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Abstract

We propose a framework for estimation and inference when the model may be mis-
specified. We rely on a local asymptotic approach where the degree of misspecification
is indexed by the sample size. We construct estimators whose mean squared error is
minimax in a neighborhood of the reference model, based on simple one-step adjust-
ments. In addition, we provide confidence intervals that contain the true parameter
under local misspecification. To interpret the degree of misspecification, we map it to
the local power of a specification test of the reference model. Our approach allows for
systematic sensitivity analysis when the parameter of interest may be partially or irreg-
ularly identified. As illustrations, we study two binary choice models: a cross-sectional
model where the error distribution is misspecified, and a dynamic panel data model
where the number of time periods is small and the distribution of individual effects is
misspecified.
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1 Introduction

Although economic models are intended as plausible approximations to a complex economic

reality, econometric inference often relies on the model being an exact description of the

population environment. To account for the possibility that their models are misspeci-

fied, economists have developed a number of approaches such as specification tests, semi-

parametric and nonparametric methods, and more recently bounds approaches. Implement-

ing those approaches typically requires estimating a more general model than the original

specification, possibly involving nonparametric and partially identified components.

In this paper, we consider a different approach, which consists in quantifying how model

misspecification affects the parameter of interest, and in modifying the estimate in order

to minimize the impact of misspecification. The goal of the analysis is twofold. First, we

provide simple adjustments of the model-based estimates, which do not require re-estimating

the model and provide guarantees on performance when the model is misspecified. Second,

we construct confidence intervals that account for model misspecification error in addition

to sampling uncertainty.

In our approach, we consider deviations from a reference specification of the model. The

reference model is parametric and fully specified given covariates. It may, for example,

correspond to the empirical specification of a structural economic model. We do not assume

that the reference model is correctly specified, and allow for local deviations from it within

a larger class of models. Relative to other approaches, a local analysis presents important

advantages in terms of tractability.

We construct minimax estimators which minimize worst-case mean squared error (MSE)

in a given neighborhood of the reference model. The worst case is influenced by the direc-

tions of model misspecification which matter most for the parameter of interest. We focus in

particular on two types of neighborhoods, for two leading classes of applications: Euclidean

neighborhoods in settings where the larger class of models containing the reference specifica-

tion is parametric, and Kullback-Leibler neighborhoods in semi-parametric likelihood models

where misspecification of functional forms is measured by the Kullback-Leibler divergence

between density functions.

The framework we propose is inspired by Hansen and Sargent’s (2001, 2008) work on

robust decision making under uncertainty and ambiguity. As in their work, optimal decisions

depend on the size of the neighborhood around the reference model. In this paper, we do
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not attempt to provide a data-driven choice for the neighborhood size. Instead, we take the

size as given and derive formulas for optimal estimation in neighborhoods of a given size. To

help interpretation, we show that the neighborhood size can be mapped to the local power

of a likelihood-ratio test of correct specification of the reference model.

Our approach delivers a class of estimators that can be used for systematic sensitivity

analysis. In addition, we show how to construct confidence intervals which asymptotically

contain the population parameter of interest with pre-specified probability, both under cor-

rect specification and local misspecification. We show that acknowledging misspecification

leads to easy-to-compute enlargements of conventional confidence intervals. Such confidence

intervals are “honest” in the sense that they account for the bias of the estimator (e.g.,

Donoho, 1994, Armstrong and Kolesár, 2016).

Our local approach leads to tractable expressions for worst-case bias and MSE, as well as

for minimum-MSE estimators in a given neighborhood of the reference model. A minimum-

MSE estimator takes the form of a one-step adjustment of the estimator based on the ref-

erence model by a term which reflects the impact of model misspecification, in addition to

a more standard term which adjusts the estimate in the direction of the efficient estimator

based on the reference model. Implementing the optimal estimator only requires computing

the score and Hessian of a larger model, evaluated at the reference model. The large model

never needs to be estimated. This feature of our approach is reminiscent of the logic of

Lagrange Multiplier (LM) testing.

We consider two examples as main illustrations. We first study the impact of misspec-

ification of the error distribution in a cross-sectional binary choice model. Our aim is to

estimate the outcome probabilities under different values of the covariates. While identifica-

tion can be achieved under independence and sufficiently rich support of covariates (Manski,

1988), the quantities of interest are partially identified in our setting. Relying on a normal

(probit) reference model, we show how our estimators and confidence intervals can be used

for sensitivity analysis when the researcher is concerned about misspecification of the normal.

We also use this example to illustrate the interpretation of the neighborhood size.

Our second example is a dynamic binary choice model in a short panel data. We assume

that time-varying errors are i.i.d. normal, but leave unrestricted the distribution of indi-

vidual heterogeneity given initial conditions. In this setting also, common parameters and

average effects often fail to be point-identified (Chamberlain, 2010, Honoré and Tamer, 2006,
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Chernozhukov et al., 2013), thus motivating a sensitivity analysis approach. We show that

minimizing the MSE in such panel data settings leads to a Tikhonov-regularized estimator,

where the penalization reflects the degree of misspecification allowed for. In simulations,

we illustrate that our estimator can provide substantial bias and MSE reduction relative to

commonly used estimators.

Related work and outline. As in the literature on robust statistics (Huber, 1964, Huber

and Ronchetti, 2009, Hampel et al., 1986, and especially Rieder, 1994), we rely on a minimax

approach and aim to minimize the worst-case impact of misspecification in a neighborhood

of a model. A difference with this work is that we focus on misspecification of specific

aspects of a model, by considering parametric or semi-parametric classes of models around

the reference specification. By contrast, the robust statistics literature has mostly focused

on fully nonparametric classes, motivated by data contamination issues.

A related literature studies orthogonalization and locally robust moment functions, see

Neyman (1959), Newey (1994), Chernozhukov et al. (2016), Chernozhukov et al. (2018), and

also Fraser (1964). Here we account for both bias and variance, weighting them by the size

of the neighborhood around the reference model. In addition, our approach does not require

the larger model to be point-identified. Our analysis also connects to Bayesian robustness

(e.g., Berger and Berliner, 1986, Gustafson, 2000, Vidakovic, 2000, Mueller, 2012), although

our minimum-MSE estimators and confidence intervals have a frequentist interpretation.

Also related are the literatures on statistical decision theory (e.g., Wald, 1950, Chamber-

lain 2000, Watson and Holmes, 2016, Hansen and Marinacci, 2016, and especially Hansen

and Sargent, 2008) and the literature on sensitivity analysis in statistics and economics (e.g.,

Rosenbaum and Rubin, 1983, Leamer, 1985, Imbens, 2003, Altonji et al., 2005, Nevo and

Rosen, 2012, Oster, 2014, Masten and Poirier, 2017). Our analysis of minimum-MSE es-

timation and sensitivity in the OLS/IV example is related to Hahn and Hausman (2005)

and Angrist et al. (2017). Our approach based on local misspecification has a number of

precedents, such as Newey (1985), Conley et al. (2012), Guggenberger (2012), Bugni et al.

(2012), Kitamura et al. (2013), and Bugni and Ura (2018). Also related is Claeskens and

Hjort’s (2003) work on the focused information criterion.

Recent papers rely on a local approach to misspecification to provide tools for sensitivity

analysis. Andrews et al. (2017) propose a measure of sensitivity of parameter estimates to the

3



moments used in estimation. Andrews et al. (2018) introduce a measure of informativeness

of descriptive statistics in the estimation of structural models; see also Mukhin (2018). Our

goal is different, in that we aim to provide a framework for estimation and inference in the

presence of misspecification. Armstrong and Kolesár (2018) study models defined by over-

identified systems of moment conditions that are approximately satisfied at true values, up

to an additive term that vanishes asymptotically, and derive results for optimal estimation

and inference. In this paper, we seek to ensure robustness to misspecification of a reference

model within a larger class of models.

Our focus on specific forms of model misspecification also relates to recent approaches to

estimate partially identified models (Chen et al., 2011, Norets and Tang, 2014, Schennach,

2013, Giacomini and Kitagawa, 2018). Christensen and Connault (2018) consider structural

models defined by equilibrium conditions, and develop inference methods on the identified

set of counterfactual predictions subject to restrictions on the distance between the true

model and a reference specification. Our local approach is complementary to these meth-

ods. It allows tractability in complex models, such as structural economic models, since

implementation does not require estimating a larger model. In our framework, we view the

parametric reference model as a useful benchmark, although its predictions need to be mod-

ified in order to minimize the impact of misspecification. This aspect relates our paper to

shrinkage methods (e.g., Hansen, 2016, 2017, Fessler and Kasy, 2018, Maasoumi, 1978), with

the difference that here we are interested in a single parameter.

The plan of the paper is as follows. In Section 2 we describe our framework and derive

the main results. In Section 3 we apply our framework to parametric and semi-parametric

models. In Section 4 we discuss the interpretation of neighborhood size. In Section 5 we

report simulation exercises in binary choice models, and we conclude in Section 6.

2 Framework of analysis

In this section we describe the main elements of our approach in a general setting. In the

next section we will specialize the analysis to the locally-quadratic case, which includes both

parametric misspecification and semi-parametric misspecification of distributional functional

forms.
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2.1 Setup

We observe a random sample (Yi : i = 1, . . . , n) from the distribution fβ,π(y) = f(y | β, π),

where β ∈ B is a finite-dimensional parameter, and π ∈ Π is a finite- or infinite-dimensional

parameter. Throughout the paper the parameter of interest is δβ,π, a scalar function or

functional of β and π. We assume that δβ,π and fβ,π are known, smooth functions of β and

π. Examples of functionals of interest in economic applications include counterfactual policy

effects in structural models, and average effects in panel data settings. The true parameter

values β0, π0 that generate the observed data Y1, . . . , Yn are unknown to the researcher. Our

goal is to estimate δβ0,π0 and construct confidence intervals around it.

Our starting point is that the researcher has chosen a reference model π(γ), which param-

eterizes the unknown π ∈ Π in terms of a finite-dimensional parameter γ ∈ G. We say that

the reference model is correctly specified if there exists a value γ ∈ G such that π0 = π(γ).

Otherwise we say that the model is misspecified. Given a distance measure d on Π we denote

the maximal amount of misspecification by ε ≥ 0; that is, we assume that there exists some

parameter value γ∗ ∈ G such that the true π0 satisfies d(π0, π(γ∗)) ≤ ε.

In our theory we consider an asymptotic sequence where ε = εn tends to zero as n tends to

infinity, so the maximal amount of misspecification gets smaller as the sample size increases.

The reason for focusing on ε tending to zero is tractability, as a small-ε analysis allows us

to rely on linearization techniques and obtain simple, explicit expressions. Moreover, when

estimating δβ0,π0 , the estimation bias due to misspecification (of order ε1/2) and the standard

deviation (of order n−1/2) are asymptotically comparable, so both play a role in the mean

squared error. This local asymptotic approach has a number of precedents in the literature,

notably Rieder (1994). Along the sequence, the true parameter π0 = π0,n depends on n, and

we assume that, for a fixed parameter γ∗, d(π0,n, π(γ∗)) ≤ εn for all n. This implies that

limn→∞ d(π0,n, π(γ∗)) = 0; that is, π0,n converges to π(γ∗) as n tends to infinity. Hereafter

we drop the indices n and do not make the sample size dependence of ε and π0 explicit. For

example, we simply write d(π0, π(γ∗)) ≤ ε.

Given the distance measure d, and some ε > 0, we define an ε-neighborhood around π(γ∗)

as

Γε(γ∗) = {π0 ∈ Π : d(π0, π(γ∗)) ≤ ε} .

We assume that the true π0 that generates the data satisfies π0 ∈ Γε(γ∗). We will refer to γ∗
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as a “pseudo-true” parameter, and later we will assume that γ∗ can be estimated consistently

by some preliminary estimator γ̂. The distance measure d, the misspecification bound ε, and

the preliminary estimator γ̂ are chosen by the researcher.

Examples. As a first example, consider a parametric model defined by Euclidean parame-

ters β and π, where π = 0 under the reference model. For example, π can represent the effect

of an omitted control variable in a regression, or the degree of endogeneity of a regressor as in

the example we analyze in Subsection 3.3. Suppose that the researcher is interested in the pa-

rameter δβ0,π0 = c′β0 for a known vector c, such as one component of β0. In this case we will

take the weighted Euclidean (squared) distance d(π0, π) = ‖π0 − π‖2
Ω = (π0 − π)′Ω(π0 − π),

for a positive-definite matrix Ω.

As a second example, consider a semi-parametric model whose likelihood depends on

a finite-dimensional parameter vector β and a nonparametric density π of unobservables

A ∈ A, abstracting from conditioning covariates for simplicity. The joint density of (Y,A) is

gβ0
(y | a)π0(a) for some known function g. Suppose that the researcher’s goal is to estimate

an average effect δβ0,π0 = Eπ0∆(A, β0), for a known function ∆. It is common to estimate

the model by parameterizing the unknown density as π(γ), where γ is finite-dimensional. We

focus on situations where, although the researcher thinks of π(γ) as a plausible approximation

to the population distribution π0, she is not willing to rule out that it may be misspecified.

In this case we use the Kullback-Leibler divergence to define semi-parametric neighborhoods,

and we take d(π0, π) = 2
∫
A log

(
π0(a)
π(a)

)
π0(a)da.

We consider asymptotically linear estimators δ̂ = δ̂(Y1, . . . , Yn) that admit a stochastic

expansion of the form

δ̂ = δβ0,π(γ∗) +
1

n

n∑
i=1

h(Yi, β0, γ∗) + oP0(n
− 1

2 + ε1/2), (1)

where this expansion holds uniformly for all P0 = Pβ0,π0 such that π0 ∈ Γε(γ∗), in a sense

that we will discuss below and that we will make precise in Theorem 1. Along the sequence

we consider, the product εn tends to a positive constant, so the remainder in (1) is oP0(n
− 1

2 ).

Although asymptotic linearity is satisfied by many econometric estimators, it can fail in

certain semi-parametric problems (e.g., Cattaneo et al., 2014) and in problems involving

model selection or shrinkage (e.g., Liao, 2013, Cheng and Liao, 2015), for example.

Equation (1) is a form of local regularity of the estimator δ̂. Consider first the correctly
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specified case, where ε = 0 and π0 = π(γ∗). In this case h(·, β0, γ∗) is the influence function

of δ̂. We assume that the following conditions are satisfied,

Eβ0,π(γ∗) h(Y, β0, γ∗) = 0, (2)

and

∇βγδβ0,π(γ∗) + Eβ0,π(γ∗)∇βγh(Y, β0, γ∗) = 0, (3)

where Eβ,π denotes an expectation under the distribution
∏n

i=1 fβ,π(Yi), and ∇βγ denotes

the derivative with respect to the vector (β′, γ′)′. Both (2) and (3) are standard properties

of influence functions of regular asymptotically linear estimators.

We will refer to (2) as unbiasedness, since it guarantees that δ̂ is asymptotically unbiased

for δβ0,π0 under correct specification of the reference model. We assume that unbiasedness

holds at all possible values of β0 and γ∗. Then, by differentiating (2) with respect to β0 and

γ∗ and plugging the resulting equations into (3), we obtain

Eβ0,π(γ∗) h(Y, β0, γ∗)∇βγ log fβ0,π(γ∗)(Y ) = ∇βγδβ0,π(γ∗). (4)

Under unbiasedness, (3) and (4) are equivalent. We will later work with (4), since it only

features h(Y, β0, γ∗) and not its gradient. Under suitable conditions, (4) is necessary and

sufficient for the asymptotically linear estimator δ̂ to be regular; see, e.g., Newey (1990). As

an example, for m-estimators (4) can be interpreted as the generalized information matrix

equality. Asymptotic linearity and regularity are commonly imposed in the semi-parametric

efficiency literature (Bickel et al., 1993). These conditions rule out, for example, supereffi-

cient estimators such as Hodges’ estimator. We will refer to (3), or alternatively (4), as local

robustness, using a terminology introduced by Chernozhukov et al. (2016).1

Consider now the misspecified case, where ε > 0. In this case, we strengthen the condition

of asymptotic linearity, and require that δ̂ be locally asymptotically linear; see, e.g., Klaassen

(1987). Formally, under local, small-ε misspecification, we assume the stochastic expansion

(1) continues to hold, but now uniformly for all π0 ∈ Γε(γ∗).
2 In the following we focus on

locally asymptotically linear estimators that satisfy (1), under the conditions (2) and (4).

Notice that, under local misspecification, the influence function h(Y, β0, γ∗) has no longer

mean zero under P0 in general.

1While in Chernozhukov et al. (2016) local robustness is imposed as a substantive restriction on more
general moment functions, in our setting (3) and (4) are regularity conditions given unbiasedness.

2To see why (1) is a plausible way of imposing asymptotic linearity here, let φ(Yi, β0, π0) be the influence
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Our goal in this paper is twofold. First, we will construct confidence intervals for the

target parameter δβ0,π0 which are uniformly asymptotically valid on Γε(γ∗). Second, an im-

portant goal of the analysis is to construct estimators δ̂ = δ̂(Y1, . . . , Yn) that are asymptoti-

cally optimal in a minimax sense. For this purpose, we will show how to compute a function

h such that the (trimmed) worst-case mean squared error (MSE) Eβ0,π0 [(δ̂ − δβ0,π0)
2] in the

ε-neighborhood Γε(γ∗) of the reference model, among estimators of the form

δ̂h,β̂,γ̂ = δβ̂,π(γ̂) +
1

n

n∑
i=1

h(Yi, β̂, γ̂), (5)

is minimized under our local asymptotic analysis. In fact, we will show how to compute

estimators that minimize (trimmed) worst-case MSE among asymptotically linear estimators,

see Theorem 1 below for a precise statement. Here β̂ and γ̂ are preliminary estimators of

β0 and γ∗ that are consistent under correct specification. For example, β̂ and γ̂ may be

maximum likelihood estimators (MLE) based on the reference model. It follows from (2)

and (4) that, under regularity conditions on the preliminary estimators, the form of the

minimum-MSE h function is not affected by the choice of β̂ and γ̂.

Examples (cont.) In our parametric example a natural estimator is the MLE of c′β0

based on the reference specification, for example, the OLS estimator under the assumption

that π = 0; e.g., that the coefficient of an omitted control variable is zero. In a correctly

specified likelihood setting such an estimator will be consistent and efficient. However, when

the reference model is misspecified it may be dominated in terms of bias or MSE by other

regular estimators.

In our semi-parametric example a commonly used (“random-effects”) estimator of δβ0,π0 =

Eπ0∆(A, β0) is obtained by replacing the population average by an integral with respect to

the parametric distribution π(γ̂), where γ̂ is the MLE of γ. Another popular (“empiri-

cal Bayes”) estimator is obtained by substituting an integral with respect to the posterior

distribution of A based on π(γ̂). We will compare the finite-sample performance of these

function of δ̂. Expanding as n→∞ and ε→ 0 we have

δ̂ = δβ0,π(γ∗)
+

1

n

n∑
i=1

φ(Yi, β0, π(γ∗))︸ ︷︷ ︸
=h(Yi,β0,γ∗)

+[π0 − π(γ∗)]
′ [∇πδβ0,π(γ∗)

+ Eβ0,π(γ∗)
∇πφ(Y, β0, π(γ∗))

]︸ ︷︷ ︸
=0

+ oP0(n−
1
2 + ε

1
2 ).

In this expansion the term linear in π0−π(γ∗) vanishes, whenever φ(Y, β0, π0) satisfies an influence function

regularity condition analogous to (3), and the term quadratic in π0 − π(γ∗) gives a contribution oP0
(ε

1
2 ).
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estimators to that of our minimum-MSE estimator in our panel data illustration in Section

5.

2.2 Heuristic derivation of the minimum-MSE estimator

In this subsection we provide heuristic derivations for the worst-case bias and the minimum-

MSE estimator. This will lead to the main expressions in equations (8) and (10) below. In

the next subsection we will provide regularity conditions under which these derivations are

formally justified.

We assume that Γε(γ∗) is a convex set. When π is finite-dimensional, for any linear map

u : Π→ R we define3

‖u‖γ∗,ε = sup
π0∈Γε(γ∗)

ε−
1
2 u′(π0 − π(γ∗)), ‖u‖γ∗ = lim

ε→0
‖u‖γ∗,ε . (6)

We assume that the distance measure d is chosen such that ‖·‖γ∗ is unique and well-defined,

and that it is a norm, dual to a local approximation of d(π0, π(γ∗)) for fixed π(γ∗). Both

our examples of distance measures – weighted Euclidean distance and Kullback-Leibler di-

vergence – satisfy these assumptions.

We focus on estimators δ̂ that satisfy (1) for a suitable h function for which (2) and (4)

hold. Under appropriate regularity conditions, the worst-case bias of δ̂ in the neighborhood

Γε(γ∗) can be expanded for small ε and large n as

sup
π0∈Γε(γ∗)

∣∣∣Eβ0,π0 δ̂ − δβ0,π0

∣∣∣ = bε(h, β0, γ∗) + o(n−
1
2 + ε

1
2 ), (7)

where

bε(h, β0, γ∗) = ε
1
2

∥∥∇πδβ0,π(γ∗) − Eβ0,π(γ∗) h(Y, β0, γ∗) ∇π log fβ0,π(γ∗)(Y )
∥∥
γ∗
, (8)

for ‖ · ‖γ∗ the dual norm defined in (6).4

Then, the worst-case MSE in Γε(γ∗) can be expanded as follows, again under appropriate

regularity conditions (see Lemma A1 in the appendix),

sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂ − δβ0,π0

)2
]

= bε(h, β0, γ∗)
2 +

Varβ0,π(γ∗)(h(Y, β0, γ∗))

n
+ o(n−1 + ε). (9)

3When π is infinite-dimensional this definition continues to hold for a suitable definition of the scalar
product; see Appendix A and Section 3.

4When π is infinite-dimensional ∇π denotes a Gâteaux derivative.
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We define the minimum-MSE function hMMSE
ε (y, β0, γ∗) as

hMMSE
ε (·, β0, γ∗) = argmin

h(·,β0,γ∗)

{
ε
∥∥∇πδβ0,π(γ∗) − Eβ0,π(γ∗) h(Y, β0, γ∗) ∇π log fβ0,π(γ∗)(Y )

∥∥2

γ∗

+
Varβ0,π(γ∗)(h(Y, β0, γ∗))

n

}
subject to (2) and (4). (10)

Finally, let β̂ and γ̂ be preliminary estimators that are consistent for β0 and γ∗ under

the reference model fβ0,π(γ∗). Then, the minimum-MSE estimator of δβ0,π0 is given by

δ̂ MMSE
ε = δβ̂,π(γ̂) +

1

n

n∑
i=1

hMMSE
ε (Yi, β̂, γ̂). (11)

This estimator minimizes an asymptotic approximation to the worst-case MSE in Γε(γ∗).

Using a small-ε approximation is crucial for analytic tractability, since the variance term in

(9) only needs to be calculated under the reference model, and the optimization problem

(10) is convex. In practice, (10) only needs to be solved at β̂ and γ̂. In addition, as we

already pointed out, the form of the minimum-MSE estimator is not affected by the choice

of the preliminary estimators β̂ and γ̂.

The constraints on hMMSE
ε (·, β0, γ∗) imposed in (10) are the unbiasedness condition (2)

and the local robustness condition (4). As we discussed above, given unbiasedness local

robustness is a regularity condition, and unbiasedness is a substantive condition that implies

that our estimator δ̂ MMSE
ε is only optimal within the class of estimators that are asymptoti-

cally unbiased for δβ0,π0 under the reference model.

Special cases. To provide intuition about the minimum-MSE function hMMSE
ε , let us define

two Hessian matrices Hβγ, of size dim β + dim γ, and Hβπ, of size dim β + dim π, as5

Hβγ = Eβ0,π(γ∗)

[
∇βγ log fβ0,π(γ∗)(Y )

] [
∇βγ log fβ0,π(γ∗)(Y )

]′
,

Hβπ = Eβ0,π(γ∗)

[
∇βπ log fβ0,π(γ∗)(Y )

] [
∇βπ log fβ0,π(γ∗)(Y )

]′
.

Throughout our analysis we assume that Hβγ is invertible. This requires that the Hessian

matrix of the parametric reference model be non-singular, thus requiring that β0 and γ∗ be

identified under the reference model. When ε = 0 we find that

hMMSE
0 (y, β0, γ∗) = ∇βγ log fβ0,π(γ∗)(y)′H−1

βγ ∇βγδβ0,π(γ∗). (12)

5The definition of Hβπ generalizes to the infinite-dimensional π case; see Appendix A and Section 3.
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Thus, under the assumption that the parametric reference model is correctly specified, δ̂
MMSE

ε

is simply the one-step approximation of the MLE for δβ0,π0 that maximizes the likelihood

with respect to the “small” parameter (β′, γ′)′. This “one-step efficient” adjustment is purely

based on efficiency considerations. Such one-step approximations are classical estimators in

statistics (e.g., Bickel et al., 1993).

Another interesting special case of the minimum-MSE h function arises in the limit

ε→∞, when the matrix or operator Hβπ is invertible. Note that invertibility of Hβπ, which

may fail when π0 is not identified, is not needed in our analysis and we only use it to analyze

this limiting case. We then have that

lim
ε→∞

hMMSE
ε (y, β0, γ∗) =

[
∇βπ log fβ0,π(γ∗)(y)

]′ H−1
βπ ∇βπδβ0,π(γ∗). (13)

In this limit δ̂ MMSE
ε is simply the one-step approximation of the MLE for δβ0,π0 that maxi-

mizes the likelihood with respect to the “large” parameter (β′, π′)′. For any ε, the estimator

δ̂ MMSE
ε is a nonlinear interpolation between the one-step MLE approximation of the para-

metric reference model and the one-step MLE approximation of the large model. We obtain

one-step approximations in our approach, since (10) is only a local approximation to the full

MSE-minimization problem.

However, an estimator based on (13) may be ill-behaved in non point-identified problems,

or in problems where the identification of π0 is irregular. By contrast, δ̂ MMSE
ε is always well-

defined, since the variance of h(Y, β0, γ∗) acts as a sample size-dependent regularization. The

form of δ̂ MMSE
ε is thus based on both efficiency and robustness. In addition, note that, while

neither (12) nor (13) involve the particular choice of distance measure with respect to which

neighborhoods are defined, for given ε > 0 the minimum-MSE estimator will depend on the

chosen distance measure.

Lastly, it is common in applications with covariates to model the conditional distribution

of outcomes Y given covariates X as fβ0,π0(y |x), while leaving the marginal distribution of

X, fX(x), unspecified. Our approach can easily be adapted to deal with such conditional

models, as we will describe for locally quadratic models in Section 3.

2.3 Properties of the minimum-MSE estimator

In this subsection we provide a formal characterization of the minimum-MSE estimator by

showing that it achieves minimum worst-case MSE in a class of regular asymptotically linear
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estimators, as n tends to infinity and εn tends to a constant. All sequences can thus be

equivalently indexed by ε or n; for example, hε in the following theorem could equivalently

be indexed by n. Moreover, under the stated assumptions the heuristic derivations of the

previous subsection are formally justified. All proofs are in the appendix.

Theorem 1. Let n → ∞ and ε → 0 such that εn → c, for some constant c ∈ (0,∞).

Let Assumptions A1 and A2 in Appendix A hold, let β0 ∈ B and γ∗ ∈ G, and let δ̂ε =

δ̂ε(Y1, . . . , Yn) be a sequence of estimators with an influence function expansion of the form

δ̂ε = δβ0,π(γ∗) +
1

n

n∑
i=1

hε(Yi, β0, γ∗) + n−1/2Rn, (14)

where Rn is a sequence of random variables with

sup
π0∈Γε(γ∗)

Pβ0,π0 (|Rn| > log(n)) = o(1), sup
π0∈Γε(γ∗)

Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 log(n))

]
= o(1),

and hε(·, β0, γ∗) is a sequence of influence functions that satisfy the constraints (2) and (4),

as well as supπ0∈Γε(γ∗)
Eβ0,π0 |hε(Y, β0, γ∗)|

κ = O(1), for some κ > 2. We then have, for any

sequence mn > 0 with mn → 0 and mn n
1/2 [log(n)]−1 →∞, that

sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂

MMSE

ε − δβ0,π0

)2

1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
≤ sup

π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂ε − δβ0,π0

)2

1

(∣∣∣δ̂ε − δβ0,π0

∣∣∣ ≤ mn

)]
+ o

(
1

n

)
. (15)

We establish Theorem 1 in a joint asymptotic where ε tends to zero as n tends to infinity

and εn tends to a finite positive constant. Under our asymptotic the leading term in the

worst-case MSE is of order ε (squared bias), or equivalently of order 1/n (variance). The

theorem considers a trimmed MSE to allow for the possibility that the estimators for δβ0,π0

do not have moments. The trimming cutoff mn shrinks to zero at a rate slower than n−1/2

(or equivalently ε1/2), so that for estimators without heavy tails the leading-order bias and

standard deviation should not be affected by the trimming.

The theorem states that the leading-order worst-case trimmed MSE achieved by our

minimum-MSE estimator δ̂
MMSE

ε is at least as good as the one achieved by any other sequence

of estimators satisfying our regularity conditions. All the assumptions on δ̂ε and hε(·, β, γ)

that we require for this result are explicitly listed in the statement of the theorem. In

particular, condition (14) is a form of local regularity of the sequence of estimators δ̂ε. The
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additional regularity conditions in Assumptions A1 and A2 are smoothness conditions on

fβ0,π0(y), δβ0,π0 , π(γ), and d(π0, π(γ)) as functions of β0, π0, and γ, and an appropriate rate

condition on the preliminary estimators β̂ and γ̂.6

2.4 Confidence intervals

In addition to point estimates, our framework allows us to compute confidence intervals that

contain δβ0,π0 with pre-specified probability under our local asymptotic. To see this, let δ̂ be

an estimator satisfying (1), (2), and (4). For a given confidence level α ∈ (0, 1), let us define

the following interval

CIε(1− α, δ̂) =

[
δ̂ ±

(
bε

(
h, β̂, γ̂

)
+
σ̂h√
n
c1−α/2

)]
, (16)

where bε (·) is given by (8), σ̂2
h is the sample variance of h(Y1, β̂, γ̂), . . . , h(Yn, β̂, γ̂), and

c1−α/2 = Φ−1(1− α/2) is the (1− α/2)-standard normal quantile. Under suitable regularity

conditions, the interval CIε(1 − α, δ̂) contains δβ0,π0 with probability approaching 1 − α as

n tends to infinity and εn tends to a constant, both under correct specification and under

local misspecification of the reference model. Formally, we have the following result.

Theorem 2. Let n → ∞ and ε → 0 such that εn → c, for some constant c ∈ (0,∞). Let

Assumptions A1 and A3 in Appendix A hold, and also assume that the influence function h

of δ̂ satisfies supπ0∈Γε(γ∗)
Eβ0,π0h

2(Y, β0, γ∗) = O(1). Then we have

infπ0∈Γε(γ∗) Prβ0,π0

[
δβ0,π0 ∈ CIε(1− α, δ̂)

]
≥ 1− α + o(1). (17)

Such “fixed-length” confidence intervals, which take into account both misspecification

bias and sampling uncertainty, have been studied in different contexts (e.g., Donoho, 1994,

Armstrong and Kolesár, 2016, 2018).7

3 Locally quadratic case

In this section we first derive explicit expressions for minimum-MSE estimators in a class of

models that have a locally quadratic structure (in Lemmas 1 and 2 below). We then apply

6In particular, in Assumption A2 we require the preliminary estimators β̂ and γ̂ to have moments of
order larger than two. This may require modifying the preliminary estimators to ensure that they have finite
moments, as in for example Hausman et al. (2011), who focus on GMM estimators.

7A variation suggested by these authors, which reduces the length of the interval, is to compute the

interval as δ̂± bε(h, β̂, γ̂) times the (1− α)-quantile of
∣∣∣N (1, σ̂2

h/(nbε(h, β̂, γ̂)2)
)∣∣∣.
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these results to parametric and semi-parametric models.

3.1 Characterization of the minimum-MSE estimator

Consider the case where the square of the local dual norm defined in (6) can be written as

‖u‖2
γ∗

= u>u, where u>w represents some inner product of elements u and w of the cotangent

space T of Π at π(γ∗). For conciseness, from now on we will remove the subscripts β0, γ∗, and

π(γ∗) throughout, unless there is a risk of confusion. In particular, unless otherwise noted, all

expectations will be evaluated under the reference model. Here, π can be finite-dimensional

as in parametric models (which we analyze in Subsection 3.3), or infinite-dimensional as in

semi-parametric models where π is a density (studied in Subsection 3.4).

Let us start by introducing some notation. Let sβγ(y) = ∇βγ log f(y) and sπ(y) =

∇π log f(y) denote the components of the score. We define the Hessian operators Hπ : T →

T , Hπ,βγ : Rdimβ+dim γ → T , and Hβγ,π : T → Rdimβ+dim γ by8

Hπ = Esπ(Y )sπ(Y )>, Hπ,βγ = Esπ(Y )sβγ(Y )′, Hβγ,π = Esβγ(Y )sπ(Y )>.

In addition, we define the following projected versions of the gradient ∇̃π = ∇π−Hπ,βγH
−1
βγ∇βγ,

score s̃π(y) = sπ(y)−Hπ,βγH
−1
βγ sβγ(y), and Hessian H̃π = Hπ −Hπ,βγH

−1
βγHβγ,π.

The next lemma characterizes the minimum-MSE h function in the locally quadratic

case.

Lemma 1. The three following equivalent characterizations of hMMSE
ε defined in (10) hold:

hMMSE
ε (y) =sβγ(y)′H−1

βγ ∇βγδ + (εn) s̃π(y)>
(
∇̃πδ − E

[
hMMSE
ε (Y )s̃π(Y )

])
(18)

=sβγ(y)′H−1
βγ ∇βγδ + (εn) s̃π(y)>

(
∇πδ − E

[
hMMSE
ε (Y )sπ(Y )

])
(19)

=sβγ(y)′H−1
βγ ∇βγδ + s̃π(y)>

[
H̃π + (εn)−1I

]−1

∇̃πδ, (20)

where I denotes the identity map on T .

3.2 Covariates

So far in our presentation we have abstracted from covariates. We now consider the case

where in addition to the outcomes Yi we observe a vector of covariates Xi. We assume that

8 Formally, u> is an element of the tangent space of Π at π(γ∗); that is, u 7→ u> represents a linear
mapping from the cotangent space T to the tangent space T . In Appendix A.1.1 we denote this map by
u> = Ω−1γ∗

u.
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(Yi, Xi) are randomly drawn from a conditional distribution of Yi given Xi given by the

model fβ0,π0(y |x), and an unrestricted marginal distribution fX of Xi. Our parameter of

interest is δβ0,π0,fX = EfXδβ0,π0(X), where EfX denotes an expectation over fX . We consider

estimators of the form

δ̂h =
1

n

n∑
i=1

δβ̂,π(γ̂)(Xi) +
1

n

n∑
i=1

h(Yi, Xi, β̂, γ̂, f̂X),

where β̂ and γ̂ are preliminary estimates whose probability limits are β0 and γ∗, and f̂X is the

empirical distribution of Xi in the sample. While fX is unknown and infinite-dimensional, it

only enters into our object of interest (and the expression of hMMSE
ε below) as an expectation,

and the corresponding sample average is still estimated at the
√
n-rate. We have the following

characterization of the minimum-MSE influence function.

Lemma 2. Let Hβγ(x) and Hπ,βγ(x) be conditional counterparts to Hβγ and Hπ,βγ, and like-

wise let sβγ(y |x), sπ(y |x) and s̃π(y |x) = sπ(y |x)− [EfXHπ,βγ(X)] [EfXHβγ(X)]−1sβγ(y |x)

denote (projected) scores in the conditional model. We have

hMMSE
ε (y, x) = δ(x)− EfXδ(X) + sβγ(y |x)′[EfXHβγ(X)]−1 EfX∇βγδ(X)

+ (εn)s̃π(y |x)>
{
EfX∇̃πδ(X)− EfXE

[
hMMSE
ε (Y,X)s̃π(Y |X)

]}
, (21)

with analogous counterparts to (19) and (20).

A first difference between (18) and (21) is that various expectations over fX occur here,

which we will replace by sample averages when calculating the estimator δ̂
MMSE

ε in practice.

A second difference comes from the term δ(x) − EfX δ(X). However this term does not

contribute to δ̂
MMSE

ε , since its sample average is zero once we replace fX by the empirical

distribution f̂X .9

3.3 Parametric models

A simple locally quadratic example is a parametric model where π is finite-dimensional, and

the distance measure over π is based on a weighted Euclidean metric ‖ · ‖Ω for a positive

definite weight matrix Ω. Here we treat Ω and the neighborhood size ε as known. In Section

4 we will discuss how to choose them in practice.

9The term δ(x)− EfX δ(X) ensures that hMMSE
ε is locally robust with respect to fX in the sense of (4).
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The small-ε approximation to the bias of δ̂ is given by (8), with ‖ · ‖γ∗ = ‖ · ‖Ω−1 , where

Ω−1 is the inverse of Ω. In this case, for vectors u,w ∈ Rdimπ we have u>w = u′Ω−1w. Let

Hπ = E [sπ(Y )sπ(Y )′] , H̃π = E [sπ(Y )sπ(Y )′]− E [sπ(Y )sβγ(Y )′]H−1
βγ E [sβγ(Y )sπ(Y )′] ,

be the usual parametric Hessian matrices. We have Hπ = HπΩ−1, Hπ,βγ = E [sπ(Y )sβγ(Y )′],

Hβγ,π = H ′π,βγΩ
−1, s̃π = sπ−Hπ,βγH

−1
βγ sβγ, and H̃π = H̃πΩ−1. From (20) we then obtain the

following.

Corollary 1. (parametric models)

hMMSE
ε (y) = sβγ(y)′H−1

βγ ∇βγδ + s̃π(y)′Ω−1
[
H̃π + (εn)−1I

]−1

∇̃πδ,

where I is the identity matrix of size dim π.

In addition to the “one-step efficient” adjustment hMMSE
0 = s′βγH

−1
βγ∇βγδ, the minimum-

MSE function hMMSE
ε in Corollary 1 thus provides a further adjustment that is motivated

by robustness concerns. It is easy to generalize this formula to account for conditioning

covariates whose distribution is unspecified, as in Lemma 2.

It is interesting to compute the limit of the MSE-minimizing h function as ε tends to

infinity. This leads to the following expression, which is identical to (13),

lim
ε→∞

hMMSE
ε (y) = sβγ(y)′H−1

βγ ∇βγδ + s̃π(y)′ H†π ∇̃πδ, (22)

where H̃†π denotes the Moore-Penrose (or any other) generalized inverse of H̃π. Comparing

(22) and Corollary 1 shows that the optimal δ̂ MMSE
ε is a Ridge-regularized version of the

one-step full MLE, where (εn)−1I regularizes the projected Hessian matrix H̃π = H̃πΩ−1.

Our “robust” adjustment remains well-defined under singularity, and it accounts for small

or zero eigenvalues of the Hessian in an MSE-optimal way.

A linear regression example. Studying a linear regression model helps to illustrate some

of the main features of our approach. Consider the model

Y = X ′β + U, X = CZ + V,

where Y is a scalar outcome, and X and Z are random vectors of covariates and instruments,

respectively, β is a dimX parameter vector, and C is a dimX × dimZ matrix. We assume
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that U = π′V + ξ, where ξ is normal with zero mean and variance σ2, independent of X and

Z, and V is normal with zero mean and non-singular covariance matrix ΣV , independent of

Z. Let ΣZ be the covariance matrix of Z, and let ΣX = CΣZC
′ + ΣV . For simplicity we

assume that C, ΣV , ΣZ , and σ2 are known, and we take Ω = I to be the identity matrix.

The parameters are thus β and π. In the reference model we take π = 0, hence treating

X as exogenous whereas the larger model allows for endogeneity. The target parameter is

δβ0,π0 = c′β0 for a known dim β × 1 vector c.

From (21) we have10

hMMSE
ε (y, x, z) = (y − x′β0)x′Σ−1

X c

− (y − x′β0)
[
(x− Cz)− ΣV Σ−1

X x
]′ [(

ΣV − ΣV Σ−1
X ΣV

)
+ (εn)−1σ2I

]−1
ΣV Σ−1

X c. (23)

Hence, when ε = 0 the minimum-MSE estimator of c′β0 is the “one-step efficient” ad-

justment in the direction of the OLS estimator, with influence function hMMSE
0 (y, x, z) =

(y − x′β0)x′Σ−1
X c. As ε tends to infinity, assuming CΣZC

′ is invertible, it follows from (23)

that

lim
ε→∞

hMMSE
ε (y, x, z) = (y − x′β0) [Cz]′ [CΣZC

′]
−1

c,

which is the influence function of the IV estimator.

For given ε > 0 and n, our adjustment remains well-defined even when CΣZC
′ is singular.

When c′β0 is identified (that is, when c belongs to the range of C), the minimum-MSE

estimator remains well-behaved as εn tends to infinity, otherwise setting a finite ε value is

essential in order to control the increase in variance. The term (εn)−1 in (23) acts as a

form of regularization, akin to Ridge regression. In Appendix S5 we show how to extend

the parametric setting of this subsection to models defined by moment restrictions, and we

revisit this example while dropping the normality assumptions.

A structural example: conditional cash transfers in Mexico. As an illustration,

in Appendix S4 we apply our approach to the structural evaluation of a conditional cash

transfer policy in Mexico, the PROGRESA program. This program provides income transfers

to households subject to the condition that the child attends school. Todd and Wolpin (2006)

estimate a structural model of education choice on villages which were initially randomized

10In this case there is no γ parameter, sβ(y, x | z) = 1
σ2x(y − x′β0), sπ(y, x | z) = 1

σ2 (x − Cz)(y − x′β0),

EfZHβ(Z) = 1
σ2 ΣX , ∇̃π = ∇π − ΣV Σ−1X ∇β , and EfZ H̃π(Z) = 1

σ2 (ΣV − ΣV Σ−1X ΣV ).
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out. They compare the predictions of the structural model with the estimated experimental

impact. Within a simple static model of education choice, we assess the sensitivity of model-

based counterfactual predictions to a particular form of model misspecification under which

program participation may have a direct “stigma” effect on the marginal utility of schooling

(Wolpin, 2013). We also perform counterfactual predictions in two scenarios – doubling the

subsidy amount and implementing an unconditional income transfer – while accounting for

the possibility that the reference model is misspecified.

3.4 Semi-parametric models

We now consider semi-parametric models, where the distribution of outcomes Y conditional

on unobserved latent variables A ∈ A is described parametrically by Y
∣∣A ∼ gβ0

(· |A),

with finite-dimensional unknown parameter β0 ∈ B, while the distribution of A ∼ π0 is

left unrestricted in the “large” correctly specified model. Here Π is the set of probability

distributions over A. The distribution of observed outcomes as a function of the unknown

parameters β0 ∈ B and π0 ∈ Π is given by

fβ0,π0(y) =

∫
A
gβ0

(y|a) π0(a) da. (24)

The parameter of interest is a functional of β0 and π0, which takes the form of an expectation

over A; that is,

δβ0,π0 = Eπ0 ∆β0
(A) =

∫
A

∆β0
(a) π0(a) da,

where ∆β0
(a) is a known function of β0 and a.

In Section 5 we will illustrate this setup in two binary choice models: a cross-sectional

model and a dynamic panel data model. In the first case, A is an error term independent

of covariates, normally distributed under the reference model. In the second case, A is

a latent individual effect correlated with initial conditions, specified using a parametric

correlated random-effects reference model (Chamberlain, 1984). In both models we will

estimate average effects, which are expectations with respect to the distribution of A. Our

approach will provide insurance against misspecification of the parametric functional forms.

Let us specify a parametric reference model for the distribution of the latent vari-

ables A, and denote the reference density by π(γ), where γ is a finite-dimensional param-

eter. Under the reference model the distribution of outcomes is given by fβ0,π(γ∗)(y) =∫
A gβ0

(y | a) π(a | γ∗) da. However this model may be misspecified, and we assume that the
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true distribution π0 belongs to the neighborhood Γε(γ∗) = {π0 ∈ Π : d(π0, π(γ∗)) ≤ ε},

which we define here in terms of the Kullback-Leibler (KL) divergence d(π0, π(γ∗)) =

2Eπ0 log[π0(A)/π(A | γ∗)].

We are going to derive the expression of the minimum-MSE estimator by applying (19).

In this setting, elements of the cotangent space T of π(γ) at γ∗ are functions u : A 7→ R,

such as gradients ∇πq of differentiable functions q : Π → R. For example, the gradient

∇πδβ,π is a cotangent element, which can be represented by the function ∆β(·).11 For ele-

ments u,w ∈ T we define their scalar product by u>w = Covπ(γ∗) [u(A), w(A)]; that is, the

corresponding squared norm in (6) is ‖u‖2
γ∗

= Varπ(γ∗) [u(A)]. One can show that this norm

is indeed the dual to a suitable local approximation of the KL divergence as defined in (6);

see Appendix S2.

Let us omit again parameter subscripts from the notation for conciseness. From (24) we

see that sπ(y) = ∇π log f(y) can be represented by the function g(y | a)/f(y). As a result,

for u ∈ T we have

sπ(y)> u = Cov

[
u(A),

g(y |A)

f(y)

]
= E

[
u(A)

∣∣Y = y
]
− Eu(A),

where we have used that Eg(y |A)/f(y) = 1. In addition, we have

s̃π(y)> u = E
[
u(A)

∣∣Y = y
]
− Eu(A)− sβγ(y)′H−1

βγ E [sβγ(Y )u(A)] ,

and, for any function h, E[h(Y )sπ(Y )] can be represented by the function E[h(Y ) |A = a].

Rewriting the first-order condition in equation (19) we thus obtain the following result,

which shows that hMMSE
ε is the solution to a linear system.

Corollary 2. (semi-parametric models)

hMMSE
ε (y) =sβγ(y)′H−1

βγ ∇βγδ + (εn)

{
E
[
∆(A)− δ − hMMSE

ε (A) |Y = y
]

− sβγ(y)′H−1
βγ E

[
sβγ(Y )

(
∆(A)− hMMSE

ε (A)
)]}

,

where h
MMSE

ε (a) := E[hMMSE
ε (Y ) |A = a].

Covariates. Corollary 2 can readily be generalized to account for conditioning covariates

X. We now apply Lemma 2 to provide two generalizations, which we will use in the two

11Note that, since π integrates to one (and therefore tangent space elements integrate to zero), one can
equivalently represent ∇πδβ,π as ∆β(·)− c for any constant c. A possible choice is c = Eπ(γ∗)

∆β(A).

19



examples in Section 5. In the first one we assume that A and X are independent under π0.

This is the case in our cross-sectional illustration, where A is an error term independent of X.

In this case π0 is the marginal distribution of A. We then have the following characterization.

Corollary 3. (semi-parametric models, independent covariates)

hMMSE
ε (y, x) = δ(x)− EfXδ(X) + sβγ(y |x)′[EfXHβγ(X)]−1 EfX∇βγδ(X)

+ (εn)

{
E
[
EfX [∆(A,X)]− EfXδ(X)− hMMSE

ε (A)
∣∣Y = y,X = x

]
− sβγ(y |x)′[EfXHβγ(X)]−1EfXE

[
sβγ(Y |X)

(
EfX [∆(A,X)]− hMMSE

ε (A)
)]}

,

where here h
MMSE

ε (a) := EfX [E(hMMSE
ε (Y,X) |A = a,X)].

In the second generalization we leave the joint distribution of (A,X) unrestricted un-

der π0. This is the case in our panel data illustration, where A is an individual effect

that may be correlated with X. In this case π0 is the conditional distribution of A given

X, and we measure the distance between conditional distributions using d(π0, π(γ∗)) =

2EfXEπ0 log[π0(A |X)/π(A |X, γ∗)]. We then have the following characterization.

Corollary 4. (semi-parametric models, correlated covariates)

hMMSE
ε (y, x) = δ(x)− EfXδ(X) + sβγ(y |x)′[EfXHβγ(X)]−1 EfX∇βγδ(X)

+ (εn)

{
E
[
∆(A,X)− EfXδ(X)− hMMSE

ε (A,X)
∣∣Y = y,X = x

]
− sβγ(y |x)′[EfXHβγ(X)]−1EfXE

[
sβγ(Y |X)

(
∆(A,X)− hMMSE

ε (A,X)
)]}

,

where here h
MMSE

ε (a, x) := E
(
hMMSE
ε (Y,X) |A = a,X = x

)
.

Remark: connection to the semi-parametric literature. To provide intuition about

the form of the solution in the semi-parametric case, let us start by considering a setting

where β0 and γ∗ are known to the researcher, while abstracting from covariates for simplicity.

Let EY |A and EA |Y denote the conditional expectation operators of Y given A and A given

Y , respectively. Corollary 2 implies that (see Appendix S2 for a derivation)

hMMSE
ε =EA |Y

[
EY |A ◦ EA |Y + (εn)−1IA

]−1
(∆− δ), (25)

where ◦ denotes the composition operator, and IA denotes the identity operator; that is,

IAπ = π for π : A → R. In semi-parametric settings such as panel data, average effects
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are often only partially identified or not root-n estimable due to ill-posedness.12 The pres-

ence of the Tikhonov penalty (εn)−1 in (25) bypasses these issues by making the operator

[EY |A◦EA |Y+(εn)−1IA] non-singular. By focusing on a shrinking neighborhood of the refer-

ence distribution, as opposed to entertaining any possible distribution, our approach avoids

issues of non-identification and ill-posedness while guaranteeing MSE-optimality within that

neighborhood.13

Next, consider the estimation of c′β0, for c a dim β × 1 vector, and assume γ∗ known for

simplicity. Let IYh = h for h : Y → R, and let

Wε = IY − EA |Y
[
EY |A ◦ EA |Y + (εn)−1IA

]−1 EY |A.

It follows from Corollary 2 that

hMMSE
ε (y) = Wε sβ(y)′ {E [sβ(Y )Wε sβ(Y )′]}−1

c. (26)

As ε tends to infinity, Wε approximates the functional differencing projection operator

W = IY − EA |YE†A |Y , where E†A |Y denotes the Moore-Penrose generalized inverse of EA |Y
(see Bonhomme, 2012). In this limit, the minimum-MSE estimator is the one-step approx-

imation to the semi-parametric efficient estimator of c′β0. Yet, the efficient estimator fails

to exist when the matrix denominator in (26) is singular.14 Here the term (εn)−1 acts as

a regularization of the functional differencing projection, which makes hMMSE
ε well-defined

irrespective of the nature of identification.

Lastly, consider a model with covariates X that are independent of the latent variables

A, as in our cross-sectional illustration in Section 5. Assuming that β0 and γ∗ are known

and ∆(A) does not depend on X, and letting EY,X |A and EA |Y,X denote the conditional

expectation operators of (Y,X) given A and A given (Y,X), respectively, Corollary 3 implies

hMMSE
ε =EA |Y,X

[
EY,X |A ◦ EA |Y,X + (εn)−1IA

]−1 EfX (∆− δ). (27)

The solution is similar to (25), with the difference that here, due to independence, both Y

and X are informative about the latent A.

12See, e.g., Chernozhukov et al. (2013), Pakes and Porter (2013), Severini and Tripathi (2012), and
Bonhomme and Davezies (2017).

13Note that regular estimation is possible when there exists a function ψ(y) such that ∆(A) − δ =

E[ψ(Y ) |A]. In this case limε→∞ δ̂
MMSE

ε is consistent for Eπ0
∆(A) = δ + Eπ0

E[ψ(Y ) |A] for all π0.
14In discrete choice panel data models, common parameters are generally not point-identified (Chamber-

lain, 2010, Honoré and Tamer, 2006). In panel data models with continuous outcomes, identification and
regularity require high-level “non-surjectivity” conditions which may be hard to verify (Bonhomme, 2012).
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3.5 Implementation

To implement the method in parametric settings, the researcher needs to compute the score

and Hessian of the larger model. In complex economic models this computation will be the

main task to implement our approach. Since we focus on smooth models, methods based on

numerical derivatives or simulation-based approximations can be used. Minimum-MSE esti-

mators are generally not available in closed form in semi-parametric models, and computing

hMMSE
ε based on Corollary 2 requires solving a linear functional system. In Appendix S3

we describe a simulation-based computational method that relies on simple matrix opera-

tions. We explain how the same approach can be used to compute confidence intervals. Note

that, unlike parametric maximum likelihood estimation or semi-parametric likelihood meth-

ods, given initial estimates β̂ and γ̂ computing minimum-MSE estimators and confidence

intervals does not require additional nonlinear optimization.

4 Interpreting the maximal degree of misspecification

In practice, we recommend reporting minimum-MSE estimators and confidence intervals for

a range of values of ε. Yet, interpretation requires the researcher to assess how large or small

a given ε-deviation is. This is a fundamental issue in any sensitivity analysis. To facilitate

interpretation, here we show that setting ε is isomorphic to setting a lower bound on the

local power of a likelihood-ratio test of the reference model, against alternatives outside the

neighborhood Γε(γ∗) in certain directions. The ε-neighborhood will thus contain all models

that are hard to statistically distinguish from the reference model in those directions. We

will illustrate this interpretation through numerical calculations in Section 5.

To proceed, let us focus on the parametric case of Subsection 3.3 with identity weight

matrix Ω. Let v be a unitary vector, and consider a likelihood-ratio test of the null hypothesis

H0 : π0 = π(γ∗) against the local alternative H1 : π0 = π(γ∗) + ξv/
√
n, for some constant

ξ > 0. Let the size of the test be α ∈ (0, 1). The local power of the test is then p =

Pr (Z[µ] > c̃α), where c̃α is the (1 − α)-quantile of the chi-squared distribution with one

degree of freedom, and Z[µ] follows a non-central chi-squared distribution with one degree

of freedom and non-centrality parameter µ = ‖H̃1/2
π v‖ξ; see, e.g., Van der Vaart (2007, page

237). Here H̃π is the usual parametric (projected) Hessian matrix, since Ω is the identity.
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Now, for given α and p values, let µ(α, p) be such that15

Pr (Z[µ(α, p)] > c̃α) = p.

It follows from the previous paragraph that µ(α, p) = ‖H̃1/2
π v‖ξ. Hence, noting that µ(α, p)

is increasing in p and defining

ε(v) =
µ(α, p)2

nv′H̃πv
,

we see that taking ε ≥ ε(v) ensures that local power in direction v is at least p when-

ever ξ/
√
n ≥ ε

1
2 . This definition is easy to extend to the general locally-quadratic case of

Subsection 3.1.16

Setting ε ≥ ε(v) is motivated by a desire to calibrate the fear of misspecification of

the researcher. When p is large, say 80% or 90%, alternatives in direction v outside the

neighborhood Γε(γ∗) are easy to statistically distinguish from the reference model based

on a sample of n observations. Moreover, for fixed α and p the product ε(v)n tends to a

constant asymptotically. This aligns well with Huber and Ronchetti (2009, p. 294), who

write: “[such] neighborhoods make eminent sense, since the standard goodness-of-fit tests

are just able to detect deviations of this order. Larger deviations should be taken care of

by diagnostic and modeling, while smaller ones are difficult to detect and should be covered

(in the insurance sense) by robustness”. A similar logic underlies the calibration strategy

developed by Hansen and Sargent (2008).

In order to ensure power larger than p outside the neighborhood in all directions v, one

could set ε to

ε∞ = sup
v : ‖v‖=1 ,∇γ∗π′v=0

ε(v) =
µ(α, p)2

nλ∞(H̃π)
, (28)

where it is sufficient to consider directions that are orthogonal to the directions ∇γ∗π
′ of the

reference model, and λ∞(H̃π) denotes the smallest eigenvalue of the matrix or operator H̃π

projected orthogonally to ∇γ∗π
′. Setting ε according to (28) guarantees that all π0 outside

the neighborhood are easy to detect, in agreement with Huber and Ronchetti. However, for

ε∞ to be finite, H̃π needs to be non-singular, which precludes models with partial or irregular

identification.
15µ(α, p) is implicitly defined by Φ(µ(α, p) + Φ−1(α/2)) + Φ(−µ(α, p) + Φ−1(α/2)) = p, where Φ is the

standard normal cumulative distribution function.
16Specifically, let v be a unitary direction in the tangent space T of π(γ) at γ∗, and let Ωγ∗ : T → T

be the linear operator defined in Appendix A.1.1. In the parametric case Ωγ∗ is simply the matrix Ω. In

the general setup the non-centrality parameter is 〈v, H̃πΩγ∗v〉
1/2 ξ, and ε(v) = µ(α, p)2/(n〈v, H̃πΩγ∗v〉), for

〈v, u〉 ∈ R the scalar product between v ∈ T and u ∈ T .
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To see this in a concrete example, consider the linear regression model of Subsection 3.3.

We obtain, using (28),

ε∞ =
σ2µ(α, p)2

nλ∞
(
ΣV − ΣV Σ−1

X ΣV

) , (29)

which is infinite whenever ΣX −ΣV = CΣZC
′ is singular; that is, whenever the IV model is

under-identified. In such a case there thus exist certain directions along which the specifica-

tion test has no power, no matter how large ε is. Likewise, in more complex examples such

as semi-parametric models, the eigenvalues of the infinite-dimensional operator H̃π may not

be bounded away from zero due to ill-posedness.

As an alternative choice, suppose now that we set ε according to

ε1 = inf
v : ‖v‖=1

ε(v) =
µ(α, p)2

nλ1(H̃π)
, (30)

for λ1(B) denotes the maximal eigenvalue of B. ε1 is always finite whenever H̃π 6= 0,

irrespective of the nature of identification. However, setting ε = ε1 only guarantees that

parameters outside the neighborhood – those that our robustness adjustments do not insure

against – be easily detectable in the most favorable direction. In the IV model, this amounts

to ε being driven by the most powerful combination of instruments.

In order to perform sensitivity analysis in partially or irregularly identified models, we

propose to report several ε values given some fixed values of α and p. Specifically, consider

a second value ε2 ≥ ε1, such that power is at least p outside the neighborhood in the most

favorable direction in the subspace of directions orthogonal to the most favorable one, a third

value ε3 ≥ ε2 that provides power guarantees along the most favorable direction orthogonal

to the previous two ones, and so on. Letting λk(B) denote the k-th largest eigenvalue of B,

this logic will lead us to report the first εk values, where

εk =
µ(α, p)2

nλk(H̃π)
, for k = 1, 2, ... (31)

In hard-to-estimate models, where point-identification fails or is irregular, there will always

exist some directions where our approach will not insure against misspecification. Reporting

the “focal” values εk will then allow the researcher to assess the sensitivity of her results in

increasingly large neighborhoods around the reference model. In Appendix S3 we describe

how to compute εk in semi-parametric models using a simulation-based approach.

Finally, it is important to note that here our aim is simply to provide an interpretation

for ε, and to propose focal values that can be useful to interpret the output of the robustness
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exercise. An alternative approach, which we do not pursue in this paper, would be to try

and develop a data-driven, adaptive choice for ε (or a data-driven lower bound on ε) under

particular assumptions.

Remark: shape of neighborhoods and choice of norm. In addition to ε, implement-

ing our approach requires choosing a norm on Π, which governs the shape of Γε(γ∗). In

parametric models the researcher may have a preferred weight matrix Ω, thus putting more

weight on certain elements of the vector π. An automatic weighting scheme, which we recom-

mend, is to set Ω to be equal to the diagonal of the projected Hessian matrix H̃π. This choice

can be motivated using the same logic as for ε, focusing on component-wise directions in the

canonical basis of Rdimπ. Taking the diagonal, instead of the entire matrix H̃π, as a weight

is in line with our aim to cover models where the parameter of interest may not be regularly

estimable.17 In semi-parametric models where Π is a set of densities, we recommend using

the Kullback-Leibler divergence for computational convenience. KL is locally quadratic, and

this choice allows us to obtain the explicit characterizations of Lemma 1, and to compute

minimum-MSE estimators by solving linear systems. Note, however, that the KL divergence

does not impose shape or smoothness restrictions on the densities inside the neighborhood.

5 Illustrations in binary choice models

In this section we apply our approach to two binary choice models, in cross-section and panel

data respectively.

5.1 Cross-sectional binary choice

Consider the binary choice model

Y = 1{X ′β0 + A ≥ 0}, (32)

where A follows a distribution π0, independent of X. We are interested in estimating the

prediction function δβ0,π0 = Eπ0 [1{x′0β0 +A ≥ 0}], at some x0 not necessarily in the support

of X. We focus on the reference specification A ∼ N (0, 1), independent of X. We allow for

17In applications, other norms may have particular appeal. For example, measuring deviations according
to the supremum norm will lead to an `1 dual norm in (10), in the spirit of Armstrong and Kolesár (2018).
While our estimators and confidence intervals remain well-defined in this case, that setting is not locally
quadratic.
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the possibility that this parametric model is misspecified, while maintaining independence

between A and X under π0. We observe an i.i.d. sample (Yi, Xi) for i = 1, ..., n.

Figure 1: Distributions of X and A in the binary choice models

(a) Cross-section: X (b) Cross-section: A (c) Panel data: A
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Notes: In panel (a) we show the frequencies of covariates (i.e., the first component of X) in the

cross-sectional model, and in (b) we show the true density of A for the same model. In (c) we show

the true densities of A in the panel data model for Y0 = 0 (in solid) and Y0 = 1 (in dashed).

The minimum-MSE influence function, in neighborhoods that consist of distributions of

A independent of X, is given by Corollary 3, with ∇βδ = x0φ(x′0β0) for φ the standard

normal density, ∆(a) = 1{x′0β0 + a ≥ 0}, and without γ parameter. Given a preliminary

estimator β̂ (e.g., obtained by probit), an empirical counterpart to h
MMSE

ε (a) is

1

n

n∑
i=1

1{X ′iβ̂ + a ≥ 0}hMMSE
ε (1, Xi) + (1− 1{X ′iβ̂ + a ≥ 0})hMMSE

ε (0, Xi).

We compute hMMSE
ε (1, Xi) and hMMSE

ε (0, Xi), for i = 1, ..., n, based on Corollary 3 by solving

a linear system. In this model all conditional expectations are available in closed form, and

computation requires no numerical approximation.

In model (32), under independence between A and X, β0 and π0 are point-identified up

to scale under sufficiently rich support of X (Manski, 1988). Under such conditions δβ0,π0 is

identified. More generally, it is partially identified. We now set up a simulation where the

support of X is discrete, and we vary the number of support points and the target x0. In

this way we learn how our estimators and confidence intervals perform in settings where the

support of X, and hence the size of the identified set, vary.

We report estimates in data generating processes (DGPs) with a scalar covariate and

an intercept, and β0 = (2,−1)′. We draw 1000 simulated samples of size n = 500, where

A has mean zero and variance one, and is distributed as a mixture of two normals whose
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Figure 2: Minimum-MSE estimator in the cross-sectional binary choice model

A. Interpolation: x0 = (.5, 1)′

(a) nX = 4 (b) nX = 20
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B. Extrapolation: x0 = (−.5, 1)′

(c) nX = 4 (d) nX = 20
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Notes: The solid horizontal line corresponds to the mean probit estimator among 1000 simulations,

the solid curve to the mean minimum-MSE estimator (with 2.5% and 97.5% percentiles in dashed),

and the dotted horizontal line to the truth. ε is reported on the x-axis, and the vertical lines indicate

εk, k ∈ {1, 2, 3}. nX denotes the number of points of support of the first component of X. n = 500.

centers are approximately two standard deviations apart. Covariates are discrete uniform

on [0, 1], with either nX = 4 or nX = 20 points of support. We show the densities of X and

A in panels (a) and (b) of Figure 1. We focus on the predicted values at x0 = (0.5, 1)′ and

x0 = (−0.5, 1)′, respectively. We refer to the first case as “interpolation”, and to the second

one as “extrapolation”.

We show the results of the simulation in Figure 2. Consider first the top panel, where we

wish to interpolate the prediction function at x0 = 0.5. When X has 4 support points, we

see that the probit estimator based on the reference model, indicated by the solid horizontal

line, is substantially biased. By contrast, the bias of the minimum-MSE estimator is smaller,

and it decreases as ε increases. The vertical lines show our first two focal ε values: ε1 and ε2,

where we set size and power to α = 5% and p = 80%. In this setting H̃π has only nX−1 = 3

non-zero eigenvalues (since the X ′β partition the real line into nX + 1 intervals, and the two
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Figure 3: Interpreting ε: eigenfunctions of H̃π in the cross-sectional binary choice model

A. Eigenfunctions
(a) nX = 4 (b) nX = 20
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B. Projections
(c) nX = 4 (d) nX = 20
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Notes: In the top panel we report the first 2 (respectively, first 3) non-constant eigenfunctions of

H̃π. The first eigenfunction is shown in dashed, the second one in dashed-dotted, and the third

one in dotted. In the bottom panel we plot the true and reference densities in solid, as well as the

successive approximations using the first, the first two, or the first three eigenfunctions.

elements in β are estimated), two of them corresponding to non-constant eigenfunctions. We

see that the minimum-MSE estimator is close to unbiased for both ε1 and ε2. Moreover, the

dispersion of the estimator is stable as ε increases. Note that the degree of misspecification

is quite large in the DGP. Indeed, twice the KL divergence between π0 and π is equal to

1.55, which is larger than ε2. In addition, we compute the identified set for δβ0,π0 in the DGP

using linear programming and a grid of β0 values. We find [0.334, 0.345], which shows that

the identified set is not wide in this DGP.

The case where X has 20 support points is overall quite similar, but with several dif-

ferences. In this case H̃π has nX − 1 = 19 non-zero eigenvalues. We report the first three

focal ε values corresponding to non-constant eigenfunctions. We see that the minimum-MSE

estimator is virtually unbiased when ε ≥ ε1. In this case the identified set for δβ0,π0 is essen-

tially a singleton: [0.334, 0.335]. Moreover, we see that the variance of the minimum-MSE
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estimator increases with ε. Such a variance increase, and the associated regularization role

of ε, also characterize models with continuously distributed covariates and other ill-posed

inverse problems.

Consider next the lower panel in Figure 2. This “extrapolation” case is very different

from the “interpolation” one. Indeed, the data provides little information about the value of

the prediction function at x0 = −0.5. To illustrate, the identified set for δβ0,π0 is [0, 0.3219]

(respectively, [0, 0.2956]) when X has 4 (resp., 20) points of support. We see that the

minimum-MSE estimator has approximately the same bias as the probit estimator. This

suggests that the ability to robustify estimates based on the reference model is limited when

one wishes to extrapolate far from the available sample.

We show additional information about the simulation results in Tables S1 and S2 in

the appendix. In particular, we report the lengths of our 95% confidence intervals (CI) for

δβ0,π0 , which are asymptotically valid under ε-misspecification, and the associated coverage

probabilities. In all DGPs, we find that when taking ε ≥ ε1 the confidence intervals contain

the true value with a probability that exceeds 95%. While this finding is interesting, note that

our CI construction has coverage guarantees only when π0 belongs to an ε-neighborhood of

π(γ∗), which is not the case here since the true distribution of A lies outside all neighborhoods

for the range of ε that we consider.

Interpreting ε. Finally, we use the binary choice model to provide additional intuition

about ε. Let Uk denote the span of the first k non-constant eigenfunctions of the operator

H̃π. By construction, any density π0 /∈ Γεk(γ∗) such that (π0 − π(γ∗))/π(γ∗) ∈ Uk can be

“detected” easily, in the sense that the local power of a 5%-likelihood ratio test exceeds

80%.18 In the upper panel of Figure 3 we plot the eigenfunctions in Uk. Plotting those

allows one to visualize the directions along which setting ε to either of the εk’s provides

power guarantees outside the neighborhood. We see that the eigenfunctions do not vary

outside the [−1, 1] interval, where the support of X ′β0 lies. Within the [−1, 1] interval, the

eigenfunctions oscillate and belong to orthogonal bases of functions. To see how well the

true π0 can be approximated using the directions in Uk, in the bottom panel of Figure 3 we

report the projection of π0 onto Uk. We see that outside the [−1, 1] interval the projection is

only governed by the reference normal density, reflecting the limited support of X. Within

18Uk consists of cotangent elements that have zero mean under the reference model. Any such u ∈ T can
be mapped to a direction v = u · π(γ∗) ∈ T in the tangent space.
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the interval, the approximation to the true bimodal density improves as k increases. At the

same time, note that, consistently with our local approach, the approximating functions are

not necessarily non-negative.19

5.2 Dynamic panel data binary choice

In this subsection we present simulations in the following dynamic panel data probit model

with individual effects

Yt = 1 {β0Yt−1 + A+ Ut ≥ 0} , t = 1, ..., T, (33)

where U1, ..., UT are i.i.d. standard normal, independent of A and Y0. Here Y0 is observed,

so there are effectively T + 1 time periods. We focus on the average state dependence effect

δβ0,π0 = Eπ0 [Φ(β0 + A)− Φ(A)], and we will also report estimates of the autoregressive

parameter β0. We assume that the probit conditional likelihood given individual effects

and lagged outcomes is correctly specified. However we do not assume knowledge of π0

or its functional form. We specify a normal reference density for A given Y0, with mean

µ1 +µ2Y0 and variance σ2; hence here γ = (µ1, µ2, σ
2)′. Binary choice panel data models are

often partially identified for fixed T (Chamberlain, 2010, Honoré and Tamer, 2006), and no

semi-parametrically consistent estimators of β0 and δβ0,π0 in the dynamic probit model are

available in the literature. Here we report simulation results suggesting that minimum-MSE

estimators can perform well under sizable misspecification of the reference density.

In the simulation we set a bimodal distribution that has modes {−1, 2} when Y0 = 0 and

{−3, 0} when Y0 = 1, with some asymmetry between the two modes; see panel (c) of Figure 1.

We take n = 500, and show the results for T = 5, 10, and 20, based on 1000 simulations. The

minimum-MSE h function, in neighborhoods that consist of unrestricted joint distributions

π0 of (A,X), is given by Corollary 4, for X = Y0, and either ∆(a) = Φ(β0 + a) − Φ(a)

or ∆(a) = β0 depending on the quantity of interest. We use S = 1000 simulated draws

to compute the minimum-MSE estimators since no closed-form solution is available in this

case.

In Figure 4 we see that the parametric (random-effects) dynamic probit estimates of

δβ0,π0 and β0 are substantially biased for T = 5 and T = 10, whereas the bias is smaller

19In addition, since we know π0 in this exercise, we can compute the local power of a 5%-likelihood ratio
test in direction π0 − π(γ∗), for any value of ε. We find a power of 0.51 at ε1 and 0.71 at ε2 when X has 4
points of support, and 0.67 at ε1, 0.92 at ε2, and 0.99 at ε3 when X has 20 points of support.
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Figure 4: Minimum-MSE estimator in the dynamic panel binary choice model

A. Average state dependence δβ0,π0

(d) T = 5 (e) T = 10 (f) T = 20
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B. Autoregressive parameter β0

(a) T = 5 (b) T = 10 (c) T = 20
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Notes: The solid horizontal line corresponds to the mean random-effects estimator among 1000

simulations, the solid curve to the mean minimum-MSE estimator (with 2.5% and 97.5% percentiles

in dashed), and the dotted horizontal line to the truth. ε is reported on the x-axis, and the vertical

lines indicate εk, k ∈ {1, 2} (left column) and k ∈ {1, 2, 3} (middle and right columns). In the left

column ε3 is too large to be included in the figure. n = 500.

when T = 20. By contrast, the minimum-MSE estimator performs better in terms of bias

for both quantities of interest, in particular when taking ε to be one of our focal values εk. In

the top panel of Table 1 we show the bias and root MSE of various estimators of δβ0,π0 : the

random-effects estimator based on the normal reference model, an empirical Bayes estimator,

the linear probability estimator, and the minimum-MSE estimators based on ε1, ε2, ε3.20 We

see the minimum-MSE estimator dominates all other estimators, for all εk values, when

T = 5 and T = 10. In the bottom panel of Table 1 we show the results for the random-

effects MLE and minimum-MSE estimators of β0. We see similar results as for the case of

average state dependence. In this DGP, minimum-MSE estimators achieve bias reduction

20The random-effects and empirical Bayes estimators are given by 1
n

∑n
i=1 Eπ(γ̂)[Φ(β̂ + A) − Φ(A)] and

1
n

∑n
i=1 Eπ(γ̂)[Φ(β̂ +A)−Φ(A) |Y = Yi], respectively. In fixed-lengths panels both estimators are consistent

under the parametric reference specification, and the random-effects estimator is efficient. However, the two
estimators are generally biased under misspecification, see Bonhomme and Weidner (2019).
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Table 1: Monte Carlo simulation in the dynamic binary choice panel data model: comparison
between various estimators

T = 5 10 20 5 10 20

Bias Root MSE
A. Average state dependence δβ0,π0

Random-effects -0.0585 -0.0252 -0.0140 0.0633 0.0311 0.0198
Empirical Bayes -0.0574 -0.0215 -0.0053 0.0622 0.0282 0.0141
Linear probability -0.2491 -0.0976 0.0012 0.2497 0.0990 0.0128
Minimum-MSE (ε1) -0.0227 -0.0057 -0.0029 0.0397 0.0232 0.0154
Minimum-MSE (ε2) -0.0194 -0.0048 -0.0028 0.0388 0.0233 0.0154
Minimum-MSE (ε3) -0.0196 -0.0049 -0.0027 0.0412 0.0235 0.0155

B. Autoregressive parameter β0

Maximum likelihood -0.1804 -0.0817 -0.0328 0.2003 0.1001 0.0506
Minimum-MSE (ε1) -0.0646 -0.0198 -0.0055 0.1288 0.0747 0.0479
Minimum-MSE (ε2) -0.0522 -0.0155 -0.0045 0.1258 0.0746 0.0481
Minimum-MSE (ε3) -0.0432 -0.0116 -0.0030 0.1282 0.0747 0.0486

Notes: Performance of various estimators in the dynamic panel data binary choice model, for

different values of T . n = 500, results for 1000 simulations.

under misspecification even when T is quite small. Bias reduction comes with some increase

in variance. Yet the overall MSE is lower for minimum-MSE estimators compared to the

MLE. Lastly, in Tables S3 and S4 in the appendix we show additional information about

the simulation results for the autoregressive parameter and the average state dependence

parameter, respectively.

6 Conclusion

We propose a framework for estimation and inference in the presence of model misspecifica-

tion. Our methods allow researchers to perform sensitivity analysis for existing estimators,

and to construct improved estimators and confidence intervals that are less sensitive to model

assumptions. Our approach can handle parametric and semi-parametric forms of misspec-

ification. It is based on a minimax mean squared error rule, which consists of a one-step

adjustment of the initial estimate. This adjustment is motivated by both robustness and

efficiency, and it remains valid when the identification of the “large” model is irregular or

point-identification fails. Hence, our approach provides a complement to partial identifica-

tion methods, when the researcher sees her reference model as a plausible, albeit imperfect,

approximation to reality. Lastly, given a parametric reference model, implementing our
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estimators and confidence intervals does not require estimating a larger model. This is an

attractive feature in complex models such as dynamic structural models, for which sensitivity

analysis methods are needed.
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APPENDIX

A Main results

In this section of the appendix we provide the proofs for the main results of Section 2. As

in the rest of the paper, we always implicitly assume that all functions of y are measurable,

and that all expectations and integrals over y are well-defined.

A.1 Proof of Theorem 1

A.1.1 Notation and assumptions

In all our applications Π is either a vector space or an affine space. Let T and T be the

tangent and cotangent spaces of Π at π(γ∗).
21 Thus, for π1, π2 ∈ Π we have (π1 − π2) ∈ T ,

and T is the set of linear maps u : T → R. For a scalar function q : Π 7→ R, we have

∇πqπ(γ∗) ∈ T ; that is, the typical element of T is a gradient. Conversely, for a map to Π,

such as γ 7→ π(γ), we have ∂π(γ∗)
∂γk

∈ T .

For v ∈ T and u ∈ T we use the bracket notation 〈v, u〉 ∈ R to denote their scalar

product. Notice that in the main text we already introduced cotangent vectors u ∈ T and

tangent vectors u> ∈ T as their “transpositions”, and there we simply wrote u>u for their

scalar product, which we now write more formally as 〈u>, u〉.
Our squared distance measure d(π0, π(γ∗)) on Π induces a norm on the tangent space T ,

namely for v ∈ T ,

‖v‖2
ind,γ∗

= lim
ε→0

d
(
π(γ∗) + ε1/2v, π(γ∗)

)
ε

.

We assume that there exists a map Ωγ∗ : T → T such that, for all v ∈ T ,

‖v‖2
ind,γ∗

=
〈
v,Ωγ∗v

〉
.

We assume that Ωγ∗ is invertible, and write Ω−1
γ∗

: T → T for its inverse. The map Ω−1
γ∗

is exactly the “transposition” map introduced less formally in the main text; that is, for

u ∈ T we have u> = Ω−1
γ∗
u ∈ T . Thus, our norm on the cotangent space from the main text

‖u‖2
γ∗

= u>u can now be written as

‖u‖2
γ∗

=
〈

Ω−1
γ∗
u, u
〉
.

The norm ‖·‖γ∗ is dual to ‖ · ‖ind,γ∗ ; that is, we have

‖u‖γ∗ = sup
v∈T \{0}

〈v, u〉
‖v‖ind,γ∗

.

21If Π is a more general manifold (not just an affine space), then the tangent and cotangent spaces depend
on the particular value of π ∈ Π. We then need a connection on the manifold that provides a map between
the tangent spaces at π(γ∗) and π0 ∈ Γε(γ∗). All the proofs can be extended to that case, as long as
the underlying connection on the manifold is sufficiently smooth. However, this additional formalism is
unnecessary to deal with the models discussed in this paper.
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Notice also that ‖ · ‖ind,γ∗ , ‖ · ‖γ∗ , Ωγ∗ , and Ω−1
γ∗

could all be defined for general π ∈ Π, but

since we use them only at the reference value π(γ∗) we index them simply by γ∗.

Throughout we assume that dim β and dim γ are finite. For any finite-dimensional vectors

we use the standard Euclidean norm ‖ · ‖, and for any finite-dimensional matrices we use the

spectral matrix norm, which we also denote by ‖ · ‖. Let Y denote the range of Y .

Assumption A1. We assume that Yi ∼ i.i.d.fβ0,π0. In addition, we impose the following

regularity conditions:

(i) We consider n→∞ and ε→ 0 such that εn→ c, for some constant c ∈ (0,∞).

(ii) supπ0∈Γε(γ∗)

∥∥∇πδβ0,π0

∥∥
γ∗

= O(1), and

supπ0∈Γε(γ∗)

∣∣δβ0,π0 − δβ0,π(γ∗) −
〈
π0 − π(γ∗),∇πδβ0,π(γ∗)

〉∣∣ = o(ε1/2).

(iii) supπ0∈Γε(γ∗)

{∫
Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy

}1/2

= O(ε1/2),

supπ0∈Γε(γ∗)

∫
Y

∥∥∇π log fβ0,π(γ∗)(y)
∥∥2

γ∗

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy = o(1),

supπ0∈Γε(γ∗)

∫
Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)−
〈
π0 − π(γ∗),∇πf

1/2
β0,π(γ∗)

(y)
〉]2

dy = o(ε).

(iv) supπ0∈Γε(γ∗)
ε−1/2 ‖π0 − π(γ∗)‖ind,γ∗

= 1 + o(1). Furthermore, for u ∈ T with ‖u‖γ∗ =

O(1) we have ∣∣∣∣∣ sup
π0∈Γε(γ∗)

ε−1/2 〈π0 − π(γ∗), u〉 − ‖u‖γ∗

∣∣∣∣∣ = o(1).

(v) For some ν > 0 we have supπ0∈Γε(γ∗)
Eβ0,π0

∥∥∇βγ log fβ0,π(γ∗)(Y )
∥∥2+ν

= O(1),

and supπ0∈Γε(γ∗)
Eβ0,π0

∥∥∇π log fβ0,π(γ∗)(Y )
∥∥2+ν

γ∗
= O(1).

Furthermore we assume that
∥∥∇βγδβ0,π(γ∗)

∥∥ = O(1), and
∥∥H−1

βγ

∥∥ = O(1).

Part (i) of Assumption A1 describes our asymptotic framework, where the assumption

εn→ c is required to ensure that the squared worst-case bias (of order ε) and the variance (of

order 1/n) of the estimators for δβ0,π0 are asymptotically of the same order, so that the MSE

provides a meaningful balance between bias and variance asymptotically. Part (ii) requires

δβ0,π0 to be sufficiently smooth in π0, so that a first-order Taylor expansion provides a good

local approximation of δβ0,π0 .

Part (iii) of Assumption A1 is a smoothness assumption on fβ0,π0(y) in π0. Those con-

ditions may not look intuitive, in particular when π0 is infinite-dimensional, so we want to

discuss that assumption in some more detail here for the case of the semi-parametric models

introduced in Section 3.4, wherefβ0,π0(y) =
∫
A gβ0

(y|a) π0(a) da. In that case we have∫
Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy = 2H2(fβ0,π0 , fβ0,π(γ∗))

≤ 2DKL(fβ0,π0||fβ0,π(γ∗)) ≤ 2DKL(π0||π(γ∗)),
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where the first inequality is the general relation H2(fβ0,π0 , fβ0,π(γ∗)) ≤ DKL(fβ0,π0 ||fβ0,π(γ∗))

between the squared Hellinger distance H2 and the Kullback-Leibler divergence DKL, and the

second inequality is sometimes called the “chain rule” for the Kullback-Leibler divergence,

which can be derived by an application of Jensen’s inequality. Since we defined our distance

measure d(π0, π(γ∗)) in the semi-parametric case to be twice the Kullback-Leibler divergence

2DKL(π0||π(γ∗)) = 2Eπ0 log[π0(A)/π(A | γ∗)] we find that

sup
π0∈Γε(γ∗)

{∫
Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy

}1/2

≤ sup
π0∈Γε(γ∗)

{d(π0, π(γ∗))}
1/2 = ε1/2.

Thus, the first condition in Assumption A1(iii) is satisfied for those semi-parametric models.

The second condition in Assumption A1(iii) can be justified by imposing that

sup
y∈Y

∥∥∇π log fβ0,π(γ∗)(y)
∥∥2

γ∗
= O(1),

which for the semi-parametric model can equivalently be written as

sup
y∈Y

Varπ(γ∗)

[
gβ0

(y |A)
][

Eπ(γ∗) gβ0
(y |A)

]2 = O(1). (A1)

For any standard discrete choice model (as those discussed in Section 5) we have that

supy∈Y Varπ(γ∗) [gβ0
(y |A)] < ∞, and infy∈Y Eπ(γ∗) gβ0

(y |A) > 0, implying that equation

(A1) is satisfied. We then have

sup
π0∈Γε(γ∗)

∫
Y

∥∥∇π log fβ0,π(γ∗)(y)
∥∥2

γ∗

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy

≤
[
sup
y∈Y

∥∥∇π log fβ0,π(γ∗)(y)
∥∥2

γ∗

]
︸ ︷︷ ︸

=O(1)

{
sup

π0∈Γε(γ∗)

∫
Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy

}
︸ ︷︷ ︸

≤ ε=o(1)

= o(1).

Thus, one way to justify the second condition in Assumption A1(iii) is to argue that equa-

tion (A1) holds, which is the case for our illustrations in Section 5. The last condition in

Assumption A1(iii) could be broken down analogously for semi-parametric models, but it

is actually a standard condition of differentiability in quadratic mean that is also regularly

imposed when π is infinite-dimensional (see, e.g., equation (5.38) in Van der Vaart, 2007).

Part (iv) of Assumption A1 requires that our distance measure d(π0, π(γ∗)) converges

to the associated norm for small values ε in a smooth fashion. Finally, part (v) requires

invertibility of Hβγ (but invertibility of Hπ or H̃π are not required), uniform boundedness of

various derivatives, and of the (2 + ν)-th moment of ∇π log fβ0,π(γ∗)(Y ) — which again can

be justified by equation (A1), because we then have supy∈Y
∥∥∇π log fβ0,π(γ∗)(y)

∥∥2

γ∗
= O(1).

For many of the proofs we only need the regularity conditions in Assumption A1. How-

ever, in order to describe the properties of our minimum-MSE estimator δ̂ MMSE
ε = δβ̂,π(γ̂) +

1
n

∑n
i=1 h

MMSE
ε (Yi, β̂, γ̂) we also need to account for the fact that β̂ and γ̂ themselves are
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estimated. It turns our that the leading-order asymptotic properties of δ̂ MMSE
ε are indepen-

dent of whether β0 and γ∗ are known or estimated in the construction of δ̂ MMSE
ε (see, e.g.,

Lemma A3 below), but formally showing this requires some additional assumptions, which

we present next.

Assumption A2. For some χ > 2 we have

(i) sup
π0∈Γε(γ∗)

(
Eβ0,π0

∥∥∥∥∥
(
β̂

γ̂

)
−
(
β0

γ∗

)∥∥∥∥∥
χ) 1

χ

= O

(
1√
n

)
.

(ii) sup
π0∈Γε(γ∗)

Eβ0,π0

∥∥∇η h
MMSE
ε (Y, β0, γ∗)

∥∥ = O(1), where η = (β′, γ′)′.

(iii) sup
π0∈Γε(γ∗)

Eβ0,π0 sup
β∈B,γ∈G

∥∥∥∥∥ 1

n

n∑
i=1

∇2
ηη′h

MMSE
ε (Yi, β, γ)

∥∥∥∥∥ = O(1), where η = (β′, γ′)′.

Part (i) of Assumption A2 requires β̂ and γ̂ to converge at
√
n rate. As discussed in the

main text, we assume that preliminary estimators have finite χ-moments where χ > 2. Part

(ii) of Assumption A2 requires a uniformly bounded second moment for ∇ηh
MMSE
ε (y, β0, γ∗).

Since equation (20) in the main text gives an explicit expression for hMMSE
ε (y, β0, γ∗), we could

replace Assumption A2(ii) by appropriate assumptions on the model primitives fβ0,π0(y) and

δβ0,π0 , but for the sake of brevity we state the assumption in terms of hMMSE
ε (y, β0, γ∗). The

same is true for part (iii) of Assumption A2. Notice that this last part of the assumption

involves a supremum over β and γ inside of an expectation – in order to verify it, one either

requires a uniform Lipschitz bound on the dependence of hMMSE
ε (Yi, β, γ) on β and γ, or

some empirical process method to control the entropy of that function (e.g., a bracketing

argument). But since β and γ are finite-dimensional parameters these are all standard

arguments.

A.1.2 Proof of Theorem 1

For a function hε = hε(y, β0, γ∗) we define

δ̂(hε, β0, γ∗) := δβ0,π(γ∗) +
1

n

n∑
i=1

hε(Yi, β0, γ∗).

It is useful to establish some preliminary lemmas before showing the main result. The proofs

for those lemmas are provided in Section S1.1.

Lemma A1. Let Assumption A1 hold, and let hε(·, β0, γ∗) be a sequence of influence func-

tions that satisfy the unbiasedness constraint (2) as well as supπ0∈Γε(γ∗)
Eβ0,π0 |hε(Y, β0, γ∗)|

κ =

O(1), for some κ > 2. Then,

sup
π0∈Γε(γ∗)

Eβ0,π0

[
δ̂(hε, β0, γ∗)− δβ0,π0

]2

= bε(hε, β0, γ∗)
2 +

Varβ0,π(γ∗)(hε(Y, β0, γ∗))

n
+ o(ε).
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Lemma A1 provides a formal justification for the worst-case MSE approximation intro-

duced in equation (9) of the main text. In the proof of Theorem 1 we also want to apply

Lemma A1 with hε = hMMSE
ε . Therefore, the following lemma establishes the bounded

moment condition on hMMSE
ε required in Lemma A1.

Lemma A2. Under Assumption A1 the influence function hMMSE
ε (·, β0, γ∗) defined in (10)

satisfies

sup
π0∈Γε(γ∗)

Eβ0,π0

[
hMMSE
ε (Y, β0, γ∗)

]2+ν
= O(1).

Recall that δ̂ MMSE
ε = δ̂(hMMSE

ε , β̂, γ̂). This differs from δ̂(hMMSE
ε , β0, γ∗), because β0

and γ∗ have to be estimated. The following lemma shows that the fact that β0 and γ∗
are estimated in the construction of δ̂ MMSE

ε can be neglected to first order. Notice that this

result requires the additional regularity conditions in Assumption A2, which are not required

anywhere else in the proof of Theorem 1.

Lemma A3. Let Assumptions A1 and A2 hold. Then,

sup
π0∈Γε(γ∗)

Eβ0,π0

∣∣∣δ̂MMSE

ε − δ̂(hMMSE
ε , β0, γ∗)

∣∣∣ = O

(
1

n

)
.

Thus, Lemma A3 guarantees that δ̂
MMSE

ε = δ̂(hMMSE
ε , β0, γ∗) + OP0(1/n). This may

be surprising given that the differences β̂ − β0 and γ̂ − γ∗ are themselves of order 1/
√
n.

However, recall that by construction hMMSE
ε satisfies the local robustness condition (3), which

is imposed through our constraints (2) and (4). Local robustness ensures that β̂ − β0 and

γ̂ − γ∗ have no leading-order effect on δ̂
MMSE

ε − δ̂(hMMSE
ε , β0, γ∗).

For the next lemma, recall the decomposition of δ̂ε in Theorem 1 in the main text:

δ̂ε = δβ0,π(γ∗) +
1

n

n∑
i=1

hε(Yi, β0, γ∗) + n−1/2Rn

= δ̂(hε, β0, γ∗) + n−1/2Rn. (A2)

Here, δ̂(hε, β0, γ∗) is the well-behaved leading-order contribution to δ̂ε, whereas Rn is an

asymptotically vanishing remainder term that may, however, have heavy tails (it only satisfies

a trimmed second moment condition). The following lemma shows that the worst-case

trimmed MSE of δ̂ε is bounded from below by the MSE of the leading-order term δ̂(hε, β0, γ∗).

Lemma A4. Let Assumption A1 hold, and let hε(·, β0, γ∗) be a sequence of influence func-

tions that satisfy the unbiasedness constraint (2) as well as supπ0∈Γε(γ∗)
Eβ0,π0 |hε(Y, β0, γ∗)|

κ =

O(1), for some κ > 2. Assume that (A2) holds, and let mn > 0 be a sequence such that

mn n
1/2 [log(n)]−1 →∞. Furthermore, assume that

(i) sup
π0∈Γε(γ∗)

Pβ0,π0 (|Rn| > log(n)) = o(1),

(ii) sup
π0∈Γε(γ∗)

Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 log(n))

]
= o(1).
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Then we have

sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂(hε, β0, γ∗)− δβ0,π0

)2
]

≤ sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂ε − δβ0,π0

)2

1

(∣∣∣δ̂ε − δβ0,π0

∣∣∣ ≤ mn

)]
+ o(ε). (A3)

We now have all the preliminary results required to show the main theorem.

Proof of Theorem 1. Define

rε := δ̂
MMSE

ε − δ̂(hMMSE
ε , β0, γ∗).

We then have

Eβ0,π0

[(
δ̂

MMSE

ε − δβ0,π0

)2

1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
= Eβ0,π0

[(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0 + rε

)2

1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
= Eβ0,π0

[(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0

)2

1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)
︸ ︷︷ ︸

≤1

]

+ 2Eβ0,π0

[
rε

(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0 + rε

)
1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
−Eβ0,π0

[
r2
ε 1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
︸ ︷︷ ︸

≤0

≤ Eβ0,π0

[(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0

)2
]

+ 2Eβ0,π0

[
rε

(
δ̂

MMSE

ε − δβ0,π0

)
1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)
︸ ︷︷ ︸

≤|rε|mn

]

≤ Eβ0,π0

[(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0

)2
]

+ 2mn Eβ0,π0 |rε| .

According to Lemma A3 we have supπ0∈Γε(γ∗)
Eβ0,π0 |rε| = O(1/n) = O(ε), and the assump-

tions of the theorem guarantee that mn = o(1). We thus obtain

sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂

MMSE

ε − δβ0,π0

)2

1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
≤ sup

π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0

)2
]

+ o(ε). (A4)

By definition hMMSE
ε also satisfies the unbiasedness constraint (2). Together with Lemma A2

this implies that hMMSE
ε satisfies the conditions on hε in Lemma A1 with κ = 2 + ν. Thus,
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we can apply Lemma A1 with hε = hMMSE
ε to find that

sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂(hMMSE

ε , β0, γ∗)− δβ0,π0

)2
]

= bε(h
MMSE
ε , β0, γ∗)

2 +
Varβ0,π(γ∗)(h

MMSE
ε (Y, β0, γ∗))

n
+ o(ε). (A5)

The function hMMSE
ε (·, β0, γ∗) is defined by the minimization problem (10) in the main

text. In other words, hMMSE
ε (·, β0, γ∗) minimizes the objective function bε(h, β0, γ∗)

2 +

n−1Varβ0,π(γ∗)(h(Y, β0, γ∗)), subject to the constraints (2) and (4). Theorem 1 assumes that

hε = hε(·, β0, γ∗) satisfies those constraints, and the definition of hMMSE
ε (·, β0, γ∗) therefore

implies that

bε(h
MMSE
ε , β0, γ∗)

2 +
Varβ0,π(γ∗)(h

MMSE
ε (Y, β0, γ∗))

n

≤ bε(hε, β0, γ∗)
2 +

Varβ0,π(γ∗)(hε(Y, β0, γ∗))

n
. (A6)

Theorem 1 also imposes all the assumptions on hε in Lemma A1 . By applying that lemma

we thus have

bε(hε, β0, γ∗)
2 +

Varβ0,π(γ∗)(hε(Y, β0, γ∗))

n

= sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂(hε, β0, γ∗)− δβ0,π0

)2
]

+ o(ε). (A7)

Finally, Theorem 1 also guarantees all the assumptions of Lemma A4, implying that the

inequality (A3) holds. Now, combining (A4), (A5), (A6), (A7) and (A3) gives

sup
π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂

MMSE

ε − δβ0,π0

)2

1

(∣∣∣δ̂MMSE

ε − δβ0,π0

∣∣∣ ≤ mn

)]
≤ sup

π0∈Γε(γ∗)

Eβ0,π0

[(
δ̂ε − δβ0,π0

)2

1

(∣∣∣δ̂ε − δβ0,π0

∣∣∣ ≤ mn

)]
+ o(ε), (A8)

which is what we wanted to show.

A.2 Proof of Theorem 2

Assumption A3.

(i) δ̂ − δβ0,π(γ∗) −
1
n

∑n
i=1 h(Yi, β0, γ∗) = oPβ0,π0 (n−

1
2 ), uniformly in π0 ∈ Γε(γ∗).

(ii) Let σ2
h(β0, π0, γ∗) = Varβ0,π0 h(Y, β0, γ∗). We assume that there exists a constant c,

independent of ε, such that infπ0∈Γε(γ∗) σh(β0, π0, γ∗) ≥ c > 0. Furthermore, for all

sequences an = c1−α/2 + o(1) we have

infπ0∈Γε(γ∗) Prβ0,π0

[∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, β0, γ∗)− Eβ0,π0h(Y, β0, γ∗)

σh(β0, π0, γ∗)

∣∣∣∣∣ ≤ an

]
≥ 1− α + o(1).
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(iii) supπ0∈Γε(γ∗)
Eβ0,π0‖β̂ − β0‖2 = o(1), supπ0∈Γε(γ∗)

Eβ0,π0‖γ̂ − γ∗‖2 = o(1),

supπ0∈Γε(γ∗)
Eβ0,π0 [σ̂h − σh(β0, π0, γ∗)]

2 = o(1).

(iv) ‖∇βγbε(h, β, γ)‖ = O(ε
1
2 ), uniformly in some neighborhood around β0, γ∗.

Part (i) is weaker than the local regularity of the estimator δ̂ that we assumed when

analyzing the minimum-MSE estimator, see equation (14). In turn, related to but differently

from the conditions we used for Theorem 1, part (ii) requires a form of local asymptotic

normality of the estimator.

Proof of Theorem 2. Let δ̂ be an estimator and h(y, β0, γ∗) be the corresponding influ-

ence function such that part (i) in Assumption A3 holds. Define R̂β0,γ∗ := δ̂ − δβ0,π(γ∗) −
1
n

∑n
i=1 h(Yi, β0, γ∗). We then have

δ̂ − δβ0,π0 =
1

n

n∑
i=1

h(Yi, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0 + R̂β0,γ∗

=
1

n

n∑
i=1

[
h(Yi, β0, γ∗)− Eβ0,π0h(Y, β0, γ∗)

]
−
[
δβ0,π0 − δβ0,π(γ∗) − Eβ0,π0h(Y, β0, γ∗)

]
+ R̂β0,γ∗ ,

and therefore

|̂δ − δβ0,π0 | − bε(h, β̂, γ̂)− σ̂h c1−α/2/
√
n

σh(β0, π0, γ∗)/
√
n︸ ︷︷ ︸

=lhs

≤

∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, β0, γ∗)− Eβ0,π0h(Y, β0, γ∗)

σh(β0, π0, γ∗)

∣∣∣∣∣− c1−α/2 + r̂β0,π0,γ∗︸ ︷︷ ︸
=rhs

, (A9)

where

r̂β0,π0,γ∗

:= c1−α/2 +

∣∣δβ0,π0 − δβ0,π(γ∗) − Eβ0,π0h(Y, β0, γ∗)
∣∣+
∣∣∣R̂β0,γ∗

∣∣∣− bε(h, β̂, γ̂)− σ̂h c1−α/2/
√
n

σh(β0, π0, γ∗)/
√
n

=

√
n

σh(β0, π0, γ∗)

{
|δβ0,π0 − δβ0,π(γ∗) − Eβ0,π0h(Y, β0, γ∗)|+ |R̂β0,γ∗|

− bε(h, β̂, γ̂)− σ̂h − σh(β0, π0, γ∗)√
n

c1−α/2

}
.

From (A9) we conclude that the event rhs ≤ 0 implies the event lhs ≤ 0, and therefore

Prβ0,π0(lhs ≤ 0) ≥ Prβ0,π0(rhs ≤ 0), which we can also write as

Prβ0,π0

[
|̂δ − δβ0,π0| ≤ bε(h, β̂, γ̂) +

σ̂h√
n
c1−α/2

]
≥ Prβ0,π0

[∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, β0, γ∗)− Eβ0,π0h(Y, β0, γ∗)

σh(β0, π0, γ∗)

∣∣∣∣∣ ≤ c1−α/2 − r̂β0,π0,γ∗

]
.

(A10)
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By part (iv) in Assumption A3 there exists a constant C > 0 such that ‖∇βγbε(h, β, γ)‖ ≤
C ε

1
2 , uniformly in a neighborhood of (β0, γ∗), and therefore

∣∣∣bε(h, β̂, γ̂)− bε(h, β0, γ∗)
∣∣∣ ≤ C ε

1
2

∥∥∥∥∥
(
β̂ − β0

γ̂ − γ∗

)∥∥∥∥∥ .
Using this we find that

∣∣r̂β0,π0,γ∗

∣∣ ≤ √
n

σh(β0, π0, γ∗)

{∣∣∣∣ ∣∣δβ0,π0 − δβ0,π(γ∗) − Eβ0,π0h(Y, β0, γ∗)
∣∣− bε(h, β0, γ∗)

∣∣∣∣
+
|σ̂h − σh(β0, π0, γ∗)|√

n
c1−α/2 + C ε

1
2

∥∥∥∥∥
(
β̂ − β0

γ̂ − γ∗

)∥∥∥∥∥+ |R̂β0,γ∗|

}
.

Parts (i) and (ii) of Assumption A3 imply that, uniformly in π0 ∈ Γε(γ∗), we have

√
n

σh(β0, π0, γ∗)
R̂β0,γ∗ = oPβ0,π0 (1),

and analogously we find from the conditions in Assumption A3 that

σ̂h − σh(β0, π0, γ∗)

σh(β0, π0, γ∗)
= oPβ0,π0 (1),

√
n

σh(β0, π0, γ∗)
ε
1
2

∥∥∥∥∥
(
β̂ − β0

γ̂ − γ∗

)∥∥∥∥∥ = oPβ0,π0 (1),

uniformly in π0 ∈ Γε(γ∗). Finally, since we also impose Assumption A1 and supπ0∈Γε Eβ0,π0

h2(Y, β0, γ∗) = O(1) we obtain, analogously to the proof of Lemma S1(iii) in Section S1,

that

sup
π0∈Γε(γ∗)

√
n

σh(β0, π0, γ∗)

∣∣∣∣ ∣∣δβ0,π0 − δβ0,π(γ∗) − Eβ0,π0h(Y, β0, γ∗)
∣∣− bε(h, β0, γ∗)

∣∣∣∣ = o(1).

We thus conclude that r̂β0,π0,γ∗ = oPβ0,π0 (1), uniformly in π0 ∈ Γε(γ∗). Together with (A10)

and part (ii) in Assumption A3 this implies (17), hence Theorem 2.
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SUPPLEMENTARY APPENDIX

In Sections S1 and S2 we provide details about the proofs in the paper. In Section S3
we describe our computational approach. In Section S4 we provide an application to the
evaluation of a conditional cash transfer program in Mexico. In Section S5 we outline how to
extend our approach to models defined by moment restrictions. Lastly, we report additional
simulation and estimation results in Section S6.

S1 Complements to main results of Section 2

S1.1 Proof of intermediate lemmas for Theorem 1

The proofs of the Lemmas A1, A2, A3 and A4 are provided in this subsection. Before those
proofs it is useful to first establish one additional lemma.

Lemma S1. Let Assumption A1 hold. Let qε(y) and hε(y, β0, γ∗) be sequences of functions
with supπ0∈Γε(γ∗)

Eβ0,π0 |q(Y )|ζ = O(1), for some ζ > 1, and supπ0∈Γε(γ∗)
Eβ0,π0 |hε(Y, β0, γ∗)|

2 =
O(1). Then we have

(i) sup
π0∈Γε(γ∗)

∣∣δβ0,π(γ∗) − δβ0,π0

∣∣ = O(ε1/2),

(ii) sup
π0∈Γε(γ∗)

∣∣Eβ0,π0qε(Y )− Eβ0,π(γ∗)qε(Y )
∣∣ = O(ε1/2),

(iii) sup
π0∈Γε(γ∗)

∣∣∣∣Eβ0,π0hε(Y, β0, γ∗)− Eβ0,π(γ∗)hε(Y, β0, γ∗)

−
〈
π0 − π(γ∗),Eβ0,π(γ∗)hε(Y, β0, γ∗)∇π log fβ0,π(γ∗)(Y )

〉 ∣∣∣∣ = o(ε1/2).

Proof of Lemma S1. # Part (i): By a mean-value expansion around π(γ∗) we find∣∣δβ0,π0 − δβ0,π(γ∗)

∣∣ =
∣∣〈π0 − π(γ∗),∇πδβ0,π̃

〉∣∣ ≤ ‖π0 − π(γ∗)‖ind,γ∗

∥∥∇πδβ0,π̃

∥∥
γ∗
,

where π̃ is between π(γ∗) and π0. Therefore

sup
π0∈Γε(γ∗)

∣∣δβ0,π0 − δβ0,π(γ∗)

∣∣ ≤ sup
π0∈Γε(γ∗)

‖π0 − π(γ∗)‖ind,γ∗
sup

π0∈Γε(γ∗)

∥∥∇πδβ0,π0

∥∥
γ∗

= O(ε1/2)O(1) = O(ε1/2).

# Part (ii): Without loss of generality we assume that ζ ≤ 2. Let ξ := ζ/(ζ − 1) ≥ 2.
We then have∫

Y

∣∣∣f 1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)
∣∣∣ξ dy ≤ ∫

Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy,

where we used that |a − b| ≤ |ac − bc|1/c, for any a, b ≥ 0 and c ≥ 1, and plugged in

a = f
1/ξ
β0,π0

(y), b = f
1/ξ
β0,π(γ∗)

(y), and c = ξ/2. Thus, the first part of Assumption A1(iii) also
implies

sup
π0∈Γε(γ∗)

{∫
Y

∣∣∣f 1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)
∣∣∣ξ dy} 1

ξ

= O(ε1/2). (S1)

1



Next, we find

sup
π0∈Γε(γ∗)

∣∣Eβ0,π0qε(Y )− Eβ0,π(γ∗)qε(Y )
∣∣

= sup
π0∈Γε(γ∗)

∣∣∣∣∣
∫
Y
qε(Y )

fβ0,π0(y)− fβ0,π(γ∗)(y)

f
1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)

[
f

1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)
]
dy

∣∣∣∣∣
≤

 sup
π0∈Γε(γ∗)

∫
Y
|qε(Y )|

ξ
ξ−1

∣∣∣∣∣fβ0,π0(y)− fβ0,π(γ∗)(y)

f
1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)

∣∣∣∣∣
ξ
ξ−1

dy


ξ−1
ξ

×

{
sup

π0∈Γε(γ∗)

∫
Y

∣∣∣f 1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)
∣∣∣ξ dy} 1

ξ

≤ ξ

{
sup

π0∈Γε(γ∗)

∫
Y
|qε(Y )|

ξ
ξ−1

∣∣fβ0,π0(y) + fβ0,π(γ∗)(y)
∣∣ dy} ξ−1

ξ

×

{
sup

π0∈Γε(γ∗)

∫
Y

∣∣∣f 1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)
∣∣∣ξ dy} 1

ξ

≤ ξ

{
2 sup
π0∈Γε(γ∗)

Eβ0,π0 |qε(Y )|ζ
} ξ−1

ξ
{

sup
π0∈Γε(γ∗)

∫
Y

∣∣∣f 1/ξ
β0,π0

(y)− f 1/ξ
β0,π(γ∗)

(y)
∣∣∣ξ dy} 1

ξ

= o(1),

where the first inequality is an application of Hölder’s inequality, the second inequality uses

that

∣∣∣∣fβ0,π0 (y)−fβ0,π(γ∗)(y)

f
1/ξ
β0,π0

(y)−f1/ξ
β0,π(γ∗)

(y)

∣∣∣∣ξ/(ξ−1)

≤ ξξ/(ξ−1)
[
fβ0,π0(y) + fβ0,π(γ∗)(y)

]
,1 the last line uses that

κ = ξ/(ξ − 1), and the final conclusion follows from our assumptions and (S1).

1For a, b ≥ 0 there exists c ∈ [a, b] such that by the mean value theorem we have (aξ − bξ)/(a − b) =

ξcξ−1 ≤ ξmax(aξ−1, bξ−1), and therefore [(aξ − bξ)/(a− b)]ξ/(ξ−1) ≤ ξξ/(ξ−1) max(aξ, bξ) ≤ ξξ/(ξ−1)(aξ + bξ),

which we apply here with a = f
1/ξ
β0,π0

(y) and b = f
1/ξ
β0,π(γ∗)

(y).
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# Part (iii): We have

Eβ0,π0hε(Y, β0, γ∗)− Eβ0,π(γ∗)hε(Y, β0, γ∗)

−
〈
π0 − π(γ∗),Eβ0,π(γ∗)hε(Y, β0, γ∗)∇π log fβ0,π(γ∗)(Y )

〉
=

∫
Y
hε(y, β0, γ∗)

[
fβ0,π0(y)− fβ0,π(γ∗)(y)−

〈
π0 − π(γ∗),∇π log fβ0,π(γ∗)(y)

〉
fβ0,π(γ∗)(y)

]
dy

=

∫
Y
hε(y, β0, γ∗)

[
f

1/2
β0,π0

(y) + f
1/2
β0,π(γ∗)

(y)
]

×
[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)− 1

2

〈
π0 − π(γ∗),∇π log fβ0,π(γ∗)(y)

〉
f

1/2
β0,π(γ∗)

(y)

]
dy︸ ︷︷ ︸

=:a
(1)
β0,γ∗,π0

+
1

2

∫
Y
hε(y, β0, γ∗)f

1/2
β0,π(γ∗)

(y)
〈
π0 − π(γ∗),∇π log fβ0,π(γ∗)(y)

〉 [
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]
dy︸ ︷︷ ︸

=:a
(2)
β0,γ∗,π0

.

Applying the Cauchy-Schwarz inequality and our assumptions we find that

sup
π0∈Γε(γ∗)

∣∣∣a(1)
β0,γ∗,π0

∣∣∣2
≤ 4

{
sup

π0∈Γε(γ∗)

Eβ0,π0h
2
ε(Y, β0, γ∗)

}

×

{
sup

π0∈Γε(γ∗)

∫
Y

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)−
〈
π0 − π(γ∗),∇πf

1/2
β0,π(γ∗)

(y)
〉]2

dy

}
= O(ε1/2),

and

sup
π0∈Γε(γ∗)

∣∣∣a(2)
β0,γ∗,π0

∣∣∣2
≤
{
Eβ0,π(γ∗)h

2
ε(Y, β0, γ∗)

}
×

{
sup

π0∈Γε(γ∗)

‖π0 − π(γ∗)‖
2
ind,γ∗

∫
Y

∥∥∇π log fβ0,π(γ∗)(y)
∥∥2

γ∗

[
f

1/2
β0,π0

(y)− f 1/2
β0,π(γ∗)

(y)
]2

dy

}
= o(ε).

Combining this gives the statement in the lemma.

Proof of Lemma A1. Applying part (ii) of Lemma S1 with qε(y) = hε(y, β0, γ∗) and using
the unbiasedness constraint (2) we find that Eβ0,π0hε(Y, β0, γ∗) = o(1), uniformly in π0 ∈
Γε(γ∗). Part (i) of Lemma S1 guarantees that

∣∣δβ0,π0 − δβ0,π(γ∗)

∣∣ = o(1), uniformly in π0 ∈
Γε(γ∗). We therefore have

Eβ0,π0

[
hε(Y, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

]2
= Eβ0,π0 [hε(Y, β0, γ∗)]

2 − 2
(
δβ0,π0 − δβ0,π(γ∗)

)
Eβ0,π0hε(Y, β0, γ∗) +

(
δβ0,π0 − δβ0,π(γ∗)

)2

= Eβ0,π0 [hε(Y, β0, γ∗)]
2 + o(1),

3



uniformly in π0 ∈ Γε(γ∗). Applying part (ii) of Lemma S1 with qε(y) = [hε(y, β0, γ∗)]
2 we find

that Eβ0,π0 [hε(Y, β0, γ∗)]
2 = Eβ0,π(γ∗) [hε(Y, β0, γ∗)]

2 + o(1) = Varβ0,π(γ∗)(hε(Y, β0, γ∗)) + o(1),
uniformly in π0 ∈ Γε(γ∗), where in the last step we have also used that hε(y, β0, γ∗) satisfies
the unbiasedness constraint (2). Therefore,

sup
π0∈Γε(γ∗)

Eβ0,π0

[
hε(Y, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

]2
= Varβ0,π(γ∗)(hε(Y, β0, γ∗)) + o(1). (S2)

Using the unbiasedness constraint again, as well as Lemma S1(iii) and Assumptions A1(ii)
and A1(iv) we find

sup
π0∈Γε(γ∗)

∣∣Eβ0,π0hε(Y, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

∣∣
= sup

π0∈Γε(γ∗)

∣∣〈π0 − π(γ∗),Eβ0,π(γ∗)hε(Y, β0, γ∗)∇π log fβ0,π(γ∗)(Y )−∇πδβ0,π(γ∗)

〉∣∣+ o(ε1/2)

= ε1/2
∥∥Eβ0,π(γ∗)hε(Y, β0, γ∗)∇π log fβ0,π(γ∗)(Y )−∇πδβ0,π(γ∗)

∥∥
γ∗

+ o(ε1/2) + δβ0,π(γ∗) − δβ0,π0

= bε(hε, β0, γ∗) + o(ε1/2), (S3)

where in the last step we used the definition of the worst-case bias in (8) of the main text.
We furthermore have

Eβ0,π0

[
δ̂(hε, β0, γ∗)− δβ0,π0

]2

= Eβ0,π0

(
1

n

n∑
i=1

h(Yi, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

)2

=
[
Eβ0,π0h(Y, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

]2
+

1

n
Varβ0,π0

[
h(Y, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

]
=
n− 1

n

[
Eβ0,π0h(Y, β0, γ∗)− δβ0,π0 + δβ0,π(γ∗)

]2
+

1

n
Eβ0,π0

[
h(Y, β0, γ∗) + δβ0,π(γ∗) − δβ0,π0

]2
.

Taking the supremum of this last result over π0 ∈ Γε(γ∗), and then applying (S2) and (S3)
gives

sup
π0∈Γε(γ∗)

Eβ0,π0

[
δ̂(hε, β0, γ∗)− δβ0,π0

]2

= bε(hε, β0, γ∗)
2 +

Varβ0,π(γ∗)(hε(Y, β0, γ∗))

n
+ o(ε),

which is the statement of the lemma.

For the following proof of Lemma A2 it is convenient to introduce some further notation.
At the beginning of Section A.1.1 we introduced the vector norms ‖ · ‖ind,γ∗ , ‖ · ‖γ∗ and ‖.‖
on T , T and Rdimβ+dim γ. Those vector norms induce natural norms on any maps between
T , T and Rdimβ+dim γ. With a slight abuse of notation we denote all those norms simply by
‖.‖γ∗ . In particular, for Ω−1

γ∗
: T → T we have

∥∥∥Ω−1
γ∗

∥∥∥
γ∗

:= sup
u∈T \{0}

‖Ω−1
γ∗
u‖ind,γ∗

‖u‖γ∗
= sup

u∈T \{0}

〈
Ω−1
γ∗
u, , u

〉1/2

‖u‖γ∗
= 1, (S4)
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and for Hπ,βγ : Rdimβ+dim γ → T defined in Section 3.1 we have

‖Hπ,βγ‖γ∗ := sup
w∈Rdim β+dim γ\{0}

‖Hπ,βγw‖γ∗
‖w‖

= sup
v∈T \{0}

sup
w∈Rdim β+dim γ\{0}

〈v,Hπ,βγw〉
‖v‖ind,γ∗ ‖w‖

.

Using Assumption A1(v) and the Cauchy-Schwarz inequality we find that

‖Hπ,βγ‖γ∗ =
∥∥∥Eβ0,π(γ∗)

{[
∇π log fβ0,π(γ∗)(Y )

] [
∇βγ log fβ0,π(γ∗)(Y )

]′}∥∥∥
γ∗

≤
[
Eβ0,π(γ∗)

∥∥∇π log fβ0,π(γ∗)(Y )
∥∥2

γ∗

]1/2 [
Eβ0,π(γ∗)

∥∥∇βγ log fβ0,π(γ∗)(Y )
∥∥2
]1/2

= O(1). (S5)

Proof of Lemma A2. Equation (20) in Lemma 1 in the main text provides an explicit
solution for hMMSE

ε (y, β0, γ∗), which in the notation of this appendix can be written as

hMMSE
ε (y, β0, γ∗) =

[
∇βγδβ0,π(γ∗)

]′
H−1
βγ

[
∇βγ log fβ0,π(γ∗)(y)

]
+

〈[
H̃π Ωγ∗ + (εn)−1Ωγ∗

]−1

∇̃πδβ0,π(γ∗) , ∇̃π log fβ0,π(γ∗)(y)

〉
,

where ∇̃π log fβ0,π(γ∗)(y) = ∇π log fβ0,π(γ∗)(y)−Hπ,βγH
−1
βγ ∇βγ log fβ0,π(γ∗)(y) and ∇̃πδβ0,π(γ∗) =

∇πδβ0,π(γ∗) −Hπ,βγH
−1
βγ ∇βγδβ0,π(γ∗). We thus have∣∣hMMSE

ε (y, β0, γ∗)
∣∣ ≤ ∥∥∇βγδβ0,π(γ∗)

∥∥∥∥H−1
βγ

∥∥∥∥[∇βγ log fβ0,π(γ∗)(y)
]∥∥

+ (εn)
∥∥∥Ω−1

γ∗

∥∥∥
γ∗

∥∥∥∇̃πδβ0,π(γ∗)

∥∥∥
γ∗

∥∥∥∇̃π log fβ0,π(γ∗)(y)
∥∥∥
γ∗

,

where we used that

∥∥∥∥[H̃π Ωγ∗ + (εn)−1Ωγ∗

]−1
∥∥∥∥
γ∗

≤ (εn)
∥∥∥Ω−1

γ∗

∥∥∥
γ∗

, because both H̃π Ωγ∗ and

Ωγ∗ are positive semi-definite. We furthermore have∥∥∥∇̃πδβ0,π(γ∗)

∥∥∥
γ∗

≤
∥∥∇π log fβ0,π(γ∗)(y)

∥∥
γ∗

+ ‖Hπ,βγ‖γ∗
∥∥H−1

βγ

∥∥∥∥∇βγ log fβ0,π(γ∗)(y)
∥∥ ,∥∥∥∇̃π log fβ0,π(γ∗)(y)

∥∥∥
γ∗

≤
∥∥∇πδβ0,π(γ∗)

∥∥
γ∗

+ ‖Hπ,βγ‖γ∗
∥∥H−1

βγ

∥∥∥∥∇βγδβ0,π(γ∗)

∥∥ .
Combining those inequalities with our Assumption A1(ii) and (v) as well as the results (S4)
and (S5) above we find that

sup
π0∈Γε(γ∗)

Eβ0,π0

[
hMMSE
ε (Y, β0, γ∗)

]2+ν
= O(1).

Proof of Lemma A3. Let η = (β′, γ′)′, η̂ := (β̂
′
, γ̂′)′, and η∗ := (β′0, γ

′
∗)
′. By a Taylor

5



expansion in η around η∗ we find that

δ̂ MMSE
ε = δβ̂,π(γ̂) +

1

n

n∑
i=1

hMMSE
ε (Yi, β̂, γ̂)

= δβ0,π(γ∗) +
1

n

n∑
i=1

hMMSE
ε (Yi, β0, γ∗)

(η̂ − η∗)
′ [∇ηδβ0,π(γ∗) + Eβ0,π(γ∗)∇ηh

MMSE
ε (Y, β0, γ∗)

]︸ ︷︷ ︸
=r(1)

+ (η̂ − η∗)
′ 1

n

n∑
i=1

[
∇ηh

MMSE
ε (Yi, β0, γ∗)− Eβ0,π0∇ηh

MMSE
ε (Yi, β0, γ∗)

]
︸ ︷︷ ︸

=r(2)

+ (η̂ − η∗)
′ [Eβ0,π(γ∗)∇ηh

MMSE
ε (Y, β0, γ∗)− Eβ0,π0∇ηh

MMSE
ε (Y, β0, γ∗)

]︸ ︷︷ ︸
=r(3)

+
1

2
(η̂ − η∗)

′

[
1

n

n∑
i=1

∇2
ηη′h

MMSE
ε (Yi, β̃, γ̃)

]
(η̂ − η∗)︸ ︷︷ ︸

=r(4)

, (S6)

where η̃ = (β̃
′
, γ̃′)′ is a value between η̂ and η∗. Our constraints (2) and (4) guarantee that

∇ηδβ0,π(γ∗)+Eβ0,π(γ∗)∇ηh
MMSE
ε (Y, β0, γ∗) = 0; that is, we have r(1) = 0. Using Assumption A2

and the Cauchy-Schwarz inequality we furthermore find(
Eβ0,π0

∣∣r(2)
∣∣)2

≤ Eβ0,π0 ‖η̂ − η∗‖
2 Eβ0,π0

∥∥∥∥∥ 1

n

n∑
i=1

[
∇ηh

MMSE
ε (Yi, β0, γ∗)− Eβ0,π0∇ηh

MMSE
ε (Yi, β0, γ∗)

]∥∥∥∥∥
2

≤ Eβ0,π0 ‖η̂ − η∗‖
2 1

n
Eβ0,π0

∥∥∇ηh
MMSE
ε (Y, β0, γ∗)

∥∥2
= O

(
1

n2

)
,

uniformly in π0 ∈ Γε(γ∗), where in the second step we have used the independence of Yi
across i. Similarly, we have(
Eβ0,π0

∣∣r(3)
∣∣)2 ≤ Eβ0,π0 ‖η̂ − η∗‖

2
∥∥Eβ0,π0∇ηh

MMSE
ε (Y, β0, γ∗)− Eβ0,π(γ∗)∇ηh

MMSE
ε (Y, β0, γ∗)

∥∥2

= O

(
1

n

)
O (ε) = O

(
1

n2

)
,

uniformly in π0 ∈ Γε(γ∗), where we have used that

sup
π0∈Γε(γ∗)

∥∥Eβ0,π0∇ηh
MMSE
ε (Y, β0, γ∗)− Eβ0,π(γ∗)∇ηh

MMSE
ε (Y, β0, γ∗)

∥∥ = O(ε1/2),

which follows from Assumptions A1(iii) and A2(ii) by using the proof strategy of part (ii)
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of Lemma S1. Finally, applying Hölder’s inequality we have

Eβ0,π0

∣∣r(4)
∣∣ ≤ Eβ0,π0

[
‖η̂ − η∗‖

2

∥∥∥∥∥ 1

n

n∑
i=1

∇2
ηη′h

MMSE
ε (Yi, β̃, γ̃)

∥∥∥∥∥
]

≤
{
Eβ0,π0 ‖η̂ − η∗‖

χ} 2
χ

Eβ0,π0

∥∥∥∥∥ 1

n

n∑
i=1

∇2
ηη′h

MMSE
ε (Yi, β̃, γ̃)

∥∥∥∥∥
χ
χ−2


χ−2
χ

= O

(
1

n

)
,

uniformly in π0 ∈ Γε(γ∗), where we have used Assumption A2(iii). We have thus shown that

sup
π0∈Γε(γ∗)

Eβ0,π0

∣∣∣∣r(1) + r(2) + r(3) +
1

2
r(4)

∣∣∣∣ = O

(
1

n

)
,

which together with (S6) gives the statement of the lemma.

The proof of the next lemma uses the following theorem of Petrov (1975), which gen-
eralizes the Berry-Esseen theorem to sample averages of random variables without a third
moment.

Theorem S11 (Theorem 5 on p. 112 in Petrov 1975). Let X1, . . . , Xn be independent
random variables, such that EXj = 0, E(X2

j g(|Xj|)) < ∞ for j = 1, . . . , n, and for some
function g : [0,∞) → [0,∞) such that both g(x) and x/g(x) are non-decreasing for x > 0.
We write

σ2
j = EX2

j , Bn =
n∑
j=1

σ2
j , Fn(x) = Pr

(
B−1/2
n

n∑
j=1

Xj < x

)
.

Then there exists an absolute constant A > 0 such that

sup
x
|Fn(x)− Φ(x)| ≤ A

Bng(
√
Bn)

n∑
j=1

E
(
X2
j g(Xj)

)
.

Proof of Lemma A4. # Preliminaries: We first establish some preliminary results on the
sample averages of

h̃ε(Yi, β0, γ∗, π0) := hε(Yi, β0, γ∗)− Eβ0,π0hε(Yi, β0, γ∗).

According to our assumptions the h̃ε(Yi, β0, γ∗, π0) are independent random variables with
zero mean and finite absolute moments of order κ > 2, under P0 = P (β0, π0). By applying
the result in Dharmadhikari and Jogdeo (1969) we thus find that2

Eβ0,π0

∣∣∣∣∣ 1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗, π0)

∣∣∣∣∣
κ

≤ Cκ Eβ0,π0

∣∣∣h̃ε(Yi, β0, γ∗, π0)
∣∣∣κ ,

2 This result is an extension of the Bahr-Esseen inequality to moments larger than two. See also inequality
number 16 on p. 60 of Petrov (1975).
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where the constant Cκ > 0 only depends on κ. Through a combination of the Minkowski and
Hölder’s inequalities we find that our assumption supπ0∈Γε(γ∗)

Eβ0,π0 |hε(Y, β0, γ∗)|
κ = O(1)

also guarantees supπ0∈Γε(γ∗)
Eβ0,π0

∣∣∣h̃ε(Y, β0, γ∗)
∣∣∣κ = O(1). We therefore obtain that

sup
π0∈Γε(γ∗)

(
Eβ0,π0

∣∣∣∣∣ 1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗, π0)

∣∣∣∣∣
κ) 1

κ

= O(1). (S7)

Next, we apply Theorem 5 of Chapter V in Petrov (1975), which is restated above as Theo-
rem S11, with Xi equal to h̃ε(Yi, β0, γ∗, π0) and g(x) = xmin{1,κ−2} to find that

sup
π0∈Γε(γ∗)

sup
x∈R

∣∣∣∣∣Pβ0,π0

(∑n
i=1 h̃ε(Yi, β0, γ∗, π0)√
nσ(β0, γ∗, π0)

≤ x

)
− Φ(x)

∣∣∣∣∣ = o(1),

where σ2(β0, γ∗, π0) = Eβ0,π0h̃
2
ε(Yi, β0, γ∗, π0). This, in particular, implies that

sup
π0∈Γε(γ∗)

Pβ0,π0

(∣∣∣∣∣ 1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗, π0)

∣∣∣∣∣ > log(n)

)
= o(1). (S8)

By an application of Hölder’s inequality we find that (S7) and (S8) also imply

sup
π0∈Γε(γ∗)

Eβ0,π0

( 1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗)

)2

1

(∣∣∣∣∣ 1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗)

∣∣∣∣∣ > log n

) = o(1).

(S9)

Finally, we notice that

sup
π0∈Γε(γ∗)

∣∣δβ0,π(γ∗) − δβ0,π0 + Eβ0,π0hε(Y, β0, γ∗)
∣∣ = O(ε1/2), (S10)

which follows by applying part (i) and (ii) of Lemma S1 with qε(y) = hε(y, β0, γ∗) and noting
that Eβ0,π(γ∗)hε(Y, β0, γ∗) = 0 by the unbiasedness constraint (2).

# Main result of the Lemma A4: Having established those preliminary results, we now
derive the statement of the lemma. Define

kn :=
1√
n

n∑
i=1

hε(Yi, β0, γ∗) +
√
n
[
δβ0,π(γ∗) − δβ0,π0

]
=

1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗) +
√
n
[
δβ0,π(γ∗) − δβ0,π0 + Eβ0,π0hε(Yi, β0, γ∗)

]
.

The decomposition of δ̂ε in (A2) can then be rewritten as

√
n
(
δ̂ε − δβ0,π0

)
= kn +Rn.
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We have

nEβ0,π0

[(
δ̂ε − δβ0,π0

)2

1

(∣∣∣δ̂ε − δβ0,π0

∣∣∣ ≤ mn

)]
= Eβ0,π0

[
(kn +Rn)2

1
(
|kn +Rn| ≤ n1/2mn

)]
= Eβ0,π0k

2
n − Eβ0,π0

[
k2
n 1
(
|kn +Rn| > n1/2mn

)]︸ ︷︷ ︸
=term I

+ Eβ0,π0

[
(R2

n + 2knRn)1
(
|kn +Rn| ≤ n1/2mn

)]︸ ︷︷ ︸
=term II

.

Thus, Lemma A4 is proved if we can show that term I is o(1), and that term II is larger or
equal to minus o(1), both uniformly over π0 ∈ Γε(γ∗). For term I we use Hölder’s inequality
to obtain that

sup
π0∈Γε(γ∗)

Eβ0,π0

[
k2
n 1
(
|kn +Rn| > n1/2mn

)]
≤

{
sup

π0∈Γε(γ∗)

(
Eβ0,π0 |kn|

κ) 2
κ

}{
sup

π0∈Γε(γ∗)

[
Eβ0,π01

(
|kn +Rn| > n1/2mn

)]κ−2
κ

}

≤

{
sup

π0∈Γε(γ∗)

(
Eβ0,π0

∣∣∣∣∣ 1√
n

n∑
i=1

h̃ε(Yi, β0, γ∗)

∣∣∣∣∣
κ) 2

κ

︸ ︷︷ ︸
=O(1)

+ sup
π0∈Γε(γ∗)

(
n1/2

∣∣δβ0,π(γ∗) − δβ0,π0 + Eβ0,π0hε(Yi, β0, γ∗)
∣∣)︸ ︷︷ ︸

=O(1)

}

×

{[
sup

π0∈Γε(γ∗)

Eβ0,π01

(
|kn| >

1

2
n1/2mn

)
︸ ︷︷ ︸

=o(1)

+ sup
π0∈Γε(γ∗)

Eβ0,π01

(
|Rn| >

1

2
n1/2mn

)
︸ ︷︷ ︸

=o(1)

]κ−2
κ

}

= o(1),

where we also used the definition of kn together with the triangle inequality, and we employed
(S7), (S8) and (S10) and Assumption (ii) of the lemma, together with our assumption that
n1/2mn � log(n) as n→∞.

Next, for term II we use that R2
n + 2knRn is positive whenever |Rn| > 2 |kn| to obtain
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that

Eβ0,π0

[
(R2

n + 2knRn)1
(
|kn +Rn| ≤ n1/2mn

)]
= Eβ0,π0

[
(R2

n + 2knRn)1
(
|kn +Rn| ≤ n1/2mn

)
1 (|Rn| ≤ 2 |kn|)

]
+ Eβ0,π0

[
(R2

n + 2knRn)1
(
|kn +Rn| ≤ n1/2mn

)
1 (|Rn| > 2 |kn|)

]︸ ︷︷ ︸
≥0

≥ Eβ0,π0

[
(R2

n + 2knRn)1
(
|kn +Rn| ≤ n1/2mn

)
1 (|Rn| ≤ 2 |kn|)

]
≥ −2Eβ0,π0

[
|kn| |Rn| 1 (|Rn| ≤ 2 |kn|)

]
≥ −2

{
Eβ0,π0 k

2
n

}1/2 {Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 |kn|)

]}1/2

where in the last step we also used the Cauchy-Schwarz inequality. Our preliminary results
(S7) and (S10) imply that supπ0∈Γε(γ∗)

Eβ0,π0 k
2
n = O(1). Furthermore we have

Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 |kn|)

]
= Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 |kn|)1 (|kn| ≤ log n)

]
+ Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 |kn|)1 (|kn| > log n)

]
≤ Eβ0,π0

[
R2
n 1 (|Rn| ≤ 2 log n)

]
+ 4Eβ0,π0

[
k2
n 1 (|kn| > log n)

]
= o(1),

uniformly over π0 ∈ Γε(γ∗), where we used (S9) and Assumption (v) of the lemma. We thus
conclude that term II indeed satisfies

sup
π0∈Γε(γ∗)

{
−Eβ0,π0

[
(R2

n + 2knRn)1
(
|kn +Rn| ≤ n1/2mn

)]}
≤ o(1).

Combining the above gives the statement of the lemma.

S1.2 Lemma 1

Before deriving the equivalent characterizations of hMMSE
ε (y, β0, γ∗) given in the lemma we

note that the optimization problem (10) that defines hMMSE
ε (y, β0, γ∗) has a unique solu-

tion (up to possible deviations on a measure zero set of y’s, which are irrelevant for our
purposes). This uniqueness follows, because under the unbiasedness constraint (2) we have
Varβ0,π(γ∗)(h(Y, β0, γ∗)) = Eβ0,π(γ∗)h

2(Y, β0, γ∗), which is quadratic and strictly convex in
h(y, β0, γ∗), while all other components of the objective function and constraints in (10) are
linear in h(y, β0, γ∗).

Equation (18). Using simplified notation here, our goal is to find the function h(y) =
h(y, β0, γ∗) that minimizes

Eh2(Y ) + (εn) {∇πδ − E [h(Y )sπ(Y )]}> {∇πδ − E [h(Y )sπ(Y )]} ,

subject to the constraints Eh(Y ) = 0 and Eh(Y )sβγ(Y ) = ∇βγδ.
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Using the latter constraint and the definition of ∇̃π we can equivalently rewrite the
objective function as

Eh2(Y ) + (εn)
{
∇̃πδ − E [h(Y )s̃π(Y )]

}> {
∇̃πδ − E [h(Y )s̃π(Y )]

}
+ 2 {∇βγδ − E [h(Y )sβγ(Y )]}′H−1

βγ ∇βγδ.

The unconstrained minimizer of this rewritten quadratic objective function satisfies the
first-order condition

hMMSE
ε (y) = sβγ(y)′H−1

βγ∇βγδ + (εn) s̃π(y)>
{
∇̃πδ − E

[
hMMSE
ε (Y )s̃π(Y )

]}
,

and because Esβγ(Y ) = 0, Es̃π(Y ) = 0, and E[sβγ(Y )sβγ(Y )′] = Hβγ, we find that this
unconstrained minimizer already satisfies both constraints Eh(Y ) = 0 and Eh(Y )sβγ(Y ) =
∇βγδ, and is therefore also the constrained minimizer that we wanted to derive.

Equation (19). Note that by (18) we have hMMSE
ε (y) = sβγ(y)′H−1

βγ∇βγδ + s̃π(y)> u, for

some u ∈ T , and one can easily verify that this implies that ∇̃πδ − E
[
hMMSE
ε (Y )s̃π(Y )

]
is

equal to the same expression with s̃π replaced by sπ.

Equation (20). We have already shown that equation (18) is the FOC of the minimization
problem (10). We now want to show that the solution for hMMSE

ε (y) given in equation (20)
satisfies the FOC (18), which implies that it solves (10). Equation (18) can be rewritten as

hMMSE
ε (y) = sβγ(y)′H−1

βγ ∇βγδ + (εn) s̃π(y)> u, u := ∇̃πδ − E
[
hMMSE
ε (Y )s̃π(Y )

]
. (S11)

Plugging the expression for hMMSE
ε (y) given by equation (20) into this definition of u and

using that E
[
s̃π(Y )s̃π(Y )>

]
= H̃π, and E [s̃π(Y )sβγ(Y )′] = 0, we find that (20) implies that

u = ∇̃πδ − H̃π

[
H̃π + (εn)−1I

]−1

∇̃πδ

=

{
I− H̃π

[
H̃π + (εn)−1I

]−1
}
∇̃πδ

=

{[
H̃π + (εn)−1I

] [
H̃π + (εn)−1I

]−1

− H̃π

[
H̃π + (εn)−1I

]−1
}
∇̃πδ

= (εn)−1
[
H̃π + (εn)−1I

]−1

∇̃πδ.

This expression for u makes the first equation in (S11) equivalent to (20). Therefore, we have
shown that hMMSE

ε (y) as given by (20) indeed solves (18), and therefore also our optimization
problem in (10).

S1.3 Lemma 2

Our goal is to choose the function h(·, ·, β, γ, fX) such that the worst-case mean squared
error

sup
π0∈Γε(γ∗)

Eβ0,π0,fX

[(
δ̂h − δβ0,π0,fX

)2
]

11



is minimized for small values of ε, subject to unbiasedness under the reference model, and
also subject to local robustness constraints to account for the fact that β0, γ∗ and fX are
estimated from the sample.

Unbiasedness is

EfX Eβ0,π(γ∗) h(Y,X, β0, γ∗, fX) = 0, (S12)

while local robustness is

EfX Eβ0,π(γ∗) h(Y,X, β0, γ∗, fX)∇βγ log fβ0,π(γ∗)(Y |X) = EfX ∇βγδβ0,π(γ∗)(X),

Eβ0,π(γ∗) [h(Y,X, β0, γ∗, fX) |X = x] = δβ0,π(γ∗)(x)− EfX δβ0,π(γ∗)(X).
(S13)

The minimum-MSE influence function satisfies

hMMSE
ε (·, ·, β0, γ∗, fX) =

argmin
h(·,·,β0,γ∗,fX)

{
ε
∥∥EfX ∇πδβ0,π(γ∗)(X)− EfX Eβ0,π(γ∗) h(Y,X, β0, γ∗, fX) ∇π log fβ0,π(γ∗)(Y |X)

∥∥2

γ∗

+
EfX Varβ0,π(γ∗)(h(Y,X, β0, γ∗, fX) |X)

n

}
subject to (S12) and (S13).

In the locally quadratic case, following similar derivations as for equation (18) in Lemma
1, we obtain (21).

S1.4 Corollary 1

This is a direct implication of (20).

S1.5 Corollary 2

This is a direct implication of (19).

S1.6 Corollary 3

Lemma 2 implies, analogously to (19), that

hMMSE
ε (y, x) = δ(x)− EfXδ(X) + sβγ(y |x)′[EfXHβγ(X)]−1 EfX∇βγδ(X)

+ (εn)s̃π(y |x)>
{
EfX∇πδ(X)− EfXE

[
hMMSE
ε (Y,X)sπ(Y |X)

]}
. (S14)

Since A and X are independent, EfX∇πδ(X) can be represented by the function

a 7→ EfX [∆(a,X)]− EfXδ(X).

Likewise, EfXE
[
hMMSE
ε (Y,X)sπ(Y |X)

]
can be represented by the function

a 7→ EfXE
[
hMMSE
ε (Y,X) |A = a,X

]
= h

MMSE

ε (a).

12



Moreover, we have for any cotangent element u (a function of a),

s̃π(y |x)> u =E
[
u(A)

∣∣Y = y,X = x
]
− E [u(A)]

− sβγ(y |x)′[EfXHβγ(X)]−1EfXE [sβγ(Y |X)u(A)] . (S15)

Corollary 3 then follows from evaluating (S15) at

u(a) := EfX [∆(a,X)]− EfXδ(X)− hMMSE

ε (a).

S1.7 Corollary 4

Let us start again from (S14). In the correlated case, EfX∇πδ(X) can be represented by the
function

(a, x) 7→ ∆(a, x)fX(x)− δ(x)fX(x).

Likewise, EfXE
[
hMMSE
ε (Y,X)sπ(Y |X)

]
can be represented by the function

(a, x) 7→E
[
hMMSE
ε (Y,X) |A = a,X = x

]
fX(x)− E

[
hMMSE
ε (Y,X) |X = x

]
fX(x)

= h
MMSE

ε (a, x)fX(x)− E
[
hMMSE
ε (Y,X) |X = x

]
fX(x).

Now, by (S13) we have

E
[
hMMSE
ε (Y,X) |X = x

]
= δ(x)− EfXδ(X). (S16)

Hence, EfX∇πδ(X)− EfXE
[
hMMSE
ε (Y,X)sπ(Y |X)

]
can be represented by the function

(a, x) 7→ ∆(a, x)fX(x)− EfXδ(X)fX(x)− hMMSE

ε (a, x)fX(x).

In the present case, cotangent elements are functions of a and x. The corresponding
squared dual norm is3

‖u‖2
γ∗

= EfXE

[(
u(A,X)− E[u(A,X) |X]

fX(X)

)2
]
.

In addition we have, for any cotangent element u (a function of a and x)

s̃π(y |x)> u =E
[
u(A,X)

fX(X)

∣∣Y = y,X = x

]
− E

[
u(A,X)

fX(X)

∣∣X = x

]
− sβγ(y |x)′[EfXHβγ(X)]−1EfXE

[
sβγ(Y |X)

u(A,X)

fX(X)

]
. (S17)

Corollary 4 then follows from evaluating (S17) at

u(a, x) := ∆(a, x)fX(x)− EfXδ(X)fX(x)− hMMSE

ε (a, x)fX(x),

and noting that, by (S16), E[u(A,X) |X = x] = 0.

3This can be shown as in Subsection S2.1, with the difference that here twice the KL divergence reads,

using the notation of that subsection, d(f0, f∗) = − 2EfXE0 log f∗(A |X)
f0(A |X) . Alternatively, Corollary 4 can be

derived by defining π0 as the joint distribution of (A,X), and imposing the constraint that
∫
A π0(a, x)da =

fX(x).
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S2 Complements to Section 3

S2.1 Dual of the Kullback-Leibler divergence

Let A be a random variable with domain A, reference distribution f∗(a) and “true” distri-
bution f0(a). We use notation f∗(a) and f0(a) as if those were densities, but point masses
are also allowed. Twice the Kullback-Leibler (KL) divergence reads

d(f0, f∗) = − 2E0 log
f∗(A)

f0(A)
,

where E0 is the expectation under f0. Let F be the set of all distributions, in particular,
f ∈ F implies

∫
A f(a)da = 1. Let q : A → R be a real valued function. For given f∗ ∈ F

and ε > 0 we define

‖q‖∗,ε := max
{f0∈F : d(f0,f∗)≤ε}

E0 q(A)− E∗ q(A)√
ε

,

where E∗ is the expectation under f∗.
We have the following result.

Lemma S2. For q : A → R and f∗ ∈ F we assume that the moment-generating function
m∗(t) = E∗ exp(t q(A)) exists for t ∈ (δ−, δ+) and some δ− < 0 and δ+ > 0.4 For ε ∈ (0, δ2

+)
we then have

‖q‖∗,ε =
√

Var∗(q(A)) +O(ε
1
2 ).

Proof. Let the cumulant-generating function of the random variable q(A) under the refer-
ence measure f∗ be k∗(t) = logm∗(t). We assume existence of m∗(t) and k∗(t) for t ∈ (δ−, δ+).
This also implies that all derivatives of m∗(t) and k∗(t) exist in this interval. We denote the

p-th derivative of m∗(t) by m
(p)
∗ (t), and analogously for k∗(t).

In the following we denote the maximizing f0 in the definition of ‖q‖∗,ε simply by f0.
Applying standard optimization method (Karush-Kuhn-Tucker) we find the well-known ex-
ponential tilting result

f0(a) = c f∗(a) exp(t q(a)),

where the constants c, t ∈ (0,∞) are determined by the constraints
∫
A f0(a)da = 1 and

d(f0, f∗) = ε. Using the constraint
∫
A f0(a)da = 1 we can solve for c to obtain

f0(a) =
f∗(a) exp(t q(a))

E∗ exp(t q(A))
=
f∗(a) exp(t q(a))

m∗(t)
.

4Existence of m∗(t) in an open interval around zero is equivalent to having an exponential decay of the
tails of the distribution of the random variable Q = q(A). If q(a) is bounded, then m∗(t) exists for all t ∈ R.
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Using this we find that

d(t) := d(f0, f∗)

= 2E∗
f0(A)

f∗(A)
log

f0(A)

f∗(A)

=
2 t

m∗(t)
E∗ exp(t q(A))q(A)− 2 logm∗(t)

m∗(t)
E∗ exp(t q(A))

=
2 tm

(1)
∗ (t)

m∗(t)
− 2 logm∗(t)

= 2
[
t k(1)
∗ (t)− k∗(t)

]
.

We have d(0) = 0, d(1)(0) = 0, d(2)(0) = 2k
(2)
∗ (0) = 2Var∗(q(A)), d(3)(t) = 4k

(3)
∗ (t) + 2tk

(4)
∗ (t).

A mean-value expansion thus gives

d(t) = Var∗(q(A))t2 +
t3

6

[
4 k(3)
∗ (t̃) + 2 t̃ k(4)

∗ (t̃)
]
,

where 0 ≤ t̃ ≤ t ≤ δ+. The value t that satisfies the constraint d(t) = ε therefore satisfies

t =
ε
1
2√

Var∗(q(A))
+O(ε).

Next, using that ‖q‖∗,ε = ε−
1
2 E∗

[(
f0(A)
f∗(A)

− 1
)
q(A)

]
we find

‖q‖∗,ε = ε−
1
2

[
k(1)
∗ (t)− k(1)

∗ (0)
]
.

Again using that k
(2)
∗ (0) = Var∗(q(A)) and applying a mean value expansion we obtain

‖q‖∗,ε = ε−
1
2

[
t k(2)
∗ (t) +

1

2
t2 k(3)

∗ (t̄)

]
= ε−

1
2

[
tVar∗(q(A)) +

1

2
t2 k(3)

∗ (t̄)

]
=
√

Var∗(q(A)) +O(ε
1
2 ),

where t̄ ∈ [0, t].

S2.2 Equations (25), (26) and (27)

Here we use simplified notation as in Section 3. Let us start by deriving (25). In this case
β0 and γ∗ are known, and Corollary 2 gives

hMMSE
ε =(εn)EA |Y

[
∆− δ − EY |AhMMSE

]
,

so

hMMSE
ε =

[
(εn)−1IY + EA |Y ◦ EY |A

]−1 EA |Y [∆− δ] .
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(25) then follows from the operator identity[
(εn)−1IY + EA |Y ◦ EY |A

]−1 EA |Y = EA |Y
[
EY |A ◦ EA |Y + (εn)−1IA

]−1
.

Let us now derive (26). In this case γ∗ is known. Since ∆(A) = c′β0 = δ, Corollary 2
implies

hMMSE
ε (y) =sβγ(y)′H−1

βγ c− (εn)

{
E
[
h

MMSE
(A) |Y = y

]
− sβγ(y)′H−1

βγ E
[
sβγ(Y )h

MMSE
(A)
]}

.

Hence, we have, for some vector b,

hMMSE
ε =sβγ(y)′b− (εn)EA |Y ◦ EY |AhMMSE.

Using the Woodbury identity[
IY + (εn)EA |Y ◦ EY |A

]−1
= IY − EA |Y

[
EY |A ◦ EA |Y + (εn)−1IA

]−1 EY |A︸ ︷︷ ︸
=Wε

,

we thus obtain

hMMSE
ε =Wεsβγ(y)′b.

Lastly, since by (4) E [hMMSE
ε (Y )sβγ(Y )] = c, we obtain (26) whenever the denominator is

non-singular.
Finally, let us derive (27). In this case β0 and γ∗ are known and ∆(A) does not depend

on X, and Corollary 3 gives

hMMSE
ε =(εn)EA |Y,X

[
EfX (∆− δ)− EY,X |AhMMSE

]
.

Hence, denoting IY,Xh(y, x) = h(y, x) the identity operator, we have

hMMSE
ε =

[
(εn)−1IY,X + EA |Y,X ◦ EY,X |A

]−1 EA |Y,XEfX (∆− δ).

(27) then follows from[
(εn)−1IY,X + EA |Y,X ◦ EY,X |A

]−1 EA |Y,X = EA |Y,X
[
EY,X |A ◦ EA |Y,X + (εn)−1IA

]−1
.

S3 Computation in semi-parametric models

Here we describe how we compute a numerical approximation to the minimum-MSE estima-
tor in semi-parametric models

δ̂
MMSE

ε = Eβ̂,π(γ̂) ∆β̂(A) +
1

n

n∑
i=1

hMMSE
ε (Yi, β̂, γ̂),

where hMMSE
ε is given by Corollary 2, and β̂, γ̂ are preliminary estimates. We abstract from

conditioning covariates. In the presence of correlated covariates Xi we use the same technique
to approximate hMMSE

ε (· |x) for each value of Xi = x. We use this approach in the numerical
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illustration based on the dynamic panel data model in Section 5, where the covariate is the
initial condition. We denote η = (β′, γ′)′.5

Draw an i.i.d. sample (Y (1), A(1)), ..., (Y (S), A(S)) of S draws from gβ × π(γ). Let G
be S × S with (τ , s) element gβ(Y (τ) |A(s))/

∑S
s′=1 gβ(Y (τ) |A(s′)), GY be N × S with (i, s)

element gβ(Yi |A(s))/
∑S

s′=1 gβ(Yi |A(s′)), ∆ be S × 1 with s-th element ∆β(A(s)), I be the
S × S identity matrix, and ι and ιY be the S × 1 and N × 1 vectors of ones. In addition, let
D be the S × dim η matrix with (s, k) element

dηk(Y
(s)) =

∑S
s′=1

(
∇ηk log gβ(Y (s) |A(s′)) +∇ηk log π(γ)(A(s′))

)
gβ(Y (s) |A(s′))∑S

s′=1 gβ(Y (s) |A(s′))
,

and let DY be N × dim η with (i, k) element dηk(Yi), Q = I − DD†, G̃Y = GY − DYD
†G,

ι̃Y = ιY − DYD
†ι, G̃ = QG, ι̃ = Qι, and ∂∆ be the K × 1 vector with k-th element

1
S

∑S
s=1∇ηk∆(A(s), β) + ∆(A(s), β)∇ηk log π(γ)(A(s)).

From Corollary 2, a fixed-S approximation to the minimum-MSE estimator is then

δ̃
MMSE

ε = ι†∆ + ι†Y h̃
MMSE
ε ,

where

h̃MMSE
ε = DY (D′D/S)−1 ∂∆ + (εn)

[(
G̃Y − ι̃Y ι†

)
∆

− G̃YG
′
(
G̃G′ + (εn)−1I

)−1 (
(εn)−1D(D′D/S)−1 ∂∆ +

(
G̃− ι̃ι†

)
∆
)]

,

and (β, γ) are replaced by the preliminary (β̂, γ̂) in all the quantities above, including when
producing the simulated draws.

Confidence intervals. From Subsection 2.4, computing confidence intervals only requires,
in addition to computing critical values under correct specification, to compute an estimate
of the bias of the estimator bε(h, β̂, γ̂). In semi-parametric models we have, for an asymp-
totically linear estimator based on h satisfying (2) and (4),

bε(h, β0, γ∗) = ε
1
2

{
Varβ0,π(γ∗)[∆β0

(A)− Eβ0,π(γ∗)(h(Y ) |A)]
} 1

2 .

A numerical approximation of the bias of δ̂
MMSE

ε is then

b̃ε(h
MMSE
ε , β0, γ∗) = ε

1
2

∥∥∥∆− ι†∆−G′h̃MMSE
ε

∥∥∥ .
Values of ε. In turn, εk in (31) can be approximated as µ(α, p)2/(nλk), where λk is the k-th
largest eigenvalue of G′QG = G̃′G̃ (removing the eigenvalue equal to one since it corresponds
to a constant eigenfunction). We proceed similarly to compute eigenfunctions in Subsection
5.1.

5Here we present a general method based on simulations. In the cross-sectional probit model (32), explicit
closed-form expressions are available, and we use those for computation in our first illustration.
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S4 Application to structural evaluation of conditional

cash transfers in Mexico

The goal of this section is to predict program impacts in the context of the PROGRESA con-
ditional cash transfer program, building on the structural evaluation of the program in Todd
and Wolpin (2006, TW hereafter) and Attanasio et al. (2012, AMS). We estimate a simple
model in the spirit of TW, and adjust its predictions against a specific form of misspecifi-
cation under which the program may have a “stigma” effect on preferences. Our approach
provides a way to improve the policy predictions of a structural model when the model may
be misspecified. It does not require the researcher to estimate another (larger) structural
model, and provides a tractable way to perform sensitivity analysis in such settings.

S4.1 Setup

Following TW and AMS we focus on PROGRESA’s education component, which consists
of cash transfers to families conditional on children attending school. Those represent sub-
stantial amounts as a share of total household income. Moreover, the implementation of the
policy was preceded by a village-level randomized evaluation in 1997-1998. As TW and AMS
point out, the randomized control trial is silent about the effect that other, related policies
could have, such as higher subsidies or unconditional income transfers, which motivates the
use of structural methods.

To analyze this question we consider a simplified version of TW’s model (Wolpin, 2013),
which is a static, one-child model with no fertility decision. To describe this model, let
U(C, S, τ , v) denote the utility of a unitary household, where C is consumption, S ∈ {0, 1}
denotes the schooling attendance of the child, τ is the level of the PROGRESA subsidy, and
v are taste shocks. Utility may also depend on characteristics X, which we abstract from
for conciseness in the presentation. Note the direct presence of the subsidy τ in the utility
function, which may reflect a stigma effect. This direct effect plays a key role in the analysis.
The budget constraint is: C = Y +W (1− S) + τS, where Y is household income and W is
the child’s wage. This is equivalent to: C = Y + τ + (W − τ)(1− S). Hence, in the absence
of a direct effect on utility, the program’s impact is equivalent to an increase in income and
decrease in the child’s wage.

Following Wolpin (2013) we parameterize the utility function as

U(C, S, τ , v) = aC + bS + dCS + λτS + Sv,

where λ denotes the direct (stigma) effect of the program. The schooling decision is then

S = 1{U(Y + τ , 1, τ , v) > U(Y +W, 0, 0, v)} = 1{v > a(Y +W )− (a+ d)(Y + τ)− λτ − b}.

Assuming that v is standard normal, independent of wages, income, and program status
(that is, of the subsidy τ) we obtain

Pr(S = 1 | y, w, τ) = 1− Φ [a(y + w)− (a+ d)(y + τ)− λτ − b] ,

where Φ is the standard normal cdf.
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We estimate the model on control villages, under the assumption that λ = 0. The average
effect of the subsidy on school attendance is

E
[
Pr(S = 1 |Y,W, τ = τ treat)− Pr(S = 1 |Y,W, τ = 0)

]
= E

(
Φ
[
a(Y +W )− (a+ d)(Y + τ treat)− b

]
− Φ [a(Y +W )− (a+ d)Y − b]

)
.

Note that data under the subsidy regime (τ = τ treat) is not needed to construct an empirical
counterpart to this quantity, since treatment status is independent of Y,W by design. TW
use a similar strategy to predict the effect of the program and other counterfactual policies,
in the spirit of “ex-ante” policy prediction. Here we use the specification with λ = 0 as our
reference model.

As Wolpin (2013) notes, in the presence of a stigma effect (i.e., when λ 6= 0) information
from treated villages is needed for identification and estimation.6 Instead of estimating a
larger model, here we adjust the predictions from the reference model against the possibility
of misspecification, using data from both controls and treated. While in the present simple
static context one could easily estimate a version of the model allowing for λ 6= 0, in dynamic
structural models such as the one estimated by TW estimating a different model in order to
assess the impact of any given form of misspecification may be computationally prohibitive.
This highlights an advantage of our approach, which does not require the researcher to
estimate the parameters under a new model.

To cast this setting into our framework, let β = (a, b, d), π = λ, and

δβ,π = E
(
Φ
[
a(Y +W )− (a+ d)(Y + τ treat)− λτ treat − b

]
− Φ [a(Y +W )− (a+ d)Y − b]

)
.

We focus on the effect on eligible (i.e., poorer) households. We will first estimate δβ,0 using the
control villages only. We will then compute our minimum-MSE estimator, taking advantage
of the variation in treatment status in order to account for the potential misspecification.
We will also report confidence intervals. In this setting our assumption that ε shrinks as n
increases reflects that the econometrician’s uncertainty about the presence of stigma effects
diminishes when the sample gets larger.

S4.2 Empirical results

We use the sample from TW. We drop observations with missing household income, and focus
on boys and girls aged 12 to 15. This results in 1219 (boys) and 1089 (girls) observations,
respectively. Children’s wages are only observed for those who work. We impute potential
wages to all children based on a linear regression that in particular exploits province-level
variation and variation in distance to the nearest city, similar to AMS. Descriptive statistics
on the sample show that average weekly household income is 242 pesos, the average weekly
wage is 132 pesos, and the PROGRESA subsidy ranges between 31 and 59 pesos per week
depending on age and gender. Average school attendance drops from 90% at age 12 to
between 40% and 50% at age 15.

6AMS make a related point (albeit in a different model), and use both control and treated villages to
estimate their structural model. AMS also document the presence of general equilibrium effects of the
program on wages. We abstract from such effects in our analysis.
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In Table S5 we show the results of different estimators and confidence intervals. The top
panel focuses on the impact of the PROGRESA subsidy on eligible households. The left
two columns show the point estimates of the policy impact as well as 95% confidence inter-
vals, calculated under the assumption that the reference model is correct (second row) and
under the assumption that the model belongs to an ε-neighborhood of the reference model
(third row). We show the results for our focal value ε = ε1. The model-based predictions
are calculated based on control villages. We add covariates to the gender-specific school
attendance equations, which include the age of the child and her parents, year indicators,
distance to school, and an eligibility indicator. In the middle two columns of Table S5 we
report estimates of the minimum-MSE estimator for the same ε, together with confidence
intervals. The minimum-MSE estimates are computed based on both treated and control
villages. Lastly, in the right two columns we report the differences in means between treated
and control villages.

We see that PROGRESA had a positive impact on attendance of both boys and girls.
The impacts predicted by the reference model are large, approximately 8 percentage points,
and are quite close to the results reported in Todd and Wolpin (2006, 2008). However,
the confidence intervals which account for model misspecification (third row) are very large
for both genders. This suggests that model misspecification, such as the presence of a
stigma effect of the program, may strongly affect the ability to produce “ex-ante” policy
predictions in this context. When adding treated villages to the sample and computing
our minimum-MSE estimators, we find that the effect for girls is similar to the baseline
specification, whereas the effect for boys is smaller, around 5 percentage points. Moreover,
the length of the confidence intervals is then substantially reduced, although they are still
large. Interestingly, as shown by the rightmost two columns the minimum-MSE estimates
are quite close to the experimental differences in means between treated and control villages,
for both genders.

When using our approach it is informative to report minimum-MSE estimates and con-
fidence intervals for different values of the neighborhood size ε. In Figure S1 we plot the
estimates for girls (left) and boys (right) as a function of ε, in addition to 95% confidence
intervals based on those estimates. In dotted we show the unadjusted model-based pre-
dictions. The minimum-MSE estimates vary very little with ε for girls, and show slightly
more variation for boys. Note that the minimum-MSE estimate at ε = 0 for boys is .058,
compared to .054 for our focal ε value, and .080 for the estimate predicted by the reference
model estimated on control villages. This suggests that, for boys, the functional form of the
schooling decision is not invariant to treatment status, again highlighting that predictions
based off the controls are less satisfactory for boys (as acknowledged by Todd and Wolpin,
2006).

On the middle and bottom panels of Table S5 we next show estimates, based on the
reference model and minimum-MSE adjustments, of the effects of two counterfactual policies:
doubling the PROGRESA subsidy, and removing the conditioning of the income transfer
on school attendance. Unlike in the case of the main PROGRESA effects, there is no
experimental counterpart to such counterfactuals. Estimates based on our approach predict
a substantial effect of doubling the subsidy on girls’ attendance and a more moderate effect
on boys. By contrast, we find no effect of an unconditional income transfer.

Given the structural model, one can give an economic interpretation to the value of ε.
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To see this, note that in the model λ is the marginal utility of the subsidy for households
sending their child to school. The marginal utility of consumption is a+d. Hence, bounding
λ2 by ε is equivalent to bounding the ratio of marginal utility of the subsidy to marginal
utility of consumption by

√
ε/(a + d). Taking ε = ε1 implies that this ratio of marginal

utilities is bounded by 2.2 (females) and 1.6 (males).
Lastly, the analysis in this section is based on a reference model estimated on the sub-

sample of control villages, as in TW. Treated villages are only added when constructing
minimum-MSE estimators. An alternative approach, in the spirit of “ex-post” policy pre-
diction, is to estimate the reference model on both controls and treated, and perform the
adjustments based on the same data. The results are similar to Table S5 and Figure S1,
except for the fact that model-based, minimum-MSE and experimental estimates are more
similar for boys in that case (results are available upon request).

S5 Models defined by moment restrictions

In this section we consider settings where a finite-dimensional parameter (β′0, π
′
0)′ does not

fully determine the distribution f0 of Y , but satisfies a finite-dimensional system of moment
conditions

Ef0Ψ(Y, β0, π0) = 0, (S18)

which may be just-identified, over-identified or under-identified. We focus on asymptotically
linear generalized method-of-moments (GMM) estimators of δβ0,π0 that satisfy

δ̂ = δβ0,π(γ∗) + a(β0, γ∗)
′ 1

n

n∑
i=1

Ψ(Yi, β0, π(γ∗)) + oP0(ε
1
2 + n−

1
2 ), (S19)

for a parameter vector a(β0, γ∗). We will characterize the form of a(β0, γ∗) leading to mini-
mum worst-case MSE in Γε(γ∗).

We assume that the remainder in (S19) is uniformly bounded similarly as in (14). In this
case local robustness with respect to (β′0, γ

′
∗)
′ takes the form

∇βγδβ0,π(γ∗) + Ef0∇βγΨ(Y, β0, π(γ∗)) a(β0, γ∗) = 0. (S20)

It is natural to focus on asymptotically linear GMM estimators here, since f0 is unrestricted
except for the moment condition (S18).

To derive the worst-case bias of δ̂ note that, by (S18), for any π0 ∈ Γε(γ∗) we have

Ef0Ψ(Y, β0, π(γ∗)) = − [Ef0∇πΨ(Y, β0, π(γ∗))]
′ (π0 − π(γ∗)) + o(ε

1
2 ),

so, under appropriate regularity conditions,

sup
π0∈Γε(γ∗)

∣∣∣Ef0 δ̂ − δβ0,π0

∣∣∣ = ε
1
2

∥∥∇πδβ0,π(γ∗) + Ef0∇πΨ(Y, β0, π(γ∗)) a(β0, γ∗)
∥∥
γ∗

+ o(ε
1
2 + n−

1
2 ).

The worst-case MSE of

δ̂a,β0,γ∗ := δβ0,π(γ∗) + a(β0, γ∗)
′ 1

n

n∑
i=1

Ψ(Yi, β0, π(γ∗))
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is thus

ε
∥∥∇πδβ0,π(γ∗) + Ef0∇πΨ(Y, β0, π(γ∗)) a(β0, γ∗)

∥∥2

γ∗

+ a(β0, γ∗)
′Ef0Ψ(Y, β0, π(γ∗))Ψ(Y, β0, π(γ∗))

′

n
a(β0, γ∗) + o(ε+ n−1).

To obtain an explicit expression for the minimum-MSE estimator, let us focus on the
case where π0 is finite-dimensional and ‖ · ‖γ∗ = ‖ · ‖Ω−1 . Let us define

Vβ0,π(γ∗) = Ef0Ψ(Y, β0, π(γ∗))Ψ(Y, β0, π(γ∗))
′, Kβ0,π(γ∗) = Ef0∇πΨ(Y, β0, π(γ∗)),

and
Kβ0,γ∗ = Ef0∇βγΨ(Y, β0, π(γ∗)).

For all β0, γ∗ we aim to minimize

ε
∥∥∇πδβ0,π(γ∗) +Kβ0,π(γ∗)a(β0, γ∗)

∥∥2

Ω−1 + a(β0, γ∗)
′Vβ0,π(γ∗)

n
a(β0, γ∗),

subject to ∇βγδβ0,π(γ∗) +Kβ0,γ∗a(β0, γ∗) = 0.

A solution is given by7

aMMSE
ε (β0, γ∗) = −B†β0,π(γ∗),ε

K ′β0,γ∗

(
Kβ0,γ∗B

†
β0,π(γ∗),ε

K ′β0,γ∗

)−1

∇βγδβ0,π(γ∗)

−B†β0,π(γ∗),ε

(
I −K ′β0,γ∗

(
Kβ0,γ∗B

†
β0,π(γ∗),ε

K ′β0,γ∗

)−1

Kβ0,γ∗B
†
β0,π(γ∗),ε

)
K ′β0,π(γ∗)

Ω−1∇πδβ0,π(γ∗),

(S21)

where Bβ0,π(γ∗),ε = K ′β0,π(γ∗)
Ω−1Kβ0,π(γ∗) +(εn)−1Vβ0,π(γ∗), and B†β0,π(γ∗),ε

is its Moore-Penrose
generalized inverse. Note that, in the likelihood case and taking Ψ(y, β, π) = ∇π log fβ,π(y),
the function h(y, β0, γ∗) = aMMSE

ε (β0, γ∗)
′Ψ(y, β0, π(γ∗)) simplifies to (20).

As a special case, when ε = 0 we have

aMMSE
0 (β0, γ∗) = −V †β0,π(γ∗)

K ′β0,γ∗

(
Kβ0,γ∗V

†
β0,π(γ∗)

K ′β0,γ∗

)−1

∇βγδβ0,π(γ∗).

In this case, given preliminary estimators β̂ and γ̂, the minimum-MSE estimator

δ̂
MMSE

ε = δβ̂,π(γ̂) + aMMSE
0 (β̂, γ̂)′

1

n

n∑
i=1

Ψ(Yi, β̂, π(γ̂))

is the one-step approximation to the optimal GMM estimator based on the reference model.
To obtain a feasible estimator one simply replaces the expectations in Vβ0,π(γ∗) and Kβ0,γ∗

by sample analogs.

7Here we assume that Kβ0,γ∗V
†
β0,π(γ∗)

K ′β0,γ∗
is non-singular, requiring that β0, γ∗ be identified from

the moment conditions. Existence follows from the fact that, by the generalized information identity,
Vβ0,π(γ∗)

a = 0 implies that Kβ0,π(γ∗)
a = 0. Moreover, although aMMSE

ε (β0, γ∗) may not be unique,

aMMSE
ε (β0, γ∗)

′Ψ(Y, β0, π(γ∗)) is unique almost surely.
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As a second special case, consider ε tending to infinity. Focusing on the known-(β0, γ∗)
case for simplicity, aMMSE

ε (β0, γ∗) tends to −Kginv
β0,π(γ∗)

∇πδβ0,π(γ∗), where

Kginv
β0,π(γ∗)

:=(
V †β0,π(γ∗)

)1/2
[(
V †β0,π(γ∗)

)1/2

K ′β0,π(γ∗)
Ω−1Kβ0,π(γ∗)

(
V †β0,π(γ∗)

)1/2
]† (

V †β0,π(γ∗)

)1/2

K ′β0,π(γ∗)
Ω−1

is a generalized inverse of Kβ0,π(γ∗), and the choice of Ω corresponds to choosing one spe-
cific such generalized inverse. In this case, the minimum-MSE estimator is the one-step
approximation to a particular GMM estimator based on the “large” model.

Lastly, given a parameter vector a, confidence intervals can be constructed as explained
in Subsection 2.4, taking

bε(a, β̂, γ̂) = ε
1
2

∥∥∥∥∥∇πδβ̂,π(γ̂) +
1

n

n∑
i=1

∇πΨ(Yi, β̂, π(γ̂)) a(β̂, γ̂)

∥∥∥∥∥
Ω−1

.

Example. Consider again the OLS/IV example of Subsection 3.3, but now drop the Gaus-
sian assumptions on the distributions. For known C, the set of moment conditions corre-
sponds to the moment functions

Ψ(y, x, z, β, π) =

(
x(y − x′β − π′(x− Cz))

z(y − x′β)

)
.

In this case, letting W = (X ′, Z ′)′ we have

Kβ0,γ∗ = −Ef0 (XW ′) , Kβ0,π(γ∗) = −Ef0
(

XX ′ XZ ′

(X − CZ)X ′ 0

)
,

and
Vβ0,π(γ∗) = Ef0

(
(Y −X ′β0)2WW ′) .

Given a preliminary estimator β̃, Vβ0,π(γ∗) can be estimated as 1
n

∑n
i=1(Yi − X ′iβ̃)2WiW

′
i ,

whereas Kβ0,γ∗ and Kβ0,π(γ∗) can be estimated as sample means. The estimator based on
(S21) then interpolates nonlinearly between the OLS and IV estimators, similarly as in the
likelihood case.
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S6 Additional simulation results

Table S1: Monte Carlo simulation of the average effect in the cross-sectional binary choice
model, interpolation (x0 = (.5, 1)′)

Minimum-MSE, for ε = 0.00 0.20 0.40 0.60 0.80 1.00

A. nX = 4
Worst-case bias 0.0021 0.0783 0.1104 0.1351 0.1560 0.1744
Asymptotic standard error 0.0228 0.0288 0.0297 0.0300 0.0302 0.0303
Monte Carlo bias 0.1026 0.0197 0.0134 0.0111 0.0099 0.0092
Monte Carlo standard deviation 0.0253 0.0281 0.0288 0.0291 0.0292 0.0293
Monte Carlo root MSE 0.1057 0.0343 0.0317 0.0311 0.0308 0.0307
CI length 0.0936 0.2697 0.3372 0.3878 0.4302 0.4674
CI coverage 0.0180 0.9990 1.0000 1.0000 1.0000 1.0000

B. nX = 20
Worst-case bias 0.0021 0.0480 0.0610 0.0714 0.0805 0.0887
Asymptotic standard error 0.0227 0.0394 0.0453 0.0487 0.0509 0.0526
Monte Carlo bias 0.0976 0.0080 0.0037 0.0026 0.0022 0.0020
Monte Carlo standard deviation 0.0239 0.0386 0.0446 0.0480 0.0502 0.0519
Monte Carlo root MSE 0.1005 0.0394 0.0447 0.0480 0.0502 0.0519
CI length 0.0931 0.2503 0.2996 0.3337 0.3607 0.3835
CI coverage 0.0190 0.9990 1.0000 1.0000 1.0000 1.0000

Notes: Performance of the minimum-MSE estimator in the cross-sectional binary choice model,

for different values of ε. n = 500, results for 1000 simulations. The nominal level for confidence

intervals (CI) is 95%. nX denotes the number of points of support of the first component of X.
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Table S2: Monte Carlo simulation of the average effect in the cross-sectional binary choice
model, extrapolation (x0 = (−.5, 1)′)

Minimum-MSE, for ε = 0.00 0.20 0.40 0.60 0.80 1.00

A. nX = 4
Worst-case bias 0.0029 0.1269 0.1794 0.2197 0.2537 0.2837
Asymptotic standard error 0.0296 0.0312 0.0315 0.0316 0.0316 0.0317
Monte Carlo bias -0.0987 -0.0903 -0.0901 -0.0900 -0.0900 -0.0900
Monte Carlo standard deviation 0.0283 0.0330 0.0334 0.0335 0.0336 0.0336
Monte Carlo root MSE 0.1027 0.0961 0.0961 0.0961 0.0961 0.0961
CI length 0.1219 0.3762 0.4822 0.5632 0.6314 0.6914
CI coverage 0.2000 0.9370 0.9850 0.9960 0.9990 1.0000

B. nX = 20
Worst-case bias 0.0028 0.1172 0.1645 0.2008 0.2314 0.2584
Asymptotic standard error 0.0313 0.0401 0.0443 0.0470 0.0489 0.0503
Monte Carlo bias -0.0902 -0.0961 -0.0988 -0.0999 -0.1005 -0.1009
Monte Carlo standard deviation 0.0287 0.0373 0.0412 0.0437 0.0456 0.0471
Monte Carlo root MSE 0.0947 0.1031 0.1070 0.1090 0.1104 0.1113
CI length 0.1284 0.3915 0.5026 0.5857 0.6544 0.7141
CI coverage 0.2530 0.9500 0.9910 0.9960 0.9970 0.9970

Notes: See the notes to Table S1.
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Table S3: Monte Carlo simulation results for the autoregressive parameter in the dynamic
binary choice panel data model

Minimum-MSE, for ε = 0.00 0.20 0.40 0.60 0.80 1.00

A. T = 5
Worst-case bias 0.0001 0.0337 0.0470 0.0573 0.0660 0.0737
Asymptotic standard error 0.1343 0.1378 0.1384 0.1387 0.1390 0.1392
Monte Carlo bias -0.1729 -0.0615 -0.0555 -0.0531 -0.0518 -0.0509
Monte Carlo standard deviation 0.1252 0.1111 0.1129 0.1136 0.1141 0.1145
Monte Carlo root MSE 0.2135 0.1270 0.1258 0.1255 0.1254 0.1253
CI length 0.5268 0.6077 0.6363 0.6583 0.6768 0.6931
CI coverage 0.7610 0.9860 0.9910 0.9910 0.9930 0.9930

B. T = 10
Worst-case bias 0.0001 0.0217 0.0305 0.0373 0.0430 0.0481
Asymptotic standard error 0.0857 0.0868 0.0869 0.0870 0.0871 0.0872
Monte Carlo bias -0.0780 -0.0137 -0.0120 -0.0114 -0.0110 -0.0107
Monte Carlo standard deviation 0.0676 0.0731 0.0736 0.0738 0.0739 0.0740
Monte Carlo root MSE 0.1032 0.0744 0.0745 0.0746 0.0747 0.0748
CI length 0.3360 0.3835 0.4017 0.4156 0.4274 0.4378
CI coverage 0.9090 0.9900 0.9910 0.9920 0.9930 0.9940

C. T = 20
Worst-case bias 0.0001 0.0164 0.0231 0.0283 0.0327 0.0366
Asymptotic standard error 0.0590 0.0596 0.0596 0.0597 0.0597 0.0598
Monte Carlo bias -0.0304 -0.0023 -0.0019 -0.0017 -0.0017 -0.0016
Monte Carlo standard deviation 0.0442 0.0488 0.0490 0.0490 0.0491 0.0491
Monte Carlo root MSE 0.0537 0.0488 0.0490 0.0491 0.0491 0.0491
CI length 0.2316 0.2663 0.2800 0.2906 0.2995 0.3074
CI coverage 0.9720 0.9950 0.9960 0.9970 0.9980 0.9990

Notes: Performance of the minimum-MSE estimator of β0 in the dynamic panel data binary choice

model, for different values of ε. n = 500, results for 1000 simulations. The nominal level for

confidence intervals (CI) is 95%.
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Table S4: Monte Carlo simulation results for the average state dependence parameter in the
dynamic binary choice panel data model

Minimum-MSE, for ε = 0.00 0.20 0.40 0.60 0.80 1.00

A. T = 5
Worst-case bias 0.0001 0.0260 0.0360 0.0437 0.0501 0.0558
Asymptotic standard error 0.0373 0.0386 0.0388 0.0390 0.0392 0.0393
Monte Carlo bias -0.0538 -0.0218 -0.0202 -0.0196 -0.0193 -0.0191
Monte Carlo standard deviation 0.0439 0.0324 0.0331 0.0334 0.0336 0.0337
Monte Carlo root MSE 0.0694 0.0391 0.0387 0.0387 0.0387 0.0388
CI length 0.1463 0.2033 0.2243 0.2403 0.2538 0.2657
CI coverage 0.6380 0.9830 0.9900 0.9960 0.9970 0.9980

B. T = 10
Worst-case bias 0.0001 0.0356 0.0499 0.0609 0.0701 0.0782
Asymptotic standard error 0.0266 0.0269 0.0271 0.0272 0.0272 0.0273
Monte Carlo bias -0.0212 -0.0047 -0.0048 -0.0050 -0.0051 -0.0052
Monte Carlo standard deviation 0.0257 0.0229 0.0230 0.0231 0.0231 0.0232
Monte Carlo root MSE 0.0333 0.0233 0.0235 0.0236 0.0237 0.0238
CI length 0.1045 0.1769 0.2059 0.2282 0.2469 0.2634
CI coverage 0.8660 1.0000 1.0000 1.0000 1.0000 1.0000

C. T = 20
Worst-case bias 0.0001 0.0442 0.0622 0.0761 0.0878 0.0980
Asymptotic standard error 0.0198 0.0200 0.0200 0.0201 0.0202 0.0202
Monte Carlo bias -0.0097 -0.0028 -0.0028 -0.0028 -0.0028 -0.0028
Monte Carlo standard deviation 0.0187 0.0153 0.0153 0.0154 0.0154 0.0155
Monte Carlo root MSE 0.0210 0.0155 0.0156 0.0156 0.0157 0.0157
CI length 0.0777 0.1666 0.2030 0.2310 0.2546 0.2754
CI coverage 0.9290 1.0000 1.0000 1.0000 1.0000 1.0000

Notes: Performance of the minimum-MSE estimator of δβ0,π0 in the dynamic panel data binary

choice model, for different values of ε. n = 500, results for 1000 simulations. The nominal level

for confidence intervals (CI) is 95%.
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Table S5: Effect of the PROGRESA subsidy and counterfactual reforms

Model-based Minimum-MSE Experimental

PROGRESA impacts
Girls Boys Girls Boys Girls Boys

estimate .076 .080 .077 .054 .087 .050
non-robust CI (.017,.135) (.039,.121) - - - -
robust CI (-.018,.170) (-.017,.177) (.001,.152) (-.012,.119) - -

Counterfactual 1: doubling subsidy
Girls Boys Girls Boys Girls Boys

estimate .145 .146 .146 .104 - -
robust CI (-.022,.312) (-.011,.304) (.013,.279) (.002,.211) - -

Counterfactual 2: unconditional transfer
Girls Boys Girls Boys Girls Boys

estimate .004 .005 .004 -.017 - -
robust CI (-.354,.362) (-.293,.303) (-.214,.223) (-.203,.169) - -

Notes: Sample from Todd and Wolpin (2006). ε = ε1. CI are 95% confidence intervals. The
unconditional transfer amounts to 5000 pesos in a year.
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Figure S1: Effect of the PROGRESA subsidy as a function of neighborhood size ε

Girls Boys
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Notes: Sample from Todd and Wolpin (2006). ε is reported on the x-axis. The minimum-MSE

estimates of the effect of PROGRESA on school attendance are shown in solid. 95% confidence

intervals based on those estimates are in dashed. The dotted line shows the unadjusted model-based

prediction. The vertical line indicates ε1. Girls (left) and boys (right).
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