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Abstract

We develop an analytically tractable method to estimate the fraction of unreported

infections in epidemics with a known epicenter and estimate the number of unreported

COVID-19 infections in the U.S. during the first half of March 2020. Our method

utilizes the covariation in initial reported infections across U.S. regions and the number

of travelers to these regions from the epicenter, along with the results of an early

randomized testing study in Iceland. Using our estimates of the number of unreported

infections, which are substantially larger than the number of reported infections, we

also provide estimates for the infection fatality rate using data on reported COVID-19

fatalities from U.S. counties.

∗We thank the Becker Friedman Institute for financial support. We also thank Fernando Alvarez, Susan

Athey, Patrick Bayer, Jaroslav Borovicka, Rana Choi, Liran Einav, Jeremy Fox, Mikhail Golosov, Austan

Goolsbee, Philip Haile, Jakub Kastl, Magne Mogstad, Casey Mulligan, Derek Neal, Robert Shimer, Jose

Scheinkman, Chad Syverson, Raphael Thomadsen, Harald Uhlig, Theodore Vassilakis, and Alessandra Voena

for their helpful comments.
†Kenneth C. Griffin Department of Economics, University of Chicago and NBER
‡Kenneth C. Griffin Department of Economics, University of Chicago
§Becker Friedman Institute

1



1 Introduction

The global pandemic COVID-19 is here in the United States. The number of confirmed

cases is rising rapidly, reaching 398,809 as of April 7 with 12,895 reported deaths. The

coronavirus outbreak was declared a national emergency on March 11. More than half

of U.S. states have imposed some levels of lockdown measures2. In addition to the

public health crisis, the country is certainly looking at a deep and possibly long-lasting

economic recession, according to Ben Bernanke and Janet Yellen in a recent Financial

Times article3.

Given the level of severity of current conditions, a basic yet important question

remains to be answered: How many people are actually infected with COVID-19 in

the U.S. and what is the true fatality rate? Because of the shortage in testing kits,

hospitals and disease control centers were only able to test the subsample of people

with severe symptoms or travel history. The number of reported infections, especially

early on in the course of the pandemic, is likely much lower than the actual number of

infections in the U.S. Indeed, these unreported infections may go unrecognized because

they often experience mild or no symptoms (Nishiura et al., 2020; Andrei, 2020). If

not hospitalized or quarantined, they can infect a large proportion of the population.

Thus, estimating the number of unreported infections can inform policy-makers about

the proper scale of virus control policies (Alvarez et al., 2020; Eichenbaum et al.,

2020), and to assess the effectiveness of public health policies such as social distancing

in slowing the spread of the epidemic.

Estimating the number of unreported infections may also give a more accurate

measure of the infection fatality rate (IFR). The widely reported case fatality rate

(CFR), reports the rate of fatalities from reported cases of infection. The infection

fatality rate is the proportion of those actually infected who die, not of those reported

or confirmed infected. The reported case fatality rate is likely an overestimate of the

true infection fatality rate, due to selection bias in testing.

Ideally, a randomized testing experiment will give an unbiased estimate of the IFR.

However, given the limited supply of testing kits and surging demand by people with

symptoms, randomized testing may be infeasible, especially in the early periods of the

outbreak. Therefore, it may be of great value to estimate the fraction of unreported

infections with observational data at hand. With that knowledge, policy-makers will

be better equipped to assess the proper level and duration of virus control policies.

In this paper we develop an analytically tractable method that utilizes data on travel

1
https://www.whitehouse.gov/presidential-actions/proclamation-declaring-national-emergency-concerning-novel-coronavirus-disease-covid-19-outbreak/

2https://www.wsj.com/articles/a-state-by-state-guide-to-coronavirus-lockdowns-11584749351
3https://www.ft.com/content/01f267a2-686c-11ea-a3c9-1fe6fedcca75

2

https://www.whitehouse.gov/presidential-actions/proclamation-declaring-national-emergency-concerning-novel-coronavirus-disease-covid-19-outbreak/
https://www.wsj.com/articles/a-state-by-state-guide-to-coronavirus-lockdowns-11584749351
https://www.ft.com/content/01f267a2-686c-11ea-a3c9-1fe6fedcca75


patterns to identify and estimate the fraction of unreported infections for situations

where the epidemic has a known epicenter. Our methodological strategy, described in

Section 3, exploits the covariation between the number of initial reported infections

in locations away from the epicenter, and the number of travelers from the epicenter

to these locations. While we do not see our method as a substitute for the “gold-

standard” of well defined randomized/universal testing studies, we believe our method

can be useful towards providing estimates of unreported infections when results of

randomized testing studies are not available for a given location of interest.

To begin illustrating the idea, consider a time period when the epicenter is the only

location with infections, and that the only way another city/country can be infected is

through travelers. Also assume, as in Section 3.1, that any infected travelers can only

come from the unreported infected population in the epicenter – an assumption we find

reasonable (as reported infected individuals would not be allowed to travel), but are

able to relax in Section 3.2. Suppose now the hypothetical situation where we know the

reporting rate of infections in the epicenter (the fraction of reported infections to the

true number of infections), and that we know the number of travelers from the epicenter

to another city/country. Assuming travelers resemble the population of the epicenter,

we can calculate the expected number of infected (but unreported) travelers entering

other cities/countries. Assuming further that we know the rate of transmission of the

disease, we can then calculate the expected number of infections these travelers will

have generated in these locations. Comparing the expected number of infections that

arise from travelers to reported cases of the infection, we can estimate the reporting

rate.

What can we do in the realistic case if the reporting rate in the epicenter is un-

known? In Section 3.1, we propose the following: suppose we make the assumption

that the reporting rate at the epicenter and the previously uninfected city/country are

the same (or a known function of each other). We can then start with a guess on the

unknown rate of reporting at the epicenter, which allows us to calculate the implied

reporting rate at the previously uninfected city/country, and check whether these are

equal (or satisfy the known function). If not, we update our guess, and try again.

In other words, we can solve for the reporting rate(s) balancing the expected number

of infections from travel and the number of infected that are being reported in both

locations.

While the above strategy, outlined in Section 3.1, is in principle implementable

using only data on travel patterns and reported cases, it is crucially dependent on the

assumption that reporting rates are the same across the epicenter and destination lo-

cations (or a known function of each other). Moreover, its results are very sensitive

to knowing the transmission rate of the infection from travelers, as this allows us to

3



project the number of infections in the destination city/country of interest. However,

suppose now that we have access to the reporting rate of infections from another des-

tination city/country, e.g. through universal or randomized testing, as has been done

in Iceland.4 This allows us to estimate how infectious the travelers from the epicen-

ter are. Assuming that this transmission rate from travelers is the same (or a known

function of) as the transmission rate at the destination city/country of interest, we can

then calculate the expected number of infections we would expect from travel. Intu-

itively, the ratio between number of travelers to two destination cities/countries from

the epicenter should tell us the ratio of total infections between the two cities/countries.

Randomized or universal testing at one of the destinations, Iceland in our case, will

give us its number of total infections, so total infections at the other destination can

be computed. This strategy is laid out in detail in Section 3.2.

We would like to be very upfront that the estimation strategies outlined above

are dependent on strong assumptions and reliable data on travel patterns, and that

any results are very sensitive to these assumptions. However, our hope is that our

approach is clear in terms of its assumptions and its corresponding limitations; we

hope that future research can improve upon these limitations. We have attempted to

account for some of the limitations. For example, in Section 3.3, we discuss how to

correct for the fact that infections are often reported with a delay, as there is a delay to

the outset of symptoms that are often a prerequisite for testing for the infection, as well

as a delay in laboratory testing. Another important limitation is the assumption that

the city/country with randomized test results has the same transmission rate as the

city/country of interest. Section 5.4 discusses what may be done to address violations

of this assumption.

Our data consists of detailed daily reported infections/deaths for all infected U.S.

counties and Iceland collected by Johns Hopkins University of Medicine Coronavirus

Resource Center from January 22 to April 13, 2020; international travel data to U.S.

in January and February 2020 from I-94 travels data by National Travel and Tourism

Office; international travel data to Iceland by Icelandic Tourist Board in January and

February 2020.

Our model generates a range of estimates that depend on the traveler data that is

incorporated, the date range considered, and assumptions regarding the lags associated

with reported case data. We report this range of estimates in Table 3. Across these

estimates, we find that 4% to 14% of cases were reported across the U.S. up to March

16, when social distancing measures began to be applied in major metropolitan areas

and travel declined significantly (Thompson et al., 2020) . This estimate assumes that

4Of course, another strategy is to assume that the reporting rate discovered through randomized testing
in Iceland is the same in the destination city/country of interest.
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cases are reported with a lag of 8 days as in Table 3(a); that is, we do not treat

reported cases of today as the appropriate measure of true infections today.5 6 This

suggests that for each case reported in late February/early March, between 6 to 24 cases

remained unreported (after accounting for an 8 day lag from infection to reporting of

a case).

How do these estimates compare to other estimates in the literature? A very recent

study by Bendavid et al. (2020) tested a representative sample of Santa Clara county

residents in early April and reports that 48,000 -81,000 people are infected as of April

1, whereas only 956 are reported that day. This leads to their reported ratio of 50-85 of

total infections to reported infections. Importantly, this calculation does not account

for the lag in reporting infections. Our data allows us to compute a similar statistic

for San Francisco County, which we report in Table 2; we obtain this by dividing our

estimate of the true infected by the reported infected on that day. For March 13,

this yields a ratio of 85, which is at the upper bound of the 50-85 range reported by

Bendavid et al. (2020).

Our estimates of the number of total infections also allow us to estimate the in-

fection fatality rates implied by observed data on fatalities. These calculations are

reported in detail in Section 5.5, and reported in Table 2. We estimate a median cu-

mulative infection fatality rate (cIFR) of 0.27-0.31% across U.S. counties. We note

that a representative sample study in Santa Clara County by (Bendavid et al., 2020)

found an infection fatality rate of 0.12-0.2%. Our estimates show, however, potentially

substantial dispersion of IFR across U.S. counties. Once again, we would like to stress

that our estimates are highly dependent on model assumptions, and the data that is

used to inform it. We discuss how our results depend on these assumptions in some

detail in Section 5 and in the Supplemental Information section.

In the economic literature, Berger et al. (2020) and Stock (2020) study the im-

portance of unreported cases in the context of the coronavirus pandemic. Our paper

contributes to the growing literature in epidemiology on estimating the true number

of infections using observational data and structural model assumptions. Notably, (Li

et al., 2020; Wu et al., 2020; Flaxman et al., 2020; Liu et al., 2020a,b; Nishiura et al.,

2020) utilize simulated epidemiological models to estimate the fraction of unreported

infections in China and European countries. As Zhao et al. (2020) notes, it is often

difficult to identify the fraction of unreported alongside the growth of the infection

purely by measures of fit. Our paper complements these extant papers: we provide

5A shorter assumed reporting lag of e.g. 5 days generates a range of estimated reporting rates between
1.5% to 10%.

6The estimates use travel data from China, Italy, Spain, Germany, and the UK. We have excluded King
county, Washington in these results because this county, containing Seattle, shows much earlier community
infections than other regions in U.S.
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what we believe is a transparent identification argument and a very light computational

strategy that allows researchers to assess the sensitivity of model estimates to mod-

eling and data assumptions. That said, our model may miss important components

of disease dynamics that these more sophisticated epidemiological models incorporate.

These richer models may also allow one to estimate a richer set of model parameters

than we have been able to.7 Another related recent paper is Imai et al. (2020), who

estimate potential total cases in Wuhan China from the confirmed cases in other coun-

tries due to international travel, assuming that all cases outside of China are reported

correctly 8. Korolev (2020) discusses non-identification in SEIRD models and proposes

estimation strategy conditional on knowing infectious period and incubation period.

Section 2 introduces our model of infection, which describes the early stages of

the dynamics of the epidemic. Section 3 presents our two estimation/identification

strategies. Section 4 describes the data we are using for estimation. Section 5 lays out

the estimation results and our robustness checks.

2 Model

Our model is based on the classic SIR model in epidemiology. We consider the evolution

of the virus in both the epicenter c and into target city i over a period of time T0 ≤
t ≤ T1. We are considering a relative short period of time in the early stage of the

epidemics. Thus, the “recovered” population at the epicenter, which is a small fraction

of the population, is assumed not to play a significant role during this period.

2.1 What happens at the epicenter c

We denote Infected, Reported Infected, and Unreported Infected in time t and epicenter

c as Ic,t, Rc,t, Uc,t respectively.

The epicenter starts with some initial infections Ic,0. We are considering a short

period of time in between T0 and T1, so the number of susceptibles at the epicenter

remain relatively constant throughout this period. There are also no infected cases

traveling into epicenter. We assume no recovery. So at time t, the total infections at

epicenter with transmission rate β is given by

7For example, that Li et al. (2020) estimates different transmission rates for reported vs. unreported
infections, which we are unable to identify with our strategy. Li et al. (2020) assume that unreported
infected individuals transmit the disease at a slower rate than reported infected individuals. However, since
most reported infections are either hospitalized or self-quarantined, it is not clear whether this assumption
is an a priori reasonable one.

8Bogoch et al. (2020) and Lai et al. (2020) calculates how vulnerable countries are to the virus by the
magnitude of travelers from Wuhan, and correlate these vulnerability/risk measures with reported cases in
these countries.
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Ic,t = Ic,0 exp(β(t− T0)) (1)

It is worth noting that this β term can include the spread minus recoveries, since

we do not model a changing number of susceptibles. It should be viewed as the net

spread of infections over time.

Each time t, there is a cohort of travelers Mi,t going from epicenter to target city

and potentially bringing the virus to target city.

2.2 What happens in target city i

We denote Infected, observed Reported Infected, and Unreported Infected in time t

and city i as Ii,t, Ri,t, Ui,t respectively. At period T0, target city i has zero infections,

so Ii,T0 = Ri,T0 = Ui,T0 = 0.

Each time t ∈ [T0, T1], target city receives a cohort t of incoming travelers Mi,t

from the epicenter. Among these travelers, Iinci,t are infected. Each cohort of incoming

infected Iinci,t will transmit the virus in target city with rate β for the period of [t, T1].

We assume that the transmission rate at target city is the same as in epicenter. Thus,

at period T1, this cohort will infect Iinci,t exp(β(T1 − t)) people in the city i. The total

new infections at target city at T1 caused by all cohorts of incoming infected travelers

will be

Ii,T1 =

∫ T1

T0

Iinci,t exp(β(T1 − t))dt (2)

Let α be fraction of reported case over new infections across periods, so α =
Ri,T1

−Ri,T0
Ii,T1−Ii,T0

. Since Ii,T0 = Ri,T0 = 0, we can write α =
Ri,T1
Ii,T1

. In reality at target

city i, we only observe Ri,t with some iid measurement error εi,t
9. Let R̂i,t denote the

observed reported cases of city i time t. We have

R̂i,T1 = αIi,T1 + εi,T1 = α

∫ T1

T0

Iinci,t exp(β(T1 − t))dt+ εi,T1 (3)

3 Estimating the Reporting Rate α

The estimation/identification question is: can we recover α, the reporting rate, when

we only observe reported infections R̂i,T1 but not Iinci,t , the total incoming infected in

equation (3)? In the following Sections 3.1-3.2, we provide a complete treatment of

how one can recover α under different scenarios of data availability. We consider two

9This measurement error εi,t could arise from error in collecting the data.
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sets of data that could potentially be available: (i) data on travel from epicenter to

U.S., and (ii) data from a randomized testing implemented outside of U.S. In Section

3.3, we extend our model and estimation strategy to incorporate reporting lags.

3.1 Travel data available but randomized testing data un-

available

When only travel data is available, we need the assumption that people capable of

traveling away from the epicenter would be the uninfected and the unreported infected.

This is a reasonable assumption especially in the case of COVID-19 because the great

majority of reported infected individuals would be quarantined and not allowed to

travel.

Our main assumption in this scenario is:

Assumption 3.1.

Iinci,t

Mi,t
=

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], city i and epicenter c (4)

Nc is the population of epicenter. R̂c,t is the observed reported infections at epi-

center c time t, defined analogously to R̂i,t for target city i. In other words, we are

assuming that the fraction of unreported infections among incoming travelers from the

epicenter is the same as the fraction of unreported infections among people capable of

leaving the epicenter. (We will relax this assumption in Section 3.2.) Since α remains

constant,10 we have Uc,t = (1− α)Ic,t = 1−α
α Rc,t. Therefore, assumption 3.1 becomes:

Iinci,t

Mi,t
=

(1− α)Ic,t

Nc − R̂c,t
∀t ∈ [T0, T1], city i, epicenter c (5)

Plugging equation (1) in, we get

Iinci,t =
(1− α)Ic,0 exp(β(t− T0))

Nc − R̂c,t
Mi,t ∀t ∈ [T0, T1], city i, epicenter c (6)

Plugging back to equation (3), we get

10In reality α may be varying over time, due to e.g. changes in the extensiveness of testing. If this is the
case, as we vary the [T0, T1] window, we will obtain window-specific estimates of α, which can be thought of
as a weighted average of α during this period.
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R̂i,T1 = α

∫ T1

T0

(1− α)Ic,0 exp(β(t− T0))

Nc − R̂c,t
Mi,t exp(β(T1 − t))dt+ εi,T1 (7)

= α(1− α)Ic,0 exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (8)

= α(1− α)
Rc,0
α

exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (9)

= (1− α)Rc,0 exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (10)

This equation allows us to solve for (1−α) exp(β(T1−T0) if we observe Rc,0. We will

allow for observing Rc,0 with error in Section 3.2. We can estimate β from the growth

of reported infections in the epicenter because there is no influx of infected people from

other regions. Given that β is now determined, we can solve for α. However, there is

much variation in estimation of β within the literature, and our estimate of α varies

with point estimates of β (Liu et al., 2020; Read et al., 2020; Shen et al., 2020).

3.2 When travel data and a random testing benchmark

are available

In this scenario, we will be leveraging the same fact that the number of incoming

unreported infections is informed by the travelers from the epicenter. Now we can also

allow for selection in traveling. More specifically, if we think that e.g. urban areas

are likely to have a higher infection rate than rural areas and travel abroad more11,

then assumption 3.1 might not hold. Therefore, we introduce a bias correction term

γ in the relation between the fraction of infected among travelers and the fraction of

unreported infected individuals in the general population. This bias correction term γ

can also account for the fact that a fraction of the unreported infected people might

be too sick to travel. Our relaxed assumption in this scenario is:

Assumption 3.2.

Iinci,t

Mi,t
= γ

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], city i and epicenter c, γ 6= 0(11)

We can further allow for the fact that the reporting rate in epicenter αc can be

different from that of region i, so Uc,t = (1 − αc)Ic,t = 1−αc
αc

Rc,t. We can now rewrite

assumption 3.2 as:

11This is likely to be true in epicenters like China.
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Iinci,t

Mi,t
= γ

(1− αc)Ic,t
Nc − R̂c,t

∀t ∈ [T0, T1], γ 6= 0, city i, epicenter c (12)

Plugging into equation (1) and (3), we get

R̂i,T1 = α
1− αc
αc

γ exp(β(T1 − T0))Rc,0

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (13)

The additional parameters for the bias correction term γ and different reporting

rate for the epicenter complicate the estimation of α using travel data alone. However,

having data from a country that has done randomized or complete testing greatly

helps overcome this challenge. In our case, we are able to identify α using additional

information given by the randomized testing benchmark provided by Iceland. Since

the Iceland company deCODE genetics implemented random testing of COVID-19 for

a representative sample of the island population12, we are able to observe true infection

rate of Iceland at time T1. Multiplying this true infection rate by the population of

region j in Iceland will give us the actual number of infections in region j at time T1,

which is Ij,T1 . Thus, for any region j in Iceland we observe Ij,T1 − Ij,T0 , which in turn,

equals the infections generated by travelers from the epicenter:

Ij,T1 − Ij,T0 =
1− αc
αc

γ exp(β(T1 − T0))Rc,0

∫ T1

T0

Mj,t

Nc − R̂c,t
dt+ εj (14)

Note that if we allow for iid measurement error εj in observing Ij,T1−Ij,T0 , we can get

a consistent estimate of 1−αc
αc

γ exp(β(T1 − T0))Rc,0 by estimating equation (14). If we

don’t allow for measurement error εj , then we can estimate 1−αc
αc

γ exp(β(T1− T0))Rc,0

with no error. Estimating equation (13) gives consistent estimate of α1−αc
αc

γ exp(β(T1−
T0))Rc,0. Taking the ratio, we have identified α.

One intuition for this strategy is the following: the ratio between travel to U.S.

and travel to Iceland from the epicenter should tell us the ratio of total infections

between U.S. and Iceland. Iceland’s randomized testing gives us its number of total

infections, so U.S. total infections can be computed. In other words, we observe the

outcome in U.S. with under-reporting, and the unobserved counterfactual outcome

with full reporting is given by the benchmark Iceland. An additional advantage of this

estimation/identification strategy, as opposed to the previous strategy in section 3.1,

is that now we don’t need an estimate of β in order to recover α. We also allow for the

fact that Rc,0 could be observed with error. Identifying α does not require observing

12We will describe the randomized testing in detail in Section 4
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Rc,0 perfectly because Rc,0 appears identically in both equations.

We should be clear that for terms with β to cancel out, the argument does assume

that β is the same across Iceland and the U.S. We believe this might be a reason-

able assumption for the early periods of the infection when social distancing or other

widespread measures had not yet been implemented (in a potentially differential fash-

ion). In the case of heterogeneous transmission rate, we show in the supplements how

to estimate them if we have high quality travel data. We also need the bias term γ to

be the same for U.S. and Iceland; this means that proportion of (unreported) infected

travelers from China to the U.S. and Iceland are the same. More detailed micro-data

on travelers may be used to assess the validity of this assumption.

This estimation strategy also works when a complete testing benchmark exists.

If the whole population of region j is tested, then we observe Ij,T1 − Ij,T0 trivially.

Equation (14) still gives consistent estimate of 1−αc
αc

γ exp(β(T1 − T0))Rc,0 and the rest

of the argument follows.

Note that if in the model reported infections and unreported infections have different

transmission rates, then our strategy would not be able to capture the differential rates.

We would need other sources of information to help us pin down these differential rates.

3.3 Incorporating Reporting Lags

In this section, we show how our model can incorporate a fixed reporting lag in reported

infections and derive identification equations. Reporting lags are important, because

if people are tested for the virus only after symptoms show up, there will be a lag in

reported infections. Another major reason for reporting lag is the lag in testing results.

The turnaround time for testing results in U.S. major laboratory companies could be

2 to 3 days (Kaplan and Thomas, 2020).

We denote true infected, true reported infected, and true unreported infected

in time t and target city i as Ii,t, Ri,t, Ui,t respectively. Those for epicenter c as

Ic,t, Rc,t, Uc,t. Let k be the lagged report period. At time t city i denote the lagged

reported infected LRi,t = Ri,t−k. For epicenter c, lagged reported infected is LRc,t =

Rc,t−k. But the observed lagged reported infected of target city L̂Ri,t is with iid mea-

surement error εi,t .

Define reporting rate at city i as α =
Ri,t−k

Ii,t−k
=

LRi,t

Ii,t−k
and at epicenter c as αc =

Rc,t−k

Ic,t−k
=

LRc,t

Ic,t−k
. This means that we are considering the reporting rate of lagged re-

ported cases as a fraction of the lagged total infections, not the current total infections.

We derive an alternative definition of reporting rate as lagged reported cases over cur-

rent total infections in the supplement.

When travel data are available but randomized testing data unavailable, we still
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maintain assumption 3.1. In city i time T1, the estimating equation is

L̂Ri,T1 = α
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (15)

If α = αc, then both of them are identified if β and k are identified and LRc,k is

observed without error.

When both travel data and randomized testing data are available, we maintain

assumption 3.2. In U.S. city i time T1, the estimating equation is

L̂Ri,T1 = αγ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (16)

In Iceland region j time T1, the estimating equation is

Îj,T1−k = γ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mj,t

Nc − R̂c,t
dt+ εj,T1 (17)

If we know k, then we can compute Îj,T1−k from the randomized testing data.

Regressing equation (17) gives consistent estimate of γ 1−αc
αc

exp(β(T1 − T0 − k)LRc,k.

Regressing equation (16) gives a consistent estimate of αγ 1−αc
αc

exp(β(T1−T0−k))LRc,k.

Taking the ratio, we can identify α if we know k. Again here we can also allow for

the situation where we don’t observe LRc,k perfectly. Details of how we derive the

estimating equations are in the appendix.

4 Data

4.1 COVID-19 Data

Daily reported infections, recovery, and death data are collected by Johns Hopkins

University of Medicine Coronavirus Resource Center from January 22 to April 13,

2020. We use data for all U.S. counties as well as epicenters.

Randomized testing data in Iceland is obtained from the website maintained by

the Directorate of Health and the Department of Civil Protection and Emergency

Management in Iceland13. We have daily number of tests conducted by deCODE

genetics and daily number of confirmed cases. We use the first wave of randomized

testing by deCODE which spans March 15 - 19, 2020. During the first wave they

13https://www.covid.is/data
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performed 5490 tests and confirmed 48 cases, which implies an infection rate of .874%.

The randomized testing conducted was random over non-confirmed individuals which

made up a very tiny portion of the Icelandic population at this time. This could lead

to slightly downward biases in our Iceland confirmed data, slightly biasing our U.S.

alpha estimates upward.

In our main estimation we consider February 23 as T0 and March 10 as T1 with

a 5 day lag, and T1 as Mar 13 for an 8 day lag. This is because there were very few

infections in January and early February. We check robustness of different time periods

in Section 5.3.

4.2 Travel Data

We obtain monthly data of international arrivals to U.S. by port of entry and country of

origin from I-94 Arrivals by National Travel and Tourism Office. We use the number of

visitors from China, Italy, Spain, UK, and Germany in January and February 2020 as

the measure for incoming travelers to U.S. states. For international arrivals to Iceland,

we get the number of visitors from China, Italy, Spain, UK, and Germany in January

and February 2020 from the Icelandic Tourist Board. We have not been able to obtain

March travel data into either country.

The National Travel and tourism office of the United States provides monthly data

for entry by port of entry, as well as a separate data set for country of origin. We

construct the number of visitors from China, Italy, Spain, Germany, and the UK by

scaling the port-of-entry data by the percentage of total visitors that are from these

countries. This introduces error, as we cannot observe directly the number of e.g.

Chinese travelers into a particular city or state. It is also important to note that we

do not observe inter-state travel. While this may not be important for the immediate

infections caused by travelers from the epicenter, our projections for the number of

infections for T1 that are far removed from T0 will be less accurate due to interstate

travel.

For Icelandic data, 99% of international travelers arrive through Keflavik airport

into Iceland. The data contains a breakdown of arrival by country of origin, broken

down by month of arrival. We use January and February arrival data from China,

Italy, Spain, UK, and Germany for estimation.

Our travel data for both countries does not control for connecting flights. However

the United States data is limited to the top-30 port of entries, many of which are

large urban cities for which there will be less connecting flights. Further work that

can obtain more precise estimates of entry may be able to control for this. In the case

of Iceland: a survey conducted by the Icelandic Tourist Board suggests that 2-5% of
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international travelers are aboard connecting flights, suggesting it is less of a problem

for this set of data.

4.3 Population Data

Estimates of U.S. State and county population data come from the U.S. Census Bureau.

Data for the populations of China, Iceland, Italy, Spain, UK, and Germany as of 2020

are obtained from the United Nations Population Division.

5 Empirical Application

5.1 Implementation

We now consider estimation of αUS using randomized sampling in Iceland, as described

in Section 3.2. Randomized sampling done by deCODE genetics gives a percentage

of the population that has contracted the virus. We estimate equation (14) using

Randomized Testing to construct Ij,T1−k. We do not have city-level travel data into

Iceland. 99% of all international travel arrives through a single airport, and while

the data provided is accurate, this gives only a single data point for estimation. As a

result, equation (14) relies on a single data point of travel and infection, but exp(β(T1−
T0))γ 1−αc

αc
Rc,0 is estimated without error by the ratio of Ij,T1− Ij,T0 and

∫ T1
T0

Mj,t

Nc−R̂c,t
dt.

For estimation of reporting rates in the U.S., we need estimates of several figures:

Firstly Mj,t, and secondly of Ij,T1 − Ij,T0 . We discuss the estimation of these here.

We observe only monthly travel data to construct Mj,t, and to maintain robustness

to January travels and infections, we average February and January travel into both

the United States and Iceland. We assume that Mj,t is uniform over the entire time

period such that
∫ Feb29
Jan1 Mj,t is equal to the sum of all travel into the city from January

and February. Thus the integrand of
∫ T1
T0

Mj,t

Nc−R̂c,t
varies only by confirmed infections

in the epicenter. Estimation of Ij,T1 is complicated due to randomized testing by

Iceland only being conducted at certain dates. To resolve this problem, we scale the

Iceland randomized results by the scale of the confirmed cases against March 15. This

means that if there were half the confirmed cases in March 5 as in March 15, the total

infections would be half of the randomized testing percent times the population of

Iceland. This allows for us to consider T1 closer to the onset of the infection than the

randomized testing dates. We also remove the number of infected from Wuhan China

from our data on confirmed infected in China due to the lock-down restrictions placed

on this city. We use the first wave of deCODE testing to determine the percentage of

the population that has contracted the disease. This testing took place during Mar
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15 through Mar 19. The results show that .874% of the population of Iceland have

contracted the disease as of Mar 1514.

We estimate equation (13) using multiple data points from U.S. states and counties.

We obtain our estimate of α exp(β(T1−T0))γ 1−αc
αc

Rc,0 via OLS without a constant term.

One important note is that if the magnitude of measurement error in travel data were

high, this problem may be alleviated via instrumental variables strategy using other

travel data measured with error.

We then construct our estimate of α by dividing the two estimates. It is important

to note that as a result of the division, this method is not reliant on population data

from the epicenter of infection. As long as γ and β are the same between Iceland and

the United States we will have identified α. It is likely that at the onset of the infection

similar preventative measures have been taken in these two countries, meaning that β

will be reasonably close for each country.

Is China the only epicenter for the United States? While the first confirmed in-

fection in Seattle occurred from a visitor from China, our data on The United States

and Iceland occurs later in the global progression of the virus than our Chinese data.

By the time these countries were experiencing infections, Italy had also experienced

an outbreak. To this end, we also allow for a second epicenter: Italy. Italy is located

much closer to Iceland and constitutes a substantial amount of travel to the country.

However, to maintain identification, we require that α, β and T0 be same for both

China and Italy, and we observe LRc,k for both epicenters with no error. However we

find that allowing T0 to vary does not affect our estimates by much. We also consider

a broader collection of epicenters of China, Italy, Spain, Germany and the UK. For

some collection of epicenters L: Our estimation equation for the United States is given

below.

L̂Ri,T1 = α
1− αc
αc

γ exp(β(T1 − T0 − k))

(∑
`∈L

[∫ T1−k

T0

LR`c,kM
`
i,t

N `
c − R̂`c,t

dt

])
+ εi,T1 (18)

A similar equation is also estimated with multiple epicenters (China and Italy, also

with Spain, Germany, and UK) for Iceland.

5.2 Results: Illustration

As a first illustration of our approach, we first estimate α using February 23 as T0 and

March 13 as T1 with a lag of 8 days. We choose T1 to include the beginning of the

growth of infections in the United States, while still being early into the progression

14Stock et al. (2020) also estimates the undetected rate and total infection rate in the Iceland study.
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of covid-19 so travel is still important. Using traveler data from China, Italy, Spain,

Germany, and the UK, in Table 1, we estimate α = 0.0427 (robust s.e. 0.0211). This

would mean that for every case confirmed in the United States in early March, there

are still 1−α
α = 22 unconfirmed cases (assuming a reporting lag of 8 days). We also

consider a 5 day lag model, the median time for symptoms to appear, but prefer 8

days, in order to capture the testing lag in addition to symptom onset (Lauer et al.

(2020); Kaplan and Thomas (2020); Li et al. (2020)). For the 5 day lag, T1 was set to

March 10 for comparison. We consider other T0 and T1 dates for robustness later.

How does this estimate compare to other estimates in the literature? A very recent

study by Bendavid et al. (2020) tests for COVID-19 antibodies in a representative sam-

ple of Santa Clara county residents and reports that 48,000-81,000 people are infected

as of April 1, whereas only 956 cumulative infected are reported that day. This leads

to their reported ratio of 50-85 of total infections to reported infections. Importantly,

this calculation does not account for the lag in reporting infections. While we do not

have travel data for Santa Clara county, we can compute a similar statistic for San

Francisco County: Our estimate of the true infected on March 13, divided by the re-

ported cumulative infected on that day. This yields a ratio of 85, which is at the upper

bound of the 50-85 range reported by Bendavid et al. (2020). We report these ratios

for the counties in our data set in Table 2.

We note that there is one city present in our data that is a huge outlier. Seattle

featured very early infections, and was unable to contain the spread of early infections

unlike other cities in the United States. We believe that for King County, T0 may be

much earlier than for the other cities. This means that within our time interval, there

are substantial amounts of infections caused by residents of the city, not only visitors.

As a result, this city has a substantially higher (3700%) amount of confirmed cases per

visitor than any other city at the current time so we exclude it.

Our approach is also sensitive to the travel data magnitudes, which may not be

well estimated for the United States due to data limitations. In particular, connecting

flights after port of entry may lead to underestimates of international arrivals into

smaller cities and counties. We also lack inter-state travel between the United States,

which would be important for estimating α later into the spread of the virus.

Have we considered all epicenters of the virus for the United States and Iceland?

There were other countries which had seen substantial infections such as South Korea.

Their exclusion biases both the estimates from both Iceland as well as the United

States, and as long as the magnitudes of travel were even between the two will not

bias alpha. If these other epicenters had more travel to the United States relative to

Iceland, this would downward bias our estimates of α, and vice versa. However, we

see little change in our estimates by adding in Spain, Germany and UK. If the travel
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patterns between the United States and Iceland to and from an omitted set of epicenter

countries are not very different, we do not believe their omission will substantially alter

our results.

5.3 Results: Range of Estimates and Robustness Checks

Our dates for T0 and T1 are chosen such that they capture the onset of the infection for

the United States. As table 3 shows, our α estimate is reasonably stable along choices of

T1, and very stable among choices of T0 all throughout February. We estimate a range

of 4%− 14% reporting rates when there is a lag of 8 days and a range of 1.5%− 10%

for the average reporting rate across the U.S. with a reporting lag of 5 days. Using

only China as the epicenter, we observe similar patterns in α. For early March we

note a relatively stable α over T1. For very early choices for T1, our Iceland estimates

of confirmed are very small, and this could create very noisy estimates of α (the first

case in Iceland was confirmed February 28). As we increase T1, we see an increase in

α. This may be due to increases in the availability of test kits, which lead to higher

reporting rates. However, this result may in part be due to unobserved/unaccounted

travel, particularly within the United States, along with the fact that we do not have

data on March travel into the U.S. Both of these factors would lead to under-reporting

of travel for late March, and cause estimates of α to be upward biased. Moreover, as

we progress later into March, social distancing/health policy measures across Iceland

and U.S. began to be applied, leading to differential changes in the transmission rate.

Throughout the analysis above, we have excluded King County, Washington which

contains Seattle. Table A2 displays our estimates including this county, which heavily

skews the data. We believe this may be due to significant community infections occur-

ring in the county during our time period, as the city was infected much earlier than

other cities.

Correct estimation of the reporting lag parameter is essential, as our estimates of

α are sensitive to this. We consider our estimates robustness to reporting lags in table

A3. Our estimates of α appear reasonably robust to a range of lengths of the lag, with

an increase as the lag becomes longer.

We note that large lags (k > 10) pose a problem for estimation in our model. For

estimation purposes, we maintain T1 − k to be a constant date as we consider changes

in the lag parameter. This means that for large lags, we must consider T1 dates deep

into March. However, the further we get into March, the more interstate travel and

carrying of infections between cities and states matters, which may lead to overstating

α.
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5.4 Heterogeneity in β

The above argument is predicated on β being constant for both Iceland as well as the

United States. However, along with potential differences in normal social interaction

patterns leading to virus transmission, Icelandic and the U.S. policies for handling the

spread of the virus may have diverged significantly. This means that our assumption of

β being the same across the U.S. and Iceland may not hold. Evidence from Kucharski

et al. (2020) suggests that β is very sensitive to changes in policy, leading to this upward

bias in α.

In Section A.3, we attempt to relax that assumption. In our model, β cannot be

directly estimated from the growth of the infected trajectory due to the majority of

infected at the start arriving from travel. The details for our estimation procedure are

given in the appendix. A major problem with this approach is that it requires variation

in travel over time which we do not measure well. In essence, we use the evolution

of the infected in each country over time to learn about how infectious travelers are

once they have arrived. With constant daily travel, this variation is poor and makes

identification of β difficult.

As a coarse estimate, we find that the difference in β is about .06. The estimate of α

resulting from this procedure yields a value of .007, suggesting that our estimates using

the assumption of same β may be upward biased. However, we note our monthly travel

data does not allow for variation in travel over time, making it difficult to estimate β in

a robust manner, so any bias in measuring travel leads to bias in α. We thus note that

our main estimates of α may be upward biased, suggesting that there may be more

total infections than we have estimated. However, better travel data showing adequate

variation in time is required for reliable estimation of separate βs in our model.

5.5 Infection Fatality Rate

Given our estimated reporting rate over the time period of interest, we can compute

the implied infection fatality rate (IFR). Let Dt be the number of deaths observed on

day t. Let It be the number of cumulative total infections on day t. Let p be the period

from illness onset to death, i.e. the fatality lag. Let f(p) be the density of p over [0, P ]

with mean p̄.

We consider two alternative definitions of IFR:

1. Cumulative Infection Fatality Rate (cIFR): The cIFR at t is the fraction of cu-

mulative deaths adjusted by mean fatality lag and cumulative total infections as

of t.

2. Cohort-matching infection Fatality Rate (mIFR): For each cohort of new infec-
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tions at time t, the mIFR is the ratio of all deaths attributed to cohorts until t

and the size of each infected cohort until t. This method accounts for a random

fatality-lag rather than a fixed interval.

More specifically, we define

cIFRt =

∑t+p̄
s=0Ds

It
(19)

mIFRt =

∑t
s=0

∫ P
0 Ds+pf(p)dp∑t

s=0 Is − Is−1

(20)

We follow Linton et al. (2020) when estimating the distribution of the fatality lag

and fit a log-normal distribution. I−1 is the infected on the day before T0, and may be

zero.

We estimate cIFR and mIFR for each U.S. county in our data set, computing death

rates at March 13. County-level results are shown in table 2; we have estimated the

cIFR and mIFR using both county-specific α estimates, and the national estimate of

4.27%. We estimate that the median cohort-matching infection fatality rate (mIFR) is

0.27% across U.S. counties, and cIFR of 0.28%.

Figure 2 shows the results for each U.S. county. Wayne MI, where Detroit is located,

has low estimated number of infections potentially due to low travel inflow and therefore

a high estimated mIFR.

How do these estimates compare to estimates of the IFR in the literature? Russell

et al. (2020) estimates a comparable definition to cIFR as 1.2% with complete testing

data on the Diamond Princess cruise ship, using a population that is weighted towards

the elderly. Since elderly have a substantially higher case-fatality rate, this suggests

the real cIFR may be lower than 1.2%.

Using their estimates of the true infection rate from their representative antibody

testing study, Bendavid et al. (2020), compute a cumulative infection fatality rate with

projected death accounting for 3 week fatality lag, and obtain an 0.12-0.2% infection

fatality rate. Accounting for lags, our cumulative infection fatality rates for San Fran-

cisco county are 0.17-0.20%, which lies at the upper bound of their estimates.

While our estimates of the IFR are substantially lower than reported case fatality

rates, we note that there is still substantial variation in our estimated IFRs across

counties in the early stages of the epidemic. This means that results from a single

county, regardless of the quality of the methodology, may not be indicative of the IFR

elsewhere. Along with many other factors, the variation in demographic composition,

and the variation in the quality and capacity of the health care sector, can lead to

drastically different infection fatality rates across the country.
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6 Conclusion

In this paper, we lay out an analytically tractable model of early-period disease trans-

mission across a known epicenter and target cities. Using this model, we provide

analytical arguments to demonstrate identification of reporting rates in target cities

away from the epicenter. Our preferred estimation strategy utilizes variation of travel

patterns from epicenter to destination cities and available randomized testing results

from elsewhere in the world. The empirical implementation of our model generates

a range of estimates for the percentage of infections that have been reported. Using

international travel data to the U.S. and randomized testing data from Iceland, for a

February to early March window, we estimate an average reporting rate in the U.S. of

4.3%. This estimate leads to an estimated median infection fatality rate of .27− .31%

across U.S. counties. Our estimates suggest that a large number of infections in the

U.S. have not been reported in this early period.

We are not offering or endorsing any policy recommendations based on our esti-

mates. Nor do we suggest that any of our analysis should be taken as a substitute

for well designed randomized/universal testing programs, which will provide the most

reliable estimates of the true infection rate in the population. However, we believe

our method can be useful towards providing estimates of unreported infections when

results of randomized testing studies are not available for a given location of interest.

Another aim in this paper has been to obtain tractable analytic results showing how

to identify the reporting rate from available data. Our model is a substantially stripped

down version of epidemiological models considered by (Li et al., 2020; Wu et al., 2020;

Flaxman et al., 2020). These more complex models may allow additional sources of

variation in the data to pin down the key parameters of interest. Importantly, we do

want to emphasize that our identification and estimation results rely quite sensitively

on model assumptions and the (un)availability of high quality data on travel. We hope

future research can improve on these important limitations.

20



Figures and Tables

Table 1: Estimated average fraction of reported infections

αUS
1−αUS

αUS

8 Day Lag

China and Italy Travel Data
0.0416 22.5

Only Chinese Travel Data
0.0458 20.8

China, Italy, Spain, Germany, UK
0.0427 22.4

5 Day Lag

China and Italy Travel Data
.0161 61.2

Only Chinese Travel Data
0.0169 58.3

China, Italy, Spain, Germany, UK
0.0164 60.1

We report estimated α by OLS without a constant for sev-
eral specifications of the model. We use T0 as Feb 23 and
T1 as March 10,13 for each Lag respectively. For the ver-
sions including European data, European travel to both
Iceland and the United States is considered. King County,
WA is omitted from the calculation.
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Figure 1: Estimated reported infections by county
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(b) 8 Day Lag

This plot shows the ratio of Confirmed Cases to Estimated Cases in each County on T1 = March 10 for 5
day lag, and 13 for 8 day lag. T0 is February 23rd. We use the full European Entry. Estimated Cases are
given by the Reported on T1 + Lag and divided by α.
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Table 2: Estimated County-level α and Infection Fatality Rates

National α = 4.27% County α

County α U/R U-A mIFR cIFR U-A mIFR cIFR

Broward, Fl 3.29% 29.36 349 0.16% 0.26% 453 0.13% 0.20%
Clark, NV 9.84% 9.16 184 0.33% 0.34% 80 0.76% 0.78%
Cook, IL 11.31% 7.84 321 0.21% 0.22% 121 0.55% 0.58%
Dallas, TX 3.56% 27.05 278 0.35% 0.40% 333 0.29% 0.34%
Essex, NJ 0.65% 153.60 834 0.38% 0.28% 5514 0.06% 0.04%
Fulton, GA 2.59% 37.59 290 0.28% 0.52% 478 0.17% 0.31%
Harris, TX 3.28% 29.50 177 0.15% 0.13% 230 0.11% 0.10%
Hillsborough, FL 6.70% 13.93 367 0.11% 0.18% 234 0.17% 0.29%
Honolulu, HI 0.29% 342.85 328 0.02% 0.00% 4814 < .01% < .01%
Los Angeles, CA 3.20% 30.26 171 0.37% 0.38% 228 0.28% 0.28%
Maricopa, AZ 11.65% 7.59 382 0.33% 0.44% 140 0.89% 1.19%
Miami-Dade, FL 0.13% 776.68 1977 0.04% 0.05% 65714 < .01% < .01%
Multnomah, OR 7.08% 13.12 421 0.46% 0.47% 254 0.77% 0.79%
New York City, NY 9.80% 9.21 1144 0.27% 0.38% 499 0.62% 0.87%
Philadelphia, PA 5.10% 18.61 663 0.17% 0.25% 556 0.20% 0.30%
Ramsey, MN 6.58% 14.20 133 0.42% 0.50% 86 0.65% 0.77%
San Diego, CA 18.79% 4.32 371 0.14% 0.20% 84 0.60% 0.89%
San Francisco, CA 3.60% 26.76 85 0.14% 0.20% 101 0.12% 0.17%
Suffolk, MA 10.46% 8.56 97 0.11% 0.12% 40 0.28% 0.29%
Wayne, MI 1.48% 66.63 1193 1.81% 1.93% 3449 0.63% 0.67%

Median 3.60% 26.76 328 0.27% 0.28% 254 0.28% 0.31%

We estimate each counties’ death rate on March 13 using several measures of both the infection
fatality rate and estimated infected. α is the estimated fraction of reported infections for each county
accounting for an 8-day lag. U

R = 1−α
α gives the ratio of unreported to reported infections for that

county, again accounting for the fact that observed reported infections have an 8 day lag. U-A gives
the under-ascertainment rate on Mar 13 given by the total infected on Mar 13 (accounting for lag)
divided by the reported infected on Mar 13. mIFR matches cohorts of infected using a log-normal
fatality lag distribution to determine the death rate, and cIFR compares cumulative deaths 15 days
later. All of these calculations are based estimating the number of total infected on March 13 by
reported infected on March 21st divided by α, to account for an 8-day reporting lag. National α is
taken from Table 1 Full EU travel. County α uses each county’s individually computed α rather than
the nationally computed α. < .01% indicates positive numbers that round down to 0.00%.
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Table 3: Mean Fraction of Unreported Infections with Different Cutoffs

T0 Date

Feb 1 Feb 5 Feb 10 Feb 15 Feb 20 Feb 25 Feb 29

T
1

D
at

e

Mar 9 0.1371 0.1375 0.1373 0.1354 0.1335 0.1305 0.1248
Mar 10 0.09352 0.09384 0.0937 0.09235 0.09105 0.0892 0.08607
Mar 11 0.08758 0.08788 0.08776 0.08657 0.08548 0.08401 0.08172
Mar 12 0.03832 0.0385 0.03844 0.03775 0.03716 0.03641 0.03533
Mar 13 0.04442 0.04463 0.04457 0.04379 0.04313 0.04236 0.04128
Mar 14 0.05581 0.05609 0.05601 0.05506 0.05428 0.0534 0.05223
Mar 15 0.0494 0.04966 0.0496 0.04875 0.04809 0.04737 0.04643
Mar 16 0.07956 0.07997 0.07988 0.07857 0.07756 0.07651 0.07518
Mar 17 0.1171 0.1178 0.1176 0.1157 0.1143 0.1129 0.1111
Mar 18 0.2063 0.2074 0.2072 0.204 0.2017 0.1994 0.1966
Mar 19 0.4476 0.4493 0.449 0.4442 0.4407 0.4374 0.4333

(a) 8 Day Reporting Lag

T0 Date

Feb 1 Feb 5 Feb 10 Feb 15 Feb 20 Feb 25 Feb 29

T
1

D
at

e

Mar 6 0.09642 0.09648 0.09666 0.09605 0.09534 0.09404 0.09054
Mar 7 0.05223 0.05226 0.05239 0.05201 0.0516 0.05093 0.0494
Mar 8 0.03046 0.03049 0.03056 0.03034 0.03011 0.02975 0.02904
Mar 9 0.01592 0.01593 0.01597 0.01586 0.01575 0.0156 0.01531
Mar 10 0.01662 0.01664 0.01669 0.01657 0.01645 0.0163 0.01604
Mar 11 0.02257 0.02259 0.02266 0.02251 0.02237 0.02219 0.0219
Mar 12 0.02013 0.02016 0.02024 0.02006 0.0199 0.01971 0.01941
Mar 13 0.03053 0.03057 0.03069 0.03043 0.03019 0.02993 0.02954
Mar 14 0.04183 0.04189 0.04206 0.04171 0.04141 0.04108 0.0406
Mar 15 0.03621 0.03627 0.03642 0.03612 0.03586 0.0356 0.03522
Mar 16 0.04735 0.04742 0.04762 0.04723 0.04692 0.04661 0.04617
Mar 17 0.06675 0.06685 0.06713 0.0666 0.06618 0.06578 0.06521
Mar 18 0.1075 0.1077 0.1081 0.1073 0.1067 0.1061 0.1053
Mar 19 0.2461 0.2463 0.247 0.2458 0.2448 0.244 0.2428

(b) 5 Day Reporting Lag

This table displays α value for different dates for both T0 and T1. We vary T0 across the month
of February, and T1 across early March. Very early March and February dates for T1 are not
available since Iceland confirmed infections only begin February 28. Travel data is assumed uni-
form across days throughout and is not weighted as T0 or T1 change. We include Italy, Spain,
Germany, and the United Kingdom as epicenters as well as China.
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Figure 2: Reported Deaths per Estimated infections by county
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This plot shows the ratio of cohort-matched Confirmed Deaths to Estimated Cases in each County on Mar
13th, taking into account an 8 day lag in reporting. We use the full European Entry. We estimate fatality-
lag time as a log-normal distribution with mean 14.5 and standard deviation 6.7. Estimated infected are
computed for each daily cohort using the National-α of 4.27%.
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Appendix

A.1 Tables

Table A1: Summary Statistics of Fraction of Reported Infections by County

Version Min. 1st Qu. Median Mean 3rd Qu. Max.
China Travel Only 0.001404 0.027434 0.037345 0.060896 0.100897 0.203500

China and Italian Travel 0.001254 0.025142 0.034784 0.055746 0.094906 0.183048
China and EU Travel 0.001286 0.025915 0.036020 0.057454 0.097979 0.187902

Summary statistics reported on the distribution of α for each county in the data. α is estimated
for T0 Feb 23, T1 Mar 13, and a Lag of eight days. EU travel includes traveler data from Italy,
Spain, UK, and Germany.
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Table A2: Reporting Rate (α) Estimates Including King County

αUS
1−αUS

αUS

5 Day Lag

China and Italy Travel Data
0.0200 48.9

Only Chinese Travel Data
0.0211 46.5

China, Italy, Spain, Germany, UK
0.0204 48.1

8 Day Lag

China and Italy Travel Data
0.0486 19.6

Only Chinese Travel Data
0.0539 17.6

China, Italy, Spain, Germany, UK
0.0500 19.0

We report estimated α by OLS without a constant for sev-
eral specifications of the model. We use T0 as Feb 23rd
and T1 as Mar 10,13 for each lag respectively. For the ver-
sions including European data, European travel to both
Iceland and the United States is considered. King County
is included in this data.
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Table A3: Robustness to Lag

Lag α

0 0.0055
1 0.0086
2 0.00927
3 0.00984
4 0.0121
5 0.0164
6 0.028
7 0.0284
8 0.0427
9 0.0675
10 0.0699
11 0.113
12 0.194

Table A3 shows estimates of α as the reporting lag period is varied. We use T0 as

Feb 23, and T1 as March 5 + Lag days. King County is omitted. We include Italy,

Spain, Germany, and the United Kingdom as epicenters as well as China.
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A.2 Lags

We derive our model incorporating reporting lags in the appendix and show how we

get the estimating equations in Section 3.3.

Recall that we denote true infected, true reported Infected, and true unreported

infected in time t and target city i as Ii,t, Ri,t, Ui,t respectively. Those for epicenter

c as Ic,t, Rc,t, Uc,t. Let k be the lagged report period. At time t city i denote the

lagged reported infected LRi,t = Ri,t−k. For epicenter c, the lagged reported infected

is LRc,t = Rc,t−k.

Define reporting rate at city i as α =
Ri,t−k

Ii,t−k
=

LRi,t

Ii,t−k
and at epicenter c as αc =

Rc,t−k

Ic,t−k
=

LRc,t

Ic,t−k
. This means that we are considering the reporting rate of lagged

reported cases on the lagged total infection.

We know that in the epicenter c, we have the following:

Ic,t = Ic,0 exp(β(t− T0)) (21)

Rc,t = αcIc,t (22)

Uc,t = (1− αc)Ic,t (23)

= (1− αc)Ic,0 exp(β(t− T0)) (24)

When only travel data is available, our assumption 3.1 is

Iinci,t

Mi,t
=

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], region i and epicenter c (25)

We can then write it as

Iinci,t =
Mi,t

Nc − R̂c,t
(1− αc)Ic,0 exp(β(t− T0)) (26)

In city i, at time T1 we observe L̂Ri,T1 . We have
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Ii,T1−k =

∫ T1−k

T0

Iinci,t exp(β(T1 − k − t))dt

L̂Ri,T1 = αIi,T1−k + εi,T1

= α

∫ T1−k

T0

Iinci,t exp(β(T1 − k − t))dt+ εi,T1

= α

∫ T1−k

T0

Mi,t

Nc − R̂c,t
(1− αc)Ic,0 exp(β(t− T0)) exp(β(T1 − k − t))dt+ εi,T1

= α(1− αc)Ic,0 exp(β(T1 − T0 − k))

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α(1− αc)
Rc,0
αc

exp(β(T1 − T0 − k))

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

When both travel data and randomized testing data are available, we maintain

assumption 3.2:

Iinci,t

Mi,t
= γ

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], region i and epicenter c (27)

We can write it as

Iinci,t = γ
Mi,t

Nc − R̂c,t
(1− αc)Ic,0 exp(β(t− T0)) (28)

In U.S. city i, at time T1 we observe L̂Ri,T1 . Following the same derivation as above,

we have

L̂Ri,T1 = αγ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc −Rc,t
dt+ εi,T1 (29)

Similar derivation shows that for Iceland region j time T1, we have

Îj,T1−k = γ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mj,t

Nc − R̂c,t
dt+ εj,T1 (30)

We also consider an alternative definition of reporting rate, which is lagged reported
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cases as a fraction of current total infections, i.e. αc2 =
LRc,t

Ic,t
=

Rc,t−k

Ic,t
and α2 =

LRi,t

Ii,t
=

Ri,t−k

Ii,t
.

In epicenter, we have

Ic,t = Ic,0 exp(β(t− T0)) (31)

Rc,t = αc2Ic,t+k (32)

Rc,t−k = αc2Ic,t (33)

Rc,−k = αc2Ic,0 (34)

Uc,t = Ic,t −Rc,t (35)

= Ic,t − αc2Ic,t+k (36)

= Ic,0 exp(β(t− T0))− αc2Ic,0 exp(β(t+ k − T0)) (37)

When only travel data is available, our assumption 3.1 is

Iinci,t

Mi,t
=

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], region i and epicenter c (38)

Then we have

Iinci,t =
Mi,t

Nc − R̂c,t
(Ic,0 exp(β(t− T0))− αc2Ic,0 exp(β(t+ k − T0))) (39)

In target city, at time T1 we observe L̂Ri,T1 = α2Ii,T1 + εi,T1 . We know
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Ii,T1 =

∫ T1

T0

Iinci,t exp(β(T1 − t))dt

LRi,T1 = α2Ii,T1 + εi,T1

= α2

∫ T1

T0

Iinci,t exp(β(T1 − t))dt+ εi,T1

= α2

∫ T1

T0

Mi,t

Nc − R̂c,t
(Ic,0 exp(β(t− T0))− αc2Ic,0 exp(β(t+ k − T0))) exp(β(T1 − t))dt+ εi,T1

= α2Ic,0 exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt− α2α

c
2Ic,0 exp(β(T1 − T0 + k))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α2
Rc,−k
αc2

exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt

−α2α
c
2

Rc,−k
αc2

exp(β(T1 − T0 + k))

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

=

(
α2

αc2
exp(β(T1 − T0))− α2 exp(β(T1 − T0 + k))

)
Rc,−k

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α2

(
1

αc2
exp(β(T1 − T0))− exp(β(T1 − T0 + k))

)
Rc,−k

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α2

(
1

αc2
exp(β(T1 − T0))− exp(β(T1 − T0 + k))

)
LRc,0

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

If α2 = αc2, then both of them are identified if β and k are identified.

When both travel data and randomized testing data are available, we maintain

assumption 3.2:

Iinci,t

Mi,t
= γ

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], region i and epicenter c (40)

Then we have

Iinci,t = γ
Mi,t

Nc − R̂c,t
(Ic,0 exp(β(t− T0))− αc2Ic,0 exp(β(t+ k − T0))) (41)

For U.S. city i, we have

L̂Ri,T1 = α2γ

(
1

αc2
exp(β(T1 − T0))− exp(β(T1 − T0 + k))

)
Rc,−k

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (42)

= α2γ

(
1

αc2
exp(β(T1 − T0))− exp(β(T1 − T0 + k))

)
LRc,0

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (43)
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In Iceland region j time T1, we can compute Ij,T1 . We have

Îj,T1 =

∫ T1

T0

Iincj,t exp(β(T1 − t))dt+ εj,T1

=

∫ T1

T0

γ
Mj,t

Nc − R̂c,t
(Ic,0 exp(β(t− T0))− αc2Ic,0 exp(β(t+ k − T0))) exp(β(T1 − t))dt+ εj,T1

= γ (exp(β(T1 − T0))− αc2 exp(β(T1 − T0 + k))) Ic,0

∫ T1

T0

Mj,t

Nc − R̂c,t
dt+ εj,T1

= γ (exp(β(T1 − T0))− αc2 exp(β(T1 − T0 + k)))
Rc,−k
αc2

∫ T1

T0

Mj,t

Nc − R̂c,t
dt+ εj,T1

= γ

(
1

αc2
exp(β(T1 − T0))− exp(β(T1 − T0 + k))

)
Rc,−k

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εj,T1

= γ

(
1

αc2
exp(β(T1 − T0))− exp(β(T1 − T0 + k))

)
LRc,0

∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εj,T1

Estimate the last equation gives consistent estimate of γ
(

1
αc
2

exp(β(T1 − T0))− exp(β(T1 − T0 + k))
)
LRc,0

and estimating equation (43) gives α2γ
(

1
αc
2

exp(β(T1 − T0))− exp(β(T1 − T0 + k))
)
LRc,0.

Taking the ratio, we are left with α2.

A.3 Heterogeneous transmission rates

In this section, we show how our model can be modified to allow for different trans-

mission rate β among target cities and epicenter. Transmission rate of virus could

be different across locations due to population density or other reasons (Sajadi et al.,

2020). Our identification strategy in Section 3.2 relies on the assumption that trans-

mission rates across Iceland and U.S. are the same. We will relax this assumption

in this section. We will be able to capture differential transmission rate through the

variation in virus evolution trends across locations, controlling for travel.

Let βc be the transmission rate in epicenter, βi rate for U.S. city i and βj rate for

Iceland city j. Define β̃i = βi − βc and β̃j = βj − βc as relative transmission rates for

U.S. and Iceland. Maintaining assumption 3.2, for any U.S. city i end period T1 we

have

Ri,T1 = α

∫ T1

T0

Iinci,t exp(βi(T1 − t))dt (44)

Iinci,t = γ
(1− αc)Ic,0 exp(βc(t− T0))

Nc − R̂c,t
Mi,t (45)
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Therefore, for U.S. city i we have:

Ri,T1 = α

∫ T1

T0

(1− αc)Ic,0 exp(βc(t− T0))

Nc − R̂c,t
Mi,t exp(βi(T1 − t))dt (46)

= α
1− αc
αc

Rc,0γ

∫ T1

T0

exp(βc(t− T0)) exp(βi(T1 − t))
Mi,t

Nc − R̂c,t
dt (47)

= α
1− αc
αc

Rc,0γ exp(βiT1 − βcT0)

∫ T1

T0

exp(t(βc − βi))
Mi,t

Nc − R̂c,t
dt (48)

Similarly, for Iceland city j we have:

Ij,T1 =
1− αc
αc

Rc,0γ exp(βjT1 − βcT0)

∫ T1

T0

exp(t(βc − βj))
Mj,t

Nc − R̂c,t
dt (49)

Take logs and differencing, we get

logRi,T1 − log Ij,T1 = logα+ (βi − βj)T1 + log

∫ T1

T0

exp(t(βc − βi))
Mi,t

Nc − R̂c,t
dt

− log

∫ T1

T0

exp(t(βc − βj))
Mj,t

Nc − R̂c,t
dt

= logα+ (β̃i − β̃j)T1 + log

∫ T1

T0

exp(−tβ̃i)
Mi,t

Nc − R̂c,t
dt

− log

∫ T1

T0

exp(−tβ̃j)
Mj,t

Nc − R̂c,t
dt

Assume that we observe logRi,t and log Ij,t with iid measurement error ηi,t and ηj,t.

Let ui,j,t = ηi,t − ηj,t, so ui,j,t is also iid.

log R̂i,T1 − log Îj,T1 = logRi,T1 − log Ij,T1 + ηi,T1 − ηj,T1
= logRi,T1 − log Ij,T1 + ui,j,T1

= logα+ (β̃i − β̃j)T1

+ log

∫ T1

T0

exp(−β̃it)
Mi,t

Nc − R̂c,t
dt− log

∫ T1

T0

exp(−β̃jt)
Mj,t

Nc − R̂c,t
dt+ ui,j,T1
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With a k period lag, we have for U.S. city i:

LRi,T1 = α

∫ T1−k

T0

(1− αc)Ic,0 exp(βc(t− T0))

Nc − R̂c,t
Mi,t exp(βi(T1 − k − t))dt

= α
1− αc
αc

Rc,0γ

∫ T1−k

T0

exp(βc(t− T0)) exp(βi(T1 − k − t))
Mi,t

Nc − R̂c,t
dt

= α
1− αc
αc

Rc,0γ exp(βi(T1 − k)− βcT0)

∫ T1−k

T0

exp(t(βc − βi))
Mi,t

Nc − R̂c,t
dt

Similarly, for Iceland city j we have:

Ij,T1−k =
1− αc
αc

Rc,0γ exp(βj(T1 − k)− βcT0)

∫ T1−k

T0

exp(t(βc − βj))
Mj,t

Nc − R̂c,t
dt

Take logs and differencing, we get

logLRi,T1 − log Ij,T1−k = logα+ (βi − βj)(T1 − k) + log

∫ T1−k

T0

exp(t(βc − βi))
Mi,t

Nc − R̂c,t
dt

− log

∫ T1−k

T0

exp(t(βc − βj))
Mj,t

Nc − R̂c,t
dt

= logα+ (β̃i − β̃j)(T1 − k) + log

∫ T1−k

T0

exp(−tβ̃i)
Mi,t

Nc − R̂c,t
dt

− log

∫ T1−k

T0

exp(−tβ̃j)
Mj,t

Nc − R̂c,t
dt

Taking into account measurement error, we have

log L̂Ri,T1 − log Îj,T1−k = logα+ (β̃i − β̃j)(T1 − k)

+ log

∫ T1−k

T0

exp(−β̃it)
Mi,t

Nc − R̂c,t
dt− log

∫ T1−k

T0

exp(−β̃jt)
Mj,t

Nc − R̂c,t
dt+ ui,j,T1−k

When we consider multiple epicenters ` ∈ L, the estimating equation becomes:

log L̂Ri,T1 − log Îj,T1−k = logα+ (β̃i − β̃j)(T1 − k)

+ log

∫ T1−k

T0

(∑
`∈L

LR`c,kM
`
i,t

N `
c − R̂`c,t

)
exp(−β̃it)dt

− log

∫ T1−k

T0

(∑
`∈L

LR`c,kM
`
j,t

N `
c − R̂`c,t

)
exp(−β̃jt)dt+ ui,j,T1−k
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We parameterize transmission rate as linear in urban population density, and an

indicator for social distancing. We can then estimate the equations above with nonlin-

ear least squares pooling different end period T1. We consider European Epicenters as

well as China. Because our data only contains constant travel, terms that appear in

both βi as well as βj are very difficult to estimate. In particular, the constant term is

very difficult to estimate, and not identified for very large magnitudes. This problem

occurs because with constant travel, infected arrivals vary over time only with Rc,t,

which causes very minor changes in arrivals. This makes time-variation of the same

cities provide little identification in β.

To circumvent these issues, we attempted to estimate βj separately using differ-

ences in infected in Iceland over time, however since travel is still constant for Iceland,

the same identification problems were present. We estimate a difference in β of .06,

indicating that in 10 days infections in the United States will double one more time

than in Iceland. However, we note that our α estimate is biased downwards because of

travel data, and this leads to an upward bias on beta. We consider this to be an upper

bound on the difference in β between the two countries. With further investigation and

better travel data, we believe that this framework can be used to identify the spread

of infection with different infection rates.

This strategy is better than naively studying growth rates of infected between

countries because it accounts for the origin of the infection: travelers from infected

epicenters. While the infection is spreading within the country, it is not isolated, and

there are continual arrivals from the epicenter that are also spreading the infection,

failing to take into account these arrivals will lead to estimates of the spread of infection

being too high in the early stages of the progression of the virus15.

15We still maintain the assumption of constant susceptible population throughout March. Growth rate of
susceptible population depends on the ratio of infected over total population. Since the number of infected as
a fraction of total population is still small in March, we deem constant susceptible population as a reasonable
assumption.
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