E[Vt+1(st+1, εt+1)|st, y]

}
. (2.3)

At period t, the choice probability of alternative yt conditional on the observed state st (also

abbreviated as CCP) is defined in the following equation.

pt(yt|st) =

∫
1 {yt = δt(st, ε)} dFεt|st(ε|st), (2.4)

where Fεt|st(·|·) denotes the cumulative density function of the unobserved state variable εt

conditional on the current state st.

For the model described above, the primitives include mean utility functions u∗t (·, ·), the

distribution of the unobserved state variable Fεt|st(·|·), the state transition rule fst+1|st,yt ,

and the discount factor β.14 This model is generally not identified even when the choice

variable is observed. Magnac and Thesmar (2002, Proposition 2 and Corollary 3) provide

formal results that utility functions in each alternative are nonparametrically identified from

the conditional choice probabilities pt(yt|st) and the state transition probabilities fst+1|st,yt

for T = 2, if the distribution of the unobserved state, the discount factor, and the utility in

one reference alternative are known. Arcidiacono and Miller (2020, Theorem 3) characterize

the identification of flow payoffs for a more general case nesting both the infinite and finite

horizon models.
14 When choices are observed, structural transition probabilities, which can be directly recovered from the

data, are usually not included in the list of parameters to be identified (Magnac and Thesmar (2002)).
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When the choice variable yt is not observed by econometricians, we cannot recover the

decision rules nor the state transition probabilities directly from the data. These two objects

are necessary for the identification results in Magnac and Thesmar (2002) and Arcidiacono

and Miller (2020); moreover, they are the important first-step outputs for the two-step

CCP method developed by Hotz and Miller (1993) for estimating dynamic discrete choice

models. Overall, the existing methods fail to obtain sufficient ingredients for identifying and

estimating structural primitives when agents’ choices are not observed by econometricians.

In Section 3, we focus on identifying the conditional choice probabilities and the state

transition rules when the choices made by agents are not observed in the data. Throughout

the paper, we assume that (1) the researcher knows the set of alternatives from which the

agent chooses and the horizon of the agents solving their problems, (2) the distribution of

the unobserved state and the discount factor are known, and (3) payoff from one action is

known for every state and time period. Once the conditional choice probabilities and the

state transition rules are identified, it’s straightforward to apply the Hotz-Miller inversion

on the CCP’s and nonparametrically identify the mean utility functions following Magnac

and Thesmar (2002) and Arcidiacono and Miller (2020). In Section 4, we provide estimation

strategies for jointly estimating primitives in utility functions and state transition rules.

3 Identification

In this section, we provide identification results for the unobserved choice probabilities

pt(yt|st) and latent state transition probabilities fst+1|st,yt when only {st}T+1
t=1 (with T ≥ 2)

are observed for a random sample of agents.15 We first focus on the case in which st is a

continuous state variable. To highlight the feature that the choice variable is unobserved by

econometricians, we use y∗t to denote the unobserved choice variable hereafter.

When agents’ choices are unobserved, neither conditional choice probabilities nor state

transition rules can be directly recovered from the data. However, these two sets of unknowns

are connected through the observed state transition process as shown in the following equa-

tion under Assumption 1(i)–(ii).

fst+1|st(s
′|s) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )pt(y∗t |s), (3.1)

where s′ and s represent realized values of st+1 and st, respectively. In Equation (3.1),

the probability density of the future state conditional on the current state is a mixture of

15As described in Section 2, the agent solves the dynamic problem for t = 1, 2, · · · , T . Here we assume
that after the final period T , we observe the realization of the state variable at T + 1. The observation of
sT+1 is necessary for recovering the choice probabilities at T .
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the true latent state transition probabilities conditional on different alternatives, and the

choice probabilities serve as the mixing weights. Under Assumption 1(iii), fst+1|st,y∗t (s
′|s, y∗t )

is time-invariant; while in finite-horizon models, pt(y
∗
t |s) varies across different periods. The

differences in fst+1|st(s
′|s) across periods are therefore driven by the non-stationarity of the

choice probabilities. In the rest of this section, we exploit variations in moments of the

observed state transition process to identify choice probabilities and latent state transition

rules, for which the following assumption is invoked.

Assumption 3 (State Transition). st+1 = m(y∗t , st) + ηt, where m(·, ·) is continuously dif-

ferentiable in st, E(ηt|st) = 0, ηt ⊥ y∗t |st, and the conditional density function of the error

term fηt|st(·|·) is continuous in st.

Assumption 3 specifies the transition process of the continuous state variable st through

a nonparametric regression model, where m(·, ·) is an unknown smooth function and ηt

represents the random shock realized in the transition process with conditional mean equal

to zero. Assumption 3 also requires that the regression error is independent of the unobserved

choice conditional on the state variable. This conditional independence assumption ensures

that the impact of the choices on the state transition process is only through the deterministic

part but not through the error term—conditional on the current state, the choice made by

the agent only shifts the mean of the future state distribution. Combining Assumption 3 and

Assumption 1(iii), we know that the conditional distribution of ηt is stationary. That is, for

t, τ ∈ {1, · · · , T}, fηt|st(η|s) = fητ |sτ (η|s), ∀η, s. Furthermore, we assume that the conditional

density function of ηt is continuous in st. By Assumption 3, the unknown function m(·, ·)
and the conditional distribution of ηt jointly determine the state transition probabilities

fst+1|st,y∗t , and thus are the key primitives to be identified in addition to the unobserved

choice probabilities.

We now consider the case in which the choice variable takes binary values, i.e., y∗t ∈ {0, 1}.
Identifying the function m(y∗t , st) is equivalent to identifying two functions of st, i.e., m(y∗t =

0, st) and m(y∗t = 1, st). We begin our analysis with a fixed state s. To simplify the notation,

let m1 = m(1, s) and m0 = m(0, s). We use pt = pt(y
∗
t = 1|s) and 1 − pt = pt(y

∗
t = 0|s) to

denote the choice probabilities associated with choices 1 and 0, respectively, at period t. We

define the first-, the second-, and the third-order conditional moments of the observed state

variable at t+ 1 as follows.

µt+1 = Et+1 [st+1|st = s] ,

νt+1 = Et+1

[
(st+1 − µt+1)2|st = s

]
,

ξt+1 = Et+1

[
(st+1 − µt+1)3|st = s

]
.
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All of these conditional moments can be directly estimated from the data, and are thus

treated as known constants for identification purposes.

Note that µt, νt, and ξt are essentially weighted averages of moments of the future state

conditional on the current state and the choice, where the choice probabilities (pt, 1 − pt)

serve as the mixing weights. Given that st+1 = m(y∗t , st) + ηt and ηt and y∗t are independent

conditional on st under Assumption 3, µt, νt, and ξt can be represented as functions of m1,

m0, pt, and moments of ηt conditional on st = s. For example,

µt+1 = ptm1 + (1− pt)m0 + E(ηt|s).

By Assumption 3, the conditional mean of ηt equals 0, i.e., E(ηt|s) = 0. Therefore, the choice

probability

pt =
µt+1 −m0

m1 −m0

, (3.2)

provided that m1 6= m0.

Under Assumption 1(iii) and Assumption 3, the conditional distribution of ηt is station-

ary. This implies that the higher order moments of the error term ηt are time-invariant

conditional on the same state s. Taking the difference of moments of the observed state

variable (i.e., νt+1 and ξt+1) across two periods t and τ eliminates the unknown moments of

ηt and leads to a system of equations for m1 and m0. We show that m0 and m1 are the two

solutions to the equation of m̄:

m̄2 −∆1m̄+ ∆2 = 0, (3.3)

where

∆1 =
νt+1 − ντ+1 + (µ2

t+1 − µ2
τ+1)

µt+1 − µτ+1

,

∆2 =
ξt+1 − ξτ+1 − (µt+1(∆1 − µt+1)(∆1 − 2µt+1)− µτ+1(∆1 − µτ+1)(∆1 − 2µτ+1))

2(µt+1 − µτ+1)
.

The existence of the solutions in Equation (3.3) requires ∆2
1 − 4∆2 ≥ 0. This condition is

empirically testable as ∆1 and ∆2 are identified and can be directly estimated using moments

of the observed state variable provided that µt+1 6= µτ+1. The condition that µt+1 6= µτ+1

implies m1 6= m0 and pt 6= pτ , and is also empirically testable from the data. If m1 = m0,

the identification of m functions at state s is trivial as m1 = m0 = µt+1 = µτ+1, but the

choice probabilities are not identified as shown in Equation (3.2). If m1 6= m0 and pt = pτ ,

we have no variations in observables from periods t and τ to identify the m functions and

choice probabilities. We invoke the following assumption to restrict our attention to cases

where µt+1 6= µτ+1 and to pin down the order of m0 and m1.
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Assumption 4. The following conditions are satisfied:

(i) There exist two periods t and τ such that Pr(S̃) = 0 with

S̃ := {s ∈ S : Et+1[st+1|st = s] = Eτ+1[sτ+1|sτ = s]},

(ii) ∂m(1,s)
∂s
6= ∂m(0,s)

∂s
holds for any s ∈ S̄ := {s ∈ S̃ : m(1, s) = m(0, s)},

(iii) There exists an s0 ∈ S/S̄ such that m(1, s0) > m(0, s0).

Assumption 4(i), imposed on observables, ensures that there are at most countable many

values of the state variable at which m functions are not identified from Equations (3.3) using

data from periods t and τ .16 The values of m functions for s ∈ S̃ are, instead, identified using

the continuity of m(1, ·) and m(0, ·) in s. Assumption 4(ii) rules out the possibility that the

first-order derivatives of m(1, ·) and m(0, ·) are equal at the point they intersect (e.g., m(1, ·)
and m(0, ·) are tangent to each other). Note that S̄ also has zero probability as it is a subset

of S̃. Under Assumption 4(i)–(ii), as long as there exists a state s at which we can order

the two m functions, the smoothness condition (i.e., continuously differentiable) helps match

m(1, ·) and m(0, ·) across all values of s ∈ S.17 Assumption 4(iii) provides such an ordering

condition as needed. Note that the assumption that m(1, s0) > m(0, s0) is without loss of

generality. Before linking the identified choice probabilities and conditional state transition

probabilities to structural utility primitives, we can swamp the labels of the two choices.

Once m1 and m0 are identified (and if they are not equal), the conditional choice prob-

abilities are identified from Equation (3.2). The observed state transition probability of

st+1 = s′ given st = s can be written as a mixture of the conditional density of ηt evaluated

at s′−m1 and s′−m0; again, the choice probabilities (pt, 1−pt) serve as the mixing weights.

With variations in choice probabilities across two periods (i.e., pt 6= pτ ) and the stationarity

of ηt conditional on st, the conditional density function of ηt is also identified, i.e.,

fηt|st(s
′ −m1|s) =

fst+1|st(s
′|s)(1− pτ )− fsτ+1|sτ (s

′|s)(1− pt)
pt − pτ

,

fηt|st(s
′ −m0|s) =

fsτ+1|sτ (s
′|s)pt − fst+1|st(s

′|s)pτ
pt − pτ

.

(3.4)

At the state s in which pt(·|s) = pτ (·|s), fηt|st(·|s) is instead identified by the continuity of

the conditional density function of ηt in st as imposed in Assumption 3.18

16For s ∈ S̃, the first-order conditional moments of the state variable are the same across two periods t
and τ , i.e., µt+1 = µτ+1, so that the Equation (3.3) is not well defined.

17We thank an anonymous referee for suggesting this.
18Note that {s ∈ S : pt(·|s) = pτ (·|s)} is a subset of S̃, thus also has zero probability. Once fηt|st(·|s)
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We summarize the formal identification results in the following theorem.

Theorem 1 (Identification). If Assumptions 1, 2, 3, and 4 hold for the dynamic process of

{st, εt, y∗t } with y∗t ∈ {0, 1}, then the observed conditional densities fst+1|st(·|·) and fsτ+1|sτ (·|·)
for t and τ defined in Assumption 4 uniquely determine:

(i) the state transition fsr+1|sr,y∗r , including m(1, s), m(0, s), and fηr|sr(·|s) for all r ∈
{1, 2, · · · , T} and s ∈ S;

(ii) choice probabilities pt(·|s) and pτ (·|s) for s ∈ S/S̄ with Pr(S̄) = 0.

Proof. See Appendix A.

Remark 1. If additional smoothness assumptions are imposed on the utility functions, choice

probabilities pt(·|s) and pτ (·|s) are also identified for s ∈ S̄.

Once the state transition rules are identified, choice probabilities pr(·|s) are identified from

fsr+1|sr(·|s) for all r ∈ {1, 2, · · · , T} and s ∈ S/S̄ with Pr(S̄) = 0. In general, identifying

the choice probabilities for all sample periods requires {st}T+1
t=1 (with T ≥ 2). If we are only

interested in identifying choice probabilities for a certain period t, the observations of state

variables for as least three consecutive time periods (including t and t+ 1) are necessary.

The identification argument in our paper essentially follows a sequential approach.19

Theorem 1 provides identification results for the conditional choice probabilities and state

transition rules when the agents’ choice are not observed by econometricians up to label

swamping. To associate choice probabilities and state transition rules with specific alterna-

tives faced by the agent, various assumptions arising from the model or consistent with the

economic intuition could be imposed. For example, consider a scenario where st represents

the realized revenue of a loan and y∗t represents the borrower’s choice. Suppose we denote

y∗t = 1 if the borrower exerts effort to pay off the debt, and 0 otherwise; the agent’s utility

function has the following form u∗(st, y
∗
t ) = ωst− ρ1{y∗t = 1}, where ρ represents the cost of

exerting effort. It is reasonable to assume that when the borrower exerts effort, the revenue

distribution first-order stochastically dominates the one when he exerts no effort, so that

m(1, s) ≥ m(0, s) for all s ∈ S. With this assumption, we can label the larger value of the

m functions at state s as m(1, s) and identify the probability that the borrower exerts effort

accordingly.20

is identified for all s ∈ S such that pt(·|s) 6= pτ (·|s), by the continuity of the density function, fηt|st(·|s) is
identified for all s ∈ S.

19 For more discussions on the sequential versus joint identification approaches in dynamic structural
models, see Aguirregabiria and Mira (2019).

20If we swamp the label and denote y∗t = 0 if the borrower exerts effort to pay off the debt, the utility
function can be written as u∗(st, y

∗
t ) = ωst − ρ1{y∗t = 0}, and the larger value of the m functions is labeled

as m(0, s).
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Once the conditional choice probabilities and state transition rules are recovered for

each alternative, the identification of per-period utility functions in the second step follows

immediately from Magnac and Thesmar (2002) and Arcidiacono and Miller (2020). The

details are hence omitted in this paper. Note that if additional assumptions are imposed

on the per-period utility functions, the data requirement of {st}T+1
t=1 (with T ≥ 2) may be

relaxed. For example, if we assume that, in a finite horizon model, the last period utility is

different from the utility in the previous periods (while all other per period utilities are the

same), the observations of the state variables for at least t = T − 1, T, T + 1 are needed in

order to identify utility functions. If we further restrict the flow utility to not depend on

t, then choice probabilities at a certain period t ∈ {1, 2, · · · , T} are needed, which require

the observations of state variables in as least three consecutive time periods (including t and

t+ 1).

An important extension of the identification results in Theorem 1 is to incorporate serially

correlated unobserved heterogeneity into the model. Intuitively, when the unobserved het-

erogeneity is present, in order to apply our identification strategy, the key is to first recover

the transition process of the observed state conditional on the unobserved heterogeneity.

We show in Section 6.1 that the state transition process given the unobserved heterogene-

ity is identified from the joint distribution of state variables at four consecutive periods.

We discuss several other extensions in Section 6, including infinite-horizon models (Section

6.2), cases in which state variables are discrete (Section 6.3), or choice data are partially

unavailable (Section 6.4), and dynamic discrete games (Section 6.5).21

4 Estimation

In this section, we propose to use a sieve maximum likelihood approach to jointly estimate

the utility primitives, the nonparametric function m(·, ·) and the distribution of the error

term fηt|st in the state transition process.22 For simplicity, we consider a case where the

per-period utility functions are parametrized by a finite-dimensional parameter α.23

For θ = {α,m0,m1, fηt|st} ∈ Θ, the log-likelihood evaluated at a single observation

21For cases where the choice variable y∗t takes multiple discrete values, the approach in Chen, Hu, and
Lewbel (2009) may be used (under a generalized version of the current assumptions). We also show in
Section 6.3 that when two discrete state variables that are independent conditional on the choice variable
are available, the number of alternatives is not limited to two.

22 It is also possible to estimate the model primitives using a two-step sequential approach. Our identi-
fication strategy is constructive and leads to the direct nonparametric estimation of the conditional choice
probabilities and state transition rules in the first step. We can then use these two objects as the inputs for
the second-step estimation of utility primitives following Hotz and Miller (1993).

23The estimation strategy in this section can be extended to allow the nonparametric estimation of per-
period utility functions.
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Di = {sit}T+1
t=1 is derived in the following equation.

l(Di; θ) =
T∑
t=1

log

(
fst+1|st(si,t+1|sit; θ)

)

=
T∑
t=1

log

(
fηt|st(si,t+1 −m1(sit)|sit)pt(1|sit; θ) + fηt|st(si,t+1 −m0(sit)|sit)pt(0|sit; θ)

)
.

(4.1)

In Equation (4.1), pt(1|sit; θ) and pt(0|sit; θ) are the choice probabilities for alternatives 1

and 0 conditional on state sit given the parameter value θ (including utility parameters and

nonparametric functions m0, m1, and fηt|st in the state transition rules). To evaluate the

likelihood, choice probabilities are derived via the agent’s optimization problem in Equation

(2.3). The population criterion function Q : Θ→ R is hence defined by

Q(θ) = E(l(Di; θ)). (4.2)

A sample counterpart of the objective function in Equation (4.2) is

Q̂n(θ) =
1

n

n∑
i=1

l(Di; θ). (4.3)

In light of a finite sample, instead of searching parameters over an infinite-dimensional

parameter space Θ, we maximize the empirical criterion function over a sequence of approx-

imating sieve spaces Θk. The sieve maximum likelihood estimator θ̂k is defined as

θ̂k = arg sup
θ∈Θk

Q̂n(θ). (4.4)

We discuss the details of constructing the sieve spaces and the asymptotic properties of the

proposed estimator in Appendix B.

5 Simulations

In this section, we present Monte Carlo simulation results when there is a continuous state

variable. Let y∗t = 1 if the agent chooses to exert effort, and 0 otherwise. We assume that

the mean utility function takes the following form when the agent exerts effort:

u∗(st, y
∗
t ) = 1− exp(−ωst)− ρy∗t ,
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where ω = 0.8, and ρ = 0.3 measures the marginal cost of exerting more effort. Assume that

the utility level when no effort is exerted equals 0, i.e., u∗(st, 0) = 0. The utility shocks εt(0)

and εt(1) independently follow the type I extreme value distribution and the discount factor

is fixed at 0.95. We consider four data generating processes for the state transition process.

– DGP 1: st+1 = 0.8st + 0.5y∗t + ηt.

– DGP 2: st+1 = 0.8st + 0.5y∗t + 0.2st · y∗t + ηt.

– DGP 3: st+1 = 0.6st + 0.05s2
t + 0.5y∗t + ηt.

– DGP 4: st+1 = 0.2st + 0.1s2
t + 0.5y∗t + ηt.

In the first specification, m0(st) = 0.8st and m1(st) = 0.5 + 0.8st, both taking a linear

form, and the marginal effects of the current state on the future state are the same given

different choices. In the second specification, we add an interaction term between the state

variable and the choice variable, so that the marginal effects of the current state vary across

alternatives. Specifically, m0(st) = 0.8st and m1(st) = 0.5 + st. For DGP’s 3 and 4, we

assume the transition rule is nonlinear in the current state st; while in the latter case, the

nonlinearity is more important. For all specifications, we assume ηt ∼ N(0, 1) and T = 10.

We run simulations for different sample sizes, N = 100, 1000, and 5000. The estimation

results shown in this paper are based on 100 Monte Carlo replications.

For illustration of our identification intuition, we first plot the distribution of the state

variable at different periods (t = 1, 3, 5, and 7) in Figure 2a under DGP 1. It is clear that

the state distribution shifts to the right with a smaller variance as time proceeds. The

variations in the state distribution are driven by the differences in choice probabilities across

time periods. Figure 2b further confirms that the mean of the future state distribution

conditional on st = 0 is decreasing over time. This observation suggests that the probability

of agents exerting effort becomes lower as they approach the end of the game.

We summarize the estimation results for DGP’s 1–4 with N = 5000 in Panel (A) of Tables

4–7 in appendix E. We also run the estimation assuming that the choices are observed by

the econometricians and we provide the results in Panel (B) of Tables 4–7 in appendix E.

The estimation results for sample sizes equal to 100 and 1000 are provided in Tables F.1–F.8

in online appendix F. In these exercises, we use third-degree polynomials to approximate

the nonparametric functions m0 and m1. Specifically,

m0(s) ≈ a0 + a1s+ a2s
2 + a3s

3,

m1(s) ≈ b0 + b1s+ b2s
2 + b3s

3.
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(a) State Distribution (b) Conditional Mean

Figure 2: Graphic Illustration of Variations in Observed States

Note: Figure 2a plots the distribution of the state variable at periods 1, 3, 5, 7 under DGP 1. Figure 2b
plots the mean of st+1 conditional on st = 0 under DGP 1 for t = 1, 2, · · · , 10.

For the square root of the density function fηt , we use fifth-degree polynomials. In Tables 4–7,

we report Monte Carlo means, biases, standard deviations, mean absolute errors, and the root

mean squared errors of the primitives of interest. Instead of showing the estimated coefficients

for the η distribution, we report our estimates of ση, which represents the standard deviation

of the error distribution.24 The estimation results for the structural utility parameters are

shown in the last two rows of each table.

For all data generating processes, our Monte Carlo simulations generally perform well;

adding nonlinear effects of the current state to the transition process leads to slightly less

precise estimates. Comparing between Panel (A) and Panel (B) in Tables 4–7, the estima-

tion results when choices are unobserved exhibit slightly larger finite sample biases than the

ones estimated assuming choices are observed. As the sample size increases, the differences

between the two scenarios (i.e., when choices are unobserved versus when choices are ob-

served) become smaller. To visualize the simulation results, we plot functions m0 and m1

using our estimates when choices are not observed and the true parameter values in the data

generating process in Figure 3.25 Our nonparametric estimates of m0 and m1 are generally

close to the true parameter values, particularly when there is a linear effect of the current

state in the transition process. For nonlinear cases, our estimates still predict the shape of

the nonlinear function reasonably well.

We also plot the predicted average probabilities of exerting effort at each period using our

estimates and compare those with the ones observed in the simulated datasets. The results

24We impose the restriction that the mean of the η distribution is zero in the estimation.
25Figures 3 and 4 are based on estimation results with N = 5000.
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(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

Figure 3: Plot m0 and m1 Using Estimates and the True Parameter Values
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for the four data generating processes are shown in Figure 4. Note that the probability of

exerting effort depends on (1) which period the agent is at, and (2) the level of the state

variable. As the agent is closer to the final period of the game, the probability of exerting

effort conditional on the same state level decreases. However, as shown in Figure 2a, the

distribution of the state shifts to the right as time proceeds. In other words, the average

levels of state variables are improved as t increases. Because of these two counterforces, we

may observe a non-monotone trend of average probabilities of exerting effort.

For all data generating processes, average probabilities of exerting effort at each period

predicted using our estimates are very close to those “observed” in the simulated datasets.

These results support our identification and estimation strategies—even if we do not observe

agents’ choices in the dataset, we can still estimate the choice probabilities reasonably close

to the first-step nonparametric estimates if choices were observed.

(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

Figure 4: Choice Probabilities: Model Predictions vs. Data
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6 Extensions

We focus on a single-agent finite-horizon dynamic discrete choice model with one continuous

state variable to illustrate our main identification and estimation approaches. In this section,

we discuss extensions to the baseline identification results. In particular, we consider scenar-

ios in which: (1) serially correlated unobserved heterogeneity is allowed, (2) the model has

infinite horizon, (3) only discrete state variables are available, (4) choice data are partially

unavailable, and (5) multiple players make simultaneous decisions in a game.

6.1 Serially Correlated Unobserved Heterogeneity

We now consider a model with serially correlated unobserved heterogeneity. Following our

notations for the baseline model in Section 2, we use st to represent the observed state

variable and yt to denote the choice variable. Let (εt, x
∗
t ) represent the vector of unobserved

state variables. We impose the following assumptions on the dynamic process.26

Assumption 5. The dynamic process of {st, εt, x∗t , yt} satisfies the following conditions.

(i) First-order Markov: fst+1,εt+1,x∗t+1,yt+1|st,εt,x∗t ,yt,Ω<t = fst+1,εt+1,x∗t+1,yt+1|st,εt,x∗t ,yt ,

where Ω<t ≡ {st−1, · · · , s1, εt−1, · · · , ε1, x
∗
t−1, · · · , x∗1, yt−1, · · · , y1}.

(ii) The distribution of st+1 given (st, εt, x
∗
t , yt) only depends on (st, x

∗
t , yt) and is denoted

by fst+1|st,x∗t ,yt; the distribution of εt+1 given (st+1, x
∗
t+1, st, εt, x

∗
t , yt) only depends on

(st+1, x
∗
t+1) and is denoted by fεt+1|st+1,x∗t+1

; the distribution of x∗t+1 given (st+1, st, εt, x
∗
t , yt)

only depends on (st+1, x
∗
t ) and is denoted by fx∗t+1|st+1,x∗t

.

(iii) State transition probabilities fst+1|st,x∗t ,yt are time-invariant.

In general, Assumption 5 is very similar to Assumption 1 invoked for the baseline model.

The main difference is that Assumption 5 imposes additional restrictions on the dynamic

process related to the unobserved heterogeneity x∗t . Specifically, Assumption 5(ii) allows that

the transition of the observed state st depends on the unobserved heterogeneity in the last

period. Conditional on st and x∗t , ε’s are independent over time; and more importantly, the

unobserved heterogeneity is serially correlated—the distribution of x∗t+1 depends on (st+1, x
∗
t ).

Assumption 5 still holds if the unobserved heterogeneity is fixed over time, i.e., x∗t+1 = x∗t .
27

The serial correlation of the unobserved heterogeneity invoked in Assumption 5(ii) is more

26To address issues related to initial conditions when serially correlated unobserved heterogeneity is in-
cluded, we assume that the structural dynamic discrete choice model does not apply to pre-sample periods.

27Aguirregabiria and Mira (2007), Houde and Imai (2006), and Kasahara and Shimotsu (2009) study cases
with time-invariant discrete unobserved heterogeneity.
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general.28 The dynamic process of the state and choice variables (st, x
∗
t , yt) that satisfies

Assumption 5 is illustrated in Figure 5. This graph indicates that now in the dynamic discrete

choice model, agents’ decisions depend on both the observed and unobserved state variables;

the transition of the observed state variable also depends on the unobserved heterogeneity.

The red dashed lines highlight the serial correlation of the unobserved heterogeneity.

Figure 5: The Dynamic Process of (st, x
∗
t , yt)

When both unobserved choices and serially correlated unobserved heterogeneity are

present, can we apply a method similar to the one developed in Section 3 to identify the

primitives of interest, i.e., latent choice and state transition probabilities? Under Assumption

5(i)–(ii), the transition probabilities of the observed state variable can be written as

fst+1|st,x∗t (s
′|s, x∗) =

∑
y∗t

fst+1|st,x∗t ,y∗t (s
′|s, x∗, y∗t )pt(y∗t |s, x∗), (6.1)

where pt(y
∗
t |s, x∗) represents the choice probability of alternative y∗t given the observed state

variable st = s and the unobserved heterogeneity x∗t = x∗. Unlike Equation (3.1), both sides

of the Equation (6.1) consist of unobserved terms. On the left-hand side of this equation,

the transition probability of the future state given the current state is not directly estimable

from the data due to the existence of the unobserved heterogeneity x∗t . It is clear to see

from Equation (6.1) that in order to apply our identification strategy developed in Section

3, the key is to first recover the transition process of the observed state conditional on the

unobserved heterogeneity, i.e., fst+1|st,x∗t .

In order to identify fst+1|st,x∗t , we consider the joint distribution of the observed state

28Hu and Shum (2012) study identification of dynamic models with time-varying and continuous unob-
served heterogeneity. Our assumption differs from the one made in their paper in terms of the timing
restriction. In our case, the unobserved heterogeneity x∗t realizes after the state variable st.
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variable at four consecutive periods (st+2, st+1, st, st−1):

fst+2,st+1,st,st−1 =

∫
x∗t

fst+2|st+1,x∗t
× fst+1|st,x∗t × fx∗t ,st,st−1dFx∗t . (6.2)

The derivation of Equation (6.2) is provided in Appendix C. The key insight of this equa-

tion is that correlation among observed state variables across different periods is induced

by the underlying individual heterogeneity. We can treat (st+2, st+1, st, st−1) as measure-

ments of x∗t . Using the spectrum decomposition technique developed by Hu and Schennach

(2008), fst+2|st+1,x∗t
, fst+1|st,x∗t , and fx∗t ,st,st−1 are nonparametrically identified from the joint

distribution of the observed state variable at four periods: t+ 2, t+ 1, t, and t− 1.

Given that fst+1|st,x∗t is identified from the joint distribution of (st+2, st+1, st, st−1), the

density function on the left-hand side of Equation (6.1) is identified and can be treated as

known. Now in order to apply the identification results in Section 3, we need to find another

period τ . Suppose τ = t + 1. Then, with the state variable at t + 3, t + 2, t + 1, and t, we

are able to identify fsτ+1|sτ ,x∗τ . The main takeaway here is that the identification of latent

choice and state transition probabilities when serially correlated unobserved heterogeneity

is present requires the availability of at least five periods of data, i.e., {st}T+1
t=1 (with T ≥ 4).

Remark 2. Identification of models with time-invariant unobserved heterogeneity, such as

individual fixed effects, is a special case of our results in Section 6.1 that allow for seri-

ally correlated unobserved heterogeneity.29 If the unobserved heterogeneity is constant over

time (denoted by x∗), we can identify fst+1|st,x∗ and fst|st−1,x∗ from the joint distribution of

(st+1, st, st−1, st−2) using similar techniques as in Equation (6.2). This result indicates that

four periods of observed state variables are sufficient to identify the latent choice and state

transition probabilities conditional on individual fixed effects.

6.2 Infinite Horizon

In a finite-horizon model, the agent’s choice probabilities vary over time. As a result, when

the latent state transition rule is assumed to be time-homogeneous, variations in the moments

of the future state distribution conditional on the same current state can be attributed to

changes in choice probabilities across different periods. In other words, in a finite-horizon

model, time serves as an exclusion restriction as it only affects the choice probabilities but

not the latent state transition process. However, in an infinite-horizon model, agents’ choice

probabilities across different periods are the same conditional on the same state variable.

Consequently, time cannot be used as an excluded variable any more.

29In addition, our results allow an individual’s decision-making process to depend on his unobserved
heterogeneity in a nonlinear way through the optimization process.
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In an infinite-horizon model, we need to have an additional variable zt that satisfies the

following assumption serving as an exclusion restriction.

Assumption 6 (Exclusion Restriction). zt enters agents’ flow utility, i.e., u(st, zt, yt, εt),

but the transition rule of st does not depend on zt.

Assumption 6 ensures that the agent’s choice probabilities vary with the values of zt.

The condition that the transition rule of st does not depend on zt is an analogy to the time-

invariance assumption in the baseline model. To see this, for two distinct values of zt, z̄ and

ẑ, we obtain the following two equations under Assumption 6.

fst+1|st,zt(s
′|s, z̄) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )pt(y∗t |s, z̄),

fst+1|st,zt(s
′|s, ẑ) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )pt(y∗t |s, ẑ).

(6.3)

From Equation (6.3), we can see that the variations in the moments of fst+1|st,zt given differ-

ent values of zt are due to the differences in the choice probabilities. Similar identification

arguments can be made as in Section 3; hence, the details are omitted. Note that for station-

ary infinite horizon models, the observations of state variables for at least two consecutive

periods are required.

6.3 Discrete States

We provide identification results with a continuous state variable in the baseline model. We

now focus on a scenario where only discrete state variables are available. When there is

only one discrete state variable, comparing future state distributions at two periods provides

insufficient variations to identify the unobserved choice probabilities. When the choice vari-

able takes different values, both the location and the shape of the future state distribution

change. In this section, we consider a case where we have two discrete state variables {st, zt}
for t = 1, · · · , T + 1 that satisfy the following assumption.

Assumption 7 (Conditional Independence). fst+1,zt+1|st,zt,y∗t = fst+1|st,y∗t fzt+1|zt,y∗t .

Assumption 7 implies that the transition process of the two state variables are indepen-

dent conditional on the choice variable. Specifically, st is excluded from the transition of

zt and vice versa, but the choice probability depends on both state variables. We plot the

dynamic process of (st, zt, y
∗
t ) in Figure 6.

Under Assumption 7, the observed joint distribution of {st+1, zt+1, st, zt} can be factorized
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Figure 6: The Dynamic Process of (st, zt, yt)

as follows.

fst+1,zt+1,st,zt(s
′, z′, s, z) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )fzt+1|zt,y∗t (z

′|z, y∗t )fy∗t ,st,zt(y
∗
t , s, z). (6.4)

Intuitively, the future states can be viewed as proxies of the unobserved choice. Following

the results in the measurement literature (Hu (2008), Hu and Shum (2012)), Equation (6.4)

leads to an eigenvalue-eigenvector decomposition of a matrix constructed using observed

densities on its left-hand side. We provide the details for identifying the state transition

rules fst+1|st,y∗t and fzt+1|zt,y∗t and the choice probabilities fy∗t |st,zt from the decomposition in

Appendix D.

Remark 3. When there is only one discrete state variable available in the data, we do not get

point identification of the unobserved choice probabilities and the latent state transition prob-

abilities. Following An, Hu, and Xiao (2018), we connect the unobserved choice probabilities

and the latent state transition probabilities through (1) the observed state transition process,

and (2) the agent’s dynamic optimization problem. By constructing a sufficient number of

nonlinear restrictions, we can locally identify the model primitives.

6.4 Partial Unobservability of Choices

Our framework is also applicable to cases where there are multiple dimensions of the choices

made by the agents, but not all are observed in the data. For instance, researchers may

know whether a consumer searches for a product or an apartment, but it is difficult to get

information on the intensity of the search effort. It might be relatively easy to collect data

on whether an employee goes to work on time, but it is rather difficult to observe the degree

to which one works diligently.
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To take partial unobservability of choices into account, we denote the vector of choices

made by the agent at period t by yt = (yot , y
∗
t ), where yot represents the vector of choices

observed by the econometrician, and y∗t represents the ones not observed. Under Assumption

1(i)–(ii), the observed state transition process can be factorized in the following equation:

fst+1|st,yot (s
′|s, yot ) =

∑
y∗t

fst+1|st,yot ,y∗t (s
′|s, yot , y∗t )pt(y∗t |s, yot ), (6.5)

where s′ and s represent realized values of st+1 and st, respectively. In Equation (6.5),

fst+1|st,yot ,y∗t denotes the conditional state transition rules and pt(y
∗
t |s, yot ) denotes the proba-

bilities of the unobserved choice conditional on the state and other dimensions of the choices

observable to researchers. Both of the terms cannot be directly recovered from the data.

Equation (6.5) a direct extension of Equation (3.1) in the baseline model. The only

difference is that now the state transition probabilities are also conditional on the observable

part of the choices. Imposing similar restrictions on the latent state transition rules helps

to identify the unknown primitives on the right-hand side of Equation (6.5). The choice

probabilities for yt is therefore identified:

pt(yt|st) = pt(y
∗
t |st, yot ) · pt(yot |st),

where pt(y
o
t |st) can be directly estimated from the data since both yot and st are observables.

Following our identification strategies given partial unavailability of choices, one may use

the observed state transition rules (i.e., fst+1|st,yot ) to test if other dimensions of the choices

(e.g., the “intensity” margin of effort choices) are relevant for the empirical application

before going all the way to the full structural estimation. Intuitively, if the moments of st+1

conditional on st and yot do not vary across periods (in a finite-horizon model), it suggests

that unobserved dimensions of the choices might not play an important role in the agent’s

problem.

6.5 Dynamic Discrete Games

In the baseline model and extensions discussed in Sections 6.1–6.4, we focus on single-agent

dynamic discrete choice models. In this section, we show that our results can be extended to

dynamic discrete games. We first describe a modeling framework of dynamic discrete games

of incomplete information and then provide identification results for conditional choice prob-

abilities and state transition rules when players’ choices are unobserved by econometricians.

Consider a game with I players, where i = 1, 2, · · · , I is the index of each individ-

ual. Players choose an action from the choice set Y simultaneously at each period t =
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1, 2, · · · ,∞. We use yit to represent player i’s action at t, so the action profile is denoted

by yt = (y1t, y2t, · · · , yIt) ∈ YI . We use sit ∈ Si to denote the player’s state variable that

is publicly observed and εit ∈ Ei to denote the utility shock that is privately observed by

player i (not by i’s rivals or econometricians). Let st = (s1t, s2t, · · · , sIt) ∈ ×Ii=1Si and

εt = (ε1t, ε2t, · · · , εIt) ∈ ×Ii=1Ei be the vector of observed states and private utility shocks at

t, respectively.

Unlike the single-agent case, a player’s utility now depends on the action profile and

state variables of all players and his own private information εit. We use u(st, εit,yt) to

represent the player’s per period flow utility. At each period t, all players choose their

actions simultaneously to maximize their own expected sum of the discounted utility, i.e.,

E[
∑T−t

τ=0 β
τu(st+τ , εi,t+τ ,yt+τ )], where the expectation is taken over other players’ current

and future actions, the future observed states, and i’s private shocks in the future. We

invoke the following assumption to restrict attention to certain classes of models.

Assumption 8. The dynamic process of {st, εt,yt} satisfies the following conditions.

(i) First-order Markov: fst+1,εt+1,yt+1|st,εt,yt,Ω<t = fst+1,εt+1,yt+1|st,εt,yt ,

where Ω<t ≡ {st−1, · · · , s1, εt−1, · · · , ε1,yt−1, · · · ,y1}.

(ii) εit’s are independently distributed over time and across players, and are drawn from a

distribution Fi(·|st).

(iii) The distribution of st+1 given (st, εt,yt) only depends on (st,yt) and is denoted by

fst+1|st,yt.

Though typically invoked in the literature of dynamic discrete games of incomplete in-

formation, Assumption 8 imposes several restrictions on the model. First, it assumes that

the distribution of observed state variables, utility shocks, and choices only depends on their

values in the last period (i.e., they follow a first-order Markov process). Second, a con-

ditional independence assumption that is very similar to the one imposed for single-agent

models is invoked for private utility shocks. Assumption 8(ii) rules out the possibility that

private shocks are serially correlated over time; in a game setting, allowing serial correlation

could lead to complicated theoretical issues, including learning or strategic signaling behav-

ior among players. Last, Assumption 8(iii) requires that the transition process of observed

state variables does not depend on private utility shocks in the previous periods.

In the game described above, we consider pure strategy Markov Perfect Equilibrium

(MPE) as our equilibrium concept, in which case players’ actions only depend on the value

of current states and utility shocks. In addition, we focus on stationary Markov strategies,

so subscript t is dropped in the following definitions. We define a Markov strategy for player
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i as ai(st, εit) and i’s belief that yt is chosen at state st as σi(yt|st). Under Assumption 8,

the value function for player i given belief σi is

Vi(st, εit;σi) = max
y∈Y

∑
y−i∈YI−1

σi(y−i|st)
[
u(st, εit, (y,y−i)) + β E[Vi(st+1, εi,t+1;σi)|st, (y,y−i)]

]
,

(6.6)

where y−i represents the profile of actions for all other players except i. The optimal strategy

of player i given state variable st and private utility shock εit under belief σi is therefore

ai(st, εit;σi) = arg max
y∈Y

Vi(st, εit;σi). (6.7)

After integrating out the player’s private information, we can define i’s choice probabilities

given state variable st and belief σi as

pi(yit|st;σi) =

∫
1{yit = ai(st, εit;σi)}dFi(εit|st). (6.8)

In an MPE, players’ beliefs are consistent with their strategies, leading to a fixed point of a

mapping in the space of conditional choice probabilities. Under certain regularity conditions,

at least one Markov perfect equilibrium exists for dynamic discrete games of incomplete

information, but multiplicity of equilibria may be possible.30 In this paper, our goal is to

analyze situations when players’ actions are unobserved by econometricians, so we focus on

the simplest case where the same equilibrium is played in the data.31,32

We define player i’s equilibrium choice probabilities conditional on st as p∗i (yit|st). When

agents’ actions are observed by econometricians, following the two-step methods originally

developed by Hotz and Miller (1993), we can estimate the conditional choice probabilities

p∗i (yit|st) and state transition rules fst+1|st,yt from the data in the first step. Different ap-

proaches have been developed in the literature to estimate structural parameters of the game

along this direction.33 However, when the actions are unobserved by researchers, the existing

methods no longer work. In this paper, we invoke the following assumption to achieve the

30Doraszelski and Satterthwaite (2010) provide conditions under which equilibrium exists. See the dis-
cussions in Bajari, Benkard, and Levin (2007) and Aguirregabiria and Mira (2010) for more details about
multiple equilibria.

31Otsu, Pesendorfer, and Takahashi (2016) provide several statistical tests to examine whether the same
(or unique) equilibrium is played when data from distinctive markets are pooled. Their method also requires
the observation of players’ choices to estimate CCPs and state transition probabilities in the first step.

32Luo, Xiao, and Xiao (2018) and Aguirregabiria and Mira (2019) provide nonparametric identification
results for dynamic discrete games of incomplete information when multiple equilibria and unobserved het-
erogeneity are present.

33see Jofre-Bonet and Pesendorfer, 2003; Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007;
Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008).
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identification of structural parameters in dynamic discrete games with unobserved actions.

Assumption 9. Conditional on the current values of players’ own actions and states, the

future states are independent across players, i.e.,

fst+1|st,yt(s
′|s,y) =

I∏
i=1

fsi,t+1|sit,yit(s
′
i|si, yi),

where s′ = (s′1, s
′
2, · · · , s′I), s = (s1, s2, · · · , sI), and y = (y1, y2, · · · , yI).

In general, Assumption 9 eliminates the “cross-effects”: the transition process of the

observed state variable only depends on player i’s action and state in the last period, not

on other players’ actions or states. This assumption is motivated by the empirical setting of

dynamic oligopoly competition, where the state variable is the firm’s capacity levels and the

choice is the firm’s incremental changes to capacity. In this case, it is natural to assume that

the transition of states only depends on the firm’s own decisions, not on the other player’s

choices.34 Under Assumption 9, we achieve the following equation for i’s state transition

process:

fsi,t+1|st(s
′
i|s) =

∑
y∗it∈Y

fsi,t+1|sit,y∗it(s
′
i|si, y∗it)p∗i (y∗it|s), (6.9)

where y∗it is used to represent player i’s unobserved choice at period t. It is highlighted

in Equation (6.9) that the transition process of si,t+1 does not depend on s−i,t; while in a

game setting, all players interact with each other, so i’s choices naturally depend on all other

players’ state variables. In dynamic games, s−i can be used as an excluded variable. For

two values of s−i, s̄−i and ŝ−i, we obtain the following two equations under Assumption 9.

fsi,t+1|st(s
′
i|si, s̄−i) =

∑
y∗it∈Y

fsi,t+1|sit,y∗it(s
′
i|si, y∗it)p∗i (y∗it|si, s̄−i),

fsi,t+1|st(s
′
i|si, ŝ−i) =

∑
y∗it∈Y

fsi,t+1|sit,y∗it(s
′
i|si, y∗it)p∗i (y∗it|si, ŝ−i),

(6.10)

From Equation (6.10), it is clear that the variations in the moments of player i’s state distri-

bution conditional on other players’ last-period states (i.e., fsi,t+1|st) are due to the differences

in the choice probabilities. Similar identification strategies as shown in Section 3 can be ap-

plied to identify the state transition probabilities and equilibrium choice probabilities for

players i = 1, 2, · · · , I. We therefore omit the details here.

34Ryan (2012) estimates a dynamic model of oligopoly to study the cost of environmental regulations on
firms’ entry, exit, and investment decisions. In that paper, it is assumed that the transition of the states
(capacity) depend on firms’ own current state variables and actions (i.e., entry, exit, or investment). In
addition, the author assumes that the transition process is deterministic to reduce computational burden.
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Remark 4. Our identification results do not require all state variables to satisfy Assumption

9. In cases with multiple dimensions of the state variable, as long as there exists one state

variable of which the transition process does not involve other players’ actions or states, the

equilibrium choice probabilities are identified.

7 Empirical Illustration: Moral Hazard in U.S. Guber-

natorial Elections

In this section, we apply our identification and estimation methods to a publicly available

dataset containing all gubernatorial elections between 1950 and 2000 in the United States.35

In the dataset, we observe the characteristics of the elected governors and a few policy

outcome variables (e.g., log of per capita spending, unemployment rate, etc.) at the state

level. However, politicians’ choices are not part of the data.

We estimate a dynamic structural model of politicians’ effort-exerting decisions, which

are not observed by econometricians. This exercise is related to the empirical literature

in political economy focused on understanding the impact of institutional design of election

rules (e.g., term limits) on politician’s behavior, election outcomes, and voter welfare (Besley

and Case (1995), Alt, Bueno de Mesquita, and Rose (2011), Sieg and Yoon (2017), Aruoba,

Drazen, and Vlaicu (2019), etc.). In this literature, political agency models are typically

considered. For example, Alt, Bueno de Mesquita, and Rose (2011) considers an infinitely

repeated game between a politician and a representative voter. The politician chooses a

level of effort at each period; the voter observers the policy outcome but not the politician’s

level of effort. In two recent structural papers, Aruoba, Drazen, and Vlaicu (2019) develop

and estimate a political agency model with asymmetric information between politicians and

voters and they find significant incentive effects of reelections; Sieg and Yoon (2017) focus

more on the adverse selection problem, treating the ideology of the politician as a source of

unobserved heterogeneity instead of an effort-exerting decision.

Following the literature, in this application, we assume that the effort level exerted by

the politician is not observed by the voters from a modeling perspective.36 Different from

papers cited above which assume that governors make one decision for each term, we focus

on politicians’ within-term dynamic effort-exerting decisions. Our empirical results could

potentially shed light on political business cycle (see Drazen (2000) for a comprehensive

35Data source: https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/14838. For more
discussions on this dataset, see Alt, Bueno de Mesquita, and Rose (2011).

36It is also possible that the politician and the voters play a perfect information game, but the econome-
tricians cannot observed the choices made by the politician. We thank an anonymous referee for pointing
this out.
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survey on this literature).

During the sample period, different states may have adopted different term limits and

the rules could also change over time.37 We select governors serving their last terms for

states that have four-year terms. The governors we select are essentially “lame ducks” who

were not eligible for reelections.38 For states that have adopted a limit of two consecutive

terms, we only consider governors who were serving their second terms. In total, there are

142 governors in our sample. The summary statistics of whether the governor is a first-

term lame duck, proportions of elderly people in the state, and whether the governor is a

Democratic politician are provided in the upper panel of Table 1. In our sample, about 54%

of the governors were serving their first terms and because of the term limits they were not

eligible for reelections. The average proportion of elderly people across states is around 10%,

and 71% were Democratic governors.

Table 1: Summary Statistics

Variable Mean Std. Dev. Min Max Obs
Observed Characteristics

First-term lame duck 0.5423 0.5000 0 1 142
Proportions of elderly 0.1039 0.0235 0.0618 0.1848 142
Democratic governor 0.7183 0.4514 0 1 142

Log of Per Capita Spending
Year 0 6.6491 0.5675 5.4375 7.8136 142
Year 1 6.6970 0.5599 5.4880 7.8375 142
Year 2 6.7331 0.5399 5.5383 7.8445 142
Year 3 6.7673 0.5276 5.5669 7.9448 142
Year 4 6.8115 0.5108 5.6396 7.9362 142

In this application, we use log of per capita spending (reported in constant 1982 dollars)

as the state variable. Let t be the index of years within a term. t = 1 refers to the year when

a governor was elected (or reelected); t = 0 refers to the year before the term began. The

summary statistics of the state variable for t = 0, 1, · · · , 4 are provided in the lower panel

of Table 1. We impose Assumption 3 on the transition process of the state variable, that

is st+1 = m(st, y
∗
t ) + ηt, where ηt is independent with the choice variable y∗t . Let y∗t = 1 if

the governor exerts effort, and 0 otherwise. Although our identification results allow that

the distribution of ηt depends on st, for this application we focus on the case in which ηt is

also independent with st due to the small sample size. We assume the per period utility of

37Detailed information about gubernatorial term limits can be found in the Book of the States.
38In Alt, Bueno de Mesquita, and Rose (2011), “lame ducks” refer to politicians who cannot run for

reelection. This includes two cases: (1) the state adopted a limit of one term, or (2) the state adopted a
limit of two consecutive terms and the governor was in his second term.
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a governor exerting effort at t given the current state st has the following linear structure:

u∗(st, y
∗
t = 1) = ωst − ρy∗t . (7.1)

In Equation (7.1), ρ represents the marginal cost of exerting effort. In our estimation, we

allow ρ to depend on individual observed characteristics, such as whether the governor is a

first-term lame duck, proportions of elderly people in the state, and whether the governor

is a Democratic politician. Specifically, the following parametric form is considered in the

estimation.

ρ = ρ0 + ρ1First-Term + ρ2Elderly-Prop + ρ3Democratic.

In addition to the deterministic part, the governor also receives a random utility shock εt,

which is choice specific. Assume (εt(0), εt(1)) are drawn independently from the type I

extreme value distribution. We also assume that the utility level when no effort is exerted

equals 0, i.e., u(st, 0) = 0. In summary, the parameters to be estimated in this model include

{ω, ρ0, ρ1, ρ2, ρ3,m0(·),m1(·), fη(·)}, where the last three are unknown functions.

We estimate the model primitives following the sieve maximum likelihood estimation

strategy proposed in Section 4. The point estimates and their standard errors are provided

in Table 2.39 From the estimation results of m0 and m1 in Panel (A), we can see that if

governors exert effort, the distribution of the future state is on average better. In Figure

7, we plot m0 and m1 using model estimates in the range of the state variable observed in

the data. The marginal utility governors get from the state variable is significantly positive,

but exerting effort is costly. We find that the marginal cost of exerting effort for the first-

term lame ducks is higher compared to the second-term lame ducks, but the difference is

not statistically significant. This finding suggests that governors who were reelected are

potentially more competent, which is consistent with the selection effect of elections.

We compute the probabilities of shirking for governors at each period using the estimated

parameters. The results for the full sample and by each observed category are shown in Table

3. From this table, we can see that the probabilities of shirking are increasing over time within

a term. The probability of exerting no effort in the last period is 13 percent higher than that

of the first period. This result is quite intuitive: governors have fewer incentives to exert

effort when they are approaching the end of the term. Overall, we observe a lower chance

of exerting effort for first-term governors. Republican governors and those who have higher

proportions of elderly people seem to have higher probabilities of exerting effort.

39Similar to our notations in Monte Carlo simulations in Section 5, parameters aj and bj for j = 0, 1, 2, 3
are coefficients in polynomials that approximate m0(·) and m1(·), respectively. Specifically, m0(s) ≈ a0 +
a1s+ a2s

2 + a3s
3, and m1(s) ≈ b0 + b1s+ b2s

2 + b3s
3.
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Table 2: Estimation Results

Panel (A) Estimates of m0 and m1

Parameters Estimates Std. Err.
m0 : a0 1.0716 0.8072
m0 : a1 0.8181 0.0259
m0 : a2 0.0029 0.0637
m0 : a3 -0.0005 0.0068
m1 : b0 1.1603 0.1724
m1 : b1 0.6802 0.0263
m1 : b2 0.0283 0.0128
m1 : b3 -0.0008 0.0012

Panel (B) Estimates of Utility Primitives

Parameters Estimates Std. Err.
ω 3.7953 1.3153
ρ0 21.4115 8.5479
ρ1 0.1816 1.0461
ρ2 0.0003 17.4481
ρ3 0.4817 0.7990
ση 0.0513 0.0015

Figure 7: Plot m0 and m1 Using Model Estimates

Table 3: Probabilities of Shirking at Each Period

Year 1 Year 2 Year 3 Year 4
All sample 0.0785 0.0769 0.0766 0.0884

By Category
First-term lame duck 0.1346 0.1308 0.1307 0.1491
Second-term lame duck 0.0120 0.0130 0.0125 0.0164
Democratic governor 0.0997 0.0978 0.0977 0.1109
Republican governor 0.0245 0.0236 0.0228 0.0310
Lower percent of elderly 0.1233 0.1193 0.1181 0.1353
Higher percent of elderly 0.0098 0.0117 0.0130 0.0163
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8 Conclusion

In this paper, we provide new identification and estimation methods for dynamic structural

models when agents’ choices are unobserved by econometricians. We leverage variations

in the observed state transition process across different periods. In finite-horizon models,

time serves as an exclusion restriction because it only affects the choice probabilities but

not the state transition rules. Our identification results extend to infinite-horizon models,

models with serially correlated unobserved heterogeneity, cases in which state variables are

discrete or choices are partially unavailable, and dynamic discrete games. We propose a

sieve maximum likelihood estimator for primitives in agents’ utility functions and state

transition rules. Monte Carlo simulations under various specifications demonstrate the good

performance of the proposed approach. The identification and estimation results developed

in this paper contribute to the body of our knowledge. Under mild assumptions on the

state transition process, our methods can be applied to various empirical contexts in labor

economics, industrial organization, political economy, and other related fields, when agents’

choice data are not readily available.
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A Proof of Theorem 1

We rewrite the first-order conditional mean of the state variable at period t+ 1 by replacing

st+1 with m(y∗t , st) + ηt. Specifically,

µt+1 =
∑

y∗t ∈{0,1}

pt(y
∗
t |s) Et+1[m(y∗t , s) + ηt|s, y∗t ] = ptm1 + (1− pt)m0, (A.1)

where the second equality holds because under Assumption 3, ηt and y∗t are independent

conditional on the state and E(ηt|s) = 0. In Equation (A.1), µt+1 is a weighted average of

m1 and m0 with the choice probabilities (pt, 1− pt) serving as the mixing weights. Following

similar arguments, we rewrite the second- and the third-order conditional moments of the

state variable as follows.

νt+1 =
∑

y∗t ∈{0,1}

pt(y
∗
t |s) Et+1

[
(m(y∗t , s) + ηt − µt+1)2|s, y∗t

]
=

∑
y∗t ∈{0,1}

pt(y
∗
t |s)
[
(m(y∗t , s)− µt+1)2 + 2(m(y∗t , s)− µt+1) E[ηt|s] + E[η2

t |s]
]

= pt(m1 − µt+1)2 + (1− pt)(m0 − µt+1)2 + E
[
η2
t |s
]

(A.2)

ξt+1 =
∑

y∗t ∈{0,1}

pt(y
∗
t |s) Et+1

[
(m(y∗t , s) + ηt − µt+1)3|s, y∗t

]
=

∑
y∗t ∈{0,1}

pt(y
∗
t |s)
[
(m(y∗t , s)− µt+1)3 + E[η3

t |s] + 3(m(y∗t , s)− µt+1)2 E[ηt|s]

+ 3(m(y∗t , s)− µt+1) E[η2
t |s]
]

= pt(m1 − µt+1)3 + (1− pt)(m0 − µt+1)3 + E
[
η3
t |s
]
.

(A.3)

In Equations (A.2) and (A.3), E [η2
t |s] and E [η3

t |s] are the second- and third-order conditional

moments of the error ηt, respectively, but the values of these terms are not known.

To identify m1, m0, and the choice probabilities, we consider two periods t and τ (t 6= τ)

along the dynamic process. Equation (A.1) identifies the choice probability for any given m0

and m1 as long as m0 6= m1. Specifically, the choice probabilities at period t and τ are

pt =
µt+1 −m0

m1 −m0

, pτ =
µτ+1 −m0

m1 −m0

. (A.4)

Under Assumption 1(iii) and Assumption 3, the conditional distribution of ηt is sta-

tionary. This implies that the higher order moments of the error term are time-invariant

conditional on the same state s, i.e., E [η2
t |s] = E [η2

τ |s], and E [η3
t |s] = E [η3

τ |s]. Taking the
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difference of Equations (A.2) and (A.3) across the two periods t and τ , we eliminate the

unknown moments of ηt and achieve the following two equations.

νt+1 − ντ+1

= pt(m1 − µt+1)2 + (1− pt)(m0 − µt+1)2 − pτ (m1 − µτ+1)2 − (1− pτ )(m0 − µτ+1)2 (A.5)

= (pt − pτ )(m1 +m0)(m1 −m0)− (µ2
t+1 − µ2

τ+1),

ξt+1 − ξτ+1

= pt(m1 − µt+1)3 + (1− pt)(m0 − µt+1)3 − pτ (m1 − µτ+1)3 − (1− pτ )(m0 − µτ+1)3 (A.6)

We further plug the expressions of pt and pτ in Equation (A.4) into Equations (A.5) and

(A.6), which leads to a system of equations for the unknown primitives m1 and m0:

νt+1 − ντ+1 = (µt+1 − µτ+1)∆1 − (µ2
t+1 − µ2

τ+1), (A.7)

ξt+1 − ξτ+1 = (µt+1∆1 −∆2 − µ2
t+1)(∆1 − 2µt+1)− (µτ+1∆1 −∆2 − µ2

τ+1)(∆1 − 2µτ+1),

(A.8)

where ∆1 = m1 + m0 and ∆2 = m1m0. We obtain analytical solutions for ∆1 and ∆2 from

Equations (A.7)–(A.8), provided that µt+1 6= µτ+1.

∆1 =
νt+1 − ντ+1 + (µ2

t+1 − µ2
τ+1)

µt+1 − µτ+1

, (A.9)

∆2 =
ξt+1 − ξτ+1 − (µt+1(∆1 − µt+1)(∆1 − 2µt+1)− µτ+1(∆1 − µτ+1)(∆1 − 2µτ+1))

2(µt+1 − µτ+1)
.

(A.10)

We now focus on the case where µt+1 6= µτ+1. With ∆1 and ∆2 identified using the

moments of the observed state transition process as shown in Equations (A.9)–(A.10), m0

and m1 are the two distinctive solutions to the equation of m̄

m̄2 −∆1m̄+ ∆2 = 0, (A.11)

when ∆2
1 − 4∆2 > 0. Without loss of generality, we label the larger root of Equation (A.11)

by m1 and the smaller one by m0, i.e.,

m1 =
∆1 +

√
∆2

1 − 4∆2

2
, m0 =

∆1 −
√

∆2
1 − 4∆2

2
.

Once m1 and m0 are identified (and they are not equal), the conditional choice prob-

abilities pt and pτ are identified from Equation (A.4). Given the additive structure of the

state transition process and the independence of ηt and y∗t conditional st, the observed state
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transition probability of st+1 = s′ given st = s can be written as a mixture of the conditional

density of ηt evaluated at s′ −m1 and s′ −m0:

fst+1|st(s
′|s) = ptfηt|st(s

′ −m1|s) + (1− pt)fηt|st(s′ −m0|s),

fsτ+1|sτ (s
′|s) = pτfητ |sτ (s

′ −m1|s) + (1− pτ )fητ |sτ (s′ −m0|s).
(A.12)

Given the stationarity of ηt conditional on st,

fηt|st(s
′ −m1|s) = fητ |sτ (s

′ −m1|s), fηt|st(s
′ −m0|s) = fητ |sτ (s

′ −m0|s).

Equation (A.12) identifies the conditional density function of ηt at s′−m1 and s′−m0 when

pt 6= pτ , i.e.,

fηt|st(s
′ −m1|s) =

fst+1|st(s
′|s)(1− pτ )− fsτ+1|sτ (s

′|s)(1− pt)
pt − pτ

,

fηt|st(s
′ −m0|s) =

fsτ+1|sτ (s
′|s)pt − fst+1|st(s

′|s)pτ
pt − pτ

.

(A.13)

So far, we have proved that for a state s at which µt+1 6= µτ+1 and the order of the

m functions is known, m(0, s), m(1, s), choice probabilities pt and pτ , and the conditional

density function of the error term ηt are identified. Assumption 4(i) ensures that there are

at most countable many values of the state variable at which µt+1 = µτ+1. Therefore, by the

continuity of m functions, we also identify m(1, s) and m(0) for s ∈ S̃. Assumption 4(iii)

guarantees that there exists a state s0 such that we can distinguish betweenm(0, s0), m(1, s0).

Starting from s0, by the continuity of the first-order derivatives of the m functions imposed

in Assumption 3 and the condition that m(1, ·) and m(0, ·) intersect at only countable many

states with different derivatives imposed in Assumption 4(i)–(ii), we matchm(1, ·) andm(0, ·)
across all values of s ∈ S.

Equation (A.13) identifies fηt|st(·|s) for any s ∈ S such that pt(·|s) 6= pτ (·|s). Given that

{s ∈ S : pt(·|s) = pτ (·|s)} has zero probability and the continuity of the density function,

fηt|st(·|s) is identified for all s ∈ S. The identification of m functions and the conditional

density function of the error term ηt implies the identification of the state transition rules,

i.e., fst+1|st,y∗t (·|·, ·). Choice probabilities for periods t and τ are identified using Equation

(A.4) for all s ∈ S/S̄ with Pr(S̄) = 0. This completes the proof of Theorem 1.
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B Sieve Maximum Likelihood Estimation

Let θ0 = (α0,m0
0,m

0
1, f

0
ηt|st) represent the vector of true parameter values of interest. For

simplicity, consider a case where the per-period utility functions are parametrized by a

finite-dimensional parameter α0 ∈ A. m0
0 : S → S and m0

1 : S → S are two nonparametric

functions in the state transition rules, where S denotes the state space. f 0
ηt|st : R×S → R+

is the probability density function of the error term conditional on the state variable.

We impose the following smoothness restrictions on m0
0, m0

1, and the density function

f 0
ηt|st . To strengthen the definition of continuity, we introduce the notation for the space of

Hölder continuous functions. If Ψ is an open set in Rn, κ ∈ N, and ζ ∈ (0, 1], then Γκ,ζ(Ψ)

consists of all functions m : Ψ → R with continuous partial derivatives in Ψ of order less

than or equal to κ whose κ-th partial derivatives are locally uniformly Hölder continuous

with exponent ζ in Ψ. Define a Hölder ball, which is a compact subset of Γκ,ζ(Ψ), as

Γκ,ζc (Ψ) ≡
{
m ∈ Γκ,ζ(Ψ)

∣∣∣∣ ‖m‖Γκ,ζ(Ψ) ≤ c <∞
}

with respect to the norm

‖m‖Γκ,ζ(Ψ) ≡ max
|r|≤κ

sup
Ψ
‖∂rm‖e + max

|r|=κ
[∂rm]ζ,Ψ.

In the norm definition for the Hölder ball, ‖·‖e represents the Euclidean norm, and

[m]ζ,Ψ ≡ sup
x,x′∈Ψ,x 6=x′

‖m(x)−m(x′)‖e
‖x− x′‖ζe

.

∂rm represents the multi-index notation for partial derivatives with r = (r1, r2, · · · , rdim(Ψ))

and |r| = r1 +r2 + · · ·+rdim(Ψ). With notations for the space of Hölder continuous functions,

we define the functional space of m0 and m1 by H = Γκ1,ζ1c (S) with supremum norm ‖m‖H =

supx∈S |m(x)|. The space of the density function is

F =

{
fηt|st(·|·) ∈ Γκ2,ζ2c (R× S) : fηt|st(·|s) > 0,

∫
R
fηt|st(η|s)dη = 1,E(ηt|s) = 0,∀s ∈ S

}
,

with norm defined by ‖f‖F = supx∈R×S
∣∣f(x)(1 + ‖x‖2

e)
−ψ/2

∣∣, ψ > 0. Notice that the con-

ditional mean of ηt for all density functions in F are equal to 0, which is consistent with

Assumption 3. Θ = A ×H ×H × F denotes the space for all parameters of interest. Θ is

an infinite-dimensional space as it contains nonparametric functions m0, m1, and fηt|st . The

metric on Θ is defined by

d(θ, θ̃) = ‖α− α̃‖e + ‖m0 − m̃0‖H + ‖m1 − m̃1‖H +
∥∥∥fηt|st − f̃ηt|st∥∥∥F .

In light of a finite sample, instead of searching parameters over an infinite-dimensional
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parameter space Θ, we maximize the empirical criterion function in Equation (4.3) over a

sequence of approximating sieve spaces Θk = A×Hk1 ×Hk2 ×Fk3 , where

Hk1 =

{
m ∈ H

∣∣∣∣∣m : S → R,m(s) =

k1∑
q=1

γqhq(s), γq ∈ R, ∀q
}
,

Hk2 =

{
m ∈ H

∣∣∣∣∣m : S → R,m(s) =

k2∑
q=1

γqhq(s), γq ∈ R, ∀q
}
,

Fk3 =

{
f ∈ F

∣∣∣f : R× S → R+,
√
f(η|s) = gk3(η, s)Tλ,λ ∈ Rk3

}
.

In the definition of sieve spaces, (h1(·), h2(·), h3(·), · · · ) represents a sequence of known basis

functions, such as Hermite polynomials, power series, splines, etc. We use linear sieves to

approximate the square root of densities and gk3(·, ·) is a k3× 1 vector of the tensor product

of spline basis functions on R × S. Notice that it is standard to generate linear sieves of

multivariate functions using a tensor product of linear sieves of univariate functions.

Chen (2007; Ch. 3) provides a general consistency theorem for sieve extremum estima-

tors for various semi-/non-parametric models. Following Chen, Hu, and Lewbel (2008) and

Carroll, Chen, and Hu (2010), we provide sufficient conditions tailored to our model for

consistency of the sieve maximum likelihood estimator in Equation (4.4).40

Assumption 10 (Consistency). The following conditions are satisfied: (i) all assumptions

in Theorem 1 hold; (ii) Di is i.i.d. across i; (iii) m0 and m1 ∈ H with κ1+ζ1 > 1/2; fη|S ∈ F
with κ2 + ζ2 > 1; (iv) |Q(θ0)| <∞ and Q(θ) is upper semicontinuous on Θ under the metric

d(·, ·); (v) the sieve spaces, Θk, are compact under d(·, ·); (vi) There is a finite σ > 0 and a

random variable c(Di) with E(c(Di)) < ∞ such that supθ∈Θk:d(θ,θ0)≤ε |l(Di; θ)− l(Di; θ
0)| ≤

εσc(Di); (vii) k1, k2, and k3 →∞, k1/n, k2/n, and k3/n→ 0.

Assumption 10(i) ensures the identification of the model primitives. Assumption 10

overall provides a set of assumptions that imply the conditions of Chen (2007; Ch. 3,

Theorem 3.1). The following theorem for the consistency of our sieve maximum likelihood

estimator is a direct application, therefore the proof is omitted.

Theorem 2 (Consistency). If Assumption 10 is satisfied, then the sieve maximum likelihood

estimator in Equation (4.4) is consistent with respect to the metric d(·, ·), i.e.,

d(θ̂k, θ
0) = oP (1).

40Chen, Hu, and Lewbel (2008) study identification and estimation of a nonparametric regression model
with discrete covariates measured with error. Carroll, Chen, and Hu (2010) consider a general nonlinear
errors-in-variables model using two samples.
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Remark 5. For general results on convergence rates, root-n asymptotic normality, and semi-

parametric efficiency of sieve maximum likelihood estimators, see Shen and Wong (1994),

Chen and Shen (1996), Shen (1997), Chen and Shen (1998), Ai and Chen (1999), and Chen

(2007; Theorem 3.2 and Theorem 4.3).

C Derivation of Equation (6.2)

We decompose the joint distribution of the observed state variable at four consecutive periods

(st+2, st+1, st, st−1) as follows.

fst+2,st+1,st,st−1

=

∫
x∗t+1

∫
x∗t

∫
x∗t−1

∫
y∗t+1

∫
y∗t

∫
y∗t−1

fst+2,y∗t+1,x
∗
t+1,st+1,y∗t ,x

∗
t ,st,y

∗
t−1,x

∗
t−1,st−1dFx∗t+1

· · · dFy∗t−1

=

∫
x∗t+1

∫
x∗t

∫
x∗t−1

(∫
y∗t+1

fst+2|st+1,x∗t+1,y
∗
t+1
× fy∗t+1|st+1,x∗t+1

dFy∗t+1

)
× fx∗t+1|st+1,x∗t

×
(∫

y∗t

fst+1|st,x∗t ,y∗t × fy∗t |st,x∗t dFy∗t

)
× fx∗t |st,x∗t−1

×
(∫

y∗t−1

fst|st−1,x∗t−1,y
∗
t−1
× fy∗t−1|st−1,x∗t−1

dFy∗t−1

)
× fx∗t−1,st−1dFx∗t+1

· · · dFx∗t−1

=

∫
x∗t+1

∫
x∗t

∫
x∗t−1

fst+2|st+1,x∗t+1
× fx∗t+1|st+1,x∗t

× fst+1|st,x∗t × fx∗t |st,x∗t−1
× fst,x∗t−1,st−1dFx∗t+1

· · · dFx∗t−1

=

∫
x∗t

(∫
x∗t+1

fst+2|st+1,x∗t+1
× fx∗t+1|st+1,x∗t

dFx∗t+1

)
× fst+1|st,x∗t

×
(∫

x∗t−1

fx∗t |st,x∗t−1
× fst,x∗t−1,st−1dFx∗t−1

)
dFx∗t

=

∫
x∗t

fst+2|st+1,x∗t
× fst+1|st,x∗t × fx∗t ,st,st−1dFx∗t .

(C.1)

The second equality in Equation(C.1) holds under the first-order Markov property of the

dynamic process and the conditional independence imposed in Assumption 5(i)–(ii). By

integrating out the unobserved choice variables (y∗t+1, y
∗
t , y
∗
t−1), the third equality holds. We

further integrate out the unobserved heterogeneity (x∗t+1, x
∗
t−1), which yields the last line of

Equation (C.1).
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D Eigenvalue-Eigenvector Decomposition

In this section, we provide details for constructing eigenvalue-eigenvector decompositions

based on Equation (6.4) in Section 6.3. Let js = 1, · · · , Js, jz = 1, · · · , Jz, and jy = 1, · · · , Jy
index the categories of st, zt and y∗t , respectively. The agent’s choice is not limited to taking

binary values, i.e., Jy ≥ 2. For simplicity, we consider the case where Js = Jz = Jy.
41 We

define the following matrices for fixed (s, z):

Mst+1,zt+1,s,z =
[
fst+1,zt+1,st,zt(st+1, zt+1, s, z)

∣∣
st+1=js,zt+1=jz

]
js,jz

,

Mst+1|s,y∗t =
[
fst+1|st,y∗t (st+1|s, y∗t )

∣∣
st+1=js,y∗t=jy

]
js,jy

,

My∗t ,s,z
= diag

{[
fy∗t ,st,zt(y

∗
t , s, z)

∣∣
y∗t=jy

]
jy=1,2,··· ,Jy

}
,

Mzt+1|z,y∗t =
[
fzt+1|zt,y∗t (zt+1|z, y∗t )

∣∣
y∗t=jy ,zt+1=jz

]
jy ,jz

.

Equation (6.4) in matrix form is therefore

Mst+1,zt+1,s,z = Mst+1|s,y∗tMy∗t ,s,z
Mzt+1|z,y∗t . (D.1)

We consider four combinations of observed states at t: (s̄, z̄), (ŝ, z̄), (s̄, ẑ), (ŝ, ẑ), and con-

struct the following equation:(
Mst+1,zt+1,s̄,z̄ ·M−1

st+1,zt+1,ŝ,z̄

)(
Mst+1,zt+1,s̄,ẑ ·M−1

st+1,zt+1,ŝ,ẑ

)−1

= Mst+1|s̄,y∗t

(
My∗t ,s̄,z̄

M−1
y∗t ,ŝ,z̄

My∗t ,ŝ,ẑ
M−1

y∗t ,s̄,ẑ

)
M−1

st+1|s̄,y∗t

≡MDM−1,

(D.2)

provided that the following assumption holds.

Assumption 11 (Invertibility). Matrices Mst+1|s,y∗t , My∗t ,s,z
, and Mzt+1|z,y∗t are invertible for

(s, z) ∈ {(s̄, z̄), (ŝ, z̄), (s̄, ẑ), (ŝ, ẑ)}.

To ensure the invertibility of Mst+1|s,y∗t and Mzt+1|z,y∗t , intuitively, we need the choice

variable y∗t to generate sufficient variations in the future state distributions of st and zt.

If for any combinations of (s, z), the choice probabilities of each alternative are nonzero,

then the invertiblity of My∗t ,s,z
is guaranteed. Under Assumption 11, Equation (D.2) leads

to an eigenvalue-eigenvector decomposition of the observed matrix on its left-hand side,

where M represents the matrix of eigenvectors and the diagonal elements in D are the

41When the number of possible values of the state variables is larger than the number of possible alterna-
tives, we can regroup the state variables to obtain Js = Jz = Jy.
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corresponding eigenvalues. Additional assumptions are required to guarantee the uniqueness

of the decomposition and to pin down the ordering of the eigenvectors.

Assumption 12 (Uniqueness). Let D(i) denote the i-th diagonal element in D. D(i) 6= D(j)

for any i 6= j.

Assumption 13 (Ordering). Suppose y∗t ∈ {0, 1}. E(st+1|s̄, y∗t = 1) > E(st+1|s̄, y∗t = 0).

Assumption 12 rules out the possibility of duplicated eigenvalues. Assumption 13 imposes

restrictions on the state transition process given different choices to determine which eigen-

vector corresponds to y∗t = 1. The economic intuition of this assumption can be illustrated

again using the borrower’s example in Section 3. Suppose y∗t = 1 represents the case where

the borrower exerts effort to pay off his debts, and 0 otherwise; st represents the revenue at

period t. Assumption 13 implies that the expected return given the borrower exerting effort

is higher than the one when the borrower shirks. We summarize the identification results

for the unknown densities in M in the following theorem.

Theorem 3 (Identification). Suppose Assumptions 1, 7, 11, 12, and 13 hold for the Markov

process of {st, zt, εt, y∗t }. The joint distribution of {st+1, zt+1, st, zt} uniquely determines the

state transition rules fst+1|s̄,y∗t .

Similar to Equation (D.2), we can derive the eigenvalue-eigenvector decompositions to

identify matrices Mst+1|ŝ,y∗t , Mzt+1|z̄,y∗t , and Mzt+1|ẑ,y∗t , which essentially lead to the identifica-

tion of the state transition rules fst+1|st,y∗t and fzt+1|zt,y∗t . My∗t ,s,z
for any (s, z) are therefore

identified from Equation (D.1); the diagonal elements of these matrices correspond to the

unobserved choice probabilities fy∗t |st,zt .

When two continuous state variables are available, we can generalize our identification

results to allow for continuous choice variables. Instead of using eigenvalue-eigenvector de-

compositions, spectrum decompositions proposed by Hu and Schennach (2008) are applied.
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E Monte Carlo Simulations: Tables

Table 4: Monte Carlo Simulation Results: DGP 1, N=5000

TRUE MC Mean MC Bias MC Std MAE RMSE

Panel (A) Unobserved Choices
m0 : a0 0.0000 0.0208 0.0208 0.0020 0.0208 0.0209
m0 : a1 0.8000 0.7494 -0.0506 0.0103 0.0506 0.0516
m0 : a2 0.0000 -0.0052 -0.0052 0.0005 0.0052 0.0052
m0 : a3 0.0000 0.0051 0.0051 0.0004 0.0051 0.0051
m1 : b0 0.5000 0.5166 0.0166 0.0275 0.0256 0.0320
m1 : b1 0.8000 0.7834 -0.0166 0.0219 0.0226 0.0274
m1 : b2 0.0000 -0.0053 -0.0053 0.0005 0.0053 0.0054
m1 : b3 0.0000 0.0022 0.0022 0.0012 0.0022 0.0025
ση 1.0000 1.0452 0.0452 0.0047 0.0452 0.0454
ω 0.8000 0.8367 0.0367 0.0127 0.0367 0.0388
ρ 0.3000 0.3023 0.0023 0.0241 0.0185 0.0241

Panel (B) Observed Choices
m0 : a0 0.0000 0.0203 0.0203 0.0006 0.0203 0.0203
m0 : a1 0.8000 0.7550 -0.0450 0.0063 0.0450 0.0454
m0 : a2 0.0000 -0.0050 -0.0050 0.0002 0.0050 0.0050
m0 : a3 0.0000 0.0050 0.0050 0.0002 0.0050 0.0050
m1 : b0 0.5000 0.5422 0.0422 0.0144 0.0422 0.0446
m1 : b1 0.8000 0.7527 -0.0473 0.0059 0.0473 0.0477
m1 : b2 0.0000 -0.0053 -0.0053 0.0003 0.0053 0.0053
m1 : b3 0.0000 0.0041 0.0041 0.0003 0.0041 0.0041
ση 1.0000 1.0503 0.0503 0.0037 0.0503 0.0504
ω 0.8000 0.8219 0.0219 0.0043 0.0219 0.0223
ρ 0.3000 0.3173 0.0173 0.0063 0.0173 0.0184
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Table 5: Monte Carlo Simulation Results: DGP 2, N=5000

TRUE MC Mean MC Bias MC Std MAE RMSE

Panel (A) Unobserved Choices
m0 : a0 0.0000 0.0220 0.0220 0.0126 0.0224 0.0254
m0 : a1 0.8000 0.7985 -0.0015 0.0721 0.0350 0.0718
m0 : a2 0.0000 -0.0023 -0.0023 0.0044 0.0039 0.0050
m0 : a3 0.0000 0.0005 0.0005 0.0015 0.0010 0.0016
m1 : b0 0.5000 0.4864 -0.0136 0.0594 0.0447 0.0606
m1 : b1 1.0000 1.0165 0.0165 0.0252 0.0245 0.0300
m1 : b2 0.0000 -0.0053 -0.0053 0.0032 0.0055 0.0062
m1 : b3 0.0000 0.0004 0.0004 0.0003 0.0004 0.0005
ση 1.0000 1.0520 0.0520 0.0063 0.0520 0.0524
ω 0.8000 0.8341 0.0341 0.0359 0.0393 0.0494
ρ 0.3000 0.2660 -0.0340 0.0645 0.0568 0.0726

Panel (B) Observed Choices
m0 : a0 0.0000 0.0211 0.0211 0.0106 0.0212 0.0236
m0 : a1 0.8000 0.7181 -0.0819 0.0677 0.0921 0.1061
m0 : a2 0.0000 -0.0058 -0.0058 0.0030 0.0062 0.0065
m0 : a3 0.0000 0.0034 0.0034 0.0018 0.0034 0.0038
m1 : b0 0.5000 0.5211 0.0211 0.0962 0.0780 0.0980
m1 : b1 1.0000 0.9643 -0.0357 0.0369 0.0427 0.0513
m1 : b2 0.0000 -0.0051 -0.0051 0.0018 0.0051 0.0054
m1 : b3 0.0000 0.0019 0.0019 0.0013 0.0019 0.0023
ση 1.0000 1.0901 0.0901 0.0457 0.0901 0.1009
ω 0.8000 0.8245 0.0245 0.0349 0.0314 0.0425
ρ 0.3000 0.3195 0.0195 0.0678 0.0461 0.0702
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Table 6: Monte Carlo Simulation Results: DGP 3, N=5000

TRUE MC Mean MC Bias MC Std MAE RMSE

Panel (A) Unobserved Choices
m0 : a0 0.0000 0.0190 0.0190 0.0068 0.0194 0.0202
m0 : a1 0.6000 0.5680 -0.0320 0.0228 0.0347 0.0392
m0 : a2 0.0500 0.0351 -0.0149 0.0072 0.0152 0.0165
m0 : a3 0.0000 0.0043 0.0043 0.0014 0.0043 0.0045
m1 : b0 0.5000 0.5807 0.0807 0.0499 0.0866 0.0948
m1 : b1 0.6000 0.5643 -0.0357 0.0583 0.0584 0.0681
m1 : b2 0.0500 0.0375 -0.0125 0.0135 0.0147 0.0184
m1 : b3 0.0000 0.0036 0.0036 0.0011 0.0036 0.0037
ση 1.0000 1.0404 0.0404 0.0065 0.0404 0.0409
ω 0.8000 0.8398 0.0398 0.0270 0.0399 0.0480
ρ 0.3000 0.2983 -0.0017 0.0381 0.0255 0.0379

Panel (B) Observed Choices
m0 : a0 0.0000 0.0193 0.0193 0.0035 0.0193 0.0196
m0 : a1 0.6000 0.5789 -0.0211 0.0107 0.0214 0.0236
m0 : a2 0.0500 0.0322 -0.0178 0.0032 0.0178 0.0181
m0 : a3 0.0000 0.0050 0.0050 0.0006 0.0050 0.0050
m1 : b0 0.5000 0.5601 0.0601 0.0271 0.0609 0.0659
m1 : b1 0.6000 0.5311 -0.0689 0.0283 0.0691 0.0744
m1 : b2 0.0500 0.0481 -0.0019 0.0068 0.0056 0.0070
m1 : b3 0.0000 0.0038 0.0038 0.0006 0.0038 0.0038
ση 1.0000 1.0507 0.0507 0.0042 0.0507 0.0509
ω 0.8000 0.8188 0.0188 0.0124 0.0198 0.0225
ρ 0.3000 0.3013 0.0013 0.0246 0.0183 0.0245
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Table 7: Monte Carlo Simulation Results: DGP 4, N=5000

TRUE MC Mean MC Bias MC Std MAE RMSE

Panel (A) Unobserved Choices
m0 : a0 0.0000 0.0205 0.0205 0.0015 0.0205 0.0205
m0 : a1 0.2000 0.1902 -0.0098 0.0069 0.0104 0.0120
m0 : a2 0.1000 0.1095 0.0095 0.0074 0.0107 0.0121
m0 : a3 0.0000 0.0050 0.0050 0.0003 0.0050 0.0050
m1 : b0 0.5000 0.4703 -0.0297 0.0159 0.0303 0.0336
m1 : b1 0.2000 0.2427 0.0427 0.0084 0.0427 0.0435
m1 : b2 0.1000 0.0667 -0.0333 0.0024 0.0333 0.0333
m1 : b3 0.0000 0.0050 0.0050 0.0003 0.0050 0.0050
ση 1.0000 1.0512 0.0512 0.0026 0.0512 0.0513
ω 0.8000 0.8268 0.0268 0.0025 0.0268 0.0270
ρ 0.3000 0.3150 0.0150 0.0069 0.0153 0.0165

Panel (B) Observed Choices
m0 : a0 0.0000 0.0200 0.0200 0.0010 0.0200 0.0200
m0 : a1 0.2000 0.1823 -0.0177 0.0071 0.0179 0.0191
m0 : a2 0.1000 0.0925 -0.0075 0.0086 0.0104 0.0114
m0 : a3 0.0000 0.0049 0.0049 0.0002 0.0049 0.0049
m1 : b0 0.5000 0.4922 -0.0078 0.0143 0.0132 0.0162
m1 : b1 0.2000 0.2416 0.0416 0.0109 0.0416 0.0430
m1 : b2 0.1000 0.0723 -0.0277 0.0020 0.0277 0.0278
m1 : b3 0.0000 0.0052 0.0052 0.0003 0.0052 0.0052
ση 1.0000 1.0488 0.0488 0.0040 0.0488 0.0490
ω 0.8000 0.8227 0.0227 0.0042 0.0227 0.0231
ρ 0.3000 0.3096 0.0096 0.0064 0.0104 0.0115
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