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Abstract

Models of simultaneous discrete choice may be incomplete, delivering multiple values of out-

comes at certain values of the latent variables and covariates, and incoherent, delivering no val-

ues. Alternative approaches to accommodating incompleteness and incoherence are considered

in a unifying framework afforded by the Generalized Instrumental Variable models introduced in

Chesher and Rosen (2017). Sharp identification regions for parameters and functions of interest

defined by systems of conditional moment equalities and inequalities are provided. Almost all

empirical analysis of simultaneous discrete choice uses models that include parametric speci-

fications of the distribution of unobserved variables. The paper provides characterizations of

identified sets and outer regions for structural functions and parameters allowing for any dis-

tribution of unobservables independent of exogenous variables. The methods are applied to the

models and data of Mazzeo (2002) and Kline and Tamer (2016) in order to study the sensitivity

of empirical results to restrictions on equilibrium selection and the distribution of unobservable

payoff shifters, respectively. Confidence intervals for individual parameter components are pro-

vided using a recently developed inference approach from Belloni, Bugni, and Chernozhukov

(2018). The relaxation of equilibrium selection and distributional restrictions in these applica-

tions is found to greatly increase the width of resulting confidence intervals, but nonetheless the

models continue to sign strategic interaction parameters.

Keywords: Discrete endogenous variables, Discrete choice, Endogeneity, Incoherent models,

Incomplete models, Instrumental variables, Set Identification, Structural econometrics.
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1 Introduction

Simultaneous determination of discrete outcomes arises in many economic contexts. For example,

couples make decisions about labour force participation, each partner choosing to work in paid

employment part time, full time or not at all. Couples make other discrete lifestyle choices, for

example about retirement, activities and pursuits, and work location. There are many joint discrete

choices in which each person’s actions may affect the welfare of others. Considering network forma-

tion people choose to make and break friendships and forge and sunder long-standing relationships

and firms choose to trade or not with other firms and decide whether or not to enter markets and

which products to sell. In all of these situations the discrete choices of one agent may affect the

welfare or profit of others.

Many structural models of simultaneous discrete choice write the utility or profit of each agent

as a function of the endogenous discrete choices of others and of exogenous variables, some observed

and others unobserved. Any collection of choices by agents that deliver nonnegative utility or profit

for all may eventuate. In any particular case there may be many such choices, or just one, or none

at all. Which situation arises can depend on the values of observed and unobserved exogenous

variables, on the particular functional forms admitted by the model and, in parametric models,

on parameter values. In applications researchers must decide how to deal with these possibilities.

Many strategies have been proposed.

When multiple outcomes are possible - models admitting this possibility are called incomplete -

it is feasible to conduct inference using an incomplete model which does not specify which outcome

will occur. An alternative is to augment the model with a selection mechanism that always delivers

a single outcome. Some researchers augment a model with additional restrictions that ensure a

single outcome.

When an empty set of outcomes can be delivered by a model - models admitting this possibility

are called incoherent - it is possible to proceed to inference with no modification of the model if the

null event is observed, and if it is not observed, by assuming unobserved variables are realized only

on regions of their support in which the null outcome cannot arise. Some researchers augment the

model with a mechanism that delivers a single value of the outcome when the null event occurs.

Others impose restrictions that ensure the model they employ is coherent.

In this paper we present a unified treatment of this class of problems. We achieve this by

embedding them in the Generalized IV (GIV) framework set out in Chesher and Rosen (2017),

henceforth CR17. We characterize sharp identified sets of model unknowns as sets of functions or

parameter values that satisfy systems of moment inequalities and equalities. Singleton sets can

result, in which case there is point identification.

Partial identification analysis has long been regarded as one possible avenue for sensitivity
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analysis.1 The framework allows (i) the use of different restrictions on outcomes obtained un-

der incoherence, (ii) the relaxation of equilibrium selection restrictions, and (iii) the removal of

parametric restrictions on the distribution of unobserved variables. We show how, using the GIV

framework, the sensitivity of inference to such restrictions can be assessed. Regarding point (iii)

above, almost all empirical analysis of simultaneous discrete choice employs parametric restrictions

on the distribution of unobserved variables, usually restricted to be Gaussian. Such restrictions have

no provenance in economics. The relaxation of distributional assumptions in moment (in)equality

models has been independently considered by Christensen and Connault (2019) for the sake of

characterizing bounds on counterfactuals when the distribution of unobservables is restricted to

a nonparametric neighborhood of a baseline specification. The approach taken here is different,

focusing on characterizations of identified sets for structural functions or their parameters in the

absence of any distributional restrictions beyond independence.

We illustrate the application of the GIV framework and its use for investigating sensitivity

to relaxations of equilibrium selection and distributional restrictions using the models and data

employed in Mazzeo (2002) and Kline and Tamer (2016). These examples are now introduced.

2 Examples

Example 1: KT16. Simultaneous firm entry.
This is the simultaneous binary outcome model considered in Kline and Tamer (2016), hence-

forth KT16. Binary YLCC and YOA indicate the presence of respectively low cost carriers (LCC)

and other airlines (OA) operating on an air route in the USA. There are exogenous variables listed

in vector Z ∈ RZ , structural equations

YLCC = 1 [ZβLCC + YOA∆LCC + ULCC > 0] , (2.1)

YOA = 1 [ZβOA + YLCC∆OA + UOA > 0] , (2.2)

where Y ≡ (YLCC , YOA) ∈ RY ≡ {0, 1}2, (Y,Z) ∈ RY ×RZ are observable, and U ≡ (ULCC , UOA) ∈
R2 is an unobservable 2-vector. This type of model is studied in many papers including Heckman
(1978), Bresnahan and Reiss (1990, 1991), and Tamer (2003). In KT16 and most other applications

of this model U is restricted to be normally distributed independent of Z with mean zero (a

normalization since one element of Z is constant) and unknown covariance matrix, with variances

1Charles Manski’s work on partial identification suggests starting with very weak assumptions and then considering
progressively stronger assumptions in order to assess the impact of more and less stringent assumptions as in for
instance Manski (1990) in the analysis of treatment effects and in several other settings covered in Manski (2003).
Alternatively, one may take a "top-down" approach as discussed in Tamer (2010) in which a researcher begins
with a point-identifying parametric model, and then considers progressively relaxing assumptions, leading to partial
identification. Tamer (2010) provides several further historical examples in which partial identification has been used
for sensitivity analysis.
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normalized to one.

The indices ZβLCC + YOA∆LCC + ULCC and ZβOA + YLCC∆OA + UOA can be interpreted as

the profit made by respectively LCC and OA carrier types in a market, an airline type operating

on a route if profit is positive. In KT16 the data comprise realizations observed on 7882 routes in

the US in the second quarter of 2010.

Example 2: M02. Product choice and oligopoly market structure:
We present a simplified version of the model considered in Mazzeo (2002), henceforth M02.

There are two types of motel operator: one (L) operating low quality motels, and the other (H)

operating high quality motels.

In a market with yL low quality motels and yH high quality motels the profit made by a

T ∈ {L,H} type firm on opening an additional motel is

πT (z, yL, yH , uT ) = gT (z, yL, yH) + uT

and an additional type T motel is opened in a market with y = {yL, yH} motels present if
πT (z, yL, yH , uT ) > 0. Here z is a vector of values of observed exogenous variables and u = (uL, uH)

are values of unobserved cost shifters.

In the simplified model used here the function gT (z, yL, yH) is the linear index:

gT (z, yL, yH) = zβT + αTLyL + αTHyH . (2.3)

There are more complex specifications in M02, all involving linear indexes.

What inequalities restrict yL and yH if operators are making positive profits? In a market

with y = {yL, yH} motels present it cannot be profitable to open an additional type L motel or an
additional type H motel, so the inequalities:

πL(z, yL, yH , uL) ≤ 0⇐⇒ uL ≤ −gL(z, yL, yH) (2.4)

πH(z, yL, yH , uH) ≤ 0⇐⇒ uH ≤ −gH(z, yL, yH) (2.5)

must both hold at locations with y = {yL, yH}. Additionally, where y = {yL, yH} it must be more
profitable for the market to be in the state y = {yL, yH} than in neighboring states, {yL − 1, yH},
{yL, yH − 1} so the following inequalities must hold.

πL(z, yL − 1, yH , uL) > 0⇐⇒ uL > −gL(z, yL − 1, yH) (2.6)

πH(z, yL, yH − 1, uH) > 0⇐⇒ uH > −gH(z, yL, yH − 1) (2.7)

In M02 these positive profit conditions, that is the system of inequalities (2.4) - (2.7) obtained as

y varies across all pairs of nonnegative integers, are presented as conditions for a pure strategy Nash
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equilibrium. In M02 unobserved U ≡ (UL, UH) is restricted to be independent of Z and bivariate

Gaussian.2 Data comprise realizations of {YL, YH} and exogenous Z observed in the mid 1990’s

at 492 small rural exits on 30 US Interstate Highways at which at least one motel was located. A

consequence of this sampling scheme is that there is no data on markets with Y = {0, 0} which
requires attention in the econometric analysis. To simplify the econometric analysis in M02 the

data are censored such that yT recorded as 3 indicates 3 or more motels of type T ∈ {L,H}.
A selection mechanism is imposed in M02 resulting in a complete model which is estimated using

maximum likelihood methods. The empirical analysis here is done using the incomplete model with

no selection mechanism. Our characterizations of identified sets of model unknowns apply whether

or not a selection mechanism is imposed.

3 The GIV framework

All the models considered in this paper require that endogenous discrete outcomes listed in vector Y ,

observed exogenous variables listed in vector Z, and unobserved variables listed in vector U ∈ RU
are generated by structures that, for some admissible function h satisfy

P[h(Y,Z, U) = 0] = 1 (3.1)

where (Y, Z, U) are defined on a probability space (Ω, L,P), endowed with the Borel sets on Ω.

These variables may have any finite dimension. A structure comprises a couple (h,GU |Z) where h

is a structural function as in (3.1) and

GU |Z ≡ {GU |Z(·|z) : z ∈ RZ}

is a collection of conditional distributions of U given Z = z. RZ is the support of Z and GU |Z(S|z)
is the probability mass on the set S ⊆ RU conditional on Z = z.

A GIV model comprises restrictions which determine which structures are admissible. Consid-

ering the two examples, in both cases unobserved U is restricted independent of Z over their joint

support and U is restricted to be bivariate Gaussian. So the collection GU |Z is restricted to be sim-
ply the singleton set {GU (·)} comprising a Gaussian distribution with some unknown parameters.
In Example 1 a suitable structural function is:

h((yLCC , yOA), z, (uLCC , uOA)) =(
yLCC · |zβLCC + yOA∆LCC + uLCC |−

)
+
(
(1− yLCC) · |zβLCC + yOA∆LCC + uLCC |+

)
+
(
yLOA · |zβOA + yLCC∆OA + uOA|−

)
+
(
(1− yOA) · |zβOA + yLCC∆OA + uOA|+

)
,

2The correlation is restricted to be zero in the empirical analysis reported in M02.
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where |·|− and |·|+ denote the negative and positive part of their arguments, respectively. In

Example 2 the structural function

h((yL, yH), z, (uL, uH)) ≡ max(0, gL(z, yL, yH) + uL) + max(0, gH(z, yL, yH) + uH)

+ max(0,−gL(z, yL − 1, yH)− uL) + max(0,−gH(z, yL, yH − 1)− uH)

captures the restrictions.3 In both examples the models impose linear index restrictions and there

may be restrictions on the admissible values of parameters, for example requiring that variation in

some elements of Z has no effect on one or other of the indexes.

The set of outcomes a structure can deliver at a value of (Z,U) is a zero level set of the structural

function, as follows.

Y(z, u;h) ≡ {y : h(y, z, u) = 0}

In a structure where there are values of (z, u) for which the outcome set Y (z, u;h) has more than

one element, multiple outcomes are feasible, and the structure is termed incomplete. A structure

in which there are values of (z, u) for which Y (z, u;h) is empty is termed incoherent. Models

which admit incomplete structures respectively incoherent structures are incomplete respectively

incoherent models and there are models with both attributes. The rather loaded term “proper”

has been use to describe models that are both complete and coherent.

A level set on the support of U that is dual to the outcome set Y(z, u;h) is the residual set

U(y, z;h) ≡ {u : h(y, z, u) = 0}

which will play an important role in the subsequent analysis. This set contains all values of

unobserved U that deliver Y = y when Z = z. In many econometric models this is a singleton

set but in models of simultaneous discrete choice, when U is continuously distributed, it is not.4

Complete structures have disjoint U level sets at every value of Z because where residual sets

intersect one value of U can deliver more than one value of Y .5 Structures which are both complete

3This specification of h allows either yT − 1 or yT when the marginal profit of yT for type T is zero. Strictly
speaking this differs from (2.4) - (2.7), but only on a set of values of U of Lebesgue measure zero, and is hence of no
consequence. Likewise, the specification of h in Example 1 allows each yT to be either zero or one when the profit
from entering is exactly equal to zero, which is a zero probability event.

4There are also nonsingleton residual sets in models with continuous or discrete outcomes that admit unobservables
with higher dimension than outcomes, for example panel data models with error components and random coeffi cient
models.

5The terminology used here follows Tamer (2003) and Lewbel (2007) in distinguishing between incoherent and
incomplete models. Some earlier papers in the literature, e.g. Gourieroux, Laffont and Monfort (1980) and Blundell
and Smith (1994) use incoherence to mean either incoherence or incompleteness as we have defined them. This
alternative definition renders coherence equivalent to the existence of a unique reduced form, as described by Lewbel
(2007), and is also equivalent to our use of the term proper. Many of the models employed in the early history of
econometrics were proper, and in such models a unique conditional distribution of outcomes given observed exogenous
variables can be obtained by transformation, via the structural function, of the conditional distribution of unobserved
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Table 1: Values of competition parameters in graphs of residual sets for the M02 model

Figure αLL αLH αHL αHH
2 −1.5 −0.75 −2.0 −0.8
3 −1.3 −1.8 −1.4 −1.9
4 −1.8 −1.3 −1.4 −1.8

and coherent have residual sets that partition the support of U at each value of Z. Then with a

parametric specification of the distribution of U a likelihood analysis is feasible.

Figure 1 shows the residual sets of the simultaneous firm entry model of Example 1 for four

particular structures at a particular value of Z. The upper panes have ∆LCC∆OA > 0, both

negative in the left hand pane, both positive in the right hand pane. In each case there are residual

sets with non-empty intersections indicating incomplete structures. Considering the left hand upper

pane the overlapping residual sets are U((0, 1), z;h) and U((1, 0), z;h). The union of these residual

sets has no intersection with any other residual set so the structure is complete for the outcome

Y + ≡ YLCC + YOA which is the number of carrier types operating on a route. With the Gaussian

restriction the KT16 model is a complete parametric model for the outcome Y + and maximum

likelihood estimation is feasible although this will not use all the information contained in the data.

ML estimates are reported later. Similarly the structure with residual sets shown in the right

hand pane of Figure 1 is complete for the outcome Y − ≡ YLCC − YOA. The lower panes in Figure
1 show residual sets for structures with ∆LCC∆OA < 0. For values of U in the central region

labelled U(φ, z;h) there are no values of Y that satisfy the restrictions of the model, that is, for all

u ∈ U(φ, z;h), Y(u, z;h) = ∅, the empty set. The other residual sets have no intersection so these
structures are complete and incoherent. Structures with ∆LCC∆OA = 0 have residual sets which

partition the support of U . Such structures are complete and coherent.

Figures 2, 3 and 4 show residual sets for the M02 model for three particular structures with

different relative magnitudes of the competition parameters αLL, αLH , αHL and αHH as shown in

Table 1. In all cases there are many intersecting residual sets indicating that these are incomplete

structures and the nature of the intersections varies with the relative magnitudes of the competition

parameters. In some cases (not shown in these graphs) a positive value for a competition parameter

produces an incoherent structure. The structure generating Figure 4 is complete for the outcome

Y + ≡ YL + YH which is reminiscent of the KT16 model. Recall that high values of YL and YH are

censored with values recorded as 3 indicating a value at least equal to 3. The M02 data records no

locations with Y = (0, 0) so in the empirical analysis the distribution of U will be the truncated

distribution which places zero probability mass on U((0, 0), z;h).

variables given observed exogenous variables.
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3.1 Plan of the remainder of the paper

Chesher and Rosen (2017) provides characterizations of identified sets of structures in GIV models

under the conditions set out in Restrictions A1-A6 below. The result from CR17 employed here

is given in Theorem 1. The following Section 4 applies the result to characterize identified sets

in structural models of simultaneous discrete choice under various treatments of incompleteness

and incoherence. In Section 5 the results are used in an analysis of the models and data of KT16

and M02. Section 6 provides characterization of a fast-to-compute outer region for the projection

of an identified set of structures onto the space of structural functions, or parameters in case of

a parametric specification. A method for determining whether a structural function in the outer

region is in the projection is provided for the case in which all observed variables are discrete. The

results are applied to the KT16 model and data. Section 7 concludes and outlines ongoing research.

3.2 Identified sets delivered by GIV models

Here are the restrictions employed in the GIV framework used here.6

Restriction A1: (Y,Z, U) are random vectors defined on a probability space (Ω, L,P), endowed

with the Borel sets on Ω. The support of (Y,Z, U) is a subset of a finite-dimensional Euclidean

space. �
Restriction A2: A collection of conditional distributions on RY denoted

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
is identified by the sampling process, where for all T ⊆ RY |z, FY |Z (T |z) ≡ P [Y ∈ T |z]. �
Restriction A3: There is an L-measurable function h (·, ·, ·) : RY ZU → R such that

P [h (Y, Z, U) = 0] = 1,

and there is a collection of conditional distributions on RU denoted

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
,

where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. �
Restriction A4: The pair

(
h,GU |Z

)
, termed a structure, belongs to a known set of admissible

structuresM. �
Restriction A5: U (Y,Z;h) ≡ {u : h(Y,Z, u) = 0} is closed almost surely P [·|z], each z ∈ RZ . �
Restriction A6: Y (Z,U ;h) ≡ {y : h(y, Z, U) = 0} is closed almost surely P [·|z], each z ∈ RZ . �

6Throughout, the notation RA is used to denote the support of a random vector A, and likewise RAB and RA|b
are used to denote the joint support of (A,B) and the conditional support of A given B = b, respectively.
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Restriction A1 defines the probability space on which (Y,Z, U) reside and restricts their support

to Euclidean space. Restriction A2 requires that for each z ∈ RZ , FY |Z (·|z) is identified. It is
convenient to have notation

fY |Z(y|z) ≡ FY |Z({y}|z) = P[Y = y|Z = z], y ∈ RY |z

for the simple probability mass function which gives the probability mass on a single point of

support of Y given Z = z. Restriction A3 posits the existence of structural relation h, and provides

notation for the collection of conditional distributions GU |Z of U given Z.

Restriction A4 imposes modelM, the collection of admissible structures
(
h,GU |Z

)
. Unlike the

previous restrictions, it is refutable based on knowledge of FY |Z in that it is possible that there is
no
(
h,GU |Z

)
∈ M such that P [h (Y,Z, U) = 0] = 1. In such cases the identified set of structures

is empty, indicating model misspecification. Let H = {h : ∃GU |Z s.t. (h,GU |Z) ∈ M} denote the
projection ofM onto the space of structural functions.

Restrictions A5 and A6 restrict U (Y,Z;h) and Y (Z,U ;h) to be random closed sets. These

restrictions are satisfied for example ifM specifies that all admissible h are continuous in their first

and third arguments, respectively, but can also hold more generally. A given econometric model

can generally be represented through a variety of different but substantively equivalent structural

functions h, and judicious choice of this function can often be made to ensure these requirements

are satisfied.

Here is a definition of the conditional containment functional of the random set U(Y,Z;h) for

a set S.7 This gives the conditional probability that the random set U(Y,Z;h) is a subset of S for
a structural function h. It plays a key role in what follows.

Definition 1 The conditional containment functional of the random set U(Y, Z;h) for a set S ⊆ RU |z
given Z = z is:

Ch (S|z) ≡ P[U(Y, Z;h) ⊆ S|Z = z] = FY |Z(A(S, z;h)|z) =
∑

y∈A(S,z;h)
fY |Z(y|z)

where

A(S, z;h) ≡ {y : U(y, z;h) ⊆ S} (3.2)

is the set of values of Y that can only be realized when U ∈ S.

Now we define a collection of subsets of RU |z which comprises all possible unions of residual
sets U (y, z;h).

7For the formal definition of a random closed set see e.g. Molchanov and Molinari (2018) or Molinari (2020).
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Definition 2 The conditional support of random set U (Y,Z;h) given Z = z is U (h, z).

U (h, z) ≡
{
U ⊆ RU : ∃y ∈ RY |z such that U = U (y, z;h)

}
.

U∗ (h, z) is the collection of all sets that are unions of the sets in the collection U (h, z):

U∗ (h, z) ≡

U ⊆ RU : ∃Y ⊆ RY |z such that U =
⋃
y∈Y
U (y, z;h)

 .
There is the following Theorem which follows directly from Corollary 1, Lemma 1 and Theorem

3 of CR17.

Theorem 1 Under Restrictions A1-A6, the identified set of structures is

M∗ ≡
{(
h,GU |Z

)
∈M : ∀S ∈ Q(h, z), Ch (S|z) ≤ GU |Z (S|z) , a.e. z ∈ RZ

}
, (3.3)

where Q(h, z), defined in Theorem 3 of CR17, is a selection of sets from the collection U∗ (h, z).

The main practical import of the refinement of U∗ (h, z) delivered by Theorem 3 of CR17 to

produce Q(h, z) is that, when all residual sets are connected, it allows exclusion from consideration

of those sets in U∗ (h, z) that are disjoint. Corollary 2 of CR17 gives conditions under which

inequalities in the characterization ofM∗ become equalities. This leads to the conclusion that the
identified set of structures is entirely characterized by equality restrictions either when residual sets

are singleton with probability 1 or when the model under consideration is complete, or when both

conditions are satisfied.8

These results are now applied to models of simultaneous discrete choice. In all the cases consid-

ered identified sets of structures are characterized by systems of inequalities as in (3.3), the residual

sets under consideration and the collections of distributions GU |Z varying from case to case.

4 Identification

In this section we consider four approaches to the analysis of incoherent and incomplete models.

The first three deal with incompleteness in the same way as the recent literature on set identi-

fication in incomplete models, the observed outcome being permitted to be any one of the set

8For instance, the multinomial logit model studied in McFadden (1974) is complete. In their analysis of instru-
mental variable models of multiple discrete choice, Chesher, Rosen and Smolinski (2011) in Section 3.2 show how
moment inequalities that characterize the identified set reduce to moment equalities when there are no endogenous
variables. In that case the model is complete, and if the alternative-specific utility functions are restricted to be
linear with additive unobservable utility shifters distributed i.i.d. Gumbel, the moment inequalities correspond to
the likelihood contributions of the model studied in McFadden (1974).
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Table 2: A summary of the determination of outcome Y for the approaches of section 4 when a
model delivers no or multiple solutions.

Restrictions for the determination of Y when:
Y(U,Z;h) = φ: (no value) card(Y(U,Z;h)) > 1 (multiple values)

Approach IC1 Y = φ Y ∈ Y(U,Z;h)
Approach IC2 not observed Y ∈ Y(U,Z;h)
Approach IC3 Y ∈ RY |z Y ∈ Y(U,Z;h)

Approach IC4 not observed not observed

of outcomes delivered by an incomplete structure. The approaches differ in the way the event

{Y(Z,U ;h) = ∅} is handled in incoherent structures. The fourth approach, proposed by Dagenais
(1997) and Hajivassiliou (2008), treats incoherence and incompleteness identically in a way that

enables construction of a unique likelihood function when there is a parametric specification of the

distribution of unobserved U . The four approaches are summarized in Table 2.

Maximum likelihood estimation of the KT16 model using data on the number of airline types

on each route (which we show is feasible in section 5.1) delivers results reported in Section 5.1

suggesting that the KT16 data is delivered by an incoherent structure. So attention to incoherency

is necessary.

In all of the models considered now U is specified to be continuously distributed and U and Z

are restricted to be stochastically independent on their joint support.

Restriction A7: Unobservable U is absolutely continuously distributed with respect to Lebesgue

measure on its support RU = Rku and U and Z are stochastically independent on their joint

support RU ×RZ , which is a subset of a finite dimensional Euclidian space. �

4.1 Approach IC1: Observed Null Outcomes

This approach can be employed when the occurrence of the event {Y(Z,U ;h) = ∅} can be observed.
Data obtained in the field rarely contain such information but it could be present in data generated

by experimental studies.

We use φ as a place-holder for the null realization that Y takes when the event {Y(Z,U ;h) = ∅}
occurs and we define U(φ, z;h) as the set of values of U such that no value y ∈ RY satisfies

h(y, z, u) = 0. Thus we have the equivalence of events

{Y = φ} ⇔ {Y(Z,U ;h) = ∅} ⇔ {U ∈ U(φ, z;h)} . (4.1)

and for all z ∈ RZ , P[Y(Z,U ;h) = ∅|Z = z] = P[Y = φ|Z = z]. The probability mass allocated by

P[·|Z = z] over the extended support R∗Y ≡ RY ∪ φ is one. With the event {Y = φ} observable,
P [Y ∈ T |Z = z] = FY |Z (T |z) is identified for all sets T ∈ Y∗ and almost every z ∈ RZ . We
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extend the definition of the structural function h (·, ·, ·) to cover the extended support R∗Y with the
following restriction.

Restriction B1 (Observed Null Outcomes): The outcome variable Y has support R∗Y =

RY ∪ φ, and there is the equivalence of events {U ∈ U(φ,Z;h)} ⇔ {Y = φ}. Further, for any
(u, z), h (φ, z, u) = 0 if for all y ∈ RY , h(y, z, u) 6= 0, and h (φ, z, u) 6= 0 if h(y, z, u) = 0 for some

y ∈ RY . �

Under Restrictions A1-A7 and B1 Theorem 1 characterizes the identified set of structures with

(i) the structural function h interpreted as the extended structural function of Restriction B1,

(ii) the residual set U(φ, z;h) contributing in the construction of the unions of residual sets that

comprise the collection of sets Q(h, z), (iii) GU |Z replaced by GU and GU |Z(·|z) replaced by GU (·)
by virtue of Restriction A7.

4.2 Approach IC2: Truncated null outcomes

This approach can be taken when all the observable realizations of (Y, Z) come from realizations

of (U,Z) such that Y(u, z;h) is non-empty. If the structural function h is incoherent there could

be realizations of (U,Z) such that Y(u, z;h) is empty, but in the scenario considered here the

occurrence of the event {Y(U,Z;h) = ∅} is not observed. This will commonly be the case when
data are gathered in the field.

In this situation the observable realizations of (Y,Z) are associated with realizations of (U,Z)

from the truncated support: {(u, z) ∈ RUZ : Y(u, z;h) 6= ∅}. Accordingly there is Restriction B2.

Restriction B2 (Truncated Null Outcomes): All realizations of (Y, Z) are such that Y(u, z;h)

is non-empty. For each z ∈ RZ the distribution of Y conditional on Z = z, FY |Z(·|z), identified by
the sampling process is the distribution of Y given Z = z and Y(U,Z;h) 6= ∅. �

The probability of the event {Y(U,Z;h) = ∅} is

P[Y(U,Z;h) = ∅|Z = z] = GU (U(φ, z;h))

where the restriction A7 that U and Z are stochastically independent on their full joint support is

imposed.

Under Restrictions A1-A7 and B2, Theorem 1 characterizes the identified set of structures with

GU |Z(S|z) =
GU (S)

1−GU (U(φ, z;h))
(4.2)

which embodies both Restriction A7 and the effect of truncation of the distribution of U .
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4.3 Approach IC3: Indeterminate allocation of null outcomes

In this approach when the event {Y(U,Z;h) = ∅} occurs any value of Y on its support can be

realized and the model places no restriction on the selection of this value. This reflects the idea

that the model conveys no information about the way in which Y is generated when no value of Y

satisfies the condition h(y, z, u) = 0. This approach, captured in Restriction B3, was considered by

Beresteanu, Molchanov and Molinari (2011, online supplement p.53).

Restriction B3 (Indeterminate allocation of null outcomes): If (U,Z) are such that Y(U,Z;h) =

∅, equivalently if U ∈ U(φ,Z;h) then any value of Y in RY is feasible. �

In this case the residual sets are

U(y, z;h) = {u : h(y, z, u) = 0} ∪ {u : Y(u, z;h) = ∅} (4.3)

equivalently

U(y, z;h) = {u : h̃(y, z, u) = 0}

where h̃ is a modified structural function.

h̃(y, z, u) = 1[Y(u, z;h) 6= ∅]× h(y, z, u)

Under Restrictions A1-A7 and B3 Theorem 1 characterizes the identified set of structures with

the structural function h̃ in place of the structural function h and with GU (S) in place of GU |Z (S|z)
which results from Restriction A7.

In Example 1, in the lower panes of Figure 1 which shows residual sets for incoherent structures,

the residual sets under Approach 3 are each the union of a residual set with the central rectangular

region in which Y(u, z;h) = ∅. Since the resulting residual sets have non-null intersections the
model obtained under Approach IC3 is incomplete. In our analysis of the KT16 data we do

not constrain the signs of the competition parameters, allowing the possibility of incoherence and

employ Approach IC2 and Approach IC3 in complementary analyses.

4.4 Approach IC4: Truncation of null and non-unique outcomes

In this approach, employed by Dagenais (1997) and Hajivassiliou (2008) it is assumed that observed

data are regarded as realizations of (Y,Z) obtained from realizations of (U,Z) such that Y(U,Z;h)

is a non-null singleton set.

Restriction B4 (Truncated null and nonunique outcomes): All realizations of (Y, Z) are

such that Y(u, z;h) is a non-empty singleton set. For each z ∈ RZ the distribution of Y conditional
on Z = z, FY |Z(·|z), identified by the sampling process is the distribution of Y given Z = z and

card (Y(U,Z;h)) = 1. �
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For this approach define the residual sets as follows

U(y, z;h) ≡ {u : h(y, z, u) = 0 and ∀y′ 6= y h(y′, z, u) 6= 0)} (4.4)

and define the set

B(z;h) ≡ {u : card (Y(u, z;h)) 6= 1}

Under Restrictions A1-A7 and B2, Theorem 1 characterizes the identified set of structures with the

residual sets as defined in (4.4) and with

GU |Z(S|z) =
GU (S)

1−GU (B(z;h))

which embodies both Restriction A7 and the effect of truncation of the distribution of U .

The model obtained under Approach IC4 is complete and coherent by construction and the

characterization delivered by Theorem 1 comprises a system of moment equalities. Estimation by

maximum likelihood is feasible with a parametric specification of GU .

4.5 Complete and coherent models via restrictions on structures

In some applications incompleteness and incoherence are ruled out by imposing restrictions on

structural functions that guarantee outcome sets Y(Z,U ;h) are singleton with probability 1 for all

admissible h.

Amemiya (1974) imposes such conditions in a class of simultaneous Tobit models as does Heck-

man (1978) in models with simultaneous equations in binary outcomes. Gourieroux, Laffont and

Monfort (1980) and Blundell and Smith (1994) impose coherency conditions in their analysis of

simultaneous equations regime-switching models and simultaneous equations models of qualitative

or censored outcomes, respectively. For a more thorough review of this approach in a variety of

models see e.g. Schmidt (1981) and Maddala (1983).

Alternative approaches to completing incomplete models include redefining the outcome vari-

able or specifying a selection mechanism that chooses one from multiple potential outcomes. In

simultaneous binary response models of firm entry, Bresnahan and Reiss (1990, 1991) circumvent

problems posed by incompleteness by exploiting the observation that their model uniquely deter-

mines the number of entrants. Bjorn and Vuong (1984) and Kooreman (1994) augment models

which are incomplete by specifying that whenever Y(Z,U ;h) contains more than one outcome,

one of these is selected by some stochastic process characterized by additional parameters. Bajari,

Hong and Ryan (2004) illustrate how to incorporate equilibrium selection mechanisms into general

discrete games of complete information.

All these approaches yield specifications of the structural function that result in a model that is

complete and coherent. The methods that we employ apply to such models with the simplification
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that identified sets in such complete models are characterized by a system of moment equalities as

shown in CR17.

5 Applications

In this Section we employ the data used in KT16 and M02 to estimate the identified sets delivered

by their parametric models.9 Where parameter values lead to an incomplete structure the observed

outcome is permitted to be any member of the set of outcomes delivered by the structure, the

model being silent about the manner in which a value emerges. Where parameter values lead to

incoherent structures we adopt approaches IC2 and IC3 in turn. The focus is first and mainly on

the KT16 data and model.

5.1 KT16 model and data

The KT16 data come from the second quarter of the 2010 Airline Origin and Destination Survey

(DB1B).10 The data contain 7882 markets, defined as trips between two airports irrespective of

intermediate stops. For each market there are binary indicators recording the presence of each

airline type, YLCC for Low Cost Carriers and YOA for Other Airlines and values of binary explana-

tory variables: Zsize which is a market specific variable with common values across airline types

measuring market size and ZpresLCC and Z
pres
OA which are market- and airline- type-specific variables

measuring market presence.

In KT16 (page 356) the calculation of the market presence and size variables is described as

follows.

The analysis considers two explanatory variables: market presence and market size.

The first explanatory variable is market presence, which is a market- and airline-specific

variable: for each airline and for each airport, compute the number of markets that

airline serves from that airport and divide by the total number of markets served from

that airport by any airline. The market presence variable for a given market and airline

is the average of these ratios (excluding the one market under consideration) at the

two endpoints of the trip, providing some proxy for an airline’s presence in the airports

associated with that market. See also Berry (1992)....[T]he market presence for the

LCC firm (resp. OA firm) is the maximum among the actual airlines in the LCC

category (resp. OA category). The second explanatory variable is market size, which is

a market-specific variable (but shared by all airlines in that market), which is defined

as the population at the endpoints of the trip. The market size and market presence

9 In the case of M02 we use a much simplified version of the model.
10The data has also been subsequently used in applications studied in Chen, Christensen, and Tamer (2018) and

Kaido, Molinari, and Stoye (2019).
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variables actually used in the empirical application are discretized binary variables based

on the continuous variables just described. They take the value of 1 if the variable is

higher than its median value and 0 otherwise.

The profit made by airline type t ∈ {LCC,OA} operating in market m is

βconst + βsizet Zsizem + βprest Zprest,m + ∆tYs,m + Ut,m

where s 6= t with s ∈ {LCC,OA}.11 For further details see KT16. Define the parameter vector θ.

θ ≡ (βconsLCC , β
cons
OA , βsizeLCC , β

size
OA , β

pres
LCC , β

pres
OA ,∆LCC ,∆OA, ρ).

First consider a measure of the distance of a value of θ from the identified set defined by the

inequalities given in (3.3). The distance measure used here is D(θ) defined as

D(θ) ≡
∑
z∈RZ

∑
S∈Q(θ,z)

max
(
0, Cθ (S|z)−GU |Z (S|z; θ)

)
(5.1)

where

z = (zsize, zpresLCC , z
pres
OA )

The notation makes explicit that with the KT16 parametric specification the 9-element parameter

vector θ characterizes a structure. Note that θ appears as an argument of the distribution since

in the Gaussian specification there is the correlation parameter ρ which is an element of θ. The

distance measure D(θ) is zero for values of θ in the identified set and positive for values outside it.

For values of θ that deliver an incoherent structure we define D2(θ) for the case in which we

adopt approach IC2 and D3(θ) for the case in which we adopt approach IC3.12 In calculating

D2(θ), GU |Z (·|z; θ) is the truncated Gaussian distribution with zero probability mass on U(φ, z; θ),

defined in (4.2). In calculating D3(θ), GU |Z (·|z; θ) is bivariate Gaussian independent of z while the
residual sets used in calculating Cθ (S|z) are the sets defined in (4.3).

We study estimated distance measures, D̂s(θ), s ∈ {2, 3}, in which containment probabilities are
estimated using the KT16 data. The KT16 data are used to estimate 32 conditional probabilities,

FY |Z({y}|z) = fY |Z(y|z), of each of 4 values of Y , y ∈ RY = {(0, 0), (1, 0), (0, 1), (1, 1)} and 8 values

of the three binary exogenous variables. The estimates, simple relative cell frequencies calculated

from the 7882 observations are denoted f̂Y |Z(y|z) and the formula for the estimated containment
11 In KT16 the term payoff is used where here we use profit.
12The data carry no record of a route for which Y = φ, so approach IC1 is not available and we choose not to

consider approach IC4.

16



probabilities is a linear function of these probabilities

Ĉθ (S|z) =
∑
y∈RY

1[y ∈ A(S, z; θ)]× f̂Y |Z(y|z)

where A(S, z; θ) is as defined in (3.2) with θ replacing h in view of the parametric specification.
There are up to 112 inequalities and equalities contributing to the values of the estimated distance

measures.

The minimum value of the estimated distance measures using either of the approaches IC2 and

IC3 is positive and small, equal to 0.43. The values of the parameters that minimize the distance

measures are shown in column 2 of Table 3. The distance-measure-minimizing values of ∆LCC

and ∆OA are both negative and structures with these parameter values are coherent so it is to be

expected that approaches IC2 and IC3 give the same results.13

Because the minimum value of the distance measures is positive the analog estimate of the

identified set of parameter values is empty. This could be an indication of model misspecification

but a likely major factor is inward bias in the analog set estimate arising because of sampling

variation in the estimated containment probabilities. The identified set comprises values of θ such

that D(θ) ≤ 0, equivalently such that

max
z∈RZ

max
S∈Q(θ,z)

(Cθ (S|z)−GU |Z (S|z; θ)) ≤ 0.

Applying the nonlinear max operator to noisy estimates of the containment probability Cθ (S|z)
will tend to result in an overestimate of D(θ) leading to a set estimate which is inward biased.

Inspecting the contributions to the estimated distance measure by the 112 restrictions we find

that there are 48 equality restrictions, 6 at each value of the exogenous variables. This is as

predicted by Corollary 2 of CR17, arising because at and near the parameter values at which the

distance measure is minimized there are residual sets and unions of residual sets in each collection

Q(z, θ) which have no intersection with other residual sets. Indeed as noted in Bresnahan and Reiss

(1990, 1991) the KT16 model is complete at these parameter values for the outcome Y + = Y1 + Y2

which is the number of airline types in the market, and identified sets in complete models are

characterized by moment equalities as noted earlier. All the equality restrictions and a few of the

inequality restrictions are violated at the distance-measure-minimizing parameter value.

Exact probabilities were calculated for an incomplete and coherent KT16 structure with the

parameter values shown in Table 4.14 The value of the distance measure at that parameter value

13 It was necessary to consider both approaches in case a distance-measure-minimizing parameter value delivering
an incoherent structure was found using either approach.
14A selection mechanism was imposed with random selection of one from multiple potential outcomes such that

each potential outcome was equally likely to be chosen.
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is zero to within machine accuracy.15 Evaluating the distance measure in a hypercube with side

of length 0.002 around the parameter value that generates the probabilities delivers positive values

between 0.001 and 0.004 possibly suggestive of local point identification.

In the presence of this large number of equality restrictions it is possible that the KT16 model is

point identifying at parameter values around those that minimize the distance measure and inward

bias in estimating a singleton set leads to an estimated set that is empty. Even if there is not point

identification the presence of equality restrictions can lead to the identified set being a manifold

with lower dimension than θ. In this case inward bias due to sampling variation in estimated

probabilities will cause analog estimators of the identified set to be empty sets.

It is clearly essential to take the effect of sampling variation in estimated probabilities into

account and to this end we employ the procedure introduced in Belloni, Bugni and Chernozhukov

(2018) (BBC18) to calculate 95% confidence regions for projections of the 9-element θ onto each

of its axes in turn. The procedure is designed to perform well for inference on low dimensional

functions of parameters in high dimensional parametric settings when identified sets are defined by

a large number of moment inequalities, some of which may be equalities. It accommodates point

and partially identifying models.

Let the functions of moments required to be nonpositive at a parameter value θ in an identified

set be denoted mj(θ), j ∈ {1, . . . , J}. Let the core determining sets in Q(z, θ) be denoted as follows

Q(z, θ) =
{

(Sk(j), zl(j)) : j ∈ {1, . . . , J}
}

where {k(j) : j ∈ {1, . . . , J}} is a list of indexes identifying unions of residual sets, {l(j) : j ∈
{1, . . . , J}} is a list of indexes identifying values of Z ∈ RZ and each set Sk(j) is a union of residual
sets determined by the value of zl(j) and θ.

In the KT16 application there are J = 112 inequalities, the moment conditions are∑
y∈RY

1[y ∈ A(Sk(j), zl(j); θ)]× fY |Z(y|zl(j))−GU |Z
(
Sk(j)|zl(j); θ

)
≤ 0, j ∈ {1, . . . , J}

and the moment functions are defined as

mj(θ) =
∑
y∈RY

(
1[y ∈ A(Sk(j), zl(j); θ)]−GU |Z

(
Sk(j)|zl(j); θ

))
× fY Z(y, zl(j)) ≤ 0

where fY Z(y, z) denotes the joint probability that Y = y and Z = z.

With data {(Yi, Zi) : i ∈ {1, . . . , N}} define

mij(θ) ≡
(
1[y ∈ A(Sk(j), zl(j); θ)]−GU |Z

(
Sk(j)|zl(j); θ

))
× 1[Yi = y ∧ Zi = zl(j)]

15Calculated as 10−16. The calculations were done in R, (R Core Team (2018)). Bivariate Gaussian probabilities
were calculated using the pmvnorm function in the mvtnorm package, Genz and Bretz (2009), Genz et al (2018).
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and let m̂j(θ) denote the estimator

m̂j(θ) = N−1
N∑
i=1

mij(θ)

=
∑
y∈RY

(
1[y ∈ A(Sk(j), zl(j); θ)]−GU |Z

(
Sk(j)|zl(j); θ

))
f̂Y Z(y, zl(j))

where

f̂Y Z(y, z) = N−1
N∑
i=1

1[Yi = y ∧ Zi = z]

is a simple relative frequency estimator of the probability that Y = y and Z = z. Let σ̂2j (θ) =

N−1
∑N

i=1 (mij(θ)− m̂j(θ))
2 denote an estimator of the variance of N1/2m̂j(θ).

The 100(1− α)% confidence region for the projection of the identified set onto the space of an

element θk of θ is

CI(θk, α) =

{
r : inf
{θ:θk=r}

max
j∈{1,...J}

(
N1/2 m̂j(θ)

σ̂j(θ)

)
≤ cN (J, α)

}
where cN (J, α) is the critical value

cN (J, α) =
Φ−1(1− α/J)√

1− Φ−1(1− α/J)2/N
.

with Φ denoting the standard Gaussian cumulative distribution function.

The 95% regions are shown in columns 3 and 4 of Table 3.16 Both approaches IC2 and IC3

were employed with identical results.17 The data are quite informative about the values of the

parameters in the context of the KT16 model.18 The effect of the presence of each airline type on

the profits of the other is negative and significantly different from zero. Higher market presence

is associated with higher profits with positive estimates significantly different from zero. The 95%

regions accord quite well with the graphs of marginal posterior distributions of the parameters

shown in KT16.

Corollary 2 of CR17 shows which of the inequalities defining the identified set of parameter
16Values of ρ very close to 1 arise. We have taken care to use functions to calculate Gaussian probabilities that

are robust to singularity of the covariance matrix, specifically the pmvnorm function in the package mvtnorm in R. We
obtain similar results when in the optimization with respect to elements of θ in the calculation of the 95% regions
optimization is done with respect to tanh−1(ρ) which lies in (−∞,∞).
17Even though the 95% regions for ∆LCC and ∆OA contain only negative values it is necessary to allow for the

possibility of positive values when calculating the regions because in minimizing over values of θ in the calculation of
the region positive values of these competition parameters may be found.
18 In just one case the simple distance-measure-minimizing value of a parameter (βpresOA ) does not lie in the 95%

region. But this can happen because the estimated moment functions are not weighted in calculating the simple
distance measure whereas they are weighted by estimates of the accuracy of their estimation in computing the
confidence regions.
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values are equalities at any parameter value. In the KT16 model the result is that unless ∆LCC > 0

and ∆OA > 0 the model is complete for the outcome Y + ≡ YLCC+YOA, the number of airline types

on a route. This accords with the analysis in Bresnahan and Reiss (1990, 1991) for the coherent

case. With the Gaussian restriction on the distribution of the unobservables a maximum likelihood

(ML) estimate can be calculated using (Y +, Z) data as long as the parameter vector θ is point

identified using the information contained in the distribution of Y + and Z, which it appears to

be.19

ML estimates are shown in column 5 of Table 3. Strikingly the ML estimate of ∆LCC is

positive indicating that an incoherent structure generates the data.20 Calculating a Wald test of

H0 : ∆LCC = 0 delivers a p-value smaller than 0.001. A constrained ML estimate holding∆LCC = 0

is reported in column 6 of Table 3 and it can be seen that the maximized log likelihood function,

maxθ LL(θ), is significantly higher absent the constraint. The constrained ML estimate of ρ is

positive while the unconstrained estimate is negative.

These ML results using information on only the number of airline types working a route are at

odds with the results obtained using all the information in the data which reveals the identity of

the airline types on a route in addition to the number of airline types. The 95% confidence regions

on the competition parameters using Y data rather then Y + data clearly exclude positive values for

these parameters. This suggests that there is much to be gained here in using all the information

in the data.

These results raise the possibility that the KT16 model is misspecified in some respect. There

should not be grossly different results obtained using data aggregated at different levels. To investi-

gate, Information Matrix (IM) tests (White (1982)) were calculated, focussing on each parameter in

turn delivering p-values for unconstrained and constrained ML estimates as shown in columns 7 and

8 of Table 3.21 Three of the IM tests lead to rejection of the specification with the nonnegativity

constraint imposed on ∆LCC ; only one leads to rejection when the constraint is lifted.

This result and the differences found when using Y + information rather than all the information

on outcomes lead us to consider estimation under a relaxation of the restrictions of the KT16
19Using the exact probabilities at the parameter value shown in Table 4 we find that the Information Matrix

associated with the likelihood function for the Y + outcome is nonsingular at that parameter value indicating the
possibility of local point identification, see Rothenberg (1971).
20The calculation of the likelihood function takes account of the signs of the competition parameters. When one

of these is negative and the other is positive the model is incoherent but remains complete for Y + as long as we use
approach IC2 which we do in the ML calculation.
21 IM tests associated with the constant terms are identically zero. Information matrix tests compare elements of

two estimates of the Information Matrix associated with a likelihood function. One estimate is the negative of the
average of contributions to the matrix of second derivatives of the log likelihood function; the other is the variance-
covariance matrix of contributions to the score vector. In the application here the calculation is done as proposed in
Chesher (1983) and we use numerical approximations to first and second derivatives of log likelihood contributions
calculated using the grad and hessian functions in R’s numDeriv package. The Chesher (1983) representation follows
from the interpretation in Chesher (1984) of the IM test as a score test of the hypothesis that there is no parameter
heterogeneity.
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Table 3: Results obtained using the KT16 data and model: column 2 gives results on minimizing a
measure of distance from an identified set; columns 3-4 give lower and upper bounds of confidence
regions on projections; columns 5 and 7 give the unconstrained MLE and associated IM test p-
values; columns 6 and 8 give a constrained MLE and associated IM test p-values

95% regions IM tests

arg min
θ
D̂(θ)

lower
bound

upper
bound

MLE
(std err)

Constrained
MLE
(std err)

Column 5
p value

Column 6
p value

1 2 3 4 5 6 7 8

βconsLCC −0.80 −1.01 −0.67 −2.363
(0.0856)

−2.015
(0.0791)

- -

βsizeLCC 0.39 0.19 0.50 −0.173
(0.1313)

0.130
(0.0837)

0.178 0.195

βconsOA 0.51 0.39 0.59 0.553
(0.0476)

0.501
(0.0334)

- -

βsizeOA 0.52 0.44 0.54 0.466
(0.0419)

0.463
(0.0429)

0.198 0.010

βpresLCC 1.64 1.57 1.95 1.923
(0.2488)

2.216
(0.1484)

0.667 0.007

βpresOA 0.38 0.44 0.64 0.374
(0.0419)

0.437
(0.0363)

0.285 0.336

∆LCC −1.44 −1.65 −1.20 1.262
(0.3927)

0.000
(constr)

0.029 -

∆OA −1.37 −1.54 −1.07 −1.385
(0.1591)

−1.273
(0.1202)

0.664 0.480

ρ 0.95 0.84 0.99 −0.326
(0.2352)

0.432
(0.0925)

0.144 0.080

min
θ
D(θ) 0.43

max
θ
LL(θ) −5709.1 −5712.6

model. Many relaxations could be considered. Here we ask what information about the parameters

is provided by the data when the bivariate Gaussian restriction is dropped while maintaining the

independence of U and Z and the linear index restrictions. That is the subject of Section 6.

First we give results obtained using the M02 model and data.

5.2 M02 model and data

The M02 data comprise realizations of YL and YH , the number of respectively low and high quality

motels and values of exogenous variables in the mid 1990’s at 492 small rural exits (markets) on 30

US Interstate Highways at which at least one motel was located. In the empirical analysis reported

here the values of YL and YH are censored with a value of 2 indicating 2 or more motels.

We use a much simplified version of the model employed in M02 in which the profit made by a

motel operator of type T ∈ {H,L} on opening an additional motel of type T at exit m when there
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Table 4: Value of the parameter vector used in simulations and exact probability calculations for
the KT16 model

Parameter Parameter value

βconsLCC −1.0

βsizeLCC 0.5

βconsOA 1.0

βsizeOA 0.5

βpresLCC 1.5

βpresOA 0.5

∆LCC −1.5

∆OA −1.3

ρ 0.7

are Ym,H high and Ym,L low quality motels already present is:

βT0 + βT1Zm,1 + βT2Zm,2 + αTLYm,L + αTHYm,H + Um,T

and Zm,1 and Zm,2 are values of binary explanatory variables, Z1 and Z2. The variable Zm,1 is

equal to 1 (0) if at exit m the variable SPACING defined in M02 is above (below) its median value

taken across all exits. The variable SPACING is defined in M02 as “The distance in miles from

the market exit to the closest exits along the highway with motels (the sum of the distance to the

closest competitors on either side)”.22 The variable Zm,2 is equal to 1 (0) if at exit m the variable

PLACEPOP defined in M02 is above (below) its median value. The variable PLACEPOP is

defined in M02 as the population of the town nearest the market exit.

The M02 data contains no information about intersections with no motels. We accommodate

this by assuming that sampling is from the truncated distribution of (Y,Z) which has support

(({0, 1, 2, ...} × {0, 1, 2, . . . }) \(0, 0))×RZ so that observable realizations of (Y,Z) are delivered by

realizations of U from the truncated distribution

GU |Z(·|z) =
GU (·)

1−GU (U((0, 0), z; θ))
, U ∈ RU\U((0, 0), z; θ).

The same truncation approach is taken in M02.23 The distribution of U = (UL, UH) is restricted

to be mean zero Gaussian independent of Z = (Z1, Z2) on their joint pre-truncation support.

Truncation induces dependence between U and Z. The variance matrix is parameterized with

variances σLL and σHH and correlation ρ.

A selection mechanism is specified in M02 which renders the model complete and ML estimation

22Page 232 of M02.
23 In M02 footnote 14 it is noted that because there are no (0, 0) outcomes recorded in the data, the probabilities

computed are conditional on unobservables such that firms of at least one type would find it profitable to enter.
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is conducted. Here no selection mechanism is specified. The data carry no record of a highway

intersection for which Y = φ, so in dealing with incoherent structures approach IC1 is not available

and we choose to consider only approach IC2 which specifies sampling from a truncated distribution

of the unobservables excluding support regions on the support of U on which Y(u, z; θ) = ∅. There
are thus potentially two sources of truncation.

As in the analysis of the KT16 data we start by considering the simple distance measure (5.1)

and seek parameter values that minimize this measure. Results are shown in Table 5. The distance

measure is minimized at a parameter value in which the correlation between UL and UH is ρ = 1.

The minimized distance measure is equal to 1.13. The distance-measure-minimizing values of the

competition parameters αTT ′ are all negative - see column 3 of Table 5.

In M02 ρ is constrained to be zero. When we impose this constraint the minimized distance

measure is equal to 15.72, much larger than the value obtained when ρ is allowed to vary freely.

With ρ constrained to be zero the distance-measure-minimizing parameter value for αLH is positive,

indicating an incoherent structure; see column 4 of Table 5. The MLEs of the cross-type competition

parameters reported in M02 with ρ constrained to be zero are all close to zero compared with the

reported estimated standard errors.

The final three columns of Table 5 show distance-measure-minimizing parameter values with

the correlation ρ allowed to vary freely and with αLH and αHL constrained to be zero.24 Here very

different values of the parameters lead to very similar values of the minimized distance measure. In

all the cases reported there is a similar value of ρ around 0.4. The minimized distance measure takes

values close to 18.34, somewhat larger than is obtained when αLH and αHL are not constrained

and considerably larger than is obtained when ρ is also unconstrained.

We can find no parameter values that deliver a zero distance measure and we conclude that

the analog estimate of the identified set is empty. This set is characterized by a large number of

inequality and equality restrictions (916 in total) and the equality restrictions cannot be satisfied

using the estimates of probabilities of Y given Z delivered by finite samples. It is possible that

the M02 model, despite being incomplete and potentially incoherent, is point identifying with a

singleton identified set. If this is indeed the case, then the inequality and equality restrictions

would be satisfied using exact probabilities generated by the M02 model. It may simply be that

the analog set estimate is empty due to the inward bias of this estimate when employing estimated

probabilities.

It is clear that allowance must be made for the effect of sampling variation and to this end we

calculate 95% confidence regions for each parameter in turn using the BBC18 procedure described

in Section 5.1. Only the 95% regions for the own type competition parameters αLL and αHH are

24Optimization was performed using R package nloptr, Ypma (2018), Johnson (2007—2019).
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informative and these are unbounded below but bounded above by negative values, thus.

CI(αLL, 0.05) = (−∞,−0.16) CI(αHH , 0.05) = (−∞,−0.18)

So the competition parameters can be signed with some confidence but the data tells us little about

the magnitudes.

Thus when a selection mechanism is not imposed the M02 data and model produce an empty

analog set estimate. When sampling variation is taken into account the data and model appear

quite uninformative about parameter magnitudes, although the confidence sets nonetheless sign the

competition parameters. There are several potential contributing factors to the increase in the span

of the confidence intervals relative to the empty analog estimates. Part of the problem here may be

the relatively small sample size. Another issue to be considered is that in conducting this analysis, in

order to reduce the number of inequalities to be considered, we have introduced more censoring than

was done in M02.25 In addition, we have used a much simplified specification of the profit functions

of the operator types and a coarse binary encoding of the exogenous variables. For inference

we used the self-normalized critical value specified in BBC18, which is easy to compute, but can

be conservative. A potentially significant contributory factor is that the M02 model specifies no

exclusion restrictions on the exogenous variables that affect the profits of the two operator types. In

the KT16 model there are such restrictions because there are firm-type-specific variables measuring

market presence, providing exogenous variation that can shift one type’s profit independently of

the other. There are no such firm-type-specific variables in the M02 model or data.26

6 What can be known of the structural functions absent a para-

metric specification of the distribution of unobservables?

It is commonplace to find parametric distributional restrictions imposed in structural models of

simultaneous discrete choice. In the vast majority of cases, as in K16 and M02, unobserved vari-

ables are restricted to have multivariate Gaussian distributions independent of observed exogenous

variables. There is rarely a good reason to expect the Gaussian restriction to hold, certainly not

exactly, so it is good to have the methods developed here for assessing the sensitivity of inference to

particular parametric specifications. The methods are first set out and then applied to the KT16

model and data.27 We find that absent a parametric distributional restriction the KT16 data has

25 In our analysis yT = 2 indicates 2 or more motels of type T whereas in M02 yT = 3 indicates 3 or more motels
of type T .
26 In exploratory simulations (not reported here) of an M02-type model in which there are effective exclusion

restrictions we find that informative confidence regions for all parameters can be found, but only with samples of the
order of 10 times larger than that used in M02, closer to the sample size in the KT16 data.
27The M02 data is not used in this sensitivity analysis because, for reasons discussed at the end of the last section,

the data were already found to produce wide confidence intervals with parametric distributional restrictions in the
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Table 5: Results obtained using the M02 data and a version of the model allowing incompleteness:
values of parameters that minimize a measure of distance from an identified set - column 3 has no
constraints imposed, columns 5-7 have constraints imposed as shown

Parameter arg minθD(θ)
arg minθD(θ)

ρ = 0
arg minθD(θ)

αLH = 0, αHL = 0

1 2 3 4 5 6 7

1 βL0 0.45 −1.41 −0.33 −0.31 −2.86

2 βL1 2.97 −0.39 0.85 0.81 7.68

3 βL2 0.79 0.03 0.35 0.33 3.28

4 βH0 0.09 −0.34 −0.66 −1.58 −0.92

5 βH1 2.90 2.29 2.41 5.82 3.52

6 βH2 0.81 0.83 0.67 1.62 0.98

7 αLL −1.88 −1.14 −1.01 −0.97 −9.41

8 αLH −1.62 1.64 0 0 0

9 αHL −1.24 −0.73 0 0 0

10 αHH −1.24 −0.92 −1.18 −2.86 −1.76

11 σLL 2.22 0.94 0.77 0.69 5.25

12 ρ 1.00 0 0.39 0.39 0.38

13 σHH 1.64 0.97 0.95 2.72 1.73

minθD(θ) 1.13 15.72 18.34 18.34 18.36

little to say about the determinants of competition on airline routes.

First a characterization of an outer region for the structural function h of structures (h,GU )

is given when the restriction that unobserved U and exogenous Z are independently restricted is

maintained. This is an outer region in the sense that the projection of the identified set for (h,GU )

onto the space of structural functions is guaranteed to be a subset of the outer region which may

contain structural functions which do not lie in the identified set. Then a procedure for determining

if a structural function in the outer region is in the identified set is presented for the case in which

all observed variables are discrete. The results are applied to assess the sensitivity of our analysis

of the KT16 model and data to relaxation of parametric distributional restrictions.

Define H∗, the projection of a set of identified structures onto the space of structural functions.

Definition 3 The projection of an identified set of structures M∗ onto the space of structural
functions is

H∗ ≡ {h ∈ H : ∃GU s.t.(h,GU ) ∈M∗}

In a parametric model with a structural function characterized by a parameter vector θ, the

structural function h can be replaced by θ. Only the case in which Restriction A7 holds, that is

U ‖ Z on their full support, is considered.
absence of equilibrium selection restrictions.
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6.1 Outer regions for projections

Theorem 2, below, defines an outer region H̄∗ ⊇ H∗ for the projection H∗. The Theorem is a

restatement of Corollary 3 of CR17 which showed that for all closed sets S ⊆ RU when U ‖ Z the
inequalities

Ch (S|z) ≤ 1− Ch
(
Sc|z′

)
(6.1)

hold for all z and z′ in RZ for all structural functions h ∈ H∗ where Sc denotes the closure of the
complement of S. This follows because, when U ‖ Z, for all sets S, closed or open, and for all
z ∈ RZ

Ch (S|z) ≤ GU (S) (6.2)

for all structures (h,GU ) ∈M∗ so substituting Sc for S

Ch (Sc|z) ≤ GU (Sc) = 1−GU (S)

which with (6.2) delivers the inequality (6.1). The system of inequalities obtained from (6.1) using

all closed sets on RU and all z and z′ in RZ , depending as it does on only the structural function
h, provides an outer region for the structural function. The inequalities define an outer region

for the projection because there may exist h in the region for which there does not exist a proper

distribution GU such that for all S, z and z′

Ch (S|z) ≤ GU (S) ≤ 1− Ch
(
Sc|z′

)
.

Theorem 2 Let K(RU ) comprise the collection of all closed sets on RU . If Restrictions A1-A7
hold then the set

H̄∗ =

{
h : ∀K ∈ K(RU ), sup

z∈RZ
Ch (K|z) ≤ inf

z∈RZ
(1− Ch (Kc|z))

}
(6.3)

comprises an outer region for the structural function h in the sense that H∗ ⊆ H̄∗.

Proof. The result follows directly from Corollary 3 of CR17.

The set H̄∗ characterized by Theorem 2 is defined by an infinite number of inequalities. Theorem
3 below provides a smaller collection of inequalities which delivers the same outer region as the

system of inequalities (6.3) that employs all closed sets. Recall the definition of U∗ (h, z), the

collection of sets that can be expressed as unions of the residual sets of structural function h when
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Z = z.

U∗ (h, z) ≡

U ⊆ RU : ∃Y ⊆ RY |z such that U =
⋃
y∈Y
U (y, z;h)


Theorem 3 Define the set

Ho = {h : ∀S ∈ U∗(h, z),∀
(
z, z′

)
∈ RZ ×RZ , Ch (S|z) ≤ 1− Ch

(
Sc|z′

)
}. (6.4)

If Restrictions A1-A7 hold then Ho = H̄∗.

Proof. Rearranging the inequality in (6.4) and using the definition of Ch(·|z) the sets H̄∗

and Ho can be expressed as follows.

H̄∗ =
{
h : ∀K ∈ K(RU ), ∀

(
z, z′

)
∈ RZ ×RZ , P[U(Y, Z;h) ⊆ K|z] + P[U(Y,Z;h) ⊆ Kc|z′] ≤ 1

}
Ho = {h : ∀S ∈ U∗(h, z),∀

(
z, z′

)
∈ RZ ×RZ , P[U(Y,Z;h) ⊆ S|z] + P[U(Y,Z;h) ⊆ Sc|z′] ≤ 1}

Define US(z, h), the union of all residual sets of structural function h contained in a set S when
Z = z.

US(z, h) ≡
⋃

y∈{y:U(y,z;h)⊆S}
U(y, z;h)

There is, for all K and z

P[U(Y, Z;h) ⊆ K|z] = P[U(Y,Z;h) ⊆ UK(z, h)|z]. (6.5)

Let h ∈ Ho. Consider any set K ∈ K(RU ). For any z and z′

P[U(Y,Z;h) ⊆ K|z] + P[U(Y, Z;h) ⊆ Kc|z′] = P[U(Y, Z;h) ⊆ UK(z, h)|z] + P[U(Y,Z;h) ⊆ UKc(z′, h)|z′]

≤ P[U(Y, Z;h) ⊆ UK(z, h)|z] + P[U(Y,Z;h) ⊆ UcK(z, h)|z′]

≤ 1.

Here following CR17 Corollary 3 UcK(z, h) is the closure of the complement of UK(z, h). The

equality in the first line comes on using (6.5). Because UK(z, h) ⊆ K there is UcK(z, h) ⊇ Kc and
by definition UKc(z′, h) ⊆ Kc so it follows that

UcK(z, h) ⊇ Kc ⊇ UKc(z′, h)

so

P[U(Y,Z;h) ⊆ UKc(z′, h)|z′] ≤ P[U(Y,Z;h) ⊆ UcK(z, h)|z′]
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which leads to the first inequality above. The second inequality arises because h ∈ Ho and UK(z, h) ∈
U∗ (h, z).

It has been shown that for every structural function h in the set Ho the inequality (6.3) in the
definition of the set H̄∗ holds for all sets K ∈ K(RU ) which delivers the result of the Theorem. �

In consequence of this Theorem, in determining the outer region given by Theorem 2 it is

suffi cient to consider only the inequalities arising from sets S which are unions of residual sets.
Further, for any pair (z, z′), every set S to be considered is a union of residual sets obtained with
Z = z, Sc is the complement of the set S, the conditional containment probability on the left of
the inequality (6.4) is conditioned on Z = z while the conditional containment probability on the

right hand side of that inequality is conditioned on Z = z′. Inequalities with z = z′ can be ignored

as they are always satisfied.

6.2 Calculating a projection when observable variables are discrete

When all observable variables are discrete it is possible to determine if a structural function found

to be in the outer region is in fact in the projection H∗. The result is contained in Theorem 4.

Some preparatory development is required.

The support of U , RU , is partitioned into a collection of what are termed elemental sets. These
sets have the property that every intersection of residual sets taken across all z ∈ RZ can be

expressed as a union of elemental sets.

Definition 4 E(h) = {E` : ` ∈ {1, . . . , L(h)}} is a collection of elemental sets when (a) E(h) is

a partition of RU and (b) for every full-dimensional28 intersection of residual sets, UInt(Y,Z;h),

where

UInt(Y,Z;h) ≡
⋂

y∈Y,z∈Z
U(y, z;h), Y ⊆ RY |z, Z ⊆ RZ

there exists a set of indexes D(Y,Z;h) ⊆ {1, . . . , L(h)} such that⋃
`∈D(Y,Z;h)

E` = UInt(Y,Z;h).

Let p(h) = {p`(h) : ` ∈ {1, . . . , L(h)}} be a collection of constants with p`(h) ≥ 0, ` ∈
{1, . . . , L(h)} and

∑L(h)
`=1 p`(h) = 1. Each p`(h) will be interpreted as the probability that U

takes a value in the elemental set E`.
28The residual sets are closed sets so they have boundaries which can intersect. These intersections are low

dimensional manifolds embeded in the support of U which is required to be continuously distributed so they carry
zero probability mass and need not be included in the collection of elemental sets.
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Let {Q(z, h) : z ∈ RZ} be a core determining collection of sets. These collections could be as
defined in Theorem 3 of CR17 or, with some redundancy, they could be the collections of all unions

of residual sets:

Q(z, h) =
{
S(Y, z, h) : Y ⊆ RY |z

}
where

S(Y, z, h) =
⋃
y∈Y
U(y, z;h) (6.6)

denotes a union of residual sets. For each such set define the set of indexes of the collection of

elemental sets that are contained in S(Y, z, h)

B(Y, z, h) ≡ {` ∈ {1, . . . , L(h)} : E` ⊆ S(Y, z, h)} .

The structural function h is in the projection H∗ if there exist probabilities p(h) such that for

all z ∈ RZ
p`(h) ≥ 0, ` ∈ {1, . . . , L(h)}

L(h)∑
`=1

p`(h) = 1

and ∑
`∈B(Y,z,h)

p`(h) ≥ Ch(S(Y, z, h)|z) (6.7)

for all sets S(Y, z, θ) in the core determining collection Q(z, h) under consideration.

On the left hand side of (6.7) is the probability that U takes a value in the set S(Y, z, h)

calculated as the sum of the probabilities on the elemental sets that are contained in S(Y, z, h).

On the right hand side is the containment probability, that is, the conditional probability that the

random residual set delivered by the structural function h is a subset of the set S(Y, z, h). For

structural functions h in the projection H∗ there may be many probability distributions p(h) that

satisfy (6.7). For structural functions h /∈ H∗ there will be no probability distribution p(h) that

satisfies (6.7).

The probabilities p(h) are subject to linear equalities and inequalities so determining whether a

structural function h is in the projection H∗ comes down to determining whether the feasible region
of a linear program is non-empty which can be done using Farkas’s Alternative as in Theorem 4.

In preparation for the statement of the Theorem recall that identified sets of structures are

characterized by inequalities delivered by a collection of core determining sets. Each set in such a

collection, S(Y, z, h), defined in (6.6), is a union of residual sets determined by a subset, Y, of the
support of Y , a value, z, of exogenous Z and the structural function under consideration, h. Let d

index the collection of all subsets of the support of Y and let e index the values on the support of
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Z.

Theorem 4 A structural function h is in the sharp projection H∗ if and only if there is a nonneg-
ative solution for v in the following linear program:

min
s,t,v

v

subject to:

sA+ tB ≥ 0

t ≥ 0

s+ t · c ≤ v

where v ∈ R1, s ∈ R1, t ∈ RK ,
K ≡

∑
z∈RZ

card (Q(h, z))

A ≡ ιL(h) = [ 1, . . . , 1︸ ︷︷ ︸
L(h) times

]

B ≡ [[Bki]] , k ∈ {1, . . . ,K}, i ∈ {1, . . . , L(h)}

Bki ≡ −1[i ∈ B(Yd(k), ze(k), h)]

c ≡ [−Ch(S(Yd(1), ze(1), h)|ze(1)), . . . ,−Ch(S(Yd(K), ze(K), h)|ze(K))]

where {d(1), . . . , d(K)} and {e(1), . . . , e(K)} are collections of integers such that in the kth of the
K inequalities S(Yd(k), ze(k), h) is the union of residual sets and ze(k) is the value of Z on which

there is conditioning.

Proof. In Border (2019, paragraph 12, Section 1.4) there is the following version of Farkas’s

Alternative.29

Farkas’s Alternative. Let A be a m× n real matrix, let B be a K × n matrix, let b ∈ Rm and

let c ∈ RK . Exactly one of the following alternatives hold. Either there exists x ∈ Rn satisfying

Ax = b (6.8)

Bx ≤ c

x ≥ 0

29 In the rendition here K, s and t have been substituted for respectively `, p and q. Kim Border describes the
result as “buried” in Farkas (1902).
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or there exists s ∈ Rm and t ∈ RK satisfying

sA+ tB ≥ 0 (6.9)

t ≥ 0

s · b+ t · c < 0.

In the application here x = p(h) which contains the probabilities on the L(h) elemental sets,

n = L(h), m = 1, b = 1, and K, A, B and c are as defined in the Theorem. The equality

restriction in (6.8) is the requirement that probabilities on elemental sets sum to 1. The inequality

restriction Bx ≤ c embodies the restrictions in (6.7). The nonnegativity condition in (6.8) requires
probabilities to be nonnegative.

The structural function h is in the projection H∗ if and only if probabilities x = p(h) can be

found that satisfy (6.8). This can be done if and only if there is no solution to (6.9). There is no

solution to (6.9) if and only if the solution to the program of the Theorem has v ≥ 0 for if there

was a solution to (6.9) a negative value could be achieved in the program of the Theorem.

In applications we place a negative lower bound on v, e.g. v ≥ −0.1, to avoid the unbounded

program that otherwise arises when h is not in the projection. Additional linear inequality restric-

tions on the probabilities can be accommodated by including additional rows in B and additional

elements in c. For example if the elemental sets are axis aligned hyperrectangles projecting to form

a lattice on each margin30 then marginal probabilities are easily obtained as sums of elements in

p(h) and marginal moments are linear functions of p(h) with precise values depending on how one

chooses to measure the locations of elemental sets. One could then, for example, require some odd

order marginal moments to be zero in an attempt to impose a degree of symmetry on the distri-

bution of U . Such a strategy could be usefully accompanied by linear restrictions on probabilities

to bring about a degree of smoothness, for example by requiring the second differences of marginal

probabilities to be smaller in absolute value than some pre-chosen constant.

With some extension Theorem 4 can accommodate truncation of the distribution of U such as

occurs in the IC2 and IC4 approaches to incoherence and also in cases like M02 in which there is

no data recording certain outcomes by virtue of the sampling process. Let T (z, h) denote the set

of values of U that is truncated when Z = z. With

C(Y, z, h) ≡ {` ∈ {1, . . . , L(h)} : E` ⊆ T (z, h)}

the inequality (6.7) becomes ∑
`∈B(Y,z,h) p`(h)

1−
∑

`∈C(Y,z,h) p`(h)
≥ Ch(S(Y, z, h)|z)

30This is the case in the KT16 and M02 examples.
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delivering the linear restriction on p(h)

∑
`∈B(Y,z,h)

p`(h) ≥ Ch(S(Y, z, h)|z)

1−
∑

`∈CY,z,h)
p`(h)


which can be accommodated by making changes in the matrix B in Theorem 4. Care must be

taken to ensure that there is positive probability mass on T c(z, h) which can bring additional

linear inequalities on board but these are easily accommodated.

6.3 Application to the KT16 model and data

With the distribution of U unrestricted other than requiring U and Z to be independently dis-

tributed, location and scale normalizations must be brought on board. To this end the intercepts,

βconsLCC and β
cons
OA are set equal to zero and the coeffi cients on βsizeLCC and β

size
OA are set equal to one.

With the Gaussian restriction removed the parameter ρ is irrelevant. There remain 4 parameters

that are free to vary: βpresLCC , β
pres
OA , ∆LCC and ∆OA.

Calculating an analog estimate of the outer region for the structural function, Ho of Theorem 3,
using the KT16 data delivers an empty set. This is undoubtedly the consequence of inward bias due

to sampling variation in the estimated probabilities of Y given Z which are employed to calculate

estimates of the containment probabilities that appear in the 784 inequalities that determine the

outer region.31

In order to improve our understanding we simulated data from a structure admitted by the

KT16 model using a parameter value at which the structure is incomplete and coherent.32 The

parameter value is shown in Table 4. Even with very large sample sizes, exceeding 5 million, analog

estimates of the outer region Ho are empty sets.
We computed exact probabilities of Y given Z at the same parameter value used in the sim-

ulations as explained in section 5.1. Using the exact probabilities we can calculate the difference

between the expressions on the left and right hand sides of the inequality in (6.4). Of course all

these differences are nonnegative. The smallest value is very close to zero, 6.2 × 10−5, and 5% of

the 784 differences are smaller than 0.008. Given these tiny magnitudes it is not surprising to find

empty analog set estimates even in very large simulated data sets and empty set estimates are to

be expected using a sample of the size found in KT16.

Using the exact probabilities obtained using the parameter values shown in Table 4 we can

31 In research underway we are investigating whether a modified version of the BBC18 procedure can be applied
to obtain confidence regions for parameter values lying in the outer region. The issue here is that after expressing
the inequalities in terms of joint rather than conditional probabilities the estimated moment functions are quadratic
functions of estimates of the probabilities P[Y = y ∧ Z = z] not linear functions to which the BBC18 procedure can
be applied directly.
32A selection mechanism was imposed in the simulations with random selection of one from multiple potential

outcomes such that each potential outcome was equally likely to be chosen.
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calculate the exact outer region Ho and do the calculation proposed in Theorem 4 to determine

the projection H∗. We find that the outer region Ho and the projection H∗ coincide and comprise
the orthant of the 4 dimensional parameter space in which βpresLCC > 1, βpresOA > 0, ∆LCC < 0 and

∆OA < −1. Dropping the parametric distribution restriction we are able to sign the four coeffi cients

but the data carry almost no other information about the magnitudes of the parameters.

One reason for this disappointing result is the very coarse grouping of the data on the three

exogenous variables. In KT16 the exogenous variables are each binary indicating whether or not

the value under consideration is above or below the median value in the data and these binary

representations of the exogenous variables have been used here. We have calculated the projection

onto the space of structural function parameters using exact probabilities for a case in which the

exogenous variables have richer support.

We generated these exact probabilities using the parameter value shown in Table 4 and for

exogenous variables with 5 points of support each located at the sextiles of the values recorded

in the KT16 data. For each variable the sextiles were scaled to take values around 1 by dividing

each sextile value by the mean of the sextile values for that variable. The trivariate marginal

distribution of the 3 exogenous variables located on 125 points of support was specified as uniform

in this exploratory exercise. We find that in the exact projection onto the space of structural

function parameters the coeffi cients on the exogenous variables βpresLCC and β
pres
OA are restricted to

finite values while the competition parameters are bounded above by negative values and unbounded

below.33

Projections onto the space of each of the 4 parameters in turn are shown in Table 6. Note

that the parameter values shown here are those in Table 4 divided by 0.5, the common value of

the coeffi cients on βsizeLCC and β
size
OA which are normalized to equal 1 in this exercise. The 6 panes

of Figure 5 show projections onto the space of each pair of parameters.34 The parameter values

that generated the exact probabilities are plotted as well. By the nature of the projection the same

probabilities could have been generated by any parameter value in the projection coupled with one

or more proper probability distributions for unobserved U independent of exogenous Z. Clearly

richer support for the exogenous variables increases the information about the structural parameter

absent a parametric restriction on the distribution of the unobservables, but the projection onto

the space of the parameters ∆LCC and ∆OA remains unbounded below.

Direct calculation shows that with richer support for the exogenous variables the sharp projec-

tion is a proper subset of the outer region. In the case studied here the outer region is characterized

by 217, 000 inequalities. To determine whether a parameter value lies in the sharp projection using

33The linear program of Theorem 4 is solved using the R package lpSolveAPI (Konis and Schwendinger (2020))
which provides an interface to Lp_solve v 5.5 (Berkelaar and others (2015)).
34These are convex hulls of points found to lie in the projections. There appear to be some very slight nonconvexities

but allowing for them would make little difference to the impression this gives of the information content of the model
concerning structural function parameters absent a parametric distributional restriction.
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Table 6: Parameter values and lower and upper bounds of projections of the identified set onto the
space of each parameter in turn absent a parametric specification of the distribution of unobserv-
ables. Exact probabilities are used in the calculations. Each exogenous variable has 5 points of
support. Note that parameter values here are adjusted for normalization of the coeffi cients on one
of the exogenouos variables.

Parameter Parameter value Lower bound Upper bound

βpresLCC 3.0 2.83 3.48

βpresOA 1.0 0.96 1.25

∆LCC −3.0 −∞ −0.65

∆OA −2.6 −∞ −1.21

the method set out in Theorem 4 requires solving a linear program with 1752 decision variables

and 2602 constraints which takes about 7 seconds on a typical desktop computer.

7 Concluding remarks

This paper has shown how identification analysis of structural models of simultaneous discrete

choice can be done under alternative approaches to model incompleteness and incoherence using

the unifying Generalized Instrumental Variable framework introduced in Chesher and Rosen (2017).

To enable assessment of the sensitivity of inference to parametric distributional restrictions outer

regions for projections of the identified set of structures onto the space of structural functions or

parameters have been characterized. A simple method for determining which elements of an outer

region lie in a projection has been presented for the case in which observed variables are discrete.

Applying the results to two models and accompanying data sets delivers mixed results.

Analysis of the data of Mazzeo (2002) using a cut down version of the model produces an

empty analog set estimate but little information about the magnitudes of structural parameters

when sampling variation is taken into account. A likely contributory factor is the lack of firm-

type specific variables in the data. The approach in Mazzeo (2002) involves imposing a selection

mechanism leading to a complete model whose parameters are estimated by maximum likelihood.

This delivers some quite accurate parameter estimates, but our results using the incomplete partially

identifying model suggest they may be sensitive to the equilibrium selection restriction as well as to

the functional form and distributional restrictions. Nonetheless, the confidence intervals obtained

using the incomplete model continue to deliver negative signs for strategic interaction parameters.

Analysis of the data of Kline and Tamer (2016) produces more nuanced results. The Kline and

34



Tamer (2016) model appears to be point identifying with the data to hand and maximum likelihood

estimators of parameters can be calculated. They indicate that the data are generated by a complete

and incoherent structure. Using all the information in the data employing the methods we propose

and calculating confidence regions on projections of the identified set onto each parameter axis in

turn gives a strong indication that the data generating structure is coherent and incomplete. These

conflicting messages together with specification tests of the likelihood based model suggest a degree

of misspecification. We investigate what can be known once the Gaussian restriction is dropped.

Dropping the Gaussian restriction on the distribution of the unobservables and calculating an

analog estimator of the outer region for the parameters of the profit functions delivers an empty

set. This is very likely due to inward bias caused by sampling variation in probability estimates

that appear in over 700 inequalities defining the outer region.

Using exact probability distributions of observable variables calculated for the Kline and Tamer

(2016) model at parameter values of the order suggested by the parametric distribution based

empirical analysis we calculate the exact outer region and the exact projection for structural pa-

rameters obtained with the Gaussian restriction dropped. Absent the parametric distributional

restriction very wide ranges of parameter values can deliver the probability distributions. Key

structural parameters can be signed but rather little can be said about their magnitudes and in

particular competition parameter values are unbounded below. Using exact probabilities in a case

in which exogenous variables have richer support than is found in the Kline and Tamer (2016)

application gives an identified set which contains only finite values for the coeffi cients on exogenous

variables and with competition parameters negative but unbounded below.

In research underway we seek to determine whether introducing smoothness and shape re-

strictions on the distribution of unobserved variables, stopping short of parametric restrictions can

deliver more encouraging results. We are also exploring another way of relaxing the model’s restric-

tions taking a single equation approach. In the context of the KT16 model this involves estimating

a binary outcome model for each airline type’s entry separately using variables affecting the profits

of the competitor type as instrumental variables for the binary endogenous explanatory variable

recording the presence of the competitor type, similar to the instrumental variable binary outcome

models applied in Section 8.2 of Chesher and Rosen (2020) and the single equation IV ordered

outcome model employed in Chesher, Rosen, and Siddique (2019).
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Figure 1: Residual sets for the KT16 model of competition on US airline routes for 4 combina-
tions of the interaction parameters ∆LCC and ∆OA. Labels U((yLCC , yOA)) are short hand for
U((yLCC , yOA), Z; θ), {yLCC , yOA} ∈ {0, 1}2. Dark shaded areas are regions in which residual sets
intersect, U((0, 1), Z; θ) and U((1, 0), Z; θ) in the upper left pane, U((0, 0), Z; θ) and U((1, 1), Z; θ)
in the upper right pane. The unshaded areas in the lower panes are regions in the space of U in
which there is no y such that h(y, z, u) = 0. Each residual set for a non-null value of Y is unbounded
on two sides.
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Figure 2: Residual sets for the simplied version of the M02 model used here with censoring at
YT = 3, T ∈ {H,L} and αLL = −1.5 αLL = −0.75 αHL = −2.0 αHH = −0.8. Labels (yL, yH)
signify U((yL, yH), z;h) and are plotted at the vertical centre of a residual set. This allows one to
tell, for example that U((1, 2), z;h) is a subset of U((2, 0), z;h). Residual set boundaries are drawn
in various widths so that common boundaries are more easily identified.
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Figure 3: Residual sets for the simplied version of the M02 model used here with censoring at YT = 3,
T ∈ {H,L} and αLL = −1.3 αLL = −1.8 αHL = −1.4 αHH = −1.9. Labels (yL, yH) signify
U((yL, yH), z;h) and are plotted at the vertical centre of a residual set. Residual set boundaries
are drawn in various widths so that common boundaries are more easily identified.
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Figure 4: Residual sets for the simplied version of the M02 model used here with censoring at YT = 3,
T ∈ {H,L} and αLL = −1.8 αLL = −1.3 αHL = −1.4 αHH = −1.8. Labels (yL, yH) signify
U((yL, yH), z;h) and are plotted at the vertical centre of a residual set. Residual set boundaries
are drawn in various widths so that common boundaries are more easily identified.
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Figure 5: Projections of the identified set onto the spaces of pairs of structural function parameters
in the KT16 model absent a parametric specification of the distribution of unobservables. The 3
exogenous variables each take 5 values and Z has 125 points of support each occurring with equal
probability. The plotted points are the parameter values that generated the exact probabilities
FY |Z used to calculate the identified set. The projections extend down to −∞ for the parameters
∆LCC and ∆OA.
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