
Giacomini, Raffaella; Kitagawa, Toru; Volpicella, Alessio

Working Paper

Uncertain identification

cemmap working paper, No. CWP33/20

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Giacomini, Raffaella; Kitagawa, Toru; Volpicella, Alessio (2020) : Uncertain
identification, cemmap working paper, No. CWP33/20, Centre for Microdata Methods and Practice
(cemmap), London,
https://doi.org/10.1920/wp.cem.2020.3320

This Version is available at:
https://hdl.handle.net/10419/241908

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2020.3320%0A
https://hdl.handle.net/10419/241908
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Uncertain identification

Raffaella Giacomini
Toru Kitagawa 
Alessio Volpicella

The Institute for Fiscal Studies 

Department of Economics, 

UCL 

cemmap working paper 

CWP33/20



Uncertain Identification∗

Raffaella Giacomini†, Toru Kitagawa‡, and Alessio Volpicella§

This draft: June 2020

Abstract

Uncertainty about the choice of identifying assumptions is common in causal studies,

but is often ignored in empirical practice. This paper considers uncertainty over models

that impose different identifying assumptions, which, in general, leads to a mix of point- and

set-identified models. We propose performing inference in the presence of such uncertainty

by generalizing Bayesian model averaging. The method considers multiple posteriors for

the set-identified models and combines them with a single posterior for models that are

either point-identified or that impose non-dogmatic assumptions. The output is a set of

posteriors (post-averaging ambiguous belief ) that are mixtures of the single posterior and

any element of the class of multiple posteriors, with weights equal to the posterior model

probabilities. We suggest reporting the set of posterior means and the associated credible

region in practice, and provide a simple algorithm to compute them. We establish that

the prior model probabilities are updated when the models are “distinguishable” and/or

they specify different priors for reduced-form parameters, and characterize the asymptotic

behavior of the posterior model probabilities. The method provides a formal framework for

conducting sensitivity analysis of empirical findings to the choice of identifying assumptions.

In a standard monetary model, for example, we show that, in order to support a negative

response of output to a contractionary monetary policy shock, one would need to attach

a prior probability greater than 0.05 to the validity of the assumption that prices do not

react contemporaneously to the shock.

Keywords: Partial Identification, Sensitivity Analysis, Model Averaging, Bayesian

Robustness, Ambiguity.
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1 Introduction

The choice of identifying assumptions is the crucial step that allows researchers to draw causal

inferences using observational data. This is often a controversial choice, and there can be

uncertainty about which assumptions to impose from a menu of plausible ones, but this uncer-

tainty and its effects on inference are typically ignored in empirical work. This paper proposes

a formal framework for Bayesian model averaging/selection in the presence of uncertain iden-

tification, which we characterize as uncertainty over a class of models that impose different

sets of identifying assumptions. The class of models can include ones where parameters are

set-identified, which occurs when the assumptions are under-identifying or take the form of

inequality restrictions. For these models, we advocate adopting the multiple-prior approach of

Giacomini and Kitagawa (2020). In our context, the approach has the additional advantage of

isolating the component of each model that depends on the identifying restrictions, making it

possible, for example, to compare models that only differ in the identifying restrictions.

The paper makes both a methodological and a theoretical contribution. The methodological

contribution is to extend Bayesian model averaging/selection to allow for models characterized

by multiple priors (associated here with set identification). The theoretical contribution is to

clarify how the different components of the models affect inference in terms of model averag-

ing/selection in finite samples and asymptotically.

There are several examples in economics where empirical researchers face uncertainty about

identifying assumptions that lead to point- or set-identification of a common causal parameter of

interest. The first is macroeconomic policy analysis based on structural vector autoregressions

(SVARs), where assumptions include causal ordering restrictions (Bernanke (1986) and Sims

(1980)), long-run neutrality restrictions (Blanchard and Quah (1993)), and Bayesian prior

restrictions implied by a structural model (Del Negro and Schorfheide (2004)). Subsets of these

assumptions deliver set-identified impulse-responses, as does the use of sign restrictions (Canova

and Nicolo (2002), Faust (1998), and Uhlig (2005)). The second example is microeconometric

causal effect studies with assumptions such as selection on observables (Ashenfelter (1978)

and Rosenbaum and Rubin (1983)), selection on observables and unobservables (Altonji et al.

(2005)), exclusion and monotonicity restrictions in instrumental variables methods (Imbens

and Angrist (1994), yielding set-identification of the average treatment effect), and monotone

instrument assumptions (Manski and Pepper (2000), also yielding set-identification). The third

example is missing data with assumptions such as missing at random, Bayesian imputation

(Rubin (1987)), and unknown missing mechanism (Manski (1989), yielding set-identification).

Finally, estimation of structural models with multiple equilibria relies on assumptions about

the equilibrium selection rule, with different assumptions (or lack thereof) delivering point- or

set-identification (e.g., Bajari et al. (2010), Beresteanu et al. (2011), and Ciliberto and Tamer

(2009)).
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The common practice in empirical work is to report results based on what is deemed the

most credible set of identifying assumptions, or, sometimes, based on a small number of alter-

native assumptions, viewed as an informal sensitivity analysis. Our proposed method provides

a formal framework for investigating the sensitivity of empirical findings to specific identifying

assumptions and/or for aggregating results based on different sets of identifying assumptions,

which can be more practical than reporting inference for all models separately when there are

many alternative sets of restrictions.1

The idea of model averaging has a long history in econometrics and statistics since the

pioneering works of Bates and Granger (1969) and Leamer (1978). The literature has consid-

ered Bayesian approaches (see, e.g., Hoeting et al. (1999) and Claeskens and Hjort (2008)),

frequentist approaches (Hansen (2007, 2014), Hjort and Claeskens (2003), Hansen and Racine

(2012), Liu (2015), Liu and Okui (2013), and Zhang and Liang (2011)), and hybrid approaches

(Hjort and Claeskens (2003), Kitagawa and Muris (2016), and Magnus et al. (2010)), but none

of them allows for set-identification/multiple priors in any candidate model.

We tackle this problem from the angle of Bayesian model averaging. Standard Bayesian

model averaging delivers a single posterior that is a mixture of the posteriors of the candidate

models with weights equal to the posterior model probabilities.2 This approach could in princi-

ple be extended to our context if one could obtain a single posterior for every model, including

set-identified ones. Assuming a single prior under set identification is however problematic from

a robustness viewpoint as the choice of a single prior, even an apparently uninformative one,

can lead to spuriously informative posterior inference for the object of interest (Baumeister and

Hamilton (2015)). The severity of the problem is magnified by the fact that the effect of the

prior choice persists asymptotically, unlike in the case of point-identified models (Moon and

Schorfheide (2012), Poirier (1998), among others).

The key innovation of our approach to Bayesian model averaging is that we do not assume

availability of a single posterior for the set-identified models. Rather, we allow for multiple

priors (an ambiguous belief ) within the set-identified models (as in Giacomini and Kitagawa

(2020)), and then combine the corresponding multiple posteriors with single posteriors for

models that are either point-identified or that impose non-dogmatic identifying assumptions

in the form of a Bayesian prior for the structural parameters (as in Baumeister and Hamilton

(2015)). The output of the procedure is a set of posteriors (post-averaging ambiguous belief ),

1There are several examples in the empirical literature of sign-restricted models considering a large number

of restrictions. For example, Korobilis (2020) considers a model with 63 sign restrictions; sign-restricted SVARs

that consider many restrictions include, among others, Matthes and Schwartzman (2019) in the context of

business cycles analysis, Ahmadi and Uhlig (2015), who investigate monetary policy, Furlanetto et al. (2019),

who focus on financial shocks, and Antolin-Diaz et al. (2020), who study monetary policy and financial shocks.
2When a constrained model is a lower dimensional submodel of a large model, performing inference conditional

on the constrained model may suffer from the Borel paradox; see, e.g., Drèze and Richard (1983). Bayesian model

averaging offers a practical way to avoid the Borel paradox in such context.
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that are mixtures of the single posteriors and any element of the set of multiple posteriors,

with weights equal to the posterior model probabilities. To summarize and visualize the post-

averaging ambiguous belief, we recommend reporting the set of posterior quantities (e.g., the

mean or median) and the associated credible region (an interval to which any posterior in the

class assigns a certain credibility level). We show that these quantities have analytically simple

expressions and are easy to compute in practice.

This paper contributes to the growing literature on Bayesian inference for partially identi-

fied models (Giacomini and Kitagawa (2020), Kline and Tamer (2016), Moon and Schorfheide

(2012), Norets and Tang (2014), Liao and Simoni (2013)). We follow the multiple-prior ap-

proach to model the lack of knowledge within the identified set as in Giacomini and Kitagawa

(2020). When a set-identified model is the only model considered, the set of posteriors gener-

ated by the approach leads to the posterior inference for the identified set proposed in Kline

and Tamer (2016), Liao and Simoni (2013), and Moon and Schorfheide (2011). When there

is uncertainty about the identifying assumptions, however, the usual definition of identified

set is not available without conditioning on the model. The multiple prior viewpoint has an

advantage in this case since the set of posteriors has a well-defined subjective interpretation

even in the presence of model uncertainty.

The method proposed in this paper provides a formal framework for conducting sensitivity

analysis of causal inferences to the choice of identifying assumptions. For example, when a

set-identified model nests a point-identified model, the method can be used to assess the pos-

terior sensitivity in the point-identified model with respect to perturbations of the prior in the

direction of relaxing some of the point-identifying assumptions. In this case, we can formally

interpret our averaging method as an example of the ε-contamination sensitivity analysis devel-

oped in Huber (1973) and Berger and Berliner (1986), with a particular construction of the prior

class. In another example, if the point-identified model can be considered a reasonable bench-

mark, the method offers a simple and flexible way to add non-dogmatic identifying information

to the set-identified model, which results in increasing informativeness of the conclusions in a

transparent manner. Finally, the method can be used to perform reverse-engineering exercises

that compute the minimal prior probability one would need to attach to a set of identifying as-

sumptions in order for the averaging to preserve a given empirical conclusion (e.g., the so-called

price and liquidity puzzles in monetary SVARs, respectively discussed by (Sims, 1992) and (Re-

ichenstein, 1987)). Obtaining this threshold in terms of the prior model probability shares the

motivation with the breakdown frontier analysis proposed in Horowitz and Manski (1995) and

Masten and Poirier (2020), where the breakdown frontier is the population quantity (as op-

posed to the belief) that measures the minimal violation of the benchmark point-identifying

assumption to support the conclusion.

Our proposed method can also be viewed as bridging the gap between point- and set-
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identification. When focusing solely on a point-identified model, a researcher who is not fully

confident about the choice of identifying assumptions may doubt the robustness of the conclu-

sions. On the other hand, discarding some of the point-identifying assumptions and reporting

estimates of the identified set may appear “excessively agnostic”, and often results in unin-

formative conclusions. Our averaging procedure reconciles these two extreme representations

of the posterior beliefs by exploiting the prior weights that one can assign to alternative sets

of identifying assumptions. The output of the procedure is a weighted average of the pos-

terior mean in the point-identified model and the set of posterior means in the set-identified

model. When the identified set is a connected interval, the set of posterior means can be

viewed as an estimate of the identified set (Giacomini and Kitagawa (2020)), and thus our

averaging procedure effectively shrinks the identified set estimate toward the point estimate

from the point-identified model, with the degree of shrinkage governed by the posterior model

probabilities.

In addition to developing a novel approach to Bayesian model averaging, we make two main

analytical contributions to the literature on Bayesian model selection and averaging. First, we

clarify under which conditions the prior model probabilities can be updated by data. We show

that the updating occurs if some models are “distinguishable” for some distribution of data

and/or the priors for the reduced-form parameters differ across models. Second, we investigate

the asymptotic properties of the posterior model probabilities and of the averaging method.

We show that, when only one model is consistent with the true distribution of the data, our

method asymptotically assigns probability one to it. When multiple models are observationally

equivalent and “not falsified” at the true data generating process, the posterior model probabil-

ities asymptotically assign nontrivial weights to them. We clarify what part of the prior input

determines the asymptotic posterior model probabilities in such case. The consistency property

of Bayesian model selection has been well-studied in the statistics literature (e.g., Claeskens and

Hjort (2008) and references therein), but there is no discussion about the asymptotic behavior

of posterior model probabilities when the models differ in terms of the identifying assumptions

but can be observationally equivalent in terms of their reduced form representations. These

new results therefore could be of separate interest.

The empirical application in this paper considers SVAR analysis with uncertainty over the

classes of identifying assumptions typically used in empirical work: causal ordering restrictions

(Bernanke (1986) and Sims (1980)), sign restrictions (Canova and Nicolo (2002), Faust (1998),

and Uhlig (2005)), and restrictions implied by a Dynamic Stochastic General Equilibrium

(DSGE) model. The choice of identifying assumptions has often been a source of controversy

in this literature, given that researchers have differing opinions about their credibility. One

popular choice is the use of sign restrictions. Although the resulting model is set-identified and

the approach therefore raises serious robustness concern as we discussed above, the common
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practice is to consider single-prior Bayesian inference in set-identified SVARs. The large body

of the empirical literature adopting this approach includes Canova and Nicolo (2002), Faust

(1998), Mountford (2005), Rafiq and Mallick (2008), Scholl and Uhlig (2008), Uhlig (2005), and

Vargas-Silva (2008) for applications to monetary policy, Dedola and Neri (2007), Fujita (2011),

and Peersman and Straub (2009) for applications to business cycle model, Mountford and Uhlig

(2009) for applications to fiscal policy, Kilian and Murphy (2012) for applications to oil prices.

Alternative approaches that do not suffer from the pitfalls of single-prior Bayesian inference are

Moon et al. (2013) and Gafarov et al. (2018, 2016), who consider frequentist inference for the

identified set and Giacomini and Kitagawa (2020), who propose a robust Bayesian approach. To

our knowledge, little work has been done on multi-model inference in the SVAR literature, and

the methods proposed in this paper could therefore prove helpful in reconciling the controversies

about the identifying assumptions that are widespread in this literature. As an example, the

empirical application documents the high sensitivity of the conclusion in standard monetary

SVARs that output decreases after a contractionary monetary policy shock to the choice of

identifying assumptions.

The remainder of the paper is organized as follows. Section 2 illustrates the motivation

and the implementation of the averaging method in the context of a simple model. Section 3

presents the formal analysis in a general framework and provides a computational algorithm

to implement the procedure. Section 4 discusses the relationship between our method and

existing Bayesian methods, and discusses elicitation of model probabilities. Section 5 applies

our method to impulse response analysis in monetary SVARs. The Appendix contains proofs

and a microeconometric application.

2 Illustrative Example

We present the key ideas and the implementation of the method in a static model of labor

supply and demand, subject to common types of identifying assumptions.3 The model is:

A

(
∆nt

∆wt

)
=

(
εdt
εst

)
, A =

(
a11 a12

a21 a22

)
, t=1,. . . ,T, (2.1)

where (∆nt,∆wt) are the growth rates of employment and wages and (εdt , ε
s
t ) is an i.i.d. normally

distributed vector of demand and supply shocks with variance-covariance the identity matrix.

A is the structural parameter and the contemporaneous impulse responses are elements of A−1.

The reduced-form model is indexed by Σ, the variance-covariance matrix of (∆nt,∆wt),

which satisfies Σ = A−1(A−1)′. Denote its lower triangular Cholesky decomposition with

3See Appendix A.2 for a microeconometric application to a treatment effect model with noncompliance.
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nonnegative diagonal elements by Σtr =

(
σ11 0

σ21 σ22

)
with σ11 ≥ 0 and σ22 ≥ 0, and define the

reduced form parameter as φ = (σ11, σ21, σ22) ∈ Φ = R+×R×R+.4 Let the mapping from the

structural parameter to the reduced-form parameter be denoted by φ = g(A).

Suppose the object of interest is the response of the first variable to a unit positive shock in

the first variable, α ≡ (1,1)-element of A−1. Without identifying assumptions, the structural

parameter is set-identified since knowledge of the reduced-form parameter φ cannot uniquely pin

down the structural parameter (φ = g(A) is a many-to-one mapping). Imposing assumptions

can lead to a set or a point for α, depending on the type and number of assumptions.

A Bayesian model is the combination of a likelihood and a prior input. The prior input can

be either a single prior or multiple priors. In point-identified models the prior input is a single

prior for the structural parameter θ, which in this case is equivalent to a prior for the reduced-

form parameter φ. In set-identified models, one could either specify a single prior for θ (e.g.,

as a way of imposing non-dogmatic identifying assumptions) or consider multiple priors as in

Giacomini and Kitagawa (2020). In the latter case a model is the combination of a likelihood,

a single prior for the reduced-form parameter φ (which is revised) and multiple priors for θ|φ
(which are not revised). As in Giacomini and Kitagawa (2020) there are several reasons for

adopting a single prior for φ: first, this prior is revised by the data so any sensitivity concerns

in this respect are only present in finite samples; second, multiple priors for φ would lead to

problematic non-convergence issues, as discussed by Ruggeri and Sivaganesan (2000); third,

the single prior for φ facilitates computational implementation. An additional advantage of

separating revisable and unrevisable prior knowledge in the context of model selection is that it

allows one to isolate the component of the model that depends on the identifying restrictions.

This enables one, for example, to compare models that only differ in the restrictions they

impose.

The division that we introduce in the paper is between single-prior models (which could be

point- or set-identified) and multiple-prior models (which are always set-identified). We now

illustrate how this interplays with identifying assumptions in two examples of possible empirical

interest.

2.1 Dogmatic Identifying Assumptions

First consider dogmatic identifying assumptions, which are equality or inequality restrictions

on (functions of) the structural parameter that hold with probability one.

Scenario 1: Candidate Models

• Model Mp (point-identified): The labor demand is inelastic to wage, a12 = 0.

4The positive semidefiniteness of Σ does not constrain the value of φ other than σ11 ≥ 0 and σ22 ≥ 0.
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• Model M s (set-identified): The wage elasticity of demand is non-positive, a12 ≥ 0, and

the wage elasticity of supply is non-negative, a21 ≤ 0.

Model Mp restricts A to be lower-triangular, as in the classical causal ordering assumptions

of Sims (1980) and Bernanke (1986). Combined with the sign normalization restrictions re-

quiring the diagonal elements of A to be nonnegative, the assumption implies that the impulse

responses can be identified by A−1 = Σtr. The parameter of interest is α = αMp(φ) ≡ σ11.

Model M s imposes sign restrictions that only set-identify α. Appendix A shows that the

identified set for α is:

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 ≤ 0.

(2.2)

Note that the identified set is non-empty for any φ. Hence, models Mp and M s are observa-

tionally equivalent at any φ ∈ Φ and neither of them is falsifiable, i.e., for any φ ∈ Φ in both

models there exists a structural parameter A that satisfies the identifying assumptions.5

We start by specifying a prior for φ in each model. Given the observational equivalence of

the two models, it might be reasonable to specify the same prior:

πφ|Mp = πφ|Ms = π̃φ, (2.3)

where π̃φ is a proper prior, such as the one induced by a Wishart prior on Σ. The same prior

for φ in observationally equivalent models leads to the same posterior:

πφ|Mp,Y = πφ|Ms,Y = π̃φ|Y . (2.4)

In model Mp, the posterior for φ implies a unique posterior for α, πα|Mp,Y , via the mapping

α = αMp(φ).

In model M s, on the other hand, the posterior for φ does not yield a unique posterior for α,

since the mapping in (2.2) is generally set-valued. Following Giacomini and Kitagawa (2020),

we formulate the lack of prior knowledge by considering multiple priors (ambiguous belief).

Formally, given the single prior πφ|Ms , we form the class of priors for A by admitting arbitrary

conditional priors for A given φ, as long as they are consistent with the identifying assumptions:

ΠA|Ms ≡
{
πA|Ms =

∫
Φ
πA|Ms,φdπφ|Ms : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}
,

5When σ21 > 0, the point-identified α in model Mp is the upper-bound of the identified set in model Ms,

whereas when σ21 < 0, the identified set in model Ms does not contain the point-identified α. This is because in

model Mp we have a12 = − σ21
σ11σ22

, which is positive if σ21 < 0, meaning that the point-identifying assumptions

a12 = 0 and σ21 < 0 are not compatible with the restriction a21 ≤ 0.
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where Asign = {A : a12 ≥ 0, a21 ≤ 0, diag(A) ≥ 0} is the set of structural parameters that

satisfy the sign restrictions and the sign normalizations and g−1(φ) is the set of observationally

equivalent structural parameters given the reduced-form parameter φ.

Since the likelihood depends on the structural parameter only through the reduced-form

parameter, applying Bayes’ rule to each prior in the class only updates the prior for φ, and

thus leads to the following class of posteriors for A:

ΠA|Ms,Y ≡
{
πA|Ms,Y =

∫
Φ
πA|Ms,φdπφ|Ms,Y : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}
.

(2.5)

Marginalizing the posteriors in ΠA|Ms,Y to α leads to the class of α-posteriors:

Πα|Ms,Y ≡
{
πα|Ms,Y =

∫
Φ̃
πα|Ms,φdπφ|Ms,Y : πα|Ms,φ(ISα(φ)) = 1, πφ|Ms-a.s.

}
. (2.6)

We view this class as a representation of the posterior uncertainty about α in the set-identified

model. The class contains any α-posterior that assigns probability one to the identified set,

and it represents the lack of belief therein in terms of Knightian uncertainty (ambiguity). This

is a key departure from the standard approach to Bayesian model averaging, which requires a

single posterior for all models, including those where the parameter is set-identified.

Suppose that the researcher’s prior uncertainty over the two models can be represented by

prior probabilities πMp ∈ [0, 1] for model Mp and (1− πMp) for model M s.6

Our proposal is to combine the single posterior for α in model Mp and the set of posteriors

for α in model M s according to the posterior model probabilities πMp|Y and πMs|Y (the pos-

terior model probability for model M s depends only on the single prior for the reduced-form

parameter, so it is unique in spite of the multiple priors for the structural parameter). The

combination delivers a class of posteriors Πα|Y , the post-averaging ambiguous belief :

Πα|Y = {πα|Mp,Y πMp|Y + πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y }. (2.7)

As we show in Section 4.1, our proposal can be interpreted as applying Bayes’ rule to each prior

in a class that has the form of an ε-contaminated class of priors (Berger and Berliner (1986)).

A key result of the paper is to establish conditions under which the prior model probabilities

are updated by the data, which we show occurs when the models are “distinguishable” for some

reduced-form parameter values and/or they specify different priors for φ (see Lemma 3.1 below).

In the current scenario, the two models are indistinguishable, so the prior model probabilities

are not updated if they use a common φ-prior.

In practice, we recommend reporting as the output of the procedure the post-averaging set

of posterior means or quantiles of Πα|Y and its associated robust credible region with credibility

6We discuss interpretation and elicitation of the prior model probabilities in Section 4.3.
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γ ∈ (0, 1), defined as the shortest interval that receives posterior probability at least γ for

every posterior in Πα|Y . Proposition 3.1 shows that the set of posterior means is the weighted

average of the posterior mean in model Mp and the set of posterior means in model M s:[
inf

πα|Y ∈Πα|Y
Eα|Y (α), sup

πα|Y ∈Πα|Y

Eα|Y (α)

]
=πMp|YEα|Mp,Y (α) + πMs|Y

[
Eφ|Ms,Y (l(φ)), Eφ|Ms,Y (u(φ))

]
, (2.8)

where (l(φ), u(φ)) are the lower and upper bounds of the non-empty identified set for α shown

in (2.2), a+ b[c, d] stands for [a+ bc, a+ bd], and Eφ|Ms,Y (·) denotes the posterior mean with

respect to πφ|Ms,Y = π̃φ|Y . Since the set of posterior means can be viewed as an estimator for

the identified set in model M s, our procedure effectively shrinks the estimate of the identified

set in the set-identified model toward the point estimate in the point-identified model, with the

amount of shrinkage determined by the posterior model probabilities.

The robust credible region for α with credibility γ can be computed as follows. We first

draw z1, . . . , zG randomly from a Bernoulli distribution with mean πMp|Y and then generate

g = 1, . . . , G random draws of the “mixture identified set” for α according to

ISmixα (φg) =

{α(φg)}, φg ∼ πφ|Mp,Y = π̃φ|Y , if zg = 1

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y = π̃φ|Y if zg = 0.
(2.9)

Intuitively, with probability πMp|Y , a draw of the mixture identified set is a singleton cor-

responding to the point-identified value of α, and with probability πMs|Y it is a non-empty

identified set for α. The robust credible region with credibility level γ is approximated by an

interval that contains the γ-fraction of the drawn ISmixα (φ)’s. The minimization problem in

Step 5 of Algorithm 4.1 in Giacomini and Kitagawa (2020) is solved to obtain the shortest-width

robust credible region.

2.2 Non-dogmatic Identifying Assumptions

Our method allows for identifying assumptions that are expressed as a non-dogmatic prior for

the structural parameter.

Scenario 2: Candidate Models

• Model MB (single prior): A prior for the structural parameter A.

• Model M s (multiple priors): Same as the set-identified model in Scenario 1.

Model MB assumes availability of a prior for the whole structural parameter. This prior can

reflect Bayesian probabilistic uncertainty about identifying assumptions expressed as equalities
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(see, e.g., Baumeister and Hamilton (2015), who propose a prior for a dynamic version of the

current model based on a meta-analysis of the literature). Another key example of a model

that implies a single prior for the structural parameter is a Bayesian DSGE model.

Model MB always yields a single posterior for α. However, the influence of prior choice

does not vanish asymptotically due to the lack of identification. In principle, if the researcher

were confident about the prior specification in model MB, she could perform standard Bayesian

inference and obtain a credible posterior, despite the identification issues. In practice, this is

rather rare. For instance, the prior considered by Baumeister and Hamilton (2015) is based on

the elicitation of first and second moments and the remaining characteristics of the distribution

are chosen for analytical or computational convenience. Further, eliciting dependence among

structural parameters is challenging, and an independent prior could lead to unintended or

counter-intuitive effects on posterior inference.7 These robustness concerns can be addressed

by averaging the Bayesian model MB with the set-identified model M s, which accommodates

the lack of prior knowledge about the structural parameter (beyond the inequality restrictions).

One important consideration in this scenario is that the single prior for A in model MB

implies a single prior for φ. Here we thus allow the prior for φ in model M s to differ from that

in model MB. This, in turn, affects the posterior model probabilities, which are given by:

πMB |Y =
p(Y |MB) · πMB

p(Y |MB) · πMB + p(Y |M s) · (1− πMB )
,

πMs|Y =
p(Y |M s) · (1− πMB )

p(Y |MB) · πMB + p(Y |M s) · (1− πMB )
, (2.10)

where πMB is the prior weight assigned to model MB, p(Y |M) ≡
∫

Φ p(Y |φ,M)dπφ|M (φ),

M = MB,M s, are the marginal likelihoods of model M with p(Y |φ,M) the likelihood of the

reduced form parameters. In this scenario the different priors for φ imply p(Y |MB) 6= p(Y |M s),

and therefore the prior model probabilities can be updated by the data.

Given these posterior model probabilities, the construction of the post-averaging ambiguous

belief proceeds as in (2.7). The set of posterior means for α can be obtained similarly to (2.8),

where MB replaces Mp. The robust credible region can be constructed as in Scenario 1, by

drawing iid draws z1, . . . , zG ∼ Bernoulli(πMB |Y ) and letting

ISmixα,g =

{α}, α ∼ πα|MB ,Y , if zg = 1,

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y if zg = 0.
(2.11)

3 Formal Analysis

This section formalizes the idea in a general setting and proves the analytical claims made in

the previous section.

7“Knowing no dependence” among the parameters differs from “not knowing their dependence.”
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3.1 Notation and Definitions

Consider J + K ≥ 2 candidate models, J,K ≥ 0, that can differ in various aspects, including

the identifying assumptions and the parameterization of the structural model. The class of

J models consists of single-prior models, whose prior input always (i.e., independent of the

realization of the data) leads to a single posterior for the parameter of interest. Examples are

models that impose dogmatic point-identifying assumptions with a single prior for the reduced-

form parameter (such as model Mp in Scenario 1), or models that assume a single prior for the

structural parameter in spite of it being set-identified (such as model MB in Scenario 2). We

denote the class of single-prior models by Mp.

The class of K models consists of multiple-prior models, defined by the following features:

(1) under the identifying assumptions the parameter of interest is set-identified, i.e., knowledge

of the distribution of observables (value of the reduced-form parameter) does not pin down a

unique value for the parameter of interest, and (2) they specify a single prior for the reduced-

form parameter. The posterior information in a multiple-prior model is characterized by the

set of posteriors. We denote the class of multiple-prior models by Ms.

Let M ≡Mp ∪Ms. The vector of structural parameters in model M ∈ M is θM ∈ ΘM ,

where ΘM is the set of structural parameters that satisfy the identifying assumptions imposed

in model M . We assume that the scalar parameter of interest α = αM (θM ) ∈ R is well-

defined as a function of θM and it carries a common (causal) interpretation in all models. The

reduced-form parameter φM is a function of the structural parameter, φM = gM (θM ) ∈ RdM ,

where gM (·) maps a set of observationally equivalent structural parameters subject to the

identifying assumptions in model M to a point in the reduced-form parameter space, defined

as ΦM = gM (ΘM ).8 As reflected in the notation, our most general set-up allows the parameter

space of both structural and reduced-form parameters to differ across models.9 We express

the likelihood in model M ∈ M in terms of the reduced-form parameter by p(Y |φM ,M). For

a multiple-prior model M ∈ Ms, define the identified set of α by ISα(φM |M) = {αM (θM ) :

θM ∈ ΘM ∩ g−1
M (φM )}, which is a set-valued mapping from ΦM to R.

Note that, by construction, the parameter space of the reduced form parameter ΦM in-

corporates the testable implications, if any, of the imposed identifying assumptions. For a

set-identified model M s ∈ Ms, ΦMs is equivalent to the set of φM ’s that yield a non-empty

identified set, ΦMs = {φMs ∈ RdMs : ISα(φMs |M s) 6= ∅}.10

8The likelihood p̃(Y |θM ,M) in model M depends on θM only through the reduced-form parameters gM (θM )

for any realization of Y , i.e., there exists p(Y |·,M) such that p̃(Y |θM ,M) = p(Y |gM (θM ),M) holds for every Y

and φM = gM (θM ) is identifiable. The statistics literature refers to the reduced-form parameter as the minimally

sufficient parameter (see, e.g., Dawid (1979)).
9For instance, in the model considered in Section 2, the reduced-form parameter space can differ depending

on how many lagged endogenous variables and/or exogenous variables are included in each model.
10For instance, in a SVAR with observationally restrictive sign restrictions, ΦM is the set of reduced-form
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The next definition introduces the concept of identical reduced-forms among the candidate

models. Our analytical results about the posterior model probabilities shown below (Lemma

3.1 and Proposition 3.3) assume that some or all of the candidate models admit an identical

reduced-form.

Definition 3.1 Let M be a collection of models. M admits an identical reduced-form if

the following conditions hold:

(a) ΦM can be embedded into a common d-dimensional Euclidean space Rd for all M ∈ M
(hence φM can be denoted by φ ∈ Rd).

(b) For every M ∈ M, the reduced-form likelihood p(Y |φM = φ,M) defines a probability

distribution of Y on the extended domain φ ∈ Φ ≡ ∪M∈MΦM , and p(Y |φM = φ,M) =

p(Y |φ) holds for all φ ∈ Φ, where p(Y |φ) is the likelihood common among M ∈M.

Definition 3.1 formalizes the situation where models imposing different identifying assump-

tions lead to the same parametric family of distributions for the observables (Condition (a)).

Different identifying assumptions, nonetheless, can constrain the class of distributions of ob-

servables in the sense that the domain of reduced-form parameters ΦM can differ among the

models. The key condition in Definition 3.1 is (b), requiring that the distribution of the data

Y in model M (indexed by φ) is well-defined over the extended domain Φ = ∪M∈MΦM and

the likelihood of φ is common among the models M ∈ M. For instance, if M consists of

SVAR models with the same set of variables but subject to different identifying assumptions

(including observationally restrictive ones such as sign restrictions), the conditions of Definition

3.1 are satisfied when when the reduced-form VARs implied by the models feature the same

variables and lag length. See also the treatment effect models of Appendix A.2 as a microe-

conometrics example where all the candidate models admit an identical reduced-form. In what

follows, whenever we assume thatM admits an identical reduced-form, we denote the common

reduced-form parameters by φ and the common reduced-form likelihood by p(Y |φ).

The next set of definitions introduces the concepts of observational equivalence and distin-

guishability of the candidate models.

Definition 3.2 (i) The models in M are observationally equivalent at φ if M admits

an identical reduced-form and φ ∈ ∩M∈MΦM .

(ii) Two distinct models M,M ′ ∈ M that admit an identical reduced-form are distinguish-

able if ΦM 6= ΦM ′.

parameters in the VAR yielding a non-empty impulse response identified set, which can be a proper subset of

the reduced-form parameter space of the VAR.
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(iii) The models in M are indistinguishable if M admits an identical reduced-form and

ΦM = Φ for all M ∈M.

Models that are observationally equivalent at φ (Definition 3.2 (i)) generate the same dis-

tribution of data (corresponding to φ), implying that knowledge of φ fails to uniquely identify

what model generated the data. Note that our definition of observational equivalence is local

to the given φ, and it does not constrain the relationship among the reduced-form parameter

spaces for different models except that they must have a non-empty intersection. In contrast,

the concept of (in)distinguishability in Definition 3.2 (ii) and (iii) concerns the relationship

among the reduced-form parameter spaces across models. If two models admitting an identical

reduced-form are distinguishable, then there exists some reduced-form parameter value that

allows one to falsify one model in favor of the other. On the other hand, indistinguishability

of Definition 3.1 (iii) can be interpreted as observational equivalence of the models in a global

sense — if the models are indistinguishable, one could not find support for one model rather

than the others based on the data, regardless of any available knowledge about the distribution

of observables.

3.2 Prior and Posterior Model Probabilities

This section shows when and how the data update the prior model probabilities when some or

all of the candidate models admit an identical reduced form.

Let (πM : M ∈ M),
∑

M∈M πM = 1, be prior probabilities assigned over M. By Bayes’

rule, the posterior model probability for each model in the class is

πM |Y =
p(Y |M)πM∑

M ′∈M p(Y |M ′)πM ′
. (3.1)

By the definition of reduced-form parameters, the value of the likelihood depends on θM only

through φM , for which we assume a single prior. This implies that the marginal likelihood

depends only on the φM -prior, and thus it can be computed uniquely for all models since every

M ∈M assumes a single prior for φM (including including multiple-prior models).

In situations where the models admit an identical reduced-form, we can simplify the ex-

pression of the posterior model probabilities, as shown in the next lemma.

Lemma 3.1 (i) Suppose that the multiple-prior models M s ∈Ms admit an identical reduced-

form with reduced-form parameters φ ∈ Φ = ∪Ms∈MsΦMs ⊂ Rd. Let π̃φ be a proper prior on

Φ and assume that π̃φ(ΦMs) = π̃φ(ISα(φ|M s) 6= ∅) > 0 holds for all M s ∈ Ms. Let π̃φ|Y be

the posterior of φ obtained by updating π̃φ with the likelihood p(Y |φ), which is common among

all M s ∈Ms. Suppose that the φ-prior in each model is specified according to

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
, B ∈ B(Φ) (3.2)
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where B(Φ) is the Borel σ-algebra of Φ, i.e., the φ-prior is constructed by trimming the support

of π̃φ to ΦMs. Then the posterior model probabilities are given byπMp|Y = p(Y |Mp)πMp∑
Mp∈Mp p(Y |Mp)πMp+p̃(Y )

∑
Ms∈Ms OMsπMs

, for Mp ∈Mp,

πMs|Y = p̃(Y )OMsπMs∑
Mp∈Mp p(Y |Mp)πMp+p̃(Y )

∑
Ms∈Ms OMsπMs

, for M s ∈Ms,
(3.3)

where OMs is the posterior-prior plausibility ratio of the set-identifying assumptions of model

M s ∈Ms and p̃(Y ) is the marginal likelihood with respect to π̃φ,

OMs ≡
π̃φ|Y (ΦMs)

π̃φ(ΦMs)
=
π̃φ|Y (ISα(φ|M s) 6= ∅)
π̃φ(ISα(φ|M s) 6= ∅)

, p̃(Y ) =

∫
Φ
p(Y |φ)dπ̃φ(φ). (3.4)

(ii) Suppose that, in addition to Ms, all the single-prior models Mp admit an identical

reduced-form. Let π̃φ be as defined in (i) of the current lemma and assume π̃φ(ΦM ) > 0 holds

for all M ∈ M. If the φ-prior satisfies (3.2) in every M ∈ M, then the posterior model

probabilities are further simplified to

πM |Y =
OMπM∑

M∈MOMπM
for M ∈M, (3.5)

where OM =
π̃φ|Y (ΦM )

π̃φ(ΦM ) .

(iii) If all candidate models are indistinguishable and the φ-prior is common among them,

then the model probabilities are never updated, πM |Y = πM for all M ∈ M and for any

realization of Y .

Lemma 3.1 clarifies the sources of updating of the prior model probabilities. In the first

claim, the specification of the φ-prior (3.2) simplifies the marginal likelihood of the set-identified

model M s ∈ Ms to p̃(Y )OMs . The computation of p̃(Y ) and OMs requires one set of Monte

Carlo draws of φ each from the prior π̃φ and from the posterior π̃φ|Y , as well as an assessment of

the validity of the identifying assumptions at the drawn φ’s (the emptiness of the corresponding

identified set). Hence, computation time can be saved by avoiding to run separate algorithms

for each set-identified model. If all the candidate models admit an identical reduced-form

(Lemma 3.1 (ii)), the posterior model probabilities only depend on {OM : M ∈ M}, so one

does not even need to compute the marginal likelihoods. The claim in (iii) says that, if all the

candidate models are indistinguishable and share a unique φ-prior, the prior model probabilities

can never be updated. This result is intuitive: assuming the same prior knowledge for φ in

the indistinguishable models (i.e. a common support of φ), all models have the same marginal

likelihood, which therefore cancels out in (3.1).

Scenario 1 in Section 2 satisfies Lemma 3.1 (iii) and thus no update occurs for the model

probabilities. Scenario 2 satisfies Lemma 3.1 (i) with OMs = 1, since the identified set in M s is
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never empty. In the example of the treatment effect model in Appendix A.2, the point-identified

and set-identified models are distinguishable since they have distinct testable implications.

Hence, if the common kernel of the prior is maintained as in (3.2), Lemma 3.1 (ii) gives the

formula of the posterior model probabilities.

3.3 Post-Averaging Ambiguous Belief and the Set of Posteriors

Estimation of the single-prior models proceeds in the standard Bayesian way. We therefore

take πα|Mp,Y , the posterior for α in each single-prior model Mp ∈Mp, as given.

We perform posterior inference for model M s ∈Ms in the robust Bayesian way: we specify

a single proper prior πφMs |Ms that is supported on ΦMs , and form the set of priors for θMs as

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}
, (3.6)

where B(ΦMs) is the Borel σ-algebra of ΦMs .11 In words, ΠθMs |Ms collects priors for θMs that

satisfy the identifying assumptions with probability one (i.e., πθMs |Ms(ΘMs) = 1) and whose

φMs-marginals coincide with the specified φMs-prior. Applying Bayes’ rule to each θM -prior in

ΠθMs |Ms with the likelihood, p̃(Y |θMs ,M s),12 and marginalizing the resulting posterior of θM

via α = αM (θM ), we obtain the following set of posteriors for α:13

Πα|Ms,Y

≡
{
πα|Ms,Y =

∫
ΦM

πα|Ms,φMsdπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}
.

(3.7)

Given the posterior model probabilities, a posterior for α with the models averaged out is

written as

πα|Y =
∑

Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y ,

where the α-posterior for Mp ∈ Mp is unique, while there are multiple α-posteriors for M s ∈
Ms as shown in (3.7). Since there is no restriction that constrains the choice of posterior across

11By noting that the constraints in (3.6) are rewritten as
∫
B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φ))dπφMs |Ms(φMs) =

πφMs |Ms(B) for all B ∈ B(ΦMs), the prior class (3.6) can be equivalently represented as

ΠθMs |Ms =

{∫
ΦMs

πθMs |φMs ,MsdπΦMs |Ms : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}
.

This alternative expression is exploited in the illustrative example of Section 2.
12The likelihood of θM is linked to the likelihood of φM via p̃(Y |θMs ,Ms) = p(Y |g(θMs),Ms) by the definition

of reduced-form parameters.
13Lemma A.1 in Appendix A shows a formal derivation of Πα|Ms,Y .
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the set of posteriors, the set of averaged posteriors can be represented as

Πα|Y =

{ ∑
Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y ∀M s ∈Ms

}
.

(3.8)

This is a representation of the post-averaging ambiguous belief that generalizes the two-model

case shown in (2.7).

The next proposition provides a formal robust Bayes justification for our averaging formula

(3.8) when the structural parameters are common across all models,14 in which case (3.8) can

be obtained by applying Bayes’ rule to each prior in a certain well-defined class of priors.

Proposition 3.1 Suppose that structural parameters are common in all models, θM = θ ∈ Rdθ

for all M ∈ M, and define Θ = ∪M∈MΘM ⊂ Rdθ . Consider prior model probabilities (πM :

M ∈ M), a prior πθ|Mp for θ in Mp ∈ Mp, and a prior for the reduced-form parameters in

M s ∈Ms. Define a set of priors for (θ,M) ∈ Θ×M:

Πθ,M ≡
{
πθ,M = πθ|MπM : πθ|Ms ∈ Πθ|Ms for every M s ∈Ms

}
, (3.9)

where Πθ|Ms is defined in (3.6). Then, Bayes’ rule applied to each prior in Πθ,M with likelihood

p̃(Y |θ,M) and marginalization to α yields (3.8) as the class of posteriors for α.

The next proposition derives the set of posterior means, posterior quantiles, and the pos-

terior probabilities when the posterior for α varies within Πα|Y .

Proposition 3.2 Let [l(φMs |M s), u(φMs |M s)] be the convex hull of the identified set ISα(φMs |M s)

in model M s ∈Ms.

(i) The set of posterior means of Πα|Y is the convex interval with lower and upper bounds:

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [l(φMs |M s)]πMs|Y ,

sup
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [u(φMs |M s)]πMs|Y ,

where EφMs |Y,Ms(·) is the expectation with respect to the posterior of φMs.

(ii) For any measurable subset H in R, the lower and upper bounds of the posterior probabilities

on {α ∈ H} in the class Πα|Y (the lower and upper posterior probabilities of Πα|Y ) are

inf
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H)πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms(ISα(φMs |M s) ⊂ H) · πMs|Y ,

sup
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H)πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms(ISα(φMs |M s) ∩H 6= ∅) · πMs|Y .

14The reason we assume a common structural parameter space is to ensure that we can construct a prior

distribution on the product space of the structural parameter space and the model space.
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(iii) The lower and upper bounds of the cumulative distribution function (cdf) of πα|Y ∈ Πα|Y

are

πα|Y (a) ≡ inf
πα|Y ∈Πα|Y

πα|Y ([−∞, a])

=
∑

Mp∈Mp

πα|Mp,Y ([−∞, a])πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms ({u(φMs |M s) ≤ a})πMs|Y ,

π̄α|Y (a) ≡ sup
πα|Y ∈Πα|Y

πα|Y ([−∞, a])

=
∑

Mp∈Mp

πα|Mp,Y ([−∞, a])πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms ({l(φMs |M s) ≤ a})πMs|Y ,

and the set of posterior τ -th quantiles, τ ∈ (0, 1), is
[
inf{a : π̄α|Y (a) ≥ τ}, inf{a : πα|Y (a) ≥ τ}

]
.

If a set-identified model delivers ISα(φMs |M s) as a connected interval at every reduced-

form parameter value, then we can view
[
EφMs |Y,Ms [l(φMs |M s)], EφMs |Y,Ms [u(φMs |M s)]

]
as an

estimator of the identified set in model M s. We can therefore interpret the set of post-averaging

posterior means as the weighted Minkowski sum of the Bayesian point estimators (posterior

means) in the point-identified models and the identified set estimators in the set-identified

models. The second claim of the proposition provides an analytical expression for the lower

probability of Πα|Y . This lower probability is a mixture of the containment functionals of the

random sets, which in turn can be viewed as the containment functional of the mixture random

sets Pr(ISmixα ⊂ A), where ISmixα is generated according to

M ∼ Multinomial
(
{πM |Y }M∈M

)
, (3.10)

ISmixα =

{α}, α|(Mp, Y ) ∼ πα|Mp,Y for Mp ∈Mp,

ISα(φMs |M s), φMs |(M s, Y ) ∼ πφMs |Ms,Y for M s ∈Ms.

This way of interpreting the lower probability of Πα|Y simplifies its computation and justifies

the algorithm presented in (2.9).

Note that our method introduces ambiguous beliefs for the non-identifiable parameters,

while it assumes availability of prior model probabilities even when the models are indistin-

guishable. Hence, we are not treating non-identifiability of the parameters and of the models

(choices of identifying assumptions) in a symmetric way. We do not have a normative argument

for this asymmetric treatment, and our view is that whether one wants to introduce ambigu-

ity for the parameters only or for both the parameters and the models should depend on the

user’s prior knowledge. In our observation of empirical practice, researchers typically motivate

the credibility of point-identifying assumptions, whereas if the identifying assumptions only

set-identify the parameter of interest, they tend to express ambiguity in the form of identified

sets. We hence believe that, regardless of whether the models are distinguishable or not, as-

suming availability of probabilistic weights over different sets of identifying assumptions is not
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too demanding for potential users, and our asymmetric treatment is not too distant from the

way that empirical research is currently performed.

3.4 Computation

To report the set of posteriors based on the analytical expressions in Proposition 3.2, we

need to compute (i) the posterior model probabilities (equivalently, the marginal likelihood in

each M ∈ M), (ii) the posterior for α for each single-prior model, and (iii) the identified set

ISα(φMs |M s) and the posterior for φMs for each multiple-prior model. Estimation of the single-

prior models in (ii) is standard, and we assume some suitable posterior sampling algorithm is

applicable to obtain Monte Carlo draws of α ∼ πα|Mp,Y . For (i), efficient and reliable algorithms

to compute the marginal likelihood are available in the literature, e.g., see Chib and Jeliazkov

(2001), Geweke (1999), and Sims et al. (2008). When Lemma 3.1 (ii) applies, i.e., when all the

models admit an identical reduced-form, such as in one of the specifications in the empirical

application of Section 5, computing the marginal likelihoods is not necessary since the posterior

model probabilities depend only on the posterior-prior plausibility ratios OM .

In each multiple-prior model, the posterior-prior plausibility ratio OMs can be computed

by plugging in numerical approximations for the prior and posterior probabilities of the non-

emptiness of the identified set into (3.4). The denominator of OMs is computed by drawing

many φ’s from the prior π̃φ and computing the fraction of draws that yield non-empty identified

sets. The numerator of OMs is computed similarly except that the φ’s are drawn from the

posterior π̃φ|Y . Whether checking the non-emptiness of ISα(φ|M s) is simple or not depends on

the application. In the application in Section 5 to SVARs with sign restrictions, we consider two

ways to check the non-emptiness of ISα(φ|M s). The first (Algorithm A.1) builds on Algorithm

1 of Giacomini and Kitagawa (2020) and assesses non-emptiness based on the Monte Carlo

draws of the impulse responses. The second approach (Algorithm A.2), which is novel in the

literature and can be of independent interest, exploits the analytical features of the identifying

restrictions in sign restricted SVARs. See Appendix A.3 for the details of these algorithms.

Monte Carlo draws of the lower and upper bounds of the identified set in model M ∈ Ms

can be obtained by first drawing φ’s from the posterior π̃φ|Y , then retaining the draws of φ

that yield non-empty ISα(φ|M s), and computing the corresponding l(φ|M s) and u(φ|M s).

Their sample averages approximate Eφ|Ms,Y (l(φ|M s)) and Eφ|Ms,Y (u(φ|M s)). Implementation

of this procedure requires computability of the lower and upper bounds of the identified set for

each φ. In the SVAR application of Section 5, we compute l(φ|M s) and u(φ|M s) by numerical

optimization. Alternatively, adopting the criterion function approach of Chernozhukov et al.

(2007), the computation of the lower and upper bounds of the identified set can be facilitated

by applying the slice sampling algorithm proposed by Kline and Tamer (2016).

Utilizing the mixture random set representation shown in (3.10), we can use the following
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algorithm to approximate the lower posterior probability:

Algorithm 3.1

Step 1: Draw a model M ∈M from a multinomial distribution with parameters (πM |Y : M ∈M).

Step 2: If the drawn M belongs toMp, then draw α ∼ πα|M,Y and set ISmixα = {α} (a singleton).

If the drawn M belongs to Ms, draw φM ∼ πφ|M,Y and set ISmixα = ISα(φM |M).15

Step 3: Repeat Steps 1 and 2 many (G) times and obtain G draws of ISmixα : ISmixα,1 , . . . , IS
mix
α,G .

Step 4: Let [lmixg , umixg ] be the lower and upper bounds of ISmixα,g , g = 1, . . . , G, where lmixg = umixg

if ISmixα,g is a singleton (i.e., g-th draw of M belongs to Mp). Approximate the mean

bounds of the post-average posterior class by

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
1

G

G∑
g=1

lmixg , sup
πα|Y ∈Πα|Y

Eα|Y (α) =
1

G

G∑
g=1

umixg . (3.11)

Approximate the lower probability of the post-averaging posterior class at H ⊂ R by

inf
πα|Y ∈Πα|Y

πα|Y (H) ≈ 1

G

G∑
g=1

1{ISmixα,g ⊂ H}. (3.12)

The draws of ISmixα obtained in Steps 1-3 in Algorithm 3.1 are also useful for constructing

the robust credible regions. The robust credible region with credibility γ ∈ (0, 1) is defined as

the shortest interval to which every posterior in the class assigns probability at least γ;

Cγ ≡ arg min
C∈C

length(C), s.t. inf
πα|Y ∈Πα|Y

πα|Y (C) ≥ γ, (3.13)

where C is the class of connected intervals in R. Since the constraint in (3.13) can be interpreted

equivalently as Pr(ISmixα ⊂ C) ≥ γ, the computation of Cγ can be reduced to finding the

shortest interval that contains the γ-proportion of the Monte Carlo draws of ISmixα . A simple

computation algorithm for this optimization problem is shown in Proposition 1 of Giacomini

and Kitagawa (2020) and it can be readily applied to the current context.

3.5 Asymptotic Properties

This section analyzes the asymptotic properties of our method. The procedure is finite-sample

exact (up to Monte Carlo approximation errors) and does not rely on asymptotic approxima-

tions. The asymptotic analysis is nevertheless valuable, as it highlights what aspects of the

15Note that since πφ|M,Y is supported only on the set of φ’s yielding a non-empty identified set, ISα(φ|M)

computed subsequently is non-empty.
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prior input, if any, remain influential even in large samples. In this section, we make the sample

size explicit in our notation by denoting a size n sample by Y n.

We assume thatM admits an identical reduced-form (Definition 3.1) and that at least one

model is correctly specified, so that the data-generating process is given by p(Y n|φtrue), where

φtrue ∈ Φ is the true reduced-form parameter value. We denote the unconstrained maximum

likelihood estimator for φ by φ̂ ≡ arg maxφ∈Φ p(Y
n|φ) and the true probability law of the

sampling sequence {Y n : n = 1, 2, . . . } by PY∞|φtrue .

For our asymptotic analysis, we impose the following regularity assumptions:

Assumption 3.2 (i) M admits an identical reduced-form and every M ∈M satisfies either

one of the following conditions:

(A) ΦM contains φtrue in its interior.

(B) Φc
M contains φtrue in its interior.

MA, denoting the set of models satisfying condition (A), is non-empty.

(ii) Let ln(φ) ≡ n−1 log p(Y n|φ). There exist an open neighborhood B of φtrue and n0 ≥ 1,

such that for any {Y n : n = n0, n0 + 1, . . . }, ln(·) is third-time differentiable with the

third-order derivatives bounded uniformly on B.

(iii) Let Hn(φ̂) ≡ −∂2ln(φ̂)
∂φ′∂φ . Hn(φ̂) is a positive definite matrix and lim infn→∞ det(Hn(φ̂)) >

0, with PY∞|φtrue-probability one.

(iv) For any open neighborhood B of φtrue,

lim sup
n→∞

sup
φ∈Φ\B

{ln(φ)− ln(φtrue)} < 0

holds with PY∞|φtrue-probability one.

(v) For every M ∈ M, πφ|M has probability density fφ|M (φ) ≡ dπφ|M
dφ (φ) with respect to

the Lebesgue measure on ΦM and fφ|M (φ) is continuously differentiable with a uniformly

bounded derivative. For every M ∈MA, fφ|M (φtrue) > 0.

Assumption 3.2 (i) implies that none of the models has φtrue on the boundary of its reduced-

form parameter space. MA defined in Assumption 3.2 (i) collects the models that are obser-

vationally equivalent at φtrue in the sense of Definition 3.2 (i). The requirement that φtrue

be in the interior of ΦM implies that ΦM , M ∈ MA, has a non-empty interior in Rd. For a

set-identified model, condition (A) implies that M s ∈ MA has a non-empty identified set in

an open neighborhood of φtrue, and condition (B) implies that M s ∈ Ms \MA has an empty
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identified set in an open neighborhood of φtrue. Assumptions 3.2 (iii) and (iv) impose regular-

ity conditions that imply almost sure consistency of φ̂. Assumptions 3.2 (ii) and (v), imposing

smoothness of the log-likelihood and φ-prior, allow an application of the Laplace method to

approximate the large sample marginal likelihood. Assumptions similar to Assumptions 3.2

(ii) - (v) appear in Kass et al. (1990) in their validation of the higher-order expansion of the

marginal likelihood.

The next proposition, which is a large sample analogue of Lemma 3.1, derives the limits of

the posterior model probabilities.

Proposition 3.3 (i) Suppose Assumption 3.2 holds. Then

πM |Y∞ ≡ lim
n→∞

πM |Y n =


fφ|M (φtrue)·πM∑

M′∈MA
fφ|M′ (φtrue)·πM′

, for M ∈MA,

0, for M /∈MA.
(3.14)

with PY∞|φtrue-probability one.

(ii) Suppose that Assumption 3.2 holds and a prior for φ given M is constructed according

to (3.2) with a proper prior π̃φ. If π̃φ(ΦM ) > 0 for all M ∈M,

πM |Y∞ =


π̃φ(ΦM )−1·πM∑

M′∈MA
π̃φ(ΦM′ )

−1·πM′
, for M ∈MA,

0, for M /∈MA.
(3.15)

with PY∞|φtrue-probability one.

(iii) Under the assumptions of Lemma 3.1 (iii), πM |Y∞ = πM holds for every M ∈M for any

sampling sequence {Y n : n = 1, 2, . . . }.

The proposition clarifies the large sample behavior of the posterior model probabilities when

the models admit an identical reduced-form. First, it shows that our procedure asymptotically

screens out models whose identifying assumptions are misspecified M /∈MA, as their posterior

probabilities converge to zero irrespective of the prior probabilities. If there is only one model

consistent with the data generating process, asymptotically it has probability one. Second,

if MA contains multiple models, their asymptotic probabilities are determined by the prior

model probabilities and the densities of the φ-priors evaluated at φtrue. This implies that the

sensitivity of the post-averaging posterior to the choices of φ-priors and prior model probabilities

does not vanish asymptotically when multiple models are observationally equivalent at φtrue.

Third, when the φ-priors share a common kernel, as assumed in Proposition 3.3 (ii), the

asymptotic model probabilities are proportional to the reciprocal of the prior probability (in

terms of π̃φ) that the distribution of data is consistent with the identifying assumptions. Hence,

the asymptotic posterior model probabilities are higher for more observationally restrictive
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models, i.e., if ΦM1 ⊂ ΦM2 for M1,M2 ∈ MA, we have πM1|Y∞ ≥ πM2|Y∞ . This result is in

line with the principle of parsimony (Ockham’s razor), which the standard Bayesian model

selection/averaging is typically equipped with — we should prefer a more parsimonious model

among those that explain the data equally well. Note that the notion of parsimony here refers

to the size of the reduced-form parameter spaces, and has nothing to do with the strength of

the identifying assumptions (often measured by the width of the identified set for α).16

Proposition 3.3, which assumes the reduced-form model is correctly specified and common

among the candidate models, can be extended to the case where the common reduced-form

model is misspecified. In such case, if we interpret φtrue as the unique pseudo-true parameter

and maintain Assumption 3.2, we can show that the maximum likelihood estimator φ̂ and the

posterior for φ are consistent estimators of the pseudo-true parameters in models such that

ΦM contains φtrue. The proof of Proposition 3.3 then carries over to show that the asymptotic

model probabilities remain valid even with misspecified reduced-form models.

A combination of the asymptotic posterior model probabilities obtained in Proposition 3.3

and the asymptotic behavior of πα|M,Y n for single-prior models and of Πα|M,Y n for multiple-prior

models yields the asymptotic convergence properties of the set of post-averaging posteriors. To

be specific, in addition to Assumption 3.2, we assume that (i) the posterior for φ is consistent

for φtrue with PY∞|φtrue-probability one, (ii) for Mp ∈ Mp ∩ MA, αMp(·) is continuous at

φtrue and the posterior of αMp(φ) is uniformly integrable with PY∞|φtrue-probability one, and

(iii) for M s ∈ Ms ∩ MA, ISα(φ|M s) is a compact and continuous correspondence at φtrue

and the posteriors of l(φ|M s) and u(φ|M s) are uniformly integrable with PY∞|φtrue-probability

one. Then, the set of post-averaging posterior means considered in Proposition 3.2 (i) has the

following limits:

lim
n→∞

[
inf

πα|Y n∈Πα|Y n
Eα|Y n(α), sup

πα|Y n∈Πα|Y n
Eα|Y n(α)

]

=
∑

Mp∈Mp∩MA

αMp(φtrue)πMp|Y∞ +

 ∑
Ms∈Ms∩MA

l(φtrue|M s)πMs|Y∞ ,
∑

Ms∈Ms∩MA

u(φtrue|M s)πMs|Y∞

 .
16For instance, in a SVAR, a model point-identified by a set of equality restrictions is not observationally

restrictive, while a model set-identified by sign restrictions can be observationally restrictive. If the φ-priors

satisfy (3.2) and the two models are observationally equivalent at φtrue, then, relative to the prior model

weights, the sign-restricted model receives a larger weight than the point-identified model in large sample.
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4 Discussion

4.1 Relationship with ε-contaminated Class of Priors

The method proposed in this paper has a close link to performing robust Bayes analysis using

an ε-contaminated class of priors (Huber (1973), Berger and Berliner (1986)). To clarify

this, consider the simple case of one single posterior model and one multiple posterior model,

M = {Mp,M s}. Further assume that the models share the same parameterization of the

structural model and the likelihood for the common structural parameters θ does not depend

on the model.

Given (πMp , πMs), πθ|Mp , and Πθ|Ms in the form of (3.6), consider the set of priors for θ

constructed by marginalizing Πθ,M of Proposition 3.1 to θ;

Πθ ≡
{
πθ = πθ|MpπMp + πθ|MsπMs : πθ|Ms ∈ Πθ|Ms

}
. (4.1)

Similarly to Proposition 3.1, we obtain the post-averaging ambiguous belief Πα|Y by updating

Πθ prior-by-prior with the common likelihood of θ and marginalizing to α.

A general formulation of an ε-contaminated class of priors is given by

Πε
θ ≡

{
πθ = (1− ε)π0

θ + εqθ : qθ ∈ Q
}
, (4.2)

where 0 ≤ ε ≤ 1 is a prespecified constant, π0
θ is a benchmark prior for θ, and Q is a set of priors

of θ. Following Berger and Berliner (1986), a motivation for considering the ε-contaminated

class of priors can be stated as follows. The researcher can express an initial believable prior

for θ as π0
θ , but the elicitation process is subject to error by some amount specified by ε.

qθ captures in what way π0
θ differs from the most credible prior and Q specifies the set of

possible departures. Huber (1973) and Berger and Berliner (1986) show the sets of posterior

probabilities for various specifications of Q when a prior varies over Πε
θ.

Despite the fact that the motivation for our averaging procedure differs from the original

motivation of the ε-contaminated class of priors, the prior input of our averaging procedure

specified in (4.1) has the same form as the ε-contaminated class of priors (4.2) — Πθ is an

ε-contaminated class of priors where the benchmark prior is the single-prior (point-identified)

model π0
θ = πθ|Mp , the amount of contamination is the prior model probability assigned to the

set-identified model ε = πMs , and the set of priors Q corresponds to the multiple priors for

the set-identified model Πθ|Ms . This clarifies a robust Bayes interpretation of our averaging

method.17 If the single-prior (point-identified) model plays the role of a sensible benchmark

17As an alternative to the prior-by-prior updating, Berger and Berliner (1986) also considers the Type-II

Maximum Likelihood updating rule (empirical Bayes updating rule) of Good (1965). This alternative approach

resolves ambiguity by selecting from the class a prior that maximizes the marginal likelihood. Note that the

Type-II Maximum Likelihood procedure fails to select a unique prior from Πθ, because πθ|Ms ∈ Πθ|Ms sharing

a common prior for φ has a constant marginal likelihood.
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model subject to potential misspecification, averaging it with the set-identified model with

weight πMs can be interpreted as performing sensitivity analysis by contaminating the prior

of the point-identified model by an amount πMs in every possible direction subject to the

set-identifying assumptions. Similarly to fixing ε in the robust Bayes analysis with an ε-

contaminated class of priors, our model averaging procedure fixes πMs no matter whether Mp

and M s are distinguishable or not. To treat indistinguishable models and non-identifiable

parameters in M s in the same way, we could additionally introduce ambiguity for πMs . If Mp

is nested in M s, however, full ambiguity of πMs ∈ [0, 1] would lead to the same set of posteriors

that would be obtained from the set-identified model only, i.e., πMs = 1.

This perspective also contrasts our averaging procedure with standard Bayesian model

averaging. If π0
θ in (4.2) is degenerate for some θ due to the point-identifying assumption while

qθ is not, πθ can be viewed as a spike-and-slab prior. It is well known that Bayesian model

averaging with a model involving a dogmatic constraint can be replicated by the Bayesian

procedure with the spike-and-slab prior. Our model averaging procedure, in contrast, exploits

the class of spike-and-slab priors spanned by qθ ∈ Q and draws robust conclusions that hold

for all qθ ∈ Q.

The robust Bayes literature on ε-contaminated priors has considered several specifications

of Q that lead to analytically tractable classes of posteriors (Berger and Berliner (1986)). To

our knowledge, however, the class of priors in the form of Πθ|Ms has not been investigated.

Motivated by partial identification analysis, our analysis offers a new way to specify Q without

losing analytical and numerical tractability.

4.2 Relationship with Hierarchical Bayesian Approach

Point-identifying assumptions or a prior for structural parameters sometimes come from a

structural econometric model based on economic theory. A set-identified model, in contrast,

may represent a “semi-structural” heuristic description of the underlying causal mechanisms

with a flexible functional form. For instance, in empirical macroeconomic policy analysis,

we can view a DSGE model as a single-prior model and a sign restricted SVAR model as a

set-identified model.

In such contexts, averaging models offers a way to combine the structural modelling ap-

proach and a more “reduced-form” approach.18 The macroeconometrics literature has proposed

using hierarchical Bayesian methods to bridge the gap between structural and “reduced-form”

approaches (Del Negro and Schorfheide (2004)), in which the structural parameters in the

DSGE model act as hyperparameters of a prior for SVAR parameters.

The robust Bayes averaging approach, albeit similar in motivation in such contexts, differs

18What we mean by “reduced-form” approach here differs from the technical terminology of the reduced-form

model/parameters in our expositions.
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from the hierarchical Bayesian approach in several ways. First, the hierarchical Bayesian ap-

proach always leads to a single posterior for the impulse responses, no matter whether they

are identified or not in the SVAR model. If they are not, this means that the prior for the

structural parameters in the DSGE model and the prior for the SVAR parameters (given the

hyperparameters) have some part that is unrevisable by the data. Hence, if one cannot specify

these priors with full confidence, posterior sensitivity may well become a concern. In contrast,

our procedure classifies the DSGE model as a single posterior model and the set-identified

SVAR as a multiple-prior model. Limited credibility in the prior for the Bayesian DSGE model

can be incorporated into the posterior inference by averaging it with the set-identified SVAR

model with carefully specified πMs . Second, in the hierarchical Bayesian approach, tightness

of the prior around the mean predicted by the DSGE model plays the role of prior confidence

assigned to the structural model. In our procedure, the model probability assigned to the

structural model governs the degree of confidence. It is however important to distinguish the

notions of confidence between the two approaches, since the former is in the scale of Bayesian

probabilistic uncertainty while the latter is in the scale of ambiguity (Knightian uncertainty).

4.3 Eliciting Prior Model Probabilities

The key prior input of our procedure is the prior model probability. A natural starting point

is to assume a uniform distribution of prior probabilities, however our procedure can readily

accommodate non-uniform probabilities. Discussions on how to determine prior probabilities

in Bayesian averaging are in, e.g., George (1999) in the discussion of Clyde (1999), where, in

order to prevent from overvaluing similar models, he suggests a ”dilution” technique, i.e., if

some models are similar, the weight attached to the original model should be split between that

model and its duplicates. Among others, Chipman (1996) attaches smaller prior probabilities

to models that are unlikely, Hoeting et al. (1999) rely on variable selection in regression models

to determine prior probabilities and Clyde and George (2004) propose a Bernoulli specification.

In our context, the robust Bayesian viewpoint based on the ε-contaminated class of priors

can help clarify the interpretation of the prior model probabilities and facilitate their elicitation.

Suppose again that the set of candidate models consists of one point-identified model Mp

and one set-identified model M s. Assume in addition that Mp is nested in M s, in the sense

that the identifying assumptions in Mp include those in M s. In this case, the prior model

probability assigned to Mp can be interpreted as the minimal amount of credibility assigned

to the identifying assumptions in model Mp, and the prior model probability assigned to the

set-identified model can be interpreted as the maximal amount of contamination given to the

point-identifying assumptions imposed in Mp but not in M s. The reason that πMp is giving the

credibility lower bound for model Mp is that, when model M s nests model Mp, the set of priors

specified in model M s contains beliefs that assign full or partial credibility to the identifying
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assumptions in Mp. As a result, any prior probability between [πMp , 1] can be attained for the

credibility of the identifying assumptions in Mp.

The interpretation of the prior model probabilities differs when the identifying assumptions

in models Mp and M s are non-overlapping. In this case, the prior model probabilities are

interpreted as the standard probabilistic belief assigned over mutually exclusive models.

When the identifying assumptions in models Mp and M s are non-nested but overlapping

(e.g., Scenario 1 in Section 2), interpreting the model probabilities may not appear as clear-cut

as in the previous two cases. However, the lower credibility bound interpretation of πMp given

in the nested case above remains valid. What differs from the nested case is that the maximal

credibility that can be assigned to the identifying assumptions in Mp can be strictly less than

one.

5 Empirical Application

We illustrate our method in the context of a conventional monetary SVAR for the federal funds

rate it, real output growth ∆gdpt and inflation πt, as in Aruoba and Schorfheide (2011) and

Moon et al. (2013). We employ the Hannan-Quinn (HQ) information criterion to select the

number of lags, that is three. Following Definition 3 in Giacomini and Kitagawa (2020), we

order the variables so that we can easily verify the conditions guaranteeing convexity of the

identified set using their Proposition B.1.

A0yt = a+
3∑
j=1

Ajyt−j + εt, for t = 1, . . . , T (5.1)

where yt = (it,∆gdpt, πt)
′ and

A0 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (5.2)

Assume εt = (εit, ε
∆gdp
t , επt )′ are i.i.d. normally distributed with mean zero and variance-

covariance the identity matrix I3. The corresponding reduced-form VAR is:

yt = b+
3∑
j=1

Bjyt−j + ut, (5.3)

where b = A−1
0 a,Bj = A−1

0 Aj , ut = A−1
0 εt, var(ut) = E(utu

′
t) = Σ = A−1

0 (A−1
0 )′. The reduced

form parameter is φ = (b, B1, . . . , B4,Σ).

The first equation in (5.1) is interpreted as a monetary policy function: the Federal Reserve

reacts to price and GDP, as well as lags of all variables. The second and third equations
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represent aggregate demand (AD) and aggregate supply (AS), respectively. The data are

quarterly observations from 1965:1 to 2005:1 from the FRED2 database.

The prior for the reduced-form parameters is a Random Walk, relatively flat and belongs

to the Normal Inverse-Wishart family:19

Σ ∼ IW(Ψ, d), β|Σ ∼ N (b̄,Σ⊗ Ω),

where β ≡ vec([b, B1, . . . , B4]′). Ψ = I3 is the location matrix of Σ, d = 4 is a scalar degrees

of freedom hyperparameter and Ω = 100I10 is the variance-covariance matrix of β. We set b̄,

which is the prior mean of β, such that each endogenous time series is a Random Walk a-priori.

In what follows, we perform Algorithm 3.1 with the 1000 number of draws of φ’s from the

Normal Inverse-Wishart posterior.

Following Christiano et al. (1999), we impose the sign normalization restrictions so that the

diagonal elements of A0 are nonnegative. As a result, we can interpret a unit positive change

in a structural shock as a one standard-deviation positive shock to the corresponding variable.

5.1 Averaging Indistinguishable Models

Suppose we are interested in the cumulative output growth response20 to a unit positive shock

in the federal funds rate εit at horizon h, IRh∆gdp,i, and consider the following two sets of

identifying assumptions.

• Model 1 (M1, point-identified) Assume that AD and AS do not react on impact to the

interest rate shock: a21 = a31 = 0 in (5.1) and (5.2). This identification scheme point-

identifies IRh∆yi; note that such identifying restrictions are also implied by standard

recursive causal ordering restrictions (Bernanke (1986) and Sims (1980)).21

• Model 2 (M2, set-identified through zero restrictions)

The identification scheme in Model 1 is controversial. For example, assumption a31 = 0,

implying that prices do not react contemporaneously to the interest rate shock, can be

difficult to justify if the researcher relies on quarterly data or on the stock price index

rather than the GDP deflator.22 Thus, in Model 2 we leave AS unrestricted, i.e., AS can

react to the interest rate within a quarter and the zero restrictions are now a21 = 0. By

19In order to reduce the computational burden, we use a conjugate prior as its posterior and marginal likelihood

is analytically available.
20From now on, any impulse response is cumulative.
21Causal ordering restrictions point-identify all the shocks in (5.1) also assuming a23 = 0. However, as long

as we are interested in point-identifying monetary shock only, restrictions in Model 1 are equivalent to causal

ordering restrictions: a23 = 0 does not affect the identified set of IRh∆gdp,i (see Corollary B.1 in Giacomini and

Kitagawa (2020)).
22See Kilian (2013) for details over the limitations of point-identifying assumptions.
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Proposition B.1 in Giacomini and Kitagawa (2020), Model 2 delivers a convex identified

set for IRh∆gdp,i for every value of the reduced form parameters.

Panels (a), (b), and (e) of Figure 1 focus on the output response at horizon h = 3 implied

by Model 1, Model 2 and their average for uniform prior model probabilities. In panel (a),

the vertical solid lines for Model 1 are the 90% credible region for the point-identified output

response based on a single posterior for the impulse response; in panel (b), the vertical dashed

lines for Model 2 are the posterior mean bounds (consistent estimator of the identified set)

for the output response and the solid line represents credible regions piled up from the 95%

(bottom) to 5% (top) with increasing credibility by 5%. Panel (e) reports the model average

results. The vertical dashed lines for the averaged model can be viewed as shrinking the

identified set estimator from Model 2 towards the point estimator from Model 1. Figure 2

reports the output response estimation and inference for multiple horizons for the same models

as in Figure 1.

Note that, as is common for standard recursive causal ordering restrictions in small-scale

SVARs, the point-identified Model 1 shows a negative response of output in the short run,

whereas the set-identified Model 2 supports both positive and negative effects. This is confirmed

by the last row in Table 2, reporting the lower and upper probability that the post-averaging

interval of posterior means of the output response is negative.23 Averaging the models still does

not support a negative output response, as the 90% robust credibility region always crosses the

zero line. Note that in this case the models are indistinguishable and so the prior model

probabilities are not updated by the data. If researcher attached a higher prior probability to

Model 1, we would observe a bigger shrinkage of the post-averaging interval of posterior means

and robust credibility region towards the point-identified case.24

5.2 Averaging Distinguishable Models

In the previous example, model prior probabilities are not updated. Here we consider more

interesting cases, in which model prior probabilities get updated, by adding two models that are

widely used in empirical applications: a sign-restricted SVAR and a structural DSGE model.

• Model 3 (M3, set-identified through sign restrictions)

We consider the following sign restrictions: the inflation response to a contractionary

monetary policy shock is nonpositive and the interest rate response is nonnegative at

h = 0, 1. As in Uhlig (2005), the output response is unrestricted. By Lemma 5.2 in

Giacomini and Kitagawa (2020), the identified set in Model 3 is convex.

23This is computed as the probability that the identified set lies entirely in the negative real halfline and the

probability that the identified set intersects with the negative real halfline. For point-identified models, the set

of probabilities collapses to a singleton.
24The case for w1 = 0.8 is available upon request.
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Consider averaging Model 1 and Model 3 with equal prior probabilities. In contrast to the

previous example, the prior probabilities can now be updated using equation (3.5) because

the candidate models are distinguishable due to the imposition of observationally restrictive

sign restrictions. Appendix A.3 provides two algorithms for approximating the posterior-prior

plausibility ratio for the sign-restricted SVARs. Here, we report the results based on Algorithm

A.1, as the other algorithm (Algorithm A.2) produces almost identical results.25

Panel (f) of Figure 1 and 2 reports the results of averaging the two models: as in the case

of Model 2, Model 3 does not support a negative output response (this is also the conclusion

of Uhlig (2005), however based on a single-prior approach). Table 1 shows that the posterior

model probabilities favour Model 3 (with posterior probability 0.55), and the average of the

two models does not support a negative output response.

• Model 4 (M4, DSGE)

We consider the Bayesian DSGE model in An and Schorfheide (2007), which is a simplified

version of Smets and Wouters (2003) and Christiano et al. (2005). In order to estimate

the model, we rely on the prior specification in An and Schorfheide (2007), Table 2 and

use output, inflation and interest rate as observables. We use the Laplace approximation

to compute the marginal likelihood.

Panel (g) of Figure 1 and 2 shows the results of averaging Models 3 and 4; note the different

scale for Model 4. These models do not admit an identical reduced form, so the (equal) prior

probabilities are updated according to equation (3.3). We see that Model 4 implies a negative

output response, however its posterior model probability is only 0.13, and the averaged model

does not support a negative response.

Finally, Panel (h) of Figure 1 and 2 reports the results of averaging all models (with equal

prior weights). The posterior model probabilities (Table 1, last column) show evidence for the

sign-restricted SVAR, while the support for the DSGE model is again weak. As in all previous

cases, the averaged model does not support a negative output response.

5.3 Reverse-Engineering Prior Model Probabilities

Our method lends itself to useful reverse-engineering exercises that help shed light on the role

of identifying assumptions in drawing inferences. Specifically, we compute the prior probability

one needs to attach to a set of assumptions in order for the averaging to preserve certain model’s

25Only a few sign restrictions imposed, the set of q1’s satisfying the sign restrictions is not small for most of the

draws of φ. Hence, for assessing non-emptiness of the identified set, the numerical approximation of Algorithm

A.1 works as good as the analytical method of Algorithm A.2. In terms of computation time, when K = 1000

draws of φ is used, Algorithm A.2 takes 12.35 seconds to compute O3, while Algorithm A.1 with L = 90000

draws of q1 takes 1377.79 seconds.
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conclusions. In our application, for example, we saw that the negative response of output to a

contractionary monetary policy shock disappears once relaxing either standard causal ordering

restrictions or the restrictions embedded in a DSGE model. We can thus compute the prior

weight one would assign to a given set of restrictions such that the posterior mean bounds, or

the robust credible region, is contained in the negative part of the real line.

First consider Model 1 (point-identification through causal ordering restrictions) and Model

2 (set-identification by relaxing one restriction from Model 1). Letting w be the prior probability

of Model 1, the post-averaging interval of posterior means is

[
inf

πα|Y ∈Πα|Y
Eα|Y (α), sup

πα|Y ∈Πα|Y

Eα|Y (α)

]
=

= πM1|YEα|M1,Y (α) + πM2|Y
[
Eφ|Y,M2(l(φM2 |M2)), Eφ|Y,M2(u(φM2 |M2))

]
and the posterior model probabilities are equal to the prior probabilities (since the models are

indistinguishable), i.e., πM1|Y = w and πM2|Y = 1− w.

We want to compute the prior model probability w such that the post-averaging interval of

posterior means is contained in the negative part of the real line at h = 3. This is equivalent

to solving a system of inequalities where w is the unknown.

We find that one would need to attach a prior probability greater than 0.05 to the validity

of the assumption that prices do not react contemporaneously to an interest rate shock in order

to have the post-averaging interval of posterior means contained in the negative real halfline.

We next consider Model 1 and Model 3 (set-identification through sign restrictions). The

reverse-engineering exercise proceeds as before, with the only difference that now the posterior

model probabilities are updated and are equal to

πM1|Y =
O1 · w

O1 · w +O3 · (1− w)
and πM3|Y =

O3 · (1− w)

O1 · w +O3 · (1− w)
.

We find that the post-averaging interval of posterior means is contained in the negative real

halfline only if w > 0.76. As expected, one would need to attach very high prior probability to

the causal ordering restrictions to obtain a negative output response.

Another possibility is to conduct reverse engineering on robust credible region rather than

on post-averaging interval of posterior means. We can thus compute the prior weight one would

assign to a given set of restrictions such that the 90% robust credibility region is contained

in the negative real halfline. When averaging Model 1 and Model 3 one would need to attach

a prior probability greater than 0.87 to the validity of the assumptions in Model 1 in order

to have the 90% robust credibility region contained in the negative real halfline at h = 3.26

26The prior model probability drops to 0.44 if we weight Model 1 and Model 2.
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However, this exercise is sensitive to the choice of the credibility level of the robust credible

region we focus, as the robust credible region tightens up as soon as the credibility level falls

below the model probability assigned to the single posterior model.

Similar reverse engineering exercises could usefully shed light on the role of identifying

assumptions in generating so-called price and liquidity puzzles in monetary SVARs.27

27The price puzzle occurs when contractionary monetary policy shocks produce a positive response of the price

level (Sims, 1992). The liquidity puzzle refers to positive shocks in monetary aggregates leading to an initial

rising rather than falling of interest rates (Reichenstein, 1987).
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Figure 1: Density and Robust Credible Region of Output Impulse Responses

Note: Figure 1 reports output impulse response at horizon h = 3. For set-identified models (panel (b), (c) (e), (f),

(g), (h)), step lines represent the Robust Credible Region (RCR) at different credibility levels (90%, 50%, 10% levels are

explicitly indicated). The vertical dashed lines represent the posterior mean bounds. For point-identified models (panel

(a) and (d)), the vertical solid lines display the standard credible region. In such a case, we report its posterior density.
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Figure 2: Plots of Output Impulse Responses

Note: for set-identified models (panel (b), (c) (e), (f), (g), (h)), the vertical bars show the posterior mean bounds

and the dashed curves connect the upper/lower bounds of posterior robust credible regions with credibility 90%. For

point-identified models (panel (a) and (d)), the points plot the (unique) posterior mean and the dashed curve represent

the highest posterior density regions with credibility 90%.
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Averaging M1, M2 Averaging M1,M3 Averaging M3,M4 Averaging M1,M2,M3,M4

Prior w1 0.50 0.50 / 0.25

Prior w2 0.50 / / 0.25

Prior w3 / 0.50 0.50 0.25

Prior w4 / / 0.50 0.25

O1 1 1 / 1

O2 1 / / 1

O3 / 1.21 1.21 1.21

O4 / / 1 1

ln p̃(Y ) −779.61 −779.61 −779.61 −779.61

ln p(Y |M1) −779.61 −779.61 −779.61 −779.61

ln p(Y |M4) / / −781.29 −781.29

Posterior w∗1 0.50 0.45 / 0.29

Posterior w∗2 0.50 / / 0.29

Posterior w∗3 / 0.55 0.87 0.36

Posterior w∗4 / / 0.13 0.06

Table 1: Output Responses: Prior and Posterior Weights

Note: prior wi, Oi and posterior w∗i denote prior model probability, posterior-prior credibility ratio and posterior

model probability for candidate Model i, respectively; ln p̃(Y ), ln p(Y |M1) and ln p(Y |M4) represent log marginal

likelihood for the common reduced form, for Model 1 and for Model 4, respectively.
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M1 M2

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean .01 −1.09 −1.97 / / /

90% CR [−.09, .09] [−1.58,−.61] [−2.88,−1.12] / / /

Post. Mean Bounds / / / [−.07, .07] [−1.12, .05] [−2.03, .10]

90% robust CR / / / [−.15, .15] [−1.58, .50] [−2.87, .93]

Set of ΠIRh|Y {IRh < 0} 0.46 1 1 [0.08, 0.89] [0.43, 1] [0.41, 1]

M3 M4

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / −.32 −.52 −.52

90% CR / / / [−.39,−.26] [−.67,−.38] [−.67,−.38]

Post. Mean Bounds [−.73, .85] [−3.03, 3.08] [−5.73, 5.91] / / /

90% robust CR [−.86, .96] [−3.56, 3.65] [−6.75, 6.95] / / /

Set of ΠIRh|Y {IRh < 0} [0, 1] [0, 1] [0, 1] 1 1 1

Averaging M1,M2 Averaging M1,M3

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−.03, .04] [−1.11,−.50] [−2.01,−.89] [−.40, .47] [−2.17, 1.21] [−4.06, 2.39]

90% robust CR [−.13, .14] [−1.58, .39] [−2.83, .74] [−.83, .93] [−3.50, 3.47] [−6.66, 6.65]

Set of ΠIRh|Y {IRh < 0} [0.27, 0.68] [0.70, 1] [0.69, 1] [0.19, 0.74] [0.45, 1] [0.45, 1]

Averaging M3,M4 Averaging M1,M2,M3,M4

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−.69, .72] [−2.77, 2.70] [−5.19, 5.24] [−.29, .30] [−1.76, .73] [−3.25, 1.46]

90% robust CR [−.85, .96] [−3.54, 3.57] [−6.70, 6.86] [−.79, .91] [−3.38, 3.29] [−6.36, 6.37]

Set of ΠIRh|Y {IRh < 0} [0.11, 1] [0.11, 1] [0.11, 1] [0.22, 0.81] [0.48, 1] [0.48, 1]

Table 2: Output Responses: Estimation and Inference

6 Conclusion

We proposed a method to average point-identified models and set-identified models from the

multiple prior (ambiguous belief) viewpoint. The method combines single priors in point-

identified models with multiple priors in set-identified models, and delivers a set of posteriors.

The post-averaging set of posteriors can be summarized by the set of posterior means and

robust credible regions, which are easy to compute MCMC methods. Our averaging method

can effectively reduce the amount of ambiguity (the size of the posterior class) relative to

the analysis based on a set-identified model only, and hence offers a simple and flexible way

to introduce additional identifying information into the set-identified model. In the opposite

direction, when the set-identified model nests the point-identified model, our method can also

offer a simple and flexible way to conduct sensitivity analysis for the point-identified model.
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A Appendix

A.1 Omitted Proofs

Derivation of identified set (2.2). Following Uhlig (2005), we reparameterize A via the

Cholesky matrix Σtr and a rotation matrix Q =

(
cosρ −sinρ
sinρ cosρ

)
with spherical coordinate

ρ ∈ [0, 2π]. We can then express α as a function of φ and the non-identified parameter ρ

indexing a rotation matrix;

A−1 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

)
and the parameter of interest is α = α(ρ, φ) ≡ σ11 cos ρ. We impose the sign normalization

restrictions throughout by constraining the diagonal elements of A to being nonnegative,

σ22 cos ρ− σ21 sin ρ ≥ 0 and σ11 cos ρ ≥ 0. (A.1)

The sign restrictions a12 ≥ 0 and a21 ≤ 0 are expressed as

σ11 sin ρ ≥ 0 (A.2)

−σ22 sin ρ− σ21 cos ρ ≤ 0. (A.3)

Given φ, the identified set for α = σ11 cos ρ is given by its set as ρ varies over the set charac-

terized by the restrictions (A.1) - (A.3). Since the second constraint in (A.1) and (A.2) imply

ρ ∈ [0, π/2], we focus on how the other two restrictions (the first constraint in (A.1) and (A.3))

tighten up ρ ∈ [0, π/2].

Assume σ21 > 0. Then, they imply arctan(−σ21/σ22) ≤ ρ ≤ arctan(σ22/σ21). Intersecting

this interval with ρ ∈ [0, π/2] leads to [0, arctan(σ22/σ21)] as the identified set for ρ. Hence,

the identified set for α in the σ21 > 0 case follows. A similar argument leads to the α identified

set for the σ21 ≤ 0 case.

Proof of Lemma 3.1. (i) By the construction of φ-prior (3.2), the marginal likelihood for

M ∈Ms can be rewritten as

p(Y |M) =

∫
Φ
p(Y |φ,M)dπφ|M (φ)

=

∫
Φ
p(Y |φ) · 1{ISα(φ|M) 6= ∅}

π̃φ(ISα(φ|M) 6= ∅)
dπ̃φ(φ)

= p̃(Y )

∫
φ

1{ISα(φ|M) 6= ∅}
π̃φ(ISα(φ|M) 6= ∅)

dπ̃φ|Y (φ)

= p̃(Y )
π̃φ|Y (ISr(φ|M) 6= ∅)
π̃φ(ISr(φ|M) 6= ∅)

= p̃(Y )OM ,
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where the second line uses the assumption that the set-identified models admit an identical

reduced-form and the third line follows from the Bayes theorem for the reduced-form param-

eters, p(Y |φ)π̃φ(φ) = p̃(Y )π̃φ|Y (φ). Plugging this expression of the marginal likelihood into

(3.1) leads to the claim.

(ii) Under the additionally imposed assumptions, the marginal likelihood of model Mp ∈
Mp is given by p̃(Y )OMp . Hence, combined with p(Y |M s) = p̃(Y )OMs shown in part (i), (3.5)

follows.

(iii) The claim follows immediately by noting that the imposed assumptions imply OM = 1

for all M ∈M and setting OM , M ∈M, to one in (3.5).

Derivation of Πα|Ms,Y in equation (3.7). We derive Πα|Ms,Y in the next lemma:

Lemma A.1 For a set-identified model M s with the structural parameters θMs ∈ ΘMs and

reduced-form parameters φMs = gMs(θMs) ∈ ΦMs = gMs(ΘMs), let a prior for φMs, πφMs |Ms

be given. Define the class of priors of θMs by

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}
.

Updating ΠθMs |Ms prior-by-prior with the likelihood p̃(Y |θMs ,M s) and marginalizing the result-

ing posteriors via α = αMs(θMs) leads to the following set of posteriors for α:

Πα|Ms,Y

≡
{
πα|Ms,Y =

∫
ΦM

πα|Ms,φMsdπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}
.

(A.4)

Proof of Lemma A.1. The prior-by-prior updating rule updates ΠθMs |Ms to

ΠθMs |Ms,Y ≡
{
πθMs |Ms,Y : πθMs |Ms,Y (ΘMs ∩ g−1

Ms(B)) = πφMs |Ms,Y (B), ∀B ∈ B(ΦMs)
}
.

Since πθMs |Ms,Y (ΘMs ∩ g−1
Ms(B)) can be written as

πθMs |Ms,Y (ΘMs ∩ g−1
Ms(B)) =

∫
B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φMs))dπφMs |Ms,Y (φMs),

the φMs-marginal constraints for πθMs |Ms,Y are equivalent to∫
B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φMs))dπφMs |Ms,Y (φMs) = πφMs |Ms,Y (B).

This equality holds for all B ∈ B(ΦMs) if and only if πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1,

πφMs |Ms,Y -a.s. Accordingly, an equivalent representation of the class of posteriors for θMs is

ΠθMs |Ms,Y =

{∫
ΦMs

πθMs |φMs ,MsdπΦMs |Y : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}
.
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(A.5)

Note that we have

πα|φMs ,Ms(ISα(φMs |M s)) = πθMs |φMs ,Ms(α−1
Ms(ISα(φMs |M s)))

= πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)),

where the second equality follows by the definition of the identified set of α. Hence, πθMs |φMs ,Ms(ΘMs∩
g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s. holds if and only if πα|φMs ,Ms(ISα(φMs |M s)) = 1, πφMs |Ms,Y -

a.s. The class of marginalized posteriors for α (A.4) therefore follows.

Proof of Proposition 3.1. Let πθ,M be a prior of (θ,M) belonging to the proposed Πθ,M .

The corresponding posterior for θ with M integrated out can be computed as follows: for any

measurable subset H ⊂ Θ,

πθ|Y (H) =

∑
M∈M

∫
H p̃(Y |θ,M)dπθ|M (θ)πM∑

M∈M

[∫
ΘM

p̃(Y |θ,M)dπθ|M (θ)
]
πM

=

( ∑
Mp∈Mp πθ|Mp,Y (H)p(Y |Mp)πMp

+
∑

Ms∈Ms

[∫
ΦMs

πθ|φMs ,Ms(H)p(Y |φMs ,M s)dπφMs |Ms(φMs)
]
πMs

)
∑

Mp∈Mp p(Y |Mp)πMp +
∑

Ms∈Ms

[∫
ΦMs

p(Y |φMs ,M s)dπφMs |Ms(φMs)
]
πMs

=
∑

Mp∈Mp

πθ|Mp(H)πMp|Y +
∑

Ms∈Ms

[∫
ΦMs

πθ|φMs ,Ms(H)dπφMs |Ms,Y (φMs)

]
πMs|Y

where the second line uses∫
H
p̃(Y |θ,M)dπθ|M (θ) =

∫
ΦM

[∫
Θ

1{θ ∈ H}p̃(Y |θ,M)dπθ|φM ,M (θ)

]
dπφM |M (φM )

=

∫
ΦM

[∫
Θ

1{θ ∈ H}dπθ|φM ,M (θ)

]
p(Y |φM ,M)dπφM |M (φM )

=

∫
ΦM

πθ|φM ,M (H)p(Y |φM ,M)dπφM |M (φM ).

The class of posteriors for θ can be therefore represented as

Πθ|Y ≡

{ ∑
Mp∈Mp

πθ|Mp,Y πMp|Y +
∑

Ms∈Ms

πθ|Ms,Y πMs|Y : πθ|Ms,Y ∈ Πθ|Ms,Y , ∀M s ∈Ms

}
,

where Πθ|Ms,Y is as defined in (A.5). As shown in the proof of Lemma A.1 above, marginalizing

Πθ|Ms,Y to α leads to Πα|Ms,Y defined in (3.7). We therefore conclude that marginalizing Πθ|Y

to α results in Πα|Y shown in (3.8).
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Proof of Proposition 3.2. (i) Since there is no constraint across the posteriors belonging

to different posterior classes, it holds

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

inf
πα|Ms,Y ∈Πα|Ms,Y

{
Eα|Ms,Y (α)

}
·πMs|Y .

By the construction of Πα|Ms,Y , an application of Theorem 2 of Giacomini and Kitagawa (2020)

shows infπα|Ms,Y ∈Πα|Ms,Y

{
Eα|Ms,Y (α)

}
= EφMs |Ms,Y (l(φMs |M s)). The claim of the mean lower

bound therefore follows. The mean upper bound can be shown similarly.

(ii) Note that

inf
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H) · πMp|Y +
∑

Ms∈Ms

inf
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (H)

}
· πMs|Y ,

sup
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H) · πMp|Y +
∑

Ms∈Ms

sup
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (H)

}
· πMs|Y .

Theorem 1 of Giacomini and Kitagawa (2020) shows

inf
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (H)

}
= πφMs |Ms,Y (ISα(φMs |M s) ⊂ H),

sup
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (H)

}
= πφMs |Ms,Y (ISα(φMs |M s) ∩H 6= ∅),

so the conclusion follows.

(iii) By setting H to [−∞, a], the lower probability obtained in part (ii) yields the lower bound

of the cdfs, since the event ISα(φMs |M s) ⊂ [−∞, a] is equivalent to u(φMs |M s) ≤ a. The

upper bound follows by noting

sup
πα|Ms,Y ∈Πα|Ms,Y

πα|Ms,Y ([∞, a]) = πφMs |Ms,Y (ISα(φMs |M s) ∩ [∞, a] 6= ∅)

= πφMs |Ms,Y (l(φMs |M s) ≤ a).

The set of quantiles then follows by inverting these cdf bounds.

Next, we show two lemmas to be used to prove Proposition 3.3. We denote the set of

candidate models satisfying condition (A) of Assumption 3.2 (i) by MA and the set of those

satisfying condition (B) byMB. Under Assumption 3.2 (i),M =MA ∪MB holds. Note that

through these lemmas and the proof of Proposition 3.3, M is assumed to admit an identical

reduced-form with reduced-form parameter dimension d ≥ 1.

Lemma A.2 Suppose Assumption 3.2 holds. For M ∈MA,

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
− fφ|M (φ̂) = O(n−1/2),

with PY∞|φtrue-probability one.
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Proof of Lemma A.2. Denote the reduced-form parameter vector by φ = (φ1, . . . , φd) and

the third-derivative of ln(·) by hijk(·) ≡ ∂3

∂φi∂φj∂φk
ln(·), 1 ≤ i, j, k ≤ d. By Assumptions 3.2 (i),

(ii) and (iv), there exists B∗ an open neighborhood of φtrue such that B∗ ⊂ ΦM holds for all

M ∈MA, and

sup
φ∈B∗

max
1≤i,j,k≤d

|hijk(φ)| <∞, (A.6)

and

lim sup
n→∞

sup
φ∈Φ\B∗

{ln(φ)− ln(φtrue)} < 0, with PY∞|φtrue-probability one (A.7)

hold. Since Assumptions 3.2 (iii) and (iv) imply the strong convergence of φ̂, for all sufficiently

large n, φ̂ ∈ B∗ holds. Given φ̂ ∈ B∗, consider the third-order mean value expansions of nln(φ):

nln(φ) = nln(φ̂)− n

2
(φ− φ̂)′Hn(φ̂)(φ− φ̂) +

n

6

∑
1≤i,j,k≤d

hijk(φ̃)(φi − φ̂i)(φj − φ̂j)(φk − φ̂k)

= nln(φ̂)− 1

2
u′Hn(φ̂)u+

1√
n
R1n(u),

where φ̃ is a convex combination of φ and φ̂, u ≡
√
n(φ−φ̂), andR1n(u) = 1

6

∑
1≤i,j,k≤d hijk(φ̃)uiujuk,

where ui is the i-th entry of vector u. By the boundedness of hijk on B∗, R1n(u) can be bounded

by a third-order polynomial of u with bounded coefficients on
√
n(B∗ − φ̂), where

√
n(B∗ − φ̂)

is the subset in Rd that translates B∗ by φ̂ and scales up by
√
n. Plugging this expansion in

p(Y n|φ) = exp(nln(φ)) and combining it with the first-order expansion of fφ|M (φ), we obtain

on φ ∈ B∗ (or equivalently on u ∈
√
n(B∗ − φ̂))

p(Y n|φ)fφ|M (φ) = exp

{
nln(φ̂)− 1

2
u′Hn(φ̂)u

}{
1 +

1√
n
R1n(u) +

1

2n
R1n(u)2 + · · ·

}
×
{
fφ|M (φ̂) +

1√
n
R2n(u)

}
= exp

{
nln(φ̂)− 1

2
u′Hn(φ̂)u

}{
fφ|M (φ̂) +

1√
n
R3n(u)

}
, (A.8)

where the first equality invokes the expansion of exp(x) = 1+x+2−1x2 + · · · , R2n = f ′φ|M (φ̃)u,

and R3n collects the residual terms that can be bounded uniformly on
√
n(B∗ − φ̂) by a finite

order polynomial of u with bounded coefficients.

Integration of p(Y n|φ)fφ|M (φ) over φ ∈ B∗ is equivalent to integrating (A.8) in u over
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√
n(B∗ − φ̂):∫

B∗
p(Y n|φ)fφ|M (φ)dφ

=n−d/2 exp{nln(φ̂)}

(∫
√
n(B∗−φtrue)

(
fφ|M (φ̂) +R3n(u)

)
exp

{
−1

2
u′Hn(φ̂)u

}
du

)
=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

(
fφ|M (φ̂)EHn [1√n(B∗−φ̂)(u)] + n−1/2EHn [R3n(u) · 1√n(B∗−φ̂)(u)]

)
=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

(
fφ|M (φ̂) +O(n−1/2)

)
, (A.9)

where EHn(·) is the expectation taken with respect to u ∼ N (0, Hn(φ̂)−1). Note that the third

equality follows since the replacement of
√
n(B∗ − φ̂) with Rd incurs an error of exponentially

decreasing order and EHn(R3n(u)) is finite, i.e., the multivariate normal distribution has finite

moments at any order.

Consider now integrating p(Y n|φ)fφ|M (φ) over ΦM \B∗.∫
ΦM\B∗

p(Y n|φ)fφ|M (φ)dφ

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

×

(
(2π)−d/2nd/2 det(Hn(φ̂))−1/2

∫
ΦM\B∗

exp{n(ln(φ)− ln(φ̂))}fφ|M (φ)dφ

)
≤(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

×

(
(2π)−d/2nd/2 det(Hn(φ̂))−1/2f̄φ|M sup

φ∈Φ\B∗
{exp{n(ln(φ)− ln(φtrue))}}

)
, (A.10)

where by Assumption 3.2 (v), f̄φ|M ≡ supφ∈Φ fφ|M (φ) < ∞. Assumptions 3.2 (iii) and (iv)

imply that the term in the parentheses of (A.10) converges to zero faster than n−1/2-rate

with PY∞|φtrue-probability one. Summing up (A.9) and (A.10) gives the following asymptotic

approximation of the marginal likelihood in model M ∈MA.

p(Y n|M) =

∫
B∗
p(Y n|φ)fφ|M (φ)dφ+

∫
ΦM\B∗

p(Y n|φ)fφ|M (φ)dφ

= (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂) +O(n−1/2)

)
, (A.11)

with PY∞|φtrue-probability one. Bringing the multiplicative terms in the right-hand side of

(A.11) to the left-hand side completes the proof.

Lemma A.3 Suppose Assumption 3.2 holds. For model M ∈MB,

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
= o(n−1/2),

with PY∞|φtrue-probability one.
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Proof of Lemma A.3. Let B∗ be an open neighborhood of φtrue as defined in the proof of

Lemma A.2.

Consider the marginal likelihood of modelM ∈MB divided by (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2:

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
=
nd/2 det(Hn(φ̂))1/2

(2π)d/2

∫
ΦM

exp{n(ln(φ)− ln(φ̂))}fφ|M (φ)dφ

≤ nd/2 det(Hn(φ̂))1/2

(2π)d/2
f̄φ|M sup

φ∈ΦM

exp{n(ln(φ)− ln(φ̂))}

≤ nd/2 det(Hn(φ̂))1/2

(2π)d/2
f̄φ|M sup

φ∈Φ\B∗
exp{n(ln(φ)− ln(φtrue))},

(A.12)

where f̄φ|M = supφ fφ|M (φ) <∞, and the third line follows sinceB∗ ⊂ Φc
M implies ΦM ⊂ Φ\B∗.

Note that by Assumption 3.2 (iv), the upper bound shown in (A.12) converges to zero faster

than the polynomial rate of n−1/2 with PY∞|φtrue-probability one.

Proof of Proposition 3.3. (i) Under Assumption 3.2 (i), the posterior model probability of

model M ∈M can be written as

πM |Y n =
p(Y n|M)πM∑

M ′∈MA
p(Y n|M ′)πM ′ +

∑
M ′∈MB

p(Y n|M ′)πM ′

By dividing both the numerator and denominator by (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2 and

applying Lemmas A.2 and A.3, we have

πM |Y n =


fφ|M (φ̂)πM∑

M′∈MA
fφ|M′ (φ̂)πM′

+O(n−1/2), for M ∈MA,

o(n−1/2), for M ∈MB,

with PY∞|φtrue-probability one.

Since fφ|M (·) is assumed to be continuous and Assumptions 3.2 (iii) and (iv) imply almost

sure convergence of φ̂ to φtrue, πM |Y∞ of the current proposition follows.

(ii) With the given specifications of the φ-prior, fφ|M (φtrue) is proportional to π̃(ΦM )−1 up

to the model-independent constant (the Lebesgue density of π̃φ evaluated at φ = φtrue). Hence,

(i) of the current proposition is reduced to the asymptotic model probabilities of (ii).

(iii) This trivially follows from Lemma 3.1 (iii).

A.2 Example 2: Treatment Effect Model with an Instrument

This appendix illustrate applicability of our averaging proposal to the treatment effect model

with noncompliance and a binary instrumental variable Z ∈ {0, 1} (Imbens and Angrist (1994)).
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Assume that the treatment status and the outcome of interest are both binary. Let

(W1,W0) ∈ {1, 0}2 be the potential treatment status in response to the instrument, and

W = ZW1 + (1 − Z)W0 be the observed treatment status. (Y1, Y0) ∈ {1, 0}2 is a pair of

treated and control outcomes and Y = WY1 + (1 −W )Y0 is the observed outcome. Follow-

ing Imbens and Angrist (1994), consider partitioning the population into four subpopulations

defined in terms of the potential treatment-selection responses:

T =


c if W1 = 1 and W0 = 0 : complier,

at if W1 = W0 = 1 : always-taker,

nt if W1 = W0 = 0 : never-taker,

d if W1 = 0 and W0 = 1 : defier,

where T is the indicator for the types of selection responses.

Assume that the instrument is randomized in the sense that Z ⊥ (Y1, Y0,W1,W0).28 Then,

the distribution of observables and the distribution of potential outcomes satisfy the following

equalities for y ∈ {1, 0}:

Pr(Y = y,W = 1|Z = 1) = Pr(Y1 = y, T = c) + Pr(Y1 = y, T = at), (A.13)

Pr(Y = y,W = 1|Z = 0) = Pr(Y1 = y, T = d) + Pr(Y1 = y, T = at),

Pr(Y = y,W = 0|Z = 1) = Pr(Y0 = y, T = d) + Pr(Y1 = y, T = nt),

Pr(Y = y,W = 0|Z = 0) = Pr(Y0 = y, T = c) + Pr(Y1 = y, T = nt).

Since the marginal distribution of Z plays no role for identification of the potential outcome

distributions, we let the vector of structural parameters θ consist of the parameters that index

a joint distribution of (Y1, Y0, T ):

θ =
(
Pr(Y1 = y, Y0 = y′, T = t) : y = 1, 0, y′ = 1, 0, t = c, nt, at, d

)
∈ Θ,

where Θ is the probability simplex in R16.

Let the average treatment effect (ATE) be the parameter of interest.

α ≡ E(Y1 − Y0) =
∑

t=c,nt,at,d

[Pr(Y1 = 1, T = t)− Pr(Y0 = 1, T = t)]

=
∑

t=c,nt,at,d

∑
y=1,0

[Pr(Y1 = 1, Y0 = y, T = t)− Pr(Y1 = y, Y0 = 1, T = t)] .

The reduced-form parameter vector consists of the eight probability masses:

φ = (Pr(Y = y,W = w|Z = z) : y = 1, 0, d = 1, 0, z = 1, 0) .

Consider the following two candidate models.

Candidate Models
28As reflected in the notation of the potential outcomes (Y1, Y0), we assume the exclusion restriction of the

instrument.
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• Model Mp (point-identified): In addition to the randomized instrument assumption Z ⊥
(Y1, Y0,W1,W0), the instrument monotonicity (no-defier) assumption of Imbens and An-

grist (1994) holds and the causal effects are homogeneous in the sense that E(Y1−Y0|T =

c) = E(Y1 − Y0|T = at) = E(Y1 − Y0|T = nt) = E(Y1 − Y0).

• Model M s (set-identified): The randomized instrument assumption holds. Heterogeneity

of the treatment effects is unrestricted.

In model Mp, the complier’s average treatment effect is identified by the Wald estimand

(Imbens and Angrist (1994)), and combined with the homogeneity of the causal effects, we

achieve the point-identification of ATE,

αMp(φ) =
Pr(Y = 1|Z = 1)− Pr(Y = 1|Z = 0)

Pr(W = 1|Z = 1)− Pr(W = 1|Z = 0)
.

In model M s, what the Wald estimand identifies is the complier’s average treatment effect,

while ATE becomes set-identified. See Balke and Pearl (1997) for the construction of the ATE

identified set, ISα(φ|M s).

The two models considered admit the identical reduced-form (the distribution of (Y,W )|Z),

whereas these two models are distinguishable, since they have different testable implications.

The testable implication for model Mp is given by the testable implication for the joint re-

striction of randomized instrument and instrument monotonicity shown by Balke and Pearl

(1997):29

Pr(Y = 1, D = 1|Z = 1) ≥ Pr(Y = 1, D = 1|Z = 0),

Pr(Y = 0, D = 1|Z = 1) ≥ Pr(Y = 0, D = 1|Z = 0),

Pr(Y = 1, D = 0|Z = 1) ≤ Pr(Y = 1, D = 0|Z = 0),

Pr(Y = 0, D = 0|Z = 1) ≥ Pr(Y = 0, D = 0|Z = 0).

Accordingly, ΦMp is given by the set of φ’s that satisfy these four inequalities.

Kitagawa (2020) shows that the instrument inequality of Pearl (1995) gives the sharp

testable implication for the randomized instrument assumption, i.e., ISα(φ|M s)) is empty

if and only if

max
w

∑
y

max
z
{Pr(Y = y,W = w)|Z = z} ≤ 1. (A.14)

Hence, the reduced-form parameter space of model M s, ΦMs , is obtained as the set of φ’s that

fulfills (A.14).

29Under the joint restriction of randomized instrument and instrument monotonicity, additionally imposing

homogeneity of the treatment effects does not strengthen the testable implication of Balke and Pearl (1997).
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Set prior model probabilities at (πMp , πMs) = (w, 1 − w). Construct a prior for φ in each

model as

πφ|Mp(B) =
π̃φ(B ∩ ΦMp)

π̃φ(ΦMp)
,

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
.

for any measurable subset B in the probability simplex that φ lies, where π̃φ is a prior for φ

such as a Dirichlet distribution.

The two models Mp and M s are distinguishable since ΦMp is a proper subset of ΦMs .

With the current construction of the priors for φ, Lemma 3.1 (ii) gives their posterior model

probabilities,

πMp|Y =
OMp · w

OMp · w +OMs · (1− w)
,

πMs|Y =
OMs · (1− w)

OMp · w +OMs · (1− w)
,

where OMp and OMs are the posterior-prior plausibility ratio as defined in Lemma 3.1.

With these posterior model probabilities, the robust Bayes averaging operates as presented

in Scenario 1 of Example 1. The resulting set of posterior means shrinks the Balke and Pearl’s

ATE identified set toward the posterior mean of the Wald estimand that one would report in

the point-identified model. Since the posterior model probabilities can differ from the prior

ones, the degree of shrinkage can reflect how well the identifying assumptions fit the data.

The current analysis offers one way to aggregate the Wald instrumental variable estimator and

the ATE bounds with exploiting a partially credible assumption on homogeneity of the causal

effects.

A.3 Computing Plausibility Ratios for Sign-restricted SVARs

This appendix provides details on how to compute the posterior-prior plausibility ratios OM

for the SVAR models set-identified by the under-identifying zero restrictions and the sign

restriction. The crucial step in the computation is to check if the identified set ISα(φ) is empty

or not at φ drawn from π̃φ|Y . The first proposal (Algorithm A.1), which is a special case of

Algorithm 1 in Giacomini and Kitagawa (2020), makes use of random draws of the impulse

responses and assesses whether any of these satisfies the imposed sign restrictions. The second

proposal (Algorithm A.2) is novel in the literature. It directly checks a necessary and sufficient

condition for non-emptiness of the identified set. The first algorithm is simple to implement,

while it can give a wrong conclusion if the identified set is tiny. The second algorithm is

guaranteed to give the right answer, while the computation can become cumbersome if the

number of sign restrictions is large.
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A.3.1 Notation

To show the computation procedures in a general setting, we generalize the representations of

the SVAR (5.1) and the reduced-form VAR (5.3) to have n endogenous variables and p ≥ 0

lags. Let Q ∈ O(n) be an n×n orthonormal matrix and O(n) be the set of n×n orthonormal

matrices. Following Uhlig (2005) and Rubio-Ramirez et al. (2010), we transform the struc-

tural parameters (A0, a, A1, . . . , Ap) into the parameter vector consisting of the reduced-form

parameters augmented by Q, (φ′, vec(Q)′)′ ∈ Φ̃× vec(O(n)):

B = A−1
0 [a,A1, . . . , Ap] ,

Σ = A−1
0

(
A−1

0

)′
,

Q = Σ−1
tr A

−1
0 ,

where Σtr denotes the lower-triangular Cholesky factor of Σ with nonnegative diagonal ele-

ments. We then set θ = (φ′, vec(Q)′)′ and its domain as Θ =
{

(φ′, vec(Q)′)′ ∈ Φ× vec(O(n)) : diag
(
Q′Σ−1

tr

)
≥ 0
}

.

Here, diag
(
Q′Σ−1

tr

)
≥ 0 is the sign normalization restrictions:(

σi
)′
qi ≥ 0 for all i = 1, . . . , n, (A.15)

where
[
σ1, σ2, . . . , σn

]
are the column vectors of Σ−1

tr and [q1, q2, . . . , qn] are the column vectors

of Q.

Assuming the lag polynomial
(
In −

∑p
j=1BjL

p
)

is invertible (which is the domain restric-

tion on Φ̃) the VMA(∞) representation of the model is:

yt = c+

∞∑
j=0

Cjut−j (A.16)

= c+

∞∑
j=0

CjΣtrQεt−j ,

where Cj is the j-th coefficient matrix of
(
In −

∑p
j=1BjL

j
)−1

.

We denote the h-th horizon impulse response by the n× n matrix IRh, h = 0, 1, 2, . . .

IRh = ChΣtrQ. (A.17)

The scalar parameter of interest α is a single impulse-response, i.e., the (i, j)-element of IRh,

which can be expressed as

α = IRhij ≡ e′iChΣtrQej ≡ c′ih (φ) qj , (A.18)

where ei is the i-th column vector of the identity matrix In and c′ih (φ) is the i-th row vector

of ChΣtr.
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Zero restrictions used in the literature are restrictions on some off-diagonal elements of

A0, on the lagged coefficients {Al : l = 1, . . . p}, on contemporaneous impulse responses IR0 =

A−1
0 , and on the cumulative long-run responses. All these restrictions can be viewed as linear

constraints on the columns of Q. For example:

((j, i) -th element of A0) = 0 ⇐⇒
(
Σ−1
tr ei

)′
qj = 0, (A.19)

((j, i) -th element of Al) = 0 ⇐⇒
(
Σ−1
tr Blei

)′
qj = 0,(

(i, j) -th element of A−1
0

)
= 0 ⇐⇒

(
e′iΣtr

)
qj = 0,(

(i, j) -th element of IRh
)

= 0 ⇐⇒
[
e′iChΣtr

]
qj = 0.

We restrict our analysis to the case that the imposed zero restrictions constrain only one column

vector of Q. Ordering the variables in such way that q1 becomes the constrained column vector

of Q, we can represent a collection of zero restrictions as

F (φ) q1 = 0, (A.20)

where F (φ) is an f × n matrix. F (φ) stacks all the coefficient vectors that multiply q1 into

a matrix. Hence, f is the number of imposed zero restrictions. We consider under-identifying

zero restrictions, so we assume f ≤ n− 2.

We suppose there are sign restrictions on the responses to the first structural shock. Sign

restrictions are linear constraints on the first column of Q: Sh (φ) q1 ≥ 0, where Sh (φ) ≡
DhChΣtr is an sh × n matrix, and Dh is an sh × n matrix that selects the sign-restricted

responses from the n× 1 impulse-response vector ChΣtrq1. The nonzero elements of Dh equal

1 or −1 depending on whether the corresponding impulse responses are positive or negative.

Stacking Sh (φ) over multiple horizons gives the set of sign restrictions

S (φ) q1 ≥ 0, (A.21)

where S (φ) is a s× n matrix S (φ) =
[
S0 (φ)′ , . . . , Sh̄ (φ)

]′
, where s =

∑h̄
h=0 sh is the number

of sign constraints and 0 ≤ h̄ ≤ ∞ is the maximal horizon in the impulse-response analysis.30

A.3.2 Algorithms

For multiple posterior models, the plausibility ratio OM can be computed by plugging into

(3.5) numerical approximations of the prior and posterior probabilities for non-emptiness of

the identified set. Specifically, the denominator of OM can be computed by drawing many φ’s

from the prior and finding the fraction of draws that yield a non-empty identified set. The

numerator of OM can be computed similarly except that the φ’s are drawn from the posterior.

30If there are no sign restrictions on the h̃-th horizon responses, h̃ ∈ {0, . . . , h̄}, sh̃ = 0 and Sh̃ (φ) is not

present in S (φ).
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Our first algorithm to approximate OM draws many q1’s from a distribution supported only

on the unit sphere, and check if any of the draws satisfies the model’s assumptions given φ.

Algorithm A.1 Suppose the identifying restrictions of model M consist of zero and sign re-

strictions as defined in (A.20) and (A.21), respectively. The following algorithm can be used

to approximate p̃φ(ΦM ), where p̃φ is a probability measure on Φ̃, which can be π̃φ or π̃φ|Y .

1. Draw φ from p̃φ.

2. Let z ∼ N (0, In) be a draw of an n-variate standard normal random variable. Let q̃1 =

Mz be the n×1 residual vector in the linear projection of z onto the n×f regressor matrix

F (φ)′ . Set q1 = sign
((
σ1
)′
q̃1

)
q̃1
‖q̃1‖ . If

(
σi
)′
q̃i is zero for some i, set sign

((
σi
)′
q̃i

)
equal

to 1 or −1 with equal probability.

3. Check if q1 satisfies the sign restrictions S(φ)q1 ≥ 0. If it does, we conclude ISα(φ) 6= ∅.
Otherwise, repeat Step 2 a maximum of L times until q1 satisfying S(φ)q1 ≥ 0 is obtained.

If none of the L draws of q1 satisfies S(φ,Q) ≥ 0, approximate ISα(φ) as being empty

and return to Step 1 to obtain a new draw of φ.

4. Repeat Steps 1 – 3 for K times. The proportion of drawn φ’s that gives non-empty ISα(φ)

in Step 3 approximates p̃φ(ΦM ).

This procedure is simple to implement and easy to scale up to the situation where the num-

ber of sign restrictions is large. On the other hand, it only delivers an approximate assessment

of the identified set non-emptiness. The approximation quality can become poor if the set of

q’s satisfying the sign restrictions is so thin that the finite number of q1 draws may miss it.

Also, as the dimension of variables gets larger, the dimension of q1 increases and we require

more draws of q1.

To overcome this drawback of Algorithm A.1, the next algorithm exploits the linear struc-

ture of the identifying assumptions. A key observation is that any non-empty identified set

for q1 contains a vertex on the unit sphere on which at least n − 1 number of equality and

inequality constraints are binding. We can exhaust all the possible candidates for such vertex

by selecting any combination of n− 1 constraints and setting them binding. If we could find a

vertex that satisfies the other f+s−(n−1) constraints ruled out in the selection, we can claim

this vertex is contained in the identified set for q1, allowing us to conclude it is non-empty. If

instead we cannot find any such vertex, we conclude the identified set is empty. This alternative

approach assesses emptiness of the identified set without any approximation. We find that this

procedure tends to be faster and become more efficient than Algorithm A.1 when the number

of sign restrictions is small to moderate.
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Algorithm A.2 Suppose the identifying restrictions of model M consist of zero and sign re-

strictions as defined in (A.20) and (A.21), respectively. The following algorithm can be used

to approximate p̃φ(ΦM ), where p̃φ is a probability measure on Φ̃, which can be π̃φ or π̃φ|Y .

1. Draw φ from p̃φ.

2. Find q∗1 and −q∗1 satisfying the system of “active constraints” (in the language of Gafarov

et al. (2018)):F (φ)q = 0

S̃(φ)q = 0
(A.22)

where S̃(φ) is s̃ × n matrix of active sign restrictions. It is set by picking s̃ rows from

S(φ) matrix, where f + s̃ = n− 1. Check if q∗1 or −q∗1 satisfy the “inactive constraints,”

namely the rest of sign restrictions and the sign normalization restriction for q1. If so,

ISα(φ) is non-empty. Otherwise, keep constructing S̃(φ) with different combinations of s̃

active constraints and verify if the corresponding solution satisfy the inactive constraints.

If none of the solutions satisfies the inactive restrictions, ISα(φ) is empty.

3. Repeat Step 1 – 2 K times.

4. Approximate p̃φ(ΦM ) by the proportion of K draws of φ that delivers non-empty identified

set in Step 2.

In contrast to Algorithm A.1, this algorithm is advantageous in characterizing the non-

emptiness of ISα(φ) with no error. As the number of sign restrictions increases, however,

the number of combinations of the active constraints to be checked in Step 2 grows in the

polynomial order of n − 1 − f , and it can be computational burdensome if a large number

of sign restrictions is imposed. See Footnote 23 in the main text for the comparison of the

computational time between the two algorithms in the empirical application.
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