A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Lee, Sokbae; Liao, Yuan; Seo, Myung Hwan; Shin, Youngki

Working Paper

Sparse HP filter: Finding kinks in the COVID-19 contact rate

cemmap working paper, No. CWP32/20

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Lee, Sokbae; Liao, Yuan; Seo, Myung Hwan; Shin, Youngki (2020) : Sparse HP
filter: Finding kinks in the COVID-19 contact rate, cemmap working paper, No. CWP32/20, Centre for

Microdata Methods and Practice (cemmap), London,

https://doi.org/10.1920/wp.cem.2020.3220

This Version is available at:
https://hdl.handle.net/10419/241907

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2020.3220%0A
https://hdl.handle.net/10419/241907
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

cemmap

centre for microdata methods and practice

Sparse HP Filter: Finding Kinks in the
COVID-19 Contact Rate

Sokbae Lee
Yuan Liao

Myung Hwan Seo
Youngki Shin

The Institute for Fiscal Studies
Department of Economics,
UCL

cemmap working paper
CWP32/20

Economic
: and Social
N Research Council




Sparse HP Filter: Finding Kinks in the
COVID-19 Contact Rate*

Sokbae Lee!  Yuan Liao* Myung Hwan Seo®  Youngki Shin¥
June 18, 2020

Abstract

In this paper, we estimate the time-varying COVID-19 contact rate of a Susceptible-
Infected-Recovered (SIR) model. Our measurement of the contact rate is con-
structed using data on actively infected, recovered and deceased cases. We pro-
pose a new trend filtering method that is a variant of the Hodrick-Prescott (HP)
filter, constrained by the number of possible kinks. We term it the sparse HP fil-
ter and apply it to daily data from five countries: Canada, China, South Korea,
the UK and the US. Our new method yields the kinks that are well aligned with
actual events in each country. We find that the sparse HP filter provides a fewer
kinks than the ¢; trend filter, while both methods fitting data equally well. Theo-
retically, we establish risk consistency of both the sparse HP and ¢; trend filters.
Ultimately, we propose to use time-varying contact growth rates to document and
monitor outbreaks of COVID-19.
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1 Introduction

Since March 2020, there has been a meteoric rise in economic research on COVID-
19. New research outputs have been appearing on the daily and weekly basis at
an unprecedented levelll] To sample a few, Ludvigson et al| (2020) quantified the
macroeconomic impact of COVID-19 by using data on costly and deadly disasters in
recent US history; Manski and Molinari (2020) and Manski (2020) applied the prin-
ciple of partial identification to the infection rate and antibody tests, respectively;
Chernozhukov et al| (2020) used the US state-level data to study determinants of
social distancing behavior.

Across a wide spectrum of research, there is a rapidly emerging strand of liter-
ature based on a Susceptible-Infected-Recovered (SIR) model and its variants (e.g.,
Hethcote, 2000, for a review of the SIR and related models). Many economists have
embraced the SIR-type models as new tools to study the COVID-19 pandemic. |Av-
ery et al. (2020) provided a review of the SIR models for economists, calling for new
research in economics. A variety of economic models and policy simulations have
been built on the SIR-type models. See Acemoglu et al.| (2020), |Alvarez et al. (2020),
Atkeson| (2020), Eichenbaum et al.| (2020), |Pindyck| (2020), Stock (2020), and [Toda
(2020) among many others.

One of central parameters in the SIR-type models is the contact rate, typically
denoted by 3P| It measures “the average number of adequate contacts (i.e., contacts
sufficient for transmission) of a person per unit time” (Hethcote, 2000). The contact
number /7 is the product between § and the average infectious period, denoted by
1/7; the contact number is interpreted as “the average number of adequate contacts
of a typical infective during the infectious period” (Hethcote, 2000).

The goal of this paper is to estimate the time-varying COVID-19 contact rate,
say f;. In canonical SIR models, 3 is a time-constant parameter. However, it may
vary over time due to multiple factors. For example, as pointed by Stock! (2020),
self-isolation, social distancing and lockdown may reduce 3. To estimate a SIR-type
model, Ferndndez-Villaverde and Jones| (2020) allowed for a time-varying contact
rate to reflect behavioral and policy-induced changes associated with social distanc-

ing. In particular, they estimated 3, using data on deaths at city, state and country

'The major outlets for economists are: arXiv working papers, NBER working papers, and CEPR’s
new working paper series called “Covid Economics: Vetted and Real-Time Papers” among others.
21t is also called the transmission rate by Stock (2020).



levels. Their main focus was to simulate future outcomes for many cities, states and
countries.

Researchers have also adopted nonlinear time-series models from the economet-
ric toolbox. For example, Li and Linton|(2020) analyzed the daily data on the number
of new cases and the number of new deaths with a quadratic time trend model in
logs. Their main purpose was to estimate the peak of the pandemic. [Liu et al.| (2020)
studied the density forecasts of the daily number of active infections for a panel of
countries/regions. They modeled the growth rate of active infections as autoregres-
sive fluctuations around a piecewise linear trend with a single break. Hartl et al.
(2020) used a linear trend model in logs with a trend break to fit German confirmed
cases. Harvey and Kattuman (2020) used a Gompertz model with a time-varying
trend to fit and forecast German and UK new cases and deaths.

In this paper, we aim to synthesize the time-varying contact rate with nonpara-
metric time series modeling. Especially, we build a new nonparametric regression
model for j3; that allows for a piecewise linear trend with multiple kinks at unknown
dates. We analyze daily data from Johns Hopkins University Center for Systems Sci-
ence and Engineering (Dong et al., 2020) and suggest a particular transformation of
data that can be regarded as a noisy measurement of time-varying ;. Our mea-
surement of 3, which is constructed from daily data on confirmed, recovered and
deceased cases, is different from that of Fernandez-Villaverde and Jones (2020) who
used only death data. We believe both measurements are complements to each other.
However, the SIR model is at best a first-order approximation to the real world; a raw
series of 3, would be too noisy to draw on inferences regarding the underlying con-
tact rate. In fact, the raw series exhibits high degrees of skewness and time-varying
volatility even after the log transformation.

To extract the time-varying signal from the noisy measurements, we consider
nonparametric trend filters that produce possibly multiple kinks in 5, where the
kinks are induced by government policies and changes in individual behavior. A
natural candidate method that yields the kinks is ¢; trend filtering (e.g., Kim et al.,
2009). However, /; trend filtering is akin to LASSO; hence, it may have a problem
of producing too many kinks, just like LASSO selects too many covariates. In view
of this concern, we propose a novel filtering method by adding a constraint on the
maximum number of kinks to the popular Hodrick and Prescott| (1997) (HP) filter.
It turns out that this method produces a smaller number of the kink points than ¢,



trend filtering when both methods fit data equally well. In view of that, we call our
new method the sparse HP filter. We find that the estimated kinks are well aligned
with actual events in each country. To document and monitor outbreaks of COVID-
19, we propose to use piecewise constant contact growth rates using the piecewise lin-
ear trend estimates from the sparse HP filter. They provide not only an informative
summary of past outbreaks but also a useful surveillance measure.

The remainder of the paper is organized as follows. In Section |2, we describe a
simple time series model of the time-varying contact rate. In Section[3, we introduce
two classes of filtering methods. In Section 4, we have a first look at the US data,
as a benchmark country. In Section |5, we present empirical results for five coun-
tries: Canada, China, South Korea, the UK and the US. In Section [6|, we establish
risk consistency of both the sparse HP and ¢, trend filters. Section [7|concludes and
appendices include additional materials. The replication R codes for the empirical

results are available at https://github.com/yshin12/sparseHP.

2 A Time Series Model of the COVID-19 Contact Rate

In this section, we develop a time-series model of the contact rate. Our model spec-
ification is inspired by the classical SIR model which has been adopted by many
economists in the current coronavirus pandemic.

We start with a discrete version of the SIR model, augmented with deaths, adopted
from Pindyck (2020):

Al = BS 1l — vl

ADy = yali-1,

AR, = 11, 4, @.1)
1 =S, + 1, + D, + Ry,
Y=Y+ Yas

where the (initial) population size is normalized to be 1, S, is the proportion of the
population that is susceptible, I; the fraction infected, D, the proportion that have
died, and R, the fraction that have recovered. The parameter v = , + 74 governs the
rate at which infectives transfer to the state of being deceased or recovered.

In the emerging economics literature on COVID-19, the contact rate (3 is viewed


https://github.com/yshin12/sparseHP

as the parameter that can be affected by changes in individual behavior and govern-
ment policies through social distancing and lockdown. We follow this literature and
let 8 = f3; be time-varying.

Let C, be the proportion of confirmed cases, that is C; = I; + R; + D;. In words,
the confirmed cases consist of actively infected, recovered and deceased cases. Use
the equations in to obtain

AC,

=Y = ——.
bo=Yo:= 77

(2.2)

Assume that we have daily data on AC;, AR; and ADtﬂ From these, we can construct
cumulative C;, R; and D,. Then S; =1 — C; and I, = C; — R, — D,. This means that

we can obtain time series of 3, from Y;. We formally assume this in the following.
Assumption 1 (Data). For each t, we observe (Cy, Ry, D).

By Assumption we can construct Y; = ACy/(1;_15;_1). Because the SIR model
in is at best a first-order approximation, a raw series of ¥; would be too noisy to
be used as the actual series of the underlying contact rate j3;. In other words, 3, # Y;
in actual data and it would be natural to include an error term in Y;. Because [,
has to be positive, we adopt a multiplicative error structure and make the following

assumption.

Assumption 2 (Time-Varying Signal plus Regression Error). For each t, the unobserved

random variable (3, satisfies
log ¥, = log fB; + wy,

where the error term w, has the following properties:
1. E[u¢|Fi—1] = 0, where F,_, is a filtration at time t — 1,
2

2. E[u2|Fi_1] = of > 0 for some time-varying conditional variance o?}.

Define

Yy := log(ACY) —log(l;—1) — log S;_1. (2.3)

3In Appendix|A} we show that the time series model given in this section is robust to some degree
of under-reporting of confirmed cases.



Under Assumption 2} (2.2) can be rewritten as

Yy = log Bt + e, (2.4)

The time-varying parameter log 5, would not be identified without further restric-
tions. Because it is likely to be affected by government policies and cannot change
too rapidly, we will assume that it follows a piecewise trend:

Assumption 3 (Piecewise Trend). The time-varying parameter f,, = log f; follows a
piecewise trend with at most k kinks, where the set of kinks is defined by {t = 1,....T :
for — fouo1 # forr1 — for} and the locations of kinks are unknown.

The main goal of this paper is to estimate log 3; and its kinks under Assump-

tions and

3 Filtering the COVID-19 Contact Rate

We consider two different classes of trend filtering methods to produce piecewise
estimators of fy; := log ;. The first class is based on /¢; trend filtering, which has
become popular recently. See, e.g., Kim et al.|(2009), Tibshirani (2014), and Wang
et al. (2016) among others.

The starting point of the second class is the HP filter, which has been popular
in macroeconomics and has been frequently used to separate trend from cycle. The
standard convention in the literature is to set A = 1600 for quarterly time series.
For example, Ravn and Uhlig| (2002) suggested a method for adjusting the HP filter
for the frequency of observations; de Jong and Sakarya| (2016) and (Cornea-Madeira
(2017) established some representation results; Hamilton| (2018) provided criticism
on the HP filter; Phillips and Shi (2019) advocated a boosted version of the HP filter
via Ly-boosting (Bithlmann and Yu) [2003) that can detect multiple structural breaks.
We view that the kinks might be more suitable than the breaks for modelling £,
using daily data. It is unlikely that in a few days, the degree of contagion of COVID-
19 would be diminished with an abrupt jump by social distancing and lockdown.
We build the sparse HP filter by drawing on the recent literature that uses an /-
constraint or -penalty (see, e.g. Bertsimas et al., 2016; (Chen and Lee, 2018a,b; Huang
et al.,[2018).



3.1 /; Trend Filtering

In ¢, trend filtering, the trend estimate f; is a minimizer of

T T-1
Z(yt _ft)2+)\2|ft—1 = 2fi + fraal, (3.1)
t=1 t=2

which is related to Hodrick and Prescott (1997) filtering; the latter is the minimizer

of
T T-1
S W= F)P AN (fror = 2fi + fren)”. (32)

t=1 t=2

In this paper, the main interest is to find the kinks in the trend. For that purpose,
¢ trend filtering is more suitable than the HP filtering. The main difficulty of using
is the choice of A. This is especially challenging since the time series behavior
of y, is largely unknown.

The ¢, trend filter is akin to LASSO. In view of an analogy to square-root LASSO
(Belloni et al, 2011), it might be useful to consider a square-root variant of (3.1)):

t=1

T 1/2 T-1
<Z<yt _ft)2> +)\Z’ft71 —2fi + fisl (3.3)
t=2

We will call (3.3) square-root ¢, trend filtering. Both (3.1) and (3.3) can be solved via
convex optimization software, e.g., CVXR (Fu et al.,2017).

3.2 Sparse Hodrick-Prescott Trend Filtering

As an alternative to /; trend filtering, we may exploit Assumption[3|and consider an
{y-constrained version of trend flitering:

Z(Z/t — fi)?

subject to (3.4)
T-1

Z Hfe— fier # fi1 — fi} < K.

t=2



The formulation in (3.4) is related to the method called best subset selection (see, e.g.
Bertsimas et al., 2016; Chen and Lee,2018a)). It requires only the input of x. However,
because of the nature of the ¢y-(pseudo)norm, it would not work well if the signal-
to-noise ratio (SNR) is low (Hastie et al., 2017, Mazumder et al., 2017). This is likely
to be a concern for our measurement of the log contact rate.

To regularize the best subset selection procedure, it has been suggested in the lit-
erature that can be combined with /; or ¢, penalization (Bertsimas and Van Parys,
2020; Mazumder et al., 2017)). We adopt Bertsimas and Van Parys|(2020) and propose
an /y-constrained version of the Hodrick-Prescott filter:

T T-1
Z(yt - ft)2 + /\Z(ft—l —2fi + ft+1)2
t=1 t=2
subject to (3.5)
T-1
Z WS = fier # frn — fi} < k.
t=2

As in (3.4), the tuning parameter x controls how many kinks are allowed for. Thus,
we have a direct control of the resulting segments of different slopes. The ¢, penalty
term is useful to deal with the low SNR problem with the COVID 19 data. We will
call sparse HP trend filtering.

Problem can be solved by mixed integer quadratic programming (MIQP).
Rewrite the objective function in as

T-1

Z(yt — fi)* + AZ(ftq —2f, + fir1)?

t=1 t=2

subjectto z, € {0,1},t =2,....T =1, f < f; < 1, ZtT:_let < k, and
— Mz < fi1—2fi+ fria < Mz, t=2,...,T — 1.
This is called a big-M formulation that requires that
max |fim1 = 2ft + fera]| < M.

We need to choose the auxiliary parameters f, f and M. We set f = miny, and



f = maxy;. One simple practical method for choosing M is to set

M = _max Y1 — 200 + Yeqa]. (3.6)

To implement the proposed method, it is simpler to write the MIQP problem
above in matrix notation. Let y denote the (7" x 1) vector of y,’s and 1 a vector of 1’s

whose dimension may vary. We solve
min [(y — )" (y = ) + A" D' Df] (37)

subjectto z € {0,1}772, f1 < f < 1,172 <k, —-Mz < Df < Mz, where D is the
(T — 2) x T second-order difference matrix such that

with entries not shown above being zero. Let f and Z denote the resulting maximiz-
ers. It is straightforward to see that f also solves (B.5). Therefore, f is the (T x 1)
vector of trend estimates and K := {t =2,...,T —1: %z = 1} is the index set of
estimated kinks. The MIQP problem can be solved via modern mixed integer pro-
gramming software, e.g., Gurobi. Because the sample size for y; is typically less than
100, the computational speed of MIQP is fast enough to carry out cross-validation to
select tuning parameters. We summarize the equivalence between the original and

MIQP formulation in the following proposition.

Proposition 3.1. Define

F(k) :=={f=(f1,.-.-, fr) :mtinft > Lmtaxft < f,mtax|ft_1 —2fi + fia| < M,
-1

Z W/fi = fier # fir1 — fi} < K}

t=2



Let foup : {f:: t =1,..., T} denote a solution to

Juin Sp(f,2) = (y - ' y—Ff)+\f D'Df.
Let fMIQp denote a solution to (3.7). Then, both .ngp and fMIQp are equivalent in the sense
that fSHP < F(H), fM[Qp & F(Fé), and ST(.fSHP; )\) = ST(.fMIQP, /\)

3.3 Selection of Tuning Parameters

We first consider the sparse HP filter. There are two tuning parameters: A and . Itis
likely that there will be an initial stage of coronavirus spread, followed by lockdown
or social distancing. Even without any policy intervention, it will come down since
many people will voluntarily select into self-isolation and there is a chance of herd
immunity. Hence, the minimum « is at least 1. xk = 2 might be too small since we
would like to avoid misspecification. If « is too large, it is difficult to interpret the
resulting kinks. In view of these, we set the possible values k € K = {2,3,4}. For
each pair of (k, \), let f_s(n, A) denote the leave-one-out estimator of f,. That is, it is
the sparse HP filter estimate by solving:

T T—1
Z (yt - ft)2 + /\Z(ft—l —2fi + ft+1>2
t=1,t£s t=2
subject to (3.8)
T-1
Z Hfe— ficr # frrn — i} < K
=2

The only departure from (3.5) is that we replace the fidelity term 3>, (y; — f;)* with
ZZ’:M _(y+ — f1)*. We choose the optimal (x, \) by

T

~ 2
o nin ﬁ; {yt — fi(, A)} : (3.9)
where L is the set for possible values of \. We view A as an auxiliary tuning pa-
rameter that mitigates the low SNR problem. Hence, we take £ to be in the range of
relatively smaller values than the typical values used for the HP filter. In the numer-
ical work, we let A to a grid of equi-spaced points in the log,-scale.



We now turn to the HP, ¢; and square-root /; trend filters. For each filter, we
choose )\ such that the fidelity term 3"/, (y; — f;)? is the same as that of the sparse
HP filter. In this way, we can compare different methods holding the same level of
fitting the data. Alternatively, we may choose )\ by leave-one-out cross validation for
each filtering method. However, in that case, it would be more difficult to make a
comparison across different methods. Since our main focus is to find the kinks in the
contact rate, we will fine-tune all the filters to have the same level of Zthl(yt — fi)?
based on the sparse HP filter’s cross validation result.

4 A First Look at the Time-Varying Contact Rate

As a benchmark, we have a first look at the US data. The dataset is obtained via R
package coronavirus (Krispin, 2020), which provides a daily summary of COVID-19
cases from Johns Hopkins University Center for Systems Science and Engineering
(Dong et al., 2020). Following Liu et al. (2020), we set the first date of the analysis
to begin when the number of cumulative cases reaches 100 (that is, March 4 for the
US). To smooth data minimally, we take Y; in to be a three-day simple moving
average: thatis, V; = (th + Y, + Y/t_z) /3, where Y, is the daily observation of Y,
constructed from the datasetﬂ Then, we take the log to obtain y, = log ;.

Figure [I| has four panels. The top-left panel shows the fraction of daily posi-
tives, the top-right panel the fraction of lagged cumulative infectives, the bottom-
left panel the fraction of lagged cumulative susceptibles, and the bottom-right ¥, =
ACy/(1;-15;—1). In the US, statewide stay-at-home orders started in California on
March 20 and extended to 30 states by March 30 (The New York Times, 2020d).
The inserted vertical line in the figure corresponds to March 30, which we will call
the “lockdown” date for simplicity, although there was no lockdown at the national
level. As a noisy measurement of /3;, Y; shows enormous skewness and fluctuations
especially in the beginning of the study period. This indicates that the signal-to-noise
ratio is high and is time-varying as well. This pattern of the data has motivated As-
sumption [2l Because S;_; is virtually one throughout the analysis period (0.994 on
June 8, which is the last date of the sample), Y; ~ AC}/I;_;, which is daily positives
divided by the lagged infectives.

4Liu et al.|(2020) used one-sided three-day rolling averages; Fernandez-Villaverde and Jones (2020)
took 5-day centered moving averages.

10



Figure 1: US Data
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Note: The orange vertical line denotes the lockdown date, March 30. The population size is normal-
ized to be 1.

11



Figure 2: logY; as a raw time series of log 8, and parametric fitting
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Figure 2| shows the raw data along with parametric fitting. The top-left panel
shows the logarithm of Y;, which still exhibits some degree of skewness and time-
varying variance. The fitted regression line is based on the following parametric

regression model:
Yr = ag + o (t — to)1(t > to) + &4, (4.1)

where ¢, is March 30. The simple idea behind is that an initial, time-constant
contact rate began to diminish over time after a majority of US states imposed stay-
at-home orders.

In simple SIR models, the contact number 3/ is identical to the basic repro-
duction number denoted by R, which is viewed as a key threshold quantity in the
sense that “an infection can get started in a fully susceptible population if and only
if Ry > 1 for many deterministic epidemiology models” (Hethcote| 2000). Since f;
is time-varying in our framework, we may define a time-varying basic reproduction
number by Ry(t) := (,/7.

The top-right panel shows the estimates of time-varying Ro(t)f]

~

Ry(t) := explap + a1 (t — to)1(t > to)]/7, (4.2)

where v = 1/18 is taken from |Acemoglu et al. (2020). This corresponds to 18 days of
the average infectious period. The parametric estimates of R(t) started above 4 and
reached 0.15 at the end of the sample period.

The left-bottom panel shows the residual plot in terms of y; and the right-bottom
panel the residual plot in terms of Ry(t). In both panels, the estimated residuals seem
to be biased and show autocorrelation. Especially, the positive values of residuals at
the end of the sample period is worrisome because the resulting prediction would

be too optimistic.

>The formula given in (4.2) is valid if errors are homoskedastic, which is unlikely to be true in actual
data. However, we present (4.2) here because it is simpler. Our main analysis focuses on estimation of
the kinks based on y;, not on estimating R(¢). We use the latter mainly to appreciate the magnitude
of the kinks.

13



5 Estimation Results

In this section, we present estimation results for five countries: Canada, China, South
Korea, the UK and the US. These countries are not meant to be a random sample
of the world; they are selected based on our familiarity with them so that we can
interpret the estimated kinks with narratives. We look at the US as a benchmark
country and provide a detailed analysis in Section A condensed version of the

estimation results for other countries are provided in Section[5.2]

5.1 Benchmark: the US

Figure (3| summarizes the results of leave-one-out cross validation (LOOCV) as de-
scribed in Section The range of tuning parameters were: x € {2,3,4} and
A= {2° 2! ... 2°}. We can see that the choice of x seems to matter more than that of
A. Clearly, k = 2 provides the worst result and x = 3 and x = 4 are relatively similar.
The LOOCYV criterion function was minimized at (%, X) = (4,1).

Based on the tuning parameter selection in Figure 3, we show estimation results
for the sparse HP filter in Figure [ The structure of Figure [ is similar to that of
Figure 2l The top-left panel shows estimates of the sparse HP filter along with the
raw series of y; and the parametric estimates shown in Figure 2l The top-right panel
displays counterparts in terms of Ry(t). The bottom panels exhibit residual plots for
the log ; and Ry(t) scales. The trend estimates from the sparse HP filter fit the data
much better than the simple parametric estimates. The estimated kink dates are:
March 16, March 20, April 14, and May 13. There are five periods based on them.

1. March 4 - March 16: this period corresponds to the initial epidemic stage;
2. March 16 - March 20: the contact rate was peaked at the end of this period;
3. March 20 - April 14: a sharp decrease of the contact rate is striking;

4. April 14 - May 13: the contact rate decreased but less steeply;

5. May 13 - : it continued to go down but its slope got more flattened.

To provide narratives on these dates, President Trump declared a national emer-
gency on March 13; The Centers for Disease Control and Prevention (CDC) recom-

mended no gatherings of 50 or more people on March 15; New York City’s public
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Figure 3: Sparse HP Filtering: Leave-One-Out Cross Validation
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Note: The red vertical line denotes the minimizer (7, ) = (4,1) of the cross-validation objective
function. The x-axis is represented by the log, scale.
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Figure 4:
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30.

16



schools system announced that it would close on March 16; and California started
stay-at-home orders on March 20 (The New York Times| 2020b,d). These events in-
dicate that the second period was indeed the peak of the COVID-19 epidemic in
the US. The impact of social distancing and stay-at-home orders across a majority of
states is clearly visible in the third period. The fourth and fifth periods include state
reopening: for example, stay-at-home order expired in Georgia and Texas on April
30; in Florida on May 4; in Massachusetts on May 18; in New York on May 28 (The
New York Times, 2020c). In short, unlike the parametric model with a single kink,
the nonparametric trend estimates detect multiple changes in the slopes and provide
kink dates, which are well aligned with the actual events.

We now turn to different filtering methods. In Figure 5, we show selection of A
for the HP, /; and square-root /; filters. As explained in Section the penalization
parameter ) is chosen to ensure that all different methods have the same level of fit-
ting the data. Figure [6|shows the estimation results for the HP filter. The HP trend
estimates trace data pretty well after late March, as clear in residual plots. However,
there is no kink in the estimates due to the nature of the ¢, penalty term in the HP
filter. The tuning parameter was A = 30, which is 30 times as large as the one used
in the sparse HP filter. This is because for the HP filter, A is the main tuning pa-
rameter; however, for the sparse HP filter, A plays a minor role of regularizing the ¢,

constrained method.

Figure 5: Selection of A

US : Tuning Parameter (HP) US: Tuning Parameter (L1) US: Tuning Parameter (SQRT_L1)
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Note: The thunning parameter A is chosen by minimizing the distance between two fidelities as de-
scribed in Section 3.3. The selected tuning parameters for HP, ¢;, and square-root ¢; are as 30, 0.9, and
0.5, repectively.

In Figure [7], we plot estimation results using ¢; trend filtering. The results look
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Figure 7: /, Filtering
US: log B Fit US: Ry Fit
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Note: ¢, filtering solves . The estimated kinks denoted by blue vertical lines are: March 7, March
15, March 16, March 20, March 21, March 30, April 14, April 21, May 12, May 27. The orange vertical
line denotes the lockdown date, March 30. The ¢;-filtering kink dates are calculated by any ¢ such
that |A% log Bt| > 1, where = 1079 is an effective zero.
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Figure 8: Square-root ¢, Filtering
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Note: Square-root /; filtering solves (3.3). The estimated kinks denoted by blue vertical lines are:
March 7, March 15, March 16, March 20, March 21, March 30, April 14, April 21, May 12, and May 27.
The orange vertical line denotes the lockdown date, March 30.
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Figure 9: Sparse HP and ¢, Filtering for the US
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similar to those in Figure @ but there are now 10 kink points: March 7, March 15,
March 16, March 20, March 21, March 30, April 14, April 21, May 12, May 27. They
are dates t such that |A?log Btl > 7, where A? is the double difference operator and
n = 1079 is an effective zeroff| The tuning parameter A = 0.9 was chosen by minimiz-
ing the distance between the fidelity of /; and that of the Sparse HP. Recall that the
sparse HP filter produces the kinks on March 16, March 20, April 14, and May 13.
In other words, the /, filter estimates 6 more kinks than the sparse HP filter when
both fit the data equally well. It is unlikely that two adjacent dates (March 15-16
and March 20-21) correspond to two different regimes in the time-varying contact
rate. This suggests that the ¢, filter may over-estimate the number of kinks. Fig-
ure[§shows estimation results for the square-root ¢, trend filters. The chosen A = 0.5
was smaller than that of the ¢, trend filter due to the change in the scale of the fi-
delity term; however, the trend estimates look very similar and the estimated kinks
are identical between the ¢, and square-root /; trend filters. In Figure 9 we plot the
sparse HP filter estimates along with ¢, filter estimates. Both methods have produced
very similar trend estimates, but the number of kinks is substantially different: only
4 kinks for the sparse HP filter but 10 kinks for the ¢, filter.

5.2 Other Countries: Canada, China, South Korea and the UK

In this section, we provide condensed estimation results for other countries. We
focus on the sparse HP and /¢, filters whose tuning parameters are chosen as in the
previous section. Appendices [B|and [C|contain the details of the selection of tuning
parameters.

Figure 10| shows the empirical results of Canada. The estimated kink dates are:
March 18 and April 11. Based on them, we can classify observations into three peri-

ods:

1. March 6 - March 18: This is an initial period of the epidemic in Canada. The
contact rate was peaked at the end of this period. Several lockdown measures

started to be imposed.

®The results are robust to the size of the effective zero and do not change even if we set n = 1073.
Gurobi used for the Sparse HP filtering also imposes some effective zeros in various constraints. We
use the default values of them. For example, the integer tolerance level and the general feasibility
tolerance level are 107 and 1075, respectively.
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2. March 18 - April 11: We observe a sharp decrease in the contact rate in this
period. Additional measures were imposed.

3. April 11 - : The contact rate decreased but less steeply.

Quebec and Ontario are the two provinces hardest hit by COVID-19. In Quebec,
daycares, public schools, and universities are closed on March 13 followed by non-
essential businesses and public gathering places on March 15. Montreal declared
state of emergency on March 27 (CTV News, 2020). Similarly, all public schools in
Ontario are closed on March 12. The state of emergency was announced in Ontario
on March 17 and ordered to close all non-essential businesses on March 23 (Global
News), 2020). We set the lockdown date in Canada on March 13 as other provincial
governments as well as the federal government started to recommend the social dis-
tancing measures strongly along with the cancellation of various events on the date
(CBC News, 2020). These tight lockdown and social distancing measures seemed
to contribute the sharp decline of the contact rate in the second period. Both gov-
ernments started to announce the plans to lift the lockdown measures at the end of
April, which corresponds to the third period. Lockdown fatigue would also cause
the slower decrease of the contact rate. In sum, a series of social distancing measures
have been effective to decrease the contact rate but with some lags. The sparse HP
tiltering separates these periods reasonably well. However, the ¢, filtering overfits
the model with 5 kinks.

Figure[TTshows the results for China. Since the pandemic is almost over in China,
we use the data censored on April 26th when the 3-day-average of newly confirmed
cases is less than 10. The estimated kink dates are: January 28, March 14, March 24,
and April 18. Based on them, we can classify observations into five periods:

1. January 23 - January 28: This is an initial period of the epidemic in China.
Since the official confirmation of the novel coronavirus on December 31, 2019,
the confirmed cases had increased rapidly. President Xi presided and issued
instructions on the epidemic control on January 20. The travel ban on Wuhan
was imposed on January 23, 2020 in the period of the Lunar New Year holidays
(The New York Times|, 2020b). We set this date as the lockdown date.

2. January 28 - March 14: The contact rate shows a sharp decrease during this
period. The Lunar New Year holiday was extended to February 2 across the
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Figure 10: Sparse HP and /; Filtering for Canada
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country. China’s National Health Commission (NHC) imposed social distanc-
ing measures on January 26. By January 29, all 31 provinces in China upgraded
the public health emergency response to the most serious level. By early Febru-

ary, nationwide strict social distancing policies were in place.

3. March 14 - March 24: This period shows a V-turn of the contact rate in terms
of the log 3, scale. It also shows an upward trending in the R,(t) scale but the
level is lower than that in early February. The mass quarantine of Wuhan was
partially lifted on March 19 (Bloomberg, [2020). Most provinces downgraded
their public health emergency response level, where factories and stores started
to reopen in this period.

4. March 24 - April 18: The contact rate still increased but at a lower rate. It started
to decrease again at the end of this period. We can see a slight increase in
Ry(t). The mass quarantine of Wuhan was lifted more and the travel to other
provinces was allowed on April 8 (Bloomberg, 2020).

5. April 18 - April 26: The contact rate went down quickly and was flattened at a
low level. The last hospitalized Covid-19 patient in Wuhan was discharged on
April 26 (Xinhua, 2020).

Figure 12| shows the results for South Korea. For the same reason in China, we
use the data censored on April 29. The estimated kink dates are: March 3, March 15,
April 2, and April 21. Based on them, we can classify observations into five periods:

1. February 21 - March 3: This period is the beginning of the coronavirus spread
in South Korea. On February 21, Shincheonji Church of Jesus, a secretive church
in South Korea was linked to a surge of infections in the country (The New
York Times, 2020b). The sharp decline of log /3; could be due to the fact that
the number of active infections is relatively small in this period and thus, Y; =
AC}/(1;-1S;—1) might not be properly measured.

2. March 3 - March 15: A sharp decrease in log /3; in this period corresponds to
Korean government’s swift reactions to the outbreak through active testing and
contact tracing (The New York Times| 2020a; Aum et al., 2020), highlighted by
prompt containment of an outbreak started on March 8 at a call center in Seoul
(Park et al., 2020).
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Figure 11: Sparse HP and ¢, Filtering for China
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3. March 15 - April 2: This period shows a modest V-turn of the contact rate in
terms of the log f3; scale but it is much less visible in the R(t) scale.

4. April 2 - April 21: This period displays a further reduction of the contact rate.
A remarkable event was parliamentary elections on April 15 when 30 million

people voted without triggering a new outbreak.

5. April 21 - April 29: The contact rate was flattened at a low level.

Figure 12: Sparse HP and ¢, Filtering for South Korea
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Figure (13| shows the empirical results of the UK. The estimated kink dates are:
March 28, April 23, May 7 and May 20. Based on them, we can classify observations
into five periods:
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. March 6 - March 28: This is an initial period of the epidemic in the UK. The
downward trend might be due to the fact that the cumulative number of con-
tirmed cases is relatively small and therefore, its growth rate can be easily over-
estimated. The lockdown measures began in the UK on March 23 (BBC News,
2020Db).

. March 28 - April 23: It shows a rapid decrease in the contact rate. The severe

lockdown measures are effective in this period.

. April 23 - May 7: This period shows a slightly less steep decrease in the contact
rate. This could be driven by non-compliance due to lockdown fatigue or by

other factors (e.g., changes in reporting cases).

. May 7 - May 20: This period exhibits a marginally steeper decrease in the con-
tact rate. On May 10, the British prime minister Boris Johnson relaxed certain
restrictions and announced the plan for reopening (BBC News| 2020a).

. May 20 - : This period shows a less steep decrease in the contact rate, possibly
due to effects of partial reopening.

Overall, the most striking kink date is March 28, which is five days after the prime

minister’s lockdown announcement. Other subsequent kink dates represent more or

less minor changes in the slopes, resulting in a smooth curve in the R(¢) scale. The

trend estimates of the /; filter is almost identical to those of the sparse HP filter;

however, it indicates 9 kinks, which seem overly excessive.

5.3 A Measure of Surveillance and Policy Implications

The sparse HP filter produces the kinks where the slope changes in the log f3; scale,

thereby providing a good surveillance measure for monitoring the ongoing epidemic

situation. The policy responses are based on various scenarios and the contact rate

is one of the most important measures that determine different developments. As a

summary statistic of the time-varying contact rate, we propose to consider the time-

varying growth rate of the contact rate, which we call contact growth rates:

ﬁt 5t 1

100.
5&1

§(t) =
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Figure 13: Sparse HP and ¢, Filtering for the UK
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March 11, March 21, March 28, April 3, April 22, April 23, May 8, May 20, and May 21. The orange
vertical line denotes the lockdown date, March 24.
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Table 1: Time-Varying Contact Growth Rates

US Canada China South Korea UK

Period 1 -1.55 7.08 15.04 -15.23 -2.07
Period 2 7.48 -5.02 -12.27 -20.34 -5.88
Period 3 -7.67  -2.82 30.23 4.47 -3.06
Period 4 -3.39 NA 4.41 -7.88 -6.32
Period 5 -1.04 NA -22.95 1.57 -3.45

Note: The growth rates, expressed as percentages, are obtained by (5.1) using the sparse HP trend
estimates. The contact growth rates are also growth rates of Ry(t). The kink dates separating distinct
periods are different for each country and they are reported in Sections[5.1]and

Recall that we have defined the time-varying basic reproduction number by R(t) =
B:/7. Because 7 is fixed over time, we have that

Ry(t) — Ro(t — 1)

100.
R(—1)

£(t) =

Therefore, £(t) can be interpreted as the time-varying growth rate of the basic repro-
duction number; it does not require the knowledge of v and solely depends on ;.

Furthermore, by simple algebra,

£(t) = [exp(log By — log B;—1) — 1] x 100, (5.1)

which implies that £(¢) will be piecewise constant if log f3; is piecewise linear. This
simple algebraic relationship shows that a change in the slope at the kink in the log 3,
scale is translated to a break in the time-varying contact growth rates and therefore
in growth rates of the time-varying basic reproduction number. When &(t) is a large
positive number, that will be a warning signal for the policymakers. On the contrary,
if £(¢) is a big negative number, that may suggest that policy measures imposed be-
fore are effective to reduce the contagion.

Table[T|reports the time-varying contact growth rates in the five countries that we
investigate, using the sparse HP trend estimates. For the US, the explosive growth
rate of 7.5% in the second period is followed by the negative growth rates of —7.7%,
—3.4%, and —1%, albeit at diminishing magnitudes. The trajectory of Canada is sim-
ilar to that of the US. The growth rates of China fluctuated up and down: it started
with a high positive 15% followed by —13%; a sharp V-turn at the end of the second
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period (March 14) with the resulting explosive growth rate of 30%, followed by mod-
erate 4% and impressive —23%. It might be the case that the up-and-down pattern
observed in China is in part due to data quality issues since China was the first coun-
try to experience the pandemic. For South Korea, we can see the stunning drop of the
growth rates culminating on March 15 (the end of the second period). A modest pos-
itive growth rate during period 3 is offset by a larger magnitude of negative growth
rate in period 4. The UK has experienced steady—but not spectacular—negative
growths over the sample period, hinting the degrees of effectiveness of the UK lock-
down policy. As early pandemic epicenters, China and South Korea experienced
V-turns in the time-varying growth rates of basic reproduction number. Canada,
the UK and the US may face similar trajectories as they reopen their countries. Our
surveillance statistic can be a useful indicator to monitor a new outbreak of COVID-
19.

6 Theory

In this section, we examine theoretical properties of the sparse HP and ¢, filters in
terms of risk consistency. Let || - ||o denote the usual /y-(pseudo)norm, that is the
number of nonzero elements, and let || - ||, and || - ||, respectively, denote the ¢,

norm for r = 1,2 and the sup-norm.

6.1 Risk Consistency of the Sparse HP Filter

Define
F = F(s, M) = {f : |Dflly < . | Df|lc < M}, 6.1)
where M is defined in . For each f € F, define
S(F) =By | 1y~ D) w1
Let f* denote the ideal sparse filter in the sense that

f* € argmin,_-S(f).
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Let f denote the sparse HP filter defined in Section Then,

-~ ~

R(f, )= 5(f) = S(F7) (6.2)

is always nonnegative. Following the literature on empirical risk minimization, we
bound the excess risk R in (6.2)) and establish conditions under which it converges to
zero.

Recall that the sparse HP filter minimizes

Qulf) =y~ £y~ §)+ 7 D' Df

subject to f € F.
Let S,(f) =T Yy — )" (y — f). Write

R(f. f*) = S(f) — Qu(F*) + Qu(f*) — S(F*)
< S(F) = Qulf) + Qu(F*) = S(F*)
= S(7) ~ Su(F) - ~AFTDTDF + 5.8 + ~F DD - S(57)
< 25up |5,(£) ~ S(£)| + 22 sup /DT DF.

fer fer

Therefore, it suffices to bound two terms above. For the second term, we can use

and to bound

A 2AM?
2-supf ' D'Df < g
T fer

We summarize discussions above in the following lemma.
Lemma 6.1. Let f denote the sparse HP filter. Then,

~ 20K
R(f, f*) <2sup|Spu(f) = S(F) + — maxfl |Ye—1 — 2y + ?Jt+1|2-

feF T t=2,..T
To derive an asymptotic result, we introduce subscripts indexed by the sample
size T\, when necessary for clarification. Let G, denote the set of every continuous
and piecewise linear function whose slopes and the function itself is bounded by C;
and C5, respectively, and the number of kinks is bounded by «.
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Assumption 4. Assume that F in satisfies
F(w, M) C Fr:={fr = (frp, frr): fry = f(t/T), f € Gs}. (6.3)

Moreover, y; = f1,+uy, wherelog 8; = fr.,, f1 € Frand u; satisfies sup,_ ,
for some p > 2 and Assumption 2| Finally, \e T~U=1P) — 0as T — oo.

geoe

Then, we have the following proposition.

Proposition 6.1. Let Assumption hold. Then, we have that as T — oo,

1
sup | > {n— ) =By — f)?} =, 0 (6.4)
t=1
and
AK 5
—  max |y—1 — 2y + ya|” =5 0. (6.5)

T t=2,..T-1
Therefore, R( .5 —p 0.

Theorem [6.1| establishes the consistency in terms of the excess risk R. Assump-
tion [ provides sulfficient conditions for and (6.5). Condition (6.4) is a uniform
law of large numbers for the class F and condition imposes a weak condition
on \. Proposition [6.1] follows immediately from Lemma [6.1] once and are
established.

Proof of Proposition Note that the summand in can be rewritten (y? — Ey?) —
2fi(ye — Ey). Then, y7 — Eyf = ui — o3 + 2(f7, — f)ue and 2fi(y; — Egp) = 2fous.
Furthermore, 7' 3. u? — 62 = 0,(1) due to the law of large numbers (LLN) for a
martingale difference sequence (mds).

We now turntosup;. » (T‘l ST ftut> . The marginal convergence is straightfor-
ward since f;u; is an mds with bounded second moments due to the LLN for mds.
Next, note that for a constant > 0

sup
‘f_flloo<7l

T (i = fu

t=1

T
<1 (Tl > ’Ut|> :
t=1

33



which implies the stochastic equicontinuity of the process indexed by f € Fr. Fi-
nally, recall Arzela-Ascolli theorem, see e.g. [Van Der Vaart and Wellner (1996), to
conclude that G, is totally bounded with respect to | - |. Therefore,

T
sup (T‘l thut> = 0,(1)

ferFr

by a generic uniform convergence theorem, e.g. Andrews (1992).

-----

is in turn O, (AT ~(1~/P)) due to the moment condition on u;. O

6.2 Risk Consistency of the /; Filter
The /¢, trend filtering can be expressed as

f=argmin [y — 5+ A|Dfl:.
FeRT

We now derive the deviation bound for ||f — f*||. First, the problem is equivalent
to a regular LASSO problem as stated in Lemma [6.2]below.
Write D = (Ds, D,) where D, has two columns. Additionally, write

D! —D:'D,
G, = o, = 3 ,

where 0is 2 x (T'—2),g,isT x 2and Gy is T x (T — 2). Let P,, = g1(g9, g1) g7 -

Lemma 6.2. We have f: y—y+ X0, where y:=U—-Py)y, X = (I — P,,)G5 and
6 := argmin||g — X0 + Al|6].

Proof of Lemma Let D; = (0 : I,) be a 2 x T matrix, so that

o-(2)

is upper triangular and invertible. Then, G := D! = (G4, g;). Then for a generic
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f € RT, we can define

So (6, a) also depend on f and Ga = gi1a + G26. Then the problem is equivalent to:
f: gla + Ggé\, where

(@,6) := min|ly — (g1a + Ga0) 3 + A6,

To solve the problem, we concentrate out a: Given 6, the optimal a is (g{ g1) ‘g, (y—
G,0) and the optimal g,a is P, (y — G20). Substituting, so the problem becomes a
regular LASSO problem:

min [[§ — X0|I3 + Al|0]-

Finally, f= Py (y — Gﬁ) + G0 =y — 7+ X0. ]

Next, let J denote the indices of ¢ so that fo;—1 — fo: # for — for+1 Whent € J;
let J¢ denote the indices of ¢ so that fo:—1 — for = for — forr1 Wwhent € J. Here,
{for : t = 1,...,T} denote the true elements of f. For a generic vector § € RT2,
let §; and 0 respectively be its subvectors whose elements are in J and J¢. No we
define the restricted eigenvalue constant

X0
co o Xl
l6scli<ollesll |62

Proposition 6.2. Let f* denote the true value of f and w := y — f*. Suppose the event
25w’ X ||« < A holds. Then on this event

RE )< 2 Pt 204X K (S50 66)

Proof of Proposition[6.2} Let §* = D f*. Consider the vector form of the model y =
f*+u. Theny = X0* + @ where u = (I — Py, )u. By Lemma f: y—y-+ X0,
where

0= arg min g — X602+ 6]

The standard argument for the LASSO deviation bound implies, on the event 2.5 ||’ X|so <
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Finally, f—f = P, u+ X6 -6 implies
7 opx L.z (12 2 e ad 0 *(12
R(f, ) = 7llf = £l = u Pou+ 25X Xl |10 — 673
0

To achieve risk consistency, A has to be chosen to make the second term on the
right-hand side of asymptotically small and to ensure that the event 2.5||u " X lloo <
A holds with high probability. The first term on the right-hand side of will con-
verge to zero under mild conditions on w. It is reassuring that the ¢, trend filter fits
COVID-19 data well in our empirical results.

7 Conclusions

We have developed a novel method to estimate the time-varying COVID-19 contact
rate using data on actively infected, recovered and deceased cases. Our preferred
method called the sparse HP filter has produced the kinks that are well aligned with
actual events in each of five countries we have examined. We have also proposed
contact growth rates to document and monitor outbreaks. Theoretically, we have
outlined the basic properties of the sparse HP and ¢, filters in terms of risk consis-
tency. The next step might be to establish a theoretical result that may distinguish
between the two methods by looking at kink selection consistency. It would also be
important to develop an inference method on the location and magnitude of kinks as
well as on contact growth rates. Furthermore, it would be useful to develop a panel
regression model for the contact rate at the level of city, state or country. These are

interesting research topics for future research.

36



Appendices

A Under-Reporting of Positive Cases

In Section 2} it is assumed that we observe (C;, R;, D;). In this appendix, we show
that our time series model in Section [2|is robust to some degree of under-reporting
of positive cases.

Assume that what we observe is only a fraction of changes in C;. This assumption
reflects the reality that a daily reported number of newly positive cases of COVID-
19 is likely to be underreported. Suppose that we observe Ac; in period ¢ such that
Ac; := pAC;, where 0 < p < 1 is unknown. Then,

T T
Cy = ZACt = PZAC:& = pC4,
t=1 t=1

assuming that ¢, = Cy = 0. In words, p is the constant ratio between reported and

true cases. Formally, we make the following assumption.

Assumption 5 (Fraction Reporting). For each t, we observe (c,, 1, d;) such that
¢ = pCy, 1 :=pRy and d; := pDy,

where 0 < p < 1.

The two simplifying conditions in Assumption [5|is that (i) p is identical among
the three time series and (ii) p is constant over time. In reality, a fraction of reported
deaths might be higher than that of reported cases; p might be time-varying espe-
cially in the beginning of the pandemic due to capacity constraints in testing. How-
ever, we believe that p is unlikely to vary over time as much as 3, changes over time;
thus, we take a simple approach to minimize complexity. The common p can be
thought of a broad measure of detecting COVID-19 in a community.

Define i, := ¢, —r;—d; and s; := 1 —c¢;. Under Assumption the reported fraction
infected at time ¢ (i;) is underestimated, but the reported fraction of the proportion

that is susceptible at time ¢ (s;) is overestimated. Note that

ACt . pAOt _ ACt
i1 phr Ly

gt ‘=
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However,
Si-1=1—p1Ci_1 # Si-1.

In words, we have a measurement error problem on s;_; but not on g,. It follows
from (2.2)) that the observed g, and s,_; are related by

Gt = Bisi—1 + vy, (A1)

where

vy = Bi(Si—1 — si-1) = Bi(p — 1)Ciy. (A2)

The right-hand side of (A.2) is likely to exhibit an increasing trend since C_; is the
cumulative fraction ever infected. To alleviate this problem, we now divide both
sides of (A.1) by ¢;_1, which is positive, to obtain

o _ g, {ﬁ + p—_l} . (A3)
Ct—1 Ct—1 p
On one hand, if p = 1, is identical to (2.2). On other hand, if p — 0, the term
inside the brackets on the right-hand side of diverges to infinity.

In the intermediate case, it depends on the relative size between s;_;/c;_; and
(p —1)/p. We now use the UK data to argue that the latter is negligible to the for-
mer. According to the estimate by Office for National Statistics| (2020), “an average
of 0.25% of the community population had COVID-19 in England at any given time
between 4 May and 17 May 2020 (95% confidence interval: 0.16% to 0.38%).” In the
UK data used for estimation, the changes in the number of cumulative positives be-
tween 4 May and 17 May 2020 is 0.08% of the UK population. Then, an estimate of
p = 0.08/0.25 = 0.32, resulting in (p — 1)/p = —2.12. However, the sample maxi-
mum, median, minimum values of s;_/c;—; are 572412, 804, and 264, respectively.
Therefore, the correction term (p — 1)/p is negligible and therefore, reduces to

gt ~ Bisi—1, (A4)

which is virtually the same as (2.2).
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B Sparse HP Filtering: Leave-One-Out Cross-Validation
for Canada, China, South Korea and the UK

Figure 14: Sparse HP Filtering: LOOCYV for Other Countries

Canada: Leave—-one-out Cross-validation China: Leave-one-out Cross-validation

Objective Function
|

Objective Function
|

8 £ 2
A A

South Korea: Leave—-one-out Cross-validation UK: Leave-one-out Cross-validation
450~

Objective Function
|
Objective Function

Note: The red dashed line denotes the minimizer of the cross-validation objective function: (%, X) =
(2,16) for Canada; (%, X) = (4, 2) for China; (%, X) = (4,4) for South Korea; and (&, X):(4, 32) for the
UK. The analysis period is ended if the number of newly confirmed cases averaged over 3 days is
smaller than 10: April 26 (China) and April 29 (South Korea). The grid points are: x € {2, 3,4} and
A= {2021 ... 2%}, The x-axis is represented by the log, scale.
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C /; Trend Filtering: Selection of \

Figure 15: /; Trend Filtering: Selection of A

Canada: Tuning Parameter (L1) China: Tuning Parameter (L1)
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Note: The red dashed line denotes the equalizer between the fidelity of the sparse HP filter and that

of the ¢, filter: \ = 4.9 for Canada; \ = 8.9 for China; \ = 3.0 for South Korea; and X = 3.2 for the UK.
The analysis period is ended if the number of newly confirmed cases averaged over 3 days is smaller
than 10: April 26 (China) and April 29 (South Korea).
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