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Abstract

This paper is concerned with learning decision makers’ preferences using data on ob-

served choices from a finite set of risky alternatives. We propose a discrete choice model

with unobserved heterogeneity in consideration sets and in standard risk aversion. We

obtain sufficient conditions for the model’s semi-nonparametric point identification,

including in cases where consideration depends on preferences and on some of the

exogenous variables. Our method yields an estimator that is easy to compute and is

applicable in markets with large choice sets. We illustrate its properties using a dataset

on property insurance purchases.
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1 Introduction

This paper is concerned with learning decision makers’ (DMs) preferences using data on

observed choices from a finite set of risky alternatives with monetary outcomes. The prevail-

ing empirical approach to study this problem merges expected utility theory (EUT) models

with econometric methods for discrete choice analysis. Standard EUT assumes that the DM

evaluates all available alternatives and chooses the one yielding the highest expected utility.

The DM’s risk aversion is determined by the concavity of her Bernoulli utility function. The

set of all alternatives – the choice set – is assumed to be observable by the researcher.

We depart from this standard approach by proposing a discrete choice model with unobserved

heterogeneity in preferences and unobserved heterogeneity in consideration sets. Specifically,

preferences satisfy the classic Single Crossing Property (SCP) of Mirrlees (1971) and Spence

(1974), central to important studies of decision making under risk.1 That is, the prefer-

ence order of any two alternatives switches only at one value of the preference parameter.2

Given her unobserved preference parameter, each DM evaluates only the alternatives in her

unobserved consideration set, which is a subset of the choice set.

Our first contribution is to provide a general framework for point identification of these

models. Our analysis relies on two types of observed data variation. In the first case, we

assume that the data include a single (common) excluded regressor affecting the utility of

each alternative. In the second case, we assume that each alternative has its own excluded

regressor. In both cases, the excluded regressor(s) is independent of unobserved preference

heterogeneity. When the excluded regressor(s) also has large support it becomes a “special

regressor” (Lewbel, 2000, 2014). For reasons we explain, the case of the single common

excluded regressor is the most demanding from an identification standpoint. Nonetheless,

under classic conditions for semi-nonparametric identification of full-consideration discrete

choice models (see, e.g., Lewbel, 2000; Matzkin, 2007), we obtain semi-nonparametric identi-

fication of the preference distribution given basically any consideration set formation process

(henceforth, consideration process).3 We prove identification of the consideration process for

the widely used Alternative-specific Random Consideration (ARC) model of Manski (1977)

and Manzini & Mariotti (2014). The identification argument is constructive and applicable

1E.g., Athey (2001); Apesteguia, Ballester, & Lu (2017); Chiappori, Salanié, Salanié, & Gandhi (2019)
2The EUT framework satisfies the SCP, which requires that if a DM with a certain degree of risk aversion

prefers a safer lottery to a riskier one, then all DMs with higher risk aversion also prefer the safer lottery.
3The identification results are semi-nonparametric because we specify the utility function up to a DM-

specific preference parameter. We establish nonparametric identification of the distribution of the latter.
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beyond the ARC model. We establish identification results for preferences that do not re-

quire large support of the excluded regressor(s). We also show that identification of both

preferences and the consideration process is attainable when consideration depends on pref-

erences. In particular, we introduce (i) binary consideration types, and (ii) proportionally

shifting consideration, which captures the notion that the DM’s attention probabilistically

shifts from riskier to safer alternatives as her risk aversion increases.

We can significantly expand our results with alternative-specific excluded regressors. First,

we can allow for essentially unrestricted dependence of consideration on preferences without

assuming that the excluded regressors have large support. Second, we show that consider-

ation can depend both on preferences and on some excluded regressors. We show this for

two cases. In the first case, there is one alternative (the default) that is always considered.

The probability of considering other alternatives can depend on the default-specific excluded

regressor. This is a generalization of the models in Heiss, McFadden, Winter, Wuppermann,

& Zhou (2016); Ho, Hogan, & Scott Morton (2017); Abaluck & Adams (2018), where the

consideration process only allows for the possibility that either the default or the entire

choice set is considered. We, however, allow for each subset of the choice set containing the

default to have its own probability of being drawn and this probability can vary with the

DM’s preferences. In the second case, we allow the consideration of each alternative to de-

pend on its own excluded regressor, but not on the regressors of other alternatives (Goeree,

2008; Abaluck & Adams, 2018; Kawaguchi, Uetake, & Watanabe, 2020). We also allow for

consideration to depend on preferences – a feature unique to our paper.

Our second contribution is to provide a simple method to compute our likelihood-based

estimator. Its computational complexity grows polynomially in the number of parameters

governing the consideration process (e.g., the choice set size in the ARC model).4 Our method

does not require enumerating all possible subsets of the choice set. If it did, the computational

complexity would grow exponentially with the size of the choice set. Moreover, we compute

the utility of each alternative only once for a given value of the preference parameter, gaining

enormous computational advantage akin to that of importance-sampling methods.

Our third contribution is to elucidate the applicability and the advantages of our framework

over the standard application of full consideration random utility models (RUMs) with addi-

tively separable unobserved heterogeneity (e.g., Mixed Logit). First, our model can generate

4The function evaluation time of the log-likelihood objective function grows linearly with the number
of parameters. Provided that the objective function is locally concave, the local rate of convergence of the
standard SQP program is quadratic. See, for example, Boggs & Tolle (1995).
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zero shares for non-dominated alternatives. Second, the model has no difficulty explaining

relatively large shares of dominated alternatives. Third, in markets with many choice do-

mains, our model can match not only the marginal but also the joint distribution of choices

across domains. Forth, our framework is immune to an important criticism by Apesteguia &

Ballester (2018) against using standard RUMs to study decision making under risk. As these

authors note, combining standard EUT with additive noise results in non-monotonicity of

choice probabilities in the risk preferences, a clearly undesirable feature.

Our methodological innovation exploits restrictions implied by the SCP for the empirical

choice frequencies and how these frequencies respond to changes in excluded regressor(s).

Consider for example a market with three products, {d1, d2, d3}, where alternative d1 is

the riskiest and d3 is the safest, priced respectively at {p1, p2, p3}. We seek to learn the

distribution of the DM’s risk aversion parameter denoted ν and the parameters governing

the consideration process. Our analysis rests on studying how an incremental change in the

price of one alternative affects all choice frequencies. Assuming consideration is independent

of preferences and prices, there are only two types of DMs who might respond to a change

in p1: DMs that are risk type ν{1,2} who are indifferent between d1 and d2; and DMs that

are type ν{1,3} who are indifferent between d1 and d3. If a DM of type ν{1,2} responds to an

increase in p1, she will abandon d1 in favor of d2. Whether she responds to the change in

price depends on her consideration set. For the response to occur, both d1 and d2 must be

considered. Alternative d3 should not be considered if, at the current prices, DMs of type

ν{1,2} prefer d3 to both d1 and d2. In other words, we know not only the exact preferences

of DMs that may respond to the price change, but also what their consideration sets must

look like for this response to occur. Exploiting this insight yields our identification results.

Random preference models like the ones we consider are random utility models as envisioned

by McFadden (1974) (for a textbook treatment see Manski, 2009). We show that our random

preference models can be written as RUMs with unobserved heterogeneity in risk aversion

and with an additive error that has a discrete distribution with support {−∞, 0}. Then, it is

natural to draw parallels with the Mixed (random coefficient) Logit model (e.g., McFadden

& Train, 2000). In our setting, the Mixed Logit boils down to assuming that, given the

DM’s risk aversion, her evaluation of an alternative equals its expected utility summed with

an unobserved heterogeneity term capturing the DM’s idiosyncratic taste for unobserved

characteristics of that alternative. However, in some markets it is hard to envision such

characteristics: For example, many insurance contracts are identical in all aspects except

3



for the coverage level and price.5 In other contexts, unobservable characteristics may affect

choice mostly via consideration – as we model – rather than via “additive noise”.6

We show that the ARC model and the Mixed Logit generate several contrasting implications.

First, the Mixed Logit generally implies that each alternative has a positive probability of

being chosen, while the ARC model can generate zero shares by setting the consideration

probability of a given alternative to zero. Second, the Mixed Logit satisfies a Generalized

Dominance property that we derive: if for any degree of risk aversion alternative j has lower

expected utility than either alternative k or l, then the probability of choosing j must be no

larger than the probability of choosing k or l. The ARC model does not abide Generalized

Dominance. Third, in the ARC model choice probabilities depend on the ordinal expected

utility rankings of the alternatives, while in the Mixed Logit it depends on the cardinal

ranking. As we show, this difference implies that choice probabilities are monotone in risk

preferences in the ARC model, while in the Mixed Logit they are not (Apesteguia & Ballester,

2018).

Our empirical application is a study of households’ deductible choices across three lines of

insurance: auto collision, auto comprehensive, and home (all perils). We aim to estimate

the distribution of risk preferences and the consideration parameters; to assess the resulting

fit of the models; and to evaluate the monetary cost of limited consideration. We find that

the ARC model does a remarkable job at matching the distribution of observed choices, and

because of its aforementioned properties, outperforms the Mixed Logit. Under the ARC

model, we find that although households are on average strongly risk averse, they consider

lower coverages more often than higher coverages. Finally, the average monetary loss per

household resulting from limited consideration is $49.

The rest of the paper is organized as follows. We describe the model of DMs’ preferences

in Section 2, and study identification under a generic consideration process in Section 3.

We present the ARC model and its identification in Section 4. In Section 5 we describe

the computational advantages of our approach. Section 6 compares our model to the Mixed

Logit. Section 7 presents our empirical application. Section 8 contextualizes our contribution

relative to the extant literature and offers concluding remarks.

5E.g., employer provided health insurance, auto, or home insurance offered by a single company.
6E.g., a DM may only consider those supplemental prescription drug plans that cover specific medications.
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2 Preferences

2.1 Decision Making under Risk in a Market Setting: An Example

Consider as an example the following insurance market, which mimics the setting of our

empirical application. There is an underlying risk of a loss that occurs with probability µ

that may vary across DMs. A finite number of alternatives are available to insure against

this loss. Conditional on risk type, i.e., given µ, each alternative j ∈ D ≡ {1, . . . , D} is fully

characterized by the pair (dj, pj). The first element is the insurance deductible, which is the

DM’s out of pocket expense in the case a loss occurs. Deductibles are decreasing with index

j, and all deductibles are less than the lowest realization of the loss. The second element

is the price (insurance premium), which also varies across DMs. For each DM there is a

baseline price p̄ that determines prices for all alternatives faced by the DM according to

the multiplication rule pj = gj · p̄ + δ. Lower deductibles provide more coverage and cost

more, so that gj is increasing with j. Both gj and δ are invariant across DMs. The lotteries

that DMs face are Lj(x) ≡ (−pj, 1− µ;−pj − dj, µ), where x ≡ p̄. DMs are expected utility

maximizers. Given initial wealth w, the expected utility of deductible lottery Lj(x) is

Uν(Lj(x)) = (1− µ)uν (w − pj) + µuν (w − pj − dj) ,

where uν(·) is a Bernoulli utility function defined over final wealth states. We assume that

uν(·) belongs to a family of utility functions that are fully characterized by a scalar ν (e.g.

Constant Absolute Risk Aversion (CARA), Constant Relative Risk Aversion (CRRA), or

Negligible Third Derivative (NTD)), which varies across DMs.7

Given the risk type, the relationship between risk aversion and prices is standard. At suffi-

ciently high p̄, less coverage is always preferred to more coverage for all ν on the support:

Uν(L1(x)) > Uν(L2(x)) > · · · > Uν(LD(x)) . At sufficiently low p̄, we have the opposite

ordering for all ν on the support: Uν(LD(x)) > Uν(LD−1(x)) > · · · > Uν(L1(x)). At mod-

erate prices, for each pair of deductible lotteries j < k there is a cutoff value cj,k(x) in the

interior of ν’s support, found by solving Uν(Lj(x)) = Uν(Lk(x)) for ν. On the left of this

cutoff the higher deductible is preferred and on the right the lower deductible is preferred.

In other words, cj,k(x) is the unique coefficient of risk aversion that makes the DM indiffer-

ent between Lj(x) and Lk(x), known to the researcher at any given x. Those with lower ν

7Under CRRA, it is implied that DMs’ initial wealth is known to the researcher. NTD utility is defined
in Cohen & Einav (2007) and in Barseghyan, Molinari, O’Donoghue, & Teitelbaum (2013).
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choose the riskier alternative Lj(x), while those with higher ν choose the safer alternative

Lk(x). Provided Uν(·) is smooth in ν, cj,k(x) is smooth in x. In fact, under CARA, CRRA,

or NTD, cj,k(x) is a continuously differentiable monotone function. The prices are such that,

under CARA, CRRA, or NTD, whenever Uν(L1(x)) > Uν(Lj(x)) it is also the case that

Uν(L1(x)) > Uν(Lj+1(x)).8 As we show below, this can be stated as c1,j(x) < c1,j+1(x).

That is, if the DM’s risk aversion is so low that she prefers the riskiest lottery to a safer one,

then she also prefers it to an even safer one. Finally, there are no three-way ties. That is, for

a given x there are no alternatives {j, k, l} such that Uν(Lj(x)) = Uν(Lk(x)) = Uν(Ll(x)).9

2.2 Preferences with Single Crossing Property

There is a continuum of DMs. Each of them faces a choice among a finite number of

alternatives, i.e., a choice set, which is denoted D = {1, . . . , D}. The number of alternatives

is invariant across DMs. Alternatives vary by their utility-relevant characteristics and are

distinguished by (at least) one characteristic, dj ∈ R, j ∈ D, which is DM invariant. This

characteristic reflects the quality of alternative j (e.g., insurance deductible). When it is

unambiguous, we may write dj instead of “alternative j”. Other characteristics may vary

across DMs or across alternatives. Our analysis rests on the excluded regressor(s) x. To keep

the notation as lean as possible, we state our assumptions and results implicitly conditioning

on all remaining characteristics. Hence, alternative j is fully characterized by (dj, xj). We

consider two cases. In one case, all xj’s are perfectly correlated with a single (common)

excluded regressor, x. In the other case, each xj has its own variation, conditional on all

other xk, k 6= j, and we let x = (x1, x2, . . . , xD).

Assumption T0. The random variable (or vector) x has a strictly positive density on a set

S ⊂ R
(
S ⊂ RD, dimS = D

)
.

Each DM’s valuation of the alternatives is defined by a utility function Uν(dj, x), which

depends on a DM-specific index ν distributed according to F (·) over a bounded support.10

Assumption T1. The density of F (·), denoted f(·), is continuous and strictly positive on

[0, ν̄] and zero everywhere else.

8We formally verify this claim for our application in Appendix B.
9The identification argument of Barseghyan, Molinari, O’Donoghue, & Teitelbaum (2018) implies that

there may exist only one pair of values (µ, ν) such that this three way tie attains.
10We assume that while ν has bounded support, the utility function is well defined for any real valued ν.
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The DMs’ draws of ν are not observed by the researcher. We require that DMs’ preferences

are strictly monotone and satisfy the Single Crossing Property (SCP).

Assumption T2 (Single Crossing Property). For any two alternatives, dj and dk, there

exists a continuously differentiable function cL,R : S → R[−∞,∞] such that

Uν(dL, x) > Uν(dR, x) ∀ν ∈ (−∞, cL,R(x))

Uν(dL, x) = Uν(dR, x) ν = cL,R(x)

Uν(dL, x) < Uν(dR, x) ∀ν ∈ (cL,R(x),∞).

where (L,R) = (j, k) or (L,R) = (k, j). We refer to cL,R(·) as the cutoff between dL and dR.

The SCP implies that the DM’s ranking of alternatives is monotone in ν. In the context of

risk preferences, if a DM with a certain level of risk aversion prefers a safer asset to a riskier

one, then all DMs with higher risk aversion also prefer the safer asset. Since the cutoffs may

be infinite, the SCP does not exclude dominated alternatives.11

Definition 1 (Dominated Alternatives). Given x, alternative dj is dominated if there exists

an alternative dk such that ∀ν ∈ R, Uν(dk, x) > Uν(dj, x).

We now establish some useful facts that follow from Assumption T2. First, the index L in

cL,R(·) indicates the alternative that is preferred on the left of the cutoff. It is without loss

of generality to assume L = min(j, k) and R = max(j, k) because of the following fact:

Fact 1 (Natural Ordering of Alternatives). Suppose Assumption T2 holds. Then alternatives

can be enumerated such that as ν → −∞, Uν(d1, x) > Uν(d2, x) > · · · > Uν(dD, x) for all x

at which no alternative is dominated.

We assume that alternatives are enumerated according to the Natural Ordering of Alterna-

tives.12 As the next fact shows, for high values of ν the preference over the Natural Ordering

of Alternatives is reversed.

Fact 2 (Rank Switch). Suppose Assumption T2 holds. Consider any x such that no alter-

native is dominated. As ν →∞, Uν(d1, x) < Uν(d2, x) < · · · < Uν(dD, x).

11For choice under risk, this definition of dominance is equivalent to first order stochastic dominance.
12Under this enumeration, dj will be ordered in either ascending or descending order. In our example

from the previous section, since dj refers to the deductible and ν is the risk aversion coefficient, the natural
ordering implies d1 > d2 > · · · > dD.
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The SCP also has implications for the relative position of the cutoffs. For readability, we

state them for alternatives {d1, d2, d3}, but they hold for any {dj, dk, dl}, j < k < l.

Fact 3 (Simple Relative Order of Cutoffs). Suppose Assumption T2 holds. Given x, if

c1,2(x) < c1,3(x), then c1,3(x) < c2,3(x) or both d1 and d2 dominate d3 (c1,3(x) = c2,3(x) =∞).

The next fact concerns the relative order of cutoffs for non-dominated alternatives. Before

stating it, it is convenient to define Never-the-First-Best Alternatives.

Definition 2 (Never-the-First-Best). Given x, alternative dj is Never-the-First-Best in D
if for every ν there exists another alternative dk(ν) in D such that Uν(dk(ν), x) > Uν(dj, x).

Fact 4 (Cutoff Relative Order). Suppose that Assumption T2 holds. If, given x, alternatives

d1, d2, and d3 are not dominated, then one and only one of the following cases holds:

(i) c1,2(x) < c1,3(x) < c2,3(x) and d2 is the first best in {d1, d2, d3}, ∀ν ∈ (c1,2(x), c1,3(x));

(ii) c1,2(x) > c1,3(x) > c2,3(x) and d2 is Never-the-First-Best in {d1, d2, d3};

(iii) c1,2(x) = c1,3(x) = c2,3(x) and d2 is strictly worse than either d1 or d3 for all ν except

for ν = c1,2(x) where there is a three-way tie among these alternatives.

In Case (ii), Uν(d1, x) > Uν(d2, x) implies Uν(d1, x) > Uν(d3, x), so d2 and d3 switch rank at

a point where they are preferred to d1. In Case (ii), Uν(d1, x) > Uν(d3, x) implies Uν(d1, x) >

Uν(d2, x), so d2 and d3 switch rank at a point where d1 is preferred to both of them.

3 Identification

The classic identification argument for discrete choice under full consideration rests on the

following four pillars.

Assumption I0. The random variable (or vector) x is independent of preferences.

Assumption I1. ∃X ⊂ S s.t. c1,2(x) covers the support of ν: [0, ν̄] ⊂ {c1,2(x), x ∈ X}.

Assumption I2. Consideration is independent of preferences.

Assumption I3. Consideration is independent of x.

The last two conditions are vacuous in the standard full consideration model, while the first

two are typically stated as data requirements. In this section we discuss how identification

8



works in the limited consideration case and the role of Assumptions I0-I3. We state our

formal results for a generic consideration process.

3.1 Identification With Two Alternatives

Let the choice set be binary and suppose that the DM considers both alternatives. In

addition, let x be a scalar so that there is a single excluded regressor. Under Assumptions

I0-I3, any realization of x is associated with a single conditional moment in the data:

Pr(d = d1|x) =

∫ c1,2(x)

0

dF = F (c1,2(x)),

because the DM chooses d1 if and only if her preference parameter is less than c1,2(x). The

distribution F (·) is non-parametrically identified, since for any ν on the support there is an

x such that ν = c1,2(x).

We emphasize two points. First, given a family of utility functions, for any x the value of

the cutoff can be solved for. Hence, the function c1,2(x) (and its derivatives) can be treated

as data. Second, Assumption I1 requires that the cutoff reaches both ends of the support:

there exist x0 and x1 such that F (c1,2(x0)) = 0 and F (c1,2(x1)) = 1.

Turning to limited consideration, suppose that d2 is always considered, while d1 is considered

with a constant probability ϕ1 ≤ 1. Then, d1 is chosen when it is considered and it is preferred

to d2, yielding:

Pr(d = d1|x) = ϕ1F (c1,2(x)) and
dPr(d = d1|x)

dx
= ϕ1f(c1,2(x))

dc1,2(x)

dx
. (1)

At first glance, it appears that the distribution of preferences is identified up to a constant.

Yet, at the boundary of the support Pr(d = d1|x1) = ϕ1F (c1,2(x1)) = ϕ1, so that ϕ1 is

identified.13 Once ϕ1 is known, the distribution F (·) is identified by varying c1,2(x) over the

support of ν, just as it is in the full consideration case. We now explore what happens to

identification if Assumptions I0–I3 are not satisfied.

Assumption I0 fails: the variation in x is not independent of preferences. Then F (·) is

not non-parametrically identified under either full or limited consideration.

13The same logic applies to the case with infinite support, but one needs to rely on limit arguments.
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Assumption I1 fails: the variation in x is such that c1,2(x) only covers an interval [νl, νu] ⊂
[0, ν̄]. Then the data provide no information about preferences outside of the interval [νl, νu].

Inside the interval, the conditional distribution F (ν|ν ∈ [νl, νu]) = F (ν)−F (νl)
F (νu)−F (νl)

is identified

under both limited and full consideration. The consideration probability (and hence the

scale of F (·)) is partially identified and satisfies the bounds Pr(d = d1|xu) ≤ ϕ1 ≤ 1,

where xu is such that c1,2(xu) = νu. Point identification can be attained if an additional

assumption is maintained to pin down the scale of F (·). For example, one can simply assume

full consideration and set ϕ1 = 1.14

Assumption I2 fails: when ϕ1 depends on preferences and this dependence is arbitrary,

then identification breaks down completely as there is one data moment to identify two

unknown objects. However, since we assume – as it is common in the econometrics literature

– that the density function of ν is continuous and strictly positive, identification is possible for

some types of dependence between consideration and preferences. Suppose ϕ1 is a piece-wise

constant function of ν, i.e., there are two consideration types:

ϕ1(ν) =

ϕ1
, ∀ν ∈ [0, ν∗)

ϕ1, ∀ν ∈ [ν∗, ν̄]
,

where ν∗ is an unobserved breakpoint. We show that ϕ
1
, ϕ1, and ν∗ are identified. First,

the product ϕ1(ν)f(ν) is identified under Assumptions I0, I1, and I3, since

dPr(d = d1|x)

dx
=

d

dx

(∫ c1,2(x)

0

ϕ1(ν)dF

)
= ϕ1(ν)f(ν)

dc1,2(x)

dx
(2)

at ν = c1,2(x). The product ϕ1(ν)f(ν) is discontinuous only at the point ν∗. Thus, the

breakpoint is identified by continuously varying c1,2(x) across [0, ν̄]. Next, the ratio
ϕ
1

ϕ1
is

identified by the ratio of the right and left derivatives of Pr(d = d1|x) at the breakpoint x∗

(ν∗ = c1,2(x∗)).15 The quantity F (ν∗) is identified by the ratio:

Pr (d = d1|x∗)
Pr(d = d1|x1)− Pr (d = d1|x∗)

=
ϕ

1

ϕ1

· F (ν∗)

1− F (ν∗)
.

14Alternatively, one can make an equal tail assumption such as F (νl) = 1 − F (νu). This equal tail
assumption implies the two expressions for Pr(d = d1|xl) and Pr(d = d1|xu) define two equations in the two
unknowns ϕ1 and F (νu). It is easy to show that these equations have a unique solution.

15Indeed, by Assumption I0, we have that
lim

x↗x∗
dPr(d=d1|x)

dx

lim
x↘x∗

dPr(d=d1|x)
dx

=
ϕ

1
f(ν∗)

dc1,2(x∗)
dx

ϕ1f(ν∗)
dc1,2(x∗)

dx

=
ϕ

1

ϕ1
.
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Hence, ϕ
1

and ϕ1 are identified. Identification of F (·) on the entire support follows from

Assumption I1. The same argument above applies if the probability of considering an al-

ternative discretely jumps in x (i.e., Assumption I3 fails). Concretely, suppose there is a

breakpoint in ϕ1(x) at x∗ and let ν∗ = c1,2(x∗). The breakpoint x∗ is identified by the point

of discontinuity in Equation (2), and the rest follows.

To summarize the case of the binary choice set, the only seemingly real difference in identifi-

cation is that without large support the scale of the preference distribution F (·) is partially

identified under limited consideration, while it is assumed to be known under full consider-

ation. Additional data moments (i.e., a larger choice set) are needed to progress further.

3.2 Single Common Excluded Regressor

This section offers a formal analysis for the case of a single common excluded regressor. We

provide a test of limited consideration that does not require large support and identification

results for the preference distribution, both with and without Assumption I2.

To start, suppose each alternative in the choice set {d1, d2, d3} is considered independently

of each other, with constant probability {ϕ1, ϕ2, ϕ3}, respectively. At least one alternative is

always considered, resulting in a non-empty consideration set with probability equal to one.

We assume that Assumptions I0-I3 hold. Suppose Uν(d1, x) > Uν(d2, x) implies Uν(d1, x) >

Uν(d3, x) for all x. That is, by Fact 3, c1,2(x) < c1,3(x) < c2,3(x). Then

Pr(d = d1|x) = ϕ1

(∫ c1,2(x)

0

dF +

∫ c1,3(x)

c1,2(x)

(1− ϕ2)dF +

∫ ν̄

c1,3(x)

(1− ϕ2)(1− ϕ3)dF

)
(3)

= ϕ1

(
ϕ2F (c1,2(x)) + (1− ϕ2)ϕ3F (c1,3(x)) + (1− ϕ2)(1− ϕ3)

)
and, similarly,

Pr(d = d3|x) =ϕ3

(
ϕ1(1− ϕ2)(1− F (c1,3(x))) + ϕ2(1− F (c2,3(x))) + (1− ϕ1)(1− ϕ2)

)
.

The leading factor ϕ1 appears in Equation (3), since it is necessary for alternative d1 to be

considered for it to be chosen. Given d1 is considered, it will be chosen either when: (i) d1

is the first best; (ii) d1 is the second best and d2 is not considered; or (iii) d1 is the least

preferred alternative and both d2 and d3 are not considered.

Since there are two cutoffs, c1,2(x) and c1,3(x), that enter the moment Pr(d = d1|x), there is

11



not, in general, a one-to-one mapping between the moment and the preference distribution

at one point on the support, as it was the case in Section 3.1.16 That is, as x changes, the

observed choice frequency of d1 may change because of two types of marginal DMs: those

indifferent between d1 and d2, and those indifferent between d1 and d3. This is apparent in

the following derivative:

dPr(d = d1|x)

dx
=ϕ1

(
ϕ2f(c1,2(x))

dc1,2(x)

dx
+ (1− ϕ2)ϕ3f(c1,3(x))

dc1,3(x)

dx

)
. (4)

3.2.1 Alternative d2 is considered whenever d1 is considered

To restore the one-to-one mapping we need restrictions on the consideration process. In our

example, it is immediate to see that when ϕ2 = 1, the second term on the RHS of Equation

(4) disappears and we are back to Equation (1).17 We obtain a similar result for a generic

consideration process without relying on large support:

Theorem 1. Suppose Assumptions I0, I2, I3, T0-T2 hold, and

1. The consideration process is such that d1 is considered with positive probability and

whenever it is considered so is d2;

2. There exists X ⊂ S such that c1,2(x), x ∈ X , covers [νl, νu] ⊂ [0, ν̄] and ∀x ∈ X

Uν(d1, x) > Uν(d2, x)⇒ Uν(d1, x) > Uν(dj, x), ∀j > 2.

Then F (ν|ν ∈ [νl, νu]) is identified.

The theorem above uses the derivative of Pr(d = d1|x) to create the one-to-one mapping from

data to the preference density function. In a more general case, the same can be achieved

using the derivative of Pr(d ∈ {d1, d2, . . . , dj}|x):

Theorem 2. Suppose Assumptions I0, I2, I3, T0-T2 hold, and

1. The consideration process satisfies the following conditions: ∃j s.t. whenever alterna-

tives dk and dl, k ≤ j < l, are both considered, so are dj and dj+1. In addition, dj and

16The corresponding equation for Pr(d = d3|x) does not help matters, as it brings about F (·) evaluated
at yet another cutoff, c2,3(x).

17It is also the case that if the utility of only the second alternative responded to x, then the second term
in Equation (4) would disappear and we would be back to a situation similar to that with two alternatives
discussed above.
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dj+1 have a positive probability of being considered together.

2. There exists X ⊂ S such that cj,j+1(x), x ∈ X , covers [νl, νu] ⊂ [0, ν̄] and ∀x ∈ X

Uν(dj, x) > Uν(dj+1, x)⇒ Uν(dj, x) > Uν(dk, x), ∀k > j + 1,

Uν(dj+1, x) > Uν(dj, x)⇒ Uν(dj+1, x) > Uν(dk, x), ∀k < j.

Then F (ν|ν ∈ [νl, νu]) is identified.

Under Condition 1 the choice set is split into “low quality” and “high quality” sets. Any

subset of the low quality set can be considered. Any subset of the high quality set can also be

considered. However, if a consideration set contains both high and low quality elements, then

it must contain the “bridging” alternatives {dj, dj+1}.18 Condition 2 requires that whenever

a DM prefers dj to dj+1, she also prefers dj to all high quality alternatives; and whenever a

DM prefers dj+1 to dj, she also prefers dj+1 to all low quality alternatives.

Testing for limited consideration. In our example with {d1, d2, d3} and ϕ2 = 1, we

obtain two moments:

Pr(d = d1|x) = ϕ1F (c1,2(x)) and Pr(d = d3|x) = ϕ3(1− F (c2,3(x))).

Both Pr(d = d1|x) and Pr(d = d3|x) identify the preference distribution up to scale. Suppose

there exists a pair of realizations of the excluded regressor, denoted x and x′, such that

c1,2(x) = c2,3(x′) = ν∗ for some ν∗ ∈ (0, ν̄). Then,

Pr(d = d1|x) + Pr(d = d3|x′) ≤
Pr(d = d1|x)

ϕ1

+
Pr(d = d3|x′)

ϕ3

= F (ν∗) + 1− F (ν∗) = 1,

with equality if both ϕ1 and ϕ3 equal one. Hence, there is limited consideration if Pr(d =

d1|x) 6= 1 − Pr(d = d3|x′), i.e., Pr(d = d1|x) 6= Pr(d ∈ {d1, d2}|x′). The following theorem

generalizes this result for a generic consideration process that can depend on preferences

and the excluded regressor without relying on large support.

18In particular, a mixture of the following processes satisfies Condition 1 : I. Ascending consideration:
dk is considered only if dk−1 is considered; II. Descending consideration: dk is considered only if dk+1 is
considered; III. Pyramid consideration: dj is always considered, dk, k > j, is considered only if dk−1 is
considered; dk, k < j, is considered only if dk+1 is considered; IV. All singletons. The only restriction is
that the mixture cannot be entirely composed of IV. These will cover e.g. threshold models (Kimya, 2018),
(partial) elimination-by-aspects (Tversky, 1972), extremeness aversion (Simonson & Tversky, 1992), edge
aversion (Teigen, 1983; Christenfeld, 1995; Rubinstein, Tversky, & Heller, 1997; Attali & Bar-Hillel, 2003),
and edge advantage (Nisbett & Wilson, 1977; Schelling, 1980; Dayan & Bar-Hillel, 2011)
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Theorem 3. Suppose Assumptions I0, T0-T2 hold. Suppose there exist x, x′ ∈ S, and sets

L,L′ ⊂ D s.t. for some ν∗ ∈ [0, ν̄]

1. arg maxj∈D Uν(dj, x) ∈ L, ∀ν ∈ [0, ν∗), and arg maxj∈D Uν(dj, x) ∈ D \ L, ∀ν ∈ (ν∗, ν̄]

2. arg maxj∈D Uν(dj, x
′) ∈ L′, ∀ν ∈ [0, ν∗), and arg maxj∈D Uν(dj, x

′) ∈ D\L′, ∀ν ∈ (ν∗, ν̄]

If Pr(d ∈ L|x) 6= Pr(d ∈ L′|x′), then there is limited consideration.

Condition 1 of the theorem requires that, given x, the first-best alternative belongs to L for

all DMs with ν < ν∗ and to D \ L for all DMs with ν > ν∗. Condition 2 is the identical

requirement, but given x′ and stated for L′. Under these conditions and full consideration,

the probability of choosing an alternative in L or, respectively, L′ should be F (ν∗) in both

cases. Thus, if Pr(d ∈ L|x) 6= Pr(d ∈ L′|x′), then there is a consideration process pushing

DMs’ choices away from L and L′ at different rates.

Returning to our example, in addition to testing for limited consideration, the information

provided by Pr(d = d3|x) allows us to identify the consideration parameters without requiring

large support for the excluded regressor, i.e., we can relax Assumption I1. The quantity ϕ1

ϕ3

is identified by the ratio of the derivatives at c1,2(x) = c1,3(x′) = ν∗:

dPr(d = d1|x)

dx
= ϕ1f(ν∗)

dc1,2(x)

dx
and

dPr(d = d3|x′)
dx

= −ϕ3f(ν∗)
dc2,3(x′)

dx
.

Given that the ratio of consideration probabilities is identified, the ratio Pr(d=d1|x)
Pr(d=d3|x′) identifies

F (ν∗) and consequently ϕ1 and ϕ3 are identified from these moments.

We can also leverage the additional moment Pr(d = d3|x) to identify some forms of de-

pendence between consideration and preferences, i.e., to relax Assumption I2. When the

consideration probabilities depend on preferences,

Pr(d = d1|x) =

∫ c1,2(x)

0

ϕ1(ν)dF and Pr(d = d3|x) =

∫ ν̄

c2,3(x)

ϕ3(ν)dF.

The ratio of the derivatives of these two moments yields ϕ1(ν)
ϕ3(ν)

. More assumptions are required

to obtain point identification of the ϕj(ν)’s.19 One possibility is the proportionally shifting

19 For example, one can assume that the consideration functions are properly normalized mixtures of
known base functions or that the consideration functions are piece-wise constants, as on page 10.
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consideration process:

ϕ1(ν) = ϕ1(1− α(ν))

ϕ3(ν) = ϕ3(1 + α(ν)),

where ϕ1, ϕ3, and α(ν) are unknown, and α(ν) is normalized: α(ν̄) = 0 (or α(0) = 0). In

the context of risk preferences, this amounts to assuming that the DM’s consideration shifts

away from riskier to safer alternatives as her level of risk aversion increases. Under large

support, identification for this case is achieved as follows. First ϕ1

ϕ3
is identified when x and

x′ are chosen such that c1,2(x) = c2,3(x′) = 0 (or = ν̄). Once ϕ1

ϕ3
is identified, 1−α(ν)

1+α(ν)
is known

for all ν; hence, α(ν) can be solved for.

3.2.2 Alternative d2 is not always considered whenever d1 is considered

A more general case might arise when d2 is not always considered when d1 is. In this case,

identification rests on large support and proceeds in four steps. Returning to our example,

first we rewrite Equation (4) as

dPr(d = d1|x)

dx
= f̂(c1,2(x))

dc1,2(x)

dx
+ φf̂(c1,3(x))

dc1,3(x)

dx
, (5)

where φ ≡ ϕ1(1−ϕ2)ϕ3

ϕ1ϕ2
and f̂(ν) ≡ ϕ1ϕ2f(ν), and a similar expression holds for dPr(d=d3|x)

dx
.

Second, under the large support assumption we can find x and x′ such that c1,2(x) < ν̄ <

c1,3(x) and c1,2(x) = c1,3(x′) < ν̄ < c2,3(x′). For any such pair, f(c1,3(x)) = f(c2,3(x′)) = 0,

and hence

dPr(d = d1|x)

dx
= φf̂(c1,2(x))

dc1,2(x)

dx
and

dPr(d = d3|x′)
dx

= −φf̂(c1,3(x′))
dc1,3(x′)

dx
.

The first equation identifies f̂(ν) for preference parameters near the far end of the support,

while the ratio of the two equations identifies φ.

Third, whenever f̂(c1,3(x)) is known, f̂(c1,2(x)) is uniquely pinned down by Equation (5).

Because c1,2(x) < c1,3(x), ∀x, we can learn f̂(·) sequentially:

1. Take an x1 such that f̂(c1,3(x1)) is already known, learn f̂(c1,2(x1));

2. Take x2 such that c1,3(x2) = c1,2(x1), learn f̂(c1,2(x2));
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3. Let x1 = x2. Repeat Step 2 until the entire support has been covered, i.e., c1,2(x2) ≤ 0.

For this approach to work, c1,3(x) cannot “catch up” to c1,2(x) (i.e., as assumed, c1,2(x) <

c1,3(x) whenever c1,2(x) is on the support). This requires that DMs with preference co-

efficients on the support are not indifferent between more than two alternatives.20 Last,

integrating f̂(ν) over the entire support recovers the scale and the true density. Indeed,∫ ν̄

0

f̂(ν)dν = ϕ1ϕ2

∫ ν̄

0

f(ν)dν = ϕ1ϕ2

pins down ϕ1ϕ2, and hence f(·) is identified. We next generalize this strategy.

Definition 3. Let Q(K) denote the probability that the consideration set takes realization

K ⊂ D. Let O(A;B) be the probability that every alternative in set A is in the consideration

set, and every alternative in set B is not: O(A;B) ≡
∑
K: A⊂K, B∩K=∅Q(K).

Theorem 4. Suppose Assumptions I0, I2, I3, T0-T2 hold, and

1. The consideration process is such that there is positive probability d1 and d2 are con-

sidered together;

2. Assumption I1 holds for X ⊂ S s.t. ∀x ∈ X

Uν(d1, x) > Uν(dj, x)⇒ Uν(d1, x) > Uν(dj+1, x), ∀j > 1.

Then f(·) is identified and so are O(d1; ∅) and O({d1, d2}; ∅). For j > 2, if Pr(d = dj|x) > 0

for some x, then O({d1, dj}; {d2, ...dj−1}) is identified.

The first assumption of the theorem ensures that Equation (5) is informative. The second

assumption implies that the cutoffs for alternative d1 are ordered: c1,j(x) < c1,j+1(x). While

Theorem 4 requires large support for the excluded regressor, it does not generally require

it to exhibit variation that forces alternative d1 to go from being the first best to being the

least preferred. Rather, the theorem requires that at one extreme of the support alternative

d1 dominates all others. However, at the other extreme we only require that d2 is preferred

to d1 for all DMs. On the one hand, Theorem 4 imposes the large support requirement on

the excluded regressor, while Theorem 1 does not. On the other hand, Theorem 4 imposes

less restrictions on the consideration process than does Theorem 1. In fact, identification is

20This situation arises because all cutoffs move together with the single common excluded regressor, e.g.,
price in our example from Section 2.1 and empirical application in Section 7.
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attained for any consideration process that allows d1 and d2 to be considered together with

positive probability. Moreover, if the probability of being considered together is zero for d1

and d2, but positive for d1 and d3, the theorem still holds as long as the assumptions hold for

d3 instead of d2. Theorem 4 identifies some features of the consideration process. Sometimes

these features are sufficient for identifying the entire process. In particular, Theorem 4 yields

identification of the ARC model, including the consideration process, as we formally show

in Section 4.21

Dependence between consideration and preferences. We next generalize the example

in Section 3.1 by allowing for high/low consideration types. We establish identification of

the distribution of preferences for a generic consideration process.

Definition 4. Let Qν(K) denote the probability that a DM with preference parameter ν draws

consideration set K, and Oν(A;B) ≡
∑
K: A⊂K, B∩K=∅Qν(K).

Assumption I2.BCT (Binary Consideration Types). For some unknown ν∗ ∈ (0, ν̄):

Qν(K) =

Q(K) if ν < ν∗

Q(K) if ν > ν∗

where, for all ν,
∑
K⊂DQν(K) = 1 and Qν(K) ≥ 0, ∀K ⊂ D.

Theorem 5. Suppose Assumptions I0, I2.BCT, I3, T0-T2, and Condition 2 of Theorem 4

hold. Suppose Condition 1 of Theorem 4 holds for all ν. Then f(·) is identified and so is

Oν({d1, d2}; ∅). If dPr(d=d1|x)
dx

is discontinuous, then ν∗ is identified.

3.3 Alternative-specific Excluded Regressors

We now study the case with alternative-specific excluded regressors. We continue to assume

that the choice set is {d1, d2, d3}. However, now each alternative has its own regressor xj that

only affects the utility of alternative j: x = (x1, x2, x3). In addition, these regressors vary

independently of one another. Suppose d2 is always considered. Let the consideration of dj be

a measurable function of xj and preferences, continuous in its first argument: ϕj = ϕj(xj, ν).

Identification is built on the following insight. Consider the change in the choice frequency of

alternative d1 in response to an incremental change in x2 (e.g., a price increase for alternative

21See Barseghyan, Molinari, & Thirkettle (2019) for other examples of identified consideration processes.

17



d2). The DMs who may switch to d1 as a result are those indifferent between d1 and d2 and

consider them both. If these DMs prefer d1 and d2 to d3, whether d3 is considered is irrelevant;

otherwise, for the response to occur, d3 should not be considered. These two cases translate

to the following statements: (i) c1,2(x) < c1,3(x) < c2,3(x); and (ii) c2,3(x) < c1,3(x) < c1,2(x)

and d3 is not considered. No other ordering of cutoffs can occur by Fact 4. Then, the choice

frequency relates to the model’s primitives in these two cases as follows:

i(i) Pr(d = d1|x) =

∫ c1,2(x)

0

ϕ1(x1, ν)dF ;

(ii) Pr(d = d1|x) =

∫ c1,3(x)

0

ϕ1(x1, ν)dF +

∫ c1,2(x)

c1,3(x)

ϕ1(x1, ν)(1− ϕ3(x3, ν))dF.

The derivatives with respect to x2 of these expressions are

i(i)
∂ Pr(d = d1|x)

∂x2

= (1− ϕ3(x3, ν))ϕ1(x1, ν)f(c1,2(x))
∂c1,2(x)

∂x2

; (6)

(ii)
∂ Pr(d = d1|x)

∂x2

= (1− ϕ3(x3, ν))ϕ1(x1, ν)f(c1,2(x))
∂c1,2(x)

∂x2

.

Identification is attained by local variation in x around a point where DMs are indifferent

between the three alternatives. For a given ν, suppose there is an x = (x1, x2, x3) such that

c1,2(x) = c1,3(x) = c2,3(x) = ν, and suppose we observe an open neighborhood around this x.

A small perturbation of x3 leaves Uν(d1, x1), Uν(d2, x2), and hence c1,2(x) unchanged. Taken

in a direction that reduces Uν(d3, x3), it generates the cutoff ordering of Case (i) above; and

in the opposite direction Case (ii). The ratio of the expressions in Equation (6) identifies

ϕ3(x3, ν). In a similar fashion, a small perturbation of x1 identifies ϕ1(x1, ν). Plugging these

consideration probabilities into Equation (6) identifies f(ν). Alternative-specific variation

yields identification without large support variation and without the independence Assump-

tions I2 and I3. Moreover, it is also possible to allow consideration of d1 (and d3) to depend

on x1, ν, and x3. The key exclusion restriction in this case is that the consideration of d2 is

independent of all components of x.

The intuition described above works in a variety of settings. In Section 4 we state a theorem

that formalizes our identification results for the ARC model. Below we offer a theorem

that applies to a basically unrestricted consideration process that allows for dependence on

preferences but not on x. We then offer a corollary that along with dependence of preferences

also allows for dependence on one alternative-specific excluded regressor.
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Definition 5 (Alternative-Specific Variation). We say that there is alternative-specific vari-

ation if (i) x ∈ RD; (ii) Uν(dj, x) depends only on xj:
∂Uν(dj ,x)

∂xk
6= 0⇔ k = j.

Theorem 6. Suppose Assumptions I0, I3, T0-T2 hold, there is alternative-specific variation,

and the choice set contains at least three alternatives. Suppose

1. Each consideration set contains at least two alternatives and Qν(·) is measurable;

2. For a given value of ν, there exists an x with an open neighborhood around it in S s.t.

Uν(d1, x) = Uν(d2, x) = · · · = Uν(dD, x).

Then f(ν) is identified and so are Qν(K), ∀K ⊂ D.

The proof of the theorem works along the lines of the discussion above. Importantly, for any

pair dj and dk, we only need the response of Pr(d = dj|x) to changes in xk or the response

of Pr(d = dk|x) to changes in xj, but not both. Hence, identification relies on variation in

D − 1 excluded regressors.

The assumptions of the theorem above rule out singleton (and empty) consideration sets:

identification is impossible with singleton consideration sets and arbitrary dependence on

preferences, because any empirical choice frequency can be explained by such consideration

sets. An alternative approach is to have one alternative – the “default” – to be always con-

sidered. Then, provided the fraction of DMs considering only this alternative is independent

of ν, consideration can depend on the excluded regressor of the default alternative:

Definition 6. Let Qx1ν (K) denote the probability that, given x1, the DM with preference

parameter ν draws consideration set K.

Corollary 1. Suppose Assumptions I0, T0-T2 hold, there is alternative-specific variation,

and the choice set contains at least three alternatives. Suppose

1/x1. All consideration sets contain d1, with Qx1ν ({d1}) independent of ν: Qx1ν ({d1}) =

Qx1({d1}) < 1, ∀ν; and Qx1ν (·) are measurable functions, continuous in x1;

2/x1. For a given value of x1 and each value of ν ∈ [0, ν̄], there exists an x−1 = (x2, . . . , xD)

and an open neighborhood around x = (x1, x−1) in S s.t.

Uν(d1, x) = Uν(d2, x) = · · · = Uν(dD, x).
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Then f(ν) is identified and so are Qx1ν (K), ∀K ⊂ D, for all ν on the support.

4 The ARC Model

We now introduce a specific consideration process, while maintaining the preference struc-

ture, including the SCP, from Section 2.2. We refer to this model as the Alternative-specific

Random Consideration (ARC) model (Manski, 1977; Manzini & Mariotti, 2014). Each al-

ternative dj appears in the consideration set with probability ϕj independently of other

alternatives. For now, these probabilities are assumed to be the same across DMs, i.e., they

do not depend on ν.22 Once the consideration set is drawn, the DM chooses the best al-

ternative according to her preferences. To avoid empty consideration sets, following Manski

(1977), we assume that at least one alternative whose identity is possibly unknown to the

researcher is always considered.23

Assumption ARC (The Basic ARC Model). The probability that the consideration set

takes realization K is

Q(K) ≡
∏
k∈K

ϕk
∏

k∈D\K

(1− ϕk), ∀K ⊂ D, (7)

where ϕj > 0, ∀j, and ∃d∗ s.t. ϕd∗ = 1.

By assuming ϕj > 0, we omit never-considered alternatives from the choice problem. Since a

never-considered alternative is never compared to any other alternative, whether it is in the

choice set or not does not affect the DMs problem at all. Hence, never-considered alternatives

have no impact on what we can learn about preferences.24

We state identification results starting with the case of the single common excluded regres-

sor. We first extend Theorem 4 to incorporate identification of the consideration parameters.

22As in Section 2.2, without loss of generality, ϕj can be interpreted as a function of exogenous charac-
teristics such as advertisement. In such a case, all of the results below should be interpreted as conditional
on given values of these characteristics.

23In the previous version of this paper (Barseghyan, Molinari, & Thirkettle, 2019) this completion rule is
called Preferred Option(s). There we also provide identification results for other completion rules, including
Coin Toss (if the empty consideration set is drawn, a non-empty consideration set is drawn uniformly at
random), Default Option (there is a preset alternative that is chosen if the empty set is drawn), and Outside
Option (the DM exits the market if the empty set is drawn).

24If an alternative is never chosen, it is w.l.o.g. to set its consideration parameter to zero, even if the said
alternative is never chosen because it is dominated by always-considered alternatives (see Section 5).
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In the next section we provide results for the case when consideration may depend on pref-

erences.

Theorem 7. Suppose Assumptions I0, I2-I3, T0-T2, ARC hold, and Assumption I1 holds

for X s.t. ∀x ∈ X

Uν(d1, x) > Uν(dj, x)⇒ Uν(d1, x) > Uν(dj+1, x), ∀j > 1.

Then f(·) is identified and so are ϕ1 and ϕ2. In addition, if Pr(d = dj|x) 6= 0 for some x,

then ϕj is identified.

Identification in the ARC model with a single common excluded regressor but without large

support is challenging. For reasons discussed in Section 3, there is no general way to pin down

the distribution of the preference parameter, even up-to-scale. The collection of observed

choice frequencies provides a (potentially infinite) number of equalities where the unknowns

are the values of F (·) and the consideration parameters. Combined with the monotonicity

of F (·), this yields a system of moment inequalities. These could be fruitfully exploited as

it is done in Barseghyan, Coughlin, Molinari, & Teitelbaum (2019).25

4.1 Preference-Dependent Consideration

We now relax the assumption that consideration is independent of preferences for the ARC

model. We do so by considering two types of dependence. The first one adapts the binary

consideration types to the ARC model.

Assumption ARC.B (ARC with Binary Consideration Types). For some unknown ν∗ ∈
(0, ν̄)

ϕj(ν) =

ϕj if ν < ν∗

ϕj if ν > ν∗
,

with ϕ
d∗

= ϕd∗ = 1 for some d∗, and 0 < ϕ
j
, ϕj < 1 for j 6= d∗.

The second one adapts the proportionally shifting consideration:

Assumption ARC.P (ARC with Proportional Consideration). The consideration process

25Alternatively, point-identification can be achieved via an auxiliary assumption that one of the tails of
F (·) can be approximated arbitrarily closely by a finite collection of monotone smooth functions. Further
details are available from the authors upon request.

21



follows the ARC model with {D ≥ 4 & 1 ≤ d∗ ≤ D} or {D = 3 & d∗ = 2}, and

ϕj(ν) =


ϕj(1− α(ν)) if j < d∗

1 if j = d∗

ϕj(1 + α(ν)) if j > d∗

with ϕj’s and α(·) s.t. α(·) is continuous, α(ν̄) = 0, 0 < ϕj(ν) < 1, ∀j 6= d∗, ∀ν ∈ [0, ν̄].

With binary consideration, we show that identification of the distribution of preferences

and all consideration probabilities attains with minimal strengthening of the assumptions in

Theorem 5. With proportionally shifting consideration, we rely on additional data moments,

i.e., Pr(d = dj|x); and, to exploit those, we impose some testable regularity conditions on

the order of the cutoffs of the relevant alternatives.

Theorem 8. Suppose Assumptions I0, I3, T0-T2 hold, and Assumption I1 holds for X s.t.

∀x ∈ X
Uν(d1, x) > Uν(dj, x)⇒ Uν(d1, x) > Uν(dj+1, x), ∀j > 1,

and ∃x ∈ X s.t. cj,k(x) ≤ 0, ∀j, k, j < k. Then f(·) and {ϕj(·)}Dj=1 are identified if

1. Assumption ARC.B holds and
dPr(d=dj |x)

dx
is discontinuous for some j.

2. Assumption ARC.P holds and ∀x ∈ X

Uν(dD, x) > Uν(dj, x)⇒ Uν(dD, x) > Uν(dj−1, x), ∀j < D,

and ∀x ∈ X @ν ∈ [0, ν̄] and {j, k, l} s.t. U(dj, x) = U(dk, x) = U(dl, x).

4.2 Identification with Alternative-specific Excluded Regressors

We now formally state the result developed in Section 3.3.

Assumption ARC.AS. The consideration process follows the ARC model. The consid-

eration probability of each alternative dj is a measurable function of xj and preferences:

ϕj = ϕj(xj, ν), continuous in the first argument. Default alternative d∗ is s.t. ϕd∗(xd∗ , ν) = 1

for all xd∗ ∈ S and for all ν ∈ [0, ν̄].

Theorem 9. Suppose Assumptions I0, T0-T2, ARC.AS hold. Suppose there is alternative-
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specific variation and the choice sets contain at least three alternatives. Suppose for a given

value of ν there exists an x = (x1, x2, . . . , xD), and an open neighborhood around it in S, s.t.

Uν(d1, x) = Uν(d2, x) = · · · = Uν(dD, x).

Then f(ν) and {ϕj(xj, ν)}Dj=1 are identified.

5 Likelihood and Tractability

We now turn to the computational aspects of limited consideration models under the SCP

and, in particular, of their likelihood function. Consider a generic consideration process. We

denote the probability that alternative dj is in the consideration set and every alternative in

set B is not by

Oxν (dj;B) ≡
∑

j∈K;K∩B=∅

Qxν(K).

A computationally appealing way to write the likelihood function is to determine the prob-

ability that a DM with preference parameter ν chooses alternative dj conditional on x.

Alternative dj is chosen if and only if dj is in the consideration set and every alternative that

dominates dj is not. Denote the set of alternatives that are preferred to dj by

Bν(dj, x) ≡ {k : Uν(dk, x) > Uν(dj, x)}.

Then,

Pr(dj|x) =

∫
Pr(dj|x, ν)dF =

∫
Oxν (dj;Bν(dj, x))dF. (8)

The object on the RHS does not require evaluating the utility of each alternative within each

possible consideration set. In fact, Uν(dj, x) needs to be computed only once for each ν, dj,

and x to create Bν(dj, x), which does not vary with the consideration set.26 Hence the com-

putational complexity lies in the mapping from the parameters governing the consideration

process to Oxν (·)’s. These, in turn, are summations that may not even require enumerating

all possible consideration sets. To demonstrate this with a concrete example, we proceed

26The resulting computational gains are similar to those in importance sampling (e.g., Ackerberg, 2009).
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with the basic ARC model. In this case, the RHS of Equation (8) is:

I(dj|x) ≡ ϕj

∫ ∏
k∈Bν(dj ,x)

(1− ϕk)dF. (9)

Given {ϕj}Dj=1, the integrand
∏

k∈Bν(dj ,x)(1−ϕk) is piecewise constant in ν with at most D−1

breakpoints, corresponding to indifference points between alternatives j and k, i.e., cj,k(x)’s,

that are computed only once for every x. There are at least two methods to compute this

integral. First, for every dj and x, we can directly compute the breakpoints and hence write

I(dj|x) as a weighted sum:

I(dj|x) =
D−1∑
h=0

ϕj

(F (νh+1)− F (νh))
∏

k∈Bνh (dj ,x)

(1− ϕk)

 ,

where νh’s are the sequentially ordered breakpoints augmented by the integration endpoints:

ν0 = 0 and νD = ν̄. This expression is trivial to evaluate given F (·) and breakpoints {νh}Dh=0.

More importantly, since the breakpoints are invariant with respect to the consideration prob-

abilities, they are computed only once for each x. This simplifies the likelihood maximization

routine by orders of magnitude, as each evaluation of the objective function involves a sum-

mation over products with at most D terms. A second approach is to compute I(dj|x) using

Riemann approximation:

I(dj|x) ≈ ν̄

M

M∑
m=1

ϕj

f(νm)
∏

k∈Bνm (dj ,x)

(1− ϕk)

 ,

where M is the number of intervals in the approximating sum, ν̄
M

is the intervals’ length,

νm’s are the intervals’ midpoints, and f(·) is the density of F (·). Again, one does not need

to evaluate the utility from different alternatives in the likelihood maximization. Instead,

one a priori computes the utility rankings for each νm, m = 1, . . . ,M . These rankings

determine Bνm(dj, x). The likelihood maximization is now a standard search routine over

{ϕj}Dj=1 and f(·). Our theory restricts f(·) to the class of continuous and strictly positive

functions. In practice, the search is over a class of non-parametric estimators for f(·).27 If

the density is parameterized, i.e., f(νm) ≡ f(νm; θf ), then the maximization is over {ϕj}Dj=1

and θf . Finally, the midpoints are the same across all DMs, further reducing computational

27One could use a mixture of Beta distributions (Ghosal, 2001), as we do in Section 7.
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burden.28

Allowing consideration to depend on preferences (or on x) introduces only minimal adjust-

ments to the likelihood function. Let, e.g., each consideration function be parameterized by

θj: ϕj(ν) ≡ ϕj(ν; θj). Then, at each ν, we can simply substitute ϕj with the corresponding

ϕj(ν; θj), and the likelihood maximization is now over {θj}Dj=1 and θf . Given the desired

level of parameterization – i.e., the dimensionality of the parameter vectors θj and θf – the

computational complexity of the problem grows polynomially in D.

As a final remark, if alternative dj is never chosen, then one can conduct estimation as if

dj were not in the choice set. Indeed, per Equation (9), ϕj contributes positively to the

likelihood if and only if alternative dj is chosen. When it is never chosen, it may only enter

via the term (1−ϕj); hence, the likelihood will be maximized by setting ϕj = 0. Therefore,

setting ϕj = 0 for all zero-share alternatives, regardless of why they were not chosen, has no

impact on estimation. This too may speed up estimation.

6 Properties of Limited Consideration Models

6.1 The Standard RUM

We focus on a standard application of the RUM with full consideration in the context of

our example in Section 2.1. The final evaluation of the utility that the DM derives from

alternative j now includes a separately additive error term:

Vν(Lj(x)) = Uν(Lj(x)) + εj, (10)

where, as before, ν captures unobserved heterogeneity in preferences, and εj is assumed

independent of the random coefficients (in this application, ν).

Typical implementations of this model further specify that εj is i.i.d. across alternatives (and

DMs) with a Type 1 Extreme Value distribution, following the seminal work of McFadden

(1974). This yields a Mixed Logit that differs from, for example, McFadden & Train (2000)

because in the latter the random coefficient(s) enter the utility function linearly, while in

28Depending on the class of f(·), it may be more accurate to compute I(dj |x) by substituting ν̄
M f(νm)

with F (νm)− F (νm), where νm and νm are the endpoints of the corresponding interval.
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the context of expected utility they enter nonlinearly. We now discuss two properties of the

Mixed Logit that hinder its applicability in our context.

Coupling utility functions in the hyperbolic absolute risk aversion (HARA) family, for ex-

ample CARA or CRRA, with a Type 1 Extreme Value distributed additive error, yields:

Property 1 (Non-monotonicity in RUM). In Model (10) with HARA preferences and εj

i.i.d. Type 1 Extreme Value, as the DM’s risk aversion increases, the probability that she

chooses a riskier alternative declines at first, but eventually starts to increase (Apesteguia &

Ballester, 2018).29

To see why, consider two non-dominated alternatives dj and dk such that dj is riskier than

dk. A risk neutral DM prefers dj to dk, and hence will choose the former with higher

probability. As risk aversion increases, the DM eventually becomes indifferent between dj and

dk and chooses either of these alternatives with equal probability. As risk aversion increases

further, she prefers dk to dj and chooses the latter with lower probability. However, as risk

aversion gets even larger, the expected utility of any lottery with finite stakes converges to

zero. Consequently, the choice probabilities of all alternatives, regardless of their riskiness,

converge to a common value.30 Hence, at some point the probability of choosing dj becomes

increasing in risk aversion.

Next, we establish the relation between utility differences across two alternatives and their

respective choice probabilities. Because our random expected utility model features unob-

served preference heterogeneity, we work with an analog of the rank order property in Manski

(1975) that is conditional on ν:

Definition 7. (Conditional Rank Order of Choice Probabilities) The model yields conditional

rank order of the choice probabilities if for given ν and alternatives j, k ∈ D,

Uν(Lj(x)) > Uν(Lk(x))⇒ Pr(d = dj|x, ν) > Pr(d = dk|x, ν).

The standard Mixed Logit yields conditional rank ordering of the choice probabilities given

ν.31 In turn, we show that the conditional rank order property implies the following upper

29See also Wilcox (2008).
30Recall that in the Mixed Logit the magnitude of the utility differences is tied to differences in (log)

choice probabilities, Uν(Lk(x))−Uν(Lj(x)) = log(Pr(d = dk|x, ν))− log(Pr(d = dj |x, ν)), so that as ν →∞
the choice probabilities are predicted to be all equal.

31Manski (1975) establishes the rank order property for additive error random utility models (without
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bound on the probability that suboptimal alternatives are chosen:

Property 2. (Generalized Dominance) Consider any x, alternative j, and set K ⊂ D \ {j}
s.t. alternative j is never-the-first-best in K∪{dj}. Then Pr(d = dj|x) <

∑
k∈K Pr(d = dk|x).

In the Mixed Logit, where the conditional rank order property holds, if alternative j is never-

the-first best among {dj, dk, dl}, then the probability of observing j is predicted to be less

than the sum of the probabilities of observing k or l.

6.2 Monotonicity in Limited Consideration Models

A model with consideration process independent of preferences yields predicted choice prob-

abilities that are monotone in the preference parameter. We define monotonicity as follows:

Property 3 (Generalized Preference Monotonicity). A model satisfies generalized preference

monotonicity if for any ν1 < ν2 and J ∈ {1, 2, . . . , D}:

Pr

(
J⋃
j=1

dj

∣∣∣∣x, ν1

)
≥ Pr

(
J⋃
j=1

dj

∣∣∣∣x, ν2

)
.

In the context of risk preferences, Property 3 states that the probability of choosing one of

the J riskiest alternatives declines as ν increases. Since Property 3 is satisfied for any choice

set under the SCP and full consideration, it is also satisfied under limited consideration:

Proposition 10. A model that satisfies the SCP (i.e., Assumption T2) and Assumption I2

satisfies Generalized Preference Monotonicity.

6.3 Ordinal Properties of Limited Consideration Models

In the Mixed Logit, the cardinality of the differences in the (random) expected utility of

alternatives plays a crucial role in the determination of choice probabilities, as it interacts

with the realization of the additive error. In contrast, in models that satisfy the SCP, the

DMs’ choices are determined by the ordinal expected utility ranking of the alternatives.

random coefficients) for a broader class of models that only require very weak restrictions on εj . Conditional
on ν, his results extend immediately to yield the conditional rank order property.
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Proposition 11. A model that satisfies the SCP (i.e., Assumption T2) exhibits the following

scale invariance: multiplication of Uν(·) by any positive function of ν leaves the model’s

predictions unchanged.

Limited consideration models satisfying the SCP can be recast as Ordinal Random Utility

models (ORUM), with the key departure from standard RUMs being the nature of the

additive error term. We illustrate this point with the following proposition:

Proposition 12. (The ARC Model as ORUM) The basic ARC model is equivalent to an

additive error random utility model with unobserved preference heterogeneity where all alter-

natives are considered, the DM’s utility of each alternative j ∈ {1, . . . , D} is given by

Vν(dj, x) = Uν(dj, x) + εj,

and εj is a random variable, independent of x, ν, and across alternatives, s.t.

εj =

0 with probability ϕj

−∞ with probability (1− ϕj).

Given Proposition 12 it is straightforward to establish:

Proposition 13. The basic ARC model may violate the Conditional Rank Order Property

and, hence, the Generalized Dominance.

We conclude this section with Table 1, listing the differences across the Mixed Logit and

various versions of the ARC model. The first two columns summarize the differences between

the basic ARC model and the Mixed Logit. In the ARC model, the error terms are inde-

pendent across alternatives, but in other limited consideration models this is not the case.

See, e.g., the RCL model in Barseghyan, Molinari, & Thirkettle (2019). The next column

reminds the reader that in our models the error terms can be correlated with preferences,

and still be identified with a single common excluded regressor. Finally, the last column

highlights the fact that with alternative-specific variation we may also have dependence of

the error term on the excluded regressor(s). We intentionally do not fill in the properties

of the last two models in the table, as whether these properties hold depends on the exact

assumptions the researcher imposes on the consideration process.
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Table 1 Model Comparisons

Mixed Logit ARC

Basic Binary Types Unrestricted

Prop. Shifting

Error Distribution

Support R {−∞, 0} {−∞, 0} {−∞, 0}

Independent of x Yes Yes Yes No

Independent of ν Yes Yes No No

Independent across alternatives Yes Yes Yes Yes

Identical across alternatives Yes No No No

Properties

Monotonicity No Yes

Conditional Rank Order Property Yes No

Generalized Dominance Yes No

7 Application

7.1 Data

We study households’ deductible choices across three lines of property insurance: auto col-

lision, auto comprehensive, and home all perils. The data come from a U.S. insurance com-

pany. Our analysis uses a sample of 7,736 households who purchased their auto and home

policies for the first time between 2003 and 2007 and within six months of each other.32

Table D.1 provides descriptive statistics for households’ observable characteristics, which we

use later to estimate households’ preferences.33 We observe the exact menu of alternatives

available at the time of the purchase for each household and each line of coverage. The

deductible alternatives vary across lines of coverage but not across households. Table D.2

presents the frequency of chosen deductibles in our data.

Premiums are set coverage-by-coverage as in the example from Section 2.1. Table D.5 reports

the average premium by context and deductible, and Table 2 summarizes the premium

distributions for the $500 deductible. Premiums vary dramatically. The 99th percentile of

32The dataset is an updated version of the one used in Barseghyan et al. (2013). It contains information
for an additional year of data and puts stricter restrictions on the timing of purchases across different lines.
These restrictions are meant to minimize potential biases stemming from non-active choices, such as policy
renewals, and temporal changes in socioeconomic conditions.

33These are the same variables that are used in Barseghyan et al. (2013) to control for households’
characteristics. See discussion there for additional details.
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Table 2 Premium Quantiles for the $500
Deductible

Quantiles 0.01 0.05 0.25 0.50 0.75 0.95 0.99

Collision 53 74 117 162 227 383 565

Comprehensive 29 41 69 99 141 242 427

Home 211 305 420 540 743 1,449 2,524

Table 3 Claim Probabilities Across Contexts

Quantiles 0.01 0.05 0.25 0.50 0.75 0.95 0.99

Collision 0.036 0.045 0.062 0.077 0.096 0.128 0.156

Comprehensive 0.005 0.008 0.014 0.021 0.030 0.045 0.062

Home 0.024 0.032 0.048 0.064 0.084 0.130 0.183

the $500 deductible is more than ten times the corresponding 1st percentile in each line of

coverage.

Claim probabilities were derived using coverage-by-coverage Poisson-Gamma Bayesian cred-

ibility models applied to a large auxiliary panel (Barseghyan, Teitelbaum, & Xu, 2018).

Predicted claim probabilities (summarized in Table 3) exhibit extreme variation: The 99th

percentile claim probability in collision (comprehensive and home) is 4.3 (12 and 7.6) times

higher than the corresponding 1st percentile. Finally, the correlation between claim prob-

abilities and premiums for the $500 deductible is 0.38 for collision, 0.15 for comprehensive,

and 0.11 for home all perils. Hence, there is independent variation in both.34

7.2 Estimation Results

7.2.1 The basic ARC Model: Collision

We start by presenting estimation results in a simple setting where the only choice is the

collision deductible and observable demographics do not affect preferences. To execute our

estimation procedure we set ν̄ = 0.02, which is conservative (see Barseghyan, Molinari, &

Teitelbaum, 2016). We ex post verify that this does not affect our estimation by checking that

the density of the estimated distribution is close to zero at the upper bound. We approximate

F (·) non-parametrically through a mixture of Beta distributions. In practice, however, both

34See Barseghyan et al. (2013) (see Cohen & Einav, 2007, in the context of Israeli auto insurance) for a
detailed discussion of where such independent variation comes from.
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Figure 1: The ARC Model

The first panel reports the distribution of predicted and observed choices. The second panel displays
consideration probabilities and the distribution of optimal choices under full consideration.

AIC/BIC criteria indicate that a single component is sufficient for our analysis, resulting

in total of seven parameters to be estimated. We let the data speak to the identity of the

always-considered alternative.35

The estimated distribution and consideration parameters are reported in Table E.1. As the

first panel in Figure 1 shows, the model closely matches the aggregate moments observed in

the data. The second panel in Figure 1 illustrates side-by-side the frequency of predicted

choices, consideration probabilities, and the distribution of households’ first-best alternatives

(i.e., the distribution of optimal choices under full consideration). Predicted choices are de-

termined jointly by the preference induced ranking of deductibles and by the consideration

probabilities: Limited consideration forces households’ decision towards less desirable out-

comes by stochastically eliminating better alternatives. The two highest deductibles ($1000

and $500) are considered at much higher frequency (1.00 and 0.92, respectively) than the

other alternatives, suggesting that households have a tendency to regularly pay attention to

the cheaper items in the choice set. Yet, the most frequent model-implied optimal choice

under full consideration is the $250 deductible, which is considered with low probability. In

this application, assuming full consideration leads to a significant downward bias in the esti-

mation of the underlying risk preferences. To see why, consider increasing the consideration

probabilities for the lower deductibles to the same levels as the $500 deductible. Holding risk

preferences fixed, the likelihood that the lower deductibles are chosen increases and therefore

the higher deductibles are chosen with lower probability. Average risk aversion must decline

35In fact, the estimation is run under the Coin Toss completion rule that nests the possibility that any
alternative can be always considered. The data chooses ϕ1000 = 1.
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Figure 2: The ARC Model: Conditional Distributions

to compensate for this shift and to push the likelihood function up. This is exactly the pat-

tern we find when we estimate a near-full consideration model. In particular, we find that

average risk aversion decreases by about 34% from 0.0036 to 0.0024 when all consideration

parameters equal 0.9999.36 To put these numbers into context, a DM with risk aversion

equal to 0.0037 is willing to pay $424 to avoid a $1000 loss with probability 0.1, while a DM

with risk aversion equal to 0.0027 is only willing to pay $287 to avoid the loss.

The basic ARC model’s ability to match the data extends also to conditional moments. The

first two panels of Figure 2 show observed and predicted choices for the fraction of households

facing low and high premiums, respectively, and the next two panels are for households facing

low and high claim probabilities.37 Finally, the last two panels display households who face

both low claim probabilities and high prices and vice versa. It is transparent from Figure 2

that the model matches closely the observed frequency of choices across different subgroups

of households facing a variety of prices and claim probabilities, even though some of these

frequencies are quite different from the aggregate ones.

The ARC model’s ability to violate Generalized Dominance is key in matching the data.

In our dataset, because of the pricing schedule in collision, the $200 is never-the-first best

among {$100, $200, $250}. It costs the same to get an additional $50 of coverage by lowering

36We cannot assume that all consideration probabilities are equal to one, since the $200 deductible is
never the first best under full consideration and is chosen with positive probability.

37Low and high groups here are defined as households whose claim rate (or baseline price) are in the first
and third terciles, respectively.
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the deductible from $250 to $200 as it does to get an additional $100 of coverage by lowering

the deductible from $200 to $100. If a household’s risk aversion is sufficiently small, then

it prefers the $250 deducible to the $200 deducible. If, on the other hand, the household’s

level of risk aversion is such that it would prefer the $200 deducible to the $250 deductible,

then it would also prefer getting twice the coverage for the same increase in the premium.

That is, for any level of risk aversion, the $200 deducible is dominated either by the $100

deducible or by the $250 deducible.38 Yet, overall the $200 deductible is chosen roughly as

often as the $100 and $250 deductibles combined. More so, for certain sub-groups the $200

deductible is chosen much more often than the $100 and $250 deducible combined. It follows

that a model satisfying Generalized Dominance cannot rationalize these choices.

Next we relax the assumption that demographic variables do not influence risk preferences.

The details of this step and the results are reported in Appendix E. Both consideration and

preference estimates remain close to those reported above. We also estimate the model with

binary types and the model with proportionally shifting consideration. While the results

are intuitive, i.e., the relation between risk aversion and consideration of high coverages is

positive, neither of these two models offer a significant improvement in fit and, in fact, we

fail to reject the basic ARC model in favor of these using the likelihood ratio test.

7.2.2 The Mixed Logit Random Utility Model

As in the case of the ARC model, we assume that ν is Beta distributed on [0, ν̄], where

ν̄ = 0.02. The Mixed Logit satisfies the Conditional Rank Order Property and smoothly

spreads households’ choices around their respective first bests. Consequently, it cannot

match the observed distribution and, in particular, is unable to explain the relatively high

observed share of the $200 deductible. Table E.2 reports the estimation results and Figure

E.3 compares the observed distribution of choices to the predicted choices. The predicted

distribution is a much poorer fit relative to the ARC model. In fact, the Vuong (1989) test

soundly rejects (at 1% level) the Mixed Logit in favor of the ARC model.

7.2.3 The ARC Model: All Coverages

We now proceed with estimation of the full model. We consider two cases. In the first case,

households’ risk preferences are invariant across lines of coverage, but consideration sets form

38This pattern is at odds not only with EUT but also many non-EU models (Barseghyan et al., 2016).
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independently within each line of coverage. There are three sets of consideration parameters

{ϕcoll, ϕcomp, ϕhome} and the probability that alternative k is considered in one line of

coverage (e.g. collision) is independent of the probability that alternative j is considered

in another line of coverage (comprehensive or home). Hence, within each coverage, the

households’ problem is identical to that from the previous section. Just as in the case of

collision coverage only, the model matches well the choice distributions within each line of

coverage. However, the independence of consideration sets across lines of coverage implies

that the model does not have the ability to match the joint distribution of choices. For

example, the model predicts zero rank correlation across the lines of coverage and that 12%

of households choose an alternative with a larger comprehensive deductible than collision

deductible. The rank correlation ranges from 0.35 to 0.61 and only 0.2% of households

choose a larger comprehensive deductible.

We next assume that households’ consideration sets are formed over the entire deductible

portfolio. There are 120 possible alternative triplets (dcoll, dcomp, dhome), each having its

own probability of being considered. This model is flexible as it nests many rule of thumb

assumptions such as only considering contracts with the same deductible level across the three

contexts or only considering contracts with a larger collision deductible than comprehensive

deductible. Figure 3 and Table E.4 present estimation results. The first panel of the figure

shows the predicted distribution of choices across triplets, ranked in descending order by

observed frequencies. The second panel plots the differences between predicted and observed

choice distributions. Clearly, the predicted distribution is close to the observed distribution.

The largest difference between the predicted and observed shares equals 0.96 percentage

points, which is for the ($500, $500, $500) triplet that is chosen by 26% of the households.

The integrated absolute error across all triplets is 4.61%. In our data, 43 out of 120 triplets

are never chosen (these are omitted from Figure 3). As discussed in Section 5, the likelihood

maximization implies that the consideration probabilities for these triplets must be zero, so

that their predicted shares are zero. Hence, the likelihood maximization routine is faster

and more reliable as we do not need to search for ϕj for these alternatives.

Another virtue of the ARC model is that it effortlessly reconciles two sides of the debate

on stability of risk preferences (Barseghyan, Prince, & Teitelbaum, 2011; Einav, Finkelstein,

Pascu, & Cullen, 2012; Barseghyan et al., 2016). On the one hand, households’ risk aversion

relative to their peers is correlated across lines of coverage, implying that households pref-

erences have a stable component. On the other hand, analyses based on revealed preference
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Figure 3: The ARC Model, Three Coverages

Triplets are sorted by observed frequency at which they are chosen. The first panel reports the predicted choice
frequency and the second panel reports the difference in predicted and observed choice frequencies.

reject the standard models: under full consideration, for the vast majority of households one

cannot find a level of (household-specific) risk aversion that justifies their choices simulta-

neously across all contexts. Limited consideration allows the model to match the observed

joint distribution of choices, and hence their rank correlations.

The estimated risk preferences are similar to those estimated with collision only data, al-

though the variance is slightly smaller. Turning to consideration, the triplet considered

most frequently is the cheapest one: ($1000, $1000, $1000). Its consideration probability is

0.81, while the next two most considered triplets are ($500, $500, $1000) and ($500, $500,

$500). These are considered with probability 0.47 and 0.43, respectively. Overall, there is a

strong positive correlation (0.54) between the consideration probability and the sum of the

deductibles in a given alternative. We summarize once more the computational advantages

of our procedure. First, estimation of our model remains feasible for a large choice set.39

Second, the model’s parameters grow linearly with the size of the choice set – one parameter

per an additional alternative. Third, enlarging the choice set does not call for new indepen-

dent sources of data variation. For example, in our model whether there are five deductible

39In our setting, it is feasible to estimate an additive error RUM assuming the DMs consider each de-
ductible triplet as a separate alternative (Figure E.5 and Table E.5). As the figure shows, the failure to
match the data is evident. The Vuong test formally rejects it in favor of the ARC model.
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alternatives or one hundred twenty does not make any difference either from an identification

or an estimation stand point: with sufficient variation in p̄ and/or µ, the model is identified

and can be estimated. As a final remark, once the model is estimated, one can compute the

average monetary cost of limited consideration. In our data it is $49 (see Appendix C).

8 Discussion

The literature concerned with the formulation, identification, and estimation of discrete

choice models with limited consideration is vast. However, to our knowledge, there is no

previous work applying such models to the study of decision making under risk, except for

the contemporaneous work of Barseghyan, Coughlin, et al. (2019). In particular, this paper

is the first to exploit the SCP for identification purposes. As a result, several fundamental

differences emerge between our work and existing papers. First, we achieve identification in

the most challenging case where there is a single excluded regressor that affects the utility of

all alternatives.40 Second, we allow for consideration to depend on preferences. Third, with

alternative-specific excluded regressors, this dependence can be essentially unrestricted and

can be combined with dependence of consideration on (some of) the excluded regressors.

Fourth, we scrutinize the large support assumption, show why it may be necessary, and

when and how it is possible to make progress when it is not satisfied. Fifth, our approach

comes with an easy to implement and computationally fast estimation strategy. Finally,

we make a contribution specific to the study of decision making under risk by proposing a

model that is immune from Apesteguia & Ballester (2018) criticism and features two sources

of unobserved heterogeneity – risk aversion and limited consideration – whose distributions

are identified. More generally, the paper establishes that, as long as the DMs’ preferences

satisfy the SCP, allowing for limited consideration does not hinder the model’s identifiability

or applicability. Hence, we view our framework as a stepping stone for studies of consumer

behavior in markets where limited consideration may be present (one example is Coughlin,

2019, who builds on our framework to study consumer choice in Medicare Part D markets).

Papers that allow for limited consideration or more broadly for choice set heterogeneity can

be classified in four groups. The first relies on auxiliary information about the composition

or distribution of DMs’ choice sets, such as brand awareness (e.g., Draganska & Klapper,

40This setting is common in insurance markets, see, e.g.,Cohen & Einav (2007); Einav et al. (2012);
Sydnor (2010); Barseghyan et al. (2011, 2013); Handel (2013); Bhargava, Loewenstein, & Sydnor (2017).

36



2011; Honka & Chintagunta, 2017) or search activity (e.g., Honka & Chintagunta, 2017;

De los Santos, Hortaçsu, & Wildenbeest, 2012; Kim, Albuquerque, & Bronnenberg, 2010;

Honka, Hortaçsu, & Vitorino, 2017).41 We do not require such information.

The second group attains identification via two-way exclusion restrictions, i.e., by assuming

that some variables impact consideration but not utility and vice versa. A well-known

example of this approach is Goeree (2008), who posits that advertising intensity affects

the likelihood of considering a computer, but does not impact consumer preferences, while

computer attributes such as CPU speed affect preferences but not consideration (see also van

Nierop, Bronnenberg, Paap, Wedel, & Franses (2010) and Gaynor, Propper, & Seiler (2016)).

Hortaçsu, Madanizadeh, & Puller (2017) create an exclusion restriction by exploiting the

dynamic aspect of consumer choice.42 The consumer’s decision to consider alternatives to

her current service provider is a function of (her experiences with) the last period provider

but not her next period provider (see also Heiss et al. (2016)). In contrast, we achieve

identification with as little as one common excluded regressor and a single cross section.

The third group relies on restricting the consideration process to a specific class of models.

Abaluck & Adams (2018) consider two such models (and their hybrid): a variant of the ARC

and a “default specific” model (as in, e.g., Ho et al., 2017; Heiss et al., 2016) in which each

DM’s consideration set comprises either a single default alternative or the entire feasible set.

They assume that consideration and preferences are independent, and that each alternative

has a characteristic with large support that is additively separable in utility and may only

affect its own consideration but not the consideration of other alternatives.43 They exploit

violations of symmetry in the Slutsky matrix (i.e., in cross-alternative demand responses to

prices) to detect limited consideration. Kawaguchi et al. (2020) study beverage purchases

from vending machines, allowing advertisement to be a driver of consideration, but also

to affect utility. Their approach is close to that of Goeree (2008), though they provide a

formal argument for identification with large support and exclusion restrictions even when

there is no choice set variation. A key assumption is that all beverages are considered with

probability equal to one as the advertising intensity of each beverage becomes very large.

41For canonical cites see, e.g., Roberts & Lattin (1991) and Ben-Akiva & Boccara (1995).
42Time variation is used also in Crawford, Griffith, & Iaria (2020), who show that with panel data

and preferences in the logit family, point identification of preferences is possible, without any exclusion
restrictions, under the assumption that choice sets and preferences are independent conditional on observables
and with restrictions on how choice sets evolve over time. These restrictions enable the construction of proper
subsets of DMs’ true choice sets (‘sufficient sets’) that can be utilized to estimate the preference model.

43The exception is the “default” alternative, whose characteristic may trigger the consideration of the
entire choice set.
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The methods we propose relate to the papers in the third group in two aspects. First, we too

sometimes require large support as a “fail safe” assumption, but only in the most challenging

case of a single common excluded regressor. Second, we too rely on exclusion restrictions.

The reliance on these assumptions is inescapable given the econometrics literature on point

identification of discrete choice models. Our approach elucidates the identifying power of

a single excluded regressor in models that satisfy the SCP and, in particular, the relative

ranking of alternatives encapsulated in Facts 3 and 4 (see Lewbel & Yang, 2016, for related

results for average treatment effects in ordered discrete choice models). We further exploit

this structure to establish identification in models with substantially richer levels of unob-

served heterogeneity, by allowing for dependence between consideration and preferences.

The fourth group of papers has a different goal than what we pursue here, as it provides

partial rather than point identification results. Cattaneo, Ma, Masatlioglu, & Suleymanov

(2019) propose a random attention model with homogeneous preferences, and they require

that the probability of each consideration set is monotone in the number of alternatives in

the choice problem. Their analysis yields testable implications and partial identification for

preference orderings. Barseghyan, Coughlin, et al. (2019) study discrete choice models, where

consideration may arbitrarily depend on preferences as well as on all observed characteristics.

They show that such unrestricted forms of heterogeneity generally yield partial, but not

point, identification of the preference distribution and obtain bounds on the distribution of

consideration sets’ size. Finally, Dardanoni, Manzini, Mariotti, & Tyson (2020) consider a

stochastic choice model with homogeneous preferences and heterogeneous cognitive types.

They show how one can learn the moments of the distribution of cognitive types from a

single cross section of aggregate choice shares.
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Appendices

A Proofs

Proof of Fact 4. If c1,2(x) is less than c2,3(x), then, for any DM with preference ν s.t.

c1,2(x) < ν < c2,3(x), d2 is preferred to both d1 and d3, i.e. we are in Case (i). If

c1,2(x) > c2,3(x), then d2 is either dominated by either d1 or d3. The relative location

of c1,3(x) is established as follows. First, suppose c1,3(x) < c1,2(x) < c2,3(x). For any

ν ∈ (c1,3(x), c1,2(x)) we have Uν(d3, x) > Uν(d1, x) > Uν(d2, x) > Uν(d3, x), which is

an obvious contradiction. Second, suppose c2,3(x) < c1,2(x) < c1,3(x). Then, for any

ν ∈ (c1,2(x), c1,3(x)) we have Uν(d1, x) > Uν(d3, x) > Uν(d2, x) > Uν(d1, x), which is an

obvious contradiction. The remaining two possibilities are excluded following the same

logic.

We maintain that x has strictly positive density on S (Assumption T0), its density is con-

tinuous (Assumption T1), and that preferences are continuous and strictly monotone in x.

Therefore, whenever x is scalar and X is such that c1,2(x) covers [νl, νu], it is equivalent to

there existing an interval [xl, xu] ⊂ S such that [νl, νu] = {c1,2(x) : x ∈ [xl, xu]}.

Proof of Theorem 1. The second condition in the theorem implies that c1,2(x) < c1,j(x) for

any t ∈ [0, 1] and any j 6= 1, 2. Suppose that c1,j(x) < c1,j+1(x) for all j (the same argument

can be applied for any order of the cutoffs provided that c1,2(x) leads). Then

dPr(d = d1|x)

dx
=

∑
K⊂D:1,2∈K

Q(K)f(c1,2(x))
dc1,2(x)

dx
+

D∑
j=3

∑
K⊂D:
1,j∈K,

2,...,j−1 6∈K

Q(K)f(c1,j(x))
dc1,j(x)

dx
,

where Q(K) is the probability that the DM draws the consideration set K. Note that Q(K)

does not depend on x nor ν by Assumptions I2-I3. The second term in the equation above

is zero by the first condition in the theorem. Therefore

dPr(d = d1|x)

dx
=

( ∑
K⊂D:1,2∈K

Q(K)

)
f(c1,2(x))

dc1,2(x)

dx

≡ αf(c1,2(x))
dc1,2(x)

dx
.
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Consequently, the product αf(c1,2(x)) can be written in terms of data:

αf(c1,2(x)) =
dPr(d=d1|x)

dx
dc1,2(x)

dx

,

and hence variation in x guarantees that f(ν) is identified up-to-scale on [c1,2(xl), c1,2(xu)] =

[νl, νu]. It follows that F (ν|ν ∈ [νl, νu]) is identified. When there is large support variation,

αf(ν) is identified for all ν ∈ [0, ν̄]; hence α =
∫ ν̄

0
αf(ν)dν and F (ν) are identified.

Proof of Theorem 2. Under Condition 1 of the Theorem there can only be three types of

consideration sets. The first type are all possible subsets of {d1, ..., dj}; the second type are

all possible subsets of {dj+1, ..., dD}. The third type necessarily contains both dj and dj+1.

The probability of choosing an alternative in {d1, ..., dj} is one for the first type and zero for

the second type. Hence,

dPr(d ∈ {d1, . . . , dj}|x)

dx
=

∑
K⊂D:j,j+1∈K

Q(K)f(cj,j+1(x))
dcj,j+1(x)

dx
.

The rest of the proof follows the same steps as in the proof of Theorem 1, except we now

track cj,j+1(x).

Proof of Theorem 3. For the purpose of obtaining a contradiction, suppose that there is full

consideration. Then

Pr(d ∈ L|x) = Pr

(
arg max

j∈D
Uν(dj, x) ∈ L

∣∣∣∣x)
= Pr(ν ∈ [0, ν∗))

= F (ν∗)

= Pr

(
arg max

j∈D
Uν(dj, x

′) ∈ L′
∣∣∣∣x′)

= Pr(d ∈ L′|x′).

This is a contradiction. Therefore there is limited consideration.

Lemma 1. Suppose Assumptions T0-T2 and I1 hold. Suppose c1,2(x) < c1,j(x). Let {xt}∞t=1

be s.t. c1,2(xt) = c1,j(x
t+1). Then ∃T <∞ s.t. c1,2(xT ) ≤ 0.
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Proof. The cutoff c1,2(xt) is a strictly declining sequence. Suppose it is bounded away from

zero. Then it converges to some ν∞ > 0 such that ν∞ = c1,2(x∞) = c1,j(x
∞) for some

x∞ ∈ X , a contradiction.

Proof of Theorem 4. The second condition in the theorem implies that the cutoffs are or-

dered: c1,j(x) < c1,j+1(x) for all x ∈ X . Hence

Pr(d = d1|x) =
D∑
j=2

∑
K⊂D:
1,j∈K,

2,...,j−16∈K

Q(K)F (c1,j(x)) +Q({d1})

=
D∑
j=2

O({d1, dj}; {d2, ...dj−1})F (c1,j(x)) +O(d1; ∅)

≡
D∑
j=2

ΛjF (c1,j(x)) + Λ1,

so that

dPr(d = d1|x)

dx
=

D∑
j=2

Λjf(c1,j(x))
dc1,j(x)

dx
.

By Assumption I1, we can set xu = xν̄ s.t. c1,2(xν̄) = ν̄ and similarly xl = x0 s.t. c1,2(x0) = 0.

It may be the case that c1,D̂(x0) < ν̄ and c1,D̂+1(x0) > ν̄ for some D̂ ≥ 2. Then, ∀j > D̂,

Λj does not enter the expression for the derivative of Pr(d = d1|x), ∀x ∈ [x0, xν̄ ], because

f(c1,j(x)) = 0. Henceforth, we only consider the relevant alternatives for the derivative of

Pr(d = d1|x), namely j ≤ D̂.

Next, consider the derivative of Pr(d = dj|x). By Fact 3, the term Λj is the leading coefficient

on f(·) for this derivative. There exists xj ∈ X such that c1,j(x
j) = ν̄. Thus,

lim
x↗xj

dPr(d = dj|x)

dx
= −Λjf(ν̄)

dc1,j(x
j)

dx
, ∀j : 2 ≤ j ≤ D̂.

Write the expression above for dj and d2 and take the ratio. This identifies Ωj ≡ Λj
Λ2

, where

Λ2 6= 0 by the first assumption in the theorem. Rewrite the derivative of Pr(d = d1|x) as
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follows:

dPr(d = d1|x)

dx
=

D̂∑
j=2

Λjf(c1,j(x))
dc1,j(x)

dx

=
D̂∑
j=2

Λj

Λ2

Λ2f(c1,j(x))
dc1,j(x)

dx

=
D̂∑
j=2

Ωj[Λ2f(c1,j(x))]
dc1,j(x)

dx

=
D̂∑
j=2

Ωj f̂(c1,j(x))
dc1,j(x)

dx
,

where f̂(ν) ≡ Λ2f(c1,j(x)). Equipped with Ωj, we can recover f̂(ν) sequentially. Note that

∀x s.t. c1,2(x) ≤ ν̄ and c1,3(x) > ν̄, the up-to-scale density f̂(c1,2(x)) is identified. Indeed, it

is the only unknown in the expression above. We proceed as follows.

First, let x1 be such that c1,3(x1) = ν̄. Then, f̂(·) is identified on [c1,2(x1), ν̄].

Second, let x2 be such that c1,2(x2) = c1,3(x1). Now f̂(ν) is identified on [c1,2(x2), ν̄] because

in the expression for the derivative of Pr(d = d1|x) all cutoffs c1,j(x), j > 2, lie on the part

of the support where the up-to-scale density is known.

Repeating the step above, f̂(ν) is identified on [0, ν̄]. Indeed, by Lemma 1 in a finite number

of steps N , c1,2(xN) reaches the lower end of the support. Finally, the scale is recovered by

integrating f̂(ν) over its support:

Λ2 = Λ2

∫ ν̄

0

f(ν)dν =

∫ ν̄

0

f̂(ν)dν.

Therefore f(·) is identified, as required. Note that O(d1; ∅) = Λ1 = Pr(d = d1|xν̄). Hence

O(d1; ∅) is identified, and so are O(d1, d2; ∅) = Λ2 and O({d1, dj}; {d2, ...dj−1}) = Λj.

Proof of Theorem 5. The second condition of Theorem 4 implies that the cutoffs are ordered:

c1,j(x) < c1,j+1(x) for all x ∈ X . Hence,

dPr(d = d1|x)

dx
=

D∑
j=2

Λj(c1,j(x))f(c1,j(x))
dc1,j(x)

dx
,
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where

Λj(ν) =


Λj ≡

∑
K⊂D:
1,j∈K,

2,...,j−16∈K

Q(K) if ν < ν∗

Λj ≡
∑

K⊂D:
1,j∈K,

2,...,j−16∈K

Q(K) if ν ≥ ν∗
.

By Assumption I1, we can set xu = xν̄ s.t. c1,2(xν̄) = ν̄ and similarly xl = x0 s.t. c1,2(x0) = 0.

It may be the case that c1,D̂(x0) < ν̄ and c1,D̂+1(x0) > ν̄ for some D̂ ≥ 2. Then, ∀j > D̂,

Λj does not enter the expression for the derivative of Pr(d = d1|x) ∀x ∈ [x0, xν̄ ], because

f(c1,j(x)) = 0. Henceforth, we only consider the relevant alternatives for the derivative of

Pr(d = d1|x), namely j ≤ D̂.

We start at xν̄ and hence c1,2(xν̄) = ν̄. As we lower x we trace whether dPr(d=d1|x)
dx

jumps. If

it does not, identification of f(·) attains by the proof of Theorem 4.

Suppose there is a point of discontinuity. It arises when a cutoff c1,j(x) crosses the breakpoint

ν∗. The identity of the cutoff and hence ν∗ = c1,j(x) is identified by the fact there is a unique
dPr(d=dj |x)

dx
that jumps also. Equipped with the identity of ν∗ the proof proceeds similarly to

that of Theorem 4. Indeed, all Ωj ≡ Λj/Λ2 are identified and so is f̂(ν) ≡ Λ2f(ν) for all

ν > ν∗.

The additional step is how to identify Λj and Ωj ≡ Λj/Λ2. Start with Λ2. Consider an x∗

s.t. c1,2(x∗) = ν∗. The derivatives dPr(d=d1|x)
dx

from the left and from the right of x∗ identify

Λ2f(ν∗) and Λ2f(ν∗). Hence, the ratio Λ2/Λ2 is identified. Exactly the same logic applies

to all other Λj’s whenever c1,j(x) crosses ν∗. We can then rewrite

dPr(d = d1|x)

dx
=

D̂∑
j=2

(
Ωj

)1j(x)
(

Ωj

Λ2

Λ2

)1−1j(x)

f̂(c1,j(x))
dc1,j(x)

dx
,

where 1j(x) is the indicator function for the event {c1,j(x) > ν∗}. Now all coefficients

of f̂(c1,j(x)) are identified, and identification of f̂(·) proceeds to the left of ν∗. Once it is

identified, we integrate it over the support to recover Λ2. Hence Λ2 and f(·) are identified.

Proof of Theorem 6. Let ν, x̃, Nε(x̃) ≡ {x : ‖x− x̃‖ < ε} satisfy Condition 2 in the theorem.

Then, ν = cj,k(x̃) for all j, k. Consider any pair of alternatives (dj, dk) and set L ⊆ D\{j, k}.
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Since utility is strictly monotone in xj and continuous, we can find x ∈ Nε(x̃) such that

Uν(dj, x) = Uν(dk, x); (A.1)

Uν(dl, x) > Uν(dj, x) ∀l ∈ L; (A.2)

Uν(dj, x) > Uν(dl, x) ∀l ∈ D \ {L ∪ {j, k}}; (A.3)

and cj,k(x) = ν. The remainder of the proof proceeds in two steps.

Step 1: Identification of f(ν)Qν(K): The singleton sets occur with zero probability by

Condition 1 in the theorem, so it remains to show identification for consideration sets larger

than one. Consider any two alternatives (dj, dk). We claim that the following statement

holds for n = 0, . . . , D:

P (n): For all K ⊂ D \ {j, k} satisfying |K| ≤ n, the quantity f(ν)Qν({j, k} ∪K)

is identified.

To show this for P (0), set L = D\{j, k}. In this case K = ∅. Let x satisfy Equations (A.1)-

(A.3). Then, all alternatives dl, l 6= j, k, are preferred to dj and dk at ν and cj,k(x) = ν.

Hence:

∂ Pr(d=dj |x)

∂xk
∂cj,k(x)

∂xk

= f(ν)Qν({j, k}).

It follows that f(ν)Qν({j, k}) is identified.

Next, suppose P (n − 1) is true. Consider any K ⊂ D \ {j, k} such that |K| = n. Let

L = D \ (K ∪ {j, k}). Let x satisfy Equations (A.1)-(A.3). Then,

∂ Pr(d=dj |x)

∂xk
∂cj,k(x)

∂xk

= f(ν)
∑
C⊂K

Qν({j, k} ∪ C)

= f(ν)Qν({j, k} ∪ K) +
∑

C⊂K:|C|<n

f(ν)Qν({j, k} ∪ C).

The LHS of this expression is known, and the second term on the RHS is identified by the

induction step. Therefore P (n) holds.

Since dj and dk were chosen arbitrarily, it follows that f(ν)Qν(K) is identified for all K ⊂ D.
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Step 2: Identification of f(ν) and Qν(K). Since

∑
K⊂D

f(ν)Qν(K) = f(ν)
∑
K⊂D

Qν(K) = f(ν),

f(ν) and Qν(K) are identified.

Proof of Corollary 1. The proof follows the same steps as the proof of Theorem 6, but with

the following two modifications:

First modification: In Step 1 in the proof of Theorem 6, we start with dj = d1 and loop

over dk ∈ {d2, . . . , dD}. This ensures that we only take derivatives with respect to xk, k > 1.

Hence, f(ν)Qx1ν (K) is identified for all sets K ⊂ D : |K| > 1.

Second modification: In Step 2 we obtain

f(ν)Qx1({1}) +
∑

K⊂D:|K|>1

f(ν)Qx1ν (K) = f(ν)
∑
K⊂D

Qx1ν (K) = f(ν).

Since the first term on the LHS is unknown, f(ν)(1−Qx1({1})) is identified for all ν ∈ [0, ν̄].

The scale is identified, because

(1−Qx1({1})) =

∫ ν̄

0

f(ν)(1−Qx1({1}))dν.

Once the scale is identified, f(ν) is identified and so are Qx1ν (K), ∀K ⊂ D.

Lemma 2. Consider the Basic ARC model. For any K ⊂ D,
∑

j∈K Pr(d = dj|x) is increas-

ing in ϕj, ∀j ∈ K, and decreasing in ϕj, ∀j /∈ K.

Proof. Fix K and consider any j ∈ K. For each ν and l ∈ K, l 6= j, either j ∈ Bν(dl, x) or

not. If j 6∈ Bν(dl, x), then Pr(d = dl|x, ν) does not depend on ϕj. Hence,

∑
l∈K

Pr(d = dl|x, ν) = A+ Pr(d = dj|x, ν) +
∑

l∈K:j∈Bν(dl,x)

Pr(d = dl|x, ν),
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where A is a constant that collects terms that do not depend on ϕj. Continuing,

∑
l∈K

Pr(d = dl|x, ν) = A+ ϕj
∏

k∈Bν(dj ,x)

(1− ϕk) +
∑

l∈K:j∈Bν(dl,x)

ϕl
∏

k∈Bν(dl,x)

(1− ϕk)

= A+ ϕj
∏

k∈Bν(dj ,x)

(1− ϕk) +
∑

l∈K:j∈Bν(dl,x)

ϕl(1− ϕj)
∏

k∈Bν(dl,x)\{j}

(1− ϕk)

= A+
∑

l∈K:j∈Bν(dl,x)

ϕl ∏
k∈Bν(dl,x)\{j}

(1− ϕk)


+

 ∏
k∈Bν(dj ,x)

(1− ϕk)−
∑

l∈K:j∈Bν(dl,x)

ϕl
∏

k∈Bν(dl,x)\{j}

(1− ϕk)

ϕj

≡ Ã+Bϕj.

Since Bν(j, x) ⊂ Bν(dl, x) whenever j ∈ Bν(dl, x),

B =
∏

k∈Bν(dj ,x)

(1− ϕk)

1−
∑

l∈K:j∈Bν(dl,x)

ϕl
∏

k∈Bν(dl,x)\{Bν(dj ,x),j}

(1− ϕk)

 ≥ 0.

Therefore,
∑

j∈K Pr(d = dj|x) =
∫ ∑

j∈K Pr(d = dj|x, ν)dF is increasing in ϕj.

Finally, for any j 6∈ K, ϕj only ever enters as (1 − ϕj) in the sum; hence it is decreasing in

ϕj for those alternatives.

Lemma 3. Consider the Basic ARC model. For any K ⊂ D,
∑

j∈K Pr(d = dj|x) is strictly

increasing in ϕj, j ∈ K, whenever there is a ν at which alternative dj is preferred to all of

the always-considered alternatives. It is strictly decreasing in ϕj, j 6∈ K, whenever there is a

ν and l ∈ K such that at this ν alternative dj is preferred to dl and dl is preferred to all of

the always-considered alternatives.

Proof. To show the first claim, notice that B = 0 in the proof of Lemma 2 if and only if

ϕk = 1 for some k ∈ Bν(dj, x).

To show the second claim, consider any l ∈ K. Then,

Pr(d = dl|x, ν) = ϕl
∏

k∈Bν(dl,x)

(1− ϕk).

For this to be strictly decreasing in ϕj, it must be the case that j ∈ Bν(dl, x) and ϕk < 1 for
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all k ∈ Bν(dl, x) \ {j}.

Proof of Theorem 7. By the proof of Theorem 4, f(·) and Λ2 = ϕ1ϕ2 are identified. The

consideration parameter ϕ1 is identified by Pr(d = d1|xν̄) = ϕ1, where xν̄ is s.t. c1,2(xν̄) = ν̄.

Since Λ2 is known, ϕ2 is also identified. The rest of the proof is about identification of the

remaining consideration parameters.

To identify ϕj take an x such that Pr(d = dj|x) 6= 0. Denote E = {k : Pr(d = dk|x) 6= 0}.
We claim that Pr(d = dk|x),∀k ∈ E , does not depend on ϕl s.t. l /∈ E . Suppose otherwise.

That is, suppose there exists dl such that Pr(d = dl|x) = 0 and Pr(d = dk|x) depends on ϕl

for some k ∈ E . Then, for each ν there is an always-considered alternative that is preferred

to dl. Since Pr(d = dk|x) depends on ϕl, there exists ν ∈ [0, ν̄] such that dl is preferred to

dk. However, the always-considered alternative that is preferred to dl at ν is also preferred

to dk by transitivity. This leads to a contradiction, because a DM with such preferences will

never choose dk in the first place. Therefore, Pr(d = dk|x) does not on ϕl for any l 6∈ E .

Since F (·) is already identified, {Pr(d = dk|x)}k∈E defines a system of |E| non-linear equa-

tions, where the only unknowns are ϕk, k ∈ E . This system has a unique solution. Suppose

to the contrary that two sets of consideration parameters {ϕk}k∈E and {ϕ′k}k∈E solve this

system and they are distinct. Denote E+ = {k : ϕk > ϕ′k}. By Lemma 3,
∑

k∈E+ Pr(d = dk|x)

is strictly larger at {ϕk}k∈E than at {ϕ′k}k∈E . Hence, only one of these sets could satisfy data.

Therefore there is a unique set of {ϕk}k∈E that solves this system of equations, and ϕj is

identified as claimed.

Proof of Theorem 8. Part 1.

The breakpoint ν∗ is identified by the argument in the proof of Theorem 5 and so is the

preference distribution. We identify d∗ at xν̄ . The smallest j such that Pr(d = dj|xν̄) = 0

yields d∗ = j − 1. If such a j does not exist, d∗ = D.

Case 1. Suppose d∗ = 1. Then all Λj’s and Λj’s are identified by the argument in the proof

of Theorem 5, as D̂ of that proof equals D. One then recovers ϕ
j
’s and ϕj’s recursively from

Λj’s and Λj’s.

Case 2. Suppose d∗ = D. Then identification attains as in Step 2, observing that ϕ
1

=∑
j>1 Λj and ϕ1 =

∑
j>1 Λj.

Case 3. Suppose 1 < d∗ < D. Then ϕ
j
’s and ϕj’s are identified for all j < d∗ by the

same argument as in Step 3. In addition, ϕj’s for j > d∗ are identified by the argument
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in the proof of Theorem 7. It remains to identify ϕ
j
, j > d∗. Take x0 such that all

cj,k(x
0) ≤ 0. Note that Pr(d = dD|x0) = ϕ

D
F (ν∗) + ϕD(1 − F (ν∗)), which identifies ϕ

D
.

Next, Pr(d = dD−1|x0) = ϕ
D−1

(1 − ϕ
D

)F (ν∗) + ϕD−1(1 − ϕD)(1 − F (ν∗)), which identifies

ϕ
D−1

. This iteration is repeated for j = D − 2, . . . , d∗ + 1.

Part 2.

Step 1. Suppose D = 3. Then proof is complete by the argument developed in Section 3.2

of the paper.

Step 2. Let D > 3. We identify d∗ at xν̄ . The smallest j such that Pr(d = dj|xν̄) = 0 yields

d∗ = j−1. We return to the case that d∗ = 1 or d∗ = D at the end of this proof. Since D > 3

w.l.o.g. we assume that d∗ > 2. Otherwise, we just relabel alternatives from ascending to

descending order and proceed with the analysis starting from the lower part of the support.

Step 3. Using large support we establish that ϕD is a decreasing function of ϕ1. We have

Pr(d = d1|xν̄) = ϕ1

∫ ν̄

0

(1− α(ν))dF (ν) = ϕ1(1− Eα).

Similarly,

Pr(d = dD|x0) = ϕD

∫ ν̄

0

(1 + α(ν))dF (ν) = ϕD(1 + Eα).

Hence

ϕ1 =
Pr(d = d1|x1)

2− Pr(d=dD|x0)
ϕD

.

Step 4. This is an intermediate step, which we use later in the proof. By Fact 3,

c1,j(x) < c∗j(x) ≡ min
k
{{ck,j(x)}1<k<j, {cj,k(x)}j<k≤D}, ∀j.

Moreover any sequence {xs}∞s=1 such that c∗j(x
s) = c1,j(x

s+1) will reach the lower bound of

the support in finite number of steps. Otherwise, by the argument in the proof of Lemma 1,

c∗j(x
s) and c1,j(x

s) converge to the same point in the interior of the support, which contradicts

the assumptions of the theorem.

Step 5. Identification of {ϕj}1<j<d∗ . For each j, there is an xj such that c1,j(x
j) = ν̄. It

follows by Step 4 that the following equations hold:
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− lim
x↗x2

dPr(d = d2|x)

dx
/
dc1,2(x)

dx
=ϕ1(ν̄)ϕ2(ν̄)f(ν̄)

− lim
x↗x3

dPr(d = d3|x)

dx
/
dc1,3(x)

dx
=ϕ1(ν̄)(1− ϕ2(ν̄))ϕ3(ν̄)f(ν̄)

− lim
x↗x4

dPr(d = d4|x)

dx
/
dc1,4(x)

dx
=ϕ1(ν̄)(1− ϕ2(ν̄))(1− ϕ3(ν̄))ϕ4(ν̄)f(ν̄)

...

− lim
x↗xd∗

dPr(d = dd∗|x)

dx
/
dc1,d∗(x)

dx
=ϕ1(ν̄)(1− ϕ2(ν̄))(1− ϕ3(ν̄)) . . . (1− ϕd∗−1(ν̄))f(ν̄)

The summation of these expressions recovers the quantity ϕ1(ν̄)f(ν̄). Next, substitute

ϕ1(ν̄)f(ν̄) back to the expressions above to sequentially recover {ϕj(ν̄)}2≤j≤d∗ . Since ϕj(ν̄) =

ϕj(1− α(ν̄)) = ϕj, {ϕj}2≤j≤d∗ are identified.

Step 6: Identification of ϕ1 and {ϕj}d∗<j≤D. We now continue with identification of ϕj for

j > d∗ and the consideration parameter for the first alternative. The cutoffs are monotone in

xt and all cutoffs are on the right of ν̄ at xν̄ . Consequently, Pr(d = dj|xν̄) = 0 for all j > d∗.

Continuously decrease t until Pr(d = dj1 |xt) > 0 for some j1 ∈ J ≡ {d∗ + 1, . . . , D} and

Pr(d = dk|xt) = 0 for all k ∈ J − {j1}. This will happen when cd∗,j1(x
t) crosses ν̄, yielding

lim
x↗xt

dPr(d = dj1|xt)
dx

/
dcd∗,j1(x)

dx
= −ϕj1f(ν̄)M1,

where

M1 ≡
∏

k∈{2,··· ,d∗−1}:ck,j1 (xt)>ν̄

(1− ϕk).

Note that M1 is known, since all relevant ϕk’s are known. Importantly, M1 does not depend

on ϕ1, since c1,j1(x
t) < cd∗,j1(x

t) = ν̄.

Next, continuously decrease t further until Pr(d = dj2|xt) > 0 for some j2 ∈ J − {j1} and

Pr(d = dk|xt) = 0 for all k ∈ J − {j1, j2}. Again, this will happen when cd∗,j2(x) crosses ν̄.

Hence

lim
x↗xt

dPr(d = dj2|xt)
dx

/
dcd∗,j2(x)

dx
= −ϕj2f(ν̄)M2,

M2 ≡
∏

k∈{2,...,d∗−1,j1}:ck,j2 (xt)>ν̄

(1− ϕk).

The term M2 is known, except possibly for the term (1 − ϕj1), since all other relevant ϕk’s
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are known.

The expression above defines ϕj2 as a strictly increasing function of ϕj1 regardless of whether

M2 depends on ϕj1 or not. Indeed, for the case where j1 < j2 we have

ϕj2 ∝

ϕj1 if cj1,j2(x
t) < ν̄

ϕj1
1−ϕj1

if cj1,j2(x
t) ≥ ν̄

,

where the coefficients of proportionality are known. A similar expression holds when j1 > j2.

This argument immediately extends to all j ∈ J . In particular, we have for the case where

j2 < j3

ϕj3 ∝

ϕj2 if cj2,j3(x
t) < ν̄

ϕj2
1−ϕj2

if cj2,j3(x
t) ≥ ν̄

.

By assumption, Pr(d = dD|x0) 6= 0; hence, ϕD is an increasing function of ϕj1 . In turn,

recall that ϕ1f(ν̄) is known. The ratio of ϕ1f(ν̄) and ϕj1f(ν̄), which is also known, yields

ϕD as an increasing functions of ϕ1. Hence, taken with the result in Step 3, the quantity ϕ1

is uniquely pinned down. Identification of all other ϕj’s immediately follow.

Step 7: Identification of α(ν) and f(ν). The identification argument is iterative. For each

alternative j, define

Γ0
j ≡ {ν ∈ [0, ν̄] : ∃x ∈ X s.t. ν = c1,j(x) and c∗j(x) ≥ ν̄}.

The set Γ0
j includes all preference parameters ν covered by cutoff, c1,j(·), before any other

relevant cutoffs for dj enter the support. Let Γ0 ≡
⋂D
j=1 Γ0

j . By Step 4, Γ0 6= ∅ and ν̄ ∈ Γ0.

For each ν ∈ Γ0 and each dj, there is an xj ∈ X such that c1,j(x
j) = ν. As a result, the

following system of equations hold for each ν ∈ Γ0:
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− dPr(d = d2|x2)

dx
/
dc1,2(x2)

dx
=ϕ1(ν)ϕ2(ν)f(ν)

−dPr(d = d3|x3)

dx
/
dc1,3(x3)

dx
=ϕ1(ν)(1− ϕ2(ν))ϕ3(ν)f(ν)

−dPr(d = d4|x4)

dx
/
dc1,4(x4)

dx
=ϕ1(ν)(1− ϕ2(ν))(1− ϕ3(ν))ϕ4(ν)f(ν) (A.4)

...

−dPr(d = dd∗|xd
∗
)

dx
/
dc1,d∗(x

d∗)

dx
=ϕ1(ν)(1− ϕ2(ν))(1− ϕ3(ν)) . . . (1− ϕd∗−1(ν))f(ν),

The summation of these expressions recovers the quantity ϕ1(ν)f(ν). Substitute this into

the first equation to obtain ϕ2(ν) = ϕ2(1 − α(ν)). But ϕ2 is already known, so α(ν) is

identified on Γ0. Finally, since ϕ1(ν) = ϕ1(1− α(ν)) is now identified, so is f(ν) on Γ0.

In the next step of the iteration, let ν̄1 = minν∈Γ0 Γ0 be the smallest value of ν where α(ν)

and f(ν) are identified. Define

Γ1
j ≡ {ν ∈ [0, ν̄] : ∃x ∈ X s.t. ν = c1,j(x) and c∗j(x) ≥ ν̄1} and Γ1 ≡

D⋂
j=1

Γ1
j .

Then, a similar system to (A.4) holds ∀ν ∈ Γ1, but may include additional terms. These

terms are known, because they are functions of f(·) and α(·) evaluated at ν ∈ Γ0 (and also

of {ϕj}Dj=1). We can therefore repeat the argument from the base case to establish that α(ν)

and f(ν) are identified on Γ1. We repeat this iterative procedure. After a finite number of

steps N , we obtain ΓN = [0, ν̄] by Step 4; hence, f(·) and α(·) are identified.

Edge Case (d∗ = 1 or d∗ = D): Suppose that d∗ = D (the case when d∗ = 1 is symmetric).

From Step 5 we obtain ϕj for j : 1 < j < D. Next, we show how to identify ϕ1. We can find
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xj such that cj,D(xj) = 0, and so the following system of equations holds:

− lim
x↘xD−1

dPr(d = dD−1|x)

dx
/
dcD−1,D(x)

dx
=ϕD−1(0)f(0)

− lim
x↘xD−3

dPr(d = dD−2|x)

dx
/
dcD−2,D(x)

dx
=(1− ϕD−1(0))ϕD−2(0)f(0)

− lim
x↘xD−4

dPr(d = dD−3|x)

dx
/
dcD−3,D(x)

dx
=(1− ϕD−1(0))(1− ϕD−2(0))ϕD−3(0)f(0)

...

− lim
x↘x1

dPr(d = d1|x)

dx
/
dc1,D(x)

dx
=(1− ϕD−1(0))(1− ϕD−2(0)) . . . (1− ϕ2(0))ϕ1(0)f(0).

The ratio of the first two questions yield

A =
ϕD−2

ϕD−1

· (1− ϕD−1(1 + α(0)),

where A, ϕD−2, and ϕD−1 are known terms; hence, α(0) is identified. Once α(0) is identified,

the term ϕ1 is identified from the ratio of the first and last equations in the above system.

Finally, f(ν) and α(ν) are identified by Step 7.

Proof of Theorem 9. Let ν, x, Nε(x) = {x′ : ‖x′ − x‖ < ε} satisfy the conditions in the

theorem. Then ν = cj,k(x) for all j, k. For any pair of alternatives (dj, dk) we can perturb

xk, k /∈ {j, d∗}, and xl, ∀l /∈ {j, d∗, k}, so that the resulting x′ ∈ Nε(x) is such that

Uν(dk, x
′
k) > Uν(dj, xj);

Uν(dj, xj) > Uν(dl, x
′
l) ∀l ∈ D \ {j, k, d∗}.

And we can do another perturbation of xl, ∀l /∈ {j, d∗}, so that the resulting x′′ ∈ Nε(x̃) is

such that

Uν(dj, xj) > Uν(dl, x
′′
l ) ∀l ∈ D \ {j, d∗}.

We then have

∂ Pr(d = dj|x′)
∂xd∗

= ϕj(xj, ν)(1− ϕk(x′k, ν))f(ν)
∂cj,d∗(x)

∂xd∗
;

∂ Pr(d = dj|x′′)
∂xd∗

= ϕj(xj, ν)f(ν)
∂cj,d∗(x)

∂xd∗
.
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Taking the ratio of the expressions above identifies (1 − ϕk(x′k, ν)). By continuity we have

ϕk(xk, ν). Identical steps identify ϕj(xj, ν), ∀j 6= d∗, and hence f(ν).

Proof of Proposition 10. Take any non-empty consideration set K. For a given preference

coefficient ν, let jK(x, ν) denote the identity of the best alternative in this consideration set.

By the natural ordering, jK(x, ν) is an increasing step function in ν. Hence, I(jK(x, ν) ≤ J)

is a decreasing step function. The term Pr

(⋃J
j=1 dj

∣∣∣∣x, ν) is a non-negatively weighted sum

of I(jK(x, ν) ≤ J). Hence it is decreasing in ν.

Proof of Proposition 11. DMs’ choices are driven by their preference parameter ν, their pref-

erences Uν(·), and the consideration set that they face. Obviously, the consideration process

and the preference parameter is unaffected by the scaling of Uν(·). Scaling Uν(·) by a com-

mon positive factor also leaves the preference order unchanged. Therefore, choice frequencies

and other predictions of the model are invariant to the scale of Uν(·).

Proof of Proposition 12. Consider the basic ARC model with preferences Uν(dj, x). The

optimal choice from D conditional on the DM facing the consideration set K 6= ∅ is the

alternative with the largest value of Uν(dj, x) subject to j ∈ K. This is the same solution

as the one that maximizes Vν(dj, x, εj) where εj = 0 for all j ∈ K and εj = −∞ for all

j ∈ D \ K. Finally, since the consideration set K has the same distribution as the set of

alternatives with εj = 0 (this is by construction), the basic ARC model and this ORUM

model yield the same model predictions, and hence they are equivalent.

Proof of Proposition 13. As a counter example, suppose Uν(dj, x) > Uν(dk, x), but ϕk = 1

and ϕj = 0. Then Pr(d = dk|x, ν) ≥ Pr(d = dj|x, ν), with equality if and only if dk is

dominated by a set of always-considered alternatives.

B Application: Verifying Cutoff Order

We start by recalling that CARA and CRRA utility functions satisfy the following basic

property (see, e.g., Pratt, 1964; Barseghyan, Molinari, et al., 2018).44

44This property is equivalent to condition (e) in Pratt (1964, Theorem 1). As shown there, it is equivalent
to assuming that an increase in ν corresponds to an increase in the coefficient of absolute risk aversion.
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Property C.1. For any y0 > y1 > y2 > 0, the ratio R(y0, y1, y2) ≡ uν(y1)−uν(y2)
uν(y0)−uν(y1)

is strictly

increasing in ν.

It follows that CARA and CRRA utility functions also satisfy a slightly extended version of

the property above:

Property C.2. For any y0 > y1 > y2 > y3 > 0, the ratio Mν(y0, y1, y2, y3) ≡ uν(y2)−uν(y3)
uν(y0)−uν(y1)

is

strictly increasing in ν.

Proof.

Mν(y0, y1, y2, y3) =
uν(y2)− uν(y3)

uν(y0)− uν(y1)
=
uν(y2)− uν(y3)

uν(y1)− uν(y2)
× uν(y1)− uν(y2)

uν(y0)− uν(y1)

= Rν(y1, y2, y3)Rν(y0, y1, y2)

For our application, we show that c1,j(p̄, µ) < c1,j+1(p̄, µ) for any j ≥ 2 under both CARA

and CRRA preferences.

Theorem C.1. Suppose deductibles and prices are such that

p1 − pj
p1 − pj+1

<
d1 − dj
d1 − dj+1

.

Under either CARA or CRRA expected utility preferences, the cutoff mapping is unique and

satisfies c1,j(p̄, µ) < c1,j+1(p̄, µ) for all j > 1.

Proof. We start with CARA preferences. The existence and the uniqueness of cj,k(x) for all

j < k follows directly from the Property C.2. Indeed note that pj < pk < pk +dk < pj +dj.
45

At the cutoff the DM is indifferent between lotteries j and k. Equating two expected utilities

and rearranging we have that

e−ν(w−pk−dk) − e−ν(w−pj−dj)

e−ν(w−pj) − e−ν(w−pk)
=

1− µ
µ

, (B.1)

where w is the DM’s initial wealth. By Property C.2, the L.H.S. of Equation B.1 is strictly

monotone in ν, and it tends to +∞ when ν goes to +∞ and to zero when ν goes to −∞.

It follows that there exists a unique ν, i.e the cutoff cj,k(x), that solves the Equation B.1.

45If pk + dk > pj + dj , then alterantive j first order stochastically dominates k and hence the cuttoff is
+∞.
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Moreover, since the L.H.S. is strictly monotone in ν it follows from the Implicit Function

Theorem that cj,k(x) is continuous in µ and p̄.

The next step is to establish c1,j(p̄, µ) < c1,j+1(p̄, µ), j > 1. For the purpose of obtaining

a contradiction, suppose that there exists (p̄, µ) and an j such that c1,j(p̄, µ) = c1,j+1(p̄, µ).

Since the expected utility of lottery k is proportional to

EUν(Lk) ∝ −eνpk
(
1− µ+ µeνdk

)
,

there exists ν = c1,j(p̄, µ) = c1,j+1(p̄, µ) such that

1− µ+ µeνd1

1− µ+ µeνdj
eν(g1−gj)p̄ = 1 =

1− µ+ µeνd1

1− µ+ µeνdj+1
eν(g1−gj+1)p̄

Taking logs yields

log

(
1− µ+ µeνd1

1− µ+ µeνdj

)
= −ν(g1 − gj)p̄

log

(
1− µ+ µeνd1

1− µ+ µeνdj+1

)
= −ν(g1 − gj+1)p̄.

Dividing through yields

log
(

1−µ+µeνd1

1−µ+µeνdj

)
log
(

1−µ+µeνd1

1−µ+µeνdj+1

) =
g1 − gj
g1 − gj+1

.

The R.H.S. is less than one. The L.H.S. is monotonically decreasing in µ < 1. Indeed, denote

µ̂ = 1−µ
µ

, ∆1 = eνd1 , ∆j = eνdj , and ∆j+1 = eνdj+1 to rewrite the L.H.S. as follows

f(µ̂) ≡ log(∆1 + µ̂)− log(∆j + µ̂)

log(∆1 + µ̂)− log(∆j+1 + µ̂)
.

We claim that the expression above is monotonically increasing in µ̂. Indeed, we have

f ′(µ̂)

f(µ̂)
=

(
1

∆1 + µ̂
− 1

∆j + µ̂

)
1

log(∆1 + µ̂)− log(∆j + µ̂)
−
(

1

∆1 + µ̂
− 1

∆j+1 + µ̂

)
1

log(∆1 + µ̂)− log(∆j+1 + µ̂)

After relabeling Λ1 = − log(∆1 + µ̂), Λj = − log(∆j + µ̂) and Λj+1 = − log(∆j+1 + µ̂) we
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obtain

f ′(µ̂)

f(µ̂)
=
eΛ1 − eΛj+1

Λ1 − Λj+1

− eΛ1 − eΛj

Λ1 − Λj

.

Since Λ1 < Λj < Λj+1 and exponential function is convex, the expression above is positive.

Hence the derivative of f
(

1−µ
µ

)
W.R.T. µ is negative, and hence it achieves its lowest value

at µ = 1. When µ = 1, the L.H.S. is equal to
d1−dj
d1−dj+1

. Hence, the question is whether the

following equality may hold

d1 − dj
d1 − dj+1

=
g1 − gj
g1 − gj+1

.

It naturally would hold in perfectly competitive markets where additional coverage is simply

proportional to its price. In practice, however, one might expect that with some market power

the prices increase faster than then coverage, which is exactly what we find in our data (as

well as for a larger number of firms appearing in Barseghyan et al. (2011)). Hence c1,j(p̄, µ) 6=
c1,j+1(p̄, µ). Since the cutoffs are continuous, it follows that c1,j(p̄, µ) < c1,j+1(p̄, µ).

Under CRRA, cj,k(p̄, µ) exist and are continuous exactly for the same reasons as under

CARA. It remains to establish that c1,j(p̄, µ) < c1,j+1(p̄, µ). Consider the following Taylor

expansion for the CRRA Bernoulli utility function u(w) about point w − pk:

uν(w) ≡ w1−ν

1− ν

=
(w − pk)1−ν

1− ν
+
w−ν

1!
pk − ν

w−ν−1

2!
p2
k + ν(ν + 1)

w−ν−2

3!
p3
k − ν(ν + 1)(ν + 2)

w−ν−1

4!
p4
k + . . .

This can be written as follows

(w − pk)1−ν − w1−ν

w1−ν = −1− ν
w

pk +
(1− ν)(−ν)

2!w2
p2
k −

(1− ν)(−ν)(−ν − 1)

3!w3
p3
k + ...

Hence, we can write

EUν(Lk) ∝ (1− µ)
∞∑
t=1

ωtp
t
k + µ

∞∑
t=1

ωt (pk + dk)
t .

The coefficients ωt ≡ (t!wt)−1
∏t−1

t′=0(1− ν − t′)(−1)t are negative for all t, so the two power

series above are absolutely convergent. The element-wise difference between EUν(Lj) and
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EUν(Lk) is therefore well-defined with:

EUν(Lj)− EUν(Lk) ∝ (1− µ)
∞∑
t=1

ωt
(
ptj − ptk

)
+ µ

∞∑
t=1

ωt
(
(pj + dj)

t − (pk + dk)
t)

= (pj − pk) (1− µ)
∞∑
t=1

ωt

t∑
h=0

phj p
t−h
k +

+ ((pj − pk) + (dj − dk))µ
∞∑
t=1

ωt

t∑
h=0

(pj + dj)
h (pk + dk)

t−h

This implies that if ν = c1,j(p̄, µ) = c1,j+1(p̄, µ), then

p1 − pj
p1 − pj+1

=
p1 − pj + d1 − dj

p1 − pj+1 + d1 − dj+1

×∑∞
t=1 ωt

∑t
h=0 (p1 + d1)h (pj + dj)

t−h∑∞
t=1 ωt

∑t
h=0 (p1 + d1)h (pj+1 + dj+1)t−h

∑∞
t=1 ωt

∑t
h=0 p

h
1p

t−h
j+1∑∞

t=1 ωt
∑t

h=0 p
h
1p

t−h
j

Note that pj+1 > pj. Moreover, when ν = c1,j(p̄, µ) = c1,j+1(p̄, µ) it is also the case that

ν = c1,j(p̄, µ) = c1,j+1(p̄, µ) = cj,j+1(p̄, µ).

For the cutoff cj,j+1(p̄, µ) to be on the support it must be the case that pj +dj > pj+1 +dj+1.

Indeed otherwise pj+1 − pj > dj − dj+1, which is a violation of the first order stochastic

dominance. Hence if we can show that

p1 − pj
p1 − pj+1

<
p1 − pj + d1 − dj

p1 − pj+1 + d1 − dj+1

,

we would arrive to a contradiction, since it would be mean that the LHS of the equation is

smaller than the RHS. Re-arranging:

p1 − pj+1 + d1 − dj+1

p1 − pj+1

<
p1 − pj + d1 − dj

p1 − pj
d1 − dj+1

p1 − pj+1

<
d1 − dj
p1 − pj

p1 − pj
p1 − pj+1

<
d1 − dj
d1 − dj+1

.

The latter inequality holds in the data, as discussed in the case of CARA.
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C Monetary Cost of Limited Consideration

We view limited consideration as a process that constrains households from achieving their

first-best alternative either because the market setting forces some alternatives to become

more salient than others (e.g. agent effects) or because of time or psychological costs that

prevent the household from evaluating all alternatives in the choice set. Regardless of the

underlying mechanism(s) of limited consideration, we can quantify its monetary cost within

our framework. We ask, ceteris paribus, how much money the households “leave on the

table” when choosing deductibles in property insurance under limited consideration rather

than under full consideration. This is likely to be a lower bound on actual monetary losses

arising from limited consideration, because insurance companies might be exploiting sub-

optimality of households choices when setting prices or choosing menus.

We measure the monetary costs of limited consideration as follows. For each household we

compute (the expected value of) the certainty equivalent of the lottery associated with the

households’ optimal choice, as well as of the one associated with their choice under limited

consideration.46 We then take the difference between these certainty equivalent values and

average them across all households in the sample. On average, we find that households lose

$49 dollars across the three deductibles because of limited consideration. See Table E.7 for

variation conditional on demographic characteristics and insurance score. We also find wide

dispersion in loss across households (see Figure E.7). In particular, the 10th percentile of

losses is $30 and the 90th is $72.

46Certainty equivalent of the lottery is defined as the minimum amount they are willing to accept in lieu
of the lottery. In our case, for alternative j, it is simply cej ≡ 1

ν ln[(1− µ) exp(νpj) + µ exp(ν(pj + dj))].
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D Data

Table D.1 Descriptive Statistics

Variable Mean Std. Dev. 1st % 99th %

Age 53.3 15.7 25.4 84.3

Female 0.40

Single 0.22

Married 0.55

Second Driver 0.43

Insurance Score 767 112 532 985

Table D.2 Frequency of Deductible Choices Across Contexts

Deductible 1000 500 250 200 100 50

Collision 0.064 0.676 0.122 0.129 0.009

Comprehensive 0.037 0.430 0.121 0.329 0.039 0.044

Home 0.176 0.559 0.262 0.002

Table D.3 Deductible Rank Correlations Across
Contexts

Collision Comprehensive Home

Collision 1

Comprehensive 0.61 1

Home 0.37 0.35 1
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Table D.4 Joint Distribution of Auto Deductibles

Comprehensive

Collision 1000 500 250 200 100 50

1000 3.71 1.93 0.18 0.44 0.05 0.04

500 0 40.99 6.46 17.84 1.27 1.00

250 0 0.04 5.42 4.55 1.28 0.94

200 0.01 0.05 0.03 9.99 1.07 1.78

100 0 0 0 0.04 0.23 0.66

The distribution is reported in percent.

Table D.5 Average Premiums Across Coverages

Deductible 1,000 500 250 200 100 50

Collision 145 187 243 285 321

Comprehensive 94 117 147 155 178 224

Home 594 666 720 885
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E Empirical Results: Figures and Tables

E.1 The ARC Model with Observable Demographics

While it is ideal to control for households’ observable characteristics non-parametrically, it

is data demanding. In practice, it is commonly assumed that household characteristics shift

the expected value of the preference-coefficient distribution.47 We adopt the same strategy

here by assuming that for each household i, log
β1,i
β2

= Ziγ, where γ is an unknown vector to

be estimated. The terms β1,i and β2 denote the parameters of the Beta distribution, where

β1,i is household specific and β2 is common across households. The preference coefficients

are random draws from a distribution with an expected value that is a function of the ob-

servable characteristics given by E(νi) =
β1,i

β1,i+β2
ν̄ = eZiγ

1+eZiγ
ν̄.48 The results of this estimation

are in line with our first estimation. (See Column 2 in Table E.1, as well as Figures E.1

and E.2 in Appendix E.) The new observation here is that the model closely matches the

distribution of choices across various sub-populations in the sample including gender, age,

credit worthiness, and contracts with multiple drivers. The model’s ability to match these

conditional distributions can be attributed, in part, to the dependence of risk preferences on

household characteristics. The model is, however, fairly parsimonious as the consideration

parameters are restricted to be the same across all households. Finally, estimated considera-

tion probabilities are close in magnitude to those estimated above. In particular, the highest

deductibles ($1, 000 and $500) are most likely to be considered, with respective frequencies

of 0.95 and 0.91. The remaining alternatives are considered at much lower frequencies.

47For exmaple, Cohen & Einav (2007) assume that log νi = Ziγ + εi, where Zi are the observables for

household i and εi is i.i.d. N(0, σ2). Hence, E(νi) = eZiγ+σ2/2.
48If, instead, we assume log

β2,i

β1
= Ziγ̃, then we arrive to the same expression for the expected value with

the exception that γ̃ = −γ.
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E.2 Figures

Figure E.1: The ARC Model with Observable Demographics

The first panel reports the distribution of predicted and observed choices. The second panel displays
consideration probabilities and the distribution of optimal choices under full consideration.

Figure E.2: The ARC Model with Observable Demographics: Conditional Distributions
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Figure E.3: The Mixed Logit

Figure E.4: The ARC Model, Three Coverages, “Narrow” Consideration

Figure E.5: The Mixed Logit, Three Coverages

Triplets are sorted by observed frequency at which they are chosen. The first panel reports the predicted choice
frequency and the second panel reports the difference in predicted and observed choice frequencies.
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Figure E.6: The ARC Model, Three Coverages:
Consideration and Optimal Choice Distribution

Triplets are sorted by observed frequency at which they are chosen.

Figure E.7: The ARC Model with Three Coverages:
Monetary Loss From Limited Consideration
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E.3 Tables

Table E.1 MLE Estimation Results for the ARC Model: Collision Only

ARC Model ARC Model with Observables

β1 1.621 [1.378, 1.948] 2.090 [1.556, 2.816]

β2 7.319 [5.946, 9.177] 8.855 [6.934, 11.758]

Mean of ν 0.004 [0.003, 0.004] 0.004 [0.003, 0.004]

SD of ν 0.002 [0.002, 0.003] 0.002 [0.002, 0.002]

Intercept - - −1.432 [-1.600, -1.302]

Age - - 0.211 [0.149, 0.298]

Age2 - - 0.047 [-0.002, 0.106]

Female Driver - - 0.075 [0.019, 0.145]

Single Driver - - 0.050 [-0.011, 0.114]

Married Driver - - 0.102 [0.022, 0.196]

Credit Score - - 0.137 [0.078, 0.199]

2+ Drivers - - −0.310 [-0.479, -0.155]

Collision $100 0.059 [0.041, 0.081] 0.051 [0.033, 0.071]

Collision $200 0.414 [0.371, 0.465] 0.392 [0.344, 0.453]

Collision $250 0.207 [0.190, 0.224] 0.205 [0.188, 0.227]

Collision $500 0.918 [0.904, 0.931] 0.915 [0.896, 0.927]

Collision $1000 1.000 [0.972, 1.000] 0.949 [0.690, 1.000]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table E.2 MLE Estimation Results for the
Mixed Logit:

Collision Only

Mixed Logit

β1 8.401 [6.794, 10.650]

β2 122.603 [102.578, 152.511]

Mean of ν 0.001 [0.001, 0.001]

SD of ν 0.0004 [0.0004, 0.0005]

Intercept −2.647 [-2.713, -2.586]

Age −0.146 [-0.178, -0.118]

Age2 −0.026 [-0.051, -0.002]

Female Driver −0.004 [-0.032, 0.025]

Single Driver −0.010 [-0.039, 0.020]

Married Driver −0.031 [-0.069, 0.009]

Credit Score 0.096 [0.073, 0.124]

2+ Drivers −0.021 [-0.101, 0.061]

Full Attention 0.040 [0.036, 0.043]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table E.3 MLE Estimation Results for the ARC
Model: Narrow Bracketing

ARC Model

β1 1.152 [1.010, 1.284]

β2 3.141 [2.639, 3.694]

Mean of ν 0.005 [0.005, 0.006]

SD of ν 0.004 [0.004, 0.004]

Intercept −1.127 [-1.225, -1.032]

Age 0.198 [0.164, 0.235]

Age2 0.090 [0.059, 0.121]

Female Driver 0.052 [0.018, 0.088]

Single Driver 0.004 [-0.037, 0.047]

Married Driver 0.008 [-0.038, 0.062]

Credit Score 0.110 [0.077, 0.145]

2+ Drivers −0.089 [-0.186, 0.004]

Collision $100 0.033 [0.023, 0.043]

Collision $200 0.324 [0.299, 0.351]

Collision $250 0.199 [0.185, 0.216]

Collision $500 0.953 [0.945, 0.960]

Collision $1000 1.000 [0.870, 1.000]

Comprehensive $50 1.000 [1.000, 1.000]

Comprehensive $100 0.337 [0.291, 0.384]

Comprehensive $200 0.765 [0.744, 0.790]

Comprehensive $250 0.325 [0.295, 0.357]

Comprehensive $500 0.892 [0.853, 0.928]

Comprehensive $1000 0.277 [0.226, 0.316]

Home $100 0.002 [0.000, 0.010]

Home $250 0.387 [0.368, 0.409]

Home $500 0.859 [0.844, 0.877]

Home $1000 0.824 [0.774, 0.873]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table E.4 MLE Estimation Results for the ARC Model, Three Coverages

ARC Model

β1 4.515 [3.432, 6.255]

β2 23.623 [17.528, 33.251]

Mean of ν 0.003 [0.003, 0.003]

SD of ν 0.001 [0.001, 0.002]

Intercept −1.706 [-1.792, -1.623]

Age 0.166 [0.130, 0.207]

Age2 0.041 [0.011, 0.073]

Female Driver 0.043 [0.006, 0.079]

Single Driver 0.011 [-0.028, 0.052]

Married Driver 0.031 [-0.020, 0.085]

Credit Score 0.141 [0.108, 0.175]

2+ Drivers −0.099 [-0.196, -0.0004]

(100,50,250) 0.041 [0.026, 0.059]

(100,50,500) 0.015 [0.005, 0.029]

(100,50,1000) 0.013 [0.000, 0.043]

(100,100,100) 0.002 [0.000, 0.010]

(100,100,250) 0.008 [0.002, 0.014]

(100,100,500) 0.005 [0.000, 0.011]

(100,100,1000) 0.005 [0.000, 0.019]

(100,200,250) 0.0006 [0.000, 0.003]

(100,200,500) 0.0008 [0.000, 0.003]

(100,200,1000) 0.004 [0.000, 0.016]

(200,50,100) 0.011 [0.000, 0.025]

(200,50,250) 0.065 [0.047, 0.088]

(200,50,500) 0.060 [0.039, 0.082]

(200,50,1000) 0.034 [0.007, 0.073]

(200,100,100) 0.002 [0.000, 0.009]

(200,100,250) 0.021 [0.013, 0.030]

(200,100,500) 0.028 [0.018, 0.039]

(200,100,1000) 0.023 [0.005, 0.048]

(200,200,100) 0.002 [0.000, 0.007]

(200,200,250) 0.155 [0.133, 0.178]

(200,200,500) 0.163 [0.140, 0.189]

(200,200,1000) 0.135 [0.090, 0.188]

(200,250,250) 0.0004 [0.000, 0.001]

(200,250,500) 0.0005 [0.000, 0.002]

(200,500,250) 0.002 [0.000, 0.004]

(200,1000,1000) 0.005 [0.000, 0.024]

(250,50,100) 0.002 [0.000, 0.009]

(250,50,250) 0.020 [0.013, 0.030]

(250,50,500) 0.033 [0.021, 0.047]

(250,100,250) 0.017 [0.012, 0.023]

(250,100,500) 0.016 [0.010, 0.023]

(250,100,1000) 0.019 [0.004, 0.037]

(250,200,100) 0.001 [0.000, 0.005]

ARC Model (cont.)

(250,200,250) 0.037 [0.029, 0.045]

(250,200,500) 0.056 [0.046, 0.067]

(250,200,1000) 0.045 [0.025, 0.067]

(250,250,100) 0.001 [0.000, 0.005]

(250,250,250) 0.042 [0.035, 0.050]

(250,250,500) 0.061 [0.051, 0.070]

(250,250,1000) 0.026 [0.011, 0.044]

(250,500,500) 0.0007 [0.000, 0.002]

(500,50,250) 0.034 [0.020, 0.049]

(500,50,500) 0.053 [0.032, 0.077]

(500,50,1000) 0.034 [0.007, 0.074]

(500,100,250) 0.015 [0.009, 0.022]

(500,100,500) 0.042 [0.029, 0.059]

(500,100,1000) 0.049 [0.022, 0.081]

(500,200,100) 0.008 [0.000, 0.019]

(500,200,250) 0.125 [0.109, 0.142]

(500,200,500) 0.336 [0.305, 0.370]

(500,200,1000) 0.245 [0.202, 0.296]

(500,250,100) 0.002 [0.000, 0.008]

(500,250,250) 0.038 [0.030, 0.046]

(500,250,500) 0.101 [0.088, 0.118]

(500,250,1000) 0.094 [0.066, 0.123]

(500,500,100) 0.003 [0.000, 0.011]

(500,500,250) 0.109 [0.097, 0.122]

(500,500,500) 0.426 [0.399, 0.454]

(500,500,1000) 0.472 [0.435, 0.512]

(1000,50,250) 0.008 [0.000, 0.033]

(1000,50,500) 0.009 [0.000, 0.040]

(1000,50,1000) 0.036 [0.000, 0.150]

(1000,100,250) 0.005 [0.000, 0.022]

(1000,100,500) 0.006 [0.000, 0.028]

(1000,100,1000) 0.041 [0.000, 0.126]

(1000,200,250) 0.032 [0.007, 0.060]

(1000,200,500) 0.083 [0.042, 0.135]

(1000,200,1000) 0.096 [0.021, 0.195]

(1000,250,250) 0.007 [0.000, 0.022]

(1000,250,500) 0.027 [0.006, 0.057]

(1000,250,1000) 0.058 [0.000, 0.134]

(1000,500,250) 0.033 [0.012, 0.060]

(1000,500,500) 0.141 [0.095, 0.188]

(1000,500,1000) 0.384 [0.297, 0.492]

(1000,1000,250) 0.085 [0.037, 0.143]

(1000,1000,500) 0.246 [0.180, 0.324]

(1000,1000,1000) 0.808 [0.627, 1.000]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table E.5 MLE Estimation Results for RUM,
Three Coverages

Mixed Logit

β1 4.363 [3.953, 4.840]

β2 51.093 [47.265, 55.484]

Mean of ν 0.002 [0.002, 0.002]

SD of ν 0.0007 [0.0007, 0.0007]

Intercept −2.422 [-2.469, -2.379]

Age −0.081 [-0.103, -0.059]

Age2 −0.016 [-0.032, 0.002]

Female Driver 0.0007 [-0.018, 0.018]

Single Driver −0.015 [-0.034, 0.005]

Married Driver −0.018 [-0.047, 0.009]

Credit Score 0.037 [0.020, 0.055]

2+ Drivers −0.049 [-0.100, -0.0001]

Sigma 0.223 [0.201, 0.249]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table E.6 Expected Monetary Loss by Group

Expected Monetary Loss

All −49.1 [-55.3, -44.7]

Female Driver −53.2 [-59.9, -48.0]

Single Driver −44.1 [-49.7, -40.2]

Young −44.4 [-49.1, -40.9]

Old −64.6 [-76.8, -56.1]

Low Credit Driver −46.3 [-51.4, -42.5]

High Credit Driver −53.6 [-62.0, -47.6]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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