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Abstract
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1 Introduction

In this paper we propose a method to nonparametrically estimate a class of models with latent

variables. We focus on linear factor models whose latent factors are mutually independent.

These models have a wide array of economic applications, including measurement error

models, fixed-effects models, and error components models. We briefly review the existing

literature in Section 2. In many empirical settings, such as in our application to the study

of the cyclical behavior of income shocks, it is appealing not to restrict the functional form

of the distributions of latent variables and adopt a nonparametric approach.

Nonparametric estimation based on empirical characteristic functions has been exten-

sively studied in the literature (e.g., Carroll and Hall, 1988; Stefanski and Carroll, 1990).

However, while such Fourier-based methods apply to general mutivariate linear factor mod-

els with independent components (Horowitz and Markatou, 1996; Li and Vuong, 1998; Bon-

homme and Robin, 2010), they tend to be sensitive to the choice of regularization parameters,

and they do not guarantee that the estimated densities be non-negative and integrate to one.

Recently, Efron (2016) motivated his “parametric g-modeling” approach by the difficulties

of nonparametric estimation in this context; see also Efron and Hastie (2016, Chapter 21)

and Koenker and Gu (2019).

In this paper we propose a novel nonparametric estimator, and provide evidence that it

performs well even in relatively small samples. Our approach differs from the literature in two

main aspects. First, we generate a sample of pseudo-observations that may be interpreted

as the order statistics of the latent variables. Moments, densities, or other functionals can

then be estimated based on them. In particular, densities will be non-negative and integrate

to one by construction. Means or other features of the distribution of the latent variables

conditional on the data, such as optimal predictors, can also be directly estimated.

The second main feature of our approach is that it is based on matching. Specifically, we

generate pseudo-observations from the latent variables so that the Euclidean distance be-

tween the model’s predictions and their matched counterparts in the data is minimized. The

model predictions are computed as independent combinations of the pseudo latent observa-

tions. This “observation matching” estimation approach can be interpreted as a nonpara-

metric counterpart to (simulated) method-of-moments estimators, which are commonly used

in parametric econometric models. Our nonparametric approach, which amounts to mini-

mizing a quadratic Wasserstein distance between empirical distribution functions, exploits
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Figure 1: Illustration of the estimation algorithm
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True versus estimated latent values
1st iteration 2nd iteration 5th iteration
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Notes: The graphs correspond to one simulation from a fixed-effects model with two observation periods

Y1 = X1+X2, Y2 = X1+X3, with X1, X2, X3 mutually independent (Kotlarski, 1967). In the data generating

process the X’s are standardized Beta(2,2), and there are N = 100 observations. The top panel shows the

observations Y1, Y2 (crosses) and the predicted observations Y pred1 , Y pred2 (circles), with a link between them

when they are matched to each other. The bottom panel shows the estimates of X1 values sorted in ascending

order on the y-axis against the population values on the x-axis (dashed), and the 45 degree line (solid). See

Section 3 for details about the algorithm.

linearity and independence to provide a computationally convenient estimator.

As an illustration, in Figure 1 we show the results of several iterations of our algorithm,

in a fixed-effects model with two observation periods and 100 individuals. We start the

algorithm from parameter values that are far from the true ones (in the left column). As

shown on the top panel, the outcome observations in the data (in crosses) are first matched

to model-based predictions (in circles). Pseudo-observations of the latent variables are then

updated based on the matched outcome values. The objective function we aim to minimize

is the sum of squares of the segments shown on the top panel. The bottom panel shows the

estimates of the latent individual-specific effect sorted in ascending order (on the y-axis),

against the true values (on the x-axis). We see that, within a few iterations, the model’s
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predictions and the empirical observations tend to agree with each other (in the top panel),

and that the distribution of the pseudo latent observations gets close to the population

distribution (in the bottom panel).

Our approach builds on and generalizes an important idea due to Colin Mallows (2007),

who proposed a “deconvolution by simulation” method based on iterating between sorts of

the data and random permutations of pseudo-observations of a latent variable. Mallows

(2007) focused on the classical deconvolution model with scalar outcome and known error

distribution. Our main goal in this paper is to extend Mallows’ insight by proposing a

framework to analyze estimators based on matching predicted values from the model to data

observations.

In particular, as an extension of Mallows’ (2007) original idea, we show how our method

can handle multivariate outcomes, hence extending the scope of application to fixed-effects

models and multi-factor models. While a number of estimation methods are available for

scalar nonparametric deconvolution with known error distribution, the multivariate case –

which is of interest in many economic applications – remains challenging. Our estimator ex-

ploits that the multi-factor models we consider are linear in the independent latent variables,

even though they imply nonlinear restrictions on density functions.

A key step in our analysis is to relate the estimation problem to optimal transport theory.

Optimal transport is the subject of active research in mathematics, see for example Villani

(2003, 2008). Economic applications of optimal transport are many fold, as documented in

Galichon (2016). In our context, optimal transport provides a natural way to estimate models

with multivariate outcomes via “generalized sorting” algorithms (i.e., matching algorithms)

based on linear programming.

To establish the consistency of our estimator we use that, in large samples, our estimator

minimizes the Wasserstein distance between the population distribution of the data and the

one implied by the model. This problem has a unique solution under suitable conditions

on the characteristic functions of the factors (Székely and Rao, 2000). Consistency then

follows from verifying the conditions for the consistency of sieve extremum estimators (e.g.,

Chen, 2007) in this setting. When analyzing the multivariate case, our arguments rely on

properties of Wasserstein distances established in the optimal transport literature.

We illustrate the performance of our estimator on simulated data. Under various specifi-

cations of a nonparametric fixed-effects model, we find that our estimator recovers accurately
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the true underlying quantile functions and densities, even for samples with only 100 indi-

vidual observations. This finite-sample performance is remarkable in a fully nonparametric

model with multiple latent variables. In addition, we find that our estimator outperforms

characteristic-function based estimators, particularly due to improved estimation of the tails

of the distributions. In contrast with Fourier methods, our estimator imposes that quantile

functions be monotone, and that densities be non-negative. In the related problem of non-

parametric instrumental variables estimation, Chetverikov and Wilhelm (2017) show that

imposing monotonicity in estimation can help alleviating ill-posedness issues. We conjecture

that this feature contributes to explain the finite-sample performance of our estimator.

We then apply our method to study the cyclicality of permanent and transitory income

shocks in the US. Answering this question is important, since a well-calibrated cyclical income

process is a key input to many models of business cycle dynamics. Storesletten et al. (2004)

estimate on the Panel Study of Income Dynamics (PSID) that the dispersion of persistent

shocks is countercyclical. However, using a nonparametric descriptive analysis, Guvenen

et al. (2014) find using administrative data that the dispersion of log-income growth is

acyclical, whereas skewness is procyclical, and Busch et al. (2018) find similar results using

the PSID.

We revisit this debate by working with a permanent-transitory model of log-income dy-

namics, and estimating the annual densities of permanent and transitory shocks nonpara-

metrically. Using the PSID, we estimate that income shocks are not normally distributed,

confirming previous evidence using other nonparametric methods. Our main finding is that

the dispersion of income shocks is approximately acyclical, whereas the skewness of perma-

nent shocks is procyclical. By comparison, our nonparametric estimates suggest that the

dispersion and skewness of shocks to hourly wages vary little with the business cycle.

Our matching-based, minimum Wasserstein distance estimator is related to recent work in

machine learning and statistics on the estimation of parametric generative models (see Bern-

ton et al., 2017; Genevay et al., 2017; Bousquet et al., 2017). In contrast with this emerging

literature, the models we consider here are nonparametric. In an early theoretical contribu-

tion, Bassetti et al. (2006) study consistency in minimum Wasserstein distance estimation.

Recently, Rigollet and Weed (2019) develop a minimum Wasserstein deconvolution approach

for uncoupled isotonic regression, and Rigollet and Weed (2018) relate maximum-likelihood

scalar deconvolution under Gaussian noise to entropic regularized optimal transport. Lastly,
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our general estimation strategy is also related to Galichon and Henry’s (2011) analysis of

partially identified models.

As we show at the end of the paper, our matching approach can be generalized to non-

parametric estimation of other latent variables models. We briefly describe such general-

izations to cross-sectional random coefficients models with exogenous covariates (Beran and

Hall, 1992; Ichimura and Thompson, 1998), panel data random coefficients models (Arellano

and Bonhomme, 2012), nonparametric deconvolution under heteroskedasticity (Delaigle and

Meister, 2008), and nonparametric finite mixture models (Hall and Zhou, 2003).

The outline of the paper is as follows. In Section 2 we describe linear independent

factor models, and we briefly review applications and existing estimation approaches. In

Section 3 we introduce our matching estimator. In Sections 4 and 5 we study computation

and consistency, respectively. In Sections 6 and 7 we present the simulation exercises and

empirical application. In Section 8 we outline several extensions. Lastly, we conclude in

Section 9. Proofs and additional material are collected in the appendix.

2 Independent factor models

We focus on linear independent factor models of the form Y = AX, where Y = (Y1, ..., YT )′,

X = (X1, ..., XK)′, A is a known or consistently estimable T×K matrix, and the components

X1, ..., XK are mutually independent. In this section we review several examples of models

and applications that have such a structure. We focus on the case K > T , so the system

is singular and the realizations of the latent variables are not identifiable, although under

suitable conditions their distributions will be.

Nonparametric deconvolution. When T = 1, Y = X1+X2, and X2 has a known or con-

sistently estimable distribution, one obtains the scalar nonparametric deconvolution model.

This model has been extensively studied in statistics and econometrics. Nonparametric de-

convolution is often used to deal with the presence of measurement error. In such settings,

Y is an error-ridden variable, X1 is the true value of the variable, and X2 is an independent,

classical measurement error (e.g., Carroll et al., 2006; Chen et al., 2011; Schennach, 2013a).

Other economic applications of nonparametric deconvolution are the estimation of the het-

erogeneous effects of an exogenous binary treatment under the assumption that the potential

outcome in the absence of treatment is independent of the gains from treatment (Heckman
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et al., 1997; Wu and Perloff, 2006), and the estimation of the distribution of time-invariant

random coefficients of binary treatments in panel data models (Arellano and Bonhomme,

2012).

The statistical literature on nonparametric deconvolution provides conditions under which

the distribution of X1 is nonparametrically identified, alongside numerous estimation ap-

proaches such as kernel deconvolution estimators (Carroll and Hall, 1988; Delaigle and Gij-

bels, 2002; Fan, 1991), wavelet methods (Pensky and Vidakovic, 1999; Fan and Koo, 2002),

regularization techniques (Carrasco and Florens, 2011), and nonparametric maximum like-

lihood methods (Kiefer and Wolfowitz, 1956; Gu and Koenker, 2017).

Nonparametric distribution of fixed effects. A leading example of a linear indepen-

dent factor model is the fixed-effects model:

Yt = α︸︷︷︸
≡X1

+ εt︸︷︷︸
≡Xt+1

, t = 1, ..., T, (1)

where Y1, ..., YT are observed outcomes and α, ε1, ..., εT are latent and mutually independent.

Working with T = 2, Kotlarski (1967) provided simple conditions under which the density

functions of the latent factors are nonparametrically identified in model (1).

This fixed-effects structure arises frequently in economic applications. As an example, α

can be a latent skill of an individual, measured with error (as in Cunha et al., 2010). In other

applications, researchers may be interested in estimating the distribution of worker, teacher,

firm, school, hospital, neighborhood, or bank-specific fixed-effects, for example. Compared

to commonly used Gaussian specifications (e.g., Kane and Staiger, 2008; Angrist et al., 2017;

Chetty and Hendren, 2018), a nonparametric estimator of the distribution of α in (1) will be

robust to functional form assumptions under the maintained assumption of mutual indepen-

dence. Non-Gaussianity, such as skewness or fat tail behavior, is relevant in many empirical

settings. The fixed-effects model (1) and its generalizations are sometimes estimated us-

ing flexible parametric specifications such as finite Gaussian mixtures (e.g., Carneiro et al.,

2003). Alternatively, nonparametric estimators based on empirical characteristic functions

can be constructed, by mimicking and extending Kotlarski’s proof (Li and Vuong, 1998; Li,

2002; Horowitz and Markatou; 1996).

Error components: generalized nonparametric deconvolution. A prominent error

component model is the permanent-transitory model for the dynamics of log-income: Yt =
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ηt + εt, where ηt = ηt−1 + vt is a random walk with independent innovations, and all εt’s and

vt’s are independent over time and independent of each other and of the initial η0 (e.g., Hall

and Mishkin, 1982; Blundell et al., 2008). This model is a special case of a linear independent

factor model Y = AX, where Y = (Y1, ..., YT )′ are observed outcomes, X = (X1, ..., XK)′

are mutually independent latent factors, and A is a known T ×K matrix. Identification of

such generalized deconvolution models is established in Székely and Rao (2000). Bonhomme

and Robin (2010) propose nonparametric characteristic-function based estimators of factor

densities, and apply them to study income dynamics; see also Botosaru and Sasaki (2015).1

In such settings, a nonparametric approach is able to capture the skewness and kurtosis

of income shocks. In addition, an important application of error components models is to

relax independence in fixed-effects models such as (1). This can be done provided T is large

enough.2 Such specifications can be estimated using the methods we introduce in this paper.

3 Latent variable estimation by matching

In this section, to introduce the main ideas we start by describing our estimator in the scalar

nonparametric deconvolution model. We then show how the same approach can be used to

estimate linear multi-factor models with independent factors.

3.1 Nonparametric deconvolution

Let Y = X1 +X2 be a scalar outcome, where X1 and X2 are independent, X1 is unobserved

to the econometrician, and its distribution is unspecified. We assume that Y , X1 and X2

are continuously distributed, and postpone more specific assumptions until Section 5. Let

FZ denote the cumulative distribution function (cdf) of any random variable Z. We assume

that two random samples, Y1, ..., YN and X12, ..., XN2, drawn from FY and FX2 , respectively,

are available.3

1Quantile-based estimation in linear and nonlinear factor models is introduced in Arellano and Bonhomme
(2016), and applied in Arellano et al. (2017) to document income dynamics in the PSID.

2Modeling εt in (1) as a finite-order moving average or autoregressive process with independent innovations
preserves the linear independent factor structure of the model (Arellano and Bonhomme, 2012; see also
Hu et al., 2019). Ben Moshe (2017) shows how to allow for arbitrary subsets of dependent factors, and
proposes characteristic-function based estimators. In addition, in model (1) Schennach (2013b) points out
that full independence between the factors is not necessary, and that sub-independence suffices to establish
identification.

3The sample sizes being the same for Y and X2 is not essential and can easily be relaxed. In a setting
where the cdf FX2

is known, one can draw a sample from it, or alternatively work with an integral counterpart
to our estimator.
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Our goal is to estimate a sample of pseudo-observations X̂11, ..., X̂N1, whose empirical

cdf is asymptotically distributed as FX1 as N tends to infinity. To do so, we minimize a

distance between the sample of observed Y ’s and a sample of Y ’s predicted by the model.

We rely on the quadratic Wasserstein distance (see, e.g., Chapter 7 in Villani, 2003), which

is the minimum Euclidean distance between observed Y ’s and predicted Y ’s with respect to

all possible reorderings of the observations.

Formally, assume without loss of generality that Yi ≤ Yi+1 and Xi2 ≤ Xi+1,2 for all i. Let

ΠN denote the set of permutations π of {1, ..., N}. Moreover, let CN > 0 and CN > 0 be

two constants, and let XN be the set of parameter vectors X1 = (X11, ..., XN1) ∈ RN such

that |Xi1| ≤ CN and CN ≤ (N + 1)(Xi+1,1−Xi1) ≤ CN for all i. The constants CN and CN

play a role in our consistency argument below, and we will study how their choice affects

our estimator in simulations. We propose to compute:

X̂1 = argmin
X1∈XN

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) −Xσ(i),1 −Xi,2

)2

}
, (2)

where σ is a random permutation in ΠN (i.e., a uniform draw on ΠN), independent of

Y1, ..., YN , X12, ..., XN2.

To interpret the objective function on the right-hand side of (2), note that, for any

random permutation σ, Zi ≡ Xσ(i),1 + Xi,2, i = 1, ..., N , are N draws from the model.

Predicted values from the model could be generated in other ways. For example, one could

instead compute Xi1 + X̃i2, where X̃i2 are i.i.d. draws from the empirical distribution of Xi2.

Alternatively, one could generate R > 1 predictions per observation i, although here we take

R = 1 to minimize computation cost.4

A simple way to reduce the dependence of the estimator on the random σ draw is to

compute X̂
(m)
i1 , for i = 1, ..., N and m = 1, ...,M , where σ(1), ..., σ(M) are independent random

permutations drawn from ΠN , and to report the averages: X̂i1 = 1
M

∑M
m=1 X̂

(m)
i1 , for i =

1, ..., N . For fixed M , such averages will be consistent as N tends to infinity under similar

conditions as our baseline estimator.

The estimator X̂1 in (2) minimizes the Wasserstein distance between the empirical dis-

tributions of the model predictions Zi = Xσ(i),1 +Xi2 and the outcome observations Yi. The

4Specifically, one could compute Xσ(i,r),1 +Xi2, with σ(·, 1), ...σ(·, R) being R independent permutations.
In that case, π would be a generalized permutation (or “pure matching”), mapping {1, ..., N}R to {1, ..., N}.
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Wasserstein distance is defined as:

W2(F̂Y , F̂Z) =

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) − Zi

)2

} 1
2

. (3)

Since Yi and Zi are scalar, the Hardy-Littlewood-Pólya rearrangement inequality implies

that the solution to (3) is to sort Yi’s and Zi’s in the same order. That is, letting π̂ denote

the minimum argument in (3), π̂(i) = Rank(Zi) ≡ NF̂Z(Zi) is the rank of Zi.

3.2 Nonparametric factor models

We now apply the same idea to a general linear independent multi-factor model Y = AX,

where A is a T ×K matrix with generic element atk, and X = (X1, ..., XK)′ with X1, ..., XK

mutually independent. For simplicity we assume that X and Y have zero mean.5 We seek to

compute pseudo-observations X̂11, ..., X̂N1, ..., X̂1K , ..., X̂NK , which minimize the Wasserstein

distance between the sample of observed Y ’s, which here are T × 1 vectors, and the sample

of Y ’s predicted by the factor model.

As before, let CN > 0 and CN > 0 be two constants, and let XN be the set of

(X1, ..., XN) ∈ RNK such that |Xi,k| ≤ CN and CN ≤ (N + 1)(Xi+1,k − Xik) ≤ CN for

all i and k, and
∑N

i=1Xik = 0 for all k. We define:

X̂ = argmin
X∈XN

min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

K∑
k=1

atkXσk(i),k

)2
 , (4)

where σ1, ..., σK are independent random permutations in ΠN , independent of Y11, ..., YNT .

As in the scalar case, Zit ≡
∑K

k=1 atkXσk(i),k, i = 1, ..., N , t = 1, ..., T , are NT predicted

values from the factor model. Hence, as before, the vector X̂ minimizes the Wasserstein

distance between the empirical distributions of the data (Yi1, ..., YiT ) and of the model pre-

dictions (Zi1, ..., ZiT ). A difference with the scalar deconvolution model is that, when Yi are

multivariate, the minimization with respect to π inside the brackets in (4) does not have an

explicit form in general. However, from optimal transport theory it is well-known that the

solution can be obtained as the solution to a linear program. We will exploit this feature in

our estimation algorithm.

5It is common in applications to assume that some of the Xk’s have zero mean while leaving the re-
maining means unrestricted. For example, in the fixed-effects model, assuming that E(X1) = 0 suffices for
identification. Our algorithm can easily be adapted to such cases.

9



Densities and expectations. In Section 5 we will provide conditions under which X̂ik,

i = 1, ..., N , consistently estimate the quantile function of Xk. More precisely, we will

show that maxi=1,...,N |X̂ik − F−1
Xk

( i
N+1

)| tends to zero in probability asymptotically. This

provides uniformly consistent estimators of the quantile functions of the latent variables,

which can in turn be used for density estimation under a slight modification of the parameter

space XN . Indeed, let us restrict the parameter space to elements X = (X1, ..., XN) in

XN which satisfy the following additional restrictions on second-order differences: (N +

1)2 |Xi+2,k − 2Xi+1,k +Xi,k| ≤ CN , for all i and k. Let us then define, for a bandwidth

parameter b > 0 and a kernel function κ ≥ 0 that integrates to one:

f̂Xk
(x) =

1

Nb

N∑
i=1

κ

(
X̂ik − x

b

)
, x ∈ R. (5)

We will show that f̂Xk
is uniformly consistent for the density ofXk, under standard conditions

on the kernel κ and bandwidth b.

In addition, our estimator delivers simple consistent estimators of unconditional and

conditional expectations, as we show in Appendix B. As an example of practical interest, in

the fixed-effects model (1) the best predictor of X1 under squared loss can be estimated as:

Ê(X1 |Y = Yi) =
N∑
i=1

ω̂iX̂i1, (6)

where the weights ω̂i are given by:

ω̂i =

∏T
t=1 f̂Xt+1(Yit − X̂i1)∑N

j=1

∏T
t=1 f̂Xt+1(Yjt − X̂j1)

, i = 1, ..., N.

4 Computation

The optimization problems in (2) and (4) are mixed integer quadratic programs. Although

the literature on mixed integer programming has recently made substantial progress (e.g.,

Bliek et al., 2014), exact algorithms are currently limited in the dimensions they can allow

for. Here we describe a simple, practical method to minimize (2) and (4).

4.1 Algorithm

The algorithm we propose is based on the observation that, for given X11, ..., XNK values,

(4) is a linear assignment (or discrete optimal transport) problem, hence it can be solved by
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any linear programming routine. In turn, given π, (4) is a monotone least squares problem.

Our estimation algorithm is as follows. Here we focus on the general form (4), since the

estimator for the scalar deconvolution model (2) is a special case of it.

Algorithm.

• Start with initial values X̂
(1)
1 , ..., X̂

(1)
N in RK. Iterate the following two steps on s =

1, 2, ... until convergence.

• (Matching step) Given X̂
(s)
1 , ..., X̂

(s)
N , compute:6

π̂(s+1) = argmin
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

K∑
k=1

atkX̂
(s)
σk(i),k

)2

= argmax
π∈ΠN

N∑
i=1

T∑
t=1

(
K∑
k=1

atkX̂
(s)
σk(i),k

)
Yπ(i),t. (7)

• (Update step) Compute:

X̂(s+1) = argmin
X∈XN

N∑
i=1

T∑
t=1

(
Yπ̂(s+1)(i),t −

K∑
k=1

atkXσk(i),k

)2

. (8)

Both steps in the algorithm are straightforward to implement. The matching step (7) can

be computed by a linear programming routine, due to the fact that the linear programming

relaxation of a discrete optimal transport problem has integer-valued solutions.7 Formally,

π̂(s+1) in (7) is a solution to the following linear program:

max
P∈PN

N∑
i=1

T∑
t=1

(
K∑
k=1

atkX̂
(s)
σk(i),k

)(
N∑
j=1

PijYjt

)
,

where PN denotes the set of N × N matrices with non-negative elements, whose rows and

columns all sum to one. In the scalar nonparametric deconvolution case (2), this gives

π̂(s+1)(i) = R̂ank
(
X̂

(s)
σ(i),1 +Xi2

)
for all i.

In fact, it is possible to write X̂ = (X̂1, ..., X̂N) in (4) as the solution to a quadratic

program:

(X̂, P̂ ) = argmin
X∈XN , P∈PN

N∑
i=1

T∑
t=1

{(
K∑
k=1

atkXσk(i),k

)2

− 2

(
K∑
k=1

atkXσk(i),k

)(
N∑
j=1

PijYjt

)}
,

6Notice that, since π is a permutation,
∑N
i=1

∑T
t=1 Y

2
π(i),t =

∑N
i=1

∑T
t=1 Y

2
it does not depend on π.

7See for example Chapter 3 in Galichon (2016) on discrete Monge-Kantorovitch problems, and Conforti
et al. (2014) on integer programming problems and perfect formulations.
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which is not convex in general. Our estimation algorithm is a method to solve this non-convex

quadratic program. However, the algorithm is not guaranteed to reach a global minimum in

(4). Our implementation is based on starting the algorithm from multiple random values.

We will assess the impact of starting values on simulated data.

4.2 Comparison to Mallows (2007)

Our algorithm may be seen as a generalization of Mallows’ (2007) “deconvolution by simula-

tion” method. To highlight the connection, consider the scalar nonparametric deconvolution

model. The two steps in our algorithm take the following form:

π̂(s+1)(i) = R̂ank
(
X̂

(s)
σ(i),1 +Xi2

)
, i = 1, ..., N,

X̂
(s+1)
1 = argmin

X1∈XN

N∑
i=1

(
Yπ̂(s+1)(i) −Xσ(i),1 −Xi2

)2

.

The Mallows (2007) algorithm is closely related to this algorithm. The main difference is

that, instead of minimizing an objective function for fixed values of the random permutation

σ, random permutations are re-drawn in each step of the algorithm. In addition, the ordering

of the Xi1’s is not restricted, and neither are the values and increments of the Xi1’s. Formally,

the sub-steps of the Mallows algorithm are the following:

• Draw a random permutation σ(s) ∈ ΠN .

• Compute π̂(s+1)(i) = R̂ank
(
X̂

(s)

σ(s)(i),1
+Xi2

)
, i = 1, ..., N .

• Compute X̂
(s+1)

σ(s)(i),1
= Yπ̂(s+1)(i) −Xi2, i = 1, ..., N .8

To provide intuition about this algorithm, Mallows (2007) observes that, starting with

draws from the true latent X1, one expects the iteration to continue to draw from that

distribution. However, starting from different values, the X̂1 vectors implied by the algorithm

will follow a complex, N -dimensional Markov Chain. Moreover, the consistency properties of

the Mallows estimator are currently unknown. Lastly, note that the methods introduced in

this paper naturally deliver counterparts to the Mallows algorithm for other models beyond

deconvolution, such as general linear independent factor models.

8Strictly speaking, Mallows (2007) redefines X̂
(s+1)
i1 ≡ X̂

(s+1)

σ(s)(i),1
for all i = 1, ..., N at the end of step

s, and then applies the random permutation σ(s+1) to the new X̂(s+1) values. This difference with the
algorithm outlined here turns out to be immaterial, since the composition of σ(s+1) and σ(s) is also a random
permutation of {1, ..., N}.
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5 Consistency analysis

In this section we provide conditions under which the estimators introduced in Section 3 are

consistent.

For k ∈ {1, ..., K}, let us denote the quantile function of Xk as:

F−1
Xk

(τ) = inf {x ∈ Supp(Xk) : FXk
(x) ≥ τ}, for all τ ∈ (0, 1).

In addition, for any candidate quantile function Hk that maps the unit interval to the real

line, let us define the following Sobolev sup-norms:

‖Hk‖∞ = sup
τ∈(0,1)

|Hk(τ)|, and ‖Hk‖ = max
m∈{0,1}

sup
τ∈(0,1)

|∇mHk(τ)|,

where ∇mHk denotes the m-th derivative of Hk (when it exists). We will simply denote

∇ = ∇1 for the first derivative.

To a solution X̂k to (4),9 we will associate an interpolating quantile function Ĥk such

that Ĥk

(
i

N+1

)
= X̂ik for all i. We will then show that ‖Ĥk − F−1

Xk
‖∞ = op(1). This result

will be obtained as an application of the consistency theorem for sieve extremum estimators

in Chen (2007).

We make the following assumptions.

Assumption 1.

(i) (Continuity and support) Y and X have compact supports in RT and RK, respec-

tively, and admit absolutely continuous densities fY , fX that are bounded away from zero

and infinity. Moreover, fY is differentiable.

(ii) (Identification) The characteristic function of Xk does not vanish on the real line for

any k, and the vectors vecAkA
′
k, k = 1, ..., K, are linearly independent.

(iii) (Penalization) CN is increasing and CN is decreasing with limN→+∞ CN = C and

limN→+∞ CN = C, where C and C < C are such that, for all k, ‖F−1
Xk
‖ ≤ C and ∇F−1

Xk
(τ) ≥

C for all τ ∈ (0, 1).

(iv) (Sampling) (Yi1, ..., YiT ), i = 1, ..., N , are i.i.d.

Though convenient for the derivations, the compact supports assumption in part (i) is

strong. This could be relaxed by working with weighted norms, at the cost of achieving

9It is not necessary for X̂k to be an exact minimizer of (4). As we show in the proof, it suffices that

the value of the objective function at (X̂1, ..., X̂K) be in an εN -neighborhood of the global minimum, for εN
tending to zero as N tends to infinity.
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a weaker consistency result. The simulation experiments we report below suggest that the

estimator continues to perform well when supports are unbounded. Part (ii) is a suffi-

cient condition for the distributions of latent variables Xk to be nonparametrically identified

(Székely and Rao, 2000). The constants CN and CN appearing in part (iii) ensure that

the X̂ik values are bounded and of bounded variation. Lastly, the independent random

permutations σ1, ..., σK in (4) depend on N , although we have omitted this dependence for

conciseness.

Consistency is established in the following theorem. Proofs are in Appendix A.

Theorem 1. Consider the independent factor model Y = AX. Let Assumption 1 hold.

Then, as N tends to infinity:

max
i∈{1,...,N}

∣∣∣∣X̂ik − F−1
Xk

(
i

N + 1

)∣∣∣∣ = op(1), for all k = 1, ..., K.

While Theorem 1 does not formally cover the scalar deconvolution model, the same proof

arguments can be used to show the following result, under similar assumptions to those of

Theorem 1.

Corollary 1. Consider the scalar deconvolution model Y = X1 + X2, where one observes

two samples Y1, ..., YN and X21, ..., X2N from Y and X2, respectively. Let Assumption A1 in

Appendix A hold. Then, as N tends to infinity:

max
i∈{1,...,N}

∣∣∣∣X̂i1 − F−1
X1

(
i

N + 1

)∣∣∣∣ = op(1).

An important step in the proof of Theorem 1 is to define the population counterpart

to the estimation problem (4). Let µY denote the population measure of Y . Moreover, for

any candidate quantile functions H = (H1, ..., HK), let µAH denote the population mea-

sure of the random vector Z ≡
∑K

k=1AkHk(Vk), where V1, ..., VK are independent standard

uniform random variables on the unit interval. Finally, let M(µY , µAH) denote the set all

possible joint distributions, or couplings, of the random vectors Y and
∑K

k=1 AkHk (Vk), with

marginals µY and µAH . The population objective function is then:

Q(H) ≡ inf
π∈M(µY , µAH)

Eπ

 T∑
t=1

(
Yt −

K∑
k=1

atkHk (Vk)

)2
 ,

which is the quadratic Wasserstein distance between the population distribution of the data

and the one implied by the model. Under part (ii) in Assumption 1 that ensures identifica-

tion, Q(H) is minimized at the true quantile functions Hk = F−1
Xk

.
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In the scalar deconvolution model, the population objective takes the explicit form:

Q(H1) ≡ E

[(
F−1
Y

(∫ 1

0

FX2

(
H1(V1) + F−1

X2
(V2)−H1(τ)

)
dτ

)
−H1(V1)− F−1

X2
(V2)

)2
]
,

where the expectation is taken with respect to independent standard uniform random vari-

ables V1 and V2. Note that the integral in this expression is simply the population rank

of H1(V1) + F−1
X2

(V2). When the characteristic function of X2 has no real zeros, Q(H1) is

minimized at H1 = F−1
X1

.

Densities and expectations. Under slightly stronger assumptions, Theorem 1 can be

modified to obtain consistent estimators of both F−1
Xk

and its derivative, which can then be

used for density estimation. To see this, let us denote as X (2)
N the set of X in XN which satisfy

the restrictions on second-order differences: (N + 1)2 |Xi+2,k − 2Xi+1,k +Xik| ≤ CN , for all

i and k, and replace the minimization in (4) by a minimization with respect to X ∈ X (2)
N .

Imposing in Assumption 1 that the densities of Xk have bounded second-order derivatives,

and modifying the proof of Theorem 1 accordingly, we obtain that:

max
i∈{1,...,N}

∣∣∣∣(N + 1)(X̂i+1,k − X̂ik)−∇
(
F−1
Xk

)( i

N + 1

)∣∣∣∣ = op(1), for all k = 1, ..., K. (9)

We then have the following result.

Corollary 2. Let b in (5) be such that b → 0 and Nb → +∞ as N tends to infinity. Let

κ be a Lipschitz kernel that integrates to one and has finite first moments. Then, provided

Theorem 1 and equation (9) hold, we have:

sup
x∈R

∣∣∣f̂Xk
(x)− fXk

(x)
∣∣∣ = op(1), for all k = 1, ..., K. (10)

Lastly, given Corollary 2 it can readily be checked that conditional expectations estima-

tors, such as (6) and those in Appendix B, are consistent in sup-norm for their population

counterparts.

Remark: convergence rates and inference. It follows from existing convergence rates

in nonparametric deconvolution models (e.g., Fan, 1991; Hall and Lahiri, 2008) that neither

X̂ik (as an estimator of the quantile function of Xk) nor its functionals will converge at

the root-N rate in general. Bertail et al. (1999) propose an inference method under the

condition that the estimator is Nβ-consistent with a continuous asymptotic distribution, for
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some β > 0. Their rate-adaptive method is attractive in our setting, although polynomial

convergence rates may rule out cases of severe ill-posedness. Completing the characterization

of the asymptotic behavior of our estimator is an important task for future work.

6 Performance on simulated data

In this section we illustrate the finite-sample performance of our estimator on data simulated

from a nonparametric fixed-effects model. In Appendix C we report additional results for a

scalar nonparametric deconvolution model.

We focus on the model Y1 = X1 + X2, Y2 = X1 + X3, where X1, X2, X3 are indepen-

dent of each other and have identical distributions. We consider four specifications for the

distribution of Xk for all k: Beta(2, 2), Beta(5, 2), normal, and log-normal, all standardized

so that Xk has mean zero and variance one. To restrict the maximum values of X̂ik, its

increments, and its second-order differences, we consider two choices for the penalization

constants: (CN , CN) = (.1, 10) (“strong constraint”), and (CN , CN) = (0, 10000) (“weak

constraint”). To minimize the objective function in (4) we start with 10 randomly generated

starting values, drawn from widely dispersed mixtures of five Gaussian distributions, and

keep the solution corresponding to the minimum value of the objective. Lastly, we draw

M = 10 independent random permutations in ΠN , and average the resulting M sets of

estimates X̂
(m)
i1 , for i = 1, ..., N .

In Appendix C we study the sensitivity of the estimates to the penalization constants,

the starting values, and the number M of σ draws, in a nonparametric deconvolution model.

We find that the estimator is quite robust to these choices. In particular, we document that

taking conservative choices for CN and CN (such as in the “weak constraint” case) results

in a well-behaved estimator, suggesting that our matching procedure induces an implicit

regularization, even in the absence of additional constraints on parameters. At the same

time, we find that such a conservative choice may not be optimal in terms of mean squared

errors of quantile estimates. The optimal choice of penalization constants is an interesting

question for future work.10

10A simple recommendation for practice could be based on a truncated normal distribution. Let σ̂k denote
a consistent estimate of the standard deviation of Xk, e.g. obtained by covariance-based minimum distance,
and let c > 0 be a tuning parameter. Possible penalization constants are: 2.3cσ̂k (upper bound on quantile
values), 2.5c−1σ̂k and 37cσ̂k (lower and upper bounds for first derivatives), and 3275cσ̂k (upper bound on
second derivatives). When c = 1, these constants are binding when Xk follows a normal truncated at the
99th percentiles. A default choice could be c = 2.
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Figure 2: Monte Carlo results for X1 in the fixed-effects model, N = 100, T = 2
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Notes: Simulated data from the fixed-effects model, results for the first factor X1. The mean across simu-

lations is shown in solid, 10 and 90 percent pointwise quantiles are shown in dashed, and the true quantile

function or density is shown in dashed-dotted. 100 simulations. 10 random starting values. M = 10 averages

over σ draws.
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Table 1: Monte Carlo simulation, mean integrated squared and absolute errors of density
estimators in the fixed-effects model, results for X1

MISE MIAE MISE MIAE MISE MIAE
(X1, X2, X3) ∼ Beta(2,2)

Strong constraint Weak constraint Fourier
0.0036 0.0654 0.0035 0.0631 0.0123 0.2274

(X1, X2, X3) ∼ Beta(5,2)

Strong constraint Weak constraint Fourier
0.0050 0.0750 0.0042 0.0677 0.0249 0.2979

(X1, X2, X3) ∼ N (0, 1)

Strong constraint Weak constraint Fourier
0.0056 0.0796 0.0040 0.0674 0.0122 0.2372

(X1, X2, X3) ∼ exp[N (0, 1)]

Strong constraint Weak constraint Fourier
0.1003 0.2415 0.0536 0.1492 0.3344 0.8613

Notes: Mean integrated squared and absolute errors across 100 simulations from the fixed-effects model.

N = 100, T = 2. “Fourier” is the characteristic-function based estimator of Bonhomme and Robin (2010).

Results for the first factor X1.

In the first two columns in Figure 2 we show the estimates of the quantile functions

X̂i1 = F̂−1
X1

(
i

N+1

)
, for the four specifications and both penalization parameters. The results

for the other two factors are similar and omitted for brevity. The solid and dashed lines

correspond to the mean and 10 and 90 percentiles across 100 simulations, respectively, while

the dashed-dotted line corresponds to the true quantile function. The sample size is N = 100.

Even for such a small sample size, our nonparametric estimator performs well, especially

under a weaker constraint on the parameters (second column). In the last two columns of

Figure 2 we show density estimates for the same specifications. We take a Gaussian kernel

and set the bandwidth based on Silverman’s rule. Although there are some biases in the

strong constraint case, our nonparametric estimator reproduces the shape of the unknown

densities well.

In Table 1 we report the mean integrated squared and absolute errors (MISE and MIAE,

respectively) of our density estimators, for the four distributional specifications and N = 100.

We see that the estimator performs better under the weak constraint. Moreover, interest-

ingly, as shown by the last two columns of Table 1 our estimator outperforms characteristic-

function based density estimators. Here the “Fourier” results are based on the estimator of
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Bonhomme and Robin (2010), and we use their recommended choice to set the regularization

parameter in each replication. Inspection of the estimates suggests that the differences are

mainly driven by estimates of the tails of the densities. Characteristic-function based esti-

mators do not guarantee that densities be non-negative, and we find that their values tend

to oscillate in the left and right tails. From results in Chetverikov and Wilhelm (2017), we

conjecture that finite-sample performance benefits from the fact that our estimator enforces

monotonicity of quantile functions and non-negativity of densities. However, proving this

conjecture would require providing convergence rate results in addition to our consistency

analysis.

Lastly, in Appendix C we present numerical calculations of the rate of convergence of our

estimator of latent quantiles, in data simulated from a nonparametric scalar deconvolution

model. The results suggest the rate ranges between N−
3
10 and N−

7
10 in the data generating

processes that we study. We also compare the performance of our method to Mallows’ (2007)

“deconvolution by simulation” estimator.

7 Empirical application: income risk over the business

cycle in the PSID

In this section we use our nonparametric method to study the cyclical behavior of income risk

in the US. In an influential contribution, Storesletten et al. (2004) report using the PSID that

the dispersion of idiosyncratic income shocks increases substantially in recessions. Guvenen

et al. (2014) re-examine this finding, using US administrative data and focusing on log-

income growth. They find that the dispersion of log-income growth is acyclical, and that its

skewness is procyclical. Recently, Busch et al. (2018) find similar results using the PSID and

data from Sweden and Germany. Nakajima and Smyrnyagin (2019) use an approach similar

to the one in Storesletten et al. (2004), making use of a larger PSID sample and different

measures of income, and find that log-income shocks exhibit countercyclical dispersion and

procyclical skewness. This literature is motivated by the key quantitative role of the cyclical

behavior of the income process when calibrating models of business cycle dynamics.

Here we revisit this question, by estimating a nonparametric permanent-transitory model

where log-income, net of the effect of some covariates, is the sum of a random walk ηit =

ηi,t−1+vit and an independent innovation εit. In first-differences we have, denoting log-income
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growth as ∆Yit = Yit − Yi,t−1:

∆Yit = vit + εit − εi,t−1, t = 1, ..., T. (11)

Model (11) is a linear factor model with 2T − 1 independent factors. Indeed, we have:


∆Y1

∆Y2

∆Y3

...
∆YT


︸ ︷︷ ︸

≡Y

=


1 0 ... 0 1 0 ... 0
0 1 ... 0 −1 1 ... 0
0 0 ... 0 0 −1 ... 0
... ... ... ... ... ... ... ...
0 0 ... 1 0 0 ... −1


︸ ︷︷ ︸

≡A



v1 − ε0

v2

...
vT + εT
ε1

ε2

...
εT−1


︸ ︷︷ ︸

≡X

.

We leave the distributions of vit and εit unrestricted. Our aim is to document the behavior

of these distributions over the business cycle.

There are several differences between our model and estimation approach and the ones

in Storesletten et al. (2004). A substantive difference is that we estimate the densities of the

shocks nonparametrically, while they use a parametric model under Gaussian assumptions.

This is important, since estimates of non-Gaussian models (e.g., Horowitz and Markatou,

1996; Geweke and Keane, 2000; Bonhomme and Robin, 2010; Arellano et al., 2017) and

descriptive evidence (e.g., Guvenen et al., 2014; Guvenen et al., 2016) both suggest that

income shocks are strongly non-Gaussian in the US. Another difference is that we rely on

first-differences of log-income in estimation, while Storesletten et al. (2004) estimate the

model in levels. This choice allows them to exploit a long past history of recessions, even

before the PSID started to be collected, since past recessions and expansions affect the cross-

sectional variance of log-income. On the other hand, income levels may also reflect other

differences between cohorts, and our estimation in differences is robust to those. A last, less

substantive difference is that we impose that the persistent component follows a unit root,

while Storesletten et al. (2004) use an autoregressive process whose baseline value for the

autoregressive coefficient is 0.96.

Studying aggregate dynamics using survey panel data like the PSID is complicated by

attrition and confounding age effects. To minimize the impact of these factors, we follow

the approach pioneered by Storesletten et al. (2004) and construct a sequence of balanced,

four-year subpanels. In every subpanel, we require that households have non-missing data

on income and demographics and comply with standard selection criteria: the household has
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Figure 3: Quantile functions and densities of income shocks, averaged over years
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Notes: Sequence of balanced four-year subpanels from the PSID, 1969-1992. Nonparametric estimates of the

quantile functions and densities of permanent and transitory income shocks to log-household annual labor

income residuals, averaged over years. Normal fits are shown in dashed.

positive annual labor income during the four years, the head is between 23 and 60 years old,

and is not part of the SEO low-income sample or the immigrant sample. We estimate model

(11) on 21 subpanels, whose base years range between 1969 and 1989. Log-household income

growth is net of indicators for age (of head), education, gender, race, marital status, state of

residence, number of children, and family size. In estimation we set conservative values for

the penalization constants (that is, we use the “weak constraint” values of the simulation

section), we use a single starting value in the algorithm, and we average the results of M = 10

draws.

Our first finding is that income shocks are strongly non-Gaussian. In Figure 3 we report

the estimated quantile functions and densities of permanent shocks vit and transitory shocks

εit, averaged over years (in solid), together with normal fits (in dashed). The excess kurtosis

of both shocks is in line with previous evidence reported in the literature (e.g., Geweke and

Keane, 2000; Bonhomme and Robin, 2010).
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Figure 4: Dispersion and skewness of income shocks over the business cycle

Permanent shocks
Dispersion Skewness

Transitory shocks
Dispersion Skewness

Notes: See notes to Figure 3. Dispersion (P90 − P10) and skewness (Bowley-Kelley) are indicated in solid,

log-real GDP growth is in dashed.

We are interested in how features of these distributions vary with the business cycle. In

the left column of Figure 4 we plot the 90/10 percentile difference of log-income P90 − P10

(a common measure of dispersion, in solid) together with log-GDP growth (in dashed), both

of them net of a linear time trend. While permanent and transitory shocks tend to move

countercyclically in the first part of the period, the relationship tends to become procyclical

in the 1980’s. As we report in Table 2, the coefficient of log-GDP growth in a regression of the

dispersion of permanent income shocks on log-GDP growth and a time trend is -0.25, with

a Newey-West standard error of 0.30.11 Hence, overall we do not find significant evidence

that the dispersion of permanent shocks varies systematically with the business cycle. This

11We compute the Newey-West formula with one lag. Using two or three lags instead has little impact.
In the computation we do not account for the fact that the quantiles are estimated, our rationale being that
the cross-sectional sizes are large relative to the length of the time series.
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Table 2: Cyclicality of the distributions of income shocks

Income
Permanent Transitory

Dispersion Skewness Upper Lower Dispersion Skewness Upper Lower
Coeff. -0.2528 3.0752 0.4647 -0.7175 0.0752 2.3612 0.4133 -0.3381

St. Er. 0.3011 0.7576 0.2023 0.2167 0.2380 0.6239 0.1536 0.1568

Wages
Permanent Transitory

Dispersion Skewness Upper Lower Dispersion Skewness Upper Lower
Coeff. 0.1629 0.5235 0.1680 -0.0051 0.2374 0.7793 0.2594 -0.0220

St. Er. 0.3750 0.5558 0.2627 0.1295 0.2453 0.7093 0.2150 0.1351

Notes: See notes to Figure 4. The coefficients are obtained from a regression of P90 − P10 dispersion

(respectively, Bowley-Kelley skewness, upper tail P90−P50, or lower tail P50−P10) on log-real GDP growth

and a linear time trend. Newey-West standard errors (one lag).

Figure 5: Quantiles over the business cycle
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Notes: See notes to Figure 4. On the y-axis we report estimates of the coefficient of log-real GDP growth in

the regression of quantiles of permanent or transitory shocks in a regression that includes a time trend. The

quantiles are shown on the x-axis. Newey-West 95% confidence intervals are shown in dashed.

result based on first-differenced estimation and a nonparametric approach contrasts with the

main finding in Storesletten et al. (2004). In addition, we neither find that the dispersion

of transitory shocks varies with the cycle.

Next, in the right column of Figure 5 we plot the Bowley-Kelley quantile measure of skew-

ness [(P90−P50)− (P50−P10)]/(P90−P10). The graphs of permanent and transitory income

shocks suggest that skewness is procyclical. This is confirmed in Table 2, which shows that

the coefficient of log-GDP growth in the skewness regression is 3.07 for permanent shocks,
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Figure 6: Fit to densities and quantile cyclicality of log-income/wage growth
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Notes: See notes to Figure 4. In the upper left panel we show the density of log-income growth in the data

(in solid), and as predicted by our model (in dashed), with a normal fit (in dotted). In the upper right panel

we show a measure of quantile cyclicality similar to the one in Figure 5 for log-income growth, in the data

(in solid), and as predicted by the model (in dashed). In the bottom panels we show results for hourly wages.

and 2.36 for transitory shocks, significant at the 5% level in both cases. Our nonparametric

estimates of a permanent-transitory model of income dynamics thus suggest that dispersion

is approximately acyclical, and skewness is procyclical, in line with the conclusions of the

descriptive evidence in Guvenen et al. (2014) and Busch et al. (2018).

As graphical way to illustrate the distributional dynamics of income over the business

cycle, in Figure 5 we plot the coefficients of log-GDP growth in regressions of the quantiles of

permanent or transitory income shocks on log-GDP growth and a time trend. The estimates

suggest a U-shape pattern along the distribution, both for permanent and transitory shocks.

Expansions are associated with increases at the top and bottom of the distribution, while

recessions are associated with the opposite pattern and a relative increase of the middle

quantiles. In the upper panel of Figure 6 we show how the model fits the distributions of

log-income growth, suggesting that our model is able to reproduce the density and quantile
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cyclicality of log-income growth that we observe in the data.

We performed several exercises to probe the robustness of these findings, using the “strong

constraint” penalization of Section 6, measuring business cycle conditions using the unem-

ployment rate instead of log-GDP growth, and varying the choice of starting values in the

algorithm. While we found the year-to-year variation in Figure 4 to depend on the cho-

sen specification, in all our checks we found a lack of systematic cyclical variability of the

dispersion of income shocks, and a significant procyclicality of the skewness of permanent

shocks. Among the results reported in Table 2, we found the procyclicality of the skewness

of transitory shocks to be most sensitive to specification changes.

Hourly wages. We next use the information in the PSID about hours worked to compute

similar measures of cyclicality based on hourly wages of household heads. Evidence from

Italy and France (Hoffmann and Malacrino, 2019; Pora and Wilner, 2019) suggests that days

and hours worked may contribute significantly to the observed cyclical patterns of skewness.

For the US, Nakajima and Smyrnyagin (2019) obtain similar conclusions. In contrast, Busch

et al. (2018) find a moderate role of hours worked in Germany. In the bottom panel of Table

2 we see that the skewnesses of permanent and transitory shocks to hourly wages do not vary

significantly with the cycle, and that the point estimates are greatly reduced compared to the

case of total income. This suggests that hours worked largely contribute to the distributional

income dynamics that we document. In the lower panels in Figure 6 we show the model fit

to log-hourly wage growth. The estimates show that quantiles of log-hourly wage growth

vary little with the business cycle in our sample, and that our model is able to reproduce

this pattern.

8 Extensions

In this section we briefly outline several extensions of our matching approach to random

coefficients models, finite mixture models, and deconvolution models with heteroskedasticity.

These extensions show that the idea of matching data observations to model predictions is

applicable to a variety of settings with latent variables.
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8.1 Random coefficients

Consider the linear cross-sectional random coefficients model:

Y = X1 +
K∑
k=2

WkXk, (12)

where (W2, ...,WK) is independent of (X1, ..., XK), the scalar outcome Y and the covari-

ates W2, ...,WK are observed, and (X1, ..., XK) is a latent vector with an unrestricted joint

distribution (e.g., Beran and Hall, 1992; Hoderlein et al., 2010). To construct a matching

estimator in this case, we augment (12) with: Wk = Vk, k = 2, ..., K, where the Vk’s are

auxiliary latent variables independent of the Xk’s. In this augmented model, the joint dis-

tributions of (X1, ..., XK) and (V2, ..., VK) can be estimated by minimizing the Euclidean

distance between the model’s predictions of Y,W observations, and their matched values in

the data. A similar approach can be used in binary choice models with random coefficients

(Ichimura and Thompson, 1998; Gautier and Kitamura, 2013)

To see how to adapt this idea to panel data random coefficients models, consider the

random trends model:

Yit = αi + βit+ εit, (13)

where (αi, βi), εi1, ..., εiT are mutually independent. Our matching approach applies directly

to this case, by minimizing the following objective:

(α̂, β̂, ε̂1, ...̂εT ) = argmin
(α,β,ε1,...,εT )

{
min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t − αi − βit− εσt(i),t

)2

}
, (14)

where σ1, ..., σT are independent random permutations of {1, ..., N}. In this case our algo-

rithm consists in alternating optimal transport (matching) steps and least squares (update)

steps. Note that in this case the algorithm delivers bivariate pseudo-observations (α̂i, β̂i),

and that those can no longer be interpreted as estimates of order statistics; see Chernozhukov

et al. (2017) for an optimal transport approach to multivariate quantiles.12

12When the trend t in (13) is replaced by a strictly exogenous regressor Xit, we can augment the model
with auxiliary latent variables Vit using the same strategy as in the cross-sectional case, and minimize the
distance between the model’s predictions of Y,X and their matched values in the data. Note that in that
case Xit and (αi, βi) are allowed to be dependent.
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8.2 Finite mixtures

Consider next a finite mixture model with G groups, for a T -dimensional outcome Y :

Yt =
G∑
g=1

ZgXgt, t = 1, ..., T, (15)

where Z1, ..., ZG and X11, ..., XGT are unobserved, Zg ∈ {0, 1} with
∑G

g=1 Zg = 1, and

(Z1, ..., ZG) and all X11, ..., XGT are mutually independent. The nonparametric model

(15) has been extensively analyzed in the literature (e.g., Hall and Zhou, 2003; Hu, 2008;

Allmann et al., 2009; Bonhomme et al., 2016).

To construct a matching estimator in model (15) we first note that, by the threshold

crossing representation, there exist a parameter vector µ = (µ1, ..., µG−1) and a standard

uniform random variable V such that Zg = Zg(V, µ), where Z1(V, µ) = 1 if and only if

V ≤ µ1, Zg(V, µ) = 1 if and only if µg−1 < V ≤ µg for g = 2, ..., G − 1, and ZG(V, µ) = 1

if and only if µG−1 < V . We denote as MG−1 the set of vectors µ ∈ RG−1 such that

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µG−1 ≤ 1. We then define the following estimator:

(X̂, µ̂) = argmin
X∈XN , µ∈MG−1

{
min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

G∑
g=1

Zg(Vi, µ)Xσgt(i),gt

)2}
, (16)

where V1, ..., VN are standard uniform draws, and σgt are random permutations in ΠN for all

g = 1, ..., G, t = 1, ..., T , all independent of each other.

For given µ, we use an algorithm analogous to the one described in Section 4 to compute

X̂. The outer minimization with respect to µ can be performed using simulated annealing

or other methods to minimize non-differentiable objective functions. In Appendix D we

report simulation results for a nonparametric two-component mixture model. In that case

grid search is a viable option. Moreover, a similar approach can be used to estimate finite

mixtures of linear independent factor models (also known as “mixtures of factor analyzers”);

see Ghahramani and Hinton (1997) and McLachlan et al. (2003).

8.3 Heteroskedastic deconvolution

Finally, consider the model

Y = X1 + SX2, (17)

where (X1, S) is independent of X2, and X2 ∼ F , where F is known and has zero mean.

The econometrician observes a sample Y1, S̃1, ..., YN , S̃N from (Y, S̃), where S̃i is a consistent
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estimator of Si for all i.

To motivate this setup, consider the estimation of neighborhood effects on income in

Chetty and Hendren (2018), where i is a commuting zone or county, and Yi is a neighborhood-

specific estimate of the “causal effect” of place i. Within-i, a central limit theorem-type

argument suggests that Yi is approximately normally distributed, with mean Xi1 and stan-

dard deviation Si. Chetty and Hendren report, alongside Yi estimates, standard deviation

estimates S̃i. In this example F is the standard normal distribution. See Azevedo et al.

(2019) for other examples and a parametric estimation approach.

To estimate the distribution of X1 by matching, we minimize the following objective:

(X̂1, Ŝ) = argmin
(X1,S)∈XN×SN

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) −Xi1 − SiXσ(i),2

)2
+ λ

N∑
i=1

(
S̃π(i) − Si

)2
}
, (18)

where σ is a random permutation of {1, ..., N}, SN is the parameter space for S, and λ > 0

is a constant. In this case our algorithm again consists in alternating optimal transport

steps and least squares steps. As an illustration, in Appendix D we estimate the density of

neighborhood effects across US commuting zones using the data from Chetty and Hendren

(2018).

9 Conclusion

In this paper we have proposed an approach to nonparametrically estimate models with

latent variables. The method is based on matching predicted values from the model to the

empirical observations. We have provided a simple algorithm for computation, and estab-

lished consistency. We have also documented remarkable performance of our nonparametric

estimator in small samples, and we have used it to shed new light on the cyclicality of per-

manent and transitory shocks to income and wages in the US. Progress on computation

might be possible by leveraging recent advances on regularized optimal transport (Cuturi,

2013; Peyré and Cuturi, 2019). Finally, an important question for future work will be to

characterize rates of convergence and asymptotically valid confidence sets for our estimator.
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APPENDIX

A Proofs

A.1 Proofs of Theorem 1 and Corollary 1

Before proving Theorem 1 for multi-factor models, we first prove Corollary 1 for the scalar decon-

volution case where explicit expressions for Wasserstein distances are available.

A.1.1 Scalar deconvolution: Corollary 1

We first state the following assumption, where for conciseness we denote H ≡ H1. Part (ii) is an

identification condition that is commonly assumed in nonparametric deconvolution.

Assumption A1.

(i) (Continuity and support) Y , X1 and X2 have compact supports in R, and admit absolutely

continuous densities fY , fX1 , fX2 that are bounded away from zero and infinity. Moreover, fY is

differentiable.

(ii) (Identification) The characteristic function of X2 does not vanish on the real line.

(iii) (Penalization) CN is increasing and CN is decreasing with limN→+∞ CN = C and

limN→+∞ CN = C, where C and C < C are such that ‖F−1
X1
‖ ≤ C and ∇F−1

X1
(τ) ≥ C for all

τ ∈ (0, 1).

(iv) (Sampling) Y1, ..., YN and X12, ..., XN2 are i.i.d.

We now prove Corollary 1. Define the empirical objective function, for any candidate quantile

function H, as:

Q̂(H) = min
π∈ΠN

1

N

N∑
i=1

(
Yπ(i) −H

(
σ(i)

N + 1

)
−Xi2

)2

=
1

N

N∑
i=1

(
F̂−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

,

where F̂−1
Y (τ) = inf {y ∈ Supp(Y ) : F̂Y (y) ≥ τ}, and R̂ank(Zi) = NF̂Z(Zi). The second equality

follows from Hardy-Littlewood-Pólya. With some abuse of notation, for all X ∈ RN we will denote

Q̂(X) = Q̂(H) for any function H such that H
(

i
N+1

)
= Xi for all i.

Define the population counterpart to Q̂, for any H ∈ H, as:

Q(H) = E

[(
F−1
Y

(∫ 1

0
FX2 (H(V ) +X2 −H(τ)) dτ

)
−H(V )−X2

)2
]
,
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where the expectation is taken with respect to pairs (V,X2) of independent random variables, where

V is standard uniform and X2 ∼ FX2 .

Parameter space. Let H be the closure of the set {H ∈ C1 : ∇H ≥ C, ‖H‖ ≤ C} under the

norm ‖ · ‖∞. H is compact with respect to ‖ · ‖∞ (Gallant and Nychka, 1987).13

Sieve construction. For any N , let us define the sieve space:

HN =

{
H ∈ H :

∣∣∣∣H ( i

N + 1

)∣∣∣∣ ≤ CN , CN ≤ (N + 1)

(
H

(
i+ 1

N + 1

)
−H

(
i

N + 1

))
≤ CN

}
.

Let X̂ ∈ XN be such that:

Q̂(X̂) ≤ min
X∈XN

Q̂(X) + εN .

We first note that there exists an Ĥ ∈ HN such that Ĥ
(

i
N+1

)
= X̂i for all i.14 Hence:

Q̂(Ĥ) = Q̂(X̂) ≤ min
X∈XN

Q̂(X) + εN ≤ min
H∈HN

Q̂(H) + εN . (A1)

Let H0 = F−1
X1

. To show Corollary 1 it is thus sufficient to show that, when Ĥ satisfies (A1),

we have ‖Ĥ − H0‖∞ = op(1). This will follow from verifying conditions (3.1”), (3.2), (3.4), and

(3.5(i)) in Chen (2007).

H is compact under ‖ · ‖∞ and Q(H) is upper semicontinuous on H. Compactness

holds as indicated above. (3.4) in Chen (2007) follows, since HN is a closed subset of H. To show

that Q(H) is continuous on H under ‖ · ‖∞, let H1, H2 in H. By Assumption A1 (i), F−1
Y and FX2

are Lipschitz. It follows that, for some constant C̃, |Q(H2)−Q(H1)| ≤ C̃‖H2−H1‖∞. This implies

continuity of Q. This shows (3.1”) in Chen (2007).

HN ⊂ HN+1 ⊂ H for all N , and there exists a sequence HN ∈ HN such that

‖HN −H0‖∞ = op(1). Since C > C there is an ε > 0 such that C > C + ε. Let G0 be linear

with slope C + ε, such that G0(1/2) = 0. For an increasing sequence λN tending to one as N

tends to infinity, let HN = λNH0 + (1− λN )G0. Taking 1− λN ≥ max
{
CN−C

ε , C−CN

C−(C+ε)

}
, we have

|HN | ≤ CN and CN ≤ ∇HN ≤ CN , hence HN ∈ HN . Moreover:

‖HN −H0‖∞ ≤ (1− λN )‖H0‖∞ + (1− λN )‖G0‖∞ = o(1).

13Compactness can be preserved when sup-norms are replaced by weighted Sobolev sup-norms (e.g., using
polynomial or exponential weights); see for example Theorem 7 in Freyberger and Masten (2015).

14Take a smooth interpolating function of the X̂i’s, arbitrarily close in sup-norm to the piecewise-linear
interpolant of the X̂i’s extended to have slope (C +C)/2 on the intervals [0, 1/(N + 1)] and [N/(N + 1), 1].
This is always possible since CN < C and CN > C.
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This shows (3.2) in Chen (2007).

Q(H) is uniquely minimized at H0 on H, and Q(H0) < +∞. We have Q(H) ≥

Q(H0) = 0 for all H ∈ H. Suppose that Q(H) = 0. Then, (V,X2)-almost surely we have:

F−1
Y

(∫ 1

0
FX2 (H(V ) +X2 −H(τ)) dτ

)
= H(V ) +X2.

Since the left-hand side in this equation is distributed as FY , it thus follows that, almost surely:

FH(V )+X2
(H(V ) +X2) = FY (H(V ) +X2) .

It follows that FH(V )+X2
= FY almost everywhere on the real line. Since Y and X2 have densities

fY and fX2 , this also implies that fY (y) =
∫ 1

0 fX2(y −H(τ))dτ , y-almost everywhere. Now, since

H ∈ H, the function f
X̃

(x) ≡ 1/∇H(H−1(x)) is well-defined, continuous and bounded. We then

have by a change of variables, fY (y) =
∫ +∞
−∞ fX2(y − x)f

X̃
(x)dx. Taking Fourier transforms in this

equation yields, denoting as ΨZ the characteristic function of any random variable Z:

ΨY (s) = ΨX1(s)ΨX2(s) = Ψ
X̃

(s)ΨX2(s), for all s ∈ R.

As ΨX2 is non-vanishing we thus have ΨX1 = Ψ
X̃

. It follows that fX1 = f
X̃

, hence that H = H0.

This shows (3.1”(ii)) in Chen (2007).

plimN→+∞ supH∈H |Q̂(H)−Q(H)| = 0. First, notice that since H consists of Lipschitz

functions its ε-bracketing entropy is finite for any ε > 0 (e.g., Corollary 2.7.2 in van der Vaart and

Wellner, 1996). Hence H is Glivenko Cantelli for the ‖ · ‖∞ norm.

Let now:

GH(v, x) ≡
(
F−1
Y

(∫ 1

0
FX2 (H(v) + x−H(τ)) dτ

)
−H(v)− x

)2

.

Notice that, for all H ∈ H and as N tends to infinity:

1

N

N∑
i=1

GH

(
σ(i)

N + 1
, Xi2

)
=

1

N

N∑
i=1

GH

(
i

N + 1
, Xσ−1(i),2

)
=

∫ 1

0
E (GH (τ ,X2)) dτ + op(1) = Q(H) + op(1). (A2)

Moreover, as H 7→ GH is Lipschitz on H (since fY is bounded away from zero and fX2 is bounded

away from infinity), and as H is Glivenko Cantelli, the set of functions {GH : H ∈ H} is also

Glivenko Cantelli. Hence:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

GH

(
σ(i)

N + 1
, Xi2

)
−Q(H)

∣∣∣∣∣ = op(1).
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Next, we are going to show that:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

)
−
∫ 1

0
FX2

(
H

(
σ(i)

N + 1

)
+Xi2 −H(τ)

)
dτ

∣∣∣∣∣ = op(1).

(A3)

From (A3) and the fact that F−1
Y is Lipschitz we will then have:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

(
F−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

−Q(H)

∣∣∣∣∣ = op(1).

To show (A3) we are going to show that:

sup
H∈H, a∈R

∣∣∣∣∣ 1

N

N∑
i=1

1

{
H

(
σ(i)

N + 1

)
+Xi2 ≤ a

}
−
∫ 1

0
FX2 (a−H(τ)) dτ

∣∣∣∣∣ = op(1). (A4)

Pointwise convergence in (A4) is readily verified (similarly to (A2)). Uniform convergence follows

provided we can show that G = {gH,a : H ∈ H, a ∈ R} is Glivenko Cantelli, where gH,a(v, u) ≡

1{H(v) + u ≤ a}. We are going to show this using a bracketing technique from empirical process

theory. Fix an ε > 0. Since H has finite ε-bracketing entropy there exists a set of functions Hj ,

j = 1, ..., J , such that for all H ∈ H there is a j such that Hj(τ) ≤ H(τ) ≤ Hj+1(τ) for all τ , and

‖Hj −Hj−1‖∞ < ε for all j. Moreover, there exists a set of scalars ak, k = 1, ...,K, such that the

real line is covered by the intervals [ak, ak+1], and FX2(ak+1)−FX2(ak) < ε for all k. Since X2 has

bounded support we can assume without loss of generality that ak+1−ak < ε. Hence for all H and

a there exist j and k such that 1{Hj+1(v) + u ≤ ak} ≤ gH,a(v, u) ≤ 1{Hj(v) + u ≤ ak+1} for all

(u, v). Since
∫ 1

0 FX2(ak+1−Hj(τ))dτ −
∫ 1

0 FX2(ak −Hj+1(τ))dτ < C̃ε, where C̃ > 0 is finite as fX2

is bounded away from infinity, G is Glivenko Cantelli and (A4) has been shown.

Lastly, since fY is bounded away from zero and infinity and differentiable, the empirical quantile

function of Y is such that (e.g., Corollary 1.4.1 in Csörgö, 1983):∥∥∥F̂−1
Y (τ)− F−1

Y (τ)
∥∥∥
∞

= op(1).

Hence:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

(
F̂−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

−Q(H)

∣∣∣∣∣ = op(1).

This shows (3.5(i)) in Chen (2007), and ends the proof of Corollary 1.
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A.1.2 Factor models: Theorem 1

We now prove Theorem 1. For any H = (H1, ...,HK), let us denote the empirical objective function

as:

Q̂(H) = min
π∈ΠN

1

N

N∑
i=1

∥∥∥∥∥Yπ(i) −
K∑
k=1

AkHk

(
σk(i)

N + 1

)∥∥∥∥∥
2

,

where Yi = (Yi1, ..., YiT )′ is a T ×1 vector for all i, A = (A1, ..., AK) with Ak a T ×1 vector for all k,

and ‖ · ‖ is the Euclidean norm on RT . Denote as µ̂Y the empirical measure of Yi, i = 1, ..., N , with

population counterpart µY , and as µ̃AH the empirical measure of
∑K

k=1AkHk

(
σk(i)
N+1

)
, i = 1, ..., N ,

with population counterpart µAH . Then Q̂(H)
1
2 = W2 (µ̂Y , µ̃AH) is the quadratic Wasserstein

distance between µ̂Y and µ̃AH . See Chapter 7 in Villani (2003) for some properties of Wasserstein

distances.

Likewise, let us define the population counterpart to Q̂, for any H = (H1, ...,HK), as:

Q(H) = inf
π∈M(µY , µAH)

Eπ

∥∥∥∥∥Y −
K∑
k=1

AkHk (Vk)

∥∥∥∥∥
2
 ,

where the infimum is taken over all possible joint distributions of the random vectors Y and∑K
k=1AkHk (Vk), with marginals µY and µAH . In this case Q(H)

1
2 = W2 (µY , µAH) is the Wasser-

stein distance between the two population marginals.

The proof follows the steps of the proof of Corollary 1. The differences are as follows.

Parameter space. Let H be the closure of the set {H ∈ C1 : ∇H ≥ C, ‖H‖ ≤ C} under

‖ · ‖∞. Then, let us define:

HK ≡

{
(H1, ...,HK) : Hk ∈ H and

N∑
i=1

Hk

(
i

N + 1

)
= 0 for all k

}
.

HK is compact with respect to ‖ · ‖∞. The sieve construction is then similar to the scalar case.

Q(H) is continuous on HK. Let H1 and H2 in HK . Since Y has bounded support, and H1k

and H2k are bounded for all k, we have:

|Q(H2)−Q(H1)| ≤ C̃
∣∣∣Q(H2)

1
2 −Q(H1)

1
2

∣∣∣ = C̃
∣∣W2

(
µY , µAH2

)
−W2

(
µY , µAH1

)∣∣ ,
for some constant C̃ > 0. Hence, since W2 satisfies the triangle inequality (see Theorem 7.3 in

Villani, 2003):

|Q(H2)−Q(H1)| ≤ C̃W2

(
µAH1

, µAH2

)
.
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Next, we use that, since supports are bounded, W2

(
µAH1

, µAH2

)
is bounded (up to a multi-

plicative constant) by the Kantorovich-Rubinstein distance:

W1(µAH1
, µAH2

) = inf
π∈M(µAH1

, µAH2
)
Eπ

(∥∥∥∥∥
K∑
k=1

AkH1k (V1k)−
K∑
k=1

AkH2k (V2k)

∥∥∥∥∥
)
.

Now, using the dual representation of the Kantorovich-Rubinstein distance, W1 can be equiva-

lently written as (see Theorem 1.14 in Villani, 2003):

W1(µAH1
, µAH2

) = sup
ϕ1-Lipschitz

E

(
ϕ

(
K∑
k=1

AkH1k (V1k)

))
− E

(
ϕ

(
K∑
k=1

AkH2k (V2k)

))
,

where ϕ are 1-Lipschitz functions on RT ; that is, such that |ϕ(y2) − ϕ(y1)| ≤ ‖y2 − y1‖ for all

(y1, y2) ∈ RT × RT .

Hence:

W1(µAH1
, µAH2

) = sup
ϕ1-Lipschitz

∫
...

∫ [
ϕ

(
K∑
k=1

AkH1k (τk)

)
− ϕ

(
K∑
k=1

AkH2k (τk)

)]
dτ1...dτK

≤
∫
...

∫ ∥∥∥∥∥
K∑
k=1

AkH1k (τk)−
K∑
k=1

AkH2k (τk)

∥∥∥∥∥ dτ1...dτK

≤
K∑
k=1

‖Ak‖ ‖H1k −H2k‖∞.

This implies that H 7→ Q(H) is continuous on HK .

Q(H) is uniquely minimized at H0 on HK. Let H be such that Q(H) = 0. Then

W2 (µY , µAH) = 0. By Theorem 7.3 in Villani (2003) this implies that µY = µAH . Hence the cdfs

of Y =
∑K

k=1AkH0k (Vk) and
∑K

k=1AkHk (Vk) are equal. By Assumption 1 (ii), it follows from the

identification result in Bonhomme and Robin (2010) that Hk = H0k for all k.

plimN→+∞ supH∈HK
|Q̂(H)−Q(H)| = 0. Using similar arguments to the ones we used

to show the continuity of Q(H), we have:

sup
H∈HK

|Q̂(H)−Q(H)| ≤ C̃ sup
H∈HK

|W2 (µ̂Y , µ̃AH)−W2 (µY , µAH) |

≤ C̃ sup
H∈HK

(W2 (µY , µ̂Y ) +W2 (µAH , µ̃AH)) ,

where we have used the triangle inequality.

Now, there is a positive constant C̃ (different from the previous one) such that:

W2 (µY , µ̂Y ) ≤ C̃W1 (µY , µ̂Y ) = C̃ sup
ϕ1-Lipschitz

[
E (ϕ (Y ))− 1

N

N∑
i=1

ϕ (Yi)

]
= op(1),
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where the last equality follows from the set of 1-Lipschitz functions ϕ being Glivenko Cantelli.

Next, we have:

sup
H∈HK

W2 (µAH , µ̃AH) ≤ C̃ sup
H∈HK

W1 (µAH , µ̃AH)

= C̃ sup
H∈HK

sup
ϕ1-Lipschitz

[
E

(
ϕ

(
K∑
k=1

AkHk (Vk)

))
− 1

N

N∑
i=1

ϕ

(
K∑
k=1

AkHk

(
σk(i)

N + 1

))]
= op(1),

where the last equality follows from the fact that the following set of functions is Glivenko Cantelli:{
ϕ ◦

(
K∑
k=1

AkHk

)
: ϕ is 1-Lipschitz, H = (H1, ...,HK) ∈ HK

}
.

This concludes the proof of Theorem 1.

A.2 Proof of Corollary 2

Let H(2)
K denote the set of functions (H1, ...,HK) ∈ HK which additionally satisfy ‖∇2Hk‖∞ ≤ C

for all k. Let k ∈ {1, ...,K}. Let Ĥk ∈ H
(2)
N be such that Ĥk

(
i

N+1

)
= X̂ik for all i, where

H(2)
N =

{
H ∈ H(2)

K :
{
Hk

(
i

N+1

)
: i = 1, ..., N, k = 1, ...,K

}
∈ X (2)

N

}
. We have:∣∣∣∣∣∣ 1

Nb

N∑
i=1

κ

Ĥk

(
i

N+1

)
− x

b

− 1

b

∫ 1

0
κ

(
Ĥk (u)− x

b

)
du

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

Nb

N∑
i=1

∫ i
N

i−1
N

κ
Ĥk

(
i

N+1

)
− x

b

− κ(Ĥk (u)− x
b

) du
∣∣∣∣∣∣

≤ C

Nb2

N∑
i=1

∫ i
N

i−1
N

∣∣∣∣Ĥk

(
i

N + 1

)
− Ĥk (u)

∣∣∣∣ du
≤ C̃

Nb2

N∑
i=1

∫ i
N

i−1
N

∣∣∣∣ i

N + 1
− u
∣∣∣∣ du = O(N−2b−2) = o(1),

where C > 0 and C̃ > 0 are constants, and we have used that κ is Lipschitz, ∇Ĥk is uniformly

bounded, and Nb→ +∞.

Now, using the change of variables ω = Ĥk(u)−x
b , we obtain:

1

b

∫ 1

0
κ

(
Ĥk (u)− x

b

)
du =

∫ +∞

−∞
κ(ω)

1

∇Ĥk

(
Ĥ−1
k (x+ bω)

)dω =
1

∇Ĥk

(
Ĥ−1
k (x)

) + o(1),

where we have used that x 7→ 1/∇Ĥk(Ĥ
−1
k (x)) is differentiable with uniformly bounded derivative,

κ has finite first moments, b→ 0, and κ integrates to one.

Lastly, note that fXk
(x) = 1/∇H0k(H

−1
0k (x)), where by Theorem 1 and equation (9) we have

‖Ĥk −H0k‖∞ = op(1), ‖Ĥ−1
k −H

−1
0k ‖∞ = op(1), and ‖∇Ĥk −∇H0k‖∞ = op(1).

This shows Corollary 2.
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SUPPLEMENTARY APPENDIX

B Expectations

For any Lipschitz function h, the expectation E(h(Xk)) can be consistently estimated as:

1

N

N∑
i=1

h
(
X̂ik

)
.

Likewise, for all t, the expectation E(h(Xk, Yt)) is consistently estimated as:

1

N

N∑
i=1

h

(
X̂σk(i),k,

K∑
`=1

at`X̂σ`(i),`

)
,

for independent random permutations σ1, ..., σK in ΠN .

Conditional expectations are of particular interest in prediction problems. Given the X̂ik’s and

the f̂Xk
’s, a consistent estimator of the conditional expectation E (Xk |Y = y) is readily constructed.

To see this, suppose the matrix formed by all the columns of A except the k-th one has rank T

(which ensures that the conditional density of Y given Xk is not degenerate). Partition A into a

T × (K − T ) submatrix Bk and a non-singular T × T submatrix Ck, where the k-th column of A

is one of the columns of Bk. Denote as XBk (resp., X̂Bk

σ(i)) and XCk (resp., X̂Ck

σ(i)) the subvectors of

X (resp., (X̂σ1(i), ..., X̂σK(i))
′) corresponding to Bk and Ck. An estimator of E (Xk |Y = y) is then:

Ê (Xk |Y = y) =

∑N
i=1 f̂XBk

(
X̂Bk

σ(i)

)
f̂XCk

(
C−1
k

[
y −BkX̂Bk

σ(i)

])
X̂σk(i),k∑N

i=1 f̂XBk

(
X̂Bk

σ(i)

)
f̂XCk

(
C−1
k

[
y −BkX̂Bk

σ(i)

]) . (B5)

As an example, in the fixed-effects model (1), a consistent estimator of E (X1 |Y = y) is, for

y = (y1, ..., yT ):

Ê (X1 |Y = y) =

∑N
i=1

∏T
t=1 f̂Xt+1

(
yt − X̂σ1(i),1

)
X̂σ1(i),1∑N

i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

) =

∑N
i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

)
X̂i1∑N

i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

) .

(B6)

More generally, the densities f̂XBk and f̂XCk in (B5) are products of marginal densities of individual

latent factors.

Remark: constrained prediction. In the present setting, an alternative to the usual pre-

diction problem consists in minimizing expected square loss subject to the constraint that the

cross-sectional distribution of the predicted values coincide with the population distribution of

the latent variable. The resulting constrained optimal predictor can be estimated as: X̃ik =
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X̂π∗(i),k, i = 1, ..., N , where the X̃i’s are equal to the X̂j ’s sorted in the same order as the

Ê(Xk |Y = Yi)’s; that is: π∗ = argminπ∈ΠN

∑N
i=1

(
Ê(Xk |Y = Yi)− X̂π(i)

)2
. In a similar spirit,

one can construct a matching-based alternative to Ê(Xk |Y = Yi) as: 1
M

∑N
j=1

∑M
m=1 1{π̂

(m)(j) =

i}X̂
σ
(m)
k (j),k

, where σ
(m)
k , m = 1, ...,M , are independent random permutations in ΠN , and π̂(m) =

argminπ∈ΠN

∑N
i=1

∑T
t=1

(
Yπ(i),t −

∑K
k=1 atkXσk(i),k

)2
. We leave the characterization of the prop-

erties of such constrained predictors to future work.

C Additional simulation results

In this section of the appendix we show simulation results for two a scalar nonparametric decon-

volution model. Consider the model Y = X1 + X2, where X1 and X2 are scalar, independent,

and follow identical distributions. As for the fixed-effects model in the main text, we consider

four specifications: Beta(2, 2), Beta(5, 2), normal, and log-normal, and we consider two choices for

the penalization constants: (CN , CN ) = (.1, 10) (“strong constraint”), and (CN , CN ) = (0, 10000)

(“weak constraint”). We use 10 randomly generated starting values, and average M = 10 sets of

estimates.

In the first two columns in Figure C1 we show the estimates of the quantile functions X̂i1 =

F̂−1
X1

(
i

N+1

)
, for the four specifications and both penalization parameters. The solid and dashed

lines correspond to the mean, 10 and 90 percentiles across 100 simulations, respectively, while the

dashed-dotted line corresponds to the true quantile function. The sample size is N = 100. In the

last two columns of Figure C1 we show density estimates for the same specifications. The results

reproduce the shape of the unknown quantile functions and densities rather well.

In Figure C2 we report additional results for the Beta(2, 2) specification, for N = 100 (columns

1 and 3) and N = 500 (columns 2 and 4). In the first two rows we report the results based on a

single σ draw per estimate (i.e., M = 1), whereas in the next two rows we show the results for the

estimator averaged over M = 10 different σ draws. While we see that averaging seems to slightly

increase the precision of estimated quantile functions and densities, the results based on one σ

draw are comparable to the ones based on 10 draws. In the last row of Figure C2 we show results

when using a single starting parameter value in our algorithm, instead of 10 values in our baseline

estimates. We see that the results are very little affected, suggesting that the impact of starting

values on the performance of the estimator is moderate.

In Table C1 we attempt to quantify the rate of convergence of our quantile function estimator

in a simulation experiment. We report the mean squared error at various quantiles (25%, median,
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Figure C1: Monte Carlo results, deconvolution model, N = 100

Quantile functions Densities
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Notes: Simulated data from the deconvolution model Y = X1 +X2. The mean across simulations is in solid,

10 and 90 percent pointwise quantiles are in dashed, and the true quantile function or density of X1 is in

dashed-dotted. 100 simulations. 10 averages over σ draws.
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Figure C2: Monte Carlo results, deconvolution model, Beta(2,2), N = 100, 500
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Notes: Simulated data from the deconvolution model Y = X1 +X2. The mean across simulations is in solid,

10 and 90 percent pointwise quantiles are in dashed, and the true quantile function or density of X1 is in

dashed-dotted. 100 simulations.
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Figure C3: Monte Carlo simulation, mean squared error of estimated quantiles of X1 as a
function of the penalization parameter

N = 100
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Notes: Simulated data from the deconvolution model Y = X1 +X2. Log of penalization CN (x-axis) against

mean squared error (y-axis). CN is set to C
−1
N . Solid corresponds to the median, dashed to the 25% quantile,

dotted to the 75% quantile. No average, single starting value, weak constraint. N = 100 (top panel) and

N = 500 (bottom panel), 500 simulations.

and 75%) for the four distributional specifications. We focus on the weak constraint case, and rely

on a single σ draw and single starting parameter value in each replication. We report the results of

500 simulations. In the last column of Table C1 we report a numerical rate of convergence based

on these results, which we compute by regressing the log-mean squared error on the log-sample

size. The results suggest the rate ranges between N−
3
10 and N−

7
10 . From Theorem 3.7 in Hall and

Lahiri (2008), when characteristic functions of X1 and X2 are converging at polynomial rates of

order b and a, respectively, the optimal rate of convergence for quantile estimation is N−
2b

2a+2b−1 .

As an example, in the case of the Beta(2,2) and Beta(5,2) distributions, characteristic functions

converge at the quadratic rate, so the corresponding optimal rate is N−
4
7 .

Next, we assess the impact of the penalization parameters CN and CN on the mean squared

error of quantile estimates, at the median and 25% and 75% percentiles. In Figure C3 we show the

results for the four specifications, when varying the logarithm of CN between 0 and 150 and setting

CN = C
−1
N , for two sample sizes: N = 100 (top panel) and N = 500 (bottom panel). Two features

emerge. First, setting CN to a very large number, which essentially fully relaxes the constraints,
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Figure C4: Monte Carlo results, deconvolution model, Efron-Koenker-Gu specification, N =
1000
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Notes: Simulated data from the specification of the deconvolution model Y = X1 +X2 used in Koenker and

Gu (2019), which is a slight variation on a DGP used in Efron (2016). The mean across simulations is

in solid, 10 and 90 percent pointwise quantiles are in dashed, and the true quantile function of X1 is in

dashed-dotted. Weak constraint. 100 simulations.

still results in a well-behaved estimator. This is in contrast with popular regularization methods

for ill-posed inverse problems such as Tikhonov regularization or spectral cut-off (e.g., Carrasco et

al., 2007), for which decreasing the amount of penalization typically causes large increases in vari-

ance. The high sensitivity of characteristic-function based estimators to the choice of regularization

parameters is also well documented. We interpret this feature of our estimator as reflecting the

fact that the matching-based procedure induces an implicit regularization, even in the absence of

additional constraints on parameters. Second, the results show that fully removing the penalization

may not be optimal in terms of mean squared error. This raises the question of the optimal choice

of the penalization parameters.

We next consider a data generating process (DGP) which has been previously used to assess

the finite-sample behavior of several estimators in the nonparametric deconvolution model. This

DGP was used in Koenker and Gu (2019), and it is a slight variation of a DGP introduced by Efron

(2016). Let Y = X1 +X2, where X2 is distributed as a standard normal, and X1 is distributed as a

mixture of two distributions: a normal
(
0, 1

2

)
with probability 6

7 , and a uniform on the [0, 6] interval

with probability 1
7 . Koenker and Gu report that the Stefanski and Carroll (1990) characteristic-

function based estimator performs quite poorly on this DGP, distribution functions estimated on

a sample of 1000 observations showing wide oscillations. In Figure C4 we apply our estimator to

this DGP, and report the results of 100 simulations. On the left graph we show quantile function
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Figure C5: Monte Carlo results, deconvolution model, Beta(2,2), Mallows’ (2007) algorithm
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Notes: Simulated data from the deconvolution model. The mean across simulations is in solid, 10 and 90

percent pointwise quantiles are in dashed, and the true density is in dashed-dotted. Mallows’ (2007) algorithm.

100 simulations.

estimates averaged 10 times, whereas on the right the results correspond to a single σ draw per

estimation. We see that nonparametric estimates are very close to the true quantile function. This

performance stands in sharp contrast with that of characteristic-function based estimates, and is

similar to the performance of the parametric estimator analyzed in Efron (2016).

Lastly, in Figure C5 we report simulation results for Mallows’ (2007) stochastic estimator, in

the case of the Beta(2, 2) specification. As we pointed out in Section 4, this algorithm is closely

related to ours, with the key difference that new random permutations are re-drawn in every step.

We draw 100 such permutations, and keep the results corresponding to the last 50. The results

are similar to the ones obtained using our estimator under the weak constraint, as can be seen by

comparing Figures C2 and C5.

D Extensions

In this section of the appendix we show simulation results for a nonparametric finite mixture model,

and an empirical application of heteroskedastic deconvolution to the estimation of neighborhood

effects in Chetty and Hendren (2018).

D.1 Simulations in a nonparametric finite mixture model

In Figure D6 we report the results of 100 simulations, for two DGPs, both of which are finite mixture

models with G = 2 components with independent measurements. We consider a normal DGP and

a log-normal DGP. To fix the labeling across simulations, we order the components by increasing

means. We use a version of (16) with multiple draws σgt(i, r) for all i, with R = 10 simulations
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Figure D6: Monte Carlo results, finite mixture model with two components
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Notes: Simulated data from a finite mixture model with G = 2 components. The mean across simulations

is in solid, 10 and 90 percent pointwise quantiles are in dashed, and the true density is in dashed-dotted.

The two components have means −1 and 1 and unitary variances. Gaussian (top panel) and log-Gaussian

(bottom panel) components. N = 100, T = 3, 100 simulations. R = 10 simulations per observation.

by observation. We use 3 starting values in every inner loop, and perform an outer loop for 10

equidistant values of the first group’s probability. The results in Figure D6 are encouraging, and

suggest that matching estimators can perform well in nonparametric finite mixture models too.

D.2 Neighborhood effects in the US

Here we estimate the density of neighborhood effects across US commuting zones, using data

made available by Chetty and Hendren (2018). For every commuting zone, Chetty and Hendren

report an estimate Yi of the causal income effect of i, alongside an estimate S̃i of its standard

error. We compute a heteroskedastic Gaussian deconvolution estimator of the density of the latent

neighborhood effects. As a by-product, we obtain an estimate of the joint density of neighborhood

effects and their standard errors. To implement the calculation we set λ = 10, trim the top 1%

percentile of S̃i, and weigh all results by population weights. To accommodate the presence of

weights in a simple way, we draw subsamples of 500 observations from the weighted empirical
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Figure D7: Density of neighborhood effects
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Notes: In the left graph we show the density of commuting zone effects Xi1 in model (17) in solid, and

the density of neighborhood fixed-effects Yi in dashed. In the right graph we show contour plots of the joint

density of (Xi1, Si), where Si is the standard deviation of Yi. Calculations are based on statistics available

on the Equality of Opportunity website.

distribution of (Yi, S̃i). We then average the results across M = 10 subsamples.

We show the results in Figure D7. We see that neighborhood effects are not normally dis-

tributed. They show right skewness, and excess kurtosis. Estimates of Bowley-Kelley skewness

and Crow-Siddiqi kurtosis of Xi1 are 0.33 and 4.75, respectively. This evidence of non-normality

confirms results obtained by Bonhomme and Weidner (2019) using posterior estimators. The joint

density of neighborhood effects and standard errors suggests that less populated commuting zones

with less precise estimates tend to have higher income premia. The rank correlation between

neighborhood effects and standard errors is 0.39. The joint density also shows a high degree of

non-Gaussianity.
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