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We study the incidental parameter problem in “three-way” Poisson Pseudo-Maximum
Likelihood (“PPML”) gravity models recently recommended for identifying the effects
of trade policies. Despite the number and variety of fixed effects this model entails, we
confirm it is consistent for small T" and we show it is in fact the only estimator among a
wide range of PML gravity estimators that is generally consistent in this context when
T is small. At the same time, asymptotic confidence intervals in fixed-T panels are not
correctly centered at the true point estimates, and cluster-robust variance estimates used
to construct standard errors are generally biased as well. We characterize each of these
biases analytically and show both numerically and empirically that they are salient even
for real-data settings with a large number of countries. We also offer practical remedies
that can be used to obtain more reliable inferences of the effects of trade policies and
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1 Introduction

Despite intense and longstanding empirical interest, the effects of bilateral trade agree-
ments on trade are still considered highly difficult to assess. As emphasized in a recent
practitioner’s guide put out by the WTO (Yotov, Piermartini, Monteiro, and Larch,
2016), many current estimates in the literature suffer from easily identifiable sources of
bias (or “estimation challenges”). This is not for a lack of awareness. Papers showing
leading causes of bias in the gravity equation are often among the most widely cele-
brated and cited in the trade field, if not in all of Economics.! In particular, it is now
generally accepted that trade flows across different partners are interdependent via “mul-
tilateral resistance” (the main contribution of Anderson and van Wincoop, 2003), that
log-transforming the dependent variable is not innocuous (as argued by Santos Silva and
Tenreyro, 2006), and—most relevant to the context of trade agreements—that earlier,
puzzlingly small estimates of the effects of free trade agreements were almost certainly
biased downwards by treating them as exogenous (Baier and Bergstrand, 2007).

As a consequence—and aided by some recent computational developments—researchers
seeking to identify the effects of trade agreements have naturally moved towards more ad-
vanced estimation strategies that take on board all of the above concerns.? In particular,
a “three-way” fixed effects Poisson Pseudo-Maximum Likelihood (“FE-PPML”) model
with time-varying exporter and importer fixed effects to account for multilateral resis-
tance and time-invariant exporter-importer (“pair”) fixed effects to address endogeneity

has recently emerged as a logical workhorse model for empirical trade policy analysis.> A

IFor some context, if we start citation counts in 2003, Anderson and van Wincoop (2003) and San-
tos Silva and Tenreyro (2006) are, respectively, the most cited articles in the American Economic Review
and in the Review of Economics and Statistics. Paling only slightly in this exclusive company, Baier
and Bergstrand (2007) is the 5th most-cited article in the Journal of International Economics, having
gathered “only” 2,000 citations. Readers familiar with these other papers will also likely be familiar with
Helpman, Melitz, and Rubinstein (2008)’s work on the selection process underlying zero trade flows, an

issue we do not take up here.
2Larch, Wanner, Yotov, and Zylkin (2019), Correia, Guimaraes, and Zylkin (2019), and Stammann

(2018) describe algorithms that enable estimation of the three-way PPML models considered here.
3Pair fixed effects are of course no substitute for good instruments. However, instruments for trade

policy changes which are also exogenous to trade are understandably hard to come by. As discussed in
Head and Mayer (2014)’s essential handbook chapter on gravity estimation, pair fixed effects have the
advantage that the effects of trade agreements and other trade policies are identified from time-variation

in trade within pairs. Causal interpretations follow if standard “parallel trend” assumptions are satisfied.



clear conceptual obstacle, however, is the current lack of clarity regarding the asymptotic
properties of a nonlinear estimator with more than two levels of fixed effects, especially
in the standard “small 77 case where the number of time periods is small relative to the
number of countries. Even though FE-PPML models can be shown to be asymptotically
unbiased with a single fixed effect (a well-known result) as well as in a two-way setting
where both dimensions of the panel become large (Ferndndez-Val and Weidner, 2016),
the latter result does not come strictly as a generalization of the former one, leaving it
potentially unclear whether a three-way model with a fixed time dimension should be
expected to inherit the nice asymptotic properties of these other models.

Accordingly, the question we investigate in this paper might simply be phrased as: “ Do
three-way FE-PPML gravity models suffer from an incidental parameter problem (IPP)?”
As it turns out, there are two answers to this question: “no... but also yes” From a
traditional (i.e., small-7" inconsistency) perspective, there is no IPP: because the first-
order conditions of FE-PPML allow us to “profile out” the pair fixed effect terms from
the first-order conditions of the other parameters, we can re-express the model as a two-
way profile likelihood that we can then deconstruct using the basic approach established
by Fernédndez-Val and Weidner (2016) for two-way asymptotic analysis. The three-way
model is therefore consistent in fixed-T" settings for largely the same reasons the two-way
models considered in Fernandez-Val and Weidner (2016) are consistent, and we provide
suitably modified versions of the regularity conditions and consistency results established
by Fernandez-Val and Weidner (2016) for the simpler two-way case. Importantly, this
consistency property turns out to be very specific to the FE-PPML estimator. As we
are able to show, FE-PPML is in fact the only estimator among a wide range of related
FE-PML gravity estimators that is generally consistent in this context when 7' is small.

At the same time, it does not also follow that Ferndndez-Val and Weidner (2016)’s
earlier results for the asymptotic unbiased-ness of the two-way FE-PPML model similarly
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carry over to the three-way case. This is where the “...but also yes” part of our answer
comes in. There is, in fact, a unique type of IPP in the three-way FE-PPML model that,
to our knowledge, can only arise in models where there are different levels of fixed effects
that grow large at different rates. Specifically, if N is the number of countries, profiling out
the large (on the order of N?) number of pair fixed effects eliminates any “1/T"-specific
bias term that would normally be associated with a short time series. Using the heuristic
suggested by Fernandez-Val and Weidner (2018), we would then expect an asymptotic bias

with an order given by the ratio between the order of the number of remaining parameters



(NT) and that of number of observations (N*T'), or 1/N. However, due to the special
properties of FE-PPML, the asymptotic bias in our setting behaves more like a 1/(NT)
bias as N and T grow large at the same rate. The bias thus vanishes at a rate of 1/N as
N — o0, ensuring consistency even for fixed 7', and the estimator is actually unbiased as
both N and T' — oo, exactly like in the two-way FE-PPML model.*

What makes this bias a concern in fixed-T" settings then is that the asymptotic standard
deviation is of order 1/(N VT ); thus, the asymptotic bias in point estimates will always
be of comparable magnitude to their standard errors when 7T is fixed. Put another way,
without a bias correction, asymptotic confidence intervals will be incorrectly centered and
will therefore produce misleading inferences, even as N — oo. This is effectively a version
of the so-called “large T IPP, so-named because this type of result typically only arises
when taking asymptotics on the time dimension (e.g., Arellano and Hahn, 2007), usually
for the purposes of deriving bias corrections for an estimator known to be inconsistent in
short panels (e.g., Hahn and Newey, 2004).° Unlike in most other settings explored in this
literature, and even though the size of the time dimension does play a role in conditioning
the bias, the panel estimator we consider is consistent regardless of T'. Nonetheless, the
leading remedies recommended by the “large T literature can still be adapted to reduce
the bias and correct inferences.

Aside from the bias in point estimates, another (not unrelated) issue that affects the
three-way model is a general downward bias in the cluster-robust sandwich estimator
typically used to compute standard errors. This latter bias is similar to one that has been
found in the simpler two-way gravity model by several recent studies (Egger and Staub,
2015; Jochmans, 2016; Pfaffermayr, 2019) and arises for the same reason: because the
origin-time and destination-time fixed effects in the model each converge to their true
values at a rate of only 1/v/N (not 1/N), the cluster-robust sandwich estimator for the
variance has a leading bias of order 1/N (not 1/N?), and standard errors in turn have a
bias of order 1/ V/N. This latter type of bias is related to the general result that standard

4A similar IPP can arise for certain other three-way PML estimators aside from three-way FE-PPML.
However, because these other estimators are generally inconsistent for fixed T', they will typically have

an additional bias term of order 1/T that only disappears if the model is correctly specified.
5The new literature on “large T” asymptotic bias in nonlinear FE models has emerged as a re-

cent response to the well-known “small 7”7 consistency problem first described in Neyman and Scott
(1948). Other examples include Phillips and Moon (1999), Hahn and Kuersteiner (2002), Lancaster
(2002), Woutersen (2002), Alvarez and Arellano (2003), Carro (2007), Arellano and Bonhomme (2009),
Ferndndez-Val and Vella (2011), and Kato, F. Galvao Jr., and Montes-Rojas (2012).



“heteroskedasticity-robust” variance estimators are downward-biased in small samples
(see, e.g., MacKinnon and White, 1985; Imbens and Kolesar, 2016), including for PML
models (Kauermann and Carroll, 2001). The fact that the bias in the sandwich estimator
converges at a slower rate due to the incidental parameters merits special consideration
on top of these already-known issues. We should therefore be concerned that estimated
confidence intervals may be too narrow in addition to being off-center.

Our analysis provides theoretical characterizations of both of these issues as well as
a series of possible bias corrections, which we evaluate using simulations and a real-data
application. For the bias in point estimates, we construct two-way analytical and jackknife
bias corrections inspired by the corrections proposed in Ferndndez-Val and Weidner (2016;
2018). For the bias in standard errors, we show how Kauermann and Carroll (2001)’s
method for correcting the PML sandwich estimator may be adapted to the case of a
conditional estimator with multi-way fixed effects and cluster-robust standard errors.
Our simulations confirm that these methods are usually effective at improving inferences.
The jackknife correction reduces more of the bias in point estimates than the analytical
correction in smaller samples, but the analytical correction does a better job at improving
coverage, especially when also paired with corrected standard errors.

For our empirical application, we estimate the average effects of a free trade agreement
(FTA) on trade for a range of different industries using what would typically be considered
a large trade data set, with 169 countries and 5 time periods. The biases we uncover vary
in size across the different industries, but are generally large enough to indicate that our
bias corrections should be worthwhile in most three-way gravity settings. For aggregate
trade data (which yields results that are fairly representative), the estimated coefficient
for FTA has an implied downward bias about 15%-18% of the estimated standard error,
and the implied downward bias in the standard error itself is about 10% of the original
standard error.

The literature on large-7" IPPs with more than one fixed effect is small but growing.
Aside from Fernandez-Val and Weidner (2016)’s work on bias corrections for two-way
nonlinear models, Pesaran (2006), Bai (2009), Hahn and Moon (2006), and Moon and
Weidner (2017) have each conducted similar analyses for two-way linear models with
interacted individual and time fixed effects. Turning to three-way models, Hinz, Stam-
mann, and Wanner (2019) have recently developed bias corrections for dynamic three-way
probit and logit models based on asymptotics suggested by Fernandez-Val and Weidner

(2018) where all three panel dimensions grow at the same rate. Though widely applica-
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ble, this approach is not appropriate for our setting because of the different role played
by the time dimension when the estimator is FE-PPML.% In the network context, Gra-
ham (2017), Dzemski (2018), and Chen, Ferndndez-Val, and Weidner (2019) have studied
large-T" IPPs in dyadic models where the different nodes in the network are character-
ized by node-specific (possibly sender- and receiver-specific) fixed effects. The analysis of
Chen, Ferndndez-Val, and Weidner (2019) bears some especial similarity to our own in
that they allow these node-specific effects to be vectors rather than scalars, similar to the
exporter-time and importer-time fixed effects that feature in gravity models. Our bias
expansions mainly differ from those of Chen, Ferndndez-Val, and Weidner (2019) because
the equivalent outcome variable in our setting (trade flows observed over time for a given
pair) is also a vector rather than a scalar and because we work with a conditional moment
model where the distribution of the outcome may be misspecified. These distinctions are
important because they together imply that the asymptotic bias is necessarily a function
of the joint distribution of the outcome vector, a complication that does not arise in these
other settings.

In what follows, Section 2 first provides a general overview of the no-IPP properties
of the FE-PPML model (including the limits thereof). Section 3 then establishes bias
and consistency results for the three-way gravity model specifically and discusses how to
implement bias corrections. Sections 4 and 5 respectively present simulation evidence and
an empirical application. Section 6 concludes, and an Appendix adds proofs and further

simulation results.

2 FE-PPML Models and Incidental Parameters

In this section, we consider scenarios under which PPML models with various combi-
nations of fixed effects may or may not suffer from an IPP. Our focus for now will be
general; while our sights are ultimately set on three-way gravity models, it will first prove
useful to present some other models that illustrate both what sets FE-PPML apart from
other nonlinear FE models as well as its limitations in this context. As we will show,

while FE-PPML is sometimes free from incidental parameter bias, even in settings with

6Also related are the GMM-based differencing strategies for two-way FE models proposed by Char-
bonneau (2017) and Jochmans (2016). These strategies rely on differencing the data in such as way that
the resulting GMM moments do not depend on any of the incidental parameters. In principle, these

methods could be extended to allow for differencing across a time dimension as well in a three-way panel.



multiple fixed effects, it is by no means immune to IPPs in general cases.

2.1 The Classic (One-way) Setting

The classic “one-way” FE setting is a natural way of demonstrating why FE-PPML models

sometimes do not suffer from incidental parameter bias when other nonlinear FE models

normally would. Consider a static panel data model with individuals i = 1,..., N, time
periods t = 1,...,T, outcomes y;;, and strictly exogenous regressors x;; satisfying
E(yit| i, i) = Nig := eXp(afétﬁ + ). (1)

The FE-PPML estimator maximizes =, ; (i log At + Aiz) over 3 and a. The correspond-
ing FOC’s may be written as

N T T N

Tt (yit - )\it> =0, Vi Z (yit - )\it) =0, (2)

i=1t=1 t=1

where \;; := exp(z/,f+a;). Solving for &; and plugging the expression back into the FOC
for 3 we find

33— ) i ] =o. )

i=1t=1 =1 eXp( =

which, as long as (1) holds, are valid (sample) moments to estimate . Thus, under
standard regularity conditions, we have that v N (B —B%) =4 N(0,V) as N — oo, where
V' is the asymptotic variance. The FE-PPML estimator therefore does not suffer from an
IPP: even though &; is an inconsistent estimate of «;, the FE-PPML score for § has zero
mean when evaluated at the true parameter 5%, and B therefore converges in probability
to BY without any asymptotic bias. This is a well known result that can also be obtained
in the Poisson-MLE case by conditioning on =, 9;; see Cameron and Trivedi (2015).7
Of course, with a doubly-indexed panel indexed by individuals and time, a standard
approach here would be to also include a time fixed effect for each period ¢t. For small
T, the addition of time fixed effects has little effect on the above example: the small

number of time dummies needed for the fixed effects can be thought of as components of

"The earliest references to present versions of this result include Andersen (1970), Palmgren (1981),
and Hausman, Hall, and Griliches (1984). Another important contribution is Wooldridge (1999), who
shows that FE-PPML is consistent even when the assumed distribution of the data is misspecified. Our

Lemma 2 in the Appendix clarifies that FE-PPML is relatively unique in this regard versus similar models.



x; without loss of generality and are therefore consistently estimated for the same reasons
the other components of x;; are consistently estimated. A more interesting case is where T’
is large, such that we have a more complex, “two-way” estimator where both dimensions
of the panel—individual and time—grow with the sample. As shown by Fernandez-Val
and Weidner (2016)—and as we ourselves will show shortly—a two-way FE-PPML model
of this type is again consistent and exhibits no asymptotic bias. Thus, this series of results
may create the impression that Poisson models are immune to IPPs, regardless of how
many fixed effects are included or which dimensions of the panel grow with the sample.

The following discussion makes it clear this is not generally the case.

2.2  Overlapping Fixed Effects

In the above “classic” setting, every observation is affected by exactly one fixed effect. In
current applied work, it is common to specify models with what we will call “overlapping”
fixed effects, where each observation may be affected by more than one fixed effect. Some
standard examples include the gravity model from international trade (which we discuss
next) as well as other settings where researchers may wish to control for multiple sources
of heterogeneity (e.g., firm and employee, teacher and student). Thus, it is important to
clarify that the presence of overlapping fixed effects can easily lead to an IPP, even when

the underlying estimator is Poisson or PPML. We give the following simple example:

Example 1. Consider a model with three time periods T = 3 and two fixed effects a; and

v; for each individual:

t=1: E(yit|zi, a5, 7)) = it := exp(xj; 5 + o),
t=2: E(yia|Tio, i, i) = Nia := exp(xioff + i + i),
t=3: E(yi?)’ﬂ?i:a, Oéi,%‘) = A\iz i= eXp(wégﬂ + ’Yz')-

The FE-PPML estimator mazimizes SN | S22 (yirlog Mis + \it) over 3, a and v. T = 3
is fired as N — oo.

In this example, because the fixed effects are overlapping, we have that a enters into
the FOC for 74, and vice versa. Therefore, when for a given value 3 we want to solve the
FOC for & and 4 we have to solve a system of equations, and the solutions become much
more complicated functions of the outcome variable than in the one-way model. While

having this type of co-dependence between the FOCs for the various fixed effects need
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not necessarily lead to an IPP (as our gravity examples will show), it does create one in
models where more than one fixed effect dimension grows at the same rate as the panel
size, as is the case with a and v in Example 1.

The easiest way to demonstrate that this type of model suffers from an IPP is by way
of simulations. The top-left panel of Fig. 1 presents simulated FE-PPML estimates of
based on Example 1 using panel sizes of N = 100, N = 1,000, and 10,000. For ease of
exposition, the conditional distribution of y;;; is assumed to be log-normal with variance
equal to \;;; (as in a Poisson distribution), but we have found similar results for other
data-generating assumptions such as those described in Section 4. The true value for 3 is
1, and values for z, , and ~ are constructed using the same methods as Fernandez-Val
and Weidner (2016). The results show that FE-PPML clearly suffers from an IPP in
this example. Even for the largest panel size where N = 10,000, the mass point of the
simulated distribution for B is about 1.1-1.15, and the estimates do not show signs of
converging to the true estimate of 5 = 1 as the panel size increases.

Gravity models, by contrast, also feature multiple levels of overlapping fixed effects,
but generally either the number of fixed effects grows at a slower rate than the size of
the panel—as in the two-way gravity model—or there is only one fixed effect dimension
that grows at the same rate as the panel size—as in the three-way gravity model usually
recommended for trade policy analysis. Determining whether an IPP is present (and what
type) for FE-PPML applied to gravity models therefore requires a closer examination of

these models, which we now turn to.

2.3 Two-way Gravity Models

We introduce the concept of a “gravity model” as follows. Countries are indexed by
i,j € M:={1,...,N}, with i # j, and y;; is the volume of trade between i and j.* In
general, we allow there to be T' > 1 time periods, such that a time subscript will also be
needed, but for the time being we will suppose T' = 1. Exporter- and importer- specific

fixed effects are in this setting denoted «; and 7;. The model reads

E(yijlzij, i, v5) = Nij = exp(aj; 8+ o + ;).

8This panel structure can be easily relaxed to allow the number of exporters and the number of
importers to be different; the real key here is that we assume both dimensions of the panel grow at the

same rate asymptotically.



The FE-PPML estimator maximizes >7;" 1 35, (yijlog Aij + Aij) over 3, «, and v, where
x;; would normally contain a set of exogenous bilateral regressors (e.g., the log of geo-
graphic distance, the sharing of a common border, and so on).

From Fernandez-Val and Weidner (2016), we know that /N (N —1)(F — °) —4
N(0,V) as N — oo. That is, in contrast to what we found above for the model in Example
1, we have no IPP here (neither an inconsistency nor an asymptotic bias problem).” The
reasons behind this result are twofold. First, although we consider an asymptotic setting
where both fixed effect dimensions (the number of exporters and the number of importers)
grow with N, the sample size grows with N?%; all o;’s and ~;’s are therefore consistently
estimated as N — oo, and (3 is in turn consistently estimated as well. Second, for the FE-
PPML model specifically, we can either solve for @; or solve for 4; to obtain a profile score
for the remaining parameters (including 3) that is asymptotically unbiased as N — 00.1°
The simulations presented in the top-right panel of Fig. 1 provide a visual illustration of
this property, confirming that estimates are correctly centered regardless of N.

These results might perhaps create the impression that FE-PPML gravity models
generally inherit all the same no-IPP properties as the classic one-way panel data model.
As we will now discuss in detail, the three-way FE-PPML gravity model only inherits
some, not all, of these nice properties. As we will also see, this impression is misleading
for other reasons as well: even for the two-way model, while the a; and v; parameters do
not affect the score for B, they nonetheless have implications for the estimated variance
of B that are not innocuous; we thus will also devote some attention to whether the

three-way model suffers from a similar issue.

9Note that Theorem 4.1 in Ferndndez-Val and Weidner (2016) is written for the correctly specified
case, where y;; is actually Poisson distributed. However, Remark 3 in the paper gives the extension to
conditional moment models, where for the FE-PPML case only E(y;j|xij, as,7;) = exp(zi;8 + a; + ;)
needs to hold. That remark also states that the asymptotic bias of the FE-PPML estimator 3 is zero;
that is, no bias correction is necessary for valid asymptotic inference here. Their paper considers standard
panel models, as opposed to trade models, but the only technical difference is that y;; is often not observed

for the trade model when i # j. This missing diagonal has no effect on any of the results we discuss.
0Egger, Larch, Staub, and Winkelmann (2011) have previously observed that the two-way FE-PPML

estimator is consistent in this setting, as is any two-way FE-PML estimator where both dimensions of the
panel increase with the square root of the sample size. However, as shown by Ferndndez-Val and Weidner

(2016), the no-bias result for FE-PPML does not extend to other similar estimators in this context.



3 Results for the Three-way Gravity Model

To recap the sequence of results just described, we know that FE-PPML estimates with
one fixed effect do not suffer from an IPP. We also know that FE-PPML may have an IPP
in models with more than one fixed effect, but it is both consistent and asymptotically
unbiased in two-way gravity settings when neither fixed effect dimension grows at the
same rate as the size of the panel. As we will now show, each of these earlier results will
be useful for understanding the more complex case of a three-way gravity model where
we add a time dimension and a third set of fixed effects to the above two-way model.
We also describe a series of bias corrections for the three-way model, including for the

possible downward bias of the estimated standard errors.

3.1 Consistency

To formally introduce the three-way model, we now add an explicit time subscript ¢t €
{1,...,T} to yij, xij, o, and ; to the prior model and also add a bilateral (or “country-

pair”)-specific fixed effect 7;;. The model now reads as
E(yije|Tije, i, Vies Mig) = Nije = exp(xéjtﬁ + i + e+ M), (4)

where the three fixed effects now respectively index exporter-time, importer-time, and

country-pair.t!

To append an error term, we further assume y;;; = Ajjiwijr > 0, with

wijt > 0 serving as a residual. For the asymptotics using the three-way model, we consider

T fixed, while N — oo. The FE-PPML estimator maximizes

N N T
‘ > (yijelog Mije + Niji)

t=1

L(B,a,v,n) =

=1

S

7
over (3, a,, v and 7.

With the added country-pair fixed effect 7, notice that not all of the fixed effect
dimensions grow at the same rate as N increases. The numbers of exporter-time and
importer-time fixed effects each increase with N (as before), but the dimension of 7
increases with N2, since adding another country to the data adds another N — 1 trade

flows to the estimation. It therefore makes sense to first “profile out” n (as we did with «

HFor discussion of this model, see Yotov, Piermartini, Monteiro, and Larch (2016) or Larch, Wanner,
Yotov, and Zylkin (2019).
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in (3)), so that we may deal with the remaining two fixed effects in turn. For given values

of 3, a;, v the maximizer over n satisfies

Y1 Ui
exXp [nw (B,a,7)] = M Hijt -= eXP(xﬁjtﬂ + it + Yjt)- (5)
thl Nut
We therefore have
N N
E(B7a:7> - maXﬁ 57 a, 7y, n ZZ&] 6 aztaﬁ)/]t (6)
=1 j5=1
J#i
with
d it Mgt 4 4 4
Eij(ﬁu aitﬁjt) = Z [yzjt log ( ! > + =7 J Zyz’js] + Zyijt log <Z %’js) .
t=1 s= 1Nzys s=1 Hijs s=1 t=1 s=1
d [
= Z Yije log (”t) + terms not depending on any parameters. (7)
t=1 Zs 1,“1]3

Thus, after profiling out the n;; parameters, we are left with the likelihood of a multinomial
model where the only incidental parameters are o;; and 7;;. The FE-PPML estimators

for B, a;y and v;; are given by

(8,,%) = argmax L(8, e 7). (8)
»OLY
Using (4) one can easily verify that
0 la@j(ﬁ,az‘t;%‘t)] _ 0. E l(‘%z‘j(ﬂ,%tﬁjt)] _ 0. E la&‘j(ﬂ, i, Vjt)
s ’ Doy 7 a%‘t

Thus, after profiling out 7,;, there is no bias in the score of the profile log-likelihood

]:o. (9)

i (B, air,v;e). The reason for this is exactly the same as for the no-IPP result in the
classic panel setting above. Furthermore, note that the only fixed effects that need to be
estimated in ¢;;(, cit, v;e) are a; and v, which only grow with the square root of the
sample size as N — oo, implying that they are consistently estimated. Thus, we can state

the following result:

Proposition 1. So long as the set of non-fized effect regressors x;j; is exogenous to the
residual disturbance w;;; after conditioning on the fived effects o, vje, and n;;, FE-PPML

estimates of 3 from the three-way gravity model are consistent for N — co.'?

12This consistency result can be seen as a corollary of the asymptotic normality result in Proposition 3

below, for which formal regularity conditions are stated in Assumption A of the Appendix.
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This result follows because we can re-write the three-way FE-PPML estimator as a
two-way estimator without introducing a 1/7-bias, such that the earlier consistency result
from Fernandez-Val and Weidner (2016) for two-way estimators can again be applied. In
other words, the three-way FE-PPML model is consistent as N — oo largely for the same
reason two-way FE-PPML and other two-way nonlinear gravity estimators are generally
consistent. However, in the context of three-way estimators, we can also state a stronger

result that applies more narrowly to FE-PPML in particular:

Proposition 2. Consider the class of “three-way” FE-PML gravity estimators with con-
ditional means given by \ij; := exp(x;;, 8 + i + Ve + 0ij) and FOC's given by

N N T
5 Z Z Z Tijt (yljt z]t)g<)\ijt) =0, Q! Z (yzjt z]t) ()\ijt> =0,
Jj=1
;éz

N T
Vi Y (yijt — )\ijt>g(/\ijt) =0, Nt Y (yijt — )\ijt)g()‘ijt) =0,
i=1 t=1
where 1,7 = 1,...,N, t = 1,...,T, and g(Xijt) is an arbitrary function of j\ijt. If T is
small, then for B to be consistent under general assumptions about Var(y|z, a,7y,n), we
must have that g(\i;:) is constant over the range of A’s that are realized in the data-

generating process. That is, the estimator must be equivalent to FE-PPML.

The details behind this latter result are somewhat subtle. Clearly, for arbitrary g(:\ijt),
it is generally not possible to write down a closed form solution 7;; = In ZL yijtg(:\ijt) —
Inyr, Mijtg(Xijt) that would allow us to derive a two-way profile likelihood that does not
depend on 7;;. However, as we discuss in the Appendix, it is still possible to obtain a
two-way profile likelihood if g(j\ijt) is of the form g(j\ijt) = /\m, where ¢ can be any real
number. Notably, this latter class of models not only includes FE-PPML (for which ¢ = 0),
but also includes other popular gravity estimators such as Gamma PML (¢ = —1) and
Gaussian PML (¢ = 1). And yet, the existence of equivalent profile likelihood expressions
for these other estimators does not guarantee that they are consistent. Actually, the
three-way gravity estimators associated with g(xijt) = ngt can be shown to suffer from a
1/T-bias that only disappears if either ¢ = 0 (in which case the estimator is FE-PPML)
or if the conditional variance is proportional to )\%];q (in which case the estimator inherits

the properties of the MLE estimator).
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3.2 Asymptotic Bias

Because the three-way FE-PPML model inherits the consistency properties of the two-way
estimator, one might expect that it also inherits its unbiased-ness properties as well. How-
ever, this is where the limitations of PPML’s no-IPP properties become apparent. While
the profile log-likelihood in (6) is now of a similar form to the two-way models consid-
ered in Fernandez-Val and Weidner (2016), notice that it no longer resembles the original
FE-PPML log-likelihood. The no-bias result for two-way FE-PPML from Fernandez-Val
and Weidner (2016) therefore does not carry over to the profile log-likelihood and it is
possible to show that FE-PPML has an asymptotic bias in this setting.

Preliminaries

As with the models considered in Ferndndez-Val and Weidner (2016), the origins of this
bias have to do with the rate at which the estimated incidental parameters &; and 7;
converge to their true values o and 'y?. As such, it will be useful to pause here to
establish to some additional notation, mostly to provide some shorthand for the higher-

order partial derivatives of £;; with respect to &; and 7;. To this end, let

Tij1 Qi1+ Y51
Cii(B, s, ) =: Lig(B, mi5), with Tij = : = :
T o, + YiT
It will also be convenient to let ¥;;; 1= Aije/ >or Nijr. With ¢;; now expressed in similar

form to the objective function considered in Fernandez-Val and Weidner (2016), we can

now define the following objects:
o S;j:=0l;;/0m;; is a T x 1 vector with elements y,j; — Vit > 7 Yijr-

o H;:= —82€ij/87rij87rgj gives us a T'x T matrix with diagonal elements ¥;;; (1 — U;j¢) 37 Yijr
and off-diagonal (s # t) elements given by —v;;s0iji 27 Vijr-

o Gy = agfij/ﬁmjﬁng@mjt isaT x T x T cubic tensor. The elements on the main
diagonal of G;; are given by —1;j; (1 — ¥i5¢) (1 — 20451) X7 vijr- The elements of the
3 planar diagonals with r = s # ¢t are given by 0,5 (1 — 20;;5) U5t > Yijr. All other
elements with r # s # ¢ are given by —29,;,0;;s0i5: >+ Yijr-
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The value of presenting these objects is that they allow us to easily form other terms
we need that help define how 3 depends on @; and 7;. For example, S;; not only dou-
bles for both 9¢;;/0a; as well as for 9¢;;/0v;, but also allows us to obtain 9¢;;/98" =
;5 1Si;- Likewise, we also have that 0°(;; /000 = 0%/ D007 = 9*Lij/0v;07; = —Hyj,
32€ij/8oziaﬂk = 82&J/8fyj85k = _Hijxij,k and that
030 B 030 B D3y B D3
da;008% Da;0;0B% ~ 0y;00i0BF 0, 0v;0*

= Gijijk,

where it is important to note that the product G;;x;;x is a T' x T' matrix with individual
elements [Gy;zijk]st = 2o GijrstTijr. 10 addition, we will for the most part assume that
xij> =0
if (i,7) # (', j')—though this assumption can be relaxed, as we explain later on.

score vectors are conditionally independent of one another—i.e., Cov (Sij, Sijr

The remaining preliminaries then require that we also define the expected Hessian
H; = E (Hj;

only positive semi-definite (not positive definite). Therefore, we will use a Moore-Penrose

xw) Because we have not chosen a normalization for «; and v;, H;; is

pseudoinverse, to be denoted with a {, whenever the analysis requires we work with an
inverse of H;; or similar matrices.'*> We likewise find it useful to define Gy; = E(Gy;).
Finally, with I:[ij in hand, we can define the within-transformed regressor matrix z;; :=

zj; — of —j, where af and 77 are T' X K matrices that minimize

N !/

Z Z Tr {(%g —aj — Wf) H;; (%j —aj — 7;6)} ) (10)

i=1jem\{i}
subject to appropriate normalizations on a5 and 7 (e.g. tpad = L/T’yf = 0, where (7 =
(1,...,1) is a T-vector of ones). Each within-transformed regressor vector Z;;; can be
interpreted as containing the residuals left after partialing out z;;, with respect to any -

and j-specific components and weighting by ]:Iij.M

13Specifically, we have that H;; .7 = 0, where tp = (1,...,1)" is a T-vector of ones. Thus, H;; is only of
rank 7" — 1 rather than of rank 7". The Moore-Penrose inverse allows us to avoid the problem of choosing

what normalizations to use for «; and «; while still leading to the same end results.
14While we present the computation of Z;; as a two-way within-transformation to preserve the analogy

with Ferndndez-Val and Weidner (2016), each individual element z;;; 1, can also be shown to be equivalent
(subject to a normalization) to a three-way within-transformation of x;;;  with respect to it, jt, and ij
and weighting by A;;;. Readers familiar with Larch, Wanner, Yotov, and Zylkin (2019) may find the

latter presentation easier to digest.
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Bias Expansion

As in Ferndndez-Val and Weidner (2016), we can characterize the asymptotic bias in B by
examining how the estimated fixed effects a; and 7; enter the score for B . The full details
behind this derivation are left for the Appendix, but the following second-order expansion
provides a general basis. Let ¢ := vec(a,) be a vector that collects all of the two-way
incidental parameters, such that we can again re-express {;; slightly as ¢;; = £;;(3, ¢). We
can then define the function ¢(3) as
~ 1
= e > (8, ),
which allows us to succinctly characterize the estimated values for & and 74 as a function
of 5. Next, we construct a second-order expansion of the expected score for B around the
true incidental parameter vector ¢ and evaluated at the true parameter 3%
0y (8°,6(5°)) 0ty (8°,¢°) Pty (8°,6%) (-
E AT ~F | 9NV " k|2 Su\E ) 0y 40
4% o5 | "B Topaw =)

1988 [0%0;(8°,¢°) /~ .
+2%E[%@W%(@wwww@mﬂ—ﬁﬂ. (1)

This expression is near-identical to a similar expansion that appears in Fernandez-Val and
Weidner (2016)—differing mainly in that ¢;; is a vector rather than a scalar—and com-
municates the same essential insights: because the latter two terms in (11) are generally
# 0, the score for B is biased, with the bias depending on the interaction between the
higher-order partial derivatives of /;; and the estimation error in the incidental parameters
as well as their variances and covariances.

After dropping terms that are asymptotically small*® and plugging in the just-defined
expressions S;;, H;;, G;j, and T;; where appropriate, we can use (11) to obtain a tractable

expression for the bias that serves as the centerpiece of the following proposition.

Proposition 3. Under appropriate reqularity conditions (Assumption A in the Appendiz),
for T fized and N — oo we have

/N(N—l) (B_BO_WJGI(]?Ji—i]jDN)) %dN(O,WﬁlgNWJGI)a

15In particular, all elements of the cross-partial objects E[02(;;/0c;0v,], E[0%¢;;/0cic;0;], ete. can

be shown to be asymptotically small. Thus, in what follows, By reflects the contribution of the «;

parameters to the bias and Dy reflects the contribution of the 7; parameters.
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where Wy and Q1 are K X K matrices given by

1 N _

Wy = ———— #Hy; 7,
N N(N_ 1) ;jeg\:{i} s
b Sy s,

NIV =1) = jemin

ngﬂ Lij,

and By and Dy are K-vectors with elements given by

|
JeM{i}

i=1 JEM\{i}

T T
]. N =~ o~ 7 / r7
—l—ﬁZTr ( Z Gij$ij,k) ( Z Hij) [ Z E(‘S’ijsij ngk>] ( Z Hij) )
JEM{i} JeMm\{i}

jEM\ (i} jem\ (i}

xz]k)

T
1Y - _
Db, = N Z Tr ( Z Hij) Z E (Hij Lij,k Sz{j

J=1 ieM{j} €M\ {j}

T T
1 N = ~ ] / 7
—l—ﬁZTr ( > Gijwij,k) ( > Hij) [ > E(‘Sijsij %gk)] ( > Hij)
€M {5} €M {5}

€M\ {7} ieM{j}

The above proposition establishes the asymptotic distribution of the three-way gravity
estimator as N — oo, including the asymptotic bias (N —1)"'Wy'(By+Dy). Intuitively,
this bias can be decomposed as the product of the inverse expected Hessian with respect
to B (i.e. Wx') and the bias of the score in (11), which in turn is captured by the two-
way bias terms By and Dy and the rate of asymptotic convergence (essentially 1/N).
In the two-way FE-PPML setting considered in Fernandez-Val and Weidner (2016), we
would have that By = Dy = 0, such that B is unbiased. Importantly, and unlike in the
two-way FE-PPML setting, the three-way model does not give us the no-bias result that

By = Dy =0, as we will illustrate in more detail momentarily.

What if 7" is Large?

While Proposition 3 only focuses on asymptotics where N — oo, the three-way gravity
panel also features a time dimension (7"), and it is interesting to wonder how the above
results may depend on changes in T'. The following remark clarifies how the bias terms

By and Dy can be re-written to illuminate the role of the time dimension.
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Remark 1. Using generic definitions for S;j, H;;, Gij, and T;; (e.g., Si;j := 04;;/0m;;,

H;j = 0? 62]/87@]87%,
apply generally to M-estimators of the form (8) based on concave objective functions
Cii (B, i, vie).  Unlike with two-way FE-PPML models, these formulas do not reduce to

zero when we further specialize them to the profiled Poisson pseudo-likelihood in (7), but

etc.), the formulas for the asymptotic distribution in Proposition 3

we still find it instructive to do so (e.g. to discuss the large T limit below). For that
purpose, we define the T' x T matriz M;; = Ip — ¥;;0. Furthermore, let A;; be the T x T
diagonal matriz with diagonal elements \;ji, and fori,j € {1,..., N} define the T x T

matrices

T T
Qi = N— ( Z MiinjMi/j> ( Z M;; E 3/@]3/1] )( Z MiinjMi/j) )

JeM{i} jem{i} jeM{i}

T
L jém
The bias term By = (BY,) in Proposition 3 can then be expressed as
L'T Rij fz’j,k + A;j Qi Aij Mz‘/j fij,k
[/,T)\’L'j L&w)\ij '

(12)

By = ZZ

i=1jen\{i}

and an analogous formula for Dy follows by interchanging © and j appropriately.

So long as there is only weak time dependence between observations belonging to the
same pair (in the sense described by Hansen, 2007), the matrix objects R;; and QiAijMi’j
in Remark 1 are both of order 1 as T" — oo, such that both terms in brackets in (12) are
likewise of order 1.'® We will henceforth assume any time dependence is weak. Remark 2

then describes some additional asymptotic results for when 7' is large.
Remark 2. Under asymptotics where T — oo, we have the following:

(i) If N is fivzed and T — oo, then 3 is generally inconsistent.

(ii) As T — oo, the combined bias term Wx'(By + Dy) goes to zero at a rate of 1/T.
Therefore, because the standard error is of order 1/(N\/T), there is no bias in the asymp-
totic distribution ofB as N and T both — oo.

6By “weak” time dependence, we mean that any such dependence dissipates as the temporal distance
between observations increases. Alternatively, if observations are correlated regardless of how far apart
they are in time, the standard error is always of order 1/N (see Hansen, 2007), and the same will also be

true for the asymptotic bias. The latter is arguably a less natural assumption in this context, however.
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To elaborate further, letting 7' — oo is obviously not sufficient for either « or v to be
consistently estimated and does not solve the IPP, as stated in part (i). However, as part
(ii) tells us, T still plays an interesting role in conditioning the bias when both N and T
jointly become large. Intuitively, because Wy is of order 1/7', and because By and Dy
are bounded as T — 0o, the bias in [ effectively vanishes at a rate of 1/(NT) as both
N,T — oo, such that it increasingly shrinks in relation to the order-1/(N+/T) standard
error. This is what we mean when we say the IPP the three-way PPML model suffers
from is rather unique: it can be resolved by large enough 7' (like most IPPs), yet large T’

is actually neither necessary nor sufficient to ensure consistency.

Illustrating the Bias using the 7' = 2 Case

Admittedly, the complexity of the objects that appear in Proposition 3 may make it dif-
ficult to appreciate the general point that the three-way estimator is not unbiased. One
way to make these details more transparent is to focus our attention on the simplest pos-
sible panel model where T' = 2. The convenient thing about this simplified setting is the
likelihood function ¢;; can be reduced to just a scalar: ¢;; = y;;1 log ¥;j1+ij2 log (1 — Y1),
where
exp (Ax;; 8 + ;)
exp (Ax;;f + m;j) + 1

ijl =

and where Ax;; = x;;1 — ;52 and m;; = m;1 — 2. Importantly, these normalizations

2

allow us to express 9¢;;/0m;;, 0*C;;/ Omy;, ete. as also just scalars, and we can therefore

easily derive the following result:
Remark 3. For T' = 2, we calculate S;j = U;joyij1 — Vij1Vije, Hij = 931052 (Yij1 + Yij2),
Ffz'j = VijiNije, Gij = Viji¥j2(Vij1 — Vij2) (Wij1 + Yije), éz’j = Uij1(Vij1 — Pij2) Nije, and
AZ;j = Tijj1 — Tijo. The bias term B in Proposition 3 can then be written as

1 XL 2k ATi0i51052 {19ij2E(yz‘2j1> — 0 B(y75) + (Vije — 191']'1)1[*3(%]‘1%]‘2)}

BY = plim |——
N JI\)/—>oo N; > Vi1 Aiga

+ii {Z#iAiiﬂgijl(ﬁiﬂ _19ij2))‘ij2}{zjy:11912j2E(yi2jl) +1912j1E<yi2j2) - 219ij119¢j2E(yij1yij2)}
2N

i=1 [Z#i ?91‘]‘1)\@']‘2] i

with an analogous expression also following for D¥;.

)

Two points then stand out based on the above expression. First, unlike in the two-way

FE-PPML case, neither of the two terms in BY generally equals 0. Even in the correctly
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specified case (where E(yl-zﬂ) = /\?jl + Xij1 and E(yij19i52) = NijiAij2), the first term can
be shown to cancel, but the second term does not, because 3, éijAfij = (0. This is very
different from the two-way case where I:[ij = Gij = —)\;;. In that case, both terms in B
and D%, always cancel, regardless of whether the PPML model is correctly specified. The
difference can be appreciated by comparing simulation results from the top-right panel
of Fig. 1, which are based on the two-way model and are therefore unbiased, with those
from the bottom-left panel, which are based on the three-way model with 7" = 2 and show
a clear asymptotic bias.

Second, it is plain from Remark 3 that both terms in the bias generally depend on
the expected second moments of y;; (e.g., E(y7;1), E(yij1vij2), etc.). This is again dif-
ferent from the models that were previously considered in Fernandez-Val and Weidner
(2016).'"  Among other things, the difficulty associated with estimating these second
moments means that analytical bias corrections may not necessarily offer superior per-
formance relative to distribution-free methods such as the jackknife. It also means that
allowing for conditional dependence between pairs may change the expression of bias, as

we discuss next.

Allowing for Conditional Dependence across Pairs

The bias expansion in Proposition 3 allows for errors to be clustered within each pair
(i,7), but assumes conditional independence of y;; and y;;» for all (i,5) # (¢',5'). This
assumption is consistent with the standard practice in the literature of assuming that
errors are clustered within pairs when computing standard errors (see Yotov, Piermartini,
Monteiro, and Larch, 2016.) However, it is important to clarify that the results in Propo-
sition 3 may change when other assumptions are used. For example, if we want to allow
y;; and y;; (i.e., both directions of trade) to be correlated, then the bias results would

not actually change, but we would need to modify the definition of €25 to allow for the

"The specific examples used in Fernandez-Val and Weidner (2016) are the Poisson model, which is
unbiased, and the probit model, which requires the distribution of y;; to be correctly specified. They
also provide a bias expansion for “conditional moment” models that allow the distribution of y;; to be
misspecified. Beyond this theoretical discussion, bias corrections for misspecified models have yet to
receive much attention, however. As can be seen above, an important complication that arises for these

models is that the bias depends on the distribution of the data, which is typically treated as unknown.
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additional clustering; namely, we would need

o 5 5
i=1 j=t
= N Z Z { {Var (SZJ IL‘U>: ‘%ij —f—f;Z [V&I‘ (sz l'ﬂ>] '%ji
i=1 j=i+1
+ f;j [COV (Sij7 Sji $z]>} fji + f;z |:COV (Sj“ S l'ﬂ):| fl]}

(13)

However, this is just one possibility. Similar adjustments could be made to allow for
clustering by exporter or importer, for example, or even for multi-way clustering a la
Cameron, Gelbach, and Miller (2011). In these cases, the bias would also need to be
modified; specifically, one would have to modify the portions of D% that BY that depend

on the variance of S;; to allow for correlations across ¢ and/or j.

3.3 Downward Bias in Robust Standard Errors

Of course, even if the point estimates are correctly centered, inferences will still be un-
reliable if the estimates of the variance used to construct confidence intervals are not
themselves unbiased. For PPML models, confidence intervals are typically obtained using
a “sandwich” estimator for the variance that accounts for the possible misspecification of
the model. However, as shown by Kauermann and Carroll (2001), the PPML sandwich
estimator is generally downward-biased in finite samples. Furthermore, for gravity models
(both two-way and three-way), the bias in the sandwich estimator can itself be formalized
as a kind of IPP.'®

To illustrate the bias of the sandwich estimator in our three-way setting, recall that
we can express the variance of § as Var(f — ) = N™H(N — 1)" "Wy 'QuWx!. As is
also true for the linear model (cf., MacKinnon and White, 1985; Imbens and Kolesar,
2016), the bias arises because plugin estimates for 2 depend on the estimated variance
E(@]?;]) = E[(yi; — M\ij) (yi; — Aij)'] rather than on the true variance E(Si;S};) = El(yiji —
Aijt)(Wige — Nije)']. Even though E(S;;S;;) is a consistent estimate for E(S;;S;;), it will
generally be downward-biased in finite samples. Notably, this bias may be especially slow

to vanish for models with gravity-like fixed effects.

18This type of IPP has similar origins to the one described in Verdier (2018), who considers a dyadic

linear model with two-way FEs and sparse matching between the two panel dimensions.
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To see this, continue to let ¢ := vec(a,y) and now let d;; be a T' x dim(¢) matrix of
dummies such that each row of d;; satisfies d;;1¢ = it + ;. Using the same approach as
Kauermann and Carroll (2001), we can then use the special case where E(S;;5};) = rwHy
(such that Qy = xkWy, meaning the model is correctly specified) to demonstrate that
E(gmgl’]) generally has a downward bias. Specifically, let the fitted score vector §ij be
approximated by the first-order expansion S;; = S;; — H;jz;(8 — 8) — Hijdij (¢ — ¢). Also
assume that £(S;S;;) = rH;;, such that the FE-PPML model is correctly specified. Then
the expected outer product of the fitted score E(SUEQJ) has a first-order bias of

E(Si;Si; — SiiSi) & —woimy HuyTyy W' Ty Hiy — N(]G_l)ﬁijdijwj(\;b)ild;jﬁij (14)
where W” = En[-0%;/0¢0¢)| = —[N(N — 1)]7' %, ; d!; Hy;d;; captures the expected

Hessian of the concentrated likelihood with respect to ¢.*

The two terms on the right-hand side of (14) are both negative definite, implying that
the sandwich estimator is generally downward-biased—and definitively so if the model is
correctly specified. The most meaningful difference with the earlier results of Kauermann
and Carroll (2001) is how we can use these two terms to decompose the bias in E(gzjgl’j)
into two distinct sources. The first term in (14), which depends on [N(N — 1)]7'*Wy,
captures how the bias depends on the variance of /3. The second term, which depends on
[N(N—=1)]"'W, ™", captures how much of the bias is due to the variance in the estimated
incidental parameter vector (E The former term decreases with N2, but the latter term
only decreases with NV, since increasing N by 1 only adds 1 additional observation of each
element of @.20

All together, this analysis implies that the estimated standard error for B will exhibit
a bias that only disappears at the relatively slow rate of 1/ V/N. We should therefore
be concerned that asymptotic confidence intervals for B may exhibit inadequate coverage
even in moderately large samples, similar to what has been found for the two-way FE-
PPML model in recent simulation studies by Egger and Staub (2015), Jochmans (2016),
and Pfaffermayr (2019). Indeed, the bias approximation we have derived in (14) can be
readily adapted to the two-way setting or even to more general settings with k-way fixed

effects.

19A detailed derivation of (14) is provided in the Appendix.
20pfaffermayr (2019) makes a similar point about the order of the bias of the standard errors for the

two-way FE-PPML model, albeit using a slightly different analysis.

21



3.4 Bias Corrections for the Three-way Gravity Model

We now present two methods for correcting the bias in estimates: a jackknife method
based on the split-panel jackknife of Dhaene and Jochmans (2015) and an analytical
correction based on the expansion shown in Proposition 3. We also provide an analytical

correction for the downward bias in standard errors.

Jackknife Bias Correction

The advantage of the jackknife correction is that it does not require explicit estimation of
the bias yet still has a simple and powerful applicability. To see this, note first that the

asymptotic bias we characterize can be written as

1
NBﬁ + Op(N_l)v

where B? is a combined term that captures any suspected asymptotic bias contributions
of order 1/N. The specific jacknife we will apply for our current purposes is a split-panel
jackknife based on Dhaene and Jochmans (2015). As in Dhaene and Jochmans (2015), we
want to divide the overall data set into subpanels of roughly even size and then estimate
B(p) for each subpanel p. Given the gravity structure of the model, we first divide the set
of countries into evenly-sized groups a and b. We then consider 4 subpanels of the form
“(a,b)”, where “(a,b)” denotes a subpanel where exporters from group a are matched
with importers from group b. The other three subpanels are (a,a), (b,a), and (b,b). For
randomly-generated data, we can define a and b based on their ordering in the data (i.e.,
a:=1:91<N/2;b:=1:i> N/2). For actual data, it would be more sensible to draw
these subpanels randomly and repeatedly.?!

The split-panel jackknife estimator for g3, g;{,, is then defined as
3 .— 973 _ Bw) 15
G 2i -y 20, (15)
P

This correction works to reduce the bias because, so long as the distribution of y;; and
x;; is homogeneous across the different partitions of the data, each 3@) has a leading

bias term equal to 2B°/N. The average B(p) across these four subpanels thus also has

21 This is just one possible way to construct a jackknife correction for two-way panels. We have also
experimented with splitting the panel one dimension at a time as in Ferndndez-Val and Weidner (2016),

but we find the present method performs noticeably better at reducing the bias.
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a leading bias of 2B?/N and any terms depending on B?/N cancel out of (15). Thus,
the bias-corrected estimate BJ{, only has a bias of order o,(N~'), which is obtained by
combining the second-order bias from B with that of the average subpanel estimate. This
latter bias can be shown to be larger than the original second-order bias in (3.4), but the

overall bias should still be smaller because of the elimination of the leading bias term.

Analytical Bias Correction

Our anaytical correction for the bias is based on the bias expression in Proposition 3 and
uses the plugin objects %l-j, §Z-]-, ﬁij, :ij, and @” For the most part, these objects are
formed in the obvious way by replacing A;;; with Xijt and 9;;; with ﬁijt = Xijt /> XUT
where needed. The resulting bias correction is given by (N — 1)\ Wy!(By + Dy), where

By and Dy are K-vectors with elements given by

i )
_ R = 5 2 a4
BY = — N Z Tr ( Z Hij) Z Hij Tijg Sz{j
-1:3 jem\{i} JeM\{i}

i i
1 N A~ o~ = P =
tov 2T X Gumuk] | X Hy > SuSyl | X Hil |
( )= jeM\ (i)

jeMm{i} JeM{i} €M\ {i}

T
— 1 N — — ~
DJkV = —7N 1 E TI‘ ( E HU) E Hij %ij,k Sz,j
=1 €M\ {5} €M\ {5}
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T
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€M {5}

=1 ieM\{5} €M {5} €M\ {7}
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As in Ferndndez-Val and Weidner (2016), it is possible to show that these plug-in cor-
rections lead to estimates that are asymptotically unbiased as N — 00.?? Still, for finite
samples, it is evident that the bias in some of these plug-in objects—the §ij §;] outer

product terms, for example—could cause the analytical bias correction to itself exhibit

22The replacement of N with N — 1 in §5€v and ﬁf\, stems from a degrees-of-freedom correction. This
correction is needed because creating plug-in values for the E (ngHij |:132Jk) and E (Sij S;j‘mij,k) objects
that appear in Proposition 3 requires computing terms of the form E[y;,] and E[y;;syiji], as illustrated

in Remark 3.
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some bias. For this reason, it is not obvious a prior: whether the analytical correction will
outperform the jackknife at reducing the bias in 3. One clear advantage the analytical
correction has over the jackknife is that it does not require the distribution of y;; and z;;

to be homogeneous over the different partitions of the data in order to be valid.

Bias-corrected Standard Errors

Under the assumption of clustered errors within pairs, a natural correction for the variance
estimate is available based on (14). Specifically, let

-1
UG 1 = o] s as
HijxijWle — mHijdij ](\;¢) d;j SijSz{jxija

. 1 . 1
PP i | S
N(N—l)izj:x] T N(N-1)

where Iy is a T x T' identity matrix and Wﬁ}z’) is a plugin estimate for W](\,¢). The corrected
variance estimate is then given by

~ 1 o~ gy~
VU= ————— W

N(N-1)—1
The logic of this adjusted variance estimate follows directly from Kauermann and Carroll
(2001): if the PPML estimator is correctly specified (such that E(S;S)) = xH;;), then
VU can be shown to eliminate the first-order bias in V(3 — °) shown in (14). It is
not generally unbiased otherwise, but it is plausible that it should eliminate a significant

portion of any downward bias under other variance assumptions as well.

4 Simulation Evidence

For our simulation analysis, we assume the following: (i) the data generating process
(DGP) for the dependent variable is of the form y;;; = A;jiwiji, where w;j; is a log-normal
disturbance with mean 1 and variance o7;,. (ii) 8 = 1. (iii) The model-relevant fixed
effects a, v, and 7 are each ~ N(0,1/16). (iv) xijt = Tijt—1/2 + @ + v + viji, where
vijt ~ N(0,1/16).2* (v) Taking our cue from Santos Silva and Tenreyro (2006), we

23These assumptions on «, v, 7, Z;jt, and v are taken from Fernandez-Val and Weidner (2016).

Notice that x;;; is strictly exogenous with respect to w;j; conditional on «, v, and 7.
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consider 4 different assumptions about the residual disturbance w;j:

DGPI: a?jt = )\;jf; Var(yijt‘xity a,v,n) =

DGP II: afjt = )\i_j%; Var(yije| i, o, v, m) = Nije-
DGP III: afjt =1 Var(yijel zit, @, v, m) =
( ) =

DGPIV: o2, = 0.5);! 0. 5Am +0.5e27 )2

gty

2x;
gt T 0.5t Var yijt\xit,oa%n

where we also allow for serial correlation within pairs by imposing

Cov(wijs, wiji] = exp [0'3|s—t| X \/ln(l + U%s)\/ln(l + J%t)} -1,

such that the degree of correlation weakens for observations further apart in time.?*

The relevance of these various assumptions to commonly used error distributions is
best described by considering the conditional variance Var(y,j¢|zi, «,7y,n). For example,
DGP I assumes that the conditional variance is constant, as in a Gaussian process with
i.i.d disturbances. In DGP II, the conditional variance equals the conditional mean, as
in a Poisson distribution. DGP III-—which we will also refer to as the case of “log-
homoscedastic” data—is the unique case highlighted in Santos Silva and Tenreyro (2006)
where the assumption that the conditional variance is proportional to the square of the
conditional mean leads to a homoscedastic error when the model is estimated in logs
using a linear model. Finally, DGP IV provides a “quadratic” error distribution that
mixes DGP II and DGP III and also models a more complex dependence between x;;;
and the variance of the error term.

Tables 1 and 2 present simulation evidence comparing the uncorrected three-way FE-
PPML estimator with results computed using the analytical and jackknife corrections
described in Section 3.4. As in the prior simulations, we again compute results for a
variety of different panel sizes—in this case for N = 20, 50,100 and T = 2,5,10.%° In
order to validate our analytical predictions regarding these estimates, we compute the

average bias of each estimator, the ratios of the average bias to the average standard error

24The 0.3 that appears here serves as a quasi-correlation parameter. Replacing 0.3 with 1 would be
analogous to assuming disturbances are perfectly correlated within pairs. Replacing it with 0 removes

any serial correlation. Choosing other values for this parameter produces similar results.
25Note that the trade literature currently recommends using wide intervals of 4-5 years between time

periods so as to allow trade flows time to adjust to changes in trade costs (see Cheng and Wall, 2005.)
Thus, for practical purposes, T'= 10 may be thought of as a relatively “long” panel in this context that
might span 40+ years.
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and of the average standard error to the standard deviation of the simulated estimates,
and the probability that the estimated 95% confidence interval covers the true estimate
of = 1. In particular, we expect that the bias in B should be decreasing in either N or
T but should remain large relative to the estimated standard error and induce inadequate
coverage for small 7. We are also interested in whether the usual cluster-robust standard
errors accurately reflect the true dispersion of estimates. Results for DGPs I and II are
shown in Table 1, whereas Table 2 shows results for DGPs III and IV.

The results in both tables collectively confirm the presence of bias and the viability
of the analytical and jackknife bias corrections. The average bias is generally larger for
DGPs I and IV than IT and III. As expected, it generally falls with both N and T across
all the different DGPs, though only weakly so for DGP III (the log-homoscedastic case),
which generally only has a small bias.2® To use DGP II-—the Poisson case, where PPML
should otherwise be an optimal estimator—as a representative example, we see that the
average bias falls from 3.774% for the smallest sample where N = 20, T' = 2 to a low of
0.234% at the other extreme where N = 100, T' = 10. For DGP IV, the least favorable of
these cases, the average bias ranges from —6.544% down to —1.899%. On the whole, these
results support our main theoretical findings that 5 should be consistently estimated even
for small 7" but has an asymptotic bias that depends on the number of countries and on
the number of time periods.

Interestingly, while the average bias almost always decreases with 7', the ratio of
the bias to standard error usually does not, seemingly contrary to the expectations laid
out in Remark 2. Evidently, when T is sufficiently small, the rate at which the bias
decreases with 7' may be slower than 1/T. Researchers should thus be careful to note
that the implications of Remark 2 do not necessarily apply to settings with small T" or even
moderately large T.%7 Instead, it seems reasonable to expect that the bias will generally
be non-negligible relative to the standard error except for very large 7. Furthermore,
the estimated cluster-robust standard errors themselves clearly exhibit a bias in all cases

as well. Even when N = 100, SE/SD ratios are uniformly below 1; generally they are

26Numerically, what we have found is that the two terms that appear in both B and D in Proposition
3 tend to have opposite signs when the DGP is log-homoscedastic. Thus, they tend to mitigate one

another, leading to a somewhat muted bias in this case.
2"We have also simulated the bias for larger values of T beyond T' = 10. What we find is that the bias

decreases somewhat slowly with 7" for small values of T' (consistent with the results in these tables), but

does indeed start to decrease with 1/T as T becomes increasingly large.
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closer to 0.9 or 0.95, and for DGP IV, they are closer to 0.85 or even 0.8. Because of
these biases, the simulated FE-PPML coverage ratios are unsurprisingly below the 0.95
we would expect for an unbiased estimator.

Bias corrections to the point estimates do help with addressing some, but not all, of
these issues. The jackknife generally performs more reliably than the analytical correction
at reducing the average bias when compared across all values of N and T—mnotice how,
for the Poisson case, for example, the average bias left by the jackknife correction is never
greater than 0.1%, whereas the analytical-corrected estimates still have average biases
ranging between 0.08% and 1.12%. However, when N = 100, the analytical correction
often dominates, especially when T is at least 5. All the same, both corrections gener-
ally have a positive effect, and the better across-the-board bias-reduction performance of
the jackknife comes at the important cost of a relatively large increase in the variance.
Thus, the analytical correction generally performs as well as or better than the jackknife
in terms of improving coverage even in the smaller samples. Neither correction is suffi-
cient to bring coverage ratios to the immediate vicinity of 0.95, however, though corrected
Gaussian-DGP estimates and Poisson-DGP estimates both reach 0.93-0.94 using the an-
alytical correction when N = 100, and coverage for the analytical-corrected Poisson-DGP
estimates reaches 0.94-0.96 when N = 50.

Table 3 then evaluates the efficacy of our bias correction for the estimated variance.
Keeping in mind that this correction is calibrated for the case of a correctly specified
variance (which corresponds to DGP 1I), it is unsurprising that the effect of this correction
varies depending on the conditional distribution of the data. The best results by far are for
the Gaussian, Poisson, and Log-homoscedastic DGPs (DGPs I, 11, and III, respectively),
where combining the analytical bias correction for the point estimates with the correction
for the variance yields coverage ratios that fall within an acceptable range between 0.932
and 0.962 when N is either 50 or 100 and are often close to the target value of 0.95 in
these cases. These corrections lead to dramatic improvements in coverage for DGP IV as
well, but there the remaining biases in both the point estimate and the standard error
remain large even for N = 100 and 7" = 10.

Overall, these simulations suggest that combining an analytical bias correction for B
with a further correction for the variance based on (14) should be a reliable way of reducing
bias and improving coverage. At the same time, it should be noted that neither offers a
complete bias removal. For smaller samples, if reducing bias on average is heavily favored,

and if the distribution of y;; and z;; can be reasonably assumed to be homogeneous, then
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the split-panel jackknife method might be preferable to the analytical correction method.
We should also be careful to point out that the results produced here are based on the
particular assumptions we have chosen to generate the data. To determine the practical
implications of these corrections, a more meaningful test will be to apply them to estimates

produced using real data.

5 Empirical Application

For our empirical application, we estimate the average effects of an FTA using a panel
with what would typically be considered a relatively large number of countries. Our trade
data is from the BACI database of Gaulier and Zignago (2010), from which we extract
data on trade flows between 169 countries for the years 1995, 2000, 2005, 2010, and 2015.
Countries are chosen so that the same 169 countries always appear as both exporters and
importers in every period; hence, the data readily maps to the setting just described with
N = 169 and T = 5. We combine this trade data with data on FTAs from the NSF-
Kellogg database maintained by Scott Baier and Jeff Bergstrand, which we crosscheck
against data from the WTO in order to incorporate agreements from more recent years.?®

The specification we estimate is
Yijt = explaig + je + i + BFT Agjilwije, (16)

where y;;; is trade flows (measured in current USD), F'TA;j; is a 0/1 dummy for whether
or not ¢ and j have an FTA at time ¢, and w;j is an error term. As we have noted,
estimation of specifications such as (16) via PPML has become an increasingly standard
method for estimating the effects of trade agreements and other trade policies and is
currently recommended as such by the WTO (see Yotov, Piermartini, Monteiro, and
Larch, 2016.)

Table 4 presents results from FE-PPML estimation of (16), including results ob-
tained using our bias corrections. Because biases may vary depending on the specific
heteroscedasticity patterns native to each industry, we show results for industry-specific
regressions at the 2 digit ISIC (rev. 3) industry level as well as for aggregate trade. The

results for aggregate trade flows, shown in the bottom row of Table 4, are nonetheless

28This database is available for download on Jeff Bergstrand’s website: https://www3.nd.edu/
~jbergstr/. The most recent version runs from 1950-2012. The additional data from the WTO is

needed to capture agreements that entered into force between 2012 and 2015.
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fairly representative. To provide some basic interpretation, the coefficient on FT'A;;; for
aggregate trade is initially estimated to be 0.082, which equates to an ¢%%2 — 1 = 8.5%
average “partial” effect of an FTA on trade.?” The estimated standard error is 0.027,
implying that this effect is statistically different from zero at the p < 0.01 significance
level. Our bias-corrected estimates do not paint an altogether different picture, but do
highlight the potential for meaningful refinement. Both the analytical and jackknife bias
corrections for 8 suggest a downward bias of 0.04-0.05, or about 15%-18% of the estimated
standard error. As our bias-corrected standard errors show (in the last column of Table
(4)), the initially estimated standard error itself has an implied downward bias of 10%
(i.e., 0.027 versus 0.030).

Turning to the industry-level estimates, the analytical bias correction more often than
not indicates a downward bias ranging between 5%-20% of the estimated standard error.
Exceptions are present on both sides of this range. Estimates for the Chemical and
Furniture industries appear to be unbiased, for example, and some (such as Tobacco) are
associated with an upward bias. On the other end of the spectrum, implied downward
biases can also be larger than 20% of the standard error, as is seen for Petroleum (46%),
Fabricated Metal Products (28%), and Electrical Equipment (26%). The biases implied
by the jackknife are often even larger (see Fabricated Machinery Products, for example),
consistent with what we found in our simulations for smaller panel sizes. One possible
interpretation is that the jackknife-corrected estimates are giving us a less conservative
alternative to the analytical corrections in these cases. However, as we have noted, these
jackknife estimates could be reflecting non-homogeneity across the different subpanels
and/or the higher variance introduced by the jackknife. Implied biases in the standard
error, meanwhile, tend to range between 10%-20% of the original standard error, again

with some exceptions.

29The term “partial effect” is conventionally used to distinguish this type of estimate from the “general
equilibrium” effects of an FTA, which would typically be calculated solving a general equilibrium trade
model where prices, incomes, and output levels (which are otherwise absorbed by the a;; and ~;; fixed
effects) are allowed to evolve endogenously in response to the FTA. In the context of such models, 8 can
usually be interpreted as capturing the average effect of an FTA on bilateral trade frictions specifically,

holding fixed all other determinants of trade.
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6 Conclusion

Thanks to recent methodological and computational advances, nonlinear estimation with
three-way fixed effects has become increasingly popular for investigating the effects of
trade policies on trade flows. However, the asymptotic and finite-sample properties of
such an estimator have not been rigorously studied, especially with regards to potential
IPPs. The performance of the FE-PPML estimator in particular is of natural interest
in this context, both because FE-PPML is known to be relatively robust to IPPs as
well as because it is likely to be a researcher’s first choice for estimating three-way gravity
models. Our results regarding the consistency of PPML in this setting reflect these unique
properties of PPML and support its current status as a workhorse estimator for estimating
the effects of trade polices.

Given the consistency of PPML in this setting, and given the nice IPP-robustness prop-
erties of PPML in general, it may come as a surprise that three-way PPML nonetheless
suffers from an IPP bias. We show that the leading component of this bias is decreas-
ing in the number of countries in the panel as well as in the number of time periods.
Thus, the bias is likely to be of comparable magnitude to the standard error when the
time dimension of the panel is small, even for large panels with many countries. Typ-
ical cluster-robust estimates of the standard error are also biased, implying asymptotic
confidence intervals not only off-center but also too narrow.

These issues are not so severe that they leave researchers in the wilderness, but we do
recommend taking advantage of the corrective measures described in the paper when es-
timating three-way gravity models. In particular, we find that analytical bias corrections
based on Taylor expansions to both the point estimates and standard errors generally
lead to improved inferences when applied simultaneously. These corrections are not a
panacea, however, and several avenues remain open for future work. For example, con-
fidence interval estimates could be adjusted further to account for the uncertainty in
the estimated variance—Kauermann and Carroll (2001) describe such a correction for
the standard PPML model. A quasi-differencing approach similar to Jochmans (2016)
could also provide another angle of attack. Turning to broader applications, the essential
dyadic structure of our bias corrections could be easily extended to network models that
study changes in network behavior over time, especially settings that involve studying the

number of interactions between network members.
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Simulation Results for Different FE-PPML Models
FE-PPML w/ Overlapping Fixed Effects

FE-PPML Gravity Estimates

Example 1 T=1 (two-way model)
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Figure 1: Kernel density plots of FE PPML estimates for 3 different models, using 500
replications. Clockwise from top left, the 3 models are: y; = expla; x 1(t < 2) +
vi X 1(t > 2) + xyf|wi, with the ¢ dimension of the panel fixed at T = 3; a two-

way gravity model with y;; = exploy + 75 + 2;;]wi;; a three-way gravity model with

Yijt = explag + Vit + Mij + Tijeflwije and T = 2. The ¢ and j dimensions of the panel
both have size N in the latter two models. The true value of 5 is 1 (indicated by the

vertical dotted lines) and the data is generated using Var(y|-) = E(y|-). See text for

further details.
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Table 1: Finite-sample Properties of the Three-way FE-PPML Gravity Model
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10
A. Gaussian DGP (“DGP I”)
Average bias (x100)

FE-PPML 6.588  3.645 2.297 2.659 1.446 0.904 1.376  0.702  0.410
Analytical 2.193  0.896  0.464 0.326  0.120 0.101 0.071  -0.009 -0.006
Jackknife 0.233  -0.043 -0.334 0.031 -0.038 -0.048 -0.012  -0.058 -0.043

Bias / SE ratio

FE-PPML 0.683 0.778 0.736 0.620 0.709 0.684 0.606  0.659 0.601

Analytical 0.227 0.191 0.149 0.076  0.059 0.076 0.031 -0.008 -0.009

Jackknife 0.024 -0.009 -0.107 0.007 -0.019 -0.036 -0.005 -0.054 -0.063
SE / SD ratio

FE-PPML 0.837 0.826 0.883 0.926 0.936 0.965 0.932 0.921 0.943

Analytical 0.795 0.805 0.863 0.882  0.905 0.954 0.899  0.901 0.936

Jackknife 0.716 0.749 0.802 0.844 0.870 0.923 0.892  0.907 0.937

Coverage probability (should be 0.95 for an unbiased estimator)

FE-PPML 0.828 0.798 0.818 0.878 0.856 0.884 0.888  0.870 0.884
Analytical 0.864 0.876  0.904 0.916 0.928 0.928 0.926  0.944 0.938
Jackknife 0.836  0.858  0.890 0.910 0.912  0.928 0.924 0.936 0.944

B. Poisson DGP (“DGP II”)
Average bias (x100)

FE-PPML 374 2,017 1.314 1.517  0.839 0.563 0.721  0.395 0.234
Analytical 1.121  0.459 0.355 0.143  0.079 0.117 -0.038 -0.015 -0.004
Jackknife -0.090 -0.096 -0.165 -0.012 -0.010 0.024 -0.093  -0.050 -0.031

Bias / SE ratio

FE-PPML 0.683 0.778 0.736 0.620 0.709 0.684 0.606  0.659 0.601

Analytical 0.227 0.191 0.149 0.076  0.059 0.076 0.031  -0.008 -0.009

Jackknife 0.024 -0.009 -0.107 0.007 -0.019 -0.036 -0.005 -0.054 -0.063
SE / SD ratio

FE-PPML 0.875 0.828 0.918 0.959 0.977 0.988 0.962  0.950 0.930

Analytical 0.835 0.806 0.899 0.931 0.959 0.981 0.946 0.944 0.925

Jackknife 0.749 0.750 0.830 0.894 0.920 0.954 0.942 0.938 0.921

Coverage probability (should be 0.95 for an unbiased estimator)

FE-PPML 0.884 0.870 0.902 0.928 0.908 0.918 0.920 0.928 0.904

Analytical 0.884 0.880 0.922 0.940 0.940 0.956 0.936  0.944 0.930

Jackknife 0.856  0.868 0.892 0.922 0926 0.944 0.934 0936 0.932
Notes: Results computed using 500 replications. The model being estimated is ¥;j: = Aijiwije, Where

Xije = exp(au + vt + mij + Bwije). The data is generated using oy ~ N(0,1/16), ;0 ~ N(0,1/16), n;; ~ N(0,1/16) and

B =1zt = Tiji—1/2 + i + Vit + Nij + Vije, With x50 = 0:5 + vijo and v ~ N(0,1/2). Results are shown for two
different assumptions about Var(y;;:). The “Gaussian” DGP (panel A) assumes Var(w;j¢) = /\fﬁ The “Poisson” DGP
(panel B) assumes Var(w;j;) = )\:]} SE/SD refers to the ratio of the average standard error of of B relative to the standard
deviation of E across simulations. Coverage probability refers to the probability 3° is covered in the 95% confidence
interval for E 7. “Analytical” and “Jackknife” respectively indicate Analytical and Jackknife bias-corrected FE-PPML

estimates. “FE-PPML” indicates uncorrected estimates. SEs allow for within-ij clustering.
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Table 2: Finite-sample Properties of the Three-way FE-PPML Gravity Model
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10
A. Log-homoscedastic DGP (“DGP III”)
Average bias (x100)

FE-PPML 0.223 -0.291 -0.292 0.161 -0.070 -0.048 -0.033  -0.083 -0.103
Analytical -0.264 -0.356 -0.126 -0.022 -0.049 0.068 -0.126  -0.057 -0.033
Jackknife -0.580 -0.440 -0.320 0.016 -0.046 0.046 -0.146  -0.076 -0.044

Bias / SE ratio

FE-PPML 0.022  -0.058 -0.087 0.036 -0.032 -0.032 -0.014 -0.072 -0.133
Analytical -0.026  -0.071 -0.038 -0.005 -0.022 0.046 -0.054  -0.049 -0.043
Jackknife -0.057 -0.088 -0.095 0.004 -0.021 0.031 -0.063  -0.066 -0.057

SE / SD ratio

FE-PPML 0.869  0.797  0.887 0.940 0.953  0.954 0.962 0.934 0.897
Analytical 0.816 0.756  0.837 0.902 0.915 0.920 0.936 0913 0.872
Jackknife 0.731  0.705 0.778 0.870 0.881 0.903 0.935  0.895 0.862

Coverage probability (should be 0.95 for an unbiased estimator)

FE-PPML 0.902  0.886 0.920 0.948 0.934 0.938 0.942 0934 0.926
Analytical 0.880 0.864 0.912 0.932  0.924 0.932 0.938 0932 0.912
Jackknife 0.838 0.838 0.878 0.930 0.908 0.914 0.940 0916 0.924

B. Quadratic DGP (“DGP IV”)
Average bias (x100)

FE-PPML -6.544 -6.024 -5.210 -3.341 -3.275 -2.798 -2.305  -2.144 -1.899
Analytical -5.051 -4.412 -3.586 -1.810 -1.831 -1.448 -1.110  -1.025 -0.883
Jackknife -4.441 -3.836 -3.228 -1.429 -1.574 -1.249 -1.042  -0.961 -0.812

Bias / SE ratio

FE-PPML -0.544 -0.960 -1.203 -0.597 -1.089 -1.319 -0.750  -1.260 -1.562
Analytical -0.420 -0.703 -0.828 -0.324 -0.609 -0.682 -0.361  -0.603 -0.726
Jackknife -0.369 -0.612 -0.746 -0.256  -0.523 -0.589 -0.339  -0.565 -0.668

SE / SD ratio

FE-PPML 0.817 0.734 0.787 0.855 0.845 0.842 0.898  0.845 0.805
Analytical 0.753 0.676 0.715 0.788 0.771  0.768 0.830  0.780 0.739
Jackknife 0.670  0.621  0.665 0.751 0.735 0.743 0.823  0.758 0.720

Coverage probability (should be 0.95 for an unbiased estimator)

FE-PPML 0.860  0.750  0.732 0.852  0.756  0.694 0.868  0.698 0.588
Analytical 0.834 0.770  0.786 0.880  0.808  0.810 0.888  0.818 0.782
Jackknife 0.784 0.742 0.744 0.850 0.816  0.820 0.894  0.820 0.770

Notes: Results computed using 500 replications. The model being estimated is y;;; = ijiwij¢, where

Xijt = exp(au + vt + 1mij + Bwije). The data is generated using oy ~ N(0,1/16), ;e ~ N(0,1/16), n;; ~ N(0,1/16) and
B =1. ijt = Tije—1/2 + e + Ve + Nij + Vije, With 250 = 1;; + V450 and v ~ N(0,1/2). Results are shown for two
different assumptions about Var(y;;;). The “Log-homoscedastic” DGP (panel A) assumes Var(w;;;) = 1. The “Quadratic”
DGP (Panel B) assumes w;j; is log-normal with variance equal to 0.5)\:]% +0.5exp(2z;5¢). SE/SD refers to the ratio of the
average standard error of of B relative to the standard deviation of E across simulations. Coverage probability refers to the
probability 8° is covered in the 95% confidence interval for E n7. “Analytical” and “Jackknife” respectively indicate
Analytical and Jackknife bias-corrected FE-PPML estimates. “FE-PPML” indicates uncorrected estimates. SEs allow for

within-ij clustering.
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Table 3: Improving Coverage in the Three-way FE-PPML Gravity Model
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10
A. Gaussian DGP (“DGP I”)
SE / SD ratio with corrected SEs

FE-PPML 0.938 0.907 0.962 0.980 0.978 1.001 0.963 0.944 0.961
Analytical 0.891 0.884 0.940 0.933 0.946 0.990 0.928 0.923 0.954
Jackknife 0.803 0.823 0.873 0.894 0.909 0.957 0.921 0929 0.955

Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)

FE-PPML 0.864 0.830 0.848 0.900 0.876 0.888 0.896 0.876 0.890
Analytical 0.912 0.906 0.918 0.936 0.934 0.950 0.934 0948 0.948
Jackknife 0.880 0.904 0.908 0.922 0.924 0.936 0.936 0.942 0.952

B. Poisson DGP (“DGP II”)
SE / SD ratio with corrected SEs

FE-PPML 0.977 0.910 1.003 1.009 1.018 1.025 0.988 0971 0.949

Analytical 0.933 0.886 0.982 0.979 1.000 1.019 0.971 0965 0.943

Jackknife 0.836 0.825 0.907 0.940 0.959 0.991 0.968 0.958 0.939
Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)

FE-PPML 0.922 0.892 0.930 0.946 0.922 0.924 0.926  0.940 0.908

Analytical 0.916 0.918 0.938 0.956 0.952 0.962 0.940 0.946 0.934

Jackknife 0.896 0.904 0.916 0.936 0.940 0.946 0.948 0936 0.934

C. Log-homoscedastic DGP (“DGP III”)
SE / SD ratio with corrected SEs

FE-PPML 0.984 0.896 0.998 1.001 1.013 1.012 0.998 0.967 0.928

Analytical 0.924 0.850 0.940 0.960 0.972 0.977 0.970  0.945 0.902

Jackknife 0.827 0.793 0.875 0.926 0.936 0.959 0.969 0.927 0.891
Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)

FE-PPML 0.946 0.926 0.946 0.954 0.952 0.956 0.948 0.942 0.938

Analytical 0.920 0.908 0.938 0.948 0.942 0.946 0.944 0.934 0.932

Jackknife 0.896 0.878 0.914 0.950 0.930 0.942 0.948 0.932 0.926

D. Quadratic DGP (“DGP IV”)
SE / SD ratio with corrected SEs

FE-PPML 0.952 0.861 0.929 0.947 0.948 0.949 0.970 0.924 0.882

Analytical 0.877 0.793 0.845 0.873 0.865 0.865 0.897 0.853 0.810

Jackknife 0.781 0.729 0.786 0.833 0.824 0.837 0.889 0.828 0.789
Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)

FE-PPML 0.900 0.820 0.808 0.894 0.806 0.762 0.892 0.752 0.652

Analytical 0.894 0.830 0.838 0.908 0.864 0.862 0.918 0.856 0.818

Jackknife 0.844 0.808 0.814 0.894 0.860 0.866 0.908 0.848 0.822

Notes: Results computed using 500 replications. The model being estimated is y;j; = Aijiwije, where

Xije = exp(ag + vj¢ + nij + Bzije). The data is generated using oy ~ N(0,1/16), ;0 ~ N(0,1/16), 1;; ~ N'(0,1/16) and

B =1 mije = Tije—1/2 + qie + Ve + Nij + vije, With @450 = 1i; + vijo and v ~ N(0,1/2). Results are shown for four
different assumptions about w;j;. The “Gaussian” DGP (panel A) assumes Var(w;;;) = )\f]f The “Poisson” DGP (panel B)
assumes Var(wgj;) = /\;i The “Log-homoscedastic” DGP (panel C) assumes Var(w;;;) = 1. The “Quadratic” DGP (Panel

D) assumes w;; is log-normal with variance equal to 0.5/\:th + 0.5 exp(2z45¢). SE/SD refers to the ratio of the average
standard error of of E relative to the standard deviation of 3 across simulations. Coverage probability refers to the
probability 8° is covered in the 95% confidence interval for E “Analytical” and “Jackknife” respectively indicate Analytical
and Jackknife bias-corrected FE-PPML estimates. “FE-PPML” indicates uncorrected estimates. SEs allow for within-ij

clustering. The corrected SEs correct for first-order finite sample bias in the estimated variance.
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Table 4: Bias Correction Results Using BACI Trade Data (N = 169)

Original Bias-corrected estimates
estimates

Industry Code B SE Analytical Jackknife SE

Agriculture 1 0.100  (0.046)  0.110 0.115 (0.051)
Forestry 2 -0.205 (0.125) -0.199 -0.189 (0.155)
Fishing 5 0.128  (0.141)  0.140 0.182 (0.164)
Coal 10 0.025 (0.131) -0.039 -0.063 (0.164)
Metal Ores 13 0.040  (0.100)  0.033 0025 (0.123)
Other Mining & Quarrying n.e.c. 14 0.048  (0.096) 0.079 0.097 (0.107)
Food & Beverages 15 0.019  (0.043)  0.026 0.031 (0.048)
Tobacco 16 0.535  (0.139)  0.525 0.571 (0.162)
Textiles 17 0.228  (0.045)  0.226 0.234 (0.055)
Apparel 18 0.092  (0.092)  0.094 0.127 (0.122)
Leather Products 19 0.224  (0.067) 0.220 0.240 (0.079)
Wood & Cork Products 20 0.078  (0.109) 0.098 0.101 (0.127)
Paper & Paper Products 21 -0.002 (0.062) -0.004 -0.018 (0.071)
Printed & Recorded Media 22 -0.115 (0.065) -0.144 -0.180 (0.076)
Coke & Refined Petroleum 23 0.256  (0.076) 0.291 0.319 (0.090)
Chemicals & Chemical Products 24 0.073  (0.035) 0.073 0.078 (0.040)
Rubber & Plastic Products 25 0.141  (0.030) 0.146 0.157 (0.035)
Non-metallic Mineral Products 26 0.217  (0.049) 0.223 0.225 (0.058)
Basic Metal Products 27 0.268  (0.100) 0.273 0.301 (0.115)
Fabricated Metal Products (excl. Machinery) 28 0.196  (0.036) 0.206 0.225 (0.041)
Machinery & Equipment n.e.c. 29 0.049  (0.035) 0.052 0.056 (0.041)
Office, Accounting, and Computer Equipment 30 -0.036  (0.062) -0.044 -0.045 (0.074)
Electrical Equipment 31 0.213  (0.045) 0.225 0.240 (0.052)
Communications Equipment 32 -0.127  (0.067) -0.143 -0.173 (0.081)
Medical & Scientific Equipment 33 0.063  (0.039) 0.069 0.082 (0.044)
Motor Vehicles, Trailers & Semi-trailers 34 0.157  (0.064) 0.169 0.194 (0.077)
Other Transport Equipment 35 0.208  (0.124) 0.231 0.267 (0.137)
Furniture & Other Manufacturing n.e.c. 36 0.224  (0.073) 0.224 0.227 (0.082)
Total All 0.082  (0.027)  0.086 0.087 (0.030)

Notes: These results are computed using ISIC Rev. 3 industry-level trade data for trade between 169 countries during years 1995,
2000, 2005, 2010, & 2015. The original data is from BACI. The model being estimated is y;;: = exp(ast + Vjt + 155 + BFT Asje)wije,
where y;;; is the trade volume and FT A;;; is a dummy for the presence of an FTA. ay, ¢, & 1;; respectively denote
exporter-time, importer-time, & exporter-importer fixed effects. We estimate each industry separately. The jackknife corrections

use the average of 200 randomly-assigned split-panel partitions. SEs are clustered by exporter-importer.
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A Appendix with proofs

In what follows, we find it convenient to first provide a proof of Proposition 3, which char-
acterizes the asymptotic distribution of B and its asymptotic bias. This proof naturally
lends itself to further discussion of the “large T results from Remarks 1 and 2 as well as
the consistency result from Proposition 1, which itself follows as a by-product of Proposi-
tion 3. We then demonstrate the uniqueness of this latter result as stated in Proposition
2 and highlight the general inconsistency of other three-way gravity estimators. We also

include more details behind the downward bias in the estimated variance.

A.1 Proof of Proposition 3
Known result for two-way fixed effect panel models

Our proof of Proposition 3 relies on results from Ferndndez-Val and Weidner (2016)
— denoted FW in the following. That paper considers a standard panel setting where
individuals i are observed over time periods ¢, and mixing conditions (as opposed to
conditional independence assumptions) are imposed across time periods. By contrast, we
consider a pseudo-panel setting, where the two panel dimensions are labelled by exporters
1 and importers 7, and we impose conditional independence assumptions across both ¢
and j here (see also Dzemski, 2018, who employs those results in a directed network
setting where outcomes are binary, and Graham, 2017, for the undirected network case.)
Given those differences—and before introducing any further complications—we briefly
want to restate the main result in FW for the two-way pseudo-panel case. Outcomes Y;;,
i,j =1,..., N, conditional on all the strictly exogenous regressors X = (X;;), fixed effect

N-vectors a and v, and common parameters 5 are assumed to be generated as
)/rt] ‘ X7Oé7’776 ~ fY( ‘ Xij7ai7fyj7ﬁ)7
where the conditional distribution fy is known, up to the unknown parameters o;,v; € R

and 3 € RX. It is furthermore assumed that a; and ~y; enter the distribution function

only through the single index m;; = «; + «;; that is, the log-likelihood can be defined by
lij (8, mi;) = log fy (Yi; | Xij, ci, 5, B).

The maximum likelihood estimator for g is given by

~

[ = argmax max L(f,«,7), L(B,a,v) = Zéij(ﬁ» a; + ;).

N
BERK a,yeER i
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Also,

define the K-vector =;; with components, k =1,..., K,

Sijk = Qg Yk (ag, Vi) = argmmZE(—aﬂz&j) <BkJ — Qi — ”Yj,k) )

E(9,20s)

Qs kY, k ij

where here and in the following all expectations are conditional on regressors X = (Xj;),

and on the parameters «, 7, 5. For ¢ € {0, 1,2}, the (within-transformation) differentia-

tion operator Dg,e = Dﬁﬁ-‘ is defined by

Dﬁaggij = 8,53&3&]’ - E)agﬂ&j Ew’, D,B'yggij = aﬂfngij - Qﬁﬂﬁzj EZ] (17)

Theorem 1. Assume that

(i)

(i)

(iii)

Conditional on X, a°, 4°, B° the outcomes Y;; are distributed independently across
1 and j with
Y;j ‘ Xa a07707ﬁo ~ expwij( 07 ﬂ_zoj)]a

0

— A0 1 A0
where T = o + ;.

The map (B, m) — €;;(B,m) is four times continuously differentiable, almost surely.
All partial derivatives of €;;(5,m) up to fourth order are bounded in absolute value

by a function m(Yy, X)) > 0, almost surely, uniformly over a convex compact set

B C R which contains an e-neighbourhood of (8°,7;) for all i,j, N, and
some ¢ > 0. Furthermore, max; ; E[m(Y;;, Xi;)|¥™ is uniformly bounded over N,

almost surely, for some v > 0.

For all N, the function (5, a,v) — L(5,a,) is almost surely strictly concave over
RE+2N apart from one “flat direction” described by the transformation o; — o; +c,
vj + v;—c, which leaves L(, a,y) unchanged for all c € R. Furthermore, there exist
constants by and bpax such that for all (B, 7) € B, 0 < bypin < —E [aazz&-j(ﬁ, W)} <

bmax, almost surely, uniformly over i,j, N.

In addition, assume that the following limits exist

— 1 E (aaigijpﬁaigij + %Dﬁa?&j)

B = ]\}gnoo N %: Zj/ E (8a12€ij’> ] ’

5t | Ly (85,6 Dgns iy + épﬁv?fij)] 7
N—co I N i Yo E (8%2&/0

T 1 - =
W = lim N2 ZE (8/35,&]- — aazz&j:ij:;])] )

0]
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where expectations are conditional on X, a, 7, 5. Finally, assume that W > 0. Then, as

N — 00, we have

N(B-p") =4 W 'N(B+D, W),

Remarks:

(a)

(b)

This is just a reformulation of Theorem 4.1 in FW to the case of pseudo-panels,
and the proof is provided in that paper. Since we consider only strictly exogenous
regressors, all the analysis is conditional on X; and the bias term B simplifies here,
since conditional on X (and the other parameters), we assume independence across
both ¢ and j. Thus, no Nickell-type bias (Nickell, 1981; Hahn and Kuersteiner,
2002) appears here, but we still have incidental parameter biases because the model
is nonlinear (Neyman and Scott, 1948; Hahn and Newey, 2004).

In the original version of this theorem, the sums in the definitions of £(3, «,v), B,
D, and W run over all possible pairs (,7) € {1,..., N}?>. However, for the trade
application in the current paper we assume we only have observations for ¢ # j;
that is, those sums over i and j only run over the set {(i,5) € {1,...,N}* : i # j}
of N(N — 1) observed country pairs. The sum over j' (in B) then also only runs
over j' # i, and the sum over 7' (in D) only runs over 7 # j. It turns out that those
changes make no difference to the proof of the theorem, because the proportion of
missing observations for each ¢ and j is asymptotically vanishing. For that reason
it also does not matter whether we change the 1/N? in W to 1/[N(N — 1)], or
whether we change N (B— BO) to /N(N —1) (B— 60). The same equivalence
holds throughout our own results for applications in which researchers wish to use

observations for which i = j (simply replace N — 1 with N where appropriate.)

The above theorem assumes that the log-likelihood ¢;;(3, a; + ;) for Yi; | X, o, 7y, 8
is correctly specified. This is an unrealistic assumption for the PPML estima-
tors in this paper, where we only want to assume that the score of the pseudo-
log-likelihood has zero mean at the true parameters, that is, E[@B&j(ﬁo, al +
) | Xij»agj%o’ﬁo} = 0 and E[aaifij(ﬁov af +17) | Xijaa?ﬁ?,ﬁo} = 0 and
E[&Yj&j(ﬁo, of +97) | Xij,a?,vjo,ﬁo} = 0. This extension to “conditional mo-

ment models” is discussed in Remark 3 of FW. The statement of the theorem then
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needs to be changed as follows:

N(B-8") =« W N(B+D, ),

(18)

where the definition of W is unchanged, but the expression of B = B, + By, D =

D, + Dy and Q now read

B1 = lim
N—oo

Bz = Jim
bl = lim
N—oo

Dz = Jim
Q= lim

N—oo

-_i Z E (aaigijpﬁaigij)
N Z]’ E (80[126@]/) ’

11 |35 B, i5)?] 25 B(Dpa,2 i)

]

2N 4 (55 E (a2ty)]
1 LE 10,635, ]

N XJ: SE (0,00)
Z > [E(a'ngij)g} 2 E(,Dﬁ’yfgij)

F )

Y

N —
=]~

1
0 ZE [Dgti (Dﬁfij)/]] :
A

)

Y

(19)

These are the formulas that we have to use as a starting point for the bias results

derived in this paper.

Our task in the following is to translate and generalize the conditions, statement, and
proof of Theorem 1, as extended in (18) and (19), to the case of the three-way PPML

estimator discussed in the main text.

Regularity conditions for Proposition 3

The following regularity conditions are required for the statement of Proposition 3 to

hold.

Assumption A. (i) Conditional on x = (z45), a® =
B°, the outcomes y;; = (Yija, - -

and the conditional mean of y;j, is given by equation (4) for all i, j, t.

(aq). 7" = (), n” = (nj) and
Yijr)' are distributed independently across i and j,

(ii) The range of T, ol and %Qt is uniformly bounded, and there exists v > 0 such that

E(yiﬁﬂxijt,ait,vjt,nw) is uniformly bounded over i, j, t, N.

(iii) limy_oo Wy > 0, with Wy defined in Proposition 3.
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Those assumptions are very similar to those in Theorem 1 above: Assumption A(i)
is analogous to condition (i) in the theorem, except that we only impose the conditional
mean of y;;; to be correctly specified, as already discussed in remark (c) above. Notice
also that this assumption requires conditional independence across ¢ and 7, but we do not
have to restrict the dependence of y;j; over ¢ for our results.

We consider the Poisson log-likelihood in this paper, which after profiling out 7;;
gives the pseudo-log-likelihood function ¢;;(/5, cvit, v;+) defined in equation (7). This log-
likelihood is strictly concave and arbitrarily often differentiable in the parameters, so
corresponding assumptions in Theorem 1 are automatically satisfied. Assumption A(ii) is
therefore already sufficient for the corresponding assumptions (ii) and (iii) in Theorem 1.
Finally, Assumption A(iii) simply corresponds to the condition W > 0, which is just an

appropriate non-collinearity condition on the regressors ;.

Translation to our main text notation

The main difference between Theorem 1 in the Appendix and Proposition 3 in the main
text is that Theorem 1 only covers the case where m;; = «; + 7, is a scalar, while in
our model in the main text oy, v; and m;; = «; + 7y, are all T-vectors. We can impose
additional normalizations on those T-vectors, because the profile likelihood L£(5, a,7y) in
(6) is invariant under parameter transformations a; — «; + ¢; ¢p and ~y; — 7; + d; o for
arbitrary ¢;,d; € R, where v = (1,...,1) is the T-vector of ones.* In the following
we choose the normalizations vpa; = 0 and oy, = 0, implying opm;; = 0 for all ¢, 5.
Accounting for this normalization we actually only have (7'— 1) fixed effects «; and ; for
each 7,7 here. Theorem 1 is therfore directly applicable to the case T'= 2, but for T" > 2
we need to provide an appropriate extension.

The appropriate generalization of the operator Dgas = Dﬁv;z in (17) to the case of
vector-value a; and y; was described in Section 4.2 of Fernandez-Val and Weidner (2018).
Remember the definition of £i;(3, mi;) = £i;(3, i, ;) and Zij := x5 — af —~§. Then, by

reparameterizing the pseudo-log-likelihood ¢;; (5, cvi, ;) as follows
5;}(5; Oéz';%‘) = gij(ﬁﬂrij - ﬁ’(af + Vf)) = &'j(ﬁ; Q — 5/04267%‘ - 5/7;3) (20)

one achieves that the expected Hessian of L*(8, o, v) = 32, ; £7;(53, ai, ;) is block-diagonal,
in the sense that IE dsq, L* (S0, an,7) = 0 and E ds,, L*(5o, a9, 70) = 0 — the definition

30Those invariances o; — «; + ¢; tr and 7y; — ~y; + d; vr correspond to parameter transformations that

in the original model could be absorbed by the parameters 7;;.
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of af and 77 by (10) in the main text exactly corresponds to those block-diagonality
conditions. With those definitions, we then have that

Dpaslis = Opasliy = Tij Ogari liy.

In particular, we find that our definitions of

WN _1 Z Z ~/H xma

=1 jeM\{i}

Qn = Z YT {Var (

i=1 jeM\{i}

ng)} Lij,

in Proposition 3 correspond to —m >, E <855/€Z-j — GalzﬁijEijE;j) and mzm
E{Dg&j(Dﬁﬁij)’} in the notation of Theorem 1 and equation (19). Thus, the asymptotic

variance in (18) indeed corresponds to the asymptotic variance formula in Proposition 3.

Inverse expected incidental parameter Hessian

The asymptotic bias results that follow require that we first derive some key properties of
the expected Hessian with respect to the incidental parameters. Remember the definitions
of the 2NT-vector ¢ = vec(a, ) from the main text. The expected incidental parameter

Hessian is the 2NT x 2NT matrix given by

/ —

H = E[—8¢¢/£(50,¢0)] = ( ?:[(aa) e ) )
Ham] Hem
where L(5,¢) = L(B,a,~) is defined in (6), and ”H(aa ”H(M and 7-[ (vy) are NT x NT
submatrices. Here and in the following all expectations are conditional on all the regressor
realizations. The matrix Hwa) = E [—8aaL(B0, )] is block-diagonal with N non-zero
diagonal T" x T blocks given by E {—0aia;£(ﬁo, gbo)} = Yjen\{i} H;, because for i # j we
have [E {—aaiagﬁ(ﬁo, qﬁo)} = 0, since the parameters o; and «; never enter into the same
observation. Analogously, the matrix H(,,) = E[—0,,L(fo, ¢o)] is block-diagonal with
N non-zero diagonal T' x T" blocks given by >Z;con (53 ]:Iz»j. By contrast, the matrix 7'_1(@7)
consistents of blocks E {—6ai7;£(60, qbo)} = I:Iij that are non-zero for ¢ # j, because any
two parameters a; and 7y; jointly enter into 7' observations. The incidental parameter
Hessian matrix H therefore has strong diagonal T' x T blocks of order N, but also many

off-diagonal elements of order one.
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The pseudoinverse of H crucially enters in the stochastic expansion for 3 below. It is
therefore necessary to understand the asymptotic properties of this pseudoinverse H'. The
following lemma shows that 7' has a structure analogous to #, namely, strong diagonal
T x T blocks of order 1/N, and much smaller off-diagonal elements of order 1/N2. We
can write H =D + G , where

D - 7‘_[(041) ONT><NT g — ONT><NT 7:[(a,y)
ONTxNT ?:[(’Y'Y) ’ [?:[(a’y)]/ ONTxNT

The matrix ® is block-diagonal, and its pseudoinverse DT is therefore also block-diagonal
with T'xT blocks on its diagonal given by (Zje‘ﬁ\{i} Hij)T, t=1,...,Nand (Zie‘)’l\{j} ﬁij)T,
j=1,...,N. Thus, ®' has diagonal elements of order N~!. For any matrix A we denote

by ||Al|max the maximum over the absolute values of all elements of A.

Lemma 1. Under Assumption A we have, as N — o0,

|7 —of

=0p (N72).

max

This result is crucial in order to derive the stochastic expansion of B . Indeed, as we will
see below, once Lemma 1 is available, then the proof of Proposition 3 is a straightforward
extension of the proof of Theorem 4.1 in FW. Lemma 1 is analogous to Lemma D.1 in
FW/ but our proof strategy for Lemma 1 is different here, because we need to account for

the vector-valued nature of a; and ;, which requires new arguments.

Proof of Lemma 1. # Expansion of H! in powers of G: The matrix H is (minus) the

expected Hessian of the profile log-likelihood £ = 37, ;f;;. Because in that objective
function we have already profiled out the fixed effect parameters 7;; we have 7:[1']‘[/]‘ =0

for all 4, j, where vp = (1,...,1)" is the T-vector of ones. This implies that

H (Ioy ® o) = 0. (21)

The last equation describes 2N zero-eigenvectors of H (i.e. the eigenvalue zero of H has

multiplicity at least 2NV). Because the original log-likelihood function of the Poisson model

/

was strictly concave in the single index 23,0 + ai + ;¢ + 15 it must be the case that any

additional zero-eigenvalue of H is due to linear transformations of the parameters a and

t.31

7 that leave ay; + ;¢ unchanged for all ¢, 7, There is exactly one such transformation

31Notice that any collinearity problem in the likelihood involving the regression parameters 3 is ruled
out for sufficiently large sample sizes by our assumption that limy_,o, Wx > 0, which guarantees that

the expected Hessian wrt [ is positive definite asymptotically.
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for every t € {1,...,T}, namely the likelihood is invariant under a; — ay + ¢; and
Vit = Vit — ¢ for any ¢, € R. The expected Hessian H therefore has additional zero-

eigenvectors, which are given by the columns of the 2NT' x T matrix
vi=(ty, —ty) @ M,,, (22)

where M,, = Ir — P,

LT

and P, = T‘leL’T. In the last display we could have used the

identity matrix I instead of M, ., but we want the columns of v to be orthogonal to the

LT

zero-eigenvectors already given by (21), which is achieved by using M, .. As a consequence
of this, we have rank(v) = T — 1; that is, since we already have (21) we only find 7" — 1
additional zero-eigenvectors here. Thus, the total number of zero eigenvalues of H (i.e. the

multiplicity of the eigenvalue zero) is equal to 2N +T — 1. It is easy to verify that indeed
Ho = 0. (23)

Equations (21) and (23) describe all the zero-eigenvectors of H. The projector onto the

null-space of H is therefore given by
Pnull = H2N®PLT +Pv7 (24)
where P, = v(v'v)v’. The Moore-Penrose pseudoinverse of H therefore satisfies

ﬂﬂT = ,Ifﬂ ?:[ = ]I2NT - Pnull = M(L ' & MLT7 (25>

/1\]7_1’§V)

where the rhs is the projector orthogonal to the null-space of H (i.e. the projector onto
the span of H). The definition of the Moore-Penrose pseudoinverse guarantees that 1
has the same zero-eigenvectors as 7-_[; that is, we also have Hiv = 0 and Hf (Iby ® ) = 0.

The last equation together with the symmetry of H! implies that
(Iony ® P, ) HT = 0. (26)

Next, similar to the above argument for H we have that the only zero-eigenvector of the

T x T matrices 3 ;con (i} ﬁij and Diem\ (i} Hl-j is given by ¢, and therefore we have

T T
jeM\{i} jeM\{i} €M\ {j} €M\ {s}

which can equivalently be written as

DD =D =Ly ® M, = Lhyr — Loy ® P, (27)
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where P, := T iyt Now, using (25) and H = D + G we have
7:[T (@ + g) = ]I2NT - Pnull-

Multiplying this with ©f from the right, using (27) and (26), and bringing H'G®T to the
rhs gives

Hf =9 — PLu®" — HigDT. (28)
By transposing this last equation we obtain

H =D —D'P . — DIGHT, (29)
and now plugging (28) into the rhs of (29) gives

H =D —D'P, — D'GDT + DGR, D" — DIGHIGDT
=" - DGO — DBy — Bu®' + DIGHIGDT,

where in the second step we used that G Py = — Paun, which follows from 0 = H Py =
D Pount+G Paun by left-multiplication with ® and using that ®1® P,.1 = 0. This expansion
argument for H' so far has followed the proof of Theorem 2 in Jochmans and Weidner

(2019). We furthermore have here that D' (Io,y ® P,,) = 0, because ﬁl’jLT = 0, implying
that ®TP,.; = ©TP,. The expansion in the last display therefore becomes

H — D = DGO —D'P, — PL,D' + DIGH'GDT, (30)

with 2NT x T matrix v defined in (22). This expansion is the first key step in the proof

of the lemma.

# Bound on the spectral norm of HT: The term DTGHIGDT in the expansion (30) still

contains H' itself. In order to bound contributions from this term we therefore need a

preliminary bound on the spectral norm of H?.

The objective function ¢;;(3,m;;) = (B, o, V) in (7) is strictly convex in 7y,
apart from the flat direction given by the invariance m;; — m;; + ¢;;tr, ¢y € R. This
strict convexity together with our Assumption A(ii) that all regressors and parame-
ters are uniformly bounded over ¢, 7, N, T implies that for the T' x T" expected Hessian
Hy=E {—5’2&]-/8%”37% (Bo, ao, 70)} there exists a constant b > 0 that is independent of
1,7, N,T such that

min v Hyv > b > 0.
{UGR:L’TU:O}
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The last display states that ]rfij is positive definite in all directions orthogonal to ¢r.
Again, the lower bound b > 0 holds uniformly due to Assumption A(ii). The last display

result can equivalently be written as

Hy>bM,,, (31)

where > means that the difference between the matrices is positive definite.
Next, let e; = (0,...,0,1,0,...,0)" be the i’th standard unit vector of dimension N.
For all 4,7 € 9 :={1,..., N} we then have

J

which are 2NT x T matrices. Because L£(3,¢) = SN, S jeo i} Lij (B, mij) we thus find
that

N

7'_[ =K [—8¢¢/£} = Z Z <a¢ﬂ';j) E [—aﬂ-i].ﬂéj&j} (8¢7r§j)/

=1 jem\{i}

> > (@) en]a()en] |
2 2 |0 enr] s |(7) o]
5z (6

N —1DI e —1
(Ot

v

® M,,

LNL/N — ]IN (N — 1)]1]\7

=QN

where we also used (31). It is easy to show that for N > 2 the 2N x 2N matrix Qy has
an eigenvalue zero with multiplicity one, an eigenvalue N — 2 with multiplicity N — 1,
an eigenvalue N with multiplicity N — 1, and an eigenvalue 2(N — 1) with multiplicity
one. Thus, the smallest non-zero eigenvalue of Qy is (N — 2). Also, the zero-eigenvector
of Qu is given by vy := (¢, —t%y)’, and therefore we have Qn > (N — 2) M,,, where
M,, = Ion — (2N)lvgv}) is the projector orthogonal to vyg. We therefore have

(N — 2) M(L/ —th)! X MLT

N

(N - 2) (HQNT - Pnull) )

20



where Py is the projector onto the null-space of H, as already defined above. From this
it follows that

_ 1
HT S m (]IQNT - Pnull) )

and therefore for the spectral norm

7] < = = /). (32)

# Final bound on H?-_[T — @T‘

: Using (31) we find

max

T T
1 _ _
max (N — > Hij) = Op(1), max (N > Hij) = Op(1).

jeM{i} ze‘ﬁ\{ﬂ}

This together with our boundedness Assumption A(ii) implies that

o

= Op(1/N), 1G] o = Op(1). (33)

max

The definition of the 2NT x T' matrix v in (22) implies that

1Py e = || Pry - <P ] = @) ) s )
=(2N)"' = (1/N)7 (34)
where we also used that || M, ||, .. < 1. In the following display, let e, = (0,...,0,1,0,...,0)

be the k’th standard unit vector of dimension 2N7T'. We find that

jorl

max ’e; QHTgeg‘
max ke{1,....2NT}

S(;@ ,,,,, M}H%ku) | *H( ,,,,, m}ugeeu)

N <ke{1 ..... 2NT}ngkH> H;L_[TH
< (VANT G1]e) ]
on) (35)

where the first line is just the definition of ||-|| the second step uses definition of the

max’

rewriting, the fourth step uses that the

norm of 2NT-vector Ge, can at most be v2NT times the maximal absolute element of

spectral norm ‘
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the vector, and the final step uses that 7" is fixed in our asymptotic and |G|, = Op(1)
and also (32).

Next, for general 2NT x 2NT matrices A and B we have the bound (notice that ||-||max

max

is not a matrix norm)

[AB|lmax < 2NT || Allmax [| Bllmax,

but because © is block-diagonal (with non-zero T' x T blocks on the diagonal) we have

for any 2NT x 2NT matrix A the much improved bound

DA e < T 1D

max —

1Al

max max *

Applying those inequalities to the expansion of Hf — D obtained from (30), and also
using (33) and (34) and (35), we find that

2 2

|7 -2

<7|o

1G | + 27 | D]

1P|

max

+ T2 H@T\

GH'g|

max

max max

— Op(1/N?),

max max

as N — oo (remember that T is fixed in our asymptotic.) This is what we wanted to
show. m

Proof of Proposition 3

The pseudo-likelihood function of the Poisson model is strictly concave in the single
index. Therefore, Assumption A together with Lemma 1 guarantee that the conditions

of Theorem B.1 in Ferndndez-Val and Weidner (2016) are satisfied for the rescaled and

penalized objective function?

1

1
7£ -5 /Pnu )

with Py, defined in (24). Here, the penalty term ¢’ P, ¢ guarantees strict concavity
in (8, ¢). However, in the following all derivatives of L(3,¢) are evaluated at the true

parameters, and since we impose the normalization P, ¢o = 0 the only derivative of

32Gince we have a concave objective function, we can apply Theorem B.3 in FW to obtain preliminary
convergence results for both B and (E That theorem guarantees that that the consistency condition
on (;AS(ﬁ) in Assumption (iii) of Theorem B.1 in FW is satisfied under our Assumption A, and it also
guarantees HB— BOH = Op(N‘l/Q)7 which is important to apply Corollary B.2 in FW to obtain the

expansion result in our equation (36).
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L(S, ) where the penalty term gives a non-zero contribution is the incidental parameter
Hessian matrix H = B [~044L(Bo, ¢0)] for which the penalty term provides exactly the
correct regularization. However, instead of that regularization, we can equivalently use

the pseudoinverse; namely we have
_ -1 _ 1
(H+Cpnull) :HT+EPnu117

for any ¢ > 0. In all expressions below where H' appears we could equivalently write
HE + %Pnuu, but the additional contributions from %Pnun will always vanish because the
gradient of L£(3, ¢) with respect to ¢ is orthogonal to P,y.

By applying Theorem B.1 and its Corollary B.2 in FW we thus obtain

N(N = 1)(3 - 8°) = Wx'Uy + op(1), (36)
where
Wy = =~ (9L + [0 £) H [0 L))
N(N — 1) BB B @B
1 N _
- - Dparlr;
NCERPEI

was already defined in Proposition 3, and we have Uy := U J(\? )1 U ](\} ), with

U](\?) N [85£ + 8ﬁ¢/£] HT8¢£}

/ _
0gl},
\/ _1;:1]6%\:{}BU

VNN = D)UY = (055 L — Opg LIH' 0L — (05 L H' [H —H] HI O,L
dim ¢ _ o B B B
5 2 (900, L+ (050 L) H (O, L) [H105L1,H1 0L
g=1

dim ¢

* rx17 1 Iy  /
= [080 L = Do LTHIOL + 5 3 Dy, L7 HI O LI HI 0L
g=1

Here, £;; was defined in (20), all “bars” denote expectations conditional on X and ¢, and all
the partial derivatives are evaluated at the true parameters. We also defined £*(3, ¢) :=
SN Yiem iy L (B, i, v5e). Remember that we use a different scaling of the (profile) like-
lihood function than FW; namely in (6) we define £(5,¢) = N, e iy Lij (B i, Vjt),

while in FW this function would have an additional factor 1/4/N(N — 1). This explains
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the additional \/N(N — 1) factors in Wy, U ](VO) and U ](Vl ) as compared to Theorem B.1 in
FW.

The score term Jgl;; = 7};5;; has zero mean and finite variance and is independent

across ¢ and j, conditional on X and ¢. By the central limit theorem we thus find

UY = N0, Qp),

where
1 *
R RS
1 al -
Sy oD g, 2 T Ve (S le)] 3

Thus, the term U J(\? ) only contributes variance to the asymptotic distribution of B , but
no asymptotic bias. By contrast, the term U J(Vl) only contributes bias to the asymptotic

distribution of 3, but no variance. Namely, one finds that
U =, By + Dy, (37)

with By and Dy as given in the proposition. The proof of (37) is exactly analogous to
the corresponding discussion of those terms in the proof of Theorem 4.1 in FW, which we
restated above as Theorem 1 (remember that for 7" = 2 our result here is indeed just a
special case of Theorem 4.1 in FW.) Therefore, instead of repeating those derivations here,
we provide in the following a slightly less rigorous, but much easier to follow, derivation

of those bias terms.

Derivation of the asymptotic bias in Proposition 3

Remember that the main difference between Theorem 1 and our case here is that for us the
incidental parameters «; and «y; are T-vectors, while in Theorem 1 the index m;; = a; +;
is just a scalar. An easy way to generalize the asymptotic bias formulas in Theorem 1 and
display (19) to vector-valued incidental parameters is to use a suitable parameterization
for the incidental parameters a; and 7;. The formulas for B, and D; can most easily be

generalized by parameterizing the incidental parameters as follows
= A; v = Ci % (38)
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where &; and 7; are T — 1 vectors, and A; and C; are T' x (T' — 1) matrices that satisfy

f f
J %
Let E(ﬁ, a,¥) = L(S, (A; a;), (C;7;)). This reparameterization guarantees that

GQE(B(]’&O?:);O) Al [ _
Gayoay N %:Hij Ai=lros

825(60’&0770) v 7 R
03)(0%;) “ (ZZ: H”) Cj = Ira. (40)

That is, the Hessian matrix with respect to the incidental parameters a; and 7; is nor-
malized to be an identity matrix under that normalization. It can be shown that this
implies that the incidental parameter biases B, and D; “decouple” across the T'— 1 com-
ponents of &; and 7;; that is, the total contribution to the incidental parameter bias of B
just becomes a sum over T — 1 contributions of the form B; and D; in (19). Thus, for
ke{l,...,K} we have

T 1 B (e, liDsa )| T 1 R
Bl,k o qz:l |: N %: Ej/E (ad?,qgij'> ] o qz:l N %:E (aai,qujpﬁkai,quj)

1 , 1 ' /
Y 2E [(%&-j) (Dﬁkdifij)} TN 2_E [<8@4i€”) Aid; (D’Bk"‘i&j)}
(2%} I
) T
= _NZE SZ/J (Z Hz’j/) Hij fij,k )
i,j J’

where in the second step we used the fact that - E (8@7[1&]-/) = 1 according to (40), in
the third step we rewrote the sum over g € {1,...,7 — 1} in terms of the vector product
of the T' — 1 vectors 04,(;; and Dg, 4,0;;, in the fourth step we used that o; = A; &, and
in the final step we used (39) and the definitions of S;;, H;; and Z;;x. All expectations
here are conditional on X (in the main text we always make that conditioning explicit),
and ﬁij/ and Z;;; are non-random conditional on X; that is, we can also write this last

expression as

.|.
1 _
=y | (S T8 (1 7)
i J’ J
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Analogously we find

;
Si; <Z HZ-,]) Hy; fjk] :

Next, to generalize the incidental parameter biases By and D, in (19) to vector-values «;

1
Dl’k: —Ng]E

and 7; we again make a transformation (38), but this time we choose

AN = (Z Hij)T x])] (ZHZ-J-)T.

i T
Notice that for a correctly specified likelihood we have the Bartlett identities ]:Il-j =
E (S S

In general, however, the transformation now is different. Instead of normalizing the

> E(Sy S
J

xij), implying that (39) and (41) are identical for correctly specified likelihoods.

Hessian matrices to be identities, as in (40), the new transformation defined by (41)

guarantees that

. 822(50,540,70) t -85(30,&0,70) | 825(507&0’50) T_
wvor (i) = [ | Ve B X_l Eaa B
[, [ageean ) | [0rLeRa 0]t
syVar (3) = | S B X_l oy | =

(42)

Again, it can be shown that with this normalization the incidental parameter bias con-
tributions By and D, “decouple”; that is, each component of &, contributes an incidental
parameter bias of the form B, in (19) to B, and each component of ’:yl contributes an
incidental parameter bias of the form D in (19) to 3. The total contribution thus reads,
for k € {1,..., K},

11 |5 B0, 09)%] 25 E(Dﬁk&iq@j)]
Z 5B (9, 8)]

_Tfll 1 E(D 0 — 11 o0 [B(D ,
= ;2]\7% ( 5kd?yq ij) - QN% 1"[ ( 85 i, zg)}
11 -
=57 2 T A E(Ds, e i) Ajl
2y}

Y

> E (S Sy xjk)] (Z Hij)T

r T
= o > Tr (z]: Gij f@]k) (XJ: Hij)
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where in the second step we used that {Zj E(@diyq&j)ﬂ / [Zj E (adlz,q&j)r = 1 according
to (42), in the third step we rewrote the sum over g € {1,...,T7 — 1} as a trace over the
(T'—1) x (T'—1) matrix of third-order partial derivatives E(Dg, 4,a,fi;), in the fourth step
we used that o; = A; @;, and in the final step we used the cyclicity of the trace and (41)
and the definitions of G’ij, Zi;k, and the tensor-vector product G’ijfij,k (which, recall, is a
T x T matrix).
Analogously we find
=111 [ZiE(aﬁj,q&j)z} > E(Dg, 52 Lij)

D ) 11 RS
S [ (0, 00)]

vz i) (5 [petsi) (o) |

We have thus translated all the formulas in Theorem 1 and in display (19) to the case

of vector-valued «; and v; to find exactly the expression for the asymptotic biases BY, =

By + By, and D}“\, = D1 + Dy, in Proposition 3.

Rewriting the bias expressions as in Remarks 1 and 2
Remember that E(yj|Tii, ai, vi5) = Nije = exp(a;,8 + ay + 7i5) and 95 = %,
and denote the corresponding T-vectors by v;;, A;; and ;. It is convenient to define the

T x T matrices
Aij = dlag ()‘U) s

and

which is the unique idempotent T'x T matrix (i.e. M;;M;; = M;;) that satisfies rank(M;;) =
T — 1, MjjN; = 0, and ¢ M;; = 0. Notice also that A\;; = Ajtp, and therefore
Miinj = AUMZIJ We then have

Sij = Mi;ys5,
T / / /\ij ;j
Hij = Mi; Nij Mi; = Mij Ay = NigMy; = Njj — —

v ij

Y
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and

T
Gij,tsr = - Z >\ij,u Mij,tu Mij,su Mij,rua

u=1

where ¢,s,7 € {1,...,T}.
Next, define 77, . := M/ x” k- Notlng that \..z%. . = 0, we find

zgk - ij U
Wi ke = NV=1) Z%k T
1 Z)\
= — i T T
N(N_1>’th igt Vigt,k Vigt,l

This shows that Wy has an additional sum over ¢, so Wy increases linearly in 7T, and
Wy' =0(T™), for T — oo.
Now, also define D, ;, := diag {()\iﬁ f;jt’k)t—l T} , which is the diagonal T' x T" matrix

.....

with diagonal entries A;j; Z7;, . The first-order conditions of the optimization problem

that defines z;;;, read

Z ]:Iij Tijp =0, Z Hij Ty =0,

i J

or equivalently

2N T = ZAu Tijn =
which can also be written as

ZDiij =0, Z Dijr = 0. (43)
i j

These FOC’s are only important to simplify the term By, in what follows. We have

T
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# { )\Z] QZ ’LJ 1] ko ( ;j N’Tj k) ()‘z]Qz m) }

LA (i)
1 Z Ny Qi Nig M, Tij .
N(N — 1) i LIT)\Z‘]‘ ’

o8



where, in the second-to-last step, we used the definition of M;;, (43), that vpD;jrir =

N Tjjp, and that Dyper = Ay 775, and in the last step, we used that A7}, =
Ay Mz, and Nj; 77, = 0. We also used the definition of Q; given in Remark 1.

We then have for BY, = By + Bay, that

1 .7 ~
T Lp B Tijk 7 Ai

e T D 7 Ny Qi Aig M T
N(N-1)% Tiha; T NN-1) % SV

By =

where we have now also used the definition of R;; from Remark 1 in order to simplify B j.
Under appropriate regularity conditions, the T' x T" matrices (); and R;; each maintain
diagonal elements of order one and off-diagonal elements of order 1/T? through their
dependence on Var(y;;). Therefore, all the numerators and denominators in the last
expression for B, remain of order one as T" — oo, such that B% = O(1) as T — oo, with
an analogous result also following for D%. Recalling that Wy increases linearly with T,
we thus conclude that the bias term

Wy (By + Dy)
N —1 ’

is of order 1/(NT) as both N and T grow large.

Comment on Proposition 1

We note that the consistency result from Proposition 1 also follows from the above proof

of Proposition 3.

Remark 4. If the asymptotic bias in B is characterized by Proposition 3, then B ]

consistently estimated as N — oo.

As we have noted in the text, for this consistency result to hold, we need for the two-
way profile score in (9) to be unbiased at the true parameters (3, a, 7). In particular, we
need for there to be no incidental parameter bias term of order 1/7" associated with the
pair fixed effect 7;;. As the following discussion clarifies, the FE-PPML model is quite

special in this regard.

A.2 Proof of Proposition 2

To prove Proposition 2, it will first be useful to prove the following lemma:
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Lemma 2. Consider the class of “one-way” FE-PML panel estimators with conditional

means given by Ay := exp(z},f + a;) and FOC’s given by

T
p: szzt (yzt ) (/\ ) 0, Z (yzt ) /\it) =0,

wherei=1,... N, t=1,...,T, and g(\y) is an arbitrary positive function of Ny. If T is
small, B is only consistent under general assumptions about Var(y|z, o) if g(\) is constant

over the range of \’s that are realized in the data-generating process.

Put simply, if Lemma 2 holds, then no other FE-PML estimator of the form described
in Proposition 2 aside from FE-PPML can be consistent under general assumptions about
the conditional variance Var(y|z, a,v,n). We have already shown that the three-way FE-
PPML estimator is generally consistent regardless of the conditional variance. Thus, if

we can prove Lemma 2, Proposition 2 follows directly.

Proof of Lemma 2. Our strategy here will be to adopt a specific parameterization for
the conditional variance Var(y|z,«) and then examine the conditions under which 3 is
sensitive to small changes in the conditional variance. If 5 depends on Var(y|z, o) even
for large N, then it is not possible for B to be consistent under general assumptions about
Var(y|z, a).

To proceed, let the true data generating process be given by
Yit = NitWit,
where \;; is the true conditional mean and
1
Wit = exXp | —5 In(1+ M)+ /In(1+ )xipt)zit} (44)

with z;; a randomly-generated variable distributed N (0, 1). w;; is therefore a heteroscedas-
tic multiplicative disturbance that follows a log-normal distribution with E[w] = 1 and
Var(w;;) = A, The conditional mean of y; is in turn given by E[y;|x,a] = A and the
conditional variance is given by Var(yi|z,) = Var(yy|A\i) = A3 Var(wy) = M2 Our

focus is the exponent p, which governs the nature of the heteroscedasticity and can be
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any real number. With this in mind, it is useful to document the following results,

awit 8IE [Wz't]
E = = 4
[5/)] op " (45)
d (w3) Owiy IE (w3)
E|—*| =E | 2w; = !
[ ap it dp ap
=WVl ey, 20, (46)

dp
Put another way, the expected value of the change in w;; with respect to p must always
be zero because E[w;] = 1 regardless of p. Similarly, the expected change in the second
moment of w;; must be A%, In \;; because this gives the change in the variance of w;;.*
To facilitate the rest of the proof, we invoke the following conceit: the random distur-
bance term z;, once drawn from N(0, 1), is known and fized, such that each w; may be

treated as a known transformation of the underlying value for z;; given by (44). Among

other things, this means we can always treat the partial derivatives 2t and %it = ), 9
’ op op dp

as well-defined; similarly, we can treat the estimated parameters 3 and ¢; as deterministic
B da;
ap 0 That

functions of the variance parameter p with well-defined total derivatives <= and
is, for a given draw of z;’s, we can perturb how the corresponding w;;’s are generated and

o~

consider comparative statics for how estimates are affected. If 3 is consistent regardless
of the variance assumption used to generate w;;, then small changes in p should have no
effect on asymptotically. Thus, our goal in the following is to determine if there are
any estimators in this class other than FE-PPML under which limy_ g = 0 in this
experiment.

The next step is to totally differentiate the FOC’s for 3 and @; with respect to a change
in p. Let £ denote the pseudo-likelihood function to be maximized.?® For notational
convenience, we can express the scores for B and &; as L5 and L,,, such that their FOCs

can respectively be written as L3 = 0 and £,, = 0. Differentiating the FOC for B, we

obtain

dB . ~ da;
- —L55Ls, — Lz XZ: EﬁaiTp’ (47)

where L35 is the matrix obtained from partially differentiating the score for B with respect

to 3, L, (a vector) is the partial derivative of £z with respect to p, and Lg,, (also a

33Note here that 78(55‘) = Qwit%.
34The implied pseudo-likelihood function is given here by £ := ZLZL% i g(;fvit)d/\it -
N T

Zi:1 thlfg()\it)‘b\it-

61



vector) is its partial derivative with respect to &;. Applying a similar set of operations to
the FOC for @; then gives
day;
dp
where L,,, and L,,, are scalars that respectively contain the partial derivatives of L,,

dp
-1 1
= _Eaiaicazp £alal£%aid7p7

(48)

with respect to @; and p. Plugging (48) into (47), we have
dp dp
o ~L53Ls0 + L Z Lo LoaiLap+ L Z Lo LoaiLiye, dp

-1

= (I o 'Cl;ﬁl Z ‘C;}Oti‘cﬁai /ﬁaz‘) 'CB Eﬂp (49>
_ / .
(I - E/BB Z Ealazﬁﬁal 6az> E,E,Bl Zl 'C;il()éicﬁaiﬁaip’ (50)

where I is an identity matrix whose dimensions equal the size of (.

Let P henceforth denote the combined matrix object I — £B,8 > Lo Loa Ly, Tt is
straightforward to show that that first term in (50), — 1£55£5P, converges in proba-
bility to a zero vector when N — oo. To see this, note first that P and Lzz must be
non-singular and finite for 3 to be at a maximum point of £ and for Z—g to exist. Fur-
thermore, limy o NTLg; = —E[z4Aitg(Aie)2},] " must also be non-singular and finite.
Slutsky’s theorem then implies limy o —P~ 1555[,59 —p 0 if limy 00 N7 = 1£5p —p 0.

Examining the vector Lg, more closely, we have
N T

L= X2 ey = Y mhe g (0)
Bp it 8p g\ Ait it/\it ap g Ait)-

i=1t=1 i=1t=1

lmy oo N7~ lﬁﬁp —p 0 then follows via standard arguments because E {6‘””} =0 (by
(45)). We may therefore focus our attention on the second term on the RHS in (50),
P~ 1555 S L) Lsa, Lo,y Noting that £ must be < 0, in this case we consider the
conditions under which limy_,o, N 7! Z E 0, LBa; La;p similarly converges in proba-

bility to zero. The summation in this latter term may be expressed as

N . N . T N ot ,\ T 8,%15
3 ot o Loy = 3 Lot Sl = 2a)o Bo = Y udua (o0 | 3= o
= =1 t=1 t=1

Re—arranging this expression, we have that
N T T

SOy
Zﬁalalﬁﬁal a;p ZZZE%OM Ztyztg )\t)/\ztg<>\7,s) ayp

=1 i=1t=1s=1

NSNS ol (R0 SN 5 Ouis
- X X3 Loban(hug ) +90u) g 5= (51)
s=1

i=1t=1s=
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Focusing first on the second of the two summation terms in (51), we again apply y;; =

Niwir, Ui = A% and E %] = 0. We have that

| N e O

lim —— Z Z Z L zlaﬁzt ()\itg,<)‘it) + g()\it)) /\itg()\is))\isTp —p 0.

This follows for the same reason limy_,o. N"'T'Ls, —, 0 above. The first summation
term in (51) obviously —, 0 as well if the estimator is FE-PPML, in which case ¢’ (M) = 0.
To complete the proof, we just need to show that this term does not reduce to 0 if
g (X”) # 0. A final step gives us

N T T N

1 . < <\ Ois < r e
Jim ﬁ;zz Lo o xuyind (M) Nig(Nis) 9 = lim NTZZEWZMQ (Nie) Nieg (Nt yae

=1t=1

= lim 722£alalﬂfzt9 Aztg<5‘ ))‘zt Wit~ ap

To elaborate, the terms where s # ¢ vanish as N — oo because disturbances are assumed

to be independently distributed (E[w; 65“] = 0 if s # ¢.)* The remaining details follow

from (46).%° We have now shown limy %\ — 0 if and only if ¢'(Ay) = 0. In other
words, the estimator must be FE-PPML, which assumes g();) is a constant. For other
FE-PML estimators, even if 3 is consistent for a particular p, it cannot be consistent for
all p because 3 does not converge to the same value for N — oo when we vary p. As we
discuss below, this is what happens for FE-Gamma PML (where g(A;;) = A;;') and some

other similar models. [ |

To be clear, the robustness of the FE-PPML estimator to misspecification is a known
result established by Wooldridge (1999). However, to our knowledge, it has not previ-

ously been shown that FE-PPML is the only estimator in the class we consider that has

$Note that under FE-PPML, where ¢'(Ay) = 0, the estimator is consistent even if disturbances are

correlated. This is yet another reason why FE-PPML is an especially robust estimator.

36Notice that if T — oo also, we have that limrp_, e T[E,}ai = —FE [thg(xn)] must be finite. We

would therefore have

. 1 -1 RN A w2 |1 Owi
Gl 33 [k Joud Gl (R [ 5] <o,

ensuring that B does not depend on p for the large N, large T case. This follows because
My oo T~V [wie] =0 = limp_yoo T~ 'E [wlt agpt} ~0.
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this property.®” At the same time, it is worth clarifying that FE-PPML is not the only
estimator that is capable of producing consistent estimates of three-way gravity models.
Rather, it is the only estimator in the class we consider that only requires correct spec-
ification of the conditional mean and for the covariates to be conditionally exogenous in
order to be consistent. The following discussion describes some known cases in which

other estimators will be consistent.

A.3 Results for Other Three-way Estimators

Depending on the distribution of the data, there may be some other consistent estimator

available aside from FE-PPML. In particular, if g()\;;;) is of the form g(\;j;) = X’fjt,
with ¢ an arbitrary real number, the FOC for 7;; has a solution of the form 7;; =
o ﬂ?j;l]*l Si—1 Yiefidyy. It is therefore possible to “profile out” 7j;; from the FOC for
B, just as in the FE-PPML case. As such, it is possible for the estimator to be consis-
tently estimated, but only if the conditional variance is correctly specified (more precisely,
we must have Var(y|z, a,7y,n) X;{q, the equivalent of p = —1 — ¢.) In this case, the
estimator is not only consistent, but should be more efficient as well.

An interesting example to consider in the gravity context is the Gamma PML (GPML)
model, which imposes g(j\ijt) = S\Z_j% Generally speaking, GPML is considered the primary
alternative to PPML and OLS as an estimator for use with gravity equations (see Head
and Mayer, 2014; Bosquet and Boulhol, 2015.) However, to our knowledge, no references
to date on gravity estimation make it clear that, unlike in a two-way setting, the three-
way FE-GPML estimator is only consistent when the conditional variance is correctly
specified.®® Thus, it is possible that researchers could mistakenly infer that the appeal
of FE-GPML as an alternative to FE-PPML in the two-way gravity setting carries over

39

to the three-way setting.”” This is especially a concern now that recent computational

37 Alternatively, it is possible to extend the above result to an even more general class of models by
considering estimators that depend on g(@;) rather than g(Xit). The same type of proof may be used to
show that B depends on the variance assumption if ¢’(@;) # 0. Furthermore, the estimator can be shown
to be consistent if ¢’(@;) = 0.

38 As discussed in Greene (2004), the fixed effects Gamma model is generally known not to suffer from
an incidental parameter problem, similar to FE-Poisson. However, the result stated in Greene (2004) is
for the Gamma MLE estimator, which restricts the conditional variance to be equal to the square of the
conditional mean. The FE-Gamma PML model is consistent under the slightly more general assumption

that the conditional variance is proportional to the square of the conditional mean.
39For example, Head and Mayer (2014), arguably the leading reference to date on gravity estimation,
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advances have made estimation of FE-GLM models significantly more feasible.

To illuminate the unique IPP-robustness properties of FE-PPML in the three-way
context, Fig. 2 shows a comparison of simulation results for FE-PPML versus log-OLS
and Gamma PML.*° The displayed kernel densities are computed using 500 replications
of a three-way panel structure with N = 50 and 7' = 5.*' The i and j dimensions of
the panel both have size N = 50 and the size of the time dimension is 7' = 5. The fixed
effects are generated according to the same procedures described in the text and we again
model four different scenarios for the distribution of the error term (Gaussian, Poisson,
Log-heteroscedastic, and Quadratic).

As we would expect based on Proposition 2, FE-PPML is relatively unbiased across all
four different assumptions considered for the distribution of the error term. The general
inconsistency of the three-way linear model-—which is only unbiased for DGP III where
the error term is log-homoscedastic—is also as expected. However, the reasons behind
the bias in the OLS estimate are well-documented (see Santos Silva and Tenreyro, 2006)
and do not have to do with the incidental parameters included in the model. The three-
way FE-GPML is also consistent under DGP III because it assumes the error term has
a variance equal to the square of the conditional mean. Both OLS and GPML are also
more efficient than PPML in this case. However, as the other three panels show, when
this variance assumption is relaxed, the three-way FE-GPML model clearly suffers from
an [PP, exhibiting an average bias equal to roughly half that of OLS in all three cases.

We have also performed some simulations with three-way FE-Gaussian PML, which
imposes g(j\ijt) = Xijt. We do not show results for this other estimator because the
HDFE-IRLS algorithm we used to produce the FE-PPML and FE-Gamma PML estimates
frequently did not converge for the FE-Gaussian PML model. However, the results we did
obtain were in line with our results for FE-GPML and with our discussion of Proposition

2 above: the FE-Gaussian PML estimates were unbiased when the DGP for w;j; was itself

suggest comparing PPML estimates with GPML estimates to determine if the RHS of the model is
potentially misspecified. Such a comparison is not straightforward in a three-way setting because the
GPML estimator is likely to be inconsistent. Their other suggestion to compare GPML and OLS estimates
still seems sensible, however. As we show below, both estimators give similar results when the Gamma

variance assumption is satisfied and give different results otherwise.
40We were able to compute three-way FE-Gamma PML estimates using a modified version of the

HDFE-IRLS algorithm used in Correia, Guimaraes, and Zylkin (2019). To our knowledge, these are the

first results presented anywhere documenting the inconsistency of the three-way Gamma PML estimator.
41Gimulations with larger N are more narrowly distributed, but otherwise are very similar.
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Gaussian (as in DGP 1), but were biased and inconsistent otherwise.

A.4 Showing Bias in the Cluster-robust Sandwich Estimator

For convenience, let x;; := (x;;, d;j;) be the matrix of covariates associated with pair
tj, inclusive of the it- and jt-specific dummy variables needed to estimate «; and +;.
Similarly, let b := (', ¢')’ be the vector of coefficients to be estimated and let b be the
vector of coefficient estimates. Note that we can write a first-order approximation for S’ij

as

Sij = Sij — Hijxij (b= b),
which is consistent with the approximation provided in (14). We can then replace b—b
with the standard first-order expansion b—b= —L, LY, where £ = >ij i is the profile
likelihood. This expansion in turn can be written out as

/b\— b~ —Eb_bl [Z Xfmnsmn‘| 5

m,n

Now we turn our attention to the outer product §ij§§j:

gz‘jg;j =~ SUSZ/] + ﬁijxij(g - b)QX/- HU - 2}_[” {Xij (g - b)} Sllj

= SZ]S”ZJ + Hz‘jxij (g — b)QX;jHZ‘j + ZHinZ‘jL_b_bl [Z X;rmSmn‘| Sz/

Because we assume we are in the special case where FE-PPML is correctly specified, we
have that E[(b — b)2] = —kL;;', where Ly, := E[£;,]. We also have that E[S;Si;] = K Hyj.
Therefore, after applying expectations where appropriate, we have that

E[gmggj] ~ SUSZIJ + liHiniij_bIXQjHij,
which can be seen as extending Kauermann and Carroll (2001)’s results to the case of
a panel data pseudo-likelihood model with within-panel clustering. We are not done,
however, as we have not yet isolated the influence of the incidental parameters. To
complete the derivation of the bias, we must more carefully consider the full inverse

Hessian term Eb_b1. Using standard matrix algebra, this inverse can be written as:

Lop— LhyLollus) Lop— Lhylilos) Ly

( BB T B~ o ¢ﬁ) . o ( BB T B~ o ¢5) B 1¢>¢>
AF-lp - ;op-1p NV Ao, A-1p (f A op-1p N rA s
~CoiLos (Los — Loploslos)  Lodt LodLos(Los — LiplopLos) Liplog

66

A1
‘Cbb -

)



0 20 40 60

0 10203040

Comparing Three-way Gravity Estimators (N=50; T=5)

DGP | (Gaussian)

DGP Il (Poisson)

67

VIylx,o,y)=1 VIylx,o,yI=E[ylx,a.y]
| S i
i 2 i
| o |
& I
J\ /\ 1)
! T T T T T © T ! T T T
1 11 12 13 14 15 9 1 1.1 1.2 1.3
FE-PPML FE-GPML FE-PPML FE-GPML
FE-OLS FE-OLS
DGP Ill (Log-homoscedastic) DGP IV (Quadratic)
Vlylx,a,YI=Ely|x,a,yI° VIylx,a,y1=0.5 E[y|x,a,y]+0.5 e”E[y|x, 0\
o |
I Sl I
| o
| = |
T T i T T ° T T T T i T
96 98 1 1.02 1.04 8 85 9 95 1 1.05
FE-PPML FE-GPML FE-PPML FE-GPML
FE-OLS FE-OLS

Figure 2: Kernel density plots of three-way gravity model estimates using different FE
estimators, based on 500 replications. The model being estimated is v;;; = explay, + v, +
ni; + ®ijiBlwije, where the distribution of w;j; depends on the DGP and the true value of
[ is 1 (indicated by the vertical dotted lines). The size of the i and j dimensions is given
by N = 50 and the ¢t dimension has size T' = 5. See text for further details.



where we have used £_¢¢ in place of H in order to add clarity. Making use of some
already-established definitions, we have_that the top-left term (Lg5 — Z;;’BE;;ZM)—I =
—[N(N—1)]"'Wy" and, similarly, that £,; = —[N (N — 1)]_1W](V¢)_1. If we again consider

E[S;;5};], we can now write

N . i
_1 _1 _ __1
_ WjV _I/VN7£I¢BE¢¢7 ) (25, dyy) Hy;
~LbLogWy" W™ LoAL, Wi Lyl
_ K _ . o o
— —m[{ij {:L’z'jWN :L’;-j —z;;Wy £;ﬁ£¢¢dgj —dy L5} LWy x;j

Flp velp e @17\ f
+dij£¢$£¢5WN1£;B£¢$d£j + dijWN d;]} Hija
which simplifies to the expression shown in (14).

Results for the two-way model. The sandwich estimator is also known to be biased
for the standard two-way gravity model without pair fixed effects. This bias has been
documented in numerous places (Egger and Staub, 2015; Jochmans, 2016; Pfaffermayr,
2019) but the literature has yet to offer a bias correction that may be used to obtain
improved inferences for this very popular model. As it turns out, the analytics for the
two-way and three-way models are very similar here, and we can easily adapt our results
to the simpler two-way setting. The main change we would need to make is to replace H;;
everywhere it appears with A;;, including in the definitions of z;;, Wy, and WJ(V¢). The

rest of the derivations then follow in the same manner as for the three-way model.
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