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Abstract

This paper analyzes Structural Vector Autoregressions (SVARs) where identification of struc-

tural parameters holds locally but not globally. In this case there exists a set of isolated structural

parameter points that are observationally equivalent under the imposed restrictions. Although

the data do not inform us which observationally equivalent point should be selected, the com-

mon frequentist practice is to obtain one as a maximum likelihood estimate and perform impulse

response analysis accordingly. For Bayesians, the lack of global identification translates to non-

vanishing sensitivity of the posterior to the prior, and the multi-modal likelihood gives rise to

computational challenges as posterior sampling algorithms can fail to explore all the modes.

This paper overcomes these challenges by proposing novel estimation and inference procedures.

We characterize a class of identifying restrictions that deliver local but non-global identification,

and the resulting number of observationally equivalent parameter values. We propose algorithms

to exhaustively compute all admissible structural parameter given reduced-form parameters and

utilize them to sampling from the multi-modal posterior. In addition, viewing the set of obser-

vationally equivalent parameter points as the identified set, we develop Bayesian and frequentist

procedures for inference on the corresponding set of impulse responses. An empirical example

illustrates our proposal.

Keywords : local identification, Bayesian inference, Markov Chain Monte Carlo, robust Bayesian

inference, frequentist inference. multi-modal posterior
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I Introduction

Macroeconomic policy analysis makes extensive use of impulse response analysis based on Structural

Vector Autoregressions (SVARs). Various types of identifying assumptions have been proposed,

including equality and sign restrictions, and analytical investigation of whether they point- or set-

identify the objects of interest is an active area of research. The seminal work of Rubio-Ramirez

et al. (2010) (henceforth RWZ) shows a necessary and sufficient condition for zero restrictions

to achieve global identification. This class of zero restrictions, however, does not exhaust the

universe of zero and non-zero equality restrictions that are relevant in practice. Questions regarding

identification, estimation, and inference when identification is not global remain largely open.

This paper focuses on a class of SVARs where the imposed identifying restrictions guarantee

local identification but do not attain global identification. The set of observationally equivalent

structural parameters then consists of multiple isolated points, which implies that the likelihood

can have multiple peaks of the same height. Such locally- but non-globally identified SVARs

appear in various settings of practical relevance. Examples include non-zero restrictions which set

the structural parameters to calibrated values, non-recursive zero restrictions, equality restrictions

across shocks and/or equations, and heteroskedastic SVARs with across-regime restrictions on the

structural coefficients. Although the data do not inform us which observationally equivalent point

should be selected, the common frequentist practice is to obtain one as a maximum likelihood

estimator and perform impulse response analysis as if it were the only maximizer. In our view, this

practice is prevalent due to the lack of an efficient algorithm that can uncover all the local maxima.

Standard Bayesian analysis also faces challenges when the likelihood has multiple modes. First,

the lack of global identification leads the posterior to remain sensitive to the choice of prior even

asymptotically. Second, posterior sampling algorithms may fail to explore all the modes, resulting

in an inaccurate approximation of the posterior.

This paper proposes methods for estimation and inference that overcome these challenges. We

first characterize a class of equality and sign restrictions that delivers local but non-global identi-

fication. Second, we show a necessary and sufficient condition for local identification that can be

easily checked under a general class of equality constraints imposed on the structural parameters

or functions of them. Third, we investigate how many observationally equivalent parameter values

exist under such identifying restrictions, and propose algorithms to exhaustively compute them

given reduced-form parameter values. Specifically, we exploit the orthogonal matrix parametriza-

tion of Uhlig (2005) and Rubio-Ramirez et al. (2010) and pin down the observationally equivalent

parameter points (conditional on the reduced-form parameters) by sequentially exhausting the ad-

missible orthogonal vectors satisfying the imposed restrictions, or in some case solving a system of

polynomial equations. We provide an intuitive geometric exposition that illustrates the mechan-
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ism driving the lack of global identification and the number of observational equivalent parameter

values. As a byproduct, we also characterize the set of reduced-form parameter values that yield

no admissible structural parameters (i.e, the empty identified set) despite the condition for local

identification being met.

Our proposal for computing the identified set contributes to standard Bayesian inference by

simplifying and stabilising sampling from the multi-modal posterior. In addition, Bayesian infer-

ence requires specifying a prior over the observationally equivalent parameter values. For the case

where the user cannot form this prior or is not confident about the choice, we consider (multiple

prior) robust Bayesian procedures that draw posterior inference for the impulse responses under

local but non-global identification. Viewing the set of observationally equivalent parameter points

as the identified set (a set-valued map from the reduced-form parameters to the set of observa-

tionally equivalent structural parameters), we extend the approach of Kline and Tamer (2016) and

Giacomini and Kitagawa (2020), designed primarily for models with interval identified sets, to cases

where the identified set consists of a finite number of points. Specifically, we consider projecting the

posterior credible region for the reduced-form parameters to the impulse responses through the dis-

crete identified set mapping. This approach obtains an asymptotically frequentist valid confidence

intervals in the presence of local identification.

To illustrate our proposal, we apply the method to a locally identified New-Keynesian monetary

policy SVAR. We show that, when a single element is selected from the identified set, the choice

of element can lead to significantly different and arguably contradictory results. Our proposal for

robust Bayesian frequentist-valid inference, in contrast, explores the outcome from every admissible

impulse response, and provides their summary.

I.1 Related literature

The theory of identification for linear simultaneous equation models has a long history in economet-

rics. See Dhrymes (1978), Fisher (1966) and Hausman (1983), among others. Rothenberg (1971)

analyses identification in parametric models. Building on this, Giannini (1992) proposes a criterion

for verifying local identification for SVAR models. This criterion takes the form of rank conditions

for the Hessian matrix of the average likelihood. It is much weaker than the necessary and suffi-

cient condition for global identification shown in Rubio-Ramirez et al. (2010). The focus of this

paper is the class of identifying restrictions that satisfies the former but not the latter. Once local

identification is guaranteed, Giannini (1992) proposes estimating the parameters of the SVAR by

numerically maximizing the likelihood. This approach is also recommended by the textbooks Amis-

ano and Giannini (1997), Lütkepohl (2006) and Hamilton (1994). For the locally identified models

considered in this paper, however, the maximum likelihood estimate is not necessarily unique, and
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a typical numerical maximization routine will select only one point in a non-systematic manner

(e.g. depending on a choice of initial value). Sims and Zha (1999) and Hamilton et al. (2007)

include discussions of the existence of multiple likelihood peaks due to local identification.

Following Uhlig (2005), Rubio-Ramirez et al. (2010), and Granziera et al. (2018), we para-

meterize an SVAR by its reduced-form VAR-parameters and the orthogonal matrix relating its

reduced-form error covariance matrix and structural parameters. Fixing the reduced-form para-

meters, finding all the observationally equivalent structural parameters reduces to finding all the

admissible orthogonal matrices that satisfy the imposed identifying restrictions. Compared to

expressing the non-linear equation system by the reduced form and structural parameters, this

formulation is advantageous in terms of geometric interpretability and analytical tractability. In

addition, it simplifies not only assessing local identification (e.g., Magnus and Neudecker, 2007),

but also obtaining all the solutions given the reduced-form parameters.

Our paper is related to the growing literature on SVARs that are set-identified through sign

and zero restrictions (Faust 1998; Canova and de Nicoló 2002; Uhlig 2005; Mountford and Uhlig

2009, Arias et al. 2018a, Gafarov et al. 2018, Giacomini and Kitagawa 2020, Granziera et al.

2018, among others). The identified set of impulse responses in this class of models is a set with a

positive measure if nonempty, whereas the identified set here consists of a finite number of isolated

points, each corresponding to a solution of a non-linear system of equations. This difference in the

topological features of the identified set distinguishes our inferential procedure from these works.

Our inference proposals include an application of the multiple-prior robust Bayesian approach

of Giacomini and Kitagawa (2020) to the discrete-point identified set. We believe that the robust

Bayes approach is attractive as the prior knowledge of the researcher is typically exhausted in

constructing the prior distribution for the reduced form parameters (e.g., the Minnesota prior) and

the identifying restrictions. It is then difficult to construct a credible prior over the parameter

values in the identified set. The use of multiple priors is a way of reflecting this lack of prior

knowledge while delivering posterior conclusions that are robust to the choice of a prior within a

given class. Depending on the application, the class of priors considered in Giacomini and Kitagawa

(2020) could be too large. In such cases, refining the set of priors would be sensible. This can be

done, for instance, by applying the approaches considered in Giacomini et al. (2018) and Giacomini

et al. (2019b), although we do not present them in this paper. Chen et al. (2018), Kline and Tamer

(2016), Liao and Simoni (2019), Moon and Schorfheide (2012), and Norets and Tang (2014) propose

Bayesian approaches for drawing posterior inference for the identified set. To our knowledge, none

of these proposals have been applied to the case where the identified set consists of isolated points.

The results and proposals of this paper, from identification to estimation and inference, can

also contribute to the literature that bridges Dynamic Stochastic General Equilibrium (DSGE) and
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VAR models. The solution of a linearized DSGE model can be summarized by a state-space repres-

entation that implies, under appropriate invertibility conditions, an (infinite order) SVAR subject

to specific identifying restrictions (see, Christiano et al. 2006, Fernandez-Villaverde et al. 2007,

and Ravenna, 2007 for example). As stressed by Canova (2005, chapter 4) among others, popular

identification schemes that lead to global identification, such as the Cholesky decomposition, cannot

be justified in a large class of DSGE models. Hence, if the mapping between the DSGE and the

SVAR is unique as in Christiano et al. (2006, Proposition 1), DSGE-based identifying restrictions

can result in local (but not global) identification. This is due to the non-recursive nature of the

identification scheme, and the possible multiplicity of solutions characterizing the DSGE model.

See Iskrev (2010), Komunjer and Ng (2011) and Qu and Tkachenko (2012) for DSGE models, and

Al-Sadoon and Zwiernik (2019) for local identification in linear rational expectation models. This

paper offers estimation and inference methods to handle local identification in these models.

The remainder of the paper is organized as follows. Section II introduces notation and a general

analytical framework for SVARs whose identifying restrictions take the form of equality and sign

restrictions. It also presents a new necessary and sufficient condition for local identification in

SVARs. Section III discusses a battery of examples of locally- but not globally-identified SVARs.

Section IV presents algorithms for computing observationally equivalent parameter values, and

Section V proposes inference methods that accommodate frequentist, Bayesian, and robust Bayesian

perspectives. Section VI presents an empirical example and Section VII concludes. Further results

on local identification are reported in Appendices A and B, and the proofs omitted from the main

text are presented in Appendix C.

II Econometric framework

Let yt be a n × 1 vector of variables observed over t = 1 . . . T . The SVAR model is specified as

A0yt = a +
p∑

j=1

Ajyt−j + εt (1)

where εt is a n×1 multivariate normal white noise process with null expected value and covariance

matrix equal to the identity matrix In. The quantities A0, A1, . . . , Ap are n × n matrices of

parameters, and a is a n× 1 vector of constant terms. The set of structural parameters is denoted

by A = (A0, A+) ∈ A ⊂ R(n+m)n, with m ≡ np+1 and A+ ≡ (a, A1, . . . , Ap) being a n×m matrix.

We also assume that the initial conditions y1, . . . , yp are given.

The reduced-form representation of the SVAR, obtained by pre-multiplying by the inverse of
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A0, is the standard VAR model

yt = b +
p∑

j=1

Bjyt−j + ut (2)

where Bj = A−1
0 Aj , j = 1, . . . , p, b = A−1

0 a, ut = A−1
0 εt and E(ut u′

t) ≡ Σ = A−1
0 A−1′

0 . The set of

reduced-form parameters is φ = (B, Σ) ∈ Φ ⊂ Rn+n2p × Ω, where B = (b, B1, . . . , Bp) and Ω is

the space of positive semi-definite matrices.

Assuming further that the VAR Eq. (2) is invertible, it has the VMA(∞) representation:

yt = c +
∞∑

j=0

Cj(B)ut−j = c +
∞∑

j=0

Cj(B)A−1
0 εt−j

where Cj(B) is the j -th coefficient matrix of the inverted lag polynomial
(
In −

∑p
j=1 BjL

j
)−1

.

We define the impulse response matrix at horizon h (IRh), the long-run impulse response matrix

(IR∞) and the long-run cumulative impulse response matrix (CIR∞) to be

IRh = Ch(B)A−1
0 , (3)

IR∞ = lim
h→∞

IRh =



In −
p∑

j=1

Bj





−1

A−1
0 , (4)

CIR∞ =
∞∑

j=0

IRh =




∞∑

j=0

Cj(B)



A−1
0 , (5)

In what follows throughout, we denote the Cholesky decomposition of Σ by Σ = ΣtrΣ
′
tr, where

Σtr is the unique lower-triangular Cholesky factor with non-negative diagonal elements. The column

vectors of Σ−1
tr and Σ′

tr are denoted by Σ−1
tr ≡ (σ̃1, σ̃2, . . . , σ̃n) and Σ′

tr ≡ (σ1, σ2, . . . , σn). The

i-th entry of σ̃j and σj are denoted by σ̃j,i and σj,i, respectively.

II.1 Identification of SVAR models

Identification analysis of SVAR models concerns solving Σ = A−1
0 A−1′

0 to decompose the reduced

form error variance-covariance matrix Σ into the matrix of structural coefficients A0. Following

Uhlig (2005), any structural matrix A0 defined by a rotation of the Cholesky factor A0 = Q′Σ−1
tr

admits the decomposition Σ = A−1
0 A−1′

0 and, given the reduced-form parameters φ, the set of

admissible A0 matrices can be represented by A0(φ) ≡ {A0 = Q′Σ−1
tr : Q ∈ O (n)}, where O (n) is

the set of n × n orthogonal matrices. Let R be generic notation denoting identifying restrictions.

The identifying restrictions constrain the admissible values of A to a subset of A. We denote

this subset by AR, and its projection for A0 by AR,0. Accordingly, let ΦR ⊂ Φ be the space of
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reduced-form parameters formed by projecting A ∈ AR, and let

AR,0(φ) ≡ A0(φ) ∩ AR,0, (6)

which is nonempty for φ ∈ ΦR.

We define global and local identification for an SVAR as follows.

Definition 1 (Global identification). An SVAR model is globally identified under identifying re-

strictions R if for almost every A ∈ AR there is no other observationally equivalent A in AR.

Definition 2 (Local identification). An SVAR model is locally identified under identifying restric-

tions R if for almost every A ∈ AR, there exists an open neighborhood G such that G∩AR contains

no other observationally equivalent A.

Some remarks on these two notions of identification are in order. An equivalent definition of

global identification would be that, for almost every φ ∈ ΦR, there exists a unique corresponding

structural parameter point. In other words, AR,0(φ) is singleton-valued at almost every φ ∈ ΦR. In

addition, the case where ΦR = Φ, i.e. the imposed identifying assumptions are not observationally

restrictive, is what RWZ refer to as exact identification. In contrast, the definition of local iden-

tification says that, if there are multiple observationally equivalent structural parameter points,

they must be far apart. This implies that for almost every φ ∈ ΦR, if AR,0(φ) is not singleton,

it consists of isolated points. In Proposition 2 below, we characterize a class of locally identified

SVARs. For this class of SVARs, the space of reduced-form parameters Φ can be partitioned into

three subsets. The first, of positive measure, contains parameters for which the model is locally- but

not globally-identified; the second, of positive measure, on which there is no structural parameter

satisfying the identifying assumption (i.e., AR,0(φ) is empty); and the third, of measure zero, on

which the model is globally identified. This feature of locally identified SVARs stands in contrast

to exactly identified SVARs and globally and over-identified SVARs, where the mapping from the

reduced-form parameter space Φ to structural parameters that satisfy the identifying restrictions

is guaranteed to be either singleton-valued or empty at almost every φ ∈ Φ.

II.2 Normalization, sign, zero and non-zero identifying restrictions

This section introduces the types of identifying restriction considered in this paper. We begin with

sign normalization restrictions, and then move to zero, non-zero, and sign restrictions.

Sign Normalization restrictions
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Following Waggoner and Zha (2003) and Hamilton et al. (2007), and in line with RWZ and Gi-

acomini and Kitagawa (2020), we impose sign normalization restrictions on the structural shocks.

Specifically, we restrict the diagonal elements of A0 to be non-negative.

diag (Q′Σ−1
tr ) ≥ 0. (7)

Under these assumptions, a unit positive change in a structural shock can be interpreted as a one

standard-deviation ceteris paribus positive shock in the corresponding endogenous variable.

Zero and non-zero equality restrictions

While sign normalization restrictions on the diagonal elements of A0 restrict the set of admissible

structural matrices, they are not enough to obtain identification. The standard approach in the

literature is to impose equality restrictions either on the structural parameters or particular linear

and non-linear functions of them.1

Following RWZ, we represent identifying restrictions as restrictions on the reduced-form para-

meters φ and the column vectors (q1, q2, . . . , qn) of the orthogonal matrix Q.

((i, j)-th element of A−1
0 ) = 0 ⇐⇒ (e′iΣtr)qj = 0, (8)

((i, j)-th element of A0) = 0 ⇐⇒ (Σ−1
tr ej)

′qi = 0, (9)

((i, j)-th element of Al) = 0 ⇐⇒ (Σ−1
tr Blej)

′qi = 0, (10)

((i, j)-th element of CIR∞) = 0 ⇐⇒

[

e′i

∞∑

h=0

Ch(B)Σtr

]

qj = 0, (11)

((i, j)-th element of A−1
0 ) = c ⇐⇒ (e′iΣtr)qj = c, (12)

(linear restriction between (i, j)-th

and (h, k)-th elements of A−1
0 ) ⇐⇒ (e′iΣtr)qj − d(e′hΣtr)qk = c, (13)

where ei is the i-th column of the identity matrix In, and c and d are known non-zero scalars.

Eq. (8) and Eq. (9) cover short-run identifying restrictions including the causal ordering restric-

tions of Sims (1980) and Bernanke (1986). Eq. (10) corresponds to restrictions that exclude some

of the right-hand side variables in the structural equations. Eq. (11) corresponds to long-run

identifying restriction as considered in Blanchard and Quah (1989). These first four equality re-

1Other proposals of identification strategies include the use of external instruments as in Mertens and Ravn
(2013) and Stock and Watson (2018), heteroskedasticity of the structural shocks as in Rigobon (2003), Bacchiocchi
and Fanelli (2015) and Bacchiocchi (2017), and the presence of non-normality as in Lanne and Lütkepohl (2010) and
Lanne et al. (2017).
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strictions were considered in RWZ and Giacomini and Kitagawa (2020), but the remaining two

were not. The additional restrictions we allow are non-zero equality restrictions (also referred to

as nonhomogeneous restrictions) and cross-equation restrictions on the structural parameters and

impulse responses. As we clarify in Section III, these last two types of restriction drive a departure

from global identification to local identification.

We represent these equality restrictions by

F(φ,Q) ≡










F11(φ) F12(φ) ∙ ∙ ∙ F1n(φ)

F21(φ) F22(φ) ∙ ∙ ∙ F2n(φ)
...

...
. . .

...

Fn1(φ) Fn2(φ) ∙ ∙ ∙ Fnn(φ)



















q1

q2

...

qn










−










c1

c2

...

cn










= 0

≡ F(φ)vec Q − c = 0 (14)

where Fij(φ), 1 ≤ i ≤ j ≤ n, is a matrix of dimension fi × n, which depends only on the reduced-

form parameters φ = (B, Σ). The dimension of F(φ) is f × n2, where f = f1 + ∙ ∙ ∙ + fn denotes

the total number of restrictions imposed. We allow fi = 0 for some i, in which case the i-th block

row in F(φ) is null. Finally, vec Q ≡ (q′1, . . . q′n)′ is the vectorization of Q, and c ≡ (c′1 . . . , c′n)′ is a

vector of known constants with length f , where each ci is a fi × 1 vector.

If Fij(φ) = 0 for any i 6= j, there are no cross equation restrictions. If ci = 0 for all i, then

only zero restrictions are imposed. This represention of the identifying restrictions is in line with

Lütkepohl (2006) and Bacchiocchi and Lucchetti (2018), both of which allow non-homogeneous and

across-shock restrictions. We provide the following formal definitions.

Definition 3 (Recursive restrictions). The restrictions are said to be recursive if Fij(φ) = 0 for

j > i, and fi = n − i, for i = 1, . . . , n.

Definition 4 (Homogeneous and non-homogeneous restrictions). The restrictions are said to be

homogeneous if c = 0 and non-homogeneous if c 6= 0.

Defined in this way, recursive restrictions pin down a unique ordering of the variables with Eq.

(14) becoming a lower-triangular block matrix. Otherwise, our framework allows for the ordering

of variables to be non-unique. Even with the order of variables fixed, if the restrictions include

across-shock restrictions, then Eq. (14) allows for a multiple block-matrix representation. The

general identification results of this section are valid independent of how the variables are ordered

or how the imposed restrictions are represented within Eq. (14), unless the recursive structure is

assumed explicitly.
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Sign restrictions

In addition to equality restrictions, sign restrictions can be imposed on impulse responses or struc-

tural parameters. These sign restrictions can be seen as additional constraints on the columns of

the Q matrix. Suppose we impose sh,i ≤ n number of sign restrictions on the impulse responses to

i -th shock at h-th horizon. They can be expressed as

Sh,i(φ)qi ≥ 0, (15)

where Sh,i ≡ Dh,i Ch(B)Σtr is a sh,i × n matrix, Dh,i is the sh,i × n signed selection matrix, which

indicates by 1 (−1) the impulse responses whose signs are retricted to being positive (negative),

and Ch(B) is from the definition of an impulse response Eq. (3). The inequality in Eq. (15) is

component-wise. Sign restrictions on structural parameters are linear inequality constraints on the

columns of the matrix Q, so can also be accommodated. Stacking all the Sh,i matrices involving

sign restrictions on qi at different horizons into a matrix Si, we have

Si(φ)qi ≥ 0. (16)

We represent the set of all sign restrictions by

S(φ,Q) ≥ 0. (17)

Admissible structural parameters and identified set

Given identifying restrictions of the form introduced above, we hereafter let R be the collection

of restrictions {F(φ,Q) = 0,S(φ,Q) ≥ 0, diag(Q′Σ−1
tr ) ≥ 0}, or R = (F, S) for short. We call

A = (A0, A+) admissible if it satisfies R. The set of all these admissible structural parameters can

be represented by

AR(φ) ≡ {(A0, A+) = (Q′Σ−1
tr , Q′Σ−1

tr B) : Q ∈ O (n) , F(φ,Q) = 0, S(φ,Q) ≥ 0, diag (Q′Σ−1
tr ) ≥ 0}.

The projection of AR(φ) for A0 gives AR,0(φ) as defined in Eq. (6). The identified set for Q is

defined as the set of admissible orthogonal matrices given the reduced-form parameters:

QR(φ) ≡ {Q ∈ O (n) : F(φ,Q) = 0, S(φ,Q) ≥ 0, diag (Q′Σ−1
tr ) ≥ 0}.

The objects of interest may also include transformations of structural parameters such as impulse
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response functions. We denote a scalar parameter of interest by η = η(φ,Q) and define its identified

set as

ISη(φ) ≡ {η(φ,Q) : Q ∈ QR(φ)},

When η(φ,Q) is a restriction on an impulse response

η(φ,Q) = IRh
ij = e′iCh(B)ΣtrQej ≡ c′ih(φ) qj ,

where IRh
ij is the (i,j )-th element of IRh and c′ih(φ) is the i -th row of Ch(B)Σtr. Similar definitions

can be obtained for restrictions on long-run impulse responses and cumulative impulse responses.

If, instead, the object of interest is the (i,j )-th element of Al, then η(φ,Q) = e′j(Σ
−1
tr Bl)′qi, with

B0 = In.

When A is globally identified, ISη(φ) is a singleton for almost every φ ∈ ΦR. If A is only

locally identified, ISη(φ) can be a set of multiple isolated points generated by observationally

equivalent structural parameters. Local identification can be certainly viewed as a special case

of set identification, although it is not covered by standard set identification analysis where the

identified set is typically an interval or a set with positive Lebesgue measure.

II.3 Conditions for local identification

This section presents conditions for global and local identification when the identifying restrictions

are equality restrictions in the form Eq. (14). In the case of local identification, we present an

analytical characterization of the number of observationally equivalent structural parameter values.

We begin with a modified version of the well known condition for global identification developed

in Theorem 7 of RWZ, as recently discussed in Bacchiocchi and Kitagawa (2020).2 This condition

for global identification acts as a reference point in our discussion of local identification.

Proposition 1 (Necessary and Sufficient condition for global identification, RWZ and Bacchiocchi

and Kitagawa (2020)). Consider an SVAR with identifying restrictions of the form Eq. (8) - Eq.

(13) collected in F(φ,Q). Assume Fij(φ) = 0 for i 6= j, and c = 0.

The SVAR is globally identified at A = (A0, A+) ∈ AR if and only if the following conditions hold

at φ implied by A:

1. It holds

rank((F11(φ)′, σ̃1)) = n. (18)
2Theorem 7 of Rubio-Ramirez et al. (2010) claims that the exact identification of an SVAR holds if and only if

fi = n − i for all i = 1, . . . , n. Bacchiocchi and Kitagawa (2020) shows by a counterexample that their condition
is not sufficient and needs to be augmented by the rank conditions of Eq. (18) and Eq. (19). See Bacchiocchi and
Kitagawa (2020) for further detail.

11



2. Let q1 be a unit length vector satisfying F11(φ) q1 = 0 and the sign normalization restriction,

which is unique under Eq. (18). For i = 2, . . . , n

rank((Fii(φ)′, q1, . . . , qi−1, σ̃i)) = n, (19)

hold, where the orthonormal vectors q2, . . . , qn solve

(Fii(φ)′, q1, . . . , qi−1)
′qi = 0 (20)

sequentially, and satisfy the sign normalization restrictions.

This proposition characterizes a boundary separating cases where an SVAR is globally identi-

fied and cases where it is not guaranteed to be globally identified. In what follows, we consider

departures from this proposition’s conditions for global identification, and show implications for

local identification and the failure of global identification. In particular, we allow Fij(φ) to be

nonzero for some i 6= j and/or c 6= 0 by including restrictions of the form Eq. (12)- Eq. (13).

With this expanded set of identifying restrictions, Proposition 2 derives a rank condition that is

necessary and sufficient for local identification. Lütkepohl (2006) and Bacchiocchi and Lucchetti

(2018) provide similar conditions for local identification in a setting that is less general in terms

of the kind of restrictions that can be imposed. Their rank condition is expressed in terms of the

structural parameter matrices A, while our Proposition 2 presents the rank condition in terms of

the coefficient matrix of the equality restrictions F(φ) and the orthogonal matrix Q. We define

Chol(∙) to be the Cholesky factor of (∙) and g : R(n+m)n → Rn+n2p ×Ω ×O (n), to be the function

mapping structural to reduced-form parameters and the admissible orthogonal matrix.

Proposition 2 (Rank condition - necessary and sufficient condition for local identification). Con-

sider an SVAR with equality restrictions of the form Eq. (8) - Eq. (13) collected in F(φ,Q). Let

D̃n be the n2 ×n(n− 1)/2 full-column rank matrix such that for any n(n− 1)/2-dimensional vector

v, D̃n v ≡ vec (H) holds, where H is an n × n skew-symmetric matrix satisfying H = −H ′ (see

Appendix D for the specific construction of D̃n for n = 2, 3, 4).

(i) The SVAR is locally identified at A = (A0, A+) ∈ AR, i.e., there exists an open neighborhood

about A containing no other observationally equivalent structural parameter point, if and only if

rank

[

F(φ)(In ⊗ Q)D̃n

]

= n(n − 1)/2 (21)

holds, where the reduced-form parameters φ = (B, Σ) ∈ Φ and the orthogonal matrix Q ∈ O (n) are

such that (B, Σ, Q) = g(A0, A+) = (A−1
0 A+, A−1

0 A−1′
0 , Chol(A−1

0 A−1′
0 )′A′

0). Hence, a necessary

condition for the rank condition Eq. (21) is f =
∑n

i=1 fi ≥ n(n − 1)/2.
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(ii) Let K be the set of structural parameters in AR satisfying the rank condition of Eq. (21),

K ≡

{

A ∈ AR : rank

[

F(φ)(In ⊗ Q)D̃n

]

= n(n − 1)/2

}

.

Either K is empty or the complement of K in AR is of measure zero.

Proof. See Appendix C.

Statement (i) of this proposition provides a necessary and sufficient condition for local identi-

fication at a given A ∈ AR in the form of a rank condition for a matrix that is a function of A, i.e.,

(φ,Q) is a function of A. Eq. (21) as stated is of limited practical use since the true A is generally

unknown, which means that verifying Eq. (21) is infeasible.

Statement (ii) of this proposition makes the rank condition Eq. (21) useful by showing that it

holds either nowhere or almost everywhere in the parameter space AR. This means that, similar

to the proposals following Theorem 3 in RWZ and Theorem 1 in Bacchiocchi and Lucchetti (2018),

one can assess local identification by randomly generating structural parameters A ∈ AR and

checking whether the rank condition holds or not. Specifically, we can consider drawing reduced-

form parameters φ ∈ ΦR from its prior or posterior and solving a constrained non-linear optimization

problem of the form3

arg min
Q∈ Rn2

(

F(φ)vec Q − c

)′(

F(φ)vec Q − c

)

s.t. diag (Q′Σ−1
tr ) ≥ 0, S(φ,Q) ≥ 0 and Q′Q = In.

(22)

If the value of the optimization is zero, then the obtained Q is an admissible orthogonal matrix at

the given φ. If such an admissible Q satisfies the rank condition in Eq. (21), then the SVAR is

locally identified at (φ,Q). If the rank condition is not met, the SVAR is not locally identified at

(φ,Q). Proposition 2 (ii) says that only one of the two possibilities occurs with positive measure,

while the other has zero measure. Hence, by checking the rank condition at a few parameter

values drawn from a probability distribution supporting AR or ΦR, we can learn whether the rank

condition holds nowhere or almost everywhere on the space of structural parameters. Confirming

the latter can be seen as a strong support for local identification holding at the true A, unless the

true structural parameter value is believed to belong to the null set in the parameter space.

Allowing only recursive identifying restrictions, the next proposition provides a simple necessary

and sufficient condition for the rank condition of Proposition 2 (i). It extends to local identification

3This minimization problem is constrained by the orthogonality constraints Q′ Q = In, which is the known as
Stiefel manifold following Stiefel (1935-1936). Edelman et al. (1998) develop algorithms for optimization in the Stiefel
manifold, while Boumal et al. (2014) propose a Matlab toolbox for optimization on manifolds including the Stiefel
one. A Matlab code for this optimization is available from the authors upon request.
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the condition for global identification presented in Proposition 1.

Proposition 3 (Necessary and sufficient condition for local identification in recursive SVARs).

Consider an SVAR with recursive identifying restrictions of the form Eq. (14). Let F̃ii(φ) = F11(φ)

for i = 1, and

F̃ii(φ) = (F ′
ii(φ), q1, . . . , qi−1)

′ (23)

for i = 2, . . . , n, where q1, . . . , qi are the first i column vectors of Q ∈ O (n) satisfying the equality

restrictions F(φ)vecQ− c = 0 given φ ∈ ΦR. The rank condition of Eq. (21) holds at (φ,Q) if and

only if rank(F̃ii(φ)) = n − 1 holds for all i = 1, . . . , n.

Proof. See Appendix C.

Since the rank condition of Proposition 2 (i) is necessary and sufficient for local identification,

the condition shown in Proposition 3 is also a necessary and sufficient for local identification for

SVARs under recursive identifying restrictions. Moreover, the claim of Proposition 2 (ii) carries

over to the setting of Proposition 3, so knowing that the condition shown in Proposition 3 holds

at a few φ ∈ ΦR drawn from its prior or posterior allows us to conclude local identification holds

almost everywhere in the parameter space. The condition in Proposition 3 exploits sequential

determination of qi, i = 1, . . . , n, given φ, so checking it does not require nonlinear optimization

for Q.

The proof of Proposition 3 leads to the following corollary showing a necessary and sufficient

condition for the local identification of impulse response to a particular shock.

Corollary 1 (Sufficient condition for local identification of the j -th shock). Under the assumptions

of Proposition 3, the impulse responses for the j-th structural shock, 1 ≤ j ≤ n, are locally identified

at the parameter point A = (A0, A+) ∈ AR if and only if rank(F̃ii(φ)) = n − 1 holds for all

i = 1, . . . , j.

II.4 The number of observationally equivalent parameter points

The results presented so far are silent about how many observationally equivalent structural para-

meter point there are. As the next proposition shows, our constructive identification argument

through the orthogonal matrix Q allows us to characterize the number of observationally equival-

ent parameter points.

Proposition 4 (Number of locally identified points). Consider an SVAR with equality restrictions

of the form Eq. (8)-Eq. (13) collected in F(φ,Q) = 0. Given φ ∈ Φ and provided that the rank

condition in Eq. (21) is met, the number of admissible Q matrices (Q matrices solving F(φ,Q) = 0)
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is zero or finite. In particular, if the equality identifying restrictions are recursive, the number of

admissible Q matrices is at most 2n. If the equality identifying restrictions are non-recursive, the

number of admissible Q matrices is at most 2n(n+1)/2.

Proof. See Appendix C.

The proposition provides an upper bound for the number of locally identified observationally

equivalent parameter points. It corresponds to the maximal number of modes that the likelihood of

the structural parameters can have. The maximum number of observationally equivalent structural

parameters is considerably lower when the SVAR is identified through recursive equality restrictions

rather than non-recursive restrictions. The intuition for this result is that, if the identification of the

columns of Q can be performed recursively, the equations concerning the orthogonality conditions

among the columns of Q are linear, rather than quadratic.

In comparison to the exact (global) identification case of RWZ and Proposition 1, Proposition 4

highlights that non-homogenous restrictions (c 6= 0) lead to the possibility that, given φ ∈ Φ, (i) an

admissible Q does not exist, or (ii) the admissible Q is no longer unique. Adding sign restrictions to

the sign normalization restrictions can reduce the number of admissible Q’s, but cannot generally

guarantee uniqueness of the admissible Q’s. Section II.5 below illustrates the transition from exact

global identification to local identification through a simple example.

II.5 The geometry of identification

We present an intuitive geometric exposition for why the introduction of nonhomogeneous restric-

tions Eq. (12) and/or across-shock restrictions Eq. (13) can lead to local identification. This

exposition also provides intuition for the number of local identified parameter points shown in

Proposition 4. Appendix A provides the algebraic analysis behind our geometric discussion.

To make exposition as simple as possible, consider a bivariate VAR with a single non-homogeneous

identifying restriction imposed on the structural parameter matrix:

(A0)
−1
[1,1] = c ⇐⇒ (e′1Σtr) q1 = c (24)

where c > 0 is a known (positive) scalar and e1 is the first column of I2. Denoting the first column

of Σ′
tr =

(
σ1,1 σ2,1

0 σ2,2

)

by σ1 = (σ1,1, 0)′, this identifying restriction can be written as σ′
1 q1 = c.

Hence, given φ, q1 must satisfy the two equations,

{
σ′

1 q1 = c

q′1 q1 = 1.

15



Figure 1: Identification of q1 in the bivariate SVAR with non-zero restriction.

q
(2)
1

q
(1)
1

Restriction

(A0)
−1
[1,1] = c ⇐⇒ (e′1Σtr) q1 = c

Notes : The vertical red line represents the non-zero restriction (A0)−1
[1,1]

= c. The two black arrows represent the identified

vectors q
(1)
1 and q

(2)
1 .

Figure 1 depicts these two constraints. Letting the x-axis correspond to the vector σ1, the set of

q1 vectors satisfying the first constraint is a vertical line whose location is determined by σ1 and

c. The second constraint imposes that q1 lies on the unit circle. Points at the intersection of the

vertical line and the unit circle, if any exist, are solutions to this system of equations.

When the imposed restriction is a zero restriction (c = 0), the vertical line passes through the

origin and intersects the circle at two points. The two solutions for q1, q
(1)
1 and q

(2)
1 are symmetric

across the origin, and the sign normalization restriction Eq. (7) is guaranteed to rule one of them

out (see Appendix A for details). Thus, the first column of Q is globally identified.

The vertical line in Figure 1 corresponds to a non-zero restriction (c > 0). If the vertical line is

perfectly tangent to the unit circle, we continue to have global identification. Otherwise, there are

two distinct solutions for q1, as shown in Figure 1. Compared to the case where c = 0, a crucial

difference is that there are some values of φ and c where the sign normalization restriction cannot

rule out one solution. In this case, they are both admissible and the first column of Q is locally-

but not globally-identified.4

The second column of Q, i.e. the unit-length vector q2, can be pinned down through its ortho-

4For φ /∈ ΦF , the vertical line does not intersect the unit circle, and no real solution for q1 exists. If c 6= 0,
the identifying restriction becomes observationally restrictive, and the identifying restriction can be refuted by the
reduced-form models.
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gonality with q1 {
q′2 q1 = 0

q′2 q2 = 1.
(25)

If q1 is only locally identified with two admissible vectors q
(1)
1 and q

(2)
1 , Eq. (25) needs to be solved

given both. Solving the system when q1 = q
(1)
1 provides two solutions for q2 that are depicted in

the left panel of Figure 2. As the two solutions mirror each other across the origin, only one will

satisfy the sign normalization restriction for the second shock. A similar picture is obtained when

q1 = q
(2)
1 (the right panel of Figure 2), and here too one of the solutions for q2 can be ruled out by

the sign normalization restriction.

To summarize, an equality restriction with c > 0 leads to local but non-global identification

for q1, and there are then two admissible Q matrices, Q1 = [q(1)
1 , q

(1)
2 ] and Q2 = [q(2)

1 , q
(2)
2 ] given

φ. This implies that both A0 = Q′
1Σ

−1
tr and A0 = Q′

2Σ
−1
tr are admissible. In this example, we

obtain two observationally equivalent Q matrices, which is consistent with the upper bound on the

number of observationally equivalent Q matrices in Proposition 4.

For a specific numerical illustration, let the bivariate VAR be characterized by constants that

are zero and a single lag with reduced-form parameters

B1 =

(
0.8 −0.2

0.1 0.6

)

, Σ =

(
0.49 −0.14

−0.14 0.13

)

, Σtr =

(
0.7 0

−0.2 0.3

)

,

and consider imposing restriction (A0)
−1
[1,1] = 0.5 ⇐⇒ (e′1Σtr) q1 = 0.5. Following Eq. (56) and Eq.

(61) - Eq. (62) in Appendix A, we calculate the two admissible matrices Q1 and Q2

Q1 =

(
0.714 −0.700

0.700 0.714

)

and Q2 =

(
0.714 0.700

−0.700 0.714

)

with associated admissible A0 matrices

A
(1)
0 =

(
1.687 2.333

−0.320 2.381

)

and A
(2)
0 =

(
0.354 −2.333

1.680 2.381

)

.

Based on these structural parameter values, Figure 3 shows the impulse response of yt = (y1t, y2t)′

to the structural shocks ε1t and ε2t. Despite the simplicity of this example, it clearly illustrates the

extent to which conclusions depend on the choice of observationally equivalent Q matrices.
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Figure 2: Identification of q2 in the bivariate SVAR with non-zero restriction.
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Notes : The left panel shows the identification of the q
(1)
2 and q

(2)
2 vectors (in blue), conditional on the identified q

(1)
1 (in black).

Similarly, the right panel shows the identification of the q
(1)
2 and q

(2)
2 vectors (in blue), conditional on the identified q

(2)
1 (in

black).

III Locally identified SVARs: some examples

Hamilton et al. (2007) discuss local identification as a normalization problem. As shown in the

previous section, in the presence of non-homogeneous equality restrictions Eq. (12) and/or across-

shock restrictions Eq. (13), proper sign normalization restrictions are not enough to resolve the

issue of local identification in SVARs. The examples below illustrate that this issue is of practical

relevance.

III.1 Calibrated identifying restrictions

One strategy employed in the literature is to calibrate some parameters instead of estimating them.

Calibration can be viewed as imposing non-homogeneous restrictions. Depending on whether or not

the calibrated parameters are normalized by the structural error variance, these non-homogeneous

restrictions can deliver either global identification or local identification. The following two ex-

amples clarify this.

Following Bacchiocchi et al. (2005), consider a trivariate SVAR analyzing the impact of privat-

ization policies on the real economy. Let Yt = (pt, gt, xt)′ denote privatization proceeds, public

spending and real output, respectively. In line with their results, suppose that the government in

the model adopts an automatic rule to redirect privatization proceeds to public spending.
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Figure 3: Impulse response functions related to the locally identified SVAR discussed in Section
II.5.
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Notes : The bivariate SVAR is characterized by a non-zero restriction. In solid lines we report the IRFs obtained through

Q1 = (q
(1)
1 , q
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2 ) while in dashed lines those obtained through Q2 = (q

(2)
1 , q

(2)
2 ).

With the dynamics concentrated out, the model is specified as

a11pt + a12gt = εp
t ,

a21pt + a22gt = εg
t ,

a31pt + a23gt + a33xt = εx
t ,

(26)

where the vector εt = (εp
t , εg

t , εx
t )′ denotes the three structural shocks with normalized variances

E(εt ε′t) = I3. In addition, we assume that privatization shocks are transmitted to public spending

through a fixed mechanism governed by the nonzero parameter c, i.e. (A0)
−1
[2,1] = c ⇐⇒ (e′2Σtr) q1 =
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c. This set of restrictions can be written as

a13 = 0 ⇐⇒ (Σ−1
tr e3)

′q1 = 0

(A0)
−1
[2,1] = c ⇐⇒ (e′2Σtr) q1 = c (27)

a23 = 0 ⇐⇒ (Σ−1
tr e3)

′q2 = 0.

We have f1 = 2, f2 = 1 and f3 = 0, and Proposition 3 guarantees that the model is locally

identified. The next proposition shows a condition that leads to failure of global identification and

provides a concrete characterization of the number of locally identified parameter points.

Proposition 5. Let the j-th column vector of Σ′
tr be denoted by σj = (σj,1, σj,2, σj,2)′, j = 1, 2, 3.

In the privatization policy SVAR Eq. (26) subject to the restrictions Eq. (27) with c 6= 0, if

σ2
2,1 + σ2

2,2 > c2 holds and the half-space {q1 : σ′
1q1 ≥ 0} representing the sign normalization

restriction for q1 contains the slice of sphere {q1 : ‖q1‖ = 1, σ′
2q1 = c}, then global identification

fails and we have two distinct locally identified structural parameter points.

Proof. See Appendix C.

The non-homogeneous identifying restriction in Eq. (26) constrains the value of the structural

parameters in the SVAR representation where the structural error variance is normalized to unity.

It is worth noting a contrasting case such that imposing non-homogeneous restrictions without the

normalization of the structural error variance yields global identification.

To illustrate this point, consider Blanchard and Perotti’s (2002) seminal work on the dynamic

effect of fiscal policy shocks on the real economy. They consider a three variable SVAR which,

using the terminology of Amisano and Giannini (1997) and Lütkepohl (2006), has an AB-SVAR

representation5 where Yt = (Tt, Gt, Xt)′ consists of the logarithms of quarterly taxes, spending,

and GDP, all in the real per capita terms. The equations of the model are

tt = a1xt + a2ε
g
t + εt

t

gt = b1xt + b2ε
t
t + εg

t

xt = c1tt + c2gt + εx
t

where ut = (tt, gt, xt)′ is the vector of reduced-form residuals and εt
t, εg

t and εx
t are mutually

uncorrelated structural shocks with unknown variances σ2
t , σ2

g and σ2
y , respectively.

In addition to the zero restrictions already incorporated above, the authors propose three further

restrictions: (1) b1 = 0, (2) a1 = 2.08 and, (3) either a2 = 0 or b2 = 0. Combining these restrictions
5Identification criteria for AB-SVAR without normalizing the structural variances is known for local identification

only. See Amisano and Giannini (1997), Bacchiocchi and Lucchetti (2018), Lütkepohl (2006), and Hamilton (1994).
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with b2 = 0 (the situation is very similar for the alternative a2 = 0), we can write the model as







α11 0 0

α21 α22 α23

α31 α32 α33













tt

gt

xt





 =







εt
t

εg
t

εx
t





 .

where the new structural shocks ε̃t = (ε̃t
t , ε̃g

t , ε̃x
t )′ have normalized variance E(ε̃t ε̃′t) = I3, and the

αij parameters are defined as

α11 = 1/σg

α21 = −2.08/σt , α22 = 1/σt , α23 = −a2/σt

α31 = −c1/σx , α32 = −c2/σx , α33 = 1/σx.

The model imposes two restrictions on the first equation, one restriction on the second and no

restriction in the third. The two zero restrictions in the first equation identify the orthogonal vector

q1, while the restriction on the second row parameters take the form α21 = −2.08α22. As shown in

the proof of the next proposition, this equality restriction can be written as a zero restriction on

q2. In Combination with the sign normalization restrictions, we obtain global identification.

Proposition 6. The Blanchard-Perotti fiscal policy AB-SVAR is globally identified.

Proof. See Appendix C.

Although the literature has proposed only criteria for local-identification of AB-SVARs, this

proposition shows that these restrictions are sufficient for global identification. The comparison of

Propositions 5 and 6 highlights that the implications of identifying restrictions with calibrated coef-

ficients for identification depend on whether or not the variances of structural shocks are normalized

to unity.

III.2 Heteroskedastic SVAR

Bacchiocchi and Fanelli (2015) consider SVARs with a break in the structural error variances and

potentially regime-dependent structural coefficients. They consider identifying assumptions that

restrict some structural parameters to being invariant across the regimes.

Suppose that the two regimes are characterized by two different reduced-form error covariance

matrices Σ1 and Σ2, which are related to the regime-dependent structural parameters through

Σ1 = A−1
01 A−1′

01 and Σ2 = A−1
02 A−1′

02 , (28)
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where A01 and A02 are the matrices of regime-specific structural parameters. Let Q1 and Q2 be

the regime specific orthogonal matrices mapping the reduced-form error variances to the structural

coefficients,

A01 = Q′
1 Σ−1

1,tr and A02 = Q′
2 Σ−1

2,tr (29)

with Qi = [q1(i), . . . , qn(i)], ∀ i, ∈ { 1, 2 }. We denote the j-th column vector of Σ′
i,tr by σj(i) for

j = 1, 2 and i = 1, 2.

For simplicity, consider a bivariate SVAR with two regimes. Impose the following identifying

restrictions:
(A01)

−1
[1,2] = 0 ⇐⇒ (e′1 Σ1,tr) q2(1) = 0

(A01)
−1
[2,1] = (A02)

−1
[2,1] ⇐⇒ (e′2 Σ1,tr) q1(1) = (e′2 Σ2,tr) q1(2).

(30)

The first zero restriction combined with the sign normalization pins down the orthogonal matrix

Q1 in the first regime. The second restriction in Eq. (30) gives rise to the following system of

equations: {
σ′

1(2) q1(2) = c

q′1(2)q1(2) = 1
(31)

where c = σ′
2(1)q1(1), which is a known constant once the Q1 for the first regime is identified.

Hence, the problem of identification for structural parameters in the second regime is reduced to

the example discussed in Section II.5, in which local identification holds with two distinct solutions.

III.3 Restrictions across shocks or across equations

Cross-equation restrictions have been investigated in the classical literature of simultaneous equa-

tion systems (Fisher, 1966, and Kelly, 1975).6 Analogous restrictions arise in SVARs when cross-

restrictions are imposed on impulse responses to different structural shocks, as illustrated by the

following example.

Since the seminal work of Sims (1980), many studies of the transmission of monetary policy have

adopted SVAR model with a triangular structure where real variables do not immediately respond

to monetary policy shocks (see, among many others, Christiano et al., 2005). However, recent

theoretical and empirical contributions have provided evidence that monetary policy SVARs are

6In particular, Kelly (1975) presents cases in which economic theory might suggest imposing such restrictions.
However, constraining parameters across equations is conditional on the kind of normalization considered. In sim-
ultaneous equation systems, normalization rules were generally based on imposing a unit coefficient for the variable
playing the role of endogenous variable in that specific equation. In the parametrization proposed by RWZ for SVAR
models the normalization rule instead consists of imposing unit variance on the uncorrelated structural shock. In
this case, imposing restrictions on elasticities across equations would involve non-linear restrictions on the estimated
coefficients. In fact, to obtain the elasticities, we need to normalize the coefficient for the endogenous variable in the
each equation. See Hamilton et al. (2007) and Waggoner and Zha (2003) for specific details on the normalization
issue in SVAR models.
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not recursive (see Bacchiocchi et al., 2018, and the references therein). Furthermore, Bacchiocchi

and Fanelli (2015) provide evidence of Taylor-rule type behaviour by the Federal Reserve during

the Great Moderation period, with coefficients in line with the original values proposed by Taylor

(1993), i.e. the central bank reacts to unexpected inflation shocks with a coefficient equal to its

reaction to excess demand shocks.

This evidence suggests the following simple trivariate model for inflation πt, output yt and the

short term interest rate it

a11πt = επ
t

a21πt + a22yt + a23it = εy
t

a31πt + a23yt + a33it = εmp
t ,

(32)

where εt = (επ
t , εy

t , εmp
t )′ are, respectively the shocks to inflation, demand, and monetary policy.

Two restrictions, a12 = a13 = 0, have already been imposed. In addition, consider the restriction

that the on-impact response of it to επ
t is equal to that to εy

t . These restrictions can be expressed

as

a12 = 0 ⇐⇒ (Σ−1
tr e2)

′q1 = 0

a13 = 0 ⇐⇒ (Σ−1
tr e3)

′q1 = 0 (33)

A−1
0 [3,1] = A−1

0 [3,2] ⇐⇒ (e′3Σtr)q1 = (e′3Σtr)q2,

with f1 = 2 and one restriction connecting the first and second columns of the orthogonal matrix

Q, which can be viewed as a restriction on q2 so f2 = 1. By Proposition 3 the current model is

locally identified. However, we can show that global identification is not guaranteed.

Given Σ, the first two zero restrictions in Eq. (33) and the sign normalization restriction pin

down a unique q1, so the impulse response for the inflation shock is globally identified. The third

restriction in Eq. (33) and orthogonality to q1, however, cannot generally pin down a unique q2,

since they involve a non-homogeneous restriction. Taking q1 to be determined in the previous

step, we note the similarly to the first two restrictions in Eq. (27) of Section III.1. An analogous

argument to the proof of Proposition 5 can be applied to conclude that q2 cannot be uniquely

determined in a set of reduced-form parameter values that has a positive measure. Thus, A0 is

locally- but not globally-identified.

III.4 Non-recursive SVAR models

RWZ provide an example of a locally- but not globally-identified SVAR where the sufficient condi-

tion for local identification of Proposition 3 is not met. This example involves non-recursive causal
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ordering restrictions and has practical importance, as we illustrate below.

Cochrane (2006) considers the following New-Keynesian model for inflation πt, output gap xt,

and the nominal interest rate it:

πt = βEt πt+1 + κxt + us
t

xt = Et xt+1 − τ(it − Et πt+1) + ud
t (34)

it = φπ φt + ump
t

with us
t , tdt and ump

t being, respectively, the independent supply, demand, and monetary policy

shocks with variances σ2
s , σ2

d and σ2
mp. Fukac et al. (2007) show that, once the discount factor β

has been fixed, this model can be written as an SVAR of the form

A0 yt = εt

where yt = (πt, xt, it)′ is the vector of observable variables, εt = (εs
t , εd

t , εmp
t ) collects the unit-

variance uncorrelated structural shocks and

A0 =







a11 a12 0

0 a22 a23

a31 0 a33







Note that there is a well-defined mapping between the parameters in A0 and those in the DSGE

representation Eq. (34).7

This model includes the following restrictions:

a13 = 0 ⇐⇒ (Σ−1
tr e3)

′q1 = 0

a21 = 0 ⇐⇒ (Σ−1
tr e1)

′q2 = 0 (35)

a32 = 0 ⇐⇒ (Σ−1
tr e2)

′q3 = 0,

with f1 = f2 = f3 = 1. The sufficient condition for local identification in Proposition 3 is clearly

not satisfied, but it can be shown that the rank condition of Proposition 2 is satisfied. Specifically,

Rubio-Ramirez et al. (2008) show the existence of two orthogonal matrices Q1 and Q2 transforming

the reduced-form parameters into admissible structural parameters. The empirical application

shown in Section VI performs estimation and inference for this model.

7As pointed out by Canova (2005), zero restrictions implied by DSGE models do not match the recursive identi-
fication schemes common in SVAR analyses.
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III.5 Proxy-SVAR

A set of identifying restrictions similar to the non-recursive zero restrictions discussed above can

appear when the identification strategy exploits proxy variables for the structural shocks.

Consider again a three-variable SVAR. Instead of imposing zero restrictions directly on any

element of A0, we consider observable variables that proxy some of the underlying structural shocks.

The idea of using proxy variables to identify the structural impulse responses has been considered

in Stock and Watson (2012) and Mertens and Ravn (2013), amongst others. We restrict our

analysis to SVARs and focus on identification of the full system of SVARs rather than subset

identification of the impulse responses.8 To be specific, consider introducing the external variables

mt = (m1t,m2t,m3t)′, each of which acts as a proxy for some contemporaneous structural shocks.

Following Angelini and Fanelli (2019), Arias et al. (2018b), and Giacomini et al. (2019a), we

augment mt into the original SVAR,

(
A0 O

Γ1 Γ2

)(
yt

mt

)

=

(
εt

νt

)

, (εt, νt)
′ ∼ N (0, I6×6), (36)

where O is 3×3 matrix of zeros, Γ1 and Γ2 are 3×3 coefficient matrices in the augmented equations,

and the shocks νt in the second block component of the augmented system are interpreted as

measurement errors in the proxy variables. Inverting eq. (36) leads to

mt = −Γ−1
2 Γ1A

−1
0 εt + Γ−1

2 νt (37)

In the Proxy-SVAR approach, the identifying restrictions are zero restrictions on the covariance

matrix of mt and εt. Consider imposing the following restrictions:

E(mtε
′
t) =







0 ρ12 ρ13

ρ21 0 ρ23

ρ31 ρ32 0





 (38)

where ρij is the (unconstrained) covariance of mit and εjt. The zero-covariance restrictions repres-

ented in (38) imply that variable mit, i = 1, 2, 3, proxies a combination of the structural shocks

excluding εit. Combining eq. (37) with eq. (38) and substituting A−1
0 = ΣtrQ, Q = [q1, q2, q3], the

8The proxy-variable identification strategy has been shown to be useful for non-invertible structural MA models.
See Stock and Watson (2018).
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exogeneity restrictions of eq. (38) can be expressed as

(e′1Γ
−1
2 Γ1Σtr)q1 = 0,

(e′2Γ
−1
2 Γ1Σtr)q2 = 0, (39)

(e′3Γ
−1
2 Γ1Σtr)q3 = 0.

Since Γ−1
2 Γ1 can be identified by the covariance matrix of the reduced-form VAR errors in the

augmented system Eq. (36), the zero restrictions of Eq. (39) have the same form as Eq. (35).

Hence, Proxy-SVAR identification under the exogeneity restrictions Eq. (38) delivers local but

non-global identification of A0 matrix.

IV Computing identified sets of locally identified SVARs

A common approach to estimating SVAR structural parameters is constrained maximum likeli-

hood (Amisano and Giannini, 1997), with the maximization performed numerically given some

initial values. The standard gradient-based algorithm stops once it reaches a local maximum, and

does not check for the existence of other observationally equivalent parameter values. Hence, the

conventional maximum likelihood procedure applied to an SVAR that is locally but not globally

identified will select one of the observationally equivalent structural parameters in a nonsystematic

way, limiting the credibility of the resulting estimates and inference.

This section proposes computational methods that produce estimates of all the observationally

equivalent A matrices given the identifying restrictions. Our approach is first to obtain φ̂ = (B̂, Σ̂)

an estimate of the reduced-form parameters φ, and then compute the identified set for A0 given φ̂,

A0(φ̂|F, S) by solving a system of equations for Q matrix given φ̂. For estimators of φ, we consider

(i) the unconstrained reduced-form VAR estimator for φ denoted by φ̂u and (ii) the estimator for

φ induced by a constrained maximum likelihood estimate of A under the identifying restrictions

(i.e., one of the locally identified structural parameter points maximizing the likelihood), denoted

by φ̂r. In the Bayesian inference methods considered in Section V, we view φ̂ as a draw from the

posterior of φ.

In what follows, we propose two procedures to compute A0(φ̂|F, S). The first procedure is

general and invokes a non-linear solver. The second procedure is more constructive and involves

only elementary calculus, but the allowed type of identifying restrictions is more limited. Both

algorithms deal with just identified SVARs, and we presume the rank condition in Proposition 2

or the sufficient condition in Proposition 3 are ensured or have been checked empirically prior to

implementation.
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IV.1 A general computation procedure for locally identified SVARs

Given φ̂, this method computes the orthogonal matrices subject to the identifying restrictions by

solving a non-linear system of equations.9 If the model is locally identified, then it yields at most

2n(n+1)/2 solutions for Q. Some of these will be discarded by normalization and sign restrictions.

The remained solutions for Q are then used to span the identified set for A0, A0(φ̂|F, S) and its

projection leads to the identified set of an impulse response ISη(φ̂). All these steps are stated

formally in the next algorithm.

Algorithm 1. Consider a SVAR with equality restrictions Eq. (14) and sign restrictions Eq. (17),

and assume f = n(n− 1)/2 equality restrictions are imposed. Let φ̂ be a given estimator for φ such

as φ̂u or φ̂r.

1. Solve the system of equations for Q:

{
F(φ̂)vecQ − c = 0

Q′ Q = In;
(40)

2. If the set of real solutions for Q is non-empty (which is guaranteed if φ̂ = φ̂r), then retain

only those satisfying the normalization and sign restrictions to obtain QR(φ̂). A0(φ̂|F, S) is

constructed accordingly by {A0 = Q′Σ̂−1
tr : Q ∈ QR(φ̂)}.

3. When φ̂ = φ̂u, it is possible that no real solution for Q exists in Step 1. If so, we return

Q(φ̂|F, S) = ∅, i.e., φ̂ is not compatible with the imposed identifying restrictions.

The crucial step in this algorithm is obtaining all the solutions to the equation system (40).

This is a system of polynomial equations consisting of linear and quadratic equations.10 Closed-

form solutions do not seem available, but numerical algorithms to compute all the roots of the

polynomial equations are. Matlab, for example, has the function vpasolve, an algorithm to find

all the solutions of a system of non-linear equations. According to the Matlab documentation,11

vpasolve returns the complete set of solutions in the case of polynomial equations. The strength

of this algorithm is its generality, but it is a black-box function.12

9Kociecki and Kolasa (2018) similarly check global identification of DSGE models by examining the solutions of
a non-linear system of equations.

10Sturmfels (2002) provides a good overview of systems of polynomial equations with potential applications in
statistics and economics. As we saw in Section II.3, this system can be also seen as a minimization problem of
the quadratic objective function subject to the orthogonality constraints Q′ Q = In. Noting that the orthogonality
constraints generate the Stiefel manifold, we can consider applying algorithms for optimization on the Stiefel manifold.
See Edelman et al. (1998) and Boumal et al. (2014).

11https://uk.mathworks.com/help/symbolic/vpasolve.html
12Matlab solvers are not open source, and we fail to uncover the precise numerical algorithm vpasolve uses to find

roots of nonlinear equation systems.
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When non-homogeneous restrictions or cross-shock restrictions are imposed, the model becomes

observationally restrictive, as seen in Sections III.1 - III.3. Hence, when φ̂ is obtained from the

unconstrained reduced-form VAR estimator φ̂r, if φ̂r happens to be outside of ΦR, then Step 3 of

Algorithm 1 becomes relevant. When the algorithm returns QR(φ̂) = ∅, the maximum likelihood

reduced-form model suggests that some of the imposed identifying restrictions are misspecfied. One

can hence consider relaxing some of the imposed sign restrictions, or modify the value of c 6= 0

if non-homogeneous restrictions are present. Alternatively, if we want to maintain the imposed

restrictions, we can employ the constrained reduced-form estimate φ̂ = φ̂r instead, so that QR(φ̂)

is guaranteed to be nonempty.

IV.2 Computational procedure for locally identified SVARs with recursive non-

homogeneous restrictions

If the identifying restrictions imposed allow the sequential determination of the column vectors of

Q as exploited in the identification arguments in the previous sections, we can modify Algorithm 1.

In this section, we consider recursive SVARs with non-homogeneous and cross-shock restrictions,

as covered in Proposition 3.

Let Q1:i, 1 ≤ i ≤ n, be a n × i matrix whose column vectors are orthonormal (i.e. it consists

of the first i column vectors of Q). Given φ, define F̃11(φ) = F11(φ) and the following matrices

sequentially for i = 2, . . . , n,

F̃ii(φ) =

(
Fii(φ)

Q1:(i−1)(φ)′

)

, where (Fj1(φ), . . . Fjj(φ)) vecQ1:(i−1)(φ) = cj (41)

where Q1:(i−1)(φ) satisfies the identifying restrictions for the first (i − 1) orthogonal vectors, i.e.,

(Fj1(φ), . . . Fjj(φ))vecQ1:(i−1)(φ) = cj holds for j = 1, . . . , (i − 1). For i = 1, . . . , n, we define a

(n − 1) × 1 vector,

c̃i(φ) =










ci −
(
Fi1(φ), . . . , Fi(i−1)(φ)

)
vecQ1:(i−1)(φ)

0
...

0










(42)
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Then, for i = 1, . . . , n, define

di(φ) = F̃ii(φ)′
(

F̃ii(φ)F̃ii(φ)′
)−1

c̃i(φ), (43)

Bi(φ) =

(

In − F̃ii(φ)′
(

F̃ii(φ)F̃ii(φ)′
)−1

F̃ii(φ)

)

, (44)

and let αi(φ) be a n× 1 basis vector of the linear space spanned by the vectors in Bi(φ). Note that

Bi(φ) is the n × n matrix projecting onto the linear space orthogonal to the row vectors of F̃ii(φ).

Hence, given the rank of F̃ii(φ) is n − 1, Bi(φ) has a rank of 1, so αi(φ) is unique up to sign, and

F̃ii(φ)αi(φ) = 0 holds.

Consider the n × 1 vector, x = di(φ) + zαi(φ), z ∈ R. Due to the way di(φ) and αi(φ) are

constructed, F̃ii(φ)x = c̃i holds. That is, by choosing z so that x is a unit-length vector, we can

obtain qi vectors satisfying F̃ii(φ)qi = c̃i. Solving for x is simple as it requires only finding the

roots of a quadratic equation (see Eq. (45) and Eq. (46) in Algorithm 2 below). Given φ, we

repeat this process for every i = 1, . . . , n to determine the qi vectors sequentially, and compute all

the Q matrices satisfying the equality restrictions F(φ,Q) = 0. A0(φ|F, S) and ISη(φ) can then

be obtained by retaining the Q that satisfy the normalization and sign restrictions. We summarize

this computational procedure in the next algorithm.

Algorithm 2. Consider a SVAR satisfying the normalization restrictions Eq. (7), the equality

restrictions Eq. (14), and the sign restrictions Eq. (17), where the imposed equality restrictions

satisfy the sufficient condition for local identification given in Proposition 3. Let φ̂ be a given

estimator for φ such as φ̂u or φ̂r. In the description of the algorithm below, we omit the argument

φ̂ as far as it does not give rise confusion.

Let b = (b1, . . . , bn) ∈ {0, 1}n be a bit vector which will be used to index each of the at most

2n possible solutions for the Q matrices. Beginning with B = {0, 1}n, we will map each b ∈ B

to a possible solution of Q, check if it is feasible or not, and refine B accordingly. The following

algorithm describes this process in detail:

1. Solve for z ∈ R in

d′1d1 + 2d′1α1z + α′
1α1z

2 = 1, (45)

and denote the two solutions by zb1
1 , b1 ∈ {0, 1}.

(a) If they are real, then define qb1
1 = d1 +α1z

b1
1 , b1 ∈ {0, 1}. Let B1 ⊂ {0, 1} be the set of b1

such that qb1
1 satisfies the sign normalization and sign restrictions for q1. If B1 is empty

(i.e., no qb1
1 satisfies the sign normalization and sign restrictions for q1), then stop and

conclude QR(φ̂) = ∅
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(b) If the roots of Eq. (45) are not real, then stop and return Q(φ̂|F, S) = ∅.

2. This step iterates sequentially for i = 2, . . . , n, given Bi−1 ⊂ {0, 1}i−1.

(a) For each (b1, . . . , bi−1) ∈ Bi−1, construct Bi(b1b2 ∙ ∙ ∙ bi−1) ⊂ {0, 1}i by performing the

following subroutines:

i. Construct F̃ii from Eq. (41) by setting Q1:i−1 = [qb1
1 , qb1b2

2 , . . . , q
b1∙∙∙bi−1

i−1 ], and obtain

di and αi accordingly. Then,solve for z ∈ R in

d′idi + 2d′iαiz + α′
iαiz

2 = 1, (46)

and denote the two solutions by zb1b2∙∙∙bi
i , bi ∈ {0, 1}.

ii. If they are real, define qb1b2∙∙∙bi
1 = di+αiz

b1b2∙∙∙bi
1 , bi ∈ {0, 1}. Let Bi(b1b2 ∙ ∙ ∙ bi) be the

set of (b1, b2, . . . , bi) ∈ {0, 1}i such that qb1b2,∙∙∙bi
i satisfies the sign normalization and

sign restrictions for the i-th column vector of Q. This can be empty if no qb1b2,∙∙∙bi
i

satisfies them.

iii. If the roots of Eq. (46) are not real, return Bi(b1b2 ∙ ∙ ∙ bi−1) = ∅.

(b) Construct Bi =
⋃

(b1,...,bi−1)∈Bi−1
Bi(b1 ∙ ∙ ∙ bi−1). If Bi 6= ∅, go back to the beginning of

Step 2 .

(c) If Bi = ∅, then stop and return QR(φ̂) = ∅.

3. We obtain

QR(φ̂) =
{(

qb1
1 , qb1b2

2 , . . . , qb1b2∙∙∙bn
n

)
: b ∈ Bn

}
.

Algorithm 2 computes the set of all admissible Q ∈ QR(φ̂). In the description of the algorithm,

they are indexed by the bit vectors b ∈ Bn. The algorithm is constructive and guaranteed to

compute all the admissible Q matrices. Projecting this set of admissible matrices onto the impulse

response of interest, we obtain a plug-in estimate of the identified set ISη(φ̂).

Algorithm 2 is more constructive than Algorithm 1, but it restricts the set of equality restrictions

to be recursive. Algorithm 2 can be extended to a class of models involving non-recursive identifying

restrictions (e.g., examples in Sections III.4 and III.5) by incorporating steps that solve a certain

system of quadratic equations. Such an algorithm is rather involved to present, so we do not include

it in this paper. Algortihm 1 can be certainly applied to a general class of models with nonrecursive

identifying restrictions.
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V Inference for locally identified SVARs

V.1 Bayesian inference

Standard Bayesian inference specifies a prior distribution for either the structural parameters A

(e.g., Baumeister and Hamilton, 2015), or the reduced-form parameters and rotation matrix (φ,Q)

as a reparametrization of A (e.g., Uhlig, 2005). When identification is local, the likelihood for the

joint parameter vector A can have multiple modes, which means that the posterior for the structural

parameters and impulse responses may also have mutliple modes. This leads to computational

challenges as commonly used Markov Chain Monte Carlo (MCMC) methods can fail to adequately

explore the posterior when it is multi-modal. For instance, in the standard Metropolis-Hastings

algorithm, the presence of multiple modes complicates the choice of proposal distribution. If the

proposal distribution in the Metropolis-Hastings algorithm does not support some some modes

well, a lack of irreducibility of the Markov chain can lead it to fail to converge to the posterior.

Similarly, in the standard Gibbs sampler, the presence of multiple modes in the posterior for A

leads its support to be almost disconnected, which can then lead a break down of irreducibility

and the Gibbs sampler to fail to converge (see Example 10.7 in Robert and Casella (2004)). By

combining our constructive algorithm for computing ISη(φ) with the posterior sampling algorithm

for φ, we can overcome such computational challenges.

We consider approximating the posterior for a scalar impulse response η(φ). Assume that the

reduced-form parameters yield nonempty QR(φ). Let ISη(φ) consist of M(φ) ≥ 1 distinct points,

ISη(φ) = {η1(φ), η2(φ), . . . , ηM(φ)(φ)}, (47)

where we index the observationally equivalent impulse responses to satisfy η1(φ) < η2(φ) < ∙ ∙ ∙ <

ηM(φ)(φ).

We follow the “agnostic” Bayesian approach of Uhlig (2005). The posterior for η is induced by

the posterior for φ, πφ|Y , which is supported on ΦR ≡ {φ : QR(φ) 6= ∅}, and Q has a uniform prior

supported only on the admissible set of rotation matrices QR(φ) given φ ∈ ΦR. Local identification

with the M(φ)-point identified set as in (47) can be obtained by projecting the M(φ) admissible

rotation matrices if each of them leads to distinct values of impulse response. Hence, the uniform

weights assigned over these rotation matrices imply that equal weights are assigned to the points

in ISη(φ). As a result, for G ⊂ R, the posterior for η can be expressed as, :

πη|Y (η ∈ G) ∝ Eφ|Y




M(φ)∑

m=1

1{ηm(φ) ∈ G}



 . (48)
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Since the reduced-form VAR likelihood is unimodal and concentrated around the maximum likeli-

hood estimate, MCMC algorithms will perform well when sampling from πφ|Y . Hence, the posterior

(48) can be approximated by combining a posterior sampler for φ with the algorithm for computing

{ηm(φ) : m = 1, . . . ,M (φ)}.

V.2 Frequentist-valid inference

Bayesian inference as considered above can be sensitive to the choice of prior even in large samples

due to the lack of global identification. The standard Bayesian procedure (assuming a unique

prior for the structural parameters) specifies an allocation of the prior belief over observationally

equivalent impulse responses, ISη(φ), conditional on φ. This conditional belief given φ is not

updated by the data and, as a result, the shape and heights of the posterior around the modes

remain sensitive to its specification. In this section, we propose an asymptotically valid frequentist

inference procedure for the impulse response identified set that can draw inferential statements

which are robust to the choice of prior weights over the set of locally identified parameter values.

Our approach is to project asymptotically valid frequentist confidence sets for the reduced-form

parameters φ through the identified set mapping ISη(φ). In standard set-identified models where

the identified set is a connected interval with positive width, the projection approach to constructing

the confidence set has appeared in the 2011 working paper version of Moon and Schorfheide (2012),

Norets and Tang (2014), Kline and Tamer (2016), among others. This approach generally yields

asymptotically valid (but conservative) confidence sets even when the identified set consists of

discrete points. However, a challenge unique to the discrete identified set case is the computation of

projection confidence sets for the impulse responses based on a finite number of grid points or draws

of φ from their confidence set. In what follows, we propose methods to tackle this computational

challenge.

Let CSφ,α be an asymptotically valid confidence set for φ with coverage probability α ∈ (0, 1). If

the maximum likelihood estimator φ̂ is
√

T -asymptotically normal, the likelihood contour set CSφ,α

is determined by the α-th quantiles of the χ2 distribution with the degree of freedom dim(B) +

n(n − 1)/2. If the posterior for φ satisfies the Bernstein-von Mises property, that is the posterior

for
√

T (φ − φ̂) asymptotically coincides with the sampling distribution of the maximum likelihood

estimator, the Bayesian highest density posterior region with credibility α can be used for CSφ,α.

The MCMC confidence set procedure developed by Chen et al. (2018) can then be used to obtain

draws of φ from the highest density posterior region with credibility α. We follow this procedure

in our empirical application below. The inference procedures below allows for any CSφ,α with

asymptotically valid coverage, and takes draws or grids of φ from CSφ,α as given.
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The projection confidence set is defined as

CSp
η,α =

⋃

φ∈CSφ,α

ISη(φ). (49)

We assume that CSφ,α is an asymptotically valid confidence set for φ in the sense that

lim
T→∞

pY T |φ0
(φ0 ∈ CSφ,α) = α,

where pY T |φ0
is the sampling distribution of the data with sample size T and φ0 is the true value

of φ. Since {φ0 ∈ CSφ,α} implies {ISη(φ0) ⊂ CSp
η,α}, CSp

η,α (and any set including CSp
η,α) is an

asymptotically-valid but potentially conservative confidence set for ISη(φ0),

lim
T→∞

pY T |φ0
(ISη(φ0) ⊂ CSp

η,α) ≥ α.

Let {φk : k = 1, . . . ,K} be a finite number of Monte Carlo draws or grid points from CSφ,α. A

sample analogue of the projection confidence set,
⋃

k=1,...,K ISη(φk), is less useful in approximating

CSp
η,α, because each ISη(φk) is a discrete set, whereas the underlying CSp

η,α we want to approximate

can be a union of disconnected intervals with positive widths. In addition, it is difficult to judge

how many disconnected intervals ISp
η,α has and where the possible gaps lie within CSp

η,α from a

finite number of draws of ISη(φk), k = 1, . . . ,K . Reporting the convex hull of
⋃

k=1,...,K ISη(φk)

is simple, but it can lead to a connected confidence set that obscures the discrete feature of the

identified set.

In what follows, we propose two different approaches for computing the projection confidence

set for an impulse response given a set of Monte Carlo draws for φ. We refer to the first as

switching-label projection confidence sets. It allows the labels indexing observationally equivalent

impulse responses to vary across the horizons, and produces confidence sets that can capture multi-

modality of the posterior distribution or the integrated likelihood for each impulse response at each

horizon. We refer to the second approach as constant label projection confidence set. It maintains

unique labels for observationally equivalent structural parameters across the impulse responses and

over horizons, i.e., the labels for observationally equivalent structural parameters are defined in

terms of the modes of the posterior for Q. This approach may produce confidence sets that are

wider than the switching label projection confidence set, but it can better capture and visualize

dependence of the impulse responses over the horizons.
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V.2.1 Switching-label projection confidence sets

The switching-label approach draws inference for each impulse response at each horizon one-by-one.

We hence set η(φ) to a particular scalar impulse response.

Maintaining the notation of the previous subsection, let ISη(φk) = {η1(φk), . . . , ηM(φk)(φk)},

where M(φk) is the number of distinct points in the identified set at φ = φk. We label these

points in increasing order, η1(φk) < ∙ ∙ ∙ < ηM(φk)(φk). Let M̄ = maxk M(φk) be the largest

cardinality of ISη(φk) among the draws of φk, k = 1, . . . ,K . M̄ indicates the largest possible

number of disconnected intervals of CSp
η,α. We view them as clusters, each of which is indexed by

m̃ ∈ {1, . . . , M̄}. Let K̃ = |{φk : M(φk) = M̄}| be the number of φ draws that has the maximal

number of observationally equivalent impulse responses and define estimates of the cluster-specific

mean and variance by

μm̃ =
1

K̃

∑

φk:M(φk)=M̄

ηm̃(φk),

σ2
m̃ =

1

K̃ − 1

∑

φk:M(φk)=M̄

(ηm̃(φk) − μm̃)2, (50)

for each m̃ = 1, . . . , M̄ .

For each φk, k = 1, . . . ,K , we augment a binary vector of length M̄ , D(φk) = (Dm̃(φk) ∈ {0, 1} :

m̃ = 1, . . . , M̄), which indicates whether or not any one point of ISη(φk) can be associated with

m̃-th cluster. The true D(φk) is not observed, so must be imputed by, for instance, maximizing the

Gaussian log-likelihood criterion in the following manner. Let ρφk
be an increasing injective map

from {1, . . . ,M (φk)} to {1, . . . , M̄}, characterizing which cluster each ηm(φk), m = 1, . . . ,M (φk),

belongs to. Define

ρ̂φk
∈ arg min

ρφk

M(φk)∑

m=1

(
ηm(φk) − μρφk

(m)

)2

σ2
ρφk

(m)

, (51)

which minimizes the sum of variance-weighted squared distances to the cluster-specific means. We

then construct D(φk) = (Dm̃(φk) : m̃ = 1, . . . , M̄) ∈ {0, 1}M̄ from the indicators for whether ρ̂φk

maps any m ∈ {1, . . . ,M (φk)} to m̃, i.e., Dm̃(φk) = 1{∃ m s.t. ρφk
(m) = m̃}. We then construct

an interval for each cluster m̃ ∈ {1, . . . , M̄} by

Cm̃ =

[

min
φk:Dm̃(φk)=1

ηρ̂−1
φk

(m̃)(φk), max
φk:Dm̃(φk)=1

ηρ̂−1
φk

(m̃)(φk)

]

. (52)
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An approximation of the projection confidence set is then formed by taking the union of Cm̃:

ĈS
p

η,α ≡
M̄⋃

m̃=1

Cm̃. (53)

Note ĈS
p

η,α obtained in this way includes all the ISη(φk), k = 1, . . . ,K , and at the same time, can

yield a collection of disconnected intervals. Moreover, if the maximum likelihood estimator for φ

is consistent for φ0, ISη(φ) is a continuous correspondence at φ0 and M(φ) is constant in an open

neighborhood of φ0, it can be shown that ĈS
p

η,α converges to ISη(φ0) in the Hausdorff metric.

Hence, ĈS
p

η,α can consistently uncover the true identified set consisting of potentially multiple

points.

We construct ĈS
p

η,α separately for each impulse response at each horizon. Hence, the labeling

of the clusters m̃ = 1, . . . , M̄ defined for one impulse response does not correspond to the labeling

of the clusters defined for other impulse responses or horizons. For example, a particular impulse

response function labeled as m̃ = 1 in one horizon can be labeled as m̃ = 2 in another horizon. We

expect that switching-label projection confidence sets can visualize well the multi-modality of the

marginal posterior for each impulse response.

V.2.2 Constant label projection confidence sets

In contrast to label-switching projection confidence sets, constant label projection confidence sets

maintain fixed labeling across impulse responses and over time horizons. For example, an impulse

response function labeled as m̃ = 1 at one horizon is labeled as m̃ = 1 at other horizons.

To implement this procedure, we need to anchor the labels to a particular impulse response,

say, the impulse response of i∗-th variable to j∗-th structural shock at a particular horizon h = h∗,

denoted hereafter by η∗(φ, qj∗) ≡ e′i∗Ch∗(φ)qj∗ . Given a Monte Carlo draw of the reduced-form para-

meters, φk, k = 1, . . . ,K , from CSφ,α, let qj∗,m(φk), m = 1, . . . ,M (φk) be observationally equivalent

qj∗ vectors labeled according to the ordering of η∗(φ, qj∗), i.e., η∗(φk, qj∗,1(φk)) < η∗(φk, qj∗,2(φk)) <

∙ ∙ ∙ < η∗(φk, qj∗,M(φk)(φk)). Similarly to the labeling procedure shown in Eq. (51), we assign

cluster identifier m̃ = 1, . . . , M̄ to qj∗,m(φk) by constructing ρ̂φk
an increasing injective map from

{1, . . . ,M (φk)} to {1, . . . , M̄} ,

ρ̂φk
∈ arg min

ρφk

M(φk)∑

m=1

(
η∗(φk, qj∗,m) − μρφk

(m)

)2

σ2
ρφk

(m)

,

where μm̃ = 1
K̃

∑
φk:M(φk)=M̄ η∗(φk, qj∗,m̃) and σ2

m̃ = 1
K̃−1

∑
φk:M(φk)=M̄ (η∗(φk, qj∗,m̃) − μm̃)2. We

then construct D(φk) in the same way as the label switching projection confidence set.
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For each impulse response η(φ, qj∗) = e′iCh(φ)qj∗ , i = 1, . . . , n, and h = 0, 1, . . . , we construct

Cm̃ =

[

min
φk:Dm̃(φk)=1

η(φk, qj∗,ρ̂−1
φk

(m̃)), max
φk:Dm̃(φk)=1

η(φk, qj∗,ρ̂−1
φk

(m̃))

]

and form confidence sets by taking the union over m̃ as in Eq. (53).

In contrast to the switching label procedure, the constant label projection confidence sets

keep the labeling of the observationally equivalent impulse responses ρ̂φk
(m) fixed over variables

i = 1, . . . , n and different horizons h = 0, 1, . . . . If the impulse response η∗(φ, qj∗) chosen to anchor

the labels can tie the observationally equivalent impulse responses to different economic models or

hypotheses, the labels can be interpreted as indexing the underlying economic model or hypothesis

and kept invariant throughout the impulse response analysis. The constant label projection confid-

ence set approach is suitable in such a case, and allows us to track and compare the observationally

equivalent impulse response functions across different models.

V.2.3 Robust Bayesian interpretation

If we obtain {φk : k = 1, . . . ,K} as draws from the credible region of the posterior distribution for

φ, ĈS
p

η,α can be seen as an approximation of the set Cη,α satisfying

πφ|Y (ISη(φ) ⊂ Cη,α) ≥ α.

In terms of the robust Bayesian procedure proposed in Giacomini and Kitagawa (2020), Cη,α can be

interpreted as a robust credible region with credibility α; a set of η on which a posterior distribution

for η assigns probability at least α irrespective of the choice of the unrevisable part of the prior

πQ|φ. Our construction of the robust credible region can be conservative and is not guaranteed to

provide the shortest one. We leave the construction of the shortest robust credible region for future

research.

This link to robust Bayes inference also suggests that the range of posterior probabilities (lower

and upper probabilities) spanned by arbitrary conditional priors for Q given φ can be computed

straightforwardly based on the draws {φ` : ` = 1, . . . , L} from the posterior πφ|Y . Let H0 ⊂ R

and consider the range of posterior probabilities for a hypothesis of interest {η(φ,Q) ∈ H0}. By

applying Theorem 1 of Giacomini and Kitagawa (2020), the range of posterior probabilities for

{η ∈ H0} is given by the convex interval:

πη|Y (H0) ∈
[
πη|Y ∗(H0), π

∗
η|Y (H0)

]
≡
[
πφ|Y (ISη(φ) ⊂ H0), πφ|Y (ISη(φ) ∩ H0 6= ∅)

]
. (54)

Since the algorithms given in Section IV exhaust all the locally identified parameter values in
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ISη(φ), we can approximate the lower and upper bounds of the posterior probabilities in (54) for

each hypothesis of interest by the Monte Carlo frequencies for {ISη(φ) ⊂ A} and {ISη(φ)∩A 6= ∅},

respectively,

[
π̂η|Y ∗(H0), π̂

∗
η|Y (H0)

]
≡

[
1
L

L∑

`=1

1{ISη(φ`) ⊂ H0},
1
L

L∑

`=1

1{ISη(φ`) ∩ H0 6= ∅}

]

.

For a scalar impulse response, it is also straightforward to compute the range of posterior

means. Let η(φ) = min{η ∈ ISη(φ)} and η̄(φ) = max{η ∈ ISη(φ)}. Theorem 2 in Giacomini

and Kitagawa (2020) shows that the range of posterior means is given by the connected interval

[Eφ|Y (η(φ)), E(η̄(φ))], which can be approximated by Monte Carlo analogues based on draws {φ` :

` = 1, . . . , L} from πφ|Y .

VI Empirical application

We illustrate how our approach works with an empirical application to the non-recursive New-

Keynesian SVAR shown in Section III.4. We consider the small scale DSGE model presented in

Eq. (34), which has the SVAR representation with sign normalizations and the zero restrictions

Eq. (35). The vector of observables is inflation as measured by the GDP deflator (πt), real GDP

per capita as a deviation from a linear trend (xt) and the federal funds rate (it).13 The data are

quarterly from 1965:1 to 2006:1.

As discussed in Section III.4, the imposed restrictions deliver local identification and, given the

reduced form parameters, they can yield up to two admissible matrices, Q1 and Q2. To compute

them, we apply Algorithm 1 at every draw of φ from its posterior, using the Matlab command

vpasolve to solve the system of quadratic equations.

We specify the Jeffreys’ prior for the reduced-form parameters. Its density function is pro-

portional to |Σ|−
3+1
2 . We draw from the posterior 2,000 times and, considering uniquely the zero

restrictions in Eq. (35), obtain 2,000 realizations of QR(φ̂), each of which is nonempty and consists

of two orthogonal matrices Q1 and Q2. We label them by Q1 and Q2 according to the ordering of

the contemporaneous inflation impulse response.

Figure 4 reports the impulse response to a contractionary monetary policy shock for the output

gap (left panel) and inflation (right panel). It shows the posterior means and the highest posterior

density regions with credibility 90% that would be obtained if the conditional prior for Q given φ

assigned all probability mass to either Q1 or Q2. That is, reporting one of the inference outputs

13The data are used in Aruoba and Schorfheide (2011) and downloaded from Frank Schorfheide’s website: ht-
tps://web.sas.upenn.edu/schorf/. For details on the construction of the series, see Appendix D from Granziera et al.
(2018) and Footnote 5 of Aruoba and Schorfheide (2011).
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corresponds to the Bayesian approach that focuses only on one of the posterior modes, ignoring the

other.14

The inference result based on Q1 shows evidence for both price and output puzzles in the short

run. In the medium term, on the other hand, a contractionary monetary policy shock triggers a

contraction of the output gap, leaving the price dynamics mostly unaffected. Inference based on

the other orthogonal matrix Q2, however, leads to a contrasting conclusion. The reaction of prices

to the monetary policy shock is significantly negative, while the output gap responds positively and

significantly, particularly in the medium-long run.

This example illustrates that different locally-identified observationally equivalent parameter

values can lead to strikingly different conclusions, and ignoring this distorts the information con-

tained in the data. A standard off-the-shelf econometric package could uncover just one of the two

results. For instance, Gretl and Eviews both return results in line with those obtained through Q1.

These packages rely on algorithms that maximize the likelihood starting from some initial value

without checking other local maxima. Ignoring the other observationally equivalent solutions can

distort the information contained in the data. Thus, we recommend checking for the existence

of other local maxima and, if any exist, addressing how the conclusions change among them by

applying the methods proposed in this paper.

The inference approaches proposed in Section V produce the results reported in Figure 5. The

left panels plot results for the output gap while the right panels plot those for inflation. The top

panels show the draws of the impulse responses obtained based on the draws of φ from its posterior.

For each draw, we highlight the two observationally equivalent impulse responses corresponding to

admissible Q1 (blue) and Q2 (red) that are coherent with the zero restrictions in Eq. (35). The

labels of Q1 and Q2 in the plots of impulse responses for inflation are maintained in the plots for

output.

The middle and bottom panels present interval estimates based on the Bayesian and frequentist

inference procedures of Sections V.1 and V.2. The Bayesian posterior (whose highest density

regions are reported both in the middle and bottom panels) is obtained by specifying the uniform

conditional prior for Q given φ, i.e., equal weights are assigned to Q1 and Q2 conditional on φ.

The highest posterior density regions are plotted with gradation in gray scale, where the credibility

levels vary over 90%, 75%, 50%, 25%, and 10%, from the lightest to darkest.15

The middle left panel of 5 shows the marginal posterior distributions for the output gap impulse

response. These are unimodal up to h = 4, but become bimodal for longer horizons. While there is

14Although not reported for saving space, the Bayesian credible intervals of Figure 4 are nearly identical to those
obtained by the frequentist bootstrap-after-bootstrap approach of Kilian (1998)

15The highest posterior density regions are computed by slicing the posterior density approximated through kernel
smoothing of the posterior draws of the impulse responses.
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evidence for output gap puzzle at the shortest horizons, the probability density is tighter and higher

for the negative impulse responses in the medium-long run: the darkest gray region (highest 25%

and 10% of the distribution) appears mostly for the negative part of the responses. The middle

right panel of Figure 5 shows the marginal posterior distribution for the inflation impulse response.

This is bimodal up to h = 10 and becomes unimodal at longer horizons. Similarly to the output

gap, for the horizons with bimodal distributions, the negative impulse responses have tighter and

higher densities than the positive ones.

For both the output gap and inflation, we also present the frequentist-valid confidence intervals

(in dotted-circle lines) proposed in Section V.2. These are obtained by retaining 90% of the draws

of the reduced-form parameters with the highest value of the posterior density function. The middle

panels show the constant-label projection confidence sets of Section V.2.2, while the bottom panels

show the switching-label projection confidence sets of Section V.2.1. In addition, for both the output

gap and inflation, we show the range of posterior means obtained by the robust Bayesian approach

(dotted lines). It is evident that the Bayesian approach gives the narrowest interval estimates, and

the highest posterior density regions well visualize the bi-modal nature of the posterior distributions

at some horizons. The wider confidence intervals of the frequentist approach reflect a couple of their

features. First, they are agnostic over the observationally equivalent parameters in the sense that

they do not assign any weights over the observationally equivalent impulse responses. Second, our

proposed frequentist procedures rely on projecting the joint confidence intervals for the reduced-

form parameters and do not optimize the width of the interval estimates for impulse responses.

Concerning the results of the robust Bayesian approach, the bounds of the set of posterior means

are in line with the two modes of the posterior distributions.

A useful strategy for reducing the number of locally-identified admissible solutions is to introduce

sign restrictions. To refine the results reported in Figure 5, consider assuming no price puzzle by

restricting the inflation responses to be non-positive for (a) the contemporaneous period, or (b) for

the four quarters following a contractionary monetary policy shock. The results are reported in

Figures 6 and 7, respectively.

The results with the contemporaneous non-positivity restriction (Figure 6) appear similar to

those in Figure 5. A notable difference is in the upper bound of the frequentist confidence intervals

for the inflation response, which now excludes the positive responses shown in Figure 5 (top-right

panel). For the first few quarters, both switching- and constant-label projection confidence sets

exclude a region between the two modes of the distribution.

Imposing the four sign restrictions (Figure 7), allows us to eliminate one of the admissible Q

matrices for most of the draws of φ. In the top panels of Figure 7, the impulse responses plotted

in black have a unique admissible Q under the imposed sign restrictions. A comparison of Figure
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5 and Figure 7 shows that the sign restrictions rule out the impulse responses corresponding to Q1

matrices. The constant-label and switching-label confidence intervals produce similar results. The

only notable difference appears in the response of output gap, where the switching-label confidence

intervals in the bottom-left panel have narrow “gaps” from h = 11 to h = 18, while the constant-

label confidence intervals in the middle-left panel do not.

Figure 4: Impulse response functions for the New-Keynesian non-recursive SVAR.

(a) Output gap to εmp
t : Single admissible Qi. (b) Inflation to εmp

t : Single admissible Qi.

Notes : In the left column we report the impulse responses for the output gap obtained as the Bayesian posterior means with
the upper and lower bounds of the highest posterior density regions with credibility 90% obtained through the admissible Q1

and Q2 matrices, considered separately. Similarly, in the right column we report the impulse responses for inflation.

VII Conclusion

This paper analyzes SVARs that attain local identification but may fail to attain global identifica-

tion. We identify the class of identifying restrictions that delivers local but non-global identification.

This is characterized by non-homogeneous, non-recursive, and/or across-shock equality restrictions.

Exploiting the geometric structure of the identification problem, we propose a novel way to analyze

and exhaustively compute the observationally equivalent impulse responses. The novel analytical

and computational insights also contribute to the development of a posterior sampling algorithm

for Bayesian inference and projection-based frequentist-valid inference in the presence of locally

identified parameters.

Since locally- but not globally-identified structural models appear in other macroeconometric

models, including heteroskedastic SVARs and the dynamic stochastic general equilibrium models,

extending our computational and inference approaches to these models is a promising avenue for

future research.
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Figure 5: New-Keynesian non-recursive SVAR with zero restrictions only

(a) Output gap to εmp
t : impulse response

draws

(b) Inflation to εmp
t : impulse response

draws

(c) Credible regions and constant label pro-

jection confidence sets

(d) Credible regions and constant label

projection confidence sets.

(e) Credible regions and switching-label

projection confidence sets

(f) Credible regions and constant label pro-

jection confidence sets

Notes : The left column reports the output gap impulse responses and the right column reports the inflation impulse responses,

both to a contractionary monetary policy shock. The middle and bottom panels report the posterior highest density regions at

90%, 75%, 50%, 25% and 10% in gray scale. The upper and loser bounds of the frequentist confidence sets are plotted by the

dotted-circle lines. The dotted lines in the middle panels plot the set of posterior means.

41



Figure 6: New-Keynesian non-recursive SVAR with zero restrictions and one sign restriction

(a) Output gap to εmp
t : impulse response

draws

(b) Inflation to εmp
t : impulse response

draws

(c) Credible regions and constant label pro-

jection confidence sets

(d) Credible regions and constant label

projection confidence sets.

(e) Credible regions and switching-label

projection confidence sets

(f) Credible regions and constant label pro-

jection confidence sets

Notes : The left column reports the output gap impulse responses and the right column reports the inflation impulse responses,

both to a contractionary monetary policy shock. The middle and bottom panels report the posterior highest density regions at

90%, 75%, 50%, 25% and 10% in gray scale. The upper and loser bounds of the frequentist confidence sets are plotted by the

dotted-circle lines. The dotted lines in the middle panels plot the set of posterior means.
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Figure 7: New-Keynesian non-recursive SVAR with zero and additional four sign restrictions

(a) Output gap to εmp
t : impulse response

draws

(b) Inflation to εmp
t : impulse response

draws

(c) Credible regions and constant label pro-

jection confidence sets

(d) Credible regions and constant label

projection confidence sets.

(e) Credible regions and switching-label

projection confidence sets

(f) Credible regions and constant label pro-

jection confidence sets

Notes : The left column reports the output gap impulse responses and the right column reports the inflation impulse responses,

both to a contractionary monetary policy shock. The middle and bottom panels report the posterior highest density regions at

90%, 75%, 50%, 25% and 10% in gray scale. The upper and loser bounds of the frequentist confidence sets are plotted by the

dotted-circle lines. The dotted lines in the middle panels plot the set of posterior means.
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A Appendix: Some analytical results on the geometry of identi-

fication

Let the data generating process be the bivariate VAR defined in Section II.5 with the identifying
restriction

(A0)
−1
[1,1] = c ⇐⇒ (e′1Σtr) q1 = c (55)
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where c > 0 is a known (positive) scalar and e1 is the first column of the (2 × 2) identity matrix.
The non-homogeneous restriction in Eq. (55) affects the orthogonal matrix Q as σ′

1 q1 = c, with σ1

denoting the first column of Σ′
tr =

(
σ1,1 σ2,1

0 σ2,2

)

.

The vector q1 must satisfy the two equations

{
σ′

1 q1 = c

q′1 q1 = 1

By simple algebra, the two solutions are

q
(1)
1 =








c/σ1,1

+

√
σ2
1,1−c2

σ2
1,1








and q
(2)
1 =








c/σ1,1

−

√
σ2
1,1−c2

σ2
1,1








. (56)

These two possible solutions are represented in Figure 1. If (σ2
1,1 < c2), the straight (vertical) line

does not intersect the unit circle, and no real solution is admissible. The SVAR, although identified,
does not admit any real solution given the reduced-form parameters φ. If, instead, (σ2

1,1 = c2), i.e.
the vertical red line is tangent to the unit circle, we continue to have global identification, although
the imposed restriction is not coherent with those derived by RWZ. In all other situations, there
will be two solutions that, a priori, can be admissible despite the sign normalization restriction.
This is the case depicted in Figure 1.

Concerning the sign normalization restriction, for the first equation, the definition in Eq. (7)

reduces to q′1 σ̃1 ≥ 0, where σ̃1 is the first column of Σ−1
tr = 1/(σ1,1σ2,2)

(
σ2,2 0

−σ2,1 σ1,1

)

. Through

elementary algebra, we obtain that

q′1 σ̃1 ≥ 0 ⇐⇒
q1,1

σ1,1
≥

q1,2σ2,1

σ1,1σ2,2
(57)

where q1,1 and q1,2 are the two generic elements of q1, i.e. q1 = (q1,1 , q1,2)′. Suppose, first, that
from the data we have σ2,1 < 0. In this case, if we substitute in the values of q1,1 and q1,2 obtained

for q
(1)
1 in the left-hand side of Eq. (56), the sign normalization condition for the first equation

becomes
c

σ2
1,1

≥
σ2,1

σ1,1σ2,2

√
σ2

1,1 − c2

σ2
1,1

(58)

As the left-hand side is always positive and the right-hand side always negative, this is always
satisfied. If, instead, we substitute the values q1,1 and q1,2 obtained for q

(2)
1 in the right-hand side

of Eq. (56), the sign normalization condition for the first equation becomes

c

σ2
1,1

≥ −
σ2,1

σ1,1σ2,2

√
σ2

1,1 − c2

σ2
1,1

(59)
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that is also satisfied when c2 ≥ 1
2

σ2
1,1σ2

2,1

σ2
2,2

. If this is the case, both solutions q
(1)
1 and q

(2)
1 are

admissible, leading to local identification. The situation is very similar when σ2,1 > 0.
If, instead, c = 0 as in the standard RWZ setup, the two q1 vectors in Eq. (56) become

q
(1)
1 = (0 , 1)′ and q

(2)
1 = (0 , −1)′. If, as before, we suppose σ2,1 < 0, the sign normalization for

q
(1)
1 in Eq. (58) reduces to 0 ≥ σ2,1/(σ1,1σ2,2), which is always true. The sign normalization for

q
(2)
1 in Eq. (59) is 0 ≥ −σ2,1/(σ1,1σ2,2) which, in contrast, is never true. The case where σ2,1 > 0,

is exactly the same, but with inverted results. One of the two solutions, thus, will be always ruled
out by the sign normalization, and global identification is guaranteed.

The second column of Q, the unit-length vector q2, although not restricted, can be pinned down
through the its orthogonality to q1 {

q′2 q1 = 0

q′2 q2 = 1.
(60)

However, given that there are two admissible vectors q
(1)
1 and q

(2)
1 , the system Eq. (60) must be

solved for both. This can be done with simple algebra, yielding the two solutions

q
(1)
2 =








+
√

(σ2
1,1−c2)(2c2−σ2

1,1)

c4

−
√

2c2−σ2
1,1

c2








and q
(1)
2 =








−
√

(σ2
1,1−c2)(2c2−σ2

1,1)

c4

+
√

2c2−σ2
1,1

c2








(61)

One of the two, precisely which depends on the reduced-form parameters, will be eliminated by the
sign normalization restriction. This case is represented in the left panel of Figure 2, together with
q
(1)
1 .

The other possibility, represented in the right panel of Figure 2, is when we solve the system
conditional on q

(2)
1 , obtaining

q
(2)
2 =








+
√

(σ2
1,1−c2)(2c2−σ2

1,1)

c4

+
√

2c2−σ2
1,1

c2








and q
(2)
2 =








−
√

(σ2
1,1−c2)(2c2−σ2

1,1)

c4

−
√

2c2−σ2
1,1

c2








(62)

where, as before, one of the two solutions is ruled out by the sign normalization restriction.

B Appendix: Further results on local identification

In this appendix we provide a new result on local identification for SVAR models. We consider a
set of equality restrictions F(φ,Q) satisfying the recursive identification scheme in Definition 3.

Proposition 7 (RWZ sufficient condition for checking local identification). Consider an SVAR
with recursive identifying restrictions of the form Eq. (14). The SVAR is locally identified at
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A = (A0, A+) ∈ AR if, for i = 1, . . . , n,

Mi(Q) ≡







Fii(φ)
(n−i)×n

∙ Q
n×n(

Ii
i×i

0
i×(n−i)

)





 (63)

is of rank n.

Proof. See Appendix C.

Proposition 7 reconciles our condition for local identification of recursive SVARs with the general
rank condition for global identification provided by RWZ (their Theorem 1). In particular, under a
recursive identification scheme, the RWZ condition for global identification developed for the case
of homogeneous restrictions implies local identification, even though we allow non-homogeneous
and across shock restrictions.

C Appendix: Proofs

This appendix collects proofs for all propositions reported in this paper. We make use of the
following matrices. Kn is the n2 × n2 commutation matrix as defined in Magnus and Neudecker
(2007) and Nn = 1/2(In2 +Kn). Let D̃n be the n2×n(n−1)/2 full-column rank matrix D̃n defined
in Magnus (1988) such that for any n(n − 1)/2-dimensional vector v,D̃n v ≡ vec (H) holds, where
H is an n × n skew-symmetric matrix (H = −H ′). See Appendix D for explicit constructions of
D̃n for n = 2, 3, 4.

Proof of Proposition 2: necessary and sufficient condition for local identification

Fixing φ, a matrix Q satisfies the identifying restrictions if:

F(φ) vec Q = c (64)
Q′Q = In (65)

which is a system of quadratic equations. Eq. (64) consists of f = f1 + ∙ ∙ ∙ + fn linear and non-
homogeneous equations. Eq. (65) is a set of quadratic equations stating that the columns of Q,
the vectors (q1, . . . , qn), must be orthogonal and of unit length.

The system can be solved locally as:

F(φ) vec dQ = 0
dQ′ Q + Q′dQ = 0,

which, using the Kronecker product and its properties, becomes

F(φ) vec dQ = 0
[

(Q′ ⊗ In) + (In ⊗ Q′)

]

vec dQ = 0.
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Moreover, using the commutation matrix Kn we have

F(φ) vec dQ = 0
[

Kn(In ⊗ Q′) + (In ⊗ Q′)

]

vec dQ = 0,

and recalling Nn = 1/2(In2 + Kn), we obtain

F(φ) vec dQ = 0
2Nn(In ⊗ Q′)vec dQ = 0.

The Jacobian matrix can, thus, be defined as

J(Q) =

(
F(φ)

2Nn(In ⊗ Q′)

)

(66)

Following Magnus and Neudecker (2007), a sufficient condition for local identification of Q at the
point Q = Q0 is that J(Q0) has full column rank. If there exists an admissible neighborhood of Q0

such that J(Q0) is of full column rank, this condition becomes necessary too.
The condition regarding the rank of Eq. (66) can be further simplified. Given that Q is invertible

(it is orthogonal), the rank of J(Q) is unchanged if we post-multiply Eq. (66) by (In⊗Q−1′) = In⊗Q.
Checking whether J(Q) is of full column rank, thus, corresponds to checking whether the system
of equations

F(φ)(In ⊗ Q) x = 0
2Nn x = 0

admits the null vector x as the unique solution. However, as in Magnus (1988), the second equation,
can be solved as x = D̃nz, with z a n(n − 1)/2 × 1 vector. Substituting this solution into the first
equation leads to the rank condition Eq. (21) of Proposition 3. Since D̃n is a matrix of full column
rank rank n(n − 1)/2, a necessary condition for the rank condition Eq. (21) is that the number of
rows of F (φ), f , is greater than or equal to n(n − 1)/2. This completes the proof of (i).

To show claim (ii), let F̄ be the set of matrices of dimension f × n(n − 1)/2 and denote by
X a generic element of F̄ . Viewing the space spanning the j -th column of X as Vj in Lemma 3
of RWZ, and defining the set S in Lemma 3 of RWZ to be the set of matrices with deficient rank
S = {X ∈ F̄ : rank(X) < n(n − 1)/2}, Lemma 3 in RWZ shows that either S = F̄ , or S is a set of
measure zero in F̄ .

Define
F ≡ {F(φ)(In ⊗ Q)D̃n : F(φ)vec (Q) = c, (φ,Q) ∈ Φ ×O(n)}. (67)

Since F ⊂ F̄ , S ∩F is either equal to F or is a set of measure zero in F . Let g : A → Φ×O(n) be
the function that reparametrizes the structural parameters A to (φ,Q), and h : (Φ×O(n)) → F̄ be

the function that maps (φ,Q) to

[

F(φ)(In⊗Q)D̃n

]

∈ F . By applying Lemma 2 in RWZ (proved in

Spivak, 1965) to the chain of inverse maps h−1 and g−1, we conclude that either (g−1◦h−1)(F) = AR

or it is of measure zero in AR. The conclusion then follows by noting (g−1 ◦ h−1)(F) = Kc. �
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Proof of Proposition 3: local identification in recursive SVARs

Assume that the rank condition of Proposition 2 holds at parameter point A = (A0, A+) ∈ AR, and
let φ be the corresponding reduced-form parameter. Since local identification holds at A, there is no
observationally equivalent parameter point in a neighborhood of A. In other words, no infinitesimal
rotation of the orthogonal matrix Q generates observationally equivalent and admissible structural
parameters in the neighborhood of A. Any infinitesimal rotation can be represented by (In + H),
where H is an n× n skew-symmetric matrix (see Lucchetti 2006) whose i -th column we denote by
hi.

Projecting on q1, an admissible structural parameter lying in a local neighborhood of A has to
satisfy

F11(φ)

[

Q (In + H)

]

e1 = c1 =⇒ F11(φ)q1 + F11QHe1 = c1 =⇒ F11(φ)Qh1 = 0,

where ei is the i -th column of the identity matrix In, and the last equation follows from the fact
that F11(φ)q1 = c1. The system F11(φ)Qh1 = c1 is characterized by n − 1 equations and an n-
dimensional h1. The first element of h1 is zero by definition (the elements on the main diagonal of
a skew-symmetric matrix are equal to zero). Hence, we have

(
F11(φ)Q

e′1

)

h1 = 0. (68)

This linear equation system has h1 = 0 as its unique solution if and only if

(
F11(φ)Q

e′1

)

is

of rank n, or, equivalently, F11(φ)(q2 . . . qn) is of full rank (equal to n − 1). Since the model
is locally identified by assumption, h1 = 0 has to be the only solution of Eq. (68). Hence,

rank

(

F11(φ)(q2 . . . qn)

)

= n − 1 must hold, implying that rank(F11(φ)) = n − 1.

For q2, given a q1 vector solving F11(φ)q1 = 0, we have the following system:

{
F21(φ)q1 + F22(φ)q2 = c2

q′1q2 = 0,

Considering again an infinitesimal rotation

{
F21(φ)q1 + F22(φ)Q(In + H)e2 = c2

q′1Q(In + H)e2 = 0
=⇒

{
F21(φ)q1 + F22(φ)Qe2 + F22(φ)Qh2 = c2

q′1Qh2 = 0
,

but, given the restrictions, F21(φ)q1 + F22(φ)q2 = c2 =⇒ F22(φ)Qh2 = 0, which allows the
system to be written as

{
F22(φ)Qh2 = 0

q′1Qh2 = 0
=⇒

(
F22(φ)Q

q′1Q

)

h2 = 0. (69)
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Similarly to the argument for h1 above, and noting that the first two entries of h2 are zero, we can
represent the linear equations as 








F22(φ)Q

q′1Q

e′2

e′1










h2 = 0.

Since q′1Q = e′1, the last equation in this system is redundant. Thus, in order for h2 = 0 to be the

unique solution,

(
F22(φ)

q′1

)

must have full raw rank (equal to n − 1).

To obtain the sequential rank conditions of Proposition 3, we repeat this argument further for
i = 3, 4

Next, we show the reverse implication. For each column of Q, we consider a system of equations
of the form, {

F̃ii(φ) qi = (c′i, 0, . . . , 0)′

q′i qi = 1,

sequentially for i = 1, . . . , n, where F̃ii(φ) is as defined in the statement of Proposition 3. If

rank

(

F̃ii(φ)

)

= n − 1, the system of equations represents the intersection between a straight line

and the unit circle in Rn, which has at most two distinct solutions. Hence, any admissible Q
matrices are isolated points, so the SVAR is locally identified. The rank condition of Eq. (21)
follows by Proposition 2. �

Proof of Proposition 4: number of admissible Q’s

We split the proof into five cases based on the type of equality restrictions. The first three cases
are recursive identification schemes. The remaining two are non-recursive.

We first consider cases with recursive restrictions. That is, the variables are ordered to satisfy

f1 ≥ f2 ≥ . . . ≥ fn. (70)

Case 1: Recursive and homogeneous restrictions but no restrictions across shocks

Under recursive restrictions, we have shown in Proposition 3 that the rank condition of Eq. (21)
is equivalent to the sequential rank conditions of Eq. (23). If the sign normalization restrictions
select either the admissible qi or −qi at every i = 1, . . . , n, the sequential determination procedure
of RWZ pins down an admissible Q matrix. The sequential rank conditions do not guarantee that
the sign normalizations select a unique Q matrix, but the number of solutions for each qi is at
most two. Hence, the number of admissible Q matrices is at most equal to the number of distinct
selections of two vectors {qi,−qi} over i = 1, . . . , n, which amounts to 2n.

Case 2: Recursive non-homogeneous restrictions but no restrictions across shocks

Under recursive and non-homogeneous restrictions, consider solving for the admissible Q matrices
column by column by exploiting the sequential rank conditions Eq. (23). For the first column q1,
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we have {
F11(φ) q1 = c1

q′1 q1 = 1
(71)

Given that F11(φ) has full row rank, the set of solutions of q1 for the first equations can be spanned
by any n × 1 vector t1 ∈ R,

q1 = F11(φ)′
(

F11(φ)F11(φ)′
)−1

c1 +

(

In − F11(φ)′
(

F11(φ)F11(φ)′
)−1

F11(φ)

)

t1

≡ d1 + B1 t1 (72)

Since the (n× n) matrix B1 has rank n− f1 = 1, it can be decomposed as B1 = α1β
′
1, where α1 is

a basis for span (B1), i.e. the column space of B1, and both α1 and β1 are non-zero n × 1 vectors.
We can hence write

q1 = d1 + α1 z1 (73)

with z1 = β′
1 t1, being any scalar. The second (quadratic) equation in system Eq. (71) becomes

q′1q1 = (d1 + α1 z1)
′ (d1 + α1 z1)

= d′1d1 + 2d′1α1z1 + α′
1α1z

2
1 = 1

⇒ λ1 + 2ξ1z1 + ω1z
2
1 = 0

where λ1 = d′1d1 − 1, ξ1 = d′1α1 and ω1 = α′
1α1 are all functions of the reduced form parameters.

There are hence three possibilities:

1. If ξ2
1 − λ1ω1 > 0, we have two real solutions. It may be that none, one, or both satisfy the

sign normalization restriction for q1.

2. If ξ2
1−λ1ω1 = 0, we have a single real solution. It may or may not satisfy the sign normalization

restriciton.

3. If ξ2
1 −λ1ω1 < 0, we have no real solution, implying that φ is not compatible with the imposed

restrictions.

In summary, at most there are two admissible q1’s. Denote them by q
(1)
1 and q

(2)
1 (allowing q

(1)
1 =

q
(2)
1 ).

Given an admissible q1 ∈ {q(1)
1 , q

(2)
1 }, consider obtaining an admissible second column vector q2

by solving 




F22(φ) q2 = c2

q′1 q2 = 0

q′2 q2 = 1

(74)

with rank ((F22(φ)′, q1)) = n − 1. This system can be transformed as






F22(φ) q2 = c2

q′1 q2 = 0

q′2 q2 = 1

=⇒






(
F22(φ)

q′1

)

q2 =

(
c2

0

)

q′2 q2 = 1

=⇒

{
F̃22(φ) q2 = c̃2

q′2 q2 = 1
(75)
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where F̃22(φ) = (F ′
22(φ), q1)′ and c̃2 = (c′2, 0)′. Given the assumption rank (F̃22(φ)) = n−1, Eq. (75)

can be solved in the same way as the system for q1. We can hence obtain at most two admissible
q2 vectors for each of q1 = q

(1)
1 and q1 = q

(2)
1 . So far there are at most four admissible vectors for

the first two columns of Q.
We repeat this argument for i = 3, . . . , n. Given that there are at most 2i−1 admissible con-

structions of (q1, . . . , qi−1), and at each admissible (q1, . . . , qi−1), we solve for qi

{
F̃ii(φ) qi = c̃i

q′i qi = 1,
(76)

where
F̃ii(φ) = (Fii(φ)′, q1, . . . , qi−1)

′ and c̃i = (c′i, 0, . . . , 0).

Again, finding an admissible qi given (q1, . . . , qi−1) boils down to solving a quadratic equation, so
there are at most two solutions for qi, implying that there are at most 2i admissible constructions
of (q1, . . . , qi−1, qi). At i = n, we obtain at most 2n admissible Q matrices.

Case 3: Recursive non-homogeneous restrictions and restrictions across shocks

The recursive restrictions imply that F(φ) is lower block-triangular, i.e. Fij = 0 for j > i, and
fi = n− i for all i = 1, . . . , n. The case where i = 1 is identical to the initial step in Case 2 above,
so we have at most two admissible q1 vectors. For i > 1 we exploit the sequential structure of the
restrictions and obtain each admissible qi sequentially given (q1, . . . , qi−1) obtained in the preceding
steps. The only difference with respect to case 2 is that, once (q1, . . . , qi−1) is given, the system of
equations in Eq. (76), will be characterized by

F̃ii(φ) = (F ′
ii(φ), q1, . . . , qi−1)

′, and c̃i = ((ci − Fi1(φ)q1 − ∙ ∙ ∙ − Fi,i−1(φ)qi−1)
′, 0, . . . , 0)′. (77)

Repeating the argument of Case 2, we conclude there are at most 2n admissible Q ∈ O (n).

We now move to the cases with non-recursive identifying restrictions.

Case 4: Non-recursive restrictions and no restrictions across shocks

If f1 = n− 1, we can proceed as in Case 2 and globally or locally identify q1, depending on the
restrictions at hand. If, instead, f1 < n − 1, we can only identify the basis spanning a subspace in
Rn of dimension n − f1 containing q1. The system of equations characterizing q1 is given by

{
F11(φ) q1 = c1

q′1 q1 = 1.
(78)

Following the analysis of Case 2, we can represent an admissible q1 by q1 = d1 + α1z1, where
z1 = β′

1 t1 ∈ Rn−f1 , α1 is a nonzero n × (n − f1) matrix, β1 is a nonzero (n − f1) × n matrix,
and t1 ∈ Rn. Given this representation of q1, the second (quadratic) equation in system Eq. (78)
becomes

q′1q1 = d′1d1 + 2d′1α1z1 + z′1α
′
1α1z1 = 1

⇒ λ1 + 2ξ′1z1 + z′1ω1z1 = 0,
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where λ1 = d′1d1 − 1, ξ1 = α′
1d1, and ω1 = α′

1α1. The set of real roots of this quadratic equation in
z1, if nonempty, is a singleton or a hyper-ellipsoid in Rn−f1 with its radius given by the constant
term in the completion of squares (if nonnegative).

Assuming an admissible q1 exists, consider the equation system for q2,

{
q2 = d2 + α2 z2

q′2 q2 = 1,
(79)

whose set of roots, if nonempty, is again a singleton or a n − f2-dimensional hyper-ellipsoid. In
addition, we have the following orthogonality restriction between q1 and q2,

q′1q2 = d′1d2 + d′1α2z2 + z′1α
′
1d2 + z′1α

′
1α2z2

≡ λ1,2 + ξ′1,2z2 + z′1ξ2,1 + z′1ω1,2z2 = 0.

Enumerating these equations for all i = 1, . . . , n, we obtain the following system of equations:






z′1ω1z1 + 2ξ′1z1 + λ1 = 0

z′2ω2z2 + 2ξ′2z2 + λ2 = 0
...

z′nωnzn + 2ξ′nzn + λn = 0

z′1ω1,2z2 + ξ′1,2z2 + z′1ξ2,1 + λ1,2 = 0

z′1ω1,3z3 + ξ′1,3z3 + z′1ξ3,1 + λ1,3 = 0
...

z′n−1ωn−1,nzn + ξ′n−1,nzn + z′n−1ξn,n−1 + λn−1,n = 0.

(80)

The number of equations is n + n(n − 1)/2 = n(n + 1)/2. The number of unknowns, contained in
z1, z2, . . . , zn, is

(n − f1) + (n − f2) + . . . + (n − fn) ≤ n2 − n(n − 1)/2 = n(n + 1)/2, (81)

where the inquality follows by the order condition stated in Proposition 2,
∑n

i=1 fi ≥ n(n − 1)/2.
Hence, we have a system of n(n + 1)/2 equations with at most n(n + 1)/2 unknowns. Moreover,
each one is a quadratic equation and, importantly, given the rank condition for local identification
is satisfied, each of the solutions has to be an isolated point. Bézout’s theorem gives that the
maximum number of solutions is the product of the polynomial degree of all the equations, so the
number of solutions is at most 2n(n+1)/2.

Case 5: Non-recursive and across-shocks restrictions

In this case analysis of identification requires considering all equations jointly. We will have a
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system of equations of the form 




F(φ)vec Q = c

q′1 q1 = 1

q′2 q2 = 1
...

q′n qn = 1

q′1 q2 = 0
...

q′n−1 qn = 0.

(82)

This system consists of n2 equations with n2 unknowns (the elements in Q). The first n(n − 1)/2
equations are linear and the latter n(n + 1)/2 equations are all quadratic. By Bézout’s theorem,
the maximum number of solutions is at most 2n(n+1)/2.�

Proof of Proposition 7: RWZ sufficient condition for checking local identification

The result is a by-product of Proposition 3. As observed in Eq. (68), the first column q1 is locally

identified if and only if

(
F11(φ)Q

e′1

)

has full column rank equal to n. When moving to the

identification of q2, from the system Eq. (69), and recalling that the first two elements of h2 are
zero, we have no admissible infinitesimal rotation (i.e. h2 = 0) if

rank







F22(φ)
(n−2)×n

∙ Q
n×n(

I2
2×2

0
2×(n−2)

)





 = n.

Repeating this argument for the remaining of columns of Q, we obtain the proposition. �

Proof of Proposition 5: privatization policy SVAR

Denote the column vectors of Σ−1
tr and Σ′

tr by Σ−1
tr = (σ̃1, σ̃2, σ̃3) and Σ′

tr = (σ1, σ2, σ3). We
denote the i-th entry of σ̃j and σj by σ̃j,i and σj,i, respectively. We analyze the identification
of the structural parameters through sequential determination of the column vectors of Q given
reduced-form parameters Σ.

The first vector q1 of the orthogonal matrix Q can be determined by the first two restrictions
in Eq. (27). The system of quadratic equations to be solved is






σ̃3,1q11 + σ̃3,2q12 + σ̃3,3q13 = 0

σ2,1q11 + σ2,2q12 + σ2,3q13 = c

q2
11 + q2

12 + q2
13 = 1.

(83)

Since σ̃3,1 = 0 and σ̃3,2 = 0, the first equation reduces to q13 = 0. The second equation then
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becomes

σ2,1q11 + σ2,2q12 = c =⇒ q11 = −
σ2,2

σ2,1
q12 +

c

σ2,1
≡ γ1q12 + γ2,

where γ1 = −σ2,2

σ2,1
and γ2 = c

σ2,1
. Substituting into the third equation, we obtain

(γ2
1 + 1)q2

12 + 2γ1γ2q12 + (γ2
2 − 1) = 0. (84)

which can be solved for q12.
Given that γ2 6= 0, the existence and number of the solutions depends on the sign of γ2

1γ2
2 −

(γ2
1 + 1)(γ2

2 − 1) = γ2
1 − γ2

2 + 1.

1. If γ2
1 − γ2

2 + 1 = 0, there is a unique solution.

2. If γ2
1 − γ2

2 + 1 < 0, there is no real solution.

3. If γ2
1 − γ2

2 + 1 > 0, there are two real solutions.

The condition in the current proposition can be stated equivalently to the condition for case 3.
Hence, if this condition holds, there a two distinct solutions q

(1)
1 and q

(2)
1 , neither of which can be

eliminated by the sign normalization restriction for q1.
For each q

(1)
1 and q

(2)
2 , the third restriction in Eq. (27) σ̃′

3q2 = 0, q2’s orthogonality to q1, and

the sign normalization restriction for q2 pin down a unique q2. We denote these by q
(1)
2 and q

(2)
2 ,

respectively. Finally, orthogonality to (q(1)
1 , q

(1)
2 ) or (q(2)

1 , q
(2)
2 ) in R3 and the sign normalization for

q3 pin down the vectors q
(1)
3 and q

(2)
3 . Thus, we obtain two distinct admissible orthogonal matrices

Q(1) = (q(1)
1 , q

(1)
2 , q

(1)
3 ) and Q(2) = (q(2)

1 , q
(2)
2 , q

(2)
3 ). This SVAR is locally but not globally identified

when the variance-covariance matrix of the reduced-form errors satisfies the stated conditions. �

Proof of Proposition 6: Blanchard-Perotti fiscal policy SVAR

The AB-SVAR representation of the Blanchard-Perotti model is







1 0 −a1

0 1 −b1

−c1 −c2 1













tt

gt

xt





 =







1 a2 0

b2 1 0

0 0 1













εt
t

εg
t

εx
t





 . (85)

The authors impose three further restrictions to solve the identification issue: 1) b1 = 0, a1 = 2.08
and, 3) either a2 = 0 or b2 = 0. Under these restrictions with b2 = 0 (the analysis is similar for the
alternative a2 = 0), the model becomes

tt = 2.08xt + a2ε
g
t + εt

t

gt = εg
t

xt = c1tt + c2gt + εx
t
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whose SVAR representation is







1 a2 0

0 1 0

0 0 1







−1





1 0 −2.08

0 1 0

−c1 −c2 1













tt

gt

xt





 =







εt
t

εg
t

εx
t







⇔







1 −a2 −2.08

0 1 0

−c1 −c2 1













tt

gt

xt





 =







εt
t

εg
t

εx
t







As is standard for simultaneous equation models, the normalization here has been obtained by
imposing unit coefficients on the diagonal of the left-had side matrix, leaving the variances of the
structural shocks unconstrained.

Let σ2
t , σ2

g and σ2
y , be the variances of εt

t, εg
t , and εx

t , respectively. An alternative normalization
to have the unit-variance structural shocks and ordering the variables to conform to Proposition 1
lead to 





α11 0 0

α21 α22 α23

α31 α32 α33













gt

tt

xt





 =







εg
t /σg

εt
t/σt

εx
t /σx





 ,

where αij parameters satisfy

α11 = 1/σg

α21 = −a2/σt , α22 = 1/σt , α23 = −2.08/σt

α31 = −c2/σx , α32 = −c1/σx , α33 = 1/σx.

The two zero restrictions in the first equation provids two linear restrictions for q1, which, combined
with the sign normalization, pin down a unique q1. The restriction on the second equation can be
expressed as α22 = −2.08α23, which can be viewed as a zero restriction for q2,

α22 = −2.08α23 ⇔
(
Σ−1

tr e2

)′
q2 = −2.08

(
Σ−1

tr e3

)′
q2

⇔
[(

Σ−1
tr e2

)′
+ 2.08

(
Σ−1

tr e3

)′]
q2 = 0.

As this boils down to a standard zero restriction, orthogonality to q1 and the sign normalization
uniquely pin down the second vector q2. The third equation is unconstrained and orthogonality
to (q1, q2) combined with the sign normalization pins down q3. This proves that there exists a
unique orthogonal matrix Q = (q1, q2, q3) mapping the unrestricted reduced-form parameters to
the structural ones satisfying the imposed restrictions. Hence, the Blanchard-Perotti AB-SVAR
model is globally identified. �
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D Appendix: The D̃n matrix

A skew-symmetric (square) matrix A satisfies A′ = −A. Let ṽ(A) be a vector containing the
n(n − 1)/2 essential elements of A. When A is skew-symmetric, it is possible to expand the
elements of ṽ(A) to obtain vec A. D̃n, thus, can be defined to be the n2 × n(n − 1/2) matrix with
the property that

D̃n ṽ(A) = vec A

for any skew symmetric n× n matrix A. For a formal definition and properties of D̃n, see Magnus
(1988). Here, we present D̃n for n = 2, n = 3 and n = 4:

D̃2 =










0

1

−1

0










, D̃3 =























0 0 0

1 0 0

0 1 0

−1 0 0

0 0 0

0 0 1

0 −1 0

0 0 −1

0 1 0























, D̃4 =










































0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 −1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 −1 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0










































,

where we have circled the elements selecting the last n − i columns, i = 1, . . . , n, of the Fii(φ)Q
matrix in the proof of Proposition 7.

Finally, as can be seen from D̃2, D̃3 and D̃4, the matrix D̃n is always of full column rank
n(n − 1)/2.
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