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Abstract

We develop methods for robust Bayesian inference in structural vector autoregressions

(SVARs) where the parameters of interest are set-identified using external instruments,

or ‘proxy SVARs’. Set-identification in these models typically occurs when there are

multiple instruments for multiple structural shocks. Existing Bayesian approaches to

inference in proxy SVARs require researchers to specify a single prior over the model’s

parameters, but, under set-identification, a component of the prior is never revised.

We extend the robust Bayesian approach to inference in set-identified models proposed

by Giacomini and Kitagawa (2018) – which allows researchers to relax potentially con-

troversial point-identifying restrictions without having to specify an unrevisable prior

– to proxy SVARs. We provide new results on the frequentist validity of the approach

in proxy SVARs. We also explore the effect of instrument strength on inference about

the identified set. We illustrate our approach by revisiting Mertens and Ravn (2013)

and relaxing the assumption that they impose to obtain point identification.
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1 Introduction

Proxy structural vector autoregressions (SVARs) are an increasingly popular method for

estimating the dynamic causal effects of macroeconomic shocks.1 The key identifying as-

sumption in the proxy SVAR is that there exists one or more variables external to the SVAR

– ‘proxies’ or ‘external instruments’ – that are correlated with particular structural shocks

(i.e., ‘relevant’) and uncorrelated with all other structural shocks (i.e., ‘exogenous’). The

impulse responses to a single structural shock can be point-identified when a single proxy

is correlated with that structural shock and uncorrelated with all other structural shocks

(Stock 2008). Mertens and Ravn (2013) (henceforth MR13) develop a proxy SVAR with

multiple proxies for multiple structural shocks and show that point identification of the im-

pulse responses to these shocks requires zero restrictions on the structural parameters in

addition to the zero restrictions implied by exogeneity of the proxies. Other papers that

use multiple proxies to identify multiple structural shocks given additional point-identifying

restrictions include Lunsford (2015) and Mertens and Montiel-Olea (2018). The additional

restrictions required to achieve point identification may not always have a theoretically sound

motivation. Consequently, there may be interest in assessing the robustness of the analysis

to relaxing these additional restrictions, which would result in set identification.

The majority of the literature that makes use of proxy SVARs conducts inference in

the frequentist setting. A notable exception is Arias, Rubio-Ramı́rez and Waggoner (2019)

(henceforth ARW19), who develop algorithms for Bayesian inference that are applicable

under set identification. Bayesian inference may be appealing because it allows the researcher

to use prior information about the model’s parameters and, under set identification, it may

be computationally more convenient than a frequentist approach. This is perhaps why, since

Uhlig (2005), the dominant inferential approach in set-identified SVARs has been Bayesian.2

However, under set identification, posterior inference is sensitive to the choice of prior over the

set-identified parameters, even asympotically (Poirier 1998), and Bayesian credible intervals

do not asymptotically coincide with frequentist confidence intervals (Moon and Schorfheide

2012). Moreover, in the context of SVARs, Baumeister and Hamilton (2015) show that

even priors that are ‘uniform’ over a set-identified parameter may be informative about the

1See, for example, Stock and Watson (2012, 2016, 2018), Mertens and Ravn (2013, 2014, 2019), Gertler
and Karadi (2015), Lunsford (2015), Ramey (2016), Caldara and Kamps (2017), Mertens and Montiel-
Olea (2018), Montiel-Olea, Stock and Watson (2018), Angelini and Fanelli (2019), Arias, Rubio-Ramı́rez
and Waggoner (2019), Caldara and Herbst (2019), Jentsch and Lunsford (2019), Bahaj (forthcoming) and
Drautzburg (forthcoming).

2Gafarov, Meier and Montiel-Olea (2018) and Granziera, Moon and Schorfheide (2018) develop frequentist
inferential tools in set-identified SVARs. We are unaware of papers that conduct frequentist inference in
set-identified proxy SVARs.
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objects of interest, such as impulse responses.

To address these issues, Giacomini and Kitagawa (2018) (GK18) propose an approach

to Bayesian inference in set-identified models that is robust to the choice of prior over the

set-identified parameters. The approach considers the class of all priors over the model’s

set-identified parameters that are consistent with the identifying restrictions. This generates

a class of posteriors, which can be summarised by reporting the set of posterior means

(an estimator of the identified set) and a robust credible region. GK18 provide conditions

under which these quantities have valid frequentist interpretations and they apply their

approach to SVARs in which the impulse responses are set-identified by imposing sign and

zero restrictions.

In this paper we extend the approach of GK18 to set-identified proxy SVARs. Following

MR13 and ARW19, we consider the case where there are k < n proxies that are correlated

with k structural shocks (a ‘relevance’ condition) and are uncorrelated with the remaining

n−k shocks (an ‘exogeneity’ condition), where n is the dimension of the SVAR. If n > 3 and

1 < k < n−1, the impulse responses to all structural shocks are set-identified in the absence

of further zero restrictions on the structural parameters. For other values of n and k, it may

be the case that impulse responses to particular structural shocks are point-identified, while

other impulse responses are set-identified. We focus on cases where the impulse responses of

interest are set-identified.

This paper makes several new contributions relative to GK18. First, we provide condi-

tions under which our procedure is guaranteed to have a valid frequentist interpretation in

proxy SVARs. These results do not follow directly from those in GK18, and are tailored to

the different structure of the problem in proxy SVARs. Second, we show that, in the presence

of weak proxies, both the frequentist and the Bayesian approach no longer provide asymptot-

ically valid inference about the identified set: the estimators of the bounds of the identified

set are not consistent, they converge to non-degenerate and data-dependent distributions,

and these distributions are different for the frequentist and the Bayesian approach (implying

a failure of the Bernstein-von Mises property that we prove holds under strong proxies).

Third, we show how to conduct posterior inference not only about the impulse responses,

but also about the forecast error variance decomposition (FEVD), which is the relative con-

tribution of a particular structural shock to the unexpected variation in a particular variable

over some horizon.3 Finally, we provide an algorithm for computing impulse responses to

a unit shock (as opposed to a standard-deviation shock), which are often considered in the

3Plagborg-Moller and Wolf (2019) develop frequentist procedures for conducting inference about the
FEVD in a general semiparametric moving average model when there are valid external instruments available.
The setting that they consider allows for cases where the FEVD is set-identified.
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proxy-SVAR literature.

As in ARW19, our algorithms allow for zero and sign restrictions on the covariances be-

tween the proxies and the structural shocks in addition to the zero restrictions implied by the

exogeneity assumption. These types of restrictions are likely to be justifiable in applications,

given that the proxies are typically constructed with the purpose of measuring a particular

structural shock. An example of a zero restriction would be to assume that, among the k

structural shocks that are assumed to be correlated with the k proxies, a particular struc-

tural shock is uncorrelated with a particular proxy. Examples of sign restrictions are when

a particular proxy is positively correlated with a particular structural shock, or when the

covariance between a particular proxy and a particular structural shock is larger than the

covariance between that proxy and another structural shock.4 Additionally, our algorithms

allow for restrictions of the kind considered in GK18, including ‘short-run’ zero restrictions

(as in Sims (1980) and Christiano, Eichenbaum and Evans (1999)), ‘long-run’ zero restric-

tions (as in Blanchard and Quah (1989)), sign restrictions on impulse responses (as in Uhlig

(2005)), and zero or sign restrictions on the matrix determining the contemporaneous rela-

tionships among the endogenous variables (as in Arias, Caldara and Rubio-Ramı́rez (2019)).

By extending and adapting the algorithms in GK18 to allow for identification using proxy

variables alongside standard zero and sign restrictions, we provide a general and flexible

tool for empirical researchers to relax potentially controversial point-identifying restrictions

without having to adopt an unrevisable prior.

Some existing approaches to Bayesian inference in proxy SVARs place priors directly on

the model’s structural parameters. For example, ARW19 place a normal-generalised-normal

conjugate prior over the proxy SVAR’s structural parameters and propose algorithms for

drawing from the resulting normal-generalised-normal posterior. More generally, Baumeister

and Hamilton (2015, 2018, 2019) advocate placing priors on the structural parameters of an

SVAR, because these parameters can have economic interpretations that facilitate prior

elicitation. A problem with this approach in set-identified models is that the prior implicitly

incorporates a component that is unrevisable by the data. Our approach overcomes this

problem by decomposing the prior over the structural parameters into a revisable prior over

reduced-form parameters and an unrevisable prior over the orthonormal matrix that maps

VAR innovations into structural shocks (see, for example, Uhlig (2005)). We then allow

4The first type of sign restriction is considered by Ludvigson, Ma and Ng (2018) and Piffer and Podstawski
(2018) in the frequentist setting and by Braun and Brüggemann (2017) and ARW19 in the Bayesian setting,
while the second type is considered by Braun and Brüggemann (2017), Piffer and Podstawski (2018) and
ARW19. Braun and Brüggemann (2017) and Piffer and Podstawski (2018) assume that the proxy is correlated
with all structural shocks (i.e., there are no exogeneity restrictions); it would be straightforward to implement
this setup under our approach.
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for multiple priors for this matrix, which delivers inference that is robust to the choice

of unrevisable prior. We see our approach as being complementary to existing Bayesian

approaches. In particular, we suggest reporting output based on the multiple-prior robust

Bayesian approach together with output from the single-prior Bayesian posterior to document

the sensitivity of posterior inference to the choice of unrevisable prior.5

It is well-known that frequentist inference in the linear instrumental-variables model is

non-standard when the instruments are weakly correlated with the included endogenous

variables (e.g., Stock, Wright and Yogo 2002). Similar problems arise in the proxy SVAR

when the proxies are weakly correlated with the structural shocks. In the case where there

is one proxy for one structural shock, Lunsford (2015) shows that the estimator of the im-

pulse response is inconsistent when the proxy is weak, and he derives a test for the presence

of a weak proxy. Montiel-Olea, Stock and Watson (2018) show that standard asymptotic

(delta-method) inference about the objects of interest in the proxy SVAR is invalid when the

proxy is weak, and they derive a weak-instrument-robust confidence interval for the impulse

response when there is one proxy for one shock. As noted in Caldara and Herbst (2019),

from the standpoint of Bayesian inference, having a weak proxy does not invalidate pos-

terior inference in the sense that one still obtains (numerical approximations of) the exact

finite-sample posterior distributions of the objects of interest. However, practitioners may

be interested in the asymptotic frequentist properties of Bayesian inferential procedures. For

example, Bayesians may be better able to credibly communicate their results to frequentist

audiences when the Bayesian inferential procedure is asymptotically equivalent to a frequen-

tist procedure. Accordingly, we investigate the asymptotic properties of our robust Bayesian

procedure in the presence of weak instruments. Using a simple analytical example, we show

that our robust Bayesian procedure does not provide valid frequentist inference about the

identified set under weak-proxy asymptotics, which contrasts with the results in Kline and

Tamer (2016) and GK18. To the best of our knowledge, this is the first paper to provide

formal results on the interplay between set identification and weak identification.

We illustrate our procedure by considering the analysis in MR13, which is also discussed

in Jentsch and Lunsford (2019) and Mertens and Ravn (2019). MR13 use series of plausibly

exogenous, unanticipated changes in average personal and corporate income tax rates in the

United States as proxies for structural shocks to these tax rates to identify the effects of

fiscal shocks on macroeconomic variables. Since there are two proxies for two structural

shocks, the impulse responses to these shocks are set-identified in the absence of additional

zero restrictions. MR13 impose a zero restriction in addition to those implied by exogene-

5An alternative approach is to consider variation in the prior within some neighbourhood around a
benchmark prior, as in Giacomini, Kitagawa and Uhlig (2019).
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ity of the proxies, which yields point identification. The additional restriction is a causal

ordering, which restricts the direct contemporaneous response of one tax rate to the other.

This assumption could be violated if, for instance, there are constraints that impinge on the

ability of the government to change tax rates independently of one another. MR13 assess

the robustness of the results to imposing the additional restriction by considering two alter-

native causal orderings of the tax rates within the proxy SVAR. Our approach extends and

formalizes this robustness analysis by providing an estimator of the set of impulse responses

compatible with relaxing the additional zero restriction and replacing it with a set of – ar-

guably weaker – sign restrictions. We compare the results under our multiple-prior Bayesian

approach to those obtained under a single prior to assess the role of prior choice in driving

posterior inference.

The remainder of the paper is structured as follows. Section 2 describes our robust

Bayesian inferential framework for set-identified proxy SVARs. Section 3 provides results on

the frequentist properties of this approach and explores how weak proxies affect posterior

inference asymptotically. Section 4 details the numerical algorithms used to implement the

approach. Section 5 contains the empirical application and Section 6 concludes.

Generic notation: For the matrix X, vec(X) is the vectorisation of X and vech(X)

is the half-vectorisation of X (when X is symmetric). ei,n is the ith column of the n × n
identity matrix, In. 0n×m is a n×m matrix of zeros. ‖.‖ is the Euclidean norm. Sn−1 is the

unit sphere in Rn.

2 Framework

2.1 The SVAR

Let yt be an n× 1 vector of endogenous variables following the SVAR(p) process:

A0yt =

p∑
l=1

Alyt−l + εt, t = 1, ..., T, (1)

where A0 has positive diagonal elements (a sign normalization) and is invertible, and εt

are structural shocks with E(εtε
′
t) = In. The initial conditions (y1−p, ...,y0) are given. We

omit exogenous regressors (such as a constant) for simplicity of exposition, but these are

straightforward to include. Letting xt = (y′t−1, . . . ,y
′
t−p)

′ and A+ = (A1, . . . ,Ap), we can

rewrite the SVAR(p) as

A0yt = A+xt + εt, t = 1, ..., T. (2)
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(A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt + ut, t = 1, ..., T, (3)

where B = (B1, . . . ,Bp), Bl = A−10 Al for l = 1, . . . , p, and ut = A−10 εt with E(utu
′
t) = Σ =

A−10 (A−10 )′. (B,Σ) are the reduced-form parameters. We assume that B is such that the

VAR(p) can be inverted into an infinite-order vector moving average (VMA(∞)) model.6

To facilitate computing the identified set of the objects of interest, we reparameterize the

model into its ‘orthogonal reduced form’:

yt = Bxt + ΣtrQεt, t = 1, ..., T, (4)

where Σtr is the lower-triangular Cholesky factor of Σ (i.e., ΣtrΣ
′
tr = Σ) with diagonal

elements normalized to be non-negative, Q ∈ O(n) is an n × n orthonormal matrix and

O(n) is the set of all such matrices. The parameterizations are related through the mapping

B = A−10 A+, Σ = A−10 (A−10 )′ and Q = Σ−1tr A−10 , or A0 = Q′Σ−1tr and A+ = Q′Σ−1tr B. The

sign normalization that the diagonal elements of A0 are nonnegative therefore corresponds

to the restriction that diag(Q′Σ−1tr ) ≥ 0n×1.

The VMA(∞) representation of the model is

yt =
∞∑
h=0

Chut−h =
∞∑
h=0

ChΣtrQεt, t = 1, ..., T, (5)

where Ch is the hth term in (In −
∑p

l=1 BlL
l)−1 and L is the lag operator. The (i, j)th

element of the matrix ChΣtrQ, which we denote by ηi,j,h, is the impulse response of the ith

variable to the jth structural shock at the hth horizon:

ηi,j,h = e′i,nChΣtrQej,n = c′i,hqj, (6)

where c′i,h ≡ e′i,nChΣtr is the ith row of ChΣtr and qj ≡ Qej,n is the jth column of Q.

Another object that is also often of interest in analyses using (proxy) SVARs is the

FEVD. Under quadratic loss, the optimal h-step-ahead forecast of yt given information

available at time t is E (yt+h|Ft) =
∑∞

k=0 Ch−kut−k. The h-step-ahead forecast error is

then yt+h − E (yt+h|Ft) =
∑h−1

k=0 Ckut+h−k =
∑h−1

k=0 CkΣtrQεt+h−k. It follows that the

forecast error variance of yi,t+h is var(yi,t+h|Ft) =
∑h−1

k=0 c′i,kci,k. The contribution of the

jth structural shock to the forecast error variance of the ith variable at the hth horizon

6The VAR(p) is invertible into a VMA(∞) process when the eigenvalues of the companion matrix lie
inside the unit circle. See Hamilton (1994) or Kilian and Lütkepohl (2017).
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is var(yi,t+h|Ft, ε−j,t+1, . . . , ε−j,t+h) =
∑h−1

k=0 c′i,kqjq
′
jci,k, where ε−j,t = {εi,t : i 6= j ∧ i =

1, . . . , n}. The contribution of the jth structural shock to the forecast error variance of the

ith variable at the hth horizon as a fraction of the total forecast error variance is then

FEVDi,j,h =

∑h−1
k=0 c′i,kqjq

′
jci,k∑h−1

k=0 c′i,kci,k
. (7)

2.2 Identification Using Proxies

In the absence of identifying restrictions, the structural parameters – and any function of

these parameters, such as the impulse responses or FEVD – are set-identified. Since any

A0 = Q′Σ−1tr satisfies Σ = A−10 (A−10 )′, the identified set for A0 is
{
A0 = Q′Σ−1tr : Q ∈ O(n)

}
.

Imposing identifying restrictions restricts Q to lie in a subspace Q of O(n), which shrinks

the identified set.

The key identifying assumption in the proxy SVAR is that there are variables external

to the SVAR that are correlated with particular structural shocks and uncorrelated with all

other structural shocks. Let ε(i:j),t = (εi,t, εi+1,t, ..., εj−1,t, εj,t)
′ for i < j. Assume that mt is

a k × 1 vector of proxies (with k < n) that are correlated with the last k structural shocks,

so E(mtε
′
(n−k+1:n),t) = Ψ, where Ψ is a full-rank k × k matrix. Further, assume that mt

is uncorrelated with the first n − k structural shocks, so E(mtε
′
(1:n−k),t) = 0k×(n−k). The

first condition is commonly referred to as the ‘relevance’ condition and the second as the

‘exogeneity’ condition. We assume that mt is generated by the process

Γ0mt = Λεt +

pm∑
l=1

Γlmt−l + νt, t = 1, ..., T, (8)

where: Γl, l = 0, ..., pm, is a k×k matrix with Γ0 invertible; Λ is a k×n matrix; and the initial

conditions (m1−pm , . . . ,m0) are given. We assume that (ε′t,ν
′
t)
′|Ft−1 ∼ N(0(n+k)×1, In+k),

where Ft−1 is the information set at time t − 1, which includes the lags of yt and mt. The

assumption about the joint distribution of (εt,νt) implies that νt|Ft−1, εt ∼ N(0k×1, Ik).

This process is an SVAR(pm) in mt where the structural shocks εt are included as exogenous

variables. The process implies that the proxies contain information about the structural

shocks after allowing for possible serial correlation in the proxies.7 The information content

of each proxy for each structural shock is jointly determined by the matrices Γ0 and Λ. This

setup allows for the number of lags of mt in the SVAR for mt to differ to the number of lags

7We could also allow for up to p lags of yt to appear in (8) without altering the reduced form for mt or
the restrictions on Q implied by proxy exogeneity (derived below).
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of yt in the SVAR for yt.
8

Given the distributional assumption on εt and νt, and the exogeneity and relevance

assumptions, it follows from (8) that

E(mtε
′
t) = Γ−10 Λ =

[
0k×(n−k),Ψ

]
. (9)

Left-multiplying (8) by Γ−10 and substituting out yt using (2) yields

mt = Γ−10 ΛA0yt − Γ−10 ΛA+xt +

pm∑
l=1

Γ−10 Γlmt−l + Γ−10 νt. (10)

The reduced-form process for the proxies, which we refer to as the ‘first-stage regression’, is

mt = Dyt + Gxt +

pm∑
l=1

Hlmt−l + vt, (11)

where: D = Γ−10 ΛA0; G = −Γ−10 ΛA+; Hl = Γ−10 Γl for l = 1, ..., pm; and vt = Γ−10 νt with

E(vtv
′
t) = Υ = Γ−10 (Γ−10 )′. This is a VAR(pm) in mt with exogenous variables yt and xt.

The first-stage regression should also include any exogenous variables (e.g., a constant) that

are included in the SVAR for yt. Since Γ−10 Λ = DA−10 = DΣtrQ, we can write (9) as

E(mtε
′
t) = DΣtrQ =

[
0k×(n−k),Ψ

]
. (12)

The (i, j)th element of this matrix is e′i,kDΣtrQej,n = d′iqj, where d′i ≡ e′i,kDΣtr is the ith

row of DΣtr. The exogeneity assumption therefore generates linear restrictions on the first

n− k columns of Q given the reduced-form parameters D and Σtr. The proxies satisfy the

relevance assumption rank(Ψ) = k if and only if rank(D) = k.

Let fi be the number of equality restrictions on the ith column of Q. Rubio-Ramı́rez,

Waggoner and Zha (2010) show that a necessary and sufficient condition for point identifica-

tion of the structural parameters in an SVAR is that fi = n− i for i = 1, ..., n. We focus on

cases where fi ≤ n− i for all i = 1, ..., n, with strict inequality for at least one i, and where

interest is in a particular set-identified object. Equations (6) and (7) imply that the impulse

response and FEVD corresponding to the jth structural shock are point-identified if and only

if the jth column of Q is point-identified. Assume for now that the only zero restrictions

are those corresponding to the exogeneity assumption and that n ≥ 3. Assume also that

8ARW19 specify a joint SVAR for (y′t,m
′
t)
′ where zero restrictions rule out feedback from mt to yt.

This process also implies that the proxies contain information about the structural shocks and, under the
exogeneity assumption, yields the same set of identifying zero restrictions that we derive below.
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rank(D) = k, so the relevance condition holds. If k = 1, then fi = 1 for i = 1, ..., n− 1 and

fn = 0. In this case, the first n−1 columns of Q are set-identified and qn is point-identified.9

If k = n−1, then f1 = n−1 and fi = 0 for i = 2, ..., n. In this case, q1 is point-identified and

qi, i = 2, ..., n, is set-identified.10 For 1 < k < n− 1, all columns of Q are set-identified.11

As in ARW19, we allow for additional equality and sign restrictions on elements of Ψ. An

example of an equality restriction is that the first proxy variable (m1t) is not only uncorrelated

with the first n− k structural shocks, but also uncorrelated with one of the last k structural

shocks (e.g., E(m1tε(n−k+1),t) = 0). This type of restriction is a linear equality restriction

on a single column of Q. An example of a sign restriction is that the covariance between

the first proxy and one of the last k structural shocks is nonnegative (e.g., E(m1tεnt) ≥ 0),

which is a linear inequality restriction on a single column of Q. Another example is that the

covariance between a particular proxy and a particular structural shock is greater than or

equal to the covariance between that proxy and another structural shock, which is a linear

inequality restriction on two columns of Q; for example, E(m1tεnt) ≥ E(m1tεn−1,t) implies

that d′1(qn − qn−1) ≥ 0.

Our approach also allows for other restrictions commonly used in SVARs, such as zero

restrictions on A0 = Q′Σ−1tr , A−10 = QΣtr or the long-run cumulative impulse response

CIR∞ = (In −
∑p

l=1 Bl)
−1ΣtrQ, and sign restrictions on the impulse responses or A0.

2.3 Robust Bayesian Inference

We assume for now that the object of interest is the impulse response ηi,j,h, although the

discussion in this section also applies to the FEVD or any other scalar-valued function of

the structural parameters. Given the formulation of the exogeneity restrictions and any

additional zero or sign restrictions as restrictions on the columns of Q, robust Bayesian

inference about the identified set for ηi,j,h proceeds as in GK18. We summarise the salient

features of this approach here.

Collect the coefficients on xt and mt in (11) as J = [vec(G)′, vec(H1)
′, . . . , vec(Hpm)′]′.

9The exogeneity restrictions imply that d′1qi = 0 for i = 1, . . . , n−1. Since the columns of an orthonormal
matrix are orthogonal and have unit length, qn = ±d1/‖d1‖. The sign normalization pins down the sign of
qn.

10The exogeneity restrictions imply that DΣtrq1 = 0, where D is a (n−1)×n matrix. Under the relevance
assumption, rank(DΣtr) = n−1 and the nullspace of DΣtr is of dimension one by the rank-nullity theorem.
q1 is therefore a unit-length vector in the (one-dimensional) nullspace of DΣtr, which is uniquely determined
given the sign normalization.

11The result for k = 1 corresponds to Corollary 2 in ARW19. The results for k = n− 1 and 1 < k < n− 1
follow from their Proposition 2.
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We denote the proxy-SVAR reduced-form parameters as

φ = (vec(B)′, vech(Σ)′, vec(D)′,J′, vech(Υ)′)′ ∈ Φ. (13)

Since the zero restrictions are linear equality restrictions on single columns of Q and

are otherwise functions only of the reduced-form parameters, we can represent them in the

general form

F(φ,Q) =


F1(φ)q1

...

Fn(φ)qn

 = 0(
∑n

i=1 fi)×1, (14)

where Fi(φ) is an fi × n matrix that stacks the coefficient vectors of the zero restrictions

constraining qi. If the zero restrictions do not constrain qi, Fi(φ) does not exist and fi =

0. We represent the sign restrictions as S(φ,Q) ≥ 0s×1, where s is the number of sign

restrictions (excluding the sign normalization). If there are no sign restrictions, then S(φ,Q)

does not exist and s = 0.

To simplify implementation of the robust Bayesian inferential approach, we order the

variables in yt to satisfy Definition 1.

Definition 1 (Ordering of Variables): Given an ordering of the proxies in mt, order the

variables in yt so that fi satisfies f1 ≥ f2 ≥ . . . ≥ fn ≥ 0. In case of ties, if the impulse

response of interest is to the j∗th structural shock, order the j∗th variable first. That is, set

j∗ = 1 when no other column of Q has a larger number of restrictions than qj∗ . If j∗ ≥ 2,

order the variables so that fj∗−1 > fj∗ .

This ordering convention is used when iteratively constructing columns of Q satisfying

the zero restrictions. It is an extension of the ordering convention used by Rubio-Ramı́rez,

Waggoner and Zha (2010) in the point-identified setting to allow for set identification due

to sign restrictions and underidentifying zero restrictions, and mirrors Definition 3 in GK18.

The ordering convention uniquely determines j∗, but the ordering of the remaining variables

will not be unique when fi = fk for some i, k 6= j∗. However, re-ordering the remaining

variables will have no effect on the results of our algorithms, as long as the ordering con-

vention is satisfied. The following example illustrates how to order the variables to satisfy

Definition 1 and, given the ordering, how the matrices of restrictions are constructed.

Example 2.1. Consider a proxy SVAR for (ct, it, yt, πt), where ct is consumption growth, it

is investment growth, yt is output growth and πt is inflation. Assume that there exist two

proxy variables, mt = (mc,t,mi,t)
′, which are correlated with the structural shocks εc,t and
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εi,t, and are uncorrelated with εy,t and επ,t. In the absence of additional zero restrictions, all

impulse responses are set-identified. If the impulse response of interest is to εi,t, an ordering

of the variables that satisfies Definition 1 is (yt, πt, it, ct), with (f1, f2, f3, f4) = (2, 2, 0, 0) and

j∗ = 3. If, instead, the impulse response of interest is to επ,t, an ordering of the variables

that satisfies Definition 1 is (πt, yt, it, ct), with (f1, f2, f3, f4) = (2, 2, 0, 0) and j∗ = 1. In both

cases, F1(φ) = F2(φ) = DΣtr is a 2× 4 matrix.

In the case where j∗ = 3, consider the additional sign restrictions E(mc,tεc,t) ≥ 0,

E(mi,tεi,t) ≥ 0, E(mc,tεc,t) ≥ E(mc,tεi,t) and E(mi,tεi,t) ≥ E(mi,tεc,t). The matrix of sign

restrictions can be represented as

S(φ,Q) =


01×4 01×4 01×4 d′1

01×4 01×4 d′2 01×4

01×4 01×4 −d′1 d′1

01×4 01×4 d′2 −d′2

 vec(Q) ≥ 04×1. (15)

The identified set for the impulse response ηi,j,h given the zero and sign restrictions is

ISηi,j,h(φ|F, S) = {ηi,j,h(φ,Q) : Q ∈ Q(φ|F, S)}, (16)

where Q(φ|F, S) is the set of orthonormal matrices that satisfy the zero and sign restrictions

and the sign normalization:

Q(φ|F, S) = {Q ∈ O(n) : F(φ,Q) = 0(
∑n

i fi)×1,S(φ,Q) ≥ 0s×1, diag(Q′Σ−1tr ) ≥ 0n×1}.
(17)

Let πφ be a prior over the reduced-form parameter φ. A joint prior for θ = (φ′, vec(Q)′)′ ∈
Φ× vec(O(n)) can be written as πθ = πQ|φπφ, where πQ|φ is supported only on Q(φ|F, S).

Under point identification, the identifying restrictions pin down a unique value of Q given

φ. Consequently, specifying a prior for φ is sufficient to induce a single prior – and thus

a single posterior – for θ. In the set-identified case, the identifying restrictions do not

uniquely determine Q given φ, so specifying a prior for the reduced-form parameters does

not induce a single prior for θ and thus does not yield a single posterior. Following Uhlig

(2005), the vast majority of the empirical literature using Bayesian methods in set-identified

SVARs imposes a single prior for Q|φ, including ARW19 in their set-identified proxy SVARs.

However, while the prior for φ is updated by the data, the conditional prior for Q|φ is not

updated, even asymptotically, because the likelihood does not depend on Q (Poirier 1998;

Moon and Schorfheide 2012). This is problematic, because posterior inference may be driven

by an arbitrary prior for Q, which has no direct economic interpretation, and even a uniform

12



prior over O(n) may be informative about the objects of interest, such as impulse responses

(Baumeister and Hamilton 2015).

Rather than specifying a single prior, the robust Bayesian approach of GK18 considers

the class of all priors for Q|φ that are consistent with the identifying restrictions:

ΠQ|φ =
{
πQ|φ : πQ|φ(Q(φ|F, S)) = 1

}
. (18)

Combining the class of priors with the posterior for φ generates a class of posteriors for θ:

Πθ|Y,M =
{
πθ|Y,M = πQ|φπφ|Y,M : πQ|φ ∈ ΠQ|φ

}
, (19)

where Y = (y′1−p, . . . ,y
′
T )′ and M = (m′1−p, . . . ,m

′
T )′. In turn, the class of posteriors for θ

induces a class of posteriors for ηi,j,h. GK18 suggest summarising this class of posteriors by

reporting the ‘set of posterior means’:[∫
Φ

l(φ)dπφ|Y,M,

∫
Φ

u(φ)dπφ|Y,M

]
, (20)

where l(φ) = inf{ηi,j,h(φ,Q) : Q ∈ Q(φ|F, S)} and u(φ) = sup{ηi,j,h(φ,Q) : Q ∈
Q(φ|F, S)}. They also suggest reporting a robust credible region with credibility level α

(see Proposition 1 of GK18). This region is interpreted as the shortest interval estimate for

ηi,j,h such that the posterior probability put on the interval is greater than or equal to α

uniformly over the posteriors in the class. One can also report posterior probability bounds,

which are the lowest and highest posterior probabilities of an event over all priors in the

class.

When there are zero restrictions only, the identified set is never empty and so the data

are not informative about the plausibility of the identifying restrictions. When there are

sign restrictions, the identified set may be empty at particular values of φ. The posterior

probability that the identified set is non-empty, πφ|Y,M({φ : ISηi,j,h(φ|F, S) 6= ∅}), can thus

be used to quantify the plausibility of the identifying restrictions.

3 Frequentist Validity

In this section we provide conditions under which the robust Bayesian inferential approach

provides valid frequentist inference about impulse responses in the proxy SVAR. This may

be of interest to frequentists who use Bayesian approaches to inference purely for computa-

tional convenience. Bayesians may also be interested in the asymptotic frequentist properties

of Bayesian procedures if this facilitates the communication of their results to frequentist
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audiences.

The set of posterior means can be interpreted as a consistent estimator of the true

identified set if ISηi,j,h(φ|F, S) is convex and is a continuous correspondence of φ at the true

value φ0 (see Theorem 3 in GK18). If, in addition, [l(φ), u(φ)] is differentiable in φ at φ0

with nonzero derivatives, and the posterior for φ satisfies the Bernstein-von Mises property,

the robust credible region is an asymptotically valid confidence set for the true identified

set (see Proposition 2 in GK18). In the context of an SVAR, Propositions 3 and 4 of GK18

provide conditions under which the impulse-response identified set is guaranteed to be convex

and continuous in φ, respectively, while Proposition 5 provides conditions under which it

is guaranteed to be differentiable in φ. In the proxy SVAR, we can show that having the

relevance condition satisfied at φ0 is a necessary condition for continuity of the identified-set

correspondence at φ0. In Section 3.1 we proceed under the assumption that the relevance

condition is satisfied and provide conditions under which the identified-set correspondence is

convex and is differentiable in φ. We explore issues associated with ‘weak’ proxies – where

the relevance condition is ‘close’ to being violated – in Section 3.2.

3.1 Strong Proxies

Assume that there are k proxies correlated with the last k structural shocks and uncorrelated

with the remaining n − k structural shocks. Assume also that n > 3 and 1 < k < n − 1,

so there are multiple proxies for multiple shocks and the impulse responses to all shocks are

set-identified. This is the setting in MR13 and Mertens and Montiel-Olea (2018) (before the

imposition of additional point-identifying zero restrictions), and so is of empirical relevance.

The propositions below clarify conditions for ISηi,j,h(φ|F, S) to be convex and differentiable

in φ, in which case the robust Bayesian approach provides asymptotically valid frequentist

inference about the impulse-response identified set. We relegate proofs to Appendix 7.

Proposition 3.1. Let the object of interest be ηi,j∗,h = ci,h(φ)qj∗, the impulse response of

the ith variable at the hth horizon to the j∗th structural shock, where the variables are ordered

according to Definition 1.

(I) Suppose there are only zero restrictions arising from the exogeneity assumption and

that the relevance condition holds, so rank(DΣtr) = k. Then, for every i and h and almost

every φ ∈ Φ, the identified set of ηi,j∗,h, ISηi,j∗,h(φ|F, S), is convex.

(II) Consider the case with both zero and sign restrictions. Suppose the only zero re-

strictions are those arising from the exogeneity restrictions and that the relevance condition

holds, so rank(DΣtr) = k. Also assume that any sign restrictions constrain the j∗th column

of Q only and let Sj∗(φ)qj∗ ≥ 0s×1 represent the sign restrictions.
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(i) If interest is in the impulse responses to one of the first n− k structural shocks, then

j∗ = 1 by Definition 1, and ISηi,j∗,h(φ|F, S) is convex for every i and h if there exists a

unit-length vector q ∈ Rn satisfying

DΣtrq = 0k×1 and S1(φ)q > 0s×1. (21)

(ii) Let N(DΣtr) be an orthonormal basis for the nullspace of DΣtr (so N(DΣtr) is an

n × (n − k) matrix). If interest is in the impulse responses to one of the last k structural

shocks, then j∗ = n−k+ 1 by Definition 1, and ISηi,j∗,h(φ|F, S) is nonempty and convex for

every i and h if there exists a unit-length vector q ∈ Rn satisfying

N(DΣtr)
′q = 0k×1 and Sn−k+1(φ)q > 0s×1. (22)

Proposition 3.1 states that, when there are exogeneity restrictions only, the identified set

for the impulse response is convex for almost every φ ∈ Φ. When there are also sign restric-

tions constraining qj∗ only, the identified set is convex conditional on it being nonempty.

Note that convexity of the identified set in the empirically relevant case, when interest is in

the responses to one of the last k shocks, does not follow from Proposition 3 of GK18. The

key difference from the general setting of GK18 is that, in our case, Fi(φ) = DΣtr has full

row rank and is common for i = 1, ..., j∗ − 1. These special features of the matrix of zero

restrictions makes it possible to characterise the set of feasible values for qj∗ .

For the same cases in which we can guarantee convexity of the impulse-response identified

set, we provide sufficient conditions for the differentiability of u(φ) and l(φ). To do this,

we follow GK18 by building on results from Gafarov et al. (2018), who show the directional

differentiability of the upper and lower bound of the impulse-response identified set when

there are zero and sign restrictions on qj∗ only.

Proposition 3.2. Let the object of interest be ηi,j∗,h = ci,h(φ)qj∗, where the variables are

ordered according to Definition 1. Suppose the only zero restrictions are those arising from

the exogeneity assumption and that the relevance condition holds, so rank(DΣtr) = k. Also

assume that any sign restrictions constrain the j∗th column of Q only and let Sj∗(φ)qj∗ ≥
0s×1 represent the sign restrictions.

(i) Suppose the impulse responses of interest are those to one of the first n− k structural

shocks, so j∗ = 1 by Definition 1, and that the column vectors of
[
(DΣtr)

′,S1(φ)′,Σ−1tr e1,n

]
are linearly independent at φ = φ0. If, at φ = φ0, the set of solutions of the optimization
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problem

max
q∈Sn−1

(
min

q∈Sn−1

)
c′i,h(φ)q s.t. DΣtrq = 0k×1 and

[
S1(φ)

(Σ−1tr e1,n)′

]
q ≥ 0(s+1)×1

(23)

is singleton, the optimized value u(φ) (l(φ)) is nonzero, and the number of binding sign

restrictions at the optimum is less than n − k − 1, then u(φ) (l(φ)) is differentiable at

φ = φ0.

(ii) Suppose the impulse responses of interest are those to one of the last k structural

shocks, so j∗ = n−k+1 by Definition 1, and that the column vectors of
[
N(DΣtr),S1(φ)′,Σ−1tr en−k+1,n

]
are linearly independent at φ = φ0. If, at φ = φ0, the set of solutions of the optimization

problem

max
q∈Sn−1

(
min

q∈Sn−1

)
c′i,h(φ)q s.t. N(DΣtr)

′q = 0k×1 and

[
Sn−k+1(φ)

(Σ−1tr en−k+1,n)′

]
q ≥ 0(s+1)×1

(24)

is singleton, the optimized value u(φ) (l(φ)) is nonzero, and the number of binding sign

restrictions at the optimum is less than k − 1, then u(φ) (l(φ)) is differentiable at φ = φ0.

When n ≥ 3, it is also straightforward to show that the identified set is convex when

k = 1 and interest is in the impulse responses to one of the first n− 1 structural shocks (the

impulse responses to the last structural shock are point-identified), or when k = n − 1 and

interest is in the impulse responses to one of the last n− 1 shocks (the impulse responses to

the first structural shock are point-identified). Differentiability in these cases is also obtained

under similar conditions to those in Proposition 3.2.

When there are sign restrictions that constrain multiple columns of Q, we cannot guar-

antee convexity of the identified set (see Example 4 in GK18), nor differentiability. Never-

theless, the set of posterior means and robust credible region can be interpreted as providing

inference about the convex hull of the identified set.

Since FEVDi,j∗,h is a continuous function of qj∗ , ISFEVDi,j∗,h(φ|F, S) is continuous at φ0

and it is convex whenever ISηi,j∗,h(φ|F, S) is convex. If ISFEVDi,j∗,h(φ|F, S) is also differen-

tiable in φ, we can guarantee frequentist validity of the robust Bayesian inferential procedure

when applied to the FEVD in the same cases as for the impulse response. However, we are

unaware of results on the differentiability of ISFEVDi,j∗,h(φ|F, S). We leave exploration of

this to further work.
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3.2 Weak Proxies

In this section we investigate how weak proxies affect robust Bayesian posterior inference

about set-identified impulse responses in the proxy SVAR. Our focus is on the asymptotic

frequentist properties of our procedure. We consider the case where n = 3, k = 1 and

the objects of interest are the impulse responses to ε1t. We choose this case because it is

straightforward to analytically characterise the identified set and hence to discuss the effects

of weak proxies.

At a given value of φ ∈ Φ (and ignoring the sign normalization), the upper bound of

ISηi,1,h(φ|F, S) is the value function associated with the following optimization problem:12

u(φ) = max
q∈Sn−1

c′q subject to d′q = 0,

where c ≡ ci,h(φ) and d′ ≡ DΣtr. Applying the change of variables x = Σtrq yields the

problem in Equation (2.5) of Gafarov et al. (2018). Using their results, the value function

satisfies

u(φ)2 = c′
[
I3 − d (d′d)

−1
d′
]

c. (25)

Equation (12) implies that E(mtε3t) = d′q3 = Ψ. The exogeneity restrictions require that

q1 and q2 are orthogonal to d. Since the columns of Q are orthogonal and have unit length,

q3 = ±d/‖d‖, which implies that d′d/‖d‖ = ‖d‖ = |Ψ|.
A ‘weak’ proxy correlates with one of the structural shocks only weakly, so |Ψ| is close

to zero. This is equivalent to ‖d‖ being small. Note that u(φ) as the square root of (25)

is continuous and smooth in c, while it is discontinuous in d at d = 03×1. Hence, if the

posterior distribution of d concentrates near a point of singularity of u(φ) due to the weak

proxy, the posterior of u(φ) can exhibit a nonstandard distribution even when the posterior

of (c,d) is consistent and can be well approximated by a normal distribution centered at the

maximum likelihood estimator (MLE).

To investigate the posterior for u(φ) in the weak-proxy case, we consider the local asymp-

totic approximation of the posterior for u(φ) with a drifting sequence of the true values of φ

converging to a point of singularity. We here present the heuristic exposition of the results

and defer the regularity conditions and formal proofs to the Appendix.

We consider a drifting sequence of data-generating processes {φT : T = 1, 2, . . . } that

induces a drifting sequence of parameter values {(cT ,dT ) : T = 1, 2 . . . , } converging to a

point of singularity. Following the weak-instrument asymptotics of Staiger and Stock (1997),

12In the absence of sign normalization restrictions, the lower bound of the identified set l(φ) is given by
−u(φ). This section hence focuses only on the posterior for u(φ).
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we consider the drifting sequence of (c,d) with T−1/2-convergence rate,

cT = c0 +
γ√
T
, dT =

δ√
T
, (26)

where c0 6= 03×1, δ 6= 03×1 and (γ, δ) ∈ R3 × R3 are the localisation parameters. The

magnitude of δ characterises the relevance of the proxy; that is, a smaller value of ‖δ‖
implies a weaker proxy.

Let (ĉT , d̂T ) be the MLE for (c,d) (which is a constant once we have conditioned on

the sample). We assume that the sampling distribution of the MLE is
√
T -asymptotically

normal: (
ẐcT

ẐdT

)
≡
√
T

(
ĉT − cT

d̂T − dT

)
d→

(
Ẑc

Ẑd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
. (27)

We also assume that the posterior for (c,d) converges to a normal distribution with data-

independent variance. That is, conditional on the sampling sequence,

√
T

(
c− ĉT

d− d̂T

)
d→

(
Zc

Zd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
, (28)

as T → ∞ for almost every sampling sequence, where Ω ≡

(
Ωc Ωcd

Ω′cd Ωd

)
is the posterior

asymptotic variance, which does not depend on the sampling sequence. The asymptotic

equivalence of the probability laws in (27) and (28) implies that the reduced-form parameters

(c,d) are regular in the sense that the well-known Bernstein-von Mises Theorem holds. See,

for instance, Schervish (1995) and DasGupta (2008) for a set of sufficient conditions for

posterior asymptotic normality with the Bernstein-von Mises property.

Under this setting, Proposition 8.1 in the Appendix derives the following asymptotic

approximation of the posterior for u(φ). Conditional on the sampling sequence,

u(φ)
d→

√√√√c′0

(
I3 −

(δ + Ẑd + Zd)(δ + Ẑd + Zd)′

‖δ + Ẑd + Zd‖2

)
c0, (29)

as T →∞ for almost every sampling sequence, where Ẑd is a constant that depends on the

sample, and Zd ∼ N (03×1,Ωd).

This representation of the asymptotic posterior provides the following insights about the

influence of the weak proxy on posterior inference. First, the posterior of u(φ) is not con-

sistent and remains a non-degenerate distribution in large samples. Second, the asymptotic

posterior for u(φ) depends not only on the localisation parameter δ, but also on the statistic
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Ẑd realized in the data. Hence, unlike in the well-identified case, the influence of the data

on the shape of the posterior does not disappear in large samples. Also, the asymptotic

posterior mean almost always (in terms of the sampling probability) misses the upper bound

of the true identified set defined by the limit along the drifting data-generating processes

{φT : T = 1, 2, . . . } yielding (26):

lim
T→∞

u(φT ) =

√
c′0

(
I3 −

δδ′

‖δ‖2

)
c0.

This implies that, under the current weak-proxy asymptotics, the set of posterior means for

the impulse response is not a consistent estimator for the identified set.

Under the same drifting sequence inducing (26), Proposition 8.2 in the Appendix derives

the asymptotic sampling distribution of the MLE for the upper bound of the identified set:

u(φ̂)
d→

√√√√c′0

(
I3 −

(δ + Ẑd)(δ + Ẑd)′

‖δ + Ẑd‖2

)
c0, (30)

where Ẑd ∼ N (03×1,Ωd). Like the posterior for u(φ), the sampling distribution of u(φ̂) is

not consistent and remains non-degenerate. A comparison of (29) and (30) shows that the

posterior and the sampling distribution of the MLE for the bound of the identified set do

not asymptotically coincide for almost every sampling sequence. The Bernstein-von Mises

property therefore fails for the estimation of the upper and lower bounds of the identified

set. This implies that the asymptotic frequentist coverage of the robust credible region of

GK18 can also fail, because a condition analogous to Assumption 4 in GK 18 does not hold

in the current setting of weak proxy asymptotics.

When the proxy is strong in the sense that |Ψ| = ‖d‖ is far from zero, the point-

wise asymptotic approximation of the posterior of u(φ) approximates well the finite-sample

posterior. Noting that u(φ) is smooth at d 6= 03×1 and assuming that the posterior of

(c,d) centered at the MLE is
√
T -asymptotically normal, the delta method implies that√

T (u(φ)− u(φ̂)) is asymptotically normal with a data-independent variance. This asymp-

totic posterior coincides with the sampling distribution of the MLE, so correct frequentist

coverage of the robust credible region can be attained in addition to posterior consistency.

This stark contrast in the asymptotic behavior of the posteriors suggests that, in the current

simple setting, whether the posterior of u(φ) is non-normal could be useful for diagnosing

whether the proxy is weak. We leave a formal analysis of this for future research.
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4 Numerical Implementation

In this section, we provide numerical algorithms to conduct robust Bayesian inference about

set-identified objects of interest in proxy SVARs. The algorithms numerically approximate

the set of posterior means and associated robust credible interval. When there are sign

restrictions, the algorithms also give estimates of the plausibility of the identifying restric-

tions. Throughout, we assume that the order of the variables satisfies Definition 1. Since the

identifying restrictions are linear restrictions on columns of Q, the algorithms are similar to

the algorithms in GK18. We repeat them here for completeness and discuss further details,

and issues specific to the proxy SVAR case, below. Algorithm 1 assumes that the object

of interest is the impulse response; the subsequent remarks discuss how to conduct robust

Bayesian inference about other objects of interest. Matlab code implementing the algorithms

is available on the authors’ personal websites.

Algorithm 1. Let F(φ,Q) = 0(
∑n

i=1 fi)×1 and S(φ,Q) ≥ 0s×1 be the set of identifying

restrictions and let ηi,j∗,h = c′i,hqj∗ be the impulse response of interest.

• Step 1: Specify a prior for φ, πφ, and obtain the posterior πφ|Y,M.13

• Step 2: Draw φ from πφ|Y,M and check whether Q(φ|F, S) is empty using the sub-

routine below.

– Step 2.1: Draw z1 ∼ N(0n×1, In) and let q̃1 = [In − F′1(F1F
′
1)
−1F1] z1. For

i = 2, . . . , n, run the following procedure sequentially: draw zi ∼ N(0n×1, In) and

compute q̃i =
[
In − F̃′i(F̃iF̃

′
i)
−1F̃i

]
zi, where F̃′i = [F′i, q̃1, . . . , q̃i−1].

– Step 2.2: Given q̃i, i = 1, . . . , n, define

Q0 =

[
sign((Σ−1tr e1,n)′q̃1)

q̃1

‖q̃1‖
, . . . , sign((Σ−1tr en,n)′q̃n)

q̃n
‖q̃n‖

]
.14

– Step 2.3: Check whether Q0 satisfies S(φ,Q0) ≥ 0s×1. If so, retain Q0 and

proceed to Step 3. Otherwise, repeat Steps 2.1 and 2.2 (up to a maximum of L

times) until Q0 is obtained satisfying S(φ,Q0) ≥ 0s×1. If no draws of Q0 satisfy

S(φ,Q0) ≥ 0s×1, approximate Q(φ|F, S) as being empty and return to Step 2.

13πφ does not have to be proper or to satisfy the condition πφ({φ : Q(φ|F, S) 6= ∅}) = 1 for all φ ∈ Φ;
that is, πφ may assign positive probability to regions of Φ that yield an empty set of orthonormal matrices
satisfying the identifying restrictions.

14If (Σ−1tr ei,n)′q̃i = 0 for some i, set sign((Σ−1tr e1,n)′q̃i) equal to 1 or −1 with equal probability.
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• Step 3: Compute the lower bound of ISηi,j∗,h(φ|F, S) by solving the following con-

strained optimization problem with initial value Q0:

l(φ) = min
Q

c′i,hqj∗

subject to

F(φ,Q) = 0(
∑n

i fi)×1

S(φ,Q) ≥ 0s×1

diag(Q′Σ−1tr ) ≥ 0n×1

Q′Q = In.

Similarly, obtain u(φ) = maxQ c′i,hqj∗ under the same set of constraints.

• Step 4: Repeat Steps 2–3 M times to obtain [l(φm), u(φm)] for m = 1, ...,M . Ap-

proximate the set of posterior means by the sample averages of l(φm) and u(φm).

• Step 5: To obtain an approximation of the smallest robust credible region with credi-

bility α ∈ (0, 1), define d(η,φ) = max{|η−l(φ)|, |η−u(φ)|} and let ẑα(η) be the sample

α-th quantile of {d(η,φm),m = 1, ...,M}. An approximated smallest robust credible

interval for ηi,j∗,h is an interval centered at arg minη ẑα(η) with radius minη ẑα(η).

• Step 6: Approximate πφ|Y,M({φ : Q(φ|F, S) 6= ∅}) by the proportion of draws of φ

passing Step 2.3.

4.1 Remarks

4.1.1 Further details about Step 2

Given a draw of φ from its posterior, Step 2 attempts to draw Q satisfying the zero and

sign restrictions. The vectors q̃i, i = 1, . . . , n, are residual vectors from the linear projection

of multivariate standard normally distributed random variables on vectors representing the

zero restrictions and previously constructed columns of Q. These residual vectors therefore

satisfy the zero restrictions represented in F(φ,Q) and are orthogonal.15 Step 2.2 rescales

the residual vectors to have unit length and imposes the sign normalization that the diagonal

elements of A0 are nonnegative.

15If the relevance condition fails, Fi(φ) is of reduced row rank for i = 1, . . . , n− k and the coefficients in
the linear projection are not identified. This is a measure zero event so long as πφ does not place positive
probability mass on the event rank(D) < k.
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Step 2 can be interpreted as implementing a particular implicit prior over Q(φ|F, S).

This implicit prior is irrelevant for the class of posteriors generated by the robust Bayesian

procedure, since the draw of Q is used only as an initial value in the numerical optimization

step. However, one could use these draws to construct the posterior for ηi,j,h induced by

this prior; in the empirical application below, we do this to illustrate how posterior inference

may be sensitive to the choice of prior for Q|φ. The algorithm used to draw Q possesses

similarities to the algorithms described in Arias, Rubio-Ramı́rez and Waggoner (2018), who

conduct single-prior Bayesian inference in set-identified SVARs. However, differences in the

algorithms mean that the implicit priors are different. Algorithm 3 in Arias et al. (2018)

draws a value of Q satisfying the zero restrictions only once at each draw of φ and discards

the joint draw of φ and Q if the sign restrictions are not satisfied. In contrast, we draw

Q satisfying the zero restrictions until we obtain a value satisfying the sign restrictions.

Relative to the prior implicit in the second approach, the prior implicit in the first approach

places more weight on values of φ with a larger identified set for Q (see Uhlig (2017) for a

discussion of this point).

4.1.2 Choice of prior

The method used to draw φ|Y,M depends on the posterior, and thus on the prior. In

the empirical application below we use independent (improper) Jeffreys’ priors over the

blocks of reduced-form parameters in the VAR for yt and the first-stage regression; that is,

πφ = πB,ΣπD,J,Υ, where πB,Σ ∝ |Σ|−
n+1
2 and πD,J,Υ ∝ |Υ|−

k+1
2 .16 This makes it simple to

draw from the posterior of φ|Y,M, since it is the product of independent normal-inverse-

Wishart posteriors.17 We emphasise that our algorithm does not rely on using independent

priors over the reduced-form parameters; all that matters is that one can sample from the

posterior of φ. For example, if the prior is over the model’s structural – rather than reduced-

form – parameters, one could draw from the posterior of the structural parameters and

transform these draws into draws of the reduced-form parameters.

4.1.3 Convergence issues and alternative algorithms

The optimization problem in Step 3 is nonconvex. Consequently, the convergence of gradient-

based optimization methods in this problem is not guaranteed. Accordingly, we suggest

16πB,Σ is nonzero only for values of B such that the VAR is invertible into a VMA(∞).
17This follows from the fact that the joint likelihood of (M,Y) is multiplicatively separable across the

two blocks of parameters: πY,M|φ = πM|Y,D,J,ΥπY|B,Σ. For an algorithm that draws from the normal-
inverse-Wishart posterior distribution, see Del Negro and Schorfheide (2011). Imposing independent normal-
inverse-Wishart priors would also yield a posterior that is the product of independent normal-inverse-Wishart
posteriors.
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drawing multiple values of Q0 in Steps 2.1–2.3 to use as initial values in the optimization

step, and computing optima over the set of solutions obtained from the different initial

values. GK18 also provide an algorithm that can be used to check for convergence of, or as

an alternative to, the numerical optimization step.

Algorithm 2. In Algorithm 1, replace Step 3 with the following:

• Step 3’: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, ..., K̃} be the K̃ draws of Q

that satisfy the identifying restrictions. Let qj∗,l be the j∗th column of Ql. Approximate

[l(φ), u(φ)] by [minl c
′
i,hqj∗,l,maxl c

′
i,hqj∗,l].

Algorithm 2 yields an approximated identified set that is smaller than the true identified

set at every draw of φ. However, the approximated identified set will converge to the true

identified set as K̃ goes to infinity. In our implementation of this algorithm, we fix K̃ and

let K vary. We suggest determining an appropriate value of K̃ by fixing the value of φ

(e.g., at the MLE) and comparing the bounds obtained given different values of K̃. In some

cases, Algorithm 2 may be computationally less demanding than Algorithm 1. For example,

when the dimension of the VAR is large or if interest is in the impulse responses of many

variables at many horizons, the computational cost of generating a sufficiently large number

of draws of Q to accurately approximate the bounds of the identified sets may be smaller

than the cost of carrying out the optimization step for each variable of interest at each

horizon (particularly when using multiple initial values). Conversely, Algorithm 2 may be

computationally more demanding when there are sign restrictions that substantially truncate

the support of Q, because many draws of Q will be rejected. In practice, Step 3 and Step 3’

are parallelizable, so large reductions in computing time are possible in both algorithms by

distributing computation across multiple processors.

Under constraints on qj∗ only, Gafarov et al. (2018) develop an algorithm to compute

the bounds of the identified set using an analytical expression for the bounds given a set

of active zero and/or sign restrictions. This approach will typically be computationally

more efficient than approximating the bounds via gradient-based numerical optimization or

simulation. However, it is not generally applicable in proxy SVARs that are likely to be of

interest empirically, because the types of sign restrictions on Ψ that naturally arise in this
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setting will usually constrain multiple columns of Q.18

4.1.4 Point identification

If fj∗ = j∗ − 1, the equality restrictions on qj∗ are sufficient to point identify the object

of interest. This means that the prior for φ induces a single posterior for the object of

interest. In this case, Steps 1 and 2.1–2.2 of Algorithm 1 can still be used to draw from this

posterior. Because qj∗ is exactly identified, any draw of Q satisfying the zero restrictions

will contain the same qj∗ and thus will yield the same object of interest. We make use of this

in the empirical application below when estimating a proxy SVAR under point-identifying

restrictions.

4.1.5 Other objects of interest

When interest is in the FEVD rather than the impulse response, Algorithms 1 and 2 can

be modified by replacing ci,h(φ)′qj∗ with FEVDi,j∗,h. If one is interested in both impulse

responses and FEVDs, Algorithm 2 may deliver large gains in computation time over Al-

gorithm 1, because the same draws of Q can be used to compute bounds for all objects

of interest rather than having to carry out the numerical optimization step for each object

separately. Note also that when interest is in the cumulative impulse response, ci,h(φ)′qj∗ is

replaced with
(∑h

k=1 ci,k(φ)′
)

qj∗ .

4.1.6 Impulse responses to a unit shock

The algorithms above impose the normalization E(εtε
′
t) = In, which is typical in set-identified

SVARs (e.g., Uhlig 2005). This means that the impulse responses are to a standard-deviation

shock. Algorithm 3 shows how to obtain the set of posterior means and the robust credible

interval for impulse responses to a unit shock, which may be of more interest in particular

applications (see Stock and Watson (2016, 2018) for a discussion of this point).

Algorithm 3. In Algorithm 1, replace Step 3 with the following:

18There are special cases where the results in Gafarov et al. (2018) could be extended to compute the
bounds of the identified set. For example, if n > 3, 1 < k < n − 1 and j∗ = n − k + 1, one could compute
an orthonormal basis for the nullspace of DΣtr and include the vectors representing this basis in the set
of active restrictions. If k = n − 1 and j∗ = 2, one could include the restriction q′1q2 = 0 in the set of
active restrictions, since in this case q1 is point-identified. As in the example in Section 3.2, the analytical
results could also be applied if there are exogeneity restrictions only and interest is in the (set-identified)
impulse response to the first structural shock. These examples would all still require that any sign restrictions
constrain only qj∗ .
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• Step 3”: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, ..., K̃} be the K̃ draws

of Q that satisfy the identifying restrictions. Let A−10,l = ΣtrQl and compute aj∗,l =

(A−10,l ej∗,n)/(e′j∗,nA
−1
0,l ej∗,n). Approximate [l(φ), u(φ)] by [minl e

′
i,nChaj∗,l,maxl e

′
i,nChaj∗,l].

The algorithm generates impulse responses to a standard-deviation shock that are con-

sistent with the identifying restrictions, rescales the impulse responses so that they are with

respect to a unit shock (the ith element of aj∗,l is equal to one), and computes the bounds of

the identified set using the extreme values of the rescaled impulse responses. One potential

issue is that the set of posterior means and robust credible interval may be unbounded when

the relevant diagonal elements of A−10 = ΣtrQ are not bounded away from zero for all φ ∈ Φ

and Q ∈ Q(φ|F, S).

5 Empirical Application: The Dynamic Effects of Per-

sonal and Corporate Income Tax Changes in the

United States

We illustrate our methodology using the proxy SVAR considered in MR13, who estimate

the macroeconomic effects of shocks to average personal and corporate income tax rates in

the United States. The variables included in their benchmark specification are the average

personal income tax rate (APITR), the average corporate income tax rate (ACITR), the

personal income tax base, the corporate income tax base, government purchases of final

goods, gross domestic product and federal government debt. The last five variables are in

real per capita terms and are included in logs. MR13 decompose the sequence of plausibly

exogenous changes in tax liabilities constructed by Romer and Romer (2010) into those

related to personal income taxes and those related to corporate income taxes, and they

exclude changes in tax liabilities with a lag between announcement and implementation of

more than one quarter. These changes in tax liabilities are divided by the relevant tax base

in the previous quarter and the resulting variables are used as proxies for structural shocks

to the APITR and ACITR. The data are quarterly and run from 1950Q1 to 2006Q4. The

VAR includes a constant and four lags of the endogenous variables. See MR13 for further

details about the construction of the variables used in the VAR and the proxies.19

When the objects of interest are impulse responses to εAPITR,t, any ordering of the vari-

ables such that yt = [xt, APITRt, ACITRt], where xt contains all variables other than

APITRt and ACITRt, will satisfy Definition 1. When interest is in the impulse responses

19We obtained the data from Karel Mertens’ website: https://karelmertens.com/research/.
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to εACITR,t, any ordering such that yt = [xt, ACITRt, APITRt] will satisfy Definition 1. In

both cases, fi = 2 for i = 1, . . . , 5, f6 = f7 = 0 and j∗ = 6. Let mt = (mAPITR,t,mACITR,t)
′,

where mAPITR,t and mACITR,t are the rescaled changes in personal and corporate income tax

liabilities, respectively. MR13 impose the identifying restrictions that E(mtε
′
(1:5),t) = 02×5

and E(mtε
′
6:7) = Ψ, where Ψ is an (unknown) full-rank 2 × 2 matrix. These identifying

restrictions are insufficient to point identify any structural shock. As discussed in MR13,

if one were willing to assume that mAPITR,t is uncorrelated with εACITR,t, or vice versa

for mACITR,t and εAPITR,t, the additional zero restriction would be sufficient to point iden-

tify both structural shocks of interest.20 However, positive correlation between the proxies

suggests that these assumptions may be inappropriate.

To achieve point identification, MR13 consider additional zero restrictions on the direct

contemporaneous response of one tax rate to the other (i.e., causal orderings). For example,

when interest is in the impulse responses to εAPITR,t, they assume that the ACITR does

not respond directly to a structural shock in the APITR on impact. In our setting, this

restriction is e′7,7A0e6,7 = (Σ−1tr e7,7)
′q6 = 0. This restriction also point-identifies the ACITR

shock. To assess robustness of their results, they consider the alternative causal ordering

that the APITR does not respond directly to a structural shock in the ACITR on impact.

Either of these zero restrictions could be violated if, for instance, there are constraints that

impinge on the ability of the government to change personal and corporate income tax rates

independently of one another. Accordingly, we extend their robustness analysis by providing

an estimator of the set of impulse responses compatible with relaxing the additional zero

restriction and replacing it with a set of – arguably weaker – sign restrictions.

We assume that each proxy is positively correlated with its associated structural shock

(i.e., E(mAPITR,tεAPITR,t) ≥ 0 and E(mACITR,tεACITR,t) ≥ 0) and that each proxy is more

highly correlated with its associated structural shock than with the structural shock to the

other average tax rate (i.e., E(mAPITR,tεAPITR,t) ≥ E(mAPITR,tεACITR,t) and E(mACITR,tεACITR,t) ≥
E(mACITR,tεAPITR,t)). We also assume that the response of each average tax rate to its own

structural shock is nonnegative on impact, which is a sign restriction on impulse responses

(as in Uhlig (2005)). Importantly, our approach allows us to relax the additional point-

identifying zero restriction while avoiding the need to impose an unrevisable prior over the

20qi, i = 1, . . . , 5, is restricted to the 5-dimensional subspace of R7 in the nullspace of DΣtr. q6 and q7

therefore lie in the 2-dimensional subspace spanned by the rows of DΣtr. If interest is in impulse responses
to εAPITR,t and E(mACITR,tεAPITR,t) = d′2q6 = 0, q6 is additionally constrained to be orthogonal to d2

and so lies in a 1-dimensional subspace. q7 is orthogonal to q6, and so lies in the 1-dimensional subspace
spanned by d2. Assuming that E(mAPITR,tεACITR,t) = 0 yields point identification through similar reason-
ing (given a re-ordering of the variables to satisfy Definition 1). Assuming that E(mAPITR,tεACITR,t) = 0
and E(mACITR,tεAPITR,t) = 0 would yield one overidentifying restriction, but our algorithms do not allow
for this.
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model’s set-identified parameters.

First, we obtain impulse responses under point-identifying restrictions. When interest is

in responses to the APITR, the additional point-identifying restriction is that the ACITR

does not react contemporaneously to a shock in the APITR, and vice versa when interest

is in responses to the ACITR. We compare estimates under these restrictions against those

obtained under the set-identifying restrictions and using the single prior for Q|φ implied by

Steps 2.1–2.3 of Algorithm 1 (see the discussion in Section 4). The purpose of this exercise

is to explore the effect of the additional zero restriction on posterior inference. We then

compare the impulse responses under the set-identifying restrictions and the single prior

against those obtained using our robust Bayesian approach. This isolates the effect of the

single prior on posterior inference. To quantify the sensitivity of posterior inference in this

model to the choice of prior for Q, we report the ‘prior informativeness’ statistic proposed

in GK18, which measures the extent to which the Bayesian credible region is tightened by

choosing a particular prior:

Prior informativeness =

1− Width of Bayesian credible region for ηi,j,h with credibility α

Width of robust Bayesian credible region for ηi,j,h with credibility α
. (31)

As discussed in Section 4, we assume independent Jeffreys’ priors over the reduced-form

parameters such that the VAR for yt is invertible into a VMA(∞). The posterior is the

product of independent normal-inverse-Wishart distributions, from which it is straightfor-

ward to obtain independent draws. We obtain 10,000 draws from the posterior of φ with

non-empty identified set. In the first-stage regression, we include a constant and exclude

lags of the proxies. In this application, the optimization step of Algorithm 1 is slow due to

the dimension of the VAR and the number of horizons considered. Consequently, we use

Algorithm 2 with K̃ = 10, 000 to approximate the bounds of the identified set at each draw

of φ via simulation.21 If we cannot obtain a single draw of Q satisfying the sign restrictions

after 100,000 draws satisfying the zero restrictions, we approximate the identified set as be-

ing empty at that draw of φ. Under the additional zero restriction in MR13, we obtain the

point-identified object of interest at each draw of φ by drawing a single value of Q using

Steps 2.1–2.2 of Algorithm 1.

Figure 1 plots impulse responses to a positive standard-deviation shock in the APITR

under the point-identifying restrictions, under the set-identifying restrictions with a single

21We have verified that using 10,000 draws of Q is sufficient to accurately approximate the bounds of the
identified set for the impulse response and FEVD at the MLE of φ.
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prior for Q|φ, and under the set-identifying restrictions with the robust Bayesian approach.22

The posterior distribution of the response of the APITR is similar under the point- and set-

identifying restrictions when the single prior is used. Focusing on the output response, the

90 per cent highest posterior density (HPD) credible intervals include zero at all horizons

under both sets of restrictions. Considering the class of all priors consistent with the set-

identifying restrictions widens the credible intervals further; the prior informativeness statis-

tic indicates that the choice of the single prior shrinks the width of the 90 credible interval

for the output response by about 25 per cent on average over the horizons considered.

Figure 2 repeats Figure 1 for a shock to the ACITR. The response of the ACITR to its

own shock is qualitatively similar under the two sets of identifying restrictions when a single

prior is used. Under the point-identifying restrictions, the 90 per cent HPD intervals for the

output response include zero at all horizons, which suggests that shocks to the AICTR have

no effect on output. In contrast, under the set-identifying restrictions, the HPD intervals

exclude zero at short horizons. However, inferences about the response of output are sensitive

to the choice of single prior; the 90 per cent robust credible intervals for the output response

include zero at all horizons and the prior informativeness statistic is about 20 per cent on

average over the horizons considered.

Figure 3 plots the FEVD of output with respect to the two income tax shocks. Focusing

on the posterior mean of the FEVD, the APITR shock accounts for about 20 per cent of the

forecast error variance at the one-year horizon under the point-identifying restrictions. This

figure falls to 10 per cent under the set-identifying restrictions and the single prior, but the

result is sensitive to the choice of prior for Q|φ; the set of posterior means includes values

from about 5 per cent to about 25 per cent. Under the point-identifying restrictions, the

ACITR shock accounts for around 20 per cent of the forecast error variance of output at the

one-year horizon, which is similar to the contribution of the APITR under the same iden-

tifying restrictions. This contribution rises to around 26 per cent under the set-identifying

restrictions and the single prior. The set of posterior means ranges from 15 to 35 per cent,

which suggests that ACITR shocks explain a nontrivial share of the unexpected variation in

output at short horizons regardless of the choice of prior.

Since our set-identifying restrictions include both zero and sign restrictions, the identified

set may be empty at particular draws of φ. The posterior probability that the identified set

22The impulse responses of government debt are omitted for brevity. Note that the posterior mean and
credible intervals under the point-identifying restrictions do not necessarily lie within the set of posterior
means and robust credible intervals, respectively. One reason for this is because parameter values satisfying
the point-identifying restrictions do not necessarily satisfy the set-identifying restrictions; for example, under
the point-identifying restrictions used to identify εACITR,t, the posterior probability that our sign restrictions
are satisfied is around 45 per cent. Another reason is that the robust credible interval is not a union of the
highest posterior density intervals over the class of posteriors.
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is non-empty, πφ|Y,M({φ : ISηi,j,h(φ|F, S) 6= ∅}), is over 90 per cent, which suggests that the

identifying restrictions are consistent with the data.

6 Conclusion

This paper develops algorithms for robust Bayesian inference in proxy SVARs where the

impulse responses or FEVDs of interest are set-identified. This approach allows researchers

to relax potentially controversial point-identifying restrictions without having to specify a

single, unrevisable prior over the model’s set-identified parameters. This is likely to be of

particular value in proxy SVARs where more than one proxy is used to identify more than

one structural shock.
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Braun, R. and R. Brüggemann (2017). “Identication of SVAR Models by Combining Sign Re-

strictions With External Instruments”. University of Konstanz Department of Economics

Working Paper Series 2017-07.

Caldara, D. and E. Herbst (2019). “Monetary Policy, Real Activity, and Credit Spreads:

Evidence from Bayesian Proxy SVARs”. American Economic Journal: Macroeconomics

11 (1), pp. 157–92.

Caldara, D. and C. Kamps (2017). “The Analytics of SVARs: A Unified Framework to

Measure Fiscal Multipliers”. The Review of Economic Studies 84 (3), pp. 1015–1040.

Christiano, L.J., M. Eichenbaum and C.L. Evans (1999). “Chapter 2 – Monetary Policy

Shocks: What Have we Learned and to What End?” In: Handbook of Macroeconomics.

Ed. by M. Woodford and J.D. Taylor. Vol. 1. Elsevier, pp. 65–148.

30



DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability. Springer Texts in

Statistics. Springer-Verlag New York.

Del Negro, M. and F. Schorfheide (2011). “Bayesian Macroeconometrics”. In: Oxford Hand-

book of Bayesian Econometrics. Ed. by J. Geweke, G. Koop and H. Van Dijk. Oxford

University Press, pp. 293–389.

Drautzburg, T. (forthcoming). “A Narrative Approach to a Fiscal DSGE Model”. Quantita-

tive Economics.

Gafarov, B., M. Meier and J.L. Montiel-Olea (2018). “Delta-Method Inference for a Class of

Set-Identified SVARs”. Journal of Econometrics 203 (2), pp. 316–327.

Gertler, M. and P. Karadi (2015). “Monetary Policy Surprises, Credit Costs, and Economic

Activity”. American Economic Journal: Macroeconomics 7 (1), pp. 44–76.

Giacomini, R. and T. Kitagawa (2018). “Robust Bayesian Inference for Set-identified Mod-

els”. cemmap Working Paper CWP61/18.

Giacomini, R., T. Kitagawa and H. Uhlig (2019). “Estimation Under Ambiguity”. cemmap

Working Paper CWP24/19.

Granziera, E., H.R. Moon and F. Schorfheide (2018). “Inference for VARs Identified with

Sign Restrictions”. Quantitative Economics 9 (3), pp. 1087–1121.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press.

Jentsch, C. and K.G. Lunsford (2019). “The Dynamic Effects of Personal and Corporate In-

come Tax Changes in the United States: Comment”. American Economic Review 109 (7),

pp. 2655–2678.

Kilian, L. and H. Lütkepohl (2017). Structural Vector Autoregressive Analysis. Themes in

Modern Econometrics. Cambridge University Press.

Kline, B. and E. Tamer (2016). “Bayesian Inference in a Class of Partially Identified Models”.

Quantitative Economics 7 (2), pp. 329–366.

Kosorok, M.R. (2008). Introduction to Empirical Processes and Semiparametric Inference.

Springer Series in Statistics. Springer-Verlag New York.

Ludvigson, S.C., S. Ma and S. Ng (2018). “Shock Restricted Structural Vector-Autoregressions”.

National Bureau of Economic Research Working Paper No. 23225.

Lunsford, K.G. (2015). “Identifying Structural VARs with a Proxy Variable and a Test for

a Weak Proxy”. Federal Reserve Bank of Cleveland Working Paper 15-28.

Mertens, K. and J.L. Montiel-Olea (2018). “Marginal Tax Rates and Income: New Time

Series Evidence”. The Quarterly Journal of Economics 133 (4), pp. 1803–1884.

Mertens, K. and M.O. Ravn (2013). “The Dynamic Effects of Personal and Corporate Income

Tax Changes in the United States”. American Economic Review 103 (4), pp. 1212–47.

31



Mertens, K. and M.O. Ravn (2014). “A Reconciliation of SVAR and Narrative Estimates of

Tax Multipliers”. Journal of Monetary Economics 68 (Supplement), S1–S19.

— (2019). “The Dynamic Effects of Personal and Corporate Income Tax Changes in the

United States: Reply”. American Economic Review 109 (7), pp. 2679–91.

Montiel-Olea, J.L., J.H Stock and M.W. Watson (2018). “Inference in Structural Vector

Autoregressions Identified With an External Instrument”. Working Paper.

Moon, H.R. and F. Schorfheide (2012). “Bayesian and Frequentist Inference in Partially

Identified Models”. Econometrica 80 (2), pp. 755–782.

Piffer, M. and M. Podstawski (2018). “Identifying Uncertainty Shocks Using the Price of

Gold”. The Economic Journal 128 (616), pp. 3266–3284.

Plagborg-Moller, M. and C.K. Wolf (2019). “Instrumental Variable Identification of Dynamic

Variance Decompositions”. Working paper.

Poirier, D.J. (1998). “Revising Beliefs in Nonidentified Models”. Econometric Theory 14 (4),

pp. 483–509.

Ramey, V.A. (2016). “Chapter 2 – Macroeconomic Shocks and Their Propagation”. In:

Handbook of Macroeconomics. Ed. by J.B. Taylor and H. Uhlig. Vol. 2. Elsevier, pp. 71–

162.

Romer, C.D. and D.H. Romer (2010). “The Macroeconomic Effects of Tax Changes: Esti-

mates Based on a New Measure of Fiscal Shocks”. American Economic Review 100 (3),

pp. 763–801.

Rubio-Ramı́rez, J.F., D.F. Waggoner and T. Zha (2010). “Structural Vector Autoregressions:

Theory of Identification and Algorithms for Inference”. The Review of Economic Studies

77 (2), pp. 665–696.

Schervish, M.J. (1995). Theory of Statistics. Springer Series in Statistics. Springer-Verlag

New York.

Sims, C.A. (1980). “Macroeconomics and Reality”. Econometrica 48 (1), pp. 1–48.

Staiger, D. and J.H. Stock (1997). “Instrumental Variables Regression with Weak Instru-

ments”. Econometrica 65 (3), pp. 557–586.

Stock, J.H. (2008). What’s New in Econometrics–Time Series, Lecture 7: Structural VARs.

Cambridge, MA.: National Institute for Economic Research. url: http://www.nber.

org/minicourse_2008.html.

Stock, J.H. and M.W. Watson (2012). “Disentangling the Channels of the 2007–09 Reces-

sion”. Brookings Papers on Economic Activity, Spring, pp. 81–156.

— (2016). “Chapter 8 – Dynamic Factor Models, Factor-Augmented Vector Autoregressions,

and Structural Vector Autoregressions in Macroeconomics”. In: Handbook of Macroeco-

nomics. Ed. by J.B. Taylor and H. Uhlig. Vol. 2. Elsevier, pp. 415–525.

32

http://www.nber.org/minicourse_2008.html
http://www.nber.org/minicourse_2008.html


Stock, J.H. and W.H. Watson (2018). “Identification and Estimation of Dynamic Causal Ef-

fects in Macroeconomics Using External Instruments”. The Economic Journal 128 (610),

pp. 917–948.

Stock, J.H., J.H. Wright and M. Yogo (2002). “A Survey of Weak Instruments and Weak

Identification in Generalized Method of Moments”. Journal of Business & Economic

Statistics 20 (4), pp. 518–529.

Uhlig, H. (2005). “What are the Effects of Monetary Policy on Output? Results from an

Agnostic Identification Procedure”. Journal of Monetary Economics 52 (2), pp. 381–419.

— (2017). “Shocks, Sign Restrictions, and Identification”. In: Advances in Economics and

Econometrics: Eleventh World Congress. Ed. by B. Honoré A. Pakes, M. Piazzesi and
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7 Appendix A

This appendix contains the proofs of the propositions in Section 3.1.

Proof of Proposition 3.1. Consider the first case (I), where the only restrictions are due

to exogeneity of the proxies. If interest is in the impulse responses to the first shock, j∗ = 1

by Definition 1; if interest were in the responses to the jth shock for some j ∈ {2, . . . , n−k},
Definition 1 would require a re-ordering of the variables such that j∗ = 1. The exogeneity

assumption requires DΣtrq1 = 0k×1. q1 therefore lies in the nullspace of DΣtr, which,

by the rank-nullity theorem, is a linear subspace of Rn with dimension n − k. Since k <

n − 1 by assumption, this subspace has dimension of at least two. The sign normalization

(Σ−1tr e1,n)′q1 ≥ 0 further constrains q1 to lie in a halfspace of Rn. The set of feasible q1 is the

intersection of the k-dimensional linear subspace satisfying the exogeneity restrictions, the

halfspace generated by the sign normalization and the unit sphere, which is a path-connected

set. Since the impulse response is a continuous function of q1, the identified set is an interval

and is thus convex, because the set of a continuous function with a path-connected domain

is always an interval.23

If, instead, interest is in responses to one of the last k shocks, j∗ = n−k+1 by Definition 1;

if interest were in the responses to the jth shock for some j ∈ {n−k+2, . . . , n}, Definition 1

would require a re-ordering of the variables such that j∗ = n− k + 1. For i = 1, . . . , n− k,

Fi(φ) = DΣtr, which is a k × n matrix with rank k under the relevance assumption. qi,

i = 1, . . . , n−k, lies in the nullspace of DΣtr, which is of dimension n−k by the rank-nullity

theorem. Since the columns of an orthonormal matrix are orthogonal, qn−k+1 is orthogonal

to this nullspace and so lies in the k-dimensional linear subspace of Rn spanned by the rows

of DΣtr. By assumption, k > 1, so this subspace has dimension of at least two. The sign

normalization (Σ−1tr en−k+1,n)′qn−k+1 ≥ 0 further constrains qn−k+1 to lie in a halfspace of

Rn. The set of feasible qn−k+1 is the intersection of the k-dimensional linear subspace, the

halfspace and the unit sphere, which is a path-connected set, and convexity of the identified

set follows as above.24

Now consider case (II), where there are sign restrictions constraining qj∗ only in addition

to the exogeneity restrictions. Each of the s sign restrictions described by Sj∗(φ)qj∗ ≥ 0s×1

defines a halfspace in which qj∗ must lie. The intersection of these halfspaces with the

23This result also follows directly from Proposition 3(I)(i) of GK18, since f1 = k < n− 1.
24This result does not follow from Proposition 3 of GK18. The conditions for Proposition 3(I)(ii) are not

satisfied because fj∗−1 = k ≮ n− (j∗ − 1). The conditions for Proposition 3(I)(iii) are not satisfied because
there does not exist 1 ≤ i∗ ≤ j∗ − 1 such that fi < n − i for all i = i∗ + 1, . . . , j∗ and [q1, . . . ,qi∗ ] is
exactly identified. To see this, note that the necessary condition for exact identification of [q1, . . . ,qi∗ ] is
that fi = n− i for all i = 1, . . . , i∗. But f1 = k < n− 1, so this condition fails.
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halfspace defined by the sign normalization and the linear subspace with dimension of at

least two defined by the exogeneity restrictions will still have dimension of at least two.

The intersection of the resulting linear subspace with the unit sphere will therefore be a

path-connected set and the impulse-response identified set will be convex.

Proof of Proposition 3.2. Consider case (i), where j∗ = 1. The optimization problem to

find the upper bound of the identified set can be written as

u(φ) = max
q∈Sn−1

c′i,h(φ)q s.t. DΣtrq = 0k×1 and

[
S1(φ)

(Σ−1tr e1,n)′

]
q ≥ 0(s+1)×1. (32)

One-to-one differentiable reparameterization of this problem using x = Σtrq yields the op-

timization problem in Equation (2.5) of Gafarov et al. (2018). Differentiability of u(φ) at

φ = φ0 follows from their Theorem 2 under the assumptions that, at φ = φ0, the column

vectors of
[
(DΣtr)

′,S1(φ)′,Σ−1tr e1,n

]
are linearly independent, the set of solutions to the

optimization problem is singleton, the optimized value u(φ) is nonzero, and the number of

binding sign restrictions at the optimum is less than n − k − 1. Differentiability of l(φ)

follows similarly, with l(φ) defined as the minimizer of c′i,h(φ)q with respect to q ∈ Sn−1

and subject to the same set of constraints.

Consider case (ii), where j∗ = n− k + 1. Let N(DΣtr) be an orthonormal basis for the

nullspace of DΣtr (an (n − k) × n matrix). The optimization problem to find the upper

bound of the identified set can be written as

u(φ) = max
q∈Sn−1

c′i,h(φ)q s.t. N(DΣtr)
′q = 0(n−k)×1 and

[
Sn−k+1(φ)

(Σ−1tr en−k+1,n)′

]
q ≥ 0(s+1)×1.

(33)

One-to-one differentiable reparameterization of this problem using x = Σtrq yields the opti-

mization problem in Equation (2.5) of Gafarov et al. (2018) with the expanded set of equality

restrictions including N(DΣtr)
′Σ−1tr x = 0(n−k)×1. Differentiability of u(φ) at φ = φ0 fol-

lows from their Theorem 2 under the assumptions that, at φ = φ0, the column vectors

of
[
N(DΣtr),Sn−k+1(φ)′,Σ−1tr en−k+1,n

]
are linearly independent, the set of solutions to the

optimization problem is singleton, the optimized value u(φ) is nonzero, and the number of

binding sign restrictions at the optimum is less than n− (n−k)−1 = k−1. Differentiability

of l(φ) follows similarly.
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8 Appendix B

This appendix sets up the framework for the weak-proxy approximations of the posterior

distribution and the sampling distribution of the MLE for the upper bound of the identified

set, and derives formally the claims in (29) and (30).

As in the main text, we consider the simple setting of n = 3 and k = 1, where the upper

bound of the identified set u(φ) is given by (25). Since u(φ) depends on the reduced-form

parameters only through (c,d), we express u(φ) as u(c,d). The singularity points of u(c,d)

that we focus on are c 6= 03×1 and d = 03×1, where the weak-proxy scenario corresponds

to values of d close to 03×1. We hence consider a sequence of reduced-form parameters

{φT : T = 1, 2, . . . } along which the implied parameters (cT ,dT ), T = 1, 2, . . . , converge

to (c0,03×1), c0 6= 03×1, as T → ∞. As in the main text, we specify a drifting sequence of

{φT} that leads to (
cT

dT

)
=

(
c0 + γ/

√
T

δ/
√
T

)
, (34)

where (γ, δ) ∈ R3 × R3 are the localisation parameters.

Let ŜT ∈ Rs, s < ∞, T = 1, 2, . . . , be a finite-dimensional vector of sufficient statistics

for φ that converges in distribution to a random vector Ŝ ∈ Rs as T →∞. Since we consider

a Gaussian proxy SVAR, these sufficient statistics are the first and second sample moments

of the observables. By the Skhorohod representation theorem, we can embed this sequence

of sufficient statistics {ŜT} and the limiting random variables Ŝ into a common probability

space on which

ŜT → Ŝ as T →∞, almost surely, (35)

holds.

Let (ĉT , d̂T ) be the MLE of (c,d). Since the MLE depends only on the sufficient statistics

ŜT , we can embed the MLE into the probability space on which {ŜT} and Ŝ are commonly

defined. Hence, conditioning on the sequence of sufficient statistics {ŜT : T = 1, 2, . . . , }
pins down the constant sequence of MLEs. We assume that the (unconditional) sampling

distribution of the MLEs centered at the drifting true values is asymptotically normal:(
ẐcT

ẐdT

)
≡
√
T

(
ĉT − cT

d̂T − dT

)
d→

(
Ẑc

Ẑd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
. (36)

Following the Skhorohod representation for the sufficient statistics (35), we have the almost-
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sure convergence of the MLE to the limiting Gaussian random variables(
ẐcT

ẐdT

)
→

(
Ẑc

Ẑd

)
as T →∞, almost surely, (37)

on the common probability space. We also impose a high-level assumption of the strong

consistency of the MLE for c in the sense of

ĉT → c0 as T →∞, almost surely, (38)

on the same probability space.

Since the posterior distribution depends on the data only through the sufficient statistics,

it suffices to consider the convergence of the posterior distribution for u(c,d) conditional on

the sequence of sufficient statistics {ŜT}. We assume that the posterior for (c,d) centered

at their MLEs is asymptotically normal in the following sense. Let(
ZcT

ZdT

)
≡
√
T

(
c− ĉT

d− d̂T

)
, (39)

and assume (
ZcT

ZdT

)
d→

(
Zc

Zd

)
∼ N

(
06×1,

(
Ωc Ωcd

Ω′cd Ωd

))
, (40)

for almost every conditioning sequence of {ST}. We assume that the asymptotic posterior

variance given in (40) is independent of the conditioning variable {ŜT : T = 1, 2, . . . } and

coincides with the asymptotic variance of the MLE given in (36).

The asymptotic normality of the posterior (centered at the MLE with data-independent

variance) holds for a wide class of regular parametric models, and its almost-sure coincidence

with the asymptotic (sampling) distribution of the MLE leads to the Bernstein-von Mises

Theorem. See, for instance, Schervish (1995) and DasGupta (2008) for a set of sufficient

conditions for posterior asymptotic normality.

Under these assumptions, we obtain the following weak-proxy asymptotic approximation

of the posterior for u(φ).

Proposition 8.1. Consider a drifting sequence of reduced-form parameters that satisfy (34)

with c0 6= 03×1, along which we assume that the MLE for (c,d) and its posterior satisfies

(36), (37), (38) and (40). Then, for almost every conditioning sequence of the sufficient
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statistics {ŜT}, the asymptotic posterior of u(c,d) is

u(c,d)
d→ u(c0, δ + Ẑd + Zd) =

√√√√c′0

(
I3 −

(δ + Ẑd + Zd)(δ + Ẑd + Zd)′

‖δ + Ẑd + Zd‖2

)
c0,

where Ẑd is a constant given the sampling sequence, and Zd ∼ N (03×1,Ωd).

Proof. Since u(c,d) is homogeneous of degree zero with respect to d, we have

u(c,d) = u(c, T 1/2d)

= u(ĉT + T−1/2ZcT , T
1/2d̂T + ZdT )

= u(ĉT + T−1/2ZcT , T
1/2dT + ẐdT + ZdT )

= u(ĉT + T−1/2ZcT , δ + ẐdT + ZdT ),

where the second equality uses (39), the third equality uses (36), and the fourth equality uses

(34). Conditional on the sampling sequence of the sufficient statistics {ŜT}, the assumptions

of almost-sure convergence (37) and (38) and the posterior distributional convergence (40)

imply (
ĉT + T−1/2ZcT

δ + ẐdT + ZdT

)
d→

(
c0

δ + Ẑd + Zd

)
, (41)

as T →∞, where (c0, δ, Ẑd) are constants and Zd is a random vector following N (03×1,Ωd).

Since u(c,d) is discontinuous at d = 03×1, and {δ + Ẑd + Zd = 03×1} is the null event in

terms of the probability law of the limiting random variables, an application of the continuous

mapping theorem (see, for example, Theorem 10.8 of Kosorok (2008)) yields the conclusion.

The next proposition gives the asymptotic sampling distribution of u(ĉT , d̂T ).

Proposition 8.2. Consider a drifting sequence of reduced-form parameters that satisfy (34)

with c0 6= 03×1, along which we assume that the MLE of (c,d) satisfies (36). Then, the

asymptotic distribution of u(ĉT , d̂T ) is

u(ĉT , d̂T )
d→ u(c0, δ + Ẑd) =

√√√√c′0

(
I3 −

(δ + Ẑd)(δ + Ẑd)′

‖δ + Ẑd‖2

)
c0,

where Ẑd ∼ N (03×1,Ωd).

Proof. Since u(c,d) is homogeneous of degree zero with respect to d, it holds that u(ĉT , d̂T ) =
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u(ĉT , T
1/2d̂T ). Under the drifting sequence (34) and

√
T -asymptotic normality of the MLE

(36), (
ĉT

T 1/2d̂T

)
d→

(
c0

δ + Ẑd.

)
.

Noting that {δ + Ẑd = 03×1} is a null event in terms of the limiting probability law, an

application of the continuous mapping theorem leads to the conclusion.
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Figure 1: Impulse Responses to APITR Shock
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Notes: Coloured solid lines are posterior means and coloured dashed lines are associated
90 per cent highest posterior density credible intervals; vertical bars represent the
set of posterior means and black solid lines are 90 per cent robust credible intervals.
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Figure 2: Impulse Responses to ACITR Shock
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Notes: Coloured solid lines are posterior means and coloured dashed lines are associated
90 per cent highest posterior density credible intervals; vertical bars represent the
set of posterior means and black solid lines are 90 per cent robust credible intervals.
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Figure 3: Contribution of Tax Shocks to Forecast Error Variance of Real GDP
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