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1 Introduction

Despite intense and longstanding empirical interest, the effects of bilateral trade agree-
ments on trade are still considered highly difficult to assess. As emphasized in a recent
practitioner’s guide put out by the WTO (Yotov, Piermartini, Monteiro, and Larch,
2016), many current estimates in the literature suffer from easily identifiable sources of
bias (or “estimation challenges”). This is not for a lack of awareness. Papers showing
leading causes of bias in the gravity equation are often among the most widely cele-
brated and cited in the trade field, if not in all of Economics.1 In particular, it is now
generally accepted that trade flows across different partners are interdependent via “mul-
tilateral resistance” (the main contribution of Anderson and van Wincoop, 2003), that
log-transforming the dependent variable is not innocuous (as argued by Santos Silva and
Tenreyro, 2006), and—most relevant to the context of trade agreements—that earlier,
puzzlingly small estimates of the effects of free trade agreements were almost certainly
biased downwards by treating them as exogenous (Baier and Bergstrand, 2007).

As a consequence—and aided by some recent computational developments—researchers
seeking to identify the effects of trade agreements have naturally moved towards more ad-
vanced estimation strategies that take on board all of the above concerns.2 In particular,
a “three-way” fixed effects Poisson Pseudo-Maximum Likelihood (“FE-PPML”) model
with time-varying exporter and importer fixed effects to account for multilateral resis-
tance and time-invariant exporter-importer (“pair”) fixed effects to address endogeneity
has recently emerged as a logical workhorse model for empirical trade policy analysis.3 A

1For some context, if we start citation counts in 2003, Anderson and van Wincoop (2003) and San-
tos Silva and Tenreyro (2006) are, respectively, the most cited articles in the American Economic Review
and in the Review of Economics and Statistics. Paling only slightly in this exclusive company, Baier
and Bergstrand (2007) is the 5th most-cited article in the Journal of International Economics, having
gathered “only” 2,000 citations. Readers familiar with these other papers will also likely be familiar with
Helpman, Melitz, and Rubinstein (2008)’s work on the selection process underlying zero trade flows, an
issue we do not take up here.

2Larch, Wanner, Yotov, and Zylkin (2019), Correia, Guimarães, and Zylkin (2019), and Stammann
(2018) describe algorithms that enable estimation of the three-way PPML models considered here.

3Pair fixed effects are of course no substitute for good instruments. However, instruments for trade
policy changes which are also exogenous to trade are understandably hard to come by. As discussed in
Head and Mayer (2014)’s essential handbook chapter on gravity estimation, pair fixed effects have the
advantage that the effects of trade agreements and other trade policies are identified from time-variation
in trade within pairs. Causal interpretations follow if standard “parallel trend” assumptions are satisfied.
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clear conceptual obstacle, however, is the current lack of clarity regarding the asymptotic
properties of a nonlinear estimator with more than two levels of fixed effects, especially
in the standard “small T” case where the number of time periods is small relative to the
number of countries. Even though FE-PPML models can be shown to be asymptotically
unbiased with a single fixed effect (a well-known result) as well as in a two-way setting
where both dimensions of the panel become large (Fernández-Val and Weidner, 2016),
the latter result does not come strictly as a generalization of the former one, leaving it
potentially unclear whether a three-way model with a fixed time dimension should be
expected to inherit the nice asymptotic properties of these other models.

Accordingly, the question we investigate in this paper might simply be phrased as: “Do
three-way FE-PPML gravity models suffer from an incidental parameter problem (IPP)?”
As it turns out, there are two answers to this question: “no... but also yes.” From a
traditional (i.e., small-T inconsistency) perspective, there is no IPP: because the first-
order conditions of FE-PPML allow us to “profile out” the pair fixed effect terms from
the first-order conditions of the other parameters, we can re-express the model as a two-
way profile likelihood that we can then deconstruct using the basic approach established
by Fernández-Val and Weidner (2016) for two-way asymptotic analysis. The three-way
model is therefore consistent in fixed-T settings for largely the same reasons the two-way
models considered in Fernández-Val and Weidner (2016) are consistent, and we provide
suitably modified versions of the regularity conditions and consistency results established
by Fernández-Val and Weidner (2016) for the simpler two-way case. Importantly, this
consistency property turns out to be very specific to the FE-PPML estimator. As we
are able to show, FE-PPML is in fact the only estimator among a wide range of related
FE-PML gravity estimators that is generally consistent in this context when T is small.

At the same time, it does not also follow that Fernández-Val and Weidner (2016)’s
earlier results for the asymptotic unbiased-ness of the two-way FE-PPML model similarly
carry over to the three-way case. This is where the “...but also yes” part of our answer
comes in. There is, in fact, a unique type of IPP in the three-way FE-PPML model that,
to our knowledge, can only arise in models where there are different levels of fixed effects
that grow large at different rates. Specifically, if N is the number of countries, profiling out
the large (on the order of N2) number of pair fixed effects eliminates any “1/T”-specific
bias term that would normally be associated with a short time series. Using the heuristic
suggested by Fernández-Val and Weidner (2018), we would then expect an asymptotic bias
with an order given by the ratio between the order of the number of remaining parameters
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(NT ) and that of number of observations (N2T ), or 1/N . However, due to the special
properties of FE-PPML, the asymptotic bias in our setting behaves more like a 1/(NT )
bias as N and T grow large at the same rate. The bias thus vanishes at a rate of 1/N as
N →∞, ensuring consistency even for fixed T , and the estimator is actually unbiased as
both N and T →∞, exactly like in the two-way FE-PPML model.4

What makes this bias a concern in fixed-T settings then is that the asymptotic standard
deviation is of order 1/(N

√
T ); thus, the asymptotic bias in point estimates will always

be of comparable magnitude to their standard errors when T is fixed. Put another way,
without a bias correction, asymptotic confidence intervals will be incorrectly centered and
will therefore produce misleading inferences, even as N →∞. This is effectively a version
of the so-called “large T” IPP, so-named because this type of result typically only arises
when taking asymptotics on the time dimension (e.g., Arellano and Hahn, 2007), usually
for the purposes of deriving bias corrections for an estimator known to be inconsistent in
short panels (e.g., Hahn and Newey, 2004).5 Unlike in most other settings explored in this
literature, and even though the size of the time dimension does play a role in conditioning
the bias, the panel estimator we consider is consistent regardless of T . Nonetheless, the
leading remedies recommended by the “large T” literature can still be adapted to reduce
the bias and correct inferences.

Aside from the bias in point estimates, another (not unrelated) issue that affects the
three-way model is a general downward bias in the cluster-robust sandwich estimator
typically used to compute standard errors. This latter bias is similar to one that has been
found in the simpler two-way gravity model by several recent studies (Egger and Staub,
2015; Jochmans, 2016; Pfaffermayr, 2019) and arises for the same reason: because the
origin-time and destination-time fixed effects in the model each converge to their true
values at a rate of only 1/

√
N (not 1/N), the cluster-robust sandwich estimator for the

variance has a leading bias of order 1/N (not 1/N2), and standard errors in turn have a
bias of order 1/

√
N . This latter type of bias is related to the general result that standard

4A similar IPP can arise for certain other three-way PML estimators aside from three-way FE-PPML.
However, because these other estimators are generally inconsistent for fixed T , they will typically have
an additional bias term of order 1/T that only disappears if the model is correctly specified.

5The new literature on “large T” asymptotic bias in nonlinear FE models has emerged as a re-
cent response to the well-known “small T” consistency problem first described in Neyman and Scott
(1948). Other examples include Phillips and Moon (1999), Hahn and Kuersteiner (2002), Lancaster
(2002), Woutersen (2002), Alvarez and Arellano (2003), Carro (2007), Arellano and Bonhomme (2009),
Fernández-Val and Vella (2011), and Kato, F. Galvao Jr., and Montes-Rojas (2012).
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“heteroskedasticity-robust” variance estimators are downward-biased in small samples
(see, e.g., MacKinnon and White, 1985; Imbens and Kolesar, 2016), including for PML
models (Kauermann and Carroll, 2001). The fact that the bias in the sandwich estimator
converges at a slower rate due to the incidental parameters merits special consideration
on top of these already-known issues. We should therefore be concerned that estimated
confidence intervals may be too narrow in addition to being off-center.

Our analysis provides theoretical characterizations of both of these issues as well as
a series of possible bias corrections, which we evaluate using simulations and a real-data
application. For the bias in point estimates, we construct two-way analytical and jackknife
bias corrections inspired by the corrections proposed in Fernández-Val and Weidner (2016;
2018). For the bias in standard errors, we show how Kauermann and Carroll (2001)’s
method for correcting the PML sandwich estimator may be adapted to the case of a
conditional estimator with multi-way fixed effects and cluster-robust standard errors.
Our simulations confirm that these methods are usually effective at improving inferences.
The jackknife correction reduces more of the bias in point estimates than the analytical
correction in smaller samples, but the analytical correction does a better job at improving
coverage, especially when also paired with corrected standard errors.

For our empirical application, we estimate the average effects of a free trade agreement
(FTA) on trade for a range of different industries using what would typically be considered
a large trade data set, with 169 countries and 5 time periods. The biases we uncover vary
in size across the different industries, but are generally large enough to indicate that our
bias corrections should be worthwhile in most three-way gravity settings. For aggregate
trade data (which yields results that are fairly representative), the estimated coefficient
for FTA has an implied downward bias about 15%-18% of the estimated standard error,
and the implied downward bias in the standard error itself is about 10% of the original
standard error.

The literature on large-T IPPs with more than one fixed effect is small but growing.
Aside from Fernández-Val and Weidner (2016)’s work on bias corrections for two-way
nonlinear models, Pesaran (2006), Bai (2009), Hahn and Moon (2006), and Moon and
Weidner (2017) have each conducted similar analyses for two-way linear models with
interacted individual and time fixed effects. Turning to three-way models, Hinz, Stam-
mann, and Wanner (2019) have recently developed bias corrections for dynamic three-way
probit and logit models based on asymptotics suggested by Fernández-Val and Weidner
(2018) where all three panel dimensions grow at the same rate. Though widely applica-

4



ble, this approach is not appropriate for our setting because of the different role played
by the time dimension when the estimator is FE-PPML.6 In the network context, Gra-
ham (2017), Dzemski (2018), and Chen, Fernández-Val, and Weidner (2019) have studied
large-T IPPs in dyadic models where the different nodes in the network are character-
ized by node-specific (possibly sender- and receiver-specific) fixed effects. The analysis of
Chen, Fernández-Val, and Weidner (2019) bears some especial similarity to our own in
that they allow these node-specific effects to be vectors rather than scalars, similar to the
exporter-time and importer-time fixed effects that feature in gravity models. Our bias
expansions mainly differ from those of Chen, Fernández-Val, and Weidner (2019) because
the equivalent outcome variable in our setting (trade flows observed over time for a given
pair) is also a vector rather than a scalar and because we work with a conditional moment
model where the distribution of the outcome may be misspecified. These distinctions are
important because they together imply that the asymptotic bias is necessarily a function
of the joint distribution of the outcome vector, a complication that does not arise in these
other settings.

In what follows, Section 2 first provides a general overview of the no-IPP properties
of the FE-PPML model (including the limits thereof). Section 3 then establishes bias
and consistency results for the three-way gravity model specifically and discusses how to
implement bias corrections. Sections 4 and 5 respectively present simulation evidence and
an empirical application. Section 6 concludes, and an Appendix adds proofs and further
simulation results.

2 FE-PPML Models and Incidental Parameters

In this section, we consider scenarios under which PPML models with various combi-
nations of fixed effects may or may not suffer from an IPP. Our focus for now will be
general; while our sights are ultimately set on three-way gravity models, it will first prove
useful to present some other models that illustrate both what sets FE-PPML apart from
other nonlinear FE models as well as its limitations in this context. As we will show,
while FE-PPML is sometimes free from incidental parameter bias, even in settings with

6Also related are the GMM-based differencing strategies for two-way FE models proposed by Char-
bonneau (2017) and Jochmans (2016). These strategies rely on differencing the data in such as way that
the resulting GMM moments do not depend on any of the incidental parameters. In principle, these
methods could be extended to allow for differencing across a time dimension as well in a three-way panel.
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multiple fixed effects, it is by no means immune to IPPs in general cases.

2.1 The Classic (One-way) Setting

The classic “one-way” FE setting is a natural way of demonstrating why FE-PPML models
sometimes do not suffer from incidental parameter bias when other nonlinear FE models
normally would. Consider a static panel data model with individuals i = 1, . . . , N , time
periods t = 1, . . . , T , outcomes yit, and strictly exogenous regressors xit satisfying

E(yit|xit, αi) = λit := exp(x′itβ + αi). (1)

The FE-PPML estimator maximizes ∑i,t (yit log λit + λit) over β and α. The correspond-
ing FOC’s may be written as

N∑
i=1

T∑
t=1

xit
(
yit − λ̂it

)
= 0, ∀i :

T∑
t=1

(
yit − λ̂it

)
= 0, (2)

where λ̂it := exp(x′itβ̂+ α̂i). Solving for α̂i and plugging the expression back into the FOC
for β̂ we find

N∑
i=1

T∑
t=1

xit

[
yit −

exp(x′itβ̂)∑T
τ=1 exp(x′iτ β̂)

T∑
τ=1

yiτ

]
= 0, (3)

which, as long as (1) holds, are valid (sample) moments to estimate β. Thus, under
standard regularity conditions, we have that

√
N(β̂ − β0)→d N (0, V ) as N →∞, where

V is the asymptotic variance. The FE-PPML estimator therefore does not suffer from an
IPP: even though α̂i is an inconsistent estimate of αi, the FE-PPML score for β has zero
mean when evaluated at the true parameter β0, and β̂ therefore converges in probability
to β0 without any asymptotic bias. This is a well known result that can also be obtained
in the Poisson-MLE case by conditioning on ∑t yit; see Cameron and Trivedi (2015).7

Of course, with a doubly-indexed panel indexed by individuals and time, a standard
approach here would be to also include a time fixed effect for each period t. For small
T , the addition of time fixed effects has little effect on the above example: the small
number of time dummies needed for the fixed effects can be thought of as components of

7The earliest references to present versions of this result include Andersen (1970), Palmgren (1981),
and Hausman, Hall, and Griliches (1984). Another important contribution is Wooldridge (1999), who
shows that FE-PPML is consistent even when the assumed distribution of the data is misspecified. Our
Lemma 2 in the Appendix clarifies that FE-PPML is relatively unique in this regard versus similar models.
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xit without loss of generality and are therefore consistently estimated for the same reasons
the other components of xit are consistently estimated. A more interesting case is where T
is large, such that we have a more complex, “two-way” estimator where both dimensions
of the panel—individual and time—grow with the sample. As shown by Fernández-Val
and Weidner (2016)—and as we ourselves will show shortly—a two-way FE-PPML model
of this type is again consistent and exhibits no asymptotic bias. Thus, this series of results
may create the impression that Poisson models are immune to IPPs, regardless of how
many fixed effects are included or which dimensions of the panel grow with the sample.
The following discussion makes it clear this is not generally the case.

2.2 Overlapping Fixed Effects

In the above “classic” setting, every observation is affected by exactly one fixed effect. In
current applied work, it is common to specify models with what we will call “overlapping”
fixed effects, where each observation may be affected by more than one fixed effect. Some
standard examples include the gravity model from international trade (which we discuss
next) as well as other settings where researchers may wish to control for multiple sources
of heterogeneity (e.g., firm and employee, teacher and student). Thus, it is important to
clarify that the presence of overlapping fixed effects can easily lead to an IPP, even when
the underlying estimator is Poisson or PPML. We give the following simple example:

Example 1. Consider a model with three time periods T = 3 and two fixed effects αi and
γi for each individual:

t = 1 : E(yi1|xi1, αi, γi) = λi1 := exp(x′i1β + αi),

t = 2 : E(yi2|xi2, αi, γi) = λi2 := exp(x′i2β + αi + γi),

t = 3 : E(yi3|xi3, αi, γi) = λi3 := exp(x′i3β + γi).

The FE-PPML estimator maximizes ∑N
i=1

∑3
t=1 (yit log λit + λit) over β, α and γ. T = 3

is fixed as N →∞.

In this example, because the fixed effects are overlapping, we have that α̂ enters into
the FOC for γ̂, and vice versa. Therefore, when for a given value β̂ we want to solve the
FOC for α̂ and γ̂ we have to solve a system of equations, and the solutions become much
more complicated functions of the outcome variable than in the one-way model. While
having this type of co-dependence between the FOCs for the various fixed effects need

7



not necessarily lead to an IPP (as our gravity examples will show), it does create one in
models where more than one fixed effect dimension grows at the same rate as the panel
size, as is the case with α and γ in Example 1.

The easiest way to demonstrate that this type of model suffers from an IPP is by way
of simulations. The top-left panel of Fig. 1 presents simulated FE-PPML estimates of β
based on Example 1 using panel sizes of N = 100, N = 1, 000, and 10, 000. For ease of
exposition, the conditional distribution of yijt is assumed to be log-normal with variance
equal to λijt (as in a Poisson distribution), but we have found similar results for other
data-generating assumptions such as those described in Section 4. The true value for β is
1, and values for x, α, and γ are constructed using the same methods as Fernández-Val
and Weidner (2016). The results show that FE-PPML clearly suffers from an IPP in
this example. Even for the largest panel size where N = 10, 000, the mass point of the
simulated distribution for β̂ is about 1.1-1.15, and the estimates do not show signs of
converging to the true estimate of β = 1 as the panel size increases.

Gravity models, by contrast, also feature multiple levels of overlapping fixed effects,
but generally either the number of fixed effects grows at a slower rate than the size of
the panel—as in the two-way gravity model—or there is only one fixed effect dimension
that grows at the same rate as the panel size—as in the three-way gravity model usually
recommended for trade policy analysis. Determining whether an IPP is present (and what
type) for FE-PPML applied to gravity models therefore requires a closer examination of
these models, which we now turn to.

2.3 Two-way Gravity Models

We introduce the concept of a “gravity model” as follows. Countries are indexed by
i, j ∈ N := {1, . . . , N}, with i 6= j, and yij is the volume of trade between i and j.8 In
general, we allow there to be T > 1 time periods, such that a time subscript will also be
needed, but for the time being we will suppose T = 1. Exporter- and importer- specific
fixed effects are in this setting denoted αi and γj. The model reads

E(yij|xij, αi, γj) = λij := exp(x′ijβ + αi + γj).

8This panel structure can be easily relaxed to allow the number of exporters and the number of
importers to be different; the real key here is that we assume both dimensions of the panel grow at the
same rate asymptotically.
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The FE-PPML estimator maximizes ∑n
i=1

∑
j 6=i (yij log λij + λij) over β, α, and γ, where

xij would normally contain a set of exogenous bilateral regressors (e.g., the log of geo-
graphic distance, the sharing of a common border, and so on).

From Fernández-Val and Weidner (2016), we know that
√
N (N − 1)(β̂ − β0) →d

N (0, V ) asN →∞. That is, in contrast to what we found above for the model in Example
1, we have no IPP here (neither an inconsistency nor an asymptotic bias problem).9 The
reasons behind this result are twofold. First, although we consider an asymptotic setting
where both fixed effect dimensions (the number of exporters and the number of importers)
grow with N , the sample size grows with N2; all αi’s and γj’s are therefore consistently
estimated as N →∞, and β is in turn consistently estimated as well. Second, for the FE-
PPML model specifically, we can either solve for α̂i or solve for γ̂j to obtain a profile score
for the remaining parameters (including β̂) that is asymptotically unbiased as N →∞.10

The simulations presented in the top-right panel of Fig. 1 provide a visual illustration of
this property, confirming that estimates are correctly centered regardless of N .

These results might perhaps create the impression that FE-PPML gravity models
generally inherit all the same no-IPP properties as the classic one-way panel data model.
As we will now discuss in detail, the three-way FE-PPML gravity model only inherits
some, not all, of these nice properties. As we will also see, this impression is misleading
for other reasons as well: even for the two-way model, while the αi and γj parameters do
not affect the score for β̂, they nonetheless have implications for the estimated variance
of β̂ that are not innocuous; we thus will also devote some attention to whether the
three-way model suffers from a similar issue.

9Note that Theorem 4.1 in Fernández-Val and Weidner (2016) is written for the correctly specified
case, where yij is actually Poisson distributed. However, Remark 3 in the paper gives the extension to
conditional moment models, where for the FE-PPML case only E(yij |xij , αi, γj) = exp(x′ijβ + αi + γj)
needs to hold. That remark also states that the asymptotic bias of the FE-PPML estimator β̂ is zero;
that is, no bias correction is necessary for valid asymptotic inference here. Their paper considers standard
panel models, as opposed to trade models, but the only technical difference is that yij is often not observed
for the trade model when i 6= j. This missing diagonal has no effect on any of the results we discuss.

10Egger, Larch, Staub, and Winkelmann (2011) have previously observed that the two-way FE-PPML
estimator is consistent in this setting, as is any two-way FE-PML estimator where both dimensions of the
panel increase with the square root of the sample size. However, as shown by Fernández-Val and Weidner
(2016), the no-bias result for FE-PPML does not extend to other similar estimators in this context.
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3 Results for the Three-way Gravity Model

To recap the sequence of results just described, we know that FE-PPML estimates with
one fixed effect do not suffer from an IPP. We also know that FE-PPML may have an IPP
in models with more than one fixed effect, but it is both consistent and asymptotically
unbiased in two-way gravity settings when neither fixed effect dimension grows at the
same rate as the size of the panel. As we will now show, each of these earlier results will
be useful for understanding the more complex case of a three-way gravity model where
we add a time dimension and a third set of fixed effects to the above two-way model.
We also describe a series of bias corrections for the three-way model, including for the
possible downward bias of the estimated standard errors.

3.1 Consistency

To formally introduce the three-way model, we now add an explicit time subscript t ∈
{1, . . . , T} to yij, xij, αi, and γj to the prior model and also add a bilateral (or “country-
pair”)-specific fixed effect ηij. The model now reads as

E(yijt|xijt, αit, γjt, ηij) = λijt := exp(x′ijtβ + αit + γjt + ηij), (4)

where the three fixed effects now respectively index exporter-time, importer-time, and
country-pair.11 To append an error term, we further assume yijt = λijtωijt ≥ 0, with
ωijt ≥ 0 serving as a residual. For the asymptotics using the three-way model, we consider
T fixed, while N →∞. The FE-PPML estimator maximizes

L(β, α, γ, η) :=
N∑
i=1

N∑
j=1
j 6=i

T∑
t=1

(yijt log λijt + λijt)

over β, α, γ and η.
With the added country-pair fixed effect η, notice that not all of the fixed effect

dimensions grow at the same rate as N increases. The numbers of exporter-time and
importer-time fixed effects each increase with N (as before), but the dimension of η
increases with N2, since adding another country to the data adds another N − 1 trade
flows to the estimation. It therefore makes sense to first “profile out” η (as we did with α

11For discussion of this model, see Yotov, Piermartini, Monteiro, and Larch (2016) or Larch, Wanner,
Yotov, and Zylkin (2019).
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in (3)), so that we may deal with the remaining two fixed effects in turn. For given values
of β, α, γ the maximizer over η satisfies

exp [η̂ij(β, α, γ)] =
∑T
t=1 yijt∑T
t=1 µijt

, µijt := exp(x′ijtβ + αit + γjt). (5)

We therefore have

L(β, α, γ) := max
η
L(β, α, γ, η) =

N∑
i=1

N∑
j=1
j 6=i

`ij(β, αit, γjt), (6)

with

`ij(β, αit, γjt) :=
T∑
t=1

[
yijt log

(
µijt∑T
s=1 µijs

)
+ µijt∑T

s=1 µijs

T∑
s=1

yijs

]
+

T∑
t=1

yijt log
(

T∑
s=1

yijs

)
.

=
T∑
t=1

yijt log
(

µijt∑T
s=1 µijs

)
+ terms not depending on any parameters. (7)

Thus, after profiling out the ηij parameters, we are left with the likelihood of a multinomial
model where the only incidental parameters are αit and γjt. The FE-PPML estimators
for β, αit and γjt are given by

(β̂, α̂, γ̂) = argmax
β,α,γ

L(β, α, γ). (8)

Using (4) one can easily verify that

E
[
∂`ij(β, αit, γjt)

∂β

]
= 0, E

[
∂`ij(β, αit, γjt)

∂αit

]
= 0, E

[
∂`ij(β, αit, γjt)

∂γjt

]
= 0. (9)

Thus, after profiling out ηij, there is no bias in the score of the profile log-likelihood
`ij(β, αit, γjt). The reason for this is exactly the same as for the no-IPP result in the
classic panel setting above. Furthermore, note that the only fixed effects that need to be
estimated in `ij(β, αit, γjt) are αit and γjt, which only grow with the square root of the
sample size as N →∞, implying that they are consistently estimated. Thus, we can state
the following result:

Proposition 1. So long as the set of non-fixed effect regressors xijt is exogenous to the
residual disturbance ωijt after conditioning on the fixed effects αit, γjt, and ηij, FE-PPML
estimates of β from the three-way gravity model are consistent for N →∞.12

12This consistency result can be seen as a corollary of the asymptotic normality result in Proposition 3
below, for which formal regularity conditions are stated in Assumption A of the Appendix.
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This result follows because we can re-write the three-way FE-PPML estimator as a
two-way estimator without introducing a 1/T -bias, such that the earlier consistency result
from Fernández-Val and Weidner (2016) for two-way estimators can again be applied. In
other words, the three-way FE-PPML model is consistent as N →∞ largely for the same
reason two-way FE-PPML and other two-way nonlinear gravity estimators are generally
consistent. However, in the context of three-way estimators, we can also state a stronger
result that applies more narrowly to FE-PPML in particular:

Proposition 2. Consider the class of “three-way” FE-PML gravity estimators with con-
ditional means given by λijt := exp(x′ijtβ + αit + γjt + ηij) and FOC’s given by

β̂:
N∑
i=1

N∑
j=1
j 6=i

T∑
t=1

xijt
(
yijt − λ̂ijt

)
g(λ̂ijt) = 0, α̂it:

N∑
j=1

(
yijt − λ̂ijt

)
g(λ̂ijt) = 0,

γ̂jt:
N∑
i=1

(
yijt − λ̂ijt

)
g(λ̂ijt) = 0, η̂ij:

T∑
t=1

(
yijt − λ̂ijt

)
g(λ̂ijt) = 0,

where i, j = 1, . . . , N , t = 1, ..., T, and g(λ̂ijt) is an arbitrary function of λ̂ijt. If T is
small, then for β̂ to be consistent under general assumptions about Var(y|x, α, γ, η), we
must have that g(λijt) is constant over the range of λ’s that are realized in the data-
generating process. That is, the estimator must be equivalent to FE-PPML.

The details behind this latter result are somewhat subtle. Clearly, for arbitrary g(λ̂ijt),
it is generally not possible to write down a closed form solution η̂ij = ln∑T

t=1 yijtg(λ̂ijt)−
ln∑T

t=1 µijtg(λ̂ijt) that would allow us to derive a two-way profile likelihood that does not
depend on η̂ij. However, as we discuss in the Appendix, it is still possible to obtain a
two-way profile likelihood if g(λ̂ijt) is of the form g(λ̂ijt) = λ̂qijt, where q can be any real
number. Notably, this latter class of models not only includes FE-PPML (for which q = 0),
but also includes other popular gravity estimators such as Gamma PML (q = −1) and
Gaussian PML (q = 1). And yet, the existence of equivalent profile likelihood expressions
for these other estimators does not guarantee that they are consistent. Actually, the
three-way gravity estimators associated with g(λ̂ijt) = λ̂qijt can be shown to suffer from a
1/T -bias that only disappears if either q = 0 (in which case the estimator is FE-PPML)
or if the conditional variance is proportional to λ1−q

ijt (in which case the estimator inherits
the properties of the MLE estimator).
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3.2 Asymptotic Bias

Because the three-way FE-PPML model inherits the consistency properties of the two-way
estimator, one might expect that it also inherits its unbiased-ness properties as well. How-
ever, this is where the limitations of PPML’s no-IPP properties become apparent. While
the profile log-likelihood in (6) is now of a similar form to the two-way models consid-
ered in Fernández-Val and Weidner (2016), notice that it no longer resembles the original
FE-PPML log-likelihood. The no-bias result for two-way FE-PPML from Fernández-Val
and Weidner (2016) therefore does not carry over to the profile log-likelihood and it is
possible to show that FE-PPML has an asymptotic bias in this setting.

Preliminaries

As with the models considered in Fernández-Val and Weidner (2016), the origins of this
bias have to do with the rate at which the estimated incidental parameters α̂i and γ̂j

converge to their true values α0
i and γ0

j . As such, it will be useful to pause here to
establish to some additional notation, mostly to provide some shorthand for the higher-
order partial derivatives of `ij with respect to α̂i and γ̂j. To this end, let

`ij(β, αi, γj) =: `ij(β, πij), with πij =


πij1
...

πijT

 :=


αi1 + γj1

...
αiT + γjT


It will also be convenient to let ϑijt := λijt/

∑
τ λijτ . With `ij now expressed in similar

form to the objective function considered in Fernández-Val and Weidner (2016), we can
now define the following objects:

• Sij := ∂`ij/∂πij is a T × 1 vector with elements yijt − ϑijt
∑
τ yijτ .

• Hij := −∂2`ij/∂πij∂π
′
ij gives us a T×T matrix with diagonal elements ϑijt (1− ϑijt)

∑
τ yijτ

and off-diagonal (s 6= t) elements given by −ϑijsϑijt
∑
τ yijτ .

• Gij := ∂3`ij/∂πij∂π
′
ij∂πijt is a T × T × T cubic tensor. The elements on the main

diagonal of Gij are given by −ϑijt (1− ϑijt) (1− 2ϑijt)
∑
τ yijτ . The elements of the

3 planar diagonals with r = s 6= t are given by ϑijs (1− 2ϑijs)ϑijt
∑
τ yijτ . All other

elements with r 6= s 6= t are given by −2ϑijrϑijsϑijt
∑
τ yijτ .
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The value of presenting these objects is that they allow us to easily form other terms
we need that help define how β̂ depends on α̂i and γ̂j. For example, Sij not only dou-
bles for both ∂`ij/∂αi as well as for ∂`ij/∂γj, but also allows us to obtain ∂`ij/∂β

k =
x′ij,kSij. Likewise, we also have that ∂2`ij/∂αi∂α

′
i = ∂2`ij/∂αi∂γ

′
j = ∂2`ij/∂γj∂γ

′
j = −Hij,

∂2`ij/∂αi∂β
k = ∂2`ij/∂γj∂β

k = −Hijxij,k and that

∂3`ij
∂αi∂α′i∂β

k
= ∂3`ij
∂αi∂γ′j∂β

k
= ∂3`ij
∂γj∂α′i∂β

k
= ∂3`ij
∂γj∂γ′j∂β

k
= Gijxij,k,

where it is important to note that the product Gijxij,k is a T × T matrix with individual
elements [Gijxij,k]st = ∑

rGijrstxijr,k. In addition, we will for the most part assume that
score vectors are conditionally independent of one another—i.e., Cov

(
Sij, Si′j′

∣∣∣xij) = 0
if (i, j) 6= (i′, j′)—though this assumption can be relaxed, as we explain later on.

The remaining preliminaries then require that we also define the expected Hessian
H̄ij = E

(
Hij

∣∣∣xij). Because we have not chosen a normalization for αi and γj, H̄ij is
only positive semi-definite (not positive definite). Therefore, we will use a Moore-Penrose
pseudoinverse, to be denoted with a †, whenever the analysis requires we work with an
inverse of H̄ij or similar matrices.13 We likewise find it useful to define Ḡij = E(Gij).

Finally, with H̄ij in hand, we can define the within-transformed regressor matrix x̃ij :=
xij − αxi − γxj , where αxi and γxj are T ×K matrices that minimize

N∑
i=1

∑
j∈N\{i}

Tr
[(
xij − αxi − γxj

)′
H̄ij

(
xij − αxi − γxj

)]
, (10)

subject to appropriate normalizations on αxi and γxj (e.g. ι′Tαxi = ι′Tγ
x
j = 0, where ιT =

(1, . . . , 1)′ is a T-vector of ones). Each within-transformed regressor vector x̃ij,k can be
interpreted as containing the residuals left after partialing out xij,k with respect to any i-
and j-specific components and weighting by H̄ij.14

13Specifically, we have that H̄ij ιT = 0, where ιT = (1, . . . , 1)′ is a T-vector of ones. Thus, H̄ij is only of
rank T − 1 rather than of rank T . The Moore-Penrose inverse allows us to avoid the problem of choosing
what normalizations to use for αi and γj while still leading to the same end results.

14While we present the computation of x̃ij as a two-way within-transformation to preserve the analogy
with Fernández-Val and Weidner (2016), each individual element x̃ijt,k can also be shown to be equivalent
(subject to a normalization) to a three-way within-transformation of xijt,k with respect to it, jt, and ij
and weighting by λijt. Readers familiar with Larch, Wanner, Yotov, and Zylkin (2019) may find the
latter presentation easier to digest.
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Bias Expansion

As in Fernández-Val and Weidner (2016), we can characterize the asymptotic bias in β̂ by
examining how the estimated fixed effects α̂i and γ̂j enter the score for β̂. The full details
behind this derivation are left for the Appendix, but the following second-order expansion
provides a general basis. Let φ := vec(α, γ) be a vector that collects all of the two-way
incidental parameters, such that we can again re-express `ij slightly as `ij = `ij(β, φ). We
can then define the function φ̂(β) as

φ̂(β) := arg max
φ

1
N(N − 1)

∑
i,j

`ij(β, φ),

which allows us to succinctly characterize the estimated values for α̂ and γ̂ as a function
of β. Next, we construct a second-order expansion of the expected score for β̂ around the
true incidental parameter vector φ0 and evaluated at the true parameter β0:

E
[
∂`ij(β0, φ̂(β0))

∂β

]
≈ E

[
∂`ij(β0, φ0)

∂β

]
+ E

[
∂2`ij(β0, φ0)

∂β∂φ′

(
φ̂(β0)− φ0

)]

+ 1
2

dimφ∑
f,g

E
[
∂3`ij(β0, φ0)
∂β∂φf∂φg

(
φ̂f (β0)− φ0

f

) (
φ̂g(β0)− φ0

g

)]
. (11)

This expression is near-identical to a similar expansion that appears in Fernández-Val and
Weidner (2016)—differing mainly in that `ij is a vector rather than a scalar—and com-
municates the same essential insights: because the latter two terms in (11) are generally
6= 0, the score for β̂ is biased, with the bias depending on the interaction between the
higher-order partial derivatives of `ij and the estimation error in the incidental parameters
as well as their variances and covariances.

After dropping terms that are asymptotically small15 and plugging in the just-defined
expressions Sij, Hij, Gij, and x̃ij where appropriate, we can use (11) to obtain a tractable
expression for the bias that serves as the centerpiece of the following proposition.

Proposition 3. Under appropriate regularity conditions (Assumption A in the Appendix),
for T fixed and N →∞ we have

√
N (N − 1)

(
β̂ − β0 − W−1

N (BN +DN)
N − 1

)
→d N

(
0,W−1

N ΩN W
−1
N

)
,

15In particular, all elements of the cross-partial objects E[∂2`ij/∂αi∂γj ], E[∂3`ij/∂αiα
′
i∂γj ], etc. can

be shown to be asymptotically small. Thus, in what follows, BN reflects the contribution of the αi
parameters to the bias and DN reflects the contribution of the γj parameters.
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where WN and ΩN are K ×K matrices given by

WN = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij H̄ij x̃ij,

ΩN = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij
[
Var

(
Sij

∣∣∣xij)] x̃ij,
and BN and DN are K-vectors with elements given by

Bk
N = − 1

N

N∑
i=1

Tr


 ∑
j∈N\{i}

H̄ij

† ∑
j∈N\{i}

E
(
Hij x̃ij,k S

′
ij

∣∣∣xij,k)


+ 1
2N

N∑
i=1

Tr


 ∑
j∈N\{i}

Ḡij x̃ij,k

 ∑
j∈N\{i}

H̄ij

†  ∑
j∈N\{i}

E
(
Sij S

′
ij

∣∣∣xij,k)
 ∑

j∈N\{i}
H̄ij

†
 ,

Dk
N = − 1

N

N∑
j=1

Tr


 ∑
i∈N\{j}

H̄ij

† ∑
i∈N\{j}

E
(
Hij x̃ij,k S

′
ij

∣∣∣xij,k)


+ 1
2N

N∑
j=1

Tr


 ∑
i∈N\{j}

Ḡij x̃ij,k

 ∑
i∈N\{j}

H̄ij

†  ∑
i∈N\{j}

E
(
Sij S

′
ij

∣∣∣xij,k)
 ∑

i∈N\{j}
H̄ij

†
 .

The above proposition establishes the asymptotic distribution of the three-way gravity
estimator as N →∞, including the asymptotic bias (N−1)−1W−1

N (BN+DN). Intuitively,
this bias can be decomposed as the product of the inverse expected Hessian with respect
to β (i.e. W−1

N ) and the bias of the score in (11), which in turn is captured by the two-
way bias terms BN and DN and the rate of asymptotic convergence (essentially 1/N).
In the two-way FE-PPML setting considered in Fernández-Val and Weidner (2016), we
would have that BN = DN = 0, such that β̂ is unbiased. Importantly, and unlike in the
two-way FE-PPML setting, the three-way model does not give us the no-bias result that
BN = DN = 0, as we will illustrate in more detail momentarily.

What if T is Large?

While Proposition 3 only focuses on asymptotics where N → ∞, the three-way gravity
panel also features a time dimension (T ), and it is interesting to wonder how the above
results may depend on changes in T . The following remark clarifies how the bias terms
BN and DN can be re-written to illuminate the role of the time dimension.
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Remark 1. Using generic definitions for Sij, Hij, Gij, and x̃ij (e.g., Sij := ∂`ij/∂πij,
Hij := ∂2`ij/∂πij∂π

′
ij, etc.), the formulas for the asymptotic distribution in Proposition 3

apply generally to M-estimators of the form (8) based on concave objective functions
`ij(β, αit, γjt). Unlike with two-way FE-PPML models, these formulas do not reduce to
zero when we further specialize them to the profiled Poisson pseudo-likelihood in (7), but
we still find it instructive to do so (e.g. to discuss the large T limit below). For that
purpose, we define the T × T matrix Mij = IT − ϑijι′T . Furthermore, let Λij be the T × T
diagonal matrix with diagonal elements λijt, and for i, j ∈ {1, . . . , N} define the T × T
matrices

Qi = 1
N − 1

 ∑
j∈N\{i}

Mij ΛijM
′
ij

† ∑
j∈N\{i}

Mij E(yijy′ij)M ′
ij

 ∑
j∈N\{i}

Mij ΛijM
′
ij

† ,
Rij = E(yijy′ij)M ′

ij

 1
N − 1

∑
j′∈N\{i}

Mij ΛijM
′
ij

† ΛijM
′
ij.

The bias term BN = (Bk
N) in Proposition 3 can then be expressed as

Bk
N = 1

N(N − 1)

N∑
i=1

∑
j∈N\{i}

[
−ι
′
T Rij x̃ij,k
ι′Tλij

+
λ′ij Qi ΛijM

′
ij x̃ij,k

ι′Tλij

]
, (12)

and an analogous formula for DN follows by interchanging i and j appropriately.

So long as there is only weak time dependence between observations belonging to the
same pair (in the sense described by Hansen, 2007), the matrix objects Rij and QiΛijM

′
ij

in Remark 1 are both of order 1 as T →∞, such that both terms in brackets in (12) are
likewise of order 1.16 We will henceforth assume any time dependence is weak. Remark 2
then describes some additional asymptotic results for when T is large.

Remark 2. Under asymptotics where T →∞, we have the following:

(i) If N is fixed and T →∞, then β̂ is generally inconsistent.

(ii) As T → ∞, the combined bias term W−1
N (BN + DN) goes to zero at a rate of 1/T .

Therefore, because the standard error is of order 1/(N
√
T ), there is no bias in the asymp-

totic distribution of β̂ as N and T both →∞.
16By “weak” time dependence, we mean that any such dependence dissipates as the temporal distance

between observations increases. Alternatively, if observations are correlated regardless of how far apart
they are in time, the standard error is always of order 1/N (see Hansen, 2007), and the same will also be
true for the asymptotic bias. The latter is arguably a less natural assumption in this context, however.
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To elaborate further, letting T →∞ is obviously not sufficient for either α or γ to be
consistently estimated and does not solve the IPP, as stated in part (i). However, as part
(ii) tells us, T still plays an interesting role in conditioning the bias when both N and T
jointly become large. Intuitively, because W−1

N is of order 1/T , and because BN and DN

are bounded as T → ∞, the bias in β̂ effectively vanishes at a rate of 1/(NT ) as both
N, T → ∞, such that it increasingly shrinks in relation to the order-1/(N

√
T ) standard

error. This is what we mean when we say the IPP the three-way PPML model suffers
from is rather unique: it can be resolved by large enough T (like most IPPs), yet large T
is actually neither necessary nor sufficient to ensure consistency.

Illustrating the Bias using the T = 2 Case

Admittedly, the complexity of the objects that appear in Proposition 3 may make it dif-
ficult to appreciate the general point that the three-way estimator is not unbiased. One
way to make these details more transparent is to focus our attention on the simplest pos-
sible panel model where T = 2. The convenient thing about this simplified setting is the
likelihood function `ij can be reduced to just a scalar: `ij = yij1 log ϑij1+yij2 log (1− ϑij1),
where

ϑij1 = exp (∆xijβ + πij)
exp (∆xijβ + πij) + 1

and where ∆xij = xij1 − xij2 and πij = πij1 − πij2. Importantly, these normalizations
allow us to express ∂`ij/∂πij, ∂2`ij/∂π

2
ij, etc. as also just scalars, and we can therefore

easily derive the following result:

Remark 3. For T = 2, we calculate Sij = ϑij2yij1 − ϑij1yij2, Hij = ϑij1ϑij2(yij1 + yij2),
H̄ij = ϑij1λij2, Gij = ϑij1ϑij2(ϑij1 − ϑij2)(yij1 + yij2), Ḡij = ϑij1(ϑij1 − ϑij2)λij2, and
∆x̃ij = x̃ij1 − x̃ij2. The bias term Bk

N in Proposition 3 can then be written as

Bk
N = plim

N→∞

− 1
N

N∑
i=1

∑
j 6=i ∆x̃ijϑij1ϑij2

[
ϑij2E(y2

ij1)− ϑij1E(y2
ij2) + (ϑij2 − ϑij1)E(yij1yij2)

]
∑
j 6=i ϑij1λij2

+ 1
2N

N∑
i=1

{∑
j 6=i∆x̃ijϑij1(ϑij1−ϑij2)λij2

}{∑N
j=1ϑ

2
ij2E(y2

ij1)+ϑ2
ij1E(y2

ij2)−2ϑij1ϑij2E(yij1yij2)
}

[∑
j 6=i ϑij1λij2

]2
,

with an analogous expression also following for Dk
N .

Two points then stand out based on the above expression. First, unlike in the two-way
FE-PPML case, neither of the two terms in Bk

N generally equals 0. Even in the correctly
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specified case (where E(y2
ij1) = λ2

ij1 + λij1 and E(yij1yij2) = λij1λij2), the first term can
be shown to cancel, but the second term does not, because ∑j Ḡij∆x̃ij 6= 0. This is very
different from the two-way case where H̄ij = Ḡij = −λij. In that case, both terms in Bk

N

and Dk
N always cancel, regardless of whether the PPML model is correctly specified. The

difference can be appreciated by comparing simulation results from the top-right panel
of Fig. 1, which are based on the two-way model and are therefore unbiased, with those
from the bottom-left panel, which are based on the three-way model with T = 2 and show
a clear asymptotic bias.

Second, it is plain from Remark 3 that both terms in the bias generally depend on
the expected second moments of yij (e.g., E(y2

ij1), E(yij1yij2), etc.). This is again dif-
ferent from the models that were previously considered in Fernández-Val and Weidner
(2016).17 Among other things, the difficulty associated with estimating these second
moments means that analytical bias corrections may not necessarily offer superior per-
formance relative to distribution-free methods such as the jackknife. It also means that
allowing for conditional dependence between pairs may change the expression of bias, as
we discuss next.

Allowing for Conditional Dependence across Pairs

The bias expansion in Proposition 3 allows for errors to be clustered within each pair
(i, j), but assumes conditional independence of yij and yi′j′ for all (i, j) 6= (i′, j′). This
assumption is consistent with the standard practice in the literature of assuming that
errors are clustered within pairs when computing standard errors (see Yotov, Piermartini,
Monteiro, and Larch, 2016.) However, it is important to clarify that the results in Propo-
sition 3 may change when other assumptions are used. For example, if we want to allow
yij and yji (i.e., both directions of trade) to be correlated, then the bias results would
not actually change, but we would need to modify the definition of ΩN to allow for the

17The specific examples used in Fernández-Val and Weidner (2016) are the Poisson model, which is
unbiased, and the probit model, which requires the distribution of yij to be correctly specified. They
also provide a bias expansion for “conditional moment” models that allow the distribution of yij to be
misspecified. Beyond this theoretical discussion, bias corrections for misspecified models have yet to
receive much attention, however. As can be seen above, an important complication that arises for these
models is that the bias depends on the distribution of the data, which is typically treated as unknown.
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additional clustering; namely, we would need

ΩN = 1
N (N − 1)

N−1∑
i=1

N∑
j=i+1

Var
(
x̃′ijSij + x̃′jiSji

∣∣∣x)

= 1
N (N − 1)

N−1∑
i=1

N∑
j=i+1

{
x̃′ij

[
Var

(
Sij

∣∣∣xij)] x̃ij + x̃′ji
[
Var

(
Sji

∣∣∣xji)] x̃ji
+ x̃′ij

[
Cov

(
Sij, Sji

∣∣∣xij)] x̃ji + x̃′ji
[
Cov

(
Sji, Sij

∣∣∣xji)] x̃ij
}
.

(13)

However, this is just one possibility. Similar adjustments could be made to allow for
clustering by exporter or importer, for example, or even for multi-way clustering á la
Cameron, Gelbach, and Miller (2011). In these cases, the bias would also need to be
modified; specifically, one would have to modify the portions of Dk

N that Bk
N that depend

on the variance of Sij to allow for correlations across i and/or j.

3.3 Downward Bias in Robust Standard Errors

Of course, even if the point estimates are correctly centered, inferences will still be un-
reliable if the estimates of the variance used to construct confidence intervals are not
themselves unbiased. For PPML models, confidence intervals are typically obtained using
a “sandwich” estimator for the variance that accounts for the possible misspecification of
the model. However, as shown by Kauermann and Carroll (2001), the PPML sandwich
estimator is generally downward-biased in finite samples. Furthermore, for gravity models
(both two-way and three-way), the bias in the sandwich estimator can itself be formalized
as a kind of IPP.18

To illustrate the bias of the sandwich estimator in our three-way setting, recall that
we can express the variance of β̂ as Var(β̂ − β) = N−1(N − 1)−1W−1

N ΩNW
−1
N . As is

also true for the linear model (cf., MacKinnon and White, 1985; Imbens and Kolesar,
2016), the bias arises because plugin estimates for ΩN depend on the estimated variance
E(ŜijŜ ′ij) = E[(yij− λ̂ij)(yij− λ̂ij)′] rather than on the true variance E(SijS ′ij) = E[(yijt−
λijt)(yijt − λijt)′]. Even though E(ŜijŜ ′ij) is a consistent estimate for E(SijS ′ij), it will
generally be downward-biased in finite samples. Notably, this bias may be especially slow
to vanish for models with gravity-like fixed effects.

18This type of IPP has similar origins to the one described in Verdier (2018), who considers a dyadic
linear model with two-way FEs and sparse matching between the two panel dimensions.
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To see this, continue to let φ := vec(α, γ) and now let dij be a T × dim(φ) matrix of
dummies such that each row of dij satisfies dijtφ = αit + γjt. Using the same approach as
Kauermann and Carroll (2001), we can then use the special case where E(SijS ′ij) = κH̄ij

(such that ΩN = κWN , meaning the model is correctly specified) to demonstrate that
E(ŜijŜ ′ij) generally has a downward bias. Specifically, let the fitted score vector Ŝij be
approximated by the first-order expansion Ŝij = Sij − H̄ijxij(β̂−β)− H̄ijdij(φ̂−φ). Also
assume that E(SijS ′ij) = κH̄ij, such that the FE-PPML model is correctly specified. Then
the expected outer product of the fitted score E(ŜijŜ ′ij) has a first-order bias of

E(ŜijŜ ′ij − SijS ′ij) ≈ − κ
N(N−1)H̄ijx̃ijW

−1
N x̃′ijH̄ij − κ

N(N−1)H̄ijdijW
(φ)−1
N d′ijH̄ij (14)

where W (φ)
N := EN [−∂2`ij/∂φ∂φ

′] = −[N(N − 1)]−1∑
i,j d

′
ijH̄ijdij captures the expected

Hessian of the concentrated likelihood with respect to φ.19

The two terms on the right-hand side of (14) are both negative definite, implying that
the sandwich estimator is generally downward-biased—and definitively so if the model is
correctly specified. The most meaningful difference with the earlier results of Kauermann
and Carroll (2001) is how we can use these two terms to decompose the bias in E(ŜijŜ ′ij)
into two distinct sources. The first term in (14), which depends on [N(N − 1)]−1W−1

N ,
captures how the bias depends on the variance of β̂. The second term, which depends on
[N(N−1)]−1W

(φ)−1
N , captures how much of the bias is due to the variance in the estimated

incidental parameter vector φ̂. The former term decreases with N2, but the latter term
only decreases with N , since increasing N by 1 only adds 1 additional observation of each
element of φ̂.20

All together, this analysis implies that the estimated standard error for β̂ will exhibit
a bias that only disappears at the relatively slow rate of 1/

√
N . We should therefore

be concerned that asymptotic confidence intervals for β̂ may exhibit inadequate coverage
even in moderately large samples, similar to what has been found for the two-way FE-
PPML model in recent simulation studies by Egger and Staub (2015), Jochmans (2016),
and Pfaffermayr (2019). Indeed, the bias approximation we have derived in (14) can be
readily adapted to the two-way setting or even to more general settings with k-way fixed
effects.

19A detailed derivation of (14) is provided in the Appendix.
20Pfaffermayr (2019) makes a similar point about the order of the bias of the standard errors for the

two-way FE-PPML model, albeit using a slightly different analysis.
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3.4 Bias Corrections for the Three-way Gravity Model

We now present two methods for correcting the bias in estimates: a jackknife method
based on the split-panel jackknife of Dhaene and Jochmans (2015) and an analytical
correction based on the expansion shown in Proposition 3. We also provide an analytical
correction for the downward bias in standard errors.

Jackknife Bias Correction

The advantage of the jackknife correction is that it does not require explicit estimation of
the bias yet still has a simple and powerful applicability. To see this, note first that the
asymptotic bias we characterize can be written as

1
N
Bβ + op(N−1),

where Bβ is a combined term that captures any suspected asymptotic bias contributions
of order 1/N . The specific jacknife we will apply for our current purposes is a split-panel
jackknife based on Dhaene and Jochmans (2015). As in Dhaene and Jochmans (2015), we
want to divide the overall data set into subpanels of roughly even size and then estimate
β̂(p) for each subpanel p. Given the gravity structure of the model, we first divide the set
of countries into evenly-sized groups a and b. We then consider 4 subpanels of the form
“(a, b)”, where “(a, b)” denotes a subpanel where exporters from group a are matched
with importers from group b. The other three subpanels are (a, a), (b, a), and (b, b). For
randomly-generated data, we can define a and b based on their ordering in the data (i.e.,
a := i : i ≤ N/2; b := i : i > N/2). For actual data, it would be more sensible to draw
these subpanels randomly and repeatedly.21

The split-panel jackknife estimator for β, β̃JN , is then defined as

β̃JN := 2β̂ −
∑
p

β̂(p)

4 . (15)

This correction works to reduce the bias because, so long as the distribution of yij and
xij is homogeneous across the different partitions of the data, each β̂(p) has a leading
bias term equal to 2Bβ/N . The average β̂(p) across these four subpanels thus also has

21This is just one possible way to construct a jackknife correction for two-way panels. We have also
experimented with splitting the panel one dimension at a time as in Fernández-Val and Weidner (2016),
but we find the present method performs noticeably better at reducing the bias.
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a leading bias of 2Bβ/N and any terms depending on Bβ/N cancel out of (15). Thus,
the bias-corrected estimate β̃JN only has a bias of order op(N−1), which is obtained by
combining the second-order bias from β̂ with that of the average subpanel estimate. This
latter bias can be shown to be larger than the original second-order bias in (3.4), but the
overall bias should still be smaller because of the elimination of the leading bias term.

Analytical Bias Correction

Our anaytical correction for the bias is based on the bias expression in Proposition 3 and
uses the plugin objects ̂̃xij, Ŝij, Ĥij, Ĥ ij, and Ĝij. For the most part, these objects are
formed in the obvious way by replacing λijt with λ̂ijt and ϑijt with ϑ̂ijt := λ̂ijt/

∑
τ λ̂ijτ

where needed. The resulting bias correction is given by (N − 1)−1Ŵ−1
N (B̂N + D̂N), where

B̂N and D̂N are K-vectors with elements given by

B̂k
N = − 1

N − 1

N∑
i=1

Tr


 ∑
j∈N\{i}

Ĥ ij

† ∑
j∈N\{i}

Ĥij
̂̃xij,k Ŝ ′ij


+ 1

2 (N − 1)

N∑
i=1

Tr


 ∑
j∈N\{i}

Ĝij
̂̃xij,k

 ∑
j∈N\{i}

Ĥ ij

†  ∑
j∈N\{i}

Ŝij Ŝ
′
ij

 ∑
j∈N\{i}

Ĥ ij

†
 ,

D̂k
N = − 1

N − 1

N∑
j=1

Tr


 ∑
i∈N\{j}

Ĥ ij

† ∑
i∈N\{j}

Ĥij
̂̃xij,k Ŝ ′ij


+ 1

2 (N − 1)

N∑
j=1

Tr


 ∑
i∈N\{j}

Ĝij
̂̃xij,k

 ∑
i∈N\{j}

Ĥ ij

†  ∑
i∈N\{j}

Ŝij Ŝ
′
ij

 ∑
i∈N\{j}

Ĥ ij

†
 ,

and where

Ŵ = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

̂̃x′ij Ĥ ij
̂̃xij,

As in Fernández-Val and Weidner (2016), it is possible to show that these plug-in cor-
rections lead to estimates that are asymptotically unbiased as N →∞.22 Still, for finite
samples, it is evident that the bias in some of these plug-in objects—the Ŝij Ŝ ′ij outer
product terms, for example—could cause the analytical bias correction to itself exhibit

22The replacement of N with N − 1 in B̂kN and D̂k
N stems from a degrees-of-freedom correction. This

correction is needed because creating plug-in values for the E
(
S′ijHij

∣∣xij,k) and E
(
Sij S

′
ij

∣∣xij,k) objects
that appear in Proposition 3 requires computing terms of the form E[y2

ijt] and E[yijsyijt], as illustrated
in Remark 3.
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some bias. For this reason, it is not obvious a priori whether the analytical correction will
outperform the jackknife at reducing the bias in β̂. One clear advantage the analytical
correction has over the jackknife is that it does not require the distribution of yij and xij
to be homogeneous over the different partitions of the data in order to be valid.

Bias-corrected Standard Errors

Under the assumption of clustered errors within pairs, a natural correction for the variance
estimate is available based on (14). Specifically, let

Ω̂U := 1
N(N−1)

∑
i,j

̂̃xij
[
IT −

1
N(N−1)H̄ij

̂̃xijŴ−1
N
̂̃x′− 1

N(N−1)H̄ijdijŴ
(φ)−1
N d′ij

]−1

ŜijŜ
′
ij
̂̃xij,

where IT is a T ×T identity matrix and Ŵ (φ)
N is a plugin estimate forW (φ)

N . The corrected
variance estimate is then given by

V̂ U = 1
N(N−1)−1Ŵ

−1Ω̂UŴ−1.

The logic of this adjusted variance estimate follows directly from Kauermann and Carroll
(2001): if the PPML estimator is correctly specified (such that E(SijS ′ij) = κH̄ij), then
V̂ U can be shown to eliminate the first-order bias in V̂ (β̂ − β0) shown in (14). It is
not generally unbiased otherwise, but it is plausible that it should eliminate a significant
portion of any downward bias under other variance assumptions as well.

4 Simulation Evidence

For our simulation analysis, we assume the following: (i) the data generating process
(DGP) for the dependent variable is of the form yijt = λijtωijt, where ωijt is a log-normal
disturbance with mean 1 and variance σ2

ijt. (ii) β = 1. (iii) The model-relevant fixed
effects α, γ, and η are each ∼ N (0, 1/16). (iv) xijt = xijt−1/2 + α + γ + νijt, where
νijt ∼ N (0, 1/16).23 (v) Taking our cue from Santos Silva and Tenreyro (2006), we

23These assumptions on α, γ, η, xijt, and νijt are taken from Fernández-Val and Weidner (2016).
Notice that xijt is strictly exogenous with respect to ωijt conditional on α, γ, and η.
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consider 4 different assumptions about the residual disturbance ωijt:

DGP I: σ2
ijt = λ−2

ijt ; Var(yijt|xit, α, γ, η) = 1.

DGP II: σ2
ijt = λ−1

ijt ; Var(yijt|xit, α, γ, η) = λijt.

DGP III: σ2
ijt = 1; Var(yijt|xit, α, γ, η) = λ2

ijt.

DGP IV: σ2
ijt = 0.5λ−1

ijt + 0.5e2xijt ; Var(yijt|xit, α, γ, η) = 0.5λijt + 0.5e2xλ2
ijt,

where we also allow for serial correlation within pairs by imposing

Cov[ωijs, ωijt] = exp
[
0.3|s−t| ×

√
ln(1 + σ2

ijs)
√

ln(1 + σ2
ijt)
]
− 1,

such that the degree of correlation weakens for observations further apart in time.24

The relevance of these various assumptions to commonly used error distributions is
best described by considering the conditional variance Var(yijt|xit, α, γ, η). For example,
DGP I assumes that the conditional variance is constant, as in a Gaussian process with
i.i.d disturbances. In DGP II, the conditional variance equals the conditional mean, as
in a Poisson distribution. DGP III—which we will also refer to as the case of “log-
homoscedastic” data—is the unique case highlighted in Santos Silva and Tenreyro (2006)
where the assumption that the conditional variance is proportional to the square of the
conditional mean leads to a homoscedastic error when the model is estimated in logs
using a linear model. Finally, DGP IV provides a “quadratic” error distribution that
mixes DGP II and DGP III and also models a more complex dependence between xijt

and the variance of the error term.
Tables 1 and 2 present simulation evidence comparing the uncorrected three-way FE-

PPML estimator with results computed using the analytical and jackknife corrections
described in Section 3.4. As in the prior simulations, we again compute results for a
variety of different panel sizes—in this case for N = 20, 50, 100 and T = 2, 5, 10.25 In
order to validate our analytical predictions regarding these estimates, we compute the
average bias of each estimator, the ratios of the average bias to the average standard error

24The 0.3 that appears here serves as a quasi-correlation parameter. Replacing 0.3 with 1 would be
analogous to assuming disturbances are perfectly correlated within pairs. Replacing it with 0 removes
any serial correlation. Choosing other values for this parameter produces similar results.

25Note that the trade literature currently recommends using wide intervals of 4-5 years between time
periods so as to allow trade flows time to adjust to changes in trade costs (see Cheng and Wall, 2005.)
Thus, for practical purposes, T = 10 may be thought of as a relatively “long” panel in this context that
might span 40+ years.
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and of the average standard error to the standard deviation of the simulated estimates,
and the probability that the estimated 95% confidence interval covers the true estimate
of β = 1. In particular, we expect that the bias in β̂ should be decreasing in either N or
T but should remain large relative to the estimated standard error and induce inadequate
coverage for small T . We are also interested in whether the usual cluster-robust standard
errors accurately reflect the true dispersion of estimates. Results for DGPs I and II are
shown in Table 1, whereas Table 2 shows results for DGPs III and IV.

The results in both tables collectively confirm the presence of bias and the viability
of the analytical and jackknife bias corrections. The average bias is generally larger for
DGPs I and IV than II and III. As expected, it generally falls with both N and T across
all the different DGPs, though only weakly so for DGP III (the log-homoscedastic case),
which generally only has a small bias.26 To use DGP II—the Poisson case, where PPML
should otherwise be an optimal estimator—as a representative example, we see that the
average bias falls from 3.774% for the smallest sample where N = 20, T = 2 to a low of
0.234% at the other extreme where N = 100, T = 10. For DGP IV, the least favorable of
these cases, the average bias ranges from −6.544% down to −1.899%. On the whole, these
results support our main theoretical findings that β should be consistently estimated even
for small T but has an asymptotic bias that depends on the number of countries and on
the number of time periods.

Interestingly, while the average bias almost always decreases with T , the ratio of
the bias to standard error usually does not, seemingly contrary to the expectations laid
out in Remark 2. Evidently, when T is sufficiently small, the rate at which the bias
decreases with T may be slower than 1/T . Researchers should thus be careful to note
that the implications of Remark 2 do not necessarily apply to settings with small T or even
moderately large T .27 Instead, it seems reasonable to expect that the bias will generally
be non-negligible relative to the standard error except for very large T . Furthermore,
the estimated cluster-robust standard errors themselves clearly exhibit a bias in all cases
as well. Even when N = 100, SE/SD ratios are uniformly below 1; generally they are

26Numerically, what we have found is that the two terms that appear in both B and D in Proposition
3 tend to have opposite signs when the DGP is log-homoscedastic. Thus, they tend to mitigate one
another, leading to a somewhat muted bias in this case.

27We have also simulated the bias for larger values of T beyond T = 10. What we find is that the bias
decreases somewhat slowly with T for small values of T (consistent with the results in these tables), but
does indeed start to decrease with 1/T as T becomes increasingly large.
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closer to 0.9 or 0.95, and for DGP IV, they are closer to 0.85 or even 0.8. Because of
these biases, the simulated FE-PPML coverage ratios are unsurprisingly below the 0.95
we would expect for an unbiased estimator.

Bias corrections to the point estimates do help with addressing some, but not all, of
these issues. The jackknife generally performs more reliably than the analytical correction
at reducing the average bias when compared across all values of N and T—notice how,
for the Poisson case, for example, the average bias left by the jackknife correction is never
greater than 0.1%, whereas the analytical-corrected estimates still have average biases
ranging between 0.08% and 1.12%. However, when N = 100, the analytical correction
often dominates, especially when T is at least 5. All the same, both corrections gener-
ally have a positive effect, and the better across-the-board bias-reduction performance of
the jackknife comes at the important cost of a relatively large increase in the variance.
Thus, the analytical correction generally performs as well as or better than the jackknife
in terms of improving coverage even in the smaller samples. Neither correction is suffi-
cient to bring coverage ratios to the immediate vicinity of 0.95, however, though corrected
Gaussian-DGP estimates and Poisson-DGP estimates both reach 0.93-0.94 using the an-
alytical correction when N = 100, and coverage for the analytical-corrected Poisson-DGP
estimates reaches 0.94-0.96 when N = 50.

Table 3 then evaluates the efficacy of our bias correction for the estimated variance.
Keeping in mind that this correction is calibrated for the case of a correctly specified
variance (which corresponds to DGP II), it is unsurprising that the effect of this correction
varies depending on the conditional distribution of the data. The best results by far are for
the Gaussian, Poisson, and Log-homoscedastic DGPs (DGPs I, II, and III, respectively),
where combining the analytical bias correction for the point estimates with the correction
for the variance yields coverage ratios that fall within an acceptable range between 0.932
and 0.962 when N is either 50 or 100 and are often close to the target value of 0.95 in
these cases. These corrections lead to dramatic improvements in coverage for DGP IV as
well, but there the remaining biases in both the point estimate and the standard error
remain large even for N = 100 and T = 10.

Overall, these simulations suggest that combining an analytical bias correction for β̂
with a further correction for the variance based on (14) should be a reliable way of reducing
bias and improving coverage. At the same time, it should be noted that neither offers a
complete bias removal. For smaller samples, if reducing bias on average is heavily favored,
and if the distribution of yij and xij can be reasonably assumed to be homogeneous, then
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the split-panel jackknife method might be preferable to the analytical correction method.
We should also be careful to point out that the results produced here are based on the
particular assumptions we have chosen to generate the data. To determine the practical
implications of these corrections, a more meaningful test will be to apply them to estimates
produced using real data.

5 Empirical Application

For our empirical application, we estimate the average effects of an FTA using a panel
with what would typically be considered a relatively large number of countries. Our trade
data is from the BACI database of Gaulier and Zignago (2010), from which we extract
data on trade flows between 169 countries for the years 1995, 2000, 2005, 2010, and 2015.
Countries are chosen so that the same 169 countries always appear as both exporters and
importers in every period; hence, the data readily maps to the setting just described with
N = 169 and T = 5. We combine this trade data with data on FTAs from the NSF-
Kellogg database maintained by Scott Baier and Jeff Bergstrand, which we crosscheck
against data from the WTO in order to incorporate agreements from more recent years.28

The specification we estimate is

yijt = exp[αit + γjt + ηij + βFTAijt]ωijt, (16)

where yijt is trade flows (measured in current USD), FTAijt is a 0/1 dummy for whether
or not i and j have an FTA at time t, and ωijt is an error term. As we have noted,
estimation of specifications such as (16) via PPML has become an increasingly standard
method for estimating the effects of trade agreements and other trade policies and is
currently recommended as such by the WTO (see Yotov, Piermartini, Monteiro, and
Larch, 2016.)

Table 4 presents results from FE-PPML estimation of (16), including results ob-
tained using our bias corrections. Because biases may vary depending on the specific
heteroscedasticity patterns native to each industry, we show results for industry-specific
regressions at the 2 digit ISIC (rev. 3) industry level as well as for aggregate trade. The
results for aggregate trade flows, shown in the bottom row of Table 4, are nonetheless

28This database is available for download on Jeff Bergstrand’s website: https://www3.nd.edu/

~jbergstr/. The most recent version runs from 1950-2012. The additional data from the WTO is
needed to capture agreements that entered into force between 2012 and 2015.
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fairly representative. To provide some basic interpretation, the coefficient on FTAijt for
aggregate trade is initially estimated to be 0.082, which equates to an e0.082 − 1 = 8.5%
average “partial” effect of an FTA on trade.29 The estimated standard error is 0.027,
implying that this effect is statistically different from zero at the p < 0.01 significance
level. Our bias-corrected estimates do not paint an altogether different picture, but do
highlight the potential for meaningful refinement. Both the analytical and jackknife bias
corrections for β suggest a downward bias of 0.04-0.05, or about 15%-18% of the estimated
standard error. As our bias-corrected standard errors show (in the last column of Table
(4)), the initially estimated standard error itself has an implied downward bias of 10%
(i.e., 0.027 versus 0.030).

Turning to the industry-level estimates, the analytical bias correction more often than
not indicates a downward bias ranging between 5%-20% of the estimated standard error.
Exceptions are present on both sides of this range. Estimates for the Chemical and
Furniture industries appear to be unbiased, for example, and some (such as Tobacco) are
associated with an upward bias. On the other end of the spectrum, implied downward
biases can also be larger than 20% of the standard error, as is seen for Petroleum (46%),
Fabricated Metal Products (28%), and Electrical Equipment (26%). The biases implied
by the jackknife are often even larger (see Fabricated Machinery Products, for example),
consistent with what we found in our simulations for smaller panel sizes. One possible
interpretation is that the jackknife-corrected estimates are giving us a less conservative
alternative to the analytical corrections in these cases. However, as we have noted, these
jackknife estimates could be reflecting non-homogeneity across the different subpanels
and/or the higher variance introduced by the jackknife. Implied biases in the standard
error, meanwhile, tend to range between 10%-20% of the original standard error, again
with some exceptions.

29The term “partial effect” is conventionally used to distinguish this type of estimate from the “general
equilibrium” effects of an FTA, which would typically be calculated solving a general equilibrium trade
model where prices, incomes, and output levels (which are otherwise absorbed by the αit and γjt fixed
effects) are allowed to evolve endogenously in response to the FTA. In the context of such models, β can
usually be interpreted as capturing the average effect of an FTA on bilateral trade frictions specifically,
holding fixed all other determinants of trade.
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6 Conclusion

Thanks to recent methodological and computational advances, nonlinear estimation with
three-way fixed effects has become increasingly popular for investigating the effects of
trade policies on trade flows. However, the asymptotic and finite-sample properties of
such an estimator have not been rigorously studied, especially with regards to potential
IPPs. The performance of the FE-PPML estimator in particular is of natural interest
in this context, both because FE-PPML is known to be relatively robust to IPPs as
well as because it is likely to be a researcher’s first choice for estimating three-way gravity
models. Our results regarding the consistency of PPML in this setting reflect these unique
properties of PPML and support its current status as a workhorse estimator for estimating
the effects of trade polices.

Given the consistency of PPML in this setting, and given the nice IPP-robustness prop-
erties of PPML in general, it may come as a surprise that three-way PPML nonetheless
suffers from an IPP bias. We show that the leading component of this bias is decreas-
ing in the number of countries in the panel as well as in the number of time periods.
Thus, the bias is likely to be of comparable magnitude to the standard error when the
time dimension of the panel is small, even for large panels with many countries. Typ-
ical cluster-robust estimates of the standard error are also biased, implying asymptotic
confidence intervals not only off-center but also too narrow.

These issues are not so severe that they leave researchers in the wilderness, but we do
recommend taking advantage of the corrective measures described in the paper when es-
timating three-way gravity models. In particular, we find that analytical bias corrections
based on Taylor expansions to both the point estimates and standard errors generally
lead to improved inferences when applied simultaneously. These corrections are not a
panacea, however, and several avenues remain open for future work. For example, con-
fidence interval estimates could be adjusted further to account for the uncertainty in
the estimated variance—Kauermann and Carroll (2001) describe such a correction for
the standard PPML model. A quasi-differencing approach similar to Jochmans (2016)
could also provide another angle of attack. Turning to broader applications, the essential
dyadic structure of our bias corrections could be easily extended to network models that
study changes in network behavior over time, especially settings that involve studying the
number of interactions between network members.
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Figure 1: Kernel density plots of FE PPML estimates for 3 different models, using 500
replications. Clockwise from top left, the 3 models are: yit = exp[αi × 1(t ≤ 2) +
γi × 1(t ≥ 2) + xitβ]ωit, with the t dimension of the panel fixed at T = 3; a two-
way gravity model with yij = exp[αi + γj + xijβ]ωij; a three-way gravity model with
yijt = exp[αit + γjt + ηij + xijtβ]ωijt and T = 2. The i and j dimensions of the panel
both have size N in the latter two models. The true value of β is 1 (indicated by the
vertical dotted lines) and the data is generated using Var(y|·) = E(y|·). See text for
further details.
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Table 1: Finite-sample Properties of the Three-way FE-PPML Gravity Model
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10

A. Gaussian DGP (“DGP I”)
Average bias (×100)

FE-PPML 6.588 3.645 2.297 2.659 1.446 0.904 1.376 0.702 0.410
Analytical 2.193 0.896 0.464 0.326 0.120 0.101 0.071 -0.009 -0.006
Jackknife 0.233 -0.043 -0.334 0.031 -0.038 -0.048 -0.012 -0.058 -0.043

Bias / SE ratio
FE-PPML 0.683 0.778 0.736 0.620 0.709 0.684 0.606 0.659 0.601
Analytical 0.227 0.191 0.149 0.076 0.059 0.076 0.031 -0.008 -0.009
Jackknife 0.024 -0.009 -0.107 0.007 -0.019 -0.036 -0.005 -0.054 -0.063

SE / SD ratio
FE-PPML 0.837 0.826 0.883 0.926 0.936 0.965 0.932 0.921 0.943
Analytical 0.795 0.805 0.863 0.882 0.905 0.954 0.899 0.901 0.936
Jackknife 0.716 0.749 0.802 0.844 0.870 0.923 0.892 0.907 0.937

Coverage probability (should be 0.95 for an unbiased estimator)
FE-PPML 0.828 0.798 0.818 0.878 0.856 0.884 0.888 0.870 0.884
Analytical 0.864 0.876 0.904 0.916 0.928 0.928 0.926 0.944 0.938
Jackknife 0.836 0.858 0.890 0.910 0.912 0.928 0.924 0.936 0.944

B. Poisson DGP (“DGP II”)
Average bias (×100)

FE-PPML 3.774 2.017 1.314 1.517 0.839 0.563 0.721 0.395 0.234
Analytical 1.121 0.459 0.355 0.143 0.079 0.117 -0.038 -0.015 -0.004
Jackknife -0.090 -0.096 -0.165 -0.012 -0.010 0.024 -0.093 -0.050 -0.031

Bias / SE ratio
FE-PPML 0.683 0.778 0.736 0.620 0.709 0.684 0.606 0.659 0.601
Analytical 0.227 0.191 0.149 0.076 0.059 0.076 0.031 -0.008 -0.009
Jackknife 0.024 -0.009 -0.107 0.007 -0.019 -0.036 -0.005 -0.054 -0.063

SE / SD ratio
FE-PPML 0.875 0.828 0.918 0.959 0.977 0.988 0.962 0.950 0.930
Analytical 0.835 0.806 0.899 0.931 0.959 0.981 0.946 0.944 0.925
Jackknife 0.749 0.750 0.830 0.894 0.920 0.954 0.942 0.938 0.921

Coverage probability (should be 0.95 for an unbiased estimator)
FE-PPML 0.884 0.870 0.902 0.928 0.908 0.918 0.920 0.928 0.904
Analytical 0.884 0.880 0.922 0.940 0.940 0.956 0.936 0.944 0.930
Jackknife 0.856 0.868 0.892 0.922 0.926 0.944 0.934 0.936 0.932

Notes: Results computed using 500 replications. The model being estimated is yijt = λijtωijt, where

λijt = exp(αit + γjt + ηij + βxijt). The data is generated using αit ∼ N (0, 1/16), γjt ∼ N (0, 1/16), ηij ∼ N (0, 1/16) and

β = 1. xijt = xijt−1/2 + αit + γjt + ηij + νijt, with xij0 = ηij + νij0 and νijt ∼ N (0, 1/2). Results are shown for two

different assumptions about Var(yijt). The “Gaussian” DGP (panel A) assumes Var(ωijt) = λ−2
ijt . The “Poisson” DGP

(panel B) assumes Var(ωijt) = λ−1
ijt . SE/SD refers to the ratio of the average standard error of of β̂ relative to the standard

deviation of β̂ across simulations. Coverage probability refers to the probability β0 is covered in the 95% confidence

interval for β̂NT . “Analytical” and “Jackknife” respectively indicate Analytical and Jackknife bias-corrected FE-PPML

estimates. “FE-PPML” indicates uncorrected estimates. SEs allow for within-ij clustering.
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Table 2: Finite-sample Properties of the Three-way FE-PPML Gravity Model
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10

A. Log-homoscedastic DGP (“DGP III”)
Average bias (×100)

FE-PPML 0.223 -0.291 -0.292 0.161 -0.070 -0.048 -0.033 -0.083 -0.103
Analytical -0.264 -0.356 -0.126 -0.022 -0.049 0.068 -0.126 -0.057 -0.033
Jackknife -0.580 -0.440 -0.320 0.016 -0.046 0.046 -0.146 -0.076 -0.044

Bias / SE ratio
FE-PPML 0.022 -0.058 -0.087 0.036 -0.032 -0.032 -0.014 -0.072 -0.133
Analytical -0.026 -0.071 -0.038 -0.005 -0.022 0.046 -0.054 -0.049 -0.043
Jackknife -0.057 -0.088 -0.095 0.004 -0.021 0.031 -0.063 -0.066 -0.057

SE / SD ratio
FE-PPML 0.869 0.797 0.887 0.940 0.953 0.954 0.962 0.934 0.897
Analytical 0.816 0.756 0.837 0.902 0.915 0.920 0.936 0.913 0.872
Jackknife 0.731 0.705 0.778 0.870 0.881 0.903 0.935 0.895 0.862

Coverage probability (should be 0.95 for an unbiased estimator)
FE-PPML 0.902 0.886 0.920 0.948 0.934 0.938 0.942 0.934 0.926
Analytical 0.880 0.864 0.912 0.932 0.924 0.932 0.938 0.932 0.912
Jackknife 0.838 0.838 0.878 0.930 0.908 0.914 0.940 0.916 0.924

B. Quadratic DGP (“DGP IV”)
Average bias (×100)

FE-PPML -6.544 -6.024 -5.210 -3.341 -3.275 -2.798 -2.305 -2.144 -1.899
Analytical -5.051 -4.412 -3.586 -1.810 -1.831 -1.448 -1.110 -1.025 -0.883
Jackknife -4.441 -3.836 -3.228 -1.429 -1.574 -1.249 -1.042 -0.961 -0.812

Bias / SE ratio
FE-PPML -0.544 -0.960 -1.203 -0.597 -1.089 -1.319 -0.750 -1.260 -1.562
Analytical -0.420 -0.703 -0.828 -0.324 -0.609 -0.682 -0.361 -0.603 -0.726
Jackknife -0.369 -0.612 -0.746 -0.256 -0.523 -0.589 -0.339 -0.565 -0.668

SE / SD ratio
FE-PPML 0.817 0.734 0.787 0.855 0.845 0.842 0.898 0.845 0.805
Analytical 0.753 0.676 0.715 0.788 0.771 0.768 0.830 0.780 0.739
Jackknife 0.670 0.621 0.665 0.751 0.735 0.743 0.823 0.758 0.720

Coverage probability (should be 0.95 for an unbiased estimator)
FE-PPML 0.860 0.750 0.732 0.852 0.756 0.694 0.868 0.698 0.588
Analytical 0.834 0.770 0.786 0.880 0.808 0.810 0.888 0.818 0.782
Jackknife 0.784 0.742 0.744 0.850 0.816 0.820 0.894 0.820 0.770

Notes: Results computed using 500 replications. The model being estimated is yijt = λijtωijt, where

λijt = exp(αit + γjt + ηij + βxijt). The data is generated using αit ∼ N (0, 1/16), γjt ∼ N (0, 1/16), ηij ∼ N (0, 1/16) and

β = 1. xijt = xijt−1/2 + αit + γjt + ηij + νijt, with xij0 = ηij + νij0 and νijt ∼ N (0, 1/2). Results are shown for two

different assumptions about Var(yijt). The “Log-homoscedastic” DGP (panel A) assumes Var(ωijt) = 1. The “Quadratic”

DGP (Panel B) assumes ωijt is log-normal with variance equal to 0.5λ−1
ijt + 0.5 exp(2xijt). SE/SD refers to the ratio of the

average standard error of of β̂ relative to the standard deviation of β̂ across simulations. Coverage probability refers to the

probability β0 is covered in the 95% confidence interval for β̂NT . “Analytical” and “Jackknife” respectively indicate

Analytical and Jackknife bias-corrected FE-PPML estimates. “FE-PPML” indicates uncorrected estimates. SEs allow for

within-ij clustering.
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Table 3: Improving Coverage in the Three-way FE-PPML Gravity Model
N=20 N=50 N=100
T=2 T=5 T=10 T=2 T=5 T=10 T=2 T=5 T=10

A. Gaussian DGP (“DGP I”)
SE / SD ratio with corrected SEs

FE-PPML 0.938 0.907 0.962 0.980 0.978 1.001 0.963 0.944 0.961
Analytical 0.891 0.884 0.940 0.933 0.946 0.990 0.928 0.923 0.954
Jackknife 0.803 0.823 0.873 0.894 0.909 0.957 0.921 0.929 0.955

Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)
FE-PPML 0.864 0.830 0.848 0.900 0.876 0.888 0.896 0.876 0.890
Analytical 0.912 0.906 0.918 0.936 0.934 0.950 0.934 0.948 0.948
Jackknife 0.880 0.904 0.908 0.922 0.924 0.936 0.936 0.942 0.952

B. Poisson DGP (“DGP II”)
SE / SD ratio with corrected SEs

FE-PPML 0.977 0.910 1.003 1.009 1.018 1.025 0.988 0.971 0.949
Analytical 0.933 0.886 0.982 0.979 1.000 1.019 0.971 0.965 0.943
Jackknife 0.836 0.825 0.907 0.940 0.959 0.991 0.968 0.958 0.939

Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)
FE-PPML 0.922 0.892 0.930 0.946 0.922 0.924 0.926 0.940 0.908
Analytical 0.916 0.918 0.938 0.956 0.952 0.962 0.940 0.946 0.934
Jackknife 0.896 0.904 0.916 0.936 0.940 0.946 0.948 0.936 0.934

C. Log-homoscedastic DGP (“DGP III”)
SE / SD ratio with corrected SEs

FE-PPML 0.984 0.896 0.998 1.001 1.013 1.012 0.998 0.967 0.928
Analytical 0.924 0.850 0.940 0.960 0.972 0.977 0.970 0.945 0.902
Jackknife 0.827 0.793 0.875 0.926 0.936 0.959 0.969 0.927 0.891

Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)
FE-PPML 0.946 0.926 0.946 0.954 0.952 0.956 0.948 0.942 0.938
Analytical 0.920 0.908 0.938 0.948 0.942 0.946 0.944 0.934 0.932
Jackknife 0.896 0.878 0.914 0.950 0.930 0.942 0.948 0.932 0.926

D. Quadratic DGP (“DGP IV”)
SE / SD ratio with corrected SEs

FE-PPML 0.952 0.861 0.929 0.947 0.948 0.949 0.970 0.924 0.882
Analytical 0.877 0.793 0.845 0.873 0.865 0.865 0.897 0.853 0.810
Jackknife 0.781 0.729 0.786 0.833 0.824 0.837 0.889 0.828 0.789

Coverage probability with corrected SEs (should be 0.95 for an unbiased estimator)
FE-PPML 0.900 0.820 0.808 0.894 0.806 0.762 0.892 0.752 0.652
Analytical 0.894 0.830 0.838 0.908 0.864 0.862 0.918 0.856 0.818
Jackknife 0.844 0.808 0.814 0.894 0.860 0.866 0.908 0.848 0.822

Notes: Results computed using 500 replications. The model being estimated is yijt = λijtωijt, where

λijt = exp(αit + γjt + ηij + βxijt). The data is generated using αit ∼ N (0, 1/16), γjt ∼ N (0, 1/16), ηij ∼ N (0, 1/16) and

β = 1. xijt = xijt−1/2 + αit + γjt + ηij + νijt, with xij0 = ηij + νij0 and νijt ∼ N (0, 1/2). Results are shown for four

different assumptions about ωijt. The “Gaussian” DGP (panel A) assumes Var(ωijt) = λ−2
ijt . The “Poisson” DGP (panel B)

assumes Var(ωijt) = λ−1
ijt . The “Log-homoscedastic” DGP (panel C) assumes Var(ωijt) = 1. The “Quadratic” DGP (Panel

D) assumes ωijt is log-normal with variance equal to 0.5λ−1
ijt + 0.5 exp(2xijt). SE/SD refers to the ratio of the average

standard error of of β̂ relative to the standard deviation of β̂ across simulations. Coverage probability refers to the

probability β0 is covered in the 95% confidence interval for β̂. “Analytical” and “Jackknife” respectively indicate Analytical

and Jackknife bias-corrected FE-PPML estimates. “FE-PPML” indicates uncorrected estimates. SEs allow for within-ij

clustering. The corrected SEs correct for first-order finite sample bias in the estimated variance.
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Table 4: Bias Correction Results Using BACI Trade Data (N = 169)
Original
estimates

Bias-corrected estimates

Industry Code β̂ SE Analytical Jackknife SE
Agriculture 1 0.100 (0.046) 0.110 0.115 (0.051)
Forestry 2 -0.205 (0.125) -0.199 -0.189 (0.155)
Fishing 5 0.128 (0.141) 0.140 0.182 (0.164)
Coal 10 0.025 (0.131) -0.039 -0.063 (0.164)
Metal Ores 13 0.040 (0.100) 0.033 -0.025 (0.123)
Other Mining & Quarrying n.e.c. 14 0.048 (0.096) 0.079 0.097 (0.107)
Food & Beverages 15 0.019 (0.043) 0.026 0.031 (0.048)
Tobacco 16 0.535 (0.139) 0.525 0.571 (0.162)
Textiles 17 0.228 (0.045) 0.226 0.234 (0.055)
Apparel 18 0.092 (0.092) 0.094 0.127 (0.122)
Leather Products 19 0.224 (0.067) 0.220 0.240 (0.079)
Wood & Cork Products 20 0.078 (0.109) 0.098 0.101 (0.127)
Paper & Paper Products 21 -0.002 (0.062) -0.004 -0.018 (0.071)
Printed & Recorded Media 22 -0.115 (0.065) -0.144 -0.180 (0.076)
Coke & Refined Petroleum 23 0.256 (0.076) 0.291 0.319 (0.090)
Chemicals & Chemical Products 24 0.073 (0.035) 0.073 0.078 (0.040)
Rubber & Plastic Products 25 0.141 (0.030) 0.146 0.157 (0.035)
Non-metallic Mineral Products 26 0.217 (0.049) 0.223 0.225 (0.058)
Basic Metal Products 27 0.268 (0.100) 0.273 0.301 (0.115)
Fabricated Metal Products (excl. Machinery) 28 0.196 (0.036) 0.206 0.225 (0.041)
Machinery & Equipment n.e.c. 29 0.049 (0.035) 0.052 0.056 (0.041)
Office, Accounting, and Computer Equipment 30 -0.036 (0.062) -0.044 -0.045 (0.074)
Electrical Equipment 31 0.213 (0.045) 0.225 0.240 (0.052)
Communications Equipment 32 -0.127 (0.067) -0.143 -0.173 (0.081)
Medical & Scientific Equipment 33 0.063 (0.039) 0.069 0.082 (0.044)
Motor Vehicles, Trailers & Semi-trailers 34 0.157 (0.064) 0.169 0.194 (0.077)
Other Transport Equipment 35 0.208 (0.124) 0.231 0.267 (0.137)
Furniture & Other Manufacturing n.e.c. 36 0.224 (0.073) 0.224 0.227 (0.082)
Total All 0.082 (0.027) 0.086 0.087 (0.030)

Notes: These results are computed using ISIC Rev. 3 industry-level trade data for trade between 169 countries during years 1995,

2000, 2005, 2010, & 2015. The original data is from BACI. The model being estimated is yijt = exp(αit + γjt + ηij +βFTAijt)ωijt,

where yijt is the trade volume and FTAijt is a dummy for the presence of an FTA. αit, γjt, & ηij respectively denote

exporter-time, importer-time, & exporter-importer fixed effects. We estimate each industry separately. The jackknife corrections

use the average of 200 randomly-assigned split-panel partitions. SEs are clustered by exporter-importer.
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A Appendix with proofs

In what follows, we find it convenient to first provide a proof of Proposition 3, which char-
acterizes the asymptotic distribution of β̂ and its asymptotic bias. This proof naturally
lends itself to further discussion of the “large T” results from Remarks 1 and 2 as well as
the consistency result from Proposition 1, which itself follows as a by-product of Proposi-
tion 3. We then demonstrate the uniqueness of this latter result as stated in Proposition
2 and highlight the general inconsistency of other three-way gravity estimators. We also
include more details behind the downward bias in the estimated variance.

A.1 Proof of Proposition 3

Known result for two-way fixed effect panel models

Our proof of Proposition 3 relies on results from Fernández-Val and Weidner (2016)
– denoted FW in the following. That paper considers a standard panel setting where
individuals i are observed over time periods t, and mixing conditions (as opposed to
conditional independence assumptions) are imposed across time periods. By contrast, we
consider a pseudo-panel setting, where the two panel dimensions are labelled by exporters
i and importers j, and we impose conditional independence assumptions across both i

and j here (see also Dzemski, 2018, who employs those results in a directed network
setting where outcomes are binary, and Graham, 2017, for the undirected network case.)
Given those differences—and before introducing any further complications—we briefly
want to restate the main result in FW for the two-way pseudo-panel case. Outcomes Yij,
i, j = 1, . . . , N , conditional on all the strictly exogenous regressors X = (Xij), fixed effect
N -vectors α and γ, and common parameters β are assumed to be generated as

Yij | X,α, γ, β ∼ fY (· | Xij, αi, γj, β),

where the conditional distribution fY is known, up to the unknown parameters αi, γj ∈ R
and β ∈ RK . It is furthermore assumed that αi and γj enter the distribution function
only through the single index πij = αi + γj; that is, the log-likelihood can be defined by

`ij(β, πij) = log fY (Yij | Xij, αi, γj, β).

The maximum likelihood estimator for β is given by

β̂ = argmax
β∈RK

max
α,γ∈RN

L(β, α, γ), L(β, α, γ) =
∑
i,j

`ij(β, αi + γj).
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Also, define the K-vector Ξij with components, k = 1, . . . , K,

Ξij,k = α∗i,k + γ∗j,k, (α∗k, γ∗k) = argmin
αi,k,γj,k

∑
i,j

E(−∂π2`ij)
(
E(∂βkαi`ij)
E(∂α2

i
`ij)

− αi,k − γj,k
)2

,

where here and in the following all expectations are conditional on regressors X = (Xij),
and on the parameters α, γ, β. For q ∈ {0, 1, 2}, the (within-transformation) differentia-
tion operator Dβαqi = Dβγqj is defined by

Dβαqi `ij = ∂βαqi `ij − ∂αq+1
i
`ij Ξij, Dβγqj `ij = ∂βγqj `ij − ∂γq+1

j
`ij Ξij. (17)

Theorem 1. Assume that

(i) Conditional on X, α0, γ0, β0 the outcomes Yij are distributed independently across
i and j with

Yij | X,α0, γ0, β0 ∼ exp[`ij(β0, π0
ij)],

where π0
ij = α0

i + γ0
j .

(ii) The map (β, π) 7→ `ij(β, π) is four times continuously differentiable, almost surely.
All partial derivatives of `ij(β, π) up to fourth order are bounded in absolute value
by a function m(Yit, Xit) > 0, almost surely, uniformly over a convex compact set
B ⊂ R

dimβ+1, which contains an ε-neighbourhood of (β0, π0
ij) for all i, j, N , and

some ε > 0. Furthermore, maxi,j E[m(Yij, Xij)]8+ν is uniformly bounded over N ,
almost surely, for some ν > 0.

(iii) For all N , the function (β, α, γ) 7→ L(β, α, γ) is almost surely strictly concave over
RK+2N , apart from one “flat direction” described by the transformation αi 7→ αi + c,
γj 7→ γj−c, which leaves L(β, α, γ) unchanged for all c ∈ R. Furthermore, there exist
constants bmin and bmax such that for all (β, π) ∈ B, 0 < bmin ≤ −E

[
∂α2

i
`ij(β, π)

]
≤

bmax, almost surely, uniformly over i, j, N .

In addition, assume that the following limits exist

B = lim
N→∞

− 1
N

∑
i,j

E
(
∂αi`ijDβαi`ij + 1

2Dβα2
i
`ij
)

∑
j′ E

(
∂α2

i
`ij′

)
 ,

D = lim
N→∞

− 1
N

∑
i,j

E
(
∂γj`ijDβγj`ij + 1

2Dβγ2
j
`ij
)

∑
i′ E

(
∂γ2

j
`i′j
)

 ,
W = lim

N→∞

− 1
N2

∑
i,j

E
(
∂ββ′`ij − ∂α2

i
`ijΞijΞ′ij

) ,
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where expectations are conditional on X, α, γ, β. Finally, assume that W > 0. Then, as
N →∞, we have

N
(
β̂ − β0

)
→d W

−1N (B +D, W ),

Remarks:

(a) This is just a reformulation of Theorem 4.1 in FW to the case of pseudo-panels,
and the proof is provided in that paper. Since we consider only strictly exogenous
regressors, all the analysis is conditional on X; and the bias term B simplifies here,
since conditional on X (and the other parameters), we assume independence across
both i and j. Thus, no Nickell-type bias (Nickell, 1981; Hahn and Kuersteiner,
2002) appears here, but we still have incidental parameter biases because the model
is nonlinear (Neyman and Scott, 1948; Hahn and Newey, 2004).

(b) In the original version of this theorem, the sums in the definitions of L(β, α, γ), B,
D, and W run over all possible pairs (i, j) ∈ {1, . . . , N}2. However, for the trade
application in the current paper we assume we only have observations for i 6= j;
that is, those sums over i and j only run over the set {(i, j) ∈ {1, . . . , N}2 : i 6= j}
of N(N − 1) observed country pairs. The sum over j′ (in B) then also only runs
over j′ 6= i, and the sum over i′ (in D) only runs over i′ 6= j. It turns out that those
changes make no difference to the proof of the theorem, because the proportion of
missing observations for each i and j is asymptotically vanishing. For that reason
it also does not matter whether we change the 1/N2 in W to 1/[N(N − 1)], or
whether we change N

(
β̂ − β0

)
to

√
N(N − 1)

(
β̂ − β0

)
. The same equivalence

holds throughout our own results for applications in which researchers wish to use
observations for which i = j (simply replace N − 1 with N where appropriate.)

(c) The above theorem assumes that the log-likelihood `ij(β, αi +γj) for Yij | X,α, γ, β
is correctly specified. This is an unrealistic assumption for the PPML estima-
tors in this paper, where we only want to assume that the score of the pseudo-
log-likelihood has zero mean at the true parameters, that is, E

[
∂β`ij(β0, α0

i +
γ0
j ) | Xij, α

0
i , γ

0
j , β

0
]

= 0 and E
[
∂αi`ij(β0, α0

i + γ0
j ) | Xij, α

0
i , γ

0
j , β

0
]

= 0 and
E
[
∂γj`ij(β0, α0

i + γ0
j ) | Xij, α

0
i , γ

0
j , β

0
]

= 0. This extension to “conditional mo-
ment models” is discussed in Remark 3 of FW. The statement of the theorem then
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needs to be changed as follows:

N
(
β̂ − β0

)
→d W

−1N (B +D, Ω), (18)

where the definition of W is unchanged, but the expression of B = B1 + B2, D =
D1 +D2 and Ω now read

B1 = lim
N→∞

− 1
N

∑
i,j

E (∂αi`ijDβαi`ij)∑
j′ E (∂αi2`ij′)

 ,
B2 = lim

N→∞

1
2

1
N

∑
i

[∑
j E(∂αi`ij)2

]∑
j E(Dβαi2`ij)[∑

j E (∂αi2`ij)
]2

 ,

D1 = lim
N→∞

− 1
N

∑
j

∑
i E
[
∂γj`ijDβγj`ij

]
∑
i E
(
∂γj2`ij

)
 ,

D2 = lim
N→∞

1
2

1
N

∑
j

∑
i

[
E(∂γj`ij)2

]∑
i E(Dβγj2`ij)[∑

i E
(
∂γj2`ij

)]2
 ,

Ω = lim
N→∞

 1
N2

∑
i,j

E [Dβ`ij(Dβ`ij)′]
 . (19)

These are the formulas that we have to use as a starting point for the bias results
derived in this paper.

Our task in the following is to translate and generalize the conditions, statement, and
proof of Theorem 1, as extended in (18) and (19), to the case of the three-way PPML
estimator discussed in the main text.

Regularity conditions for Proposition 3

The following regularity conditions are required for the statement of Proposition 3 to
hold.

Assumption A. (i) Conditional on x = (xijt), α0 = (α0
it), γ0 = (γ0

jt), η0 = (η0
ij) and

β0, the outcomes yij = (yij,1, . . . , yij,T )′ are distributed independently across i and j,
and the conditional mean of yijt is given by equation (4) for all i, j, t.

(ii) The range of xijt, α0
it and γ0

jt is uniformly bounded, and there exists ν > 0 such that
E(y8+ν

ijt |xijt, αit, γjt, ηij) is uniformly bounded over i, j, t, N .

(iii) limN→∞ WN > 0, with WN defined in Proposition 3.
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Those assumptions are very similar to those in Theorem 1 above: Assumption A(i)
is analogous to condition (i) in the theorem, except that we only impose the conditional
mean of yijt to be correctly specified, as already discussed in remark (c) above. Notice
also that this assumption requires conditional independence across i and j, but we do not
have to restrict the dependence of yijt over t for our results.

We consider the Poisson log-likelihood in this paper, which after profiling out ηij
gives the pseudo-log-likelihood function `ij(β, αit, γjt) defined in equation (7). This log-
likelihood is strictly concave and arbitrarily often differentiable in the parameters, so
corresponding assumptions in Theorem 1 are automatically satisfied. Assumption A(ii) is
therefore already sufficient for the corresponding assumptions (ii) and (iii) in Theorem 1.
Finally, Assumption A(iii) simply corresponds to the condition W > 0, which is just an
appropriate non-collinearity condition on the regressors xijt.

Translation to our main text notation

The main difference between Theorem 1 in the Appendix and Proposition 3 in the main
text is that Theorem 1 only covers the case where πij = αi + γj is a scalar, while in
our model in the main text αi, γj and πij = αi + γj are all T -vectors. We can impose
additional normalizations on those T -vectors, because the profile likelihood L(β, α, γ) in
(6) is invariant under parameter transformations αi 7→ αi + ci ιT and γj 7→ γj + dj ιT for
arbitrary ci, dj ∈ R, where ιT = (1, . . . , 1)′ is the T -vector of ones.30 In the following
we choose the normalizations ι′Tαi = 0 and ι′Tγj = 0, implying ι′Tπij = 0 for all i, j.
Accounting for this normalization we actually only have (T −1) fixed effects αi and γj for
each i, j here. Theorem 1 is therfore directly applicable to the case T = 2, but for T > 2
we need to provide an appropriate extension.

The appropriate generalization of the operator Dβαqi = Dβγqj in (17) to the case of
vector-value αi and γj was described in Section 4.2 of Fernández-Val and Weidner (2018).
Remember the definition of `ij(β, πij) = `ij(β, αi, γj) and x̃ij := xij − αxi − γxj . Then, by
reparameterizing the pseudo-log-likelihood `ij(β, αi, γj) as follows

`∗ij(β, αi, γj) := `ij(β, πij − β′(αxi + γxj )) = `ij(β, αi − β′αxi , γj − β′γxj ) (20)

one achieves that the expected Hessian of L∗(β, α, γ) = ∑
i,j `
∗
ij(β, αi, γj) is block-diagonal,

in the sense that E ∂βαiL∗(β0, α0, γ0) = 0 and E ∂βγjL∗(β0, α0, γ0) = 0 — the definition
30Those invariances αi 7→ αi + ci ιT and γj 7→ γj + dj ιT correspond to parameter transformations that

in the original model could be absorbed by the parameters ηij .
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of αxi and γxj by (10) in the main text exactly corresponds to those block-diagonality
conditions. With those definitions, we then have that

Dβαqi `ij = ∂βαqi `
∗
ij = x̃ij ∂αq+1

i
`ij.

In particular, we find that our definitions of

WN = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij H̄ij x̃ij,

ΩN = 1
N (N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij
[
Var

(
Sij

∣∣∣xij)] x̃ij,
in Proposition 3 correspond to − 1

N(N−1)
∑
i,j E

(
∂ββ′`ij − ∂α2

i
`ijΞijΞ′ij

)
and 1

N(N−1)
∑
i,j

E
[
Dβ`ij(Dβ`ij)′

]
in the notation of Theorem 1 and equation (19). Thus, the asymptotic

variance in (18) indeed corresponds to the asymptotic variance formula in Proposition 3.

Inverse expected incidental parameter Hessian

The asymptotic bias results that follow require that we first derive some key properties of
the expected Hessian with respect to the incidental parameters. Remember the definitions
of the 2NT -vector φ = vec(α, γ) from the main text. The expected incidental parameter
Hessian is the 2NT × 2NT matrix given by

H̄ := E [−∂φφ′L(β0, φ0)] =
 H̄(αα) H̄(αγ)

[H̄(αγ)]
′ H̄(γγ)

 ,
where L(β, φ) = L(β, α, γ) is defined in (6), and H̄(αα), H̄(αγ) and H̄(γγ) are NT × NT
submatrices. Here and in the following all expectations are conditional on all the regressor
realizations. The matrix H̄(αα) = E [−∂αα′L(β0, φ0)] is block-diagonal with N non-zero
diagonal T × T blocks given by E

[
−∂αiα′

i
L(β0, φ0)

]
= ∑

j∈N\{i} H̄ij, because for i 6= j we
have E

[
−∂αiα′

j
L(β0, φ0)

]
= 0, since the parameters αi and αj never enter into the same

observation. Analogously, the matrix H̄(γγ) = E [−∂γγ′L(β0, φ0)] is block-diagonal with
N non-zero diagonal T × T blocks given by ∑i∈N\{j} H̄ij. By contrast, the matrix H̄(αγ)

consistents of blocks E
[
−∂αiγ′

j
L(β0, φ0)

]
= H̄ij that are non-zero for i 6= j, because any

two parameters αi and γj jointly enter into T observations. The incidental parameter
Hessian matrix H̄ therefore has strong diagonal T × T blocks of order N , but also many
off-diagonal elements of order one.
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The pseudoinverse of H̄ crucially enters in the stochastic expansion for β̂ below. It is
therefore necessary to understand the asymptotic properties of this pseudoinverse H̄†. The
following lemma shows that H̄† has a structure analogous to H̄, namely, strong diagonal
T × T blocks of order 1/N , and much smaller off-diagonal elements of order 1/N2. We
can write H̄ = D + G, where

D :=
 H̄(αα) 0NT×NT

0NT×NT H̄(γγ)

 , G :=
 0NT×NT H̄(αγ)

[H̄(αγ)]
′ 0NT×NT

 .
The matrix D is block-diagonal, and its pseudoinverse D† is therefore also block-diagonal
with T×T blocks on its diagonal given by

(∑
j∈N\{i} H̄ij

)†
, i = 1, . . . , N and

(∑
i∈N\{j} H̄ij

)†
,

j = 1, . . . , N . Thus, D† has diagonal elements of order N−1. For any matrix A we denote
by ‖A‖max the maximum over the absolute values of all elements of A.

Lemma 1. Under Assumption A we have, as N →∞,∥∥∥H̄† −D†
∥∥∥

max
= OP

(
N−2

)
.

This result is crucial in order to derive the stochastic expansion of β̂. Indeed, as we will
see below, once Lemma 1 is available, then the proof of Proposition 3 is a straightforward
extension of the proof of Theorem 4.1 in FW. Lemma 1 is analogous to Lemma D.1 in
FW, but our proof strategy for Lemma 1 is different here, because we need to account for
the vector-valued nature of αi and γj, which requires new arguments.

Proof of Lemma 1. # Expansion of H̄† in powers of G: The matrix H̄ is (minus) the
expected Hessian of the profile log-likelihood L = ∑

i,j `ij. Because in that objective
function we have already profiled out the fixed effect parameters ηij we have H̄ijιT = 0
for all i, j, where ιT = (1, . . . , 1)′ is the T -vector of ones. This implies that

H̄ (I2N ⊗ ιT ) = 0. (21)

The last equation describes 2N zero-eigenvectors of H̄ (i.e. the eigenvalue zero of H̄ has
multiplicity at least 2N). Because the original log-likelihood function of the Poisson model
was strictly concave in the single index x′ijtβ +αit + γjt + ηij it must be the case that any
additional zero-eigenvalue of H̄ is due to linear transformations of the parameters α and
γ that leave αit + γjt unchanged for all i, j, t.31 There is exactly one such transformation

31Notice that any collinearity problem in the likelihood involving the regression parameters β is ruled
out for sufficiently large sample sizes by our assumption that limN→∞ WN > 0, which guarantees that
the expected Hessian wrt β is positive definite asymptotically.
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for every t ∈ {1, . . . , T}, namely the likelihood is invariant under αit 7→ αit + ct and
γjt 7→ γjt − ct for any ct ∈ R. The expected Hessian H̄ therefore has additional zero-
eigenvectors, which are given by the columns of the 2NT × T matrix

v := (ι′N ,−ι′N)′ ⊗MιT , (22)

where MιT := IT − PιT and PιT := T−1ιT ι
′
T . In the last display we could have used the

identity matrix IT instead of MιT , but we want the columns of v to be orthogonal to the
zero-eigenvectors already given by (21), which is achieved by usingMιT . As a consequence
of this, we have rank(v) = T − 1; that is, since we already have (21) we only find T − 1
additional zero-eigenvectors here. Thus, the total number of zero eigenvalues of H̄ (i.e. the
multiplicity of the eigenvalue zero) is equal to 2N +T − 1. It is easy to verify that indeed

H̄v = 0. (23)

Equations (21) and (23) describe all the zero-eigenvectors of H̄. The projector onto the
null-space of H̄ is therefore given by

Pnull := I2N ⊗ PιT + Pv, (24)

where Pv = v(v′v)†v′. The Moore-Penrose pseudoinverse of H̄ therefore satisfies

H̄ H̄† = H̄† H̄ = I2NT − Pnull = M(ι′N ,−ι
′
N )′ ⊗MιT , (25)

where the rhs is the projector orthogonal to the null-space of H̄ (i.e. the projector onto
the span of H̄). The definition of the Moore-Penrose pseudoinverse guarantees that H̄†

has the same zero-eigenvectors as H̄; that is, we also have H̄†v = 0 and H̄† (I2N ⊗ ιT ) = 0.
The last equation together with the symmetry of H̄† implies that

(I2N ⊗ PιT ) H̄† = 0. (26)

Next, similar to the above argument for H̄ we have that the only zero-eigenvector of the
T × T matrices ∑j∈N\{i} H̄ij and

∑
i∈N\{j} H̄ij is given by ιT , and therefore we have ∑

j∈N\{i}
H̄ij

  ∑
j∈N\{i}

H̄ij

† = MιT ,

 ∑
i∈N\{j}

H̄ij

  ∑
i∈N\{j}

H̄ij

† = MιT ,

which can equivalently be written as

D†D = DD† = I2N ⊗MιT = I2NT − I2N ⊗ PιT , (27)
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where PιT := T−1ιT ι
′
T . Now, using (25) and H̄ = D + G we have

H̄† (D + G) = I2NT − Pnull.

Multiplying this with D† from the right, using (27) and (26), and bringing H̄†GD† to the
rhs gives

H̄† = D† − PnullD
† − H̄†GD†. (28)

By transposing this last equation we obtain

H̄† = D† −D†Pnull −D†GH̄†, (29)

and now plugging (28) into the rhs of (29) gives

H̄† = D† −D†Pnull −D†GD† + D†GPnullD
† −D†GH̄†GD†

= D† −D†GD† −D†Pnull − PnullD
† + D†GH̄†GD†,

where in the second step we used thatD†GPnull = −Pnull, which follows from 0 = H̄Pnull =
DPnull+GPnull by left-multiplication withD† and using thatD†DPnull = 0. This expansion
argument for H̄† so far has followed the proof of Theorem 2 in Jochmans and Weidner
(2019). We furthermore have here that D† (I2N ⊗ PιT ) = 0, because H̄ijιT = 0, implying
that D†Pnull = D†Pv. The expansion in the last display therefore becomes

H̄† −D† = −D†GD† −D†Pv − PvD† + D†GH̄†GD†, (30)

with 2NT × T matrix v defined in (22). This expansion is the first key step in the proof
of the lemma.

# Bound on the spectral norm of H̄†: The term D†GH̄†GD† in the expansion (30) still
contains H̄† itself. In order to bound contributions from this term we therefore need a
preliminary bound on the spectral norm of H̄†.

The objective function `ij(β, πij) := `ij(β, αit, γjt) in (7) is strictly convex in πij,
apart from the flat direction given by the invariance πij 7→ πij + cij ιT , cit ∈ R. This
strict convexity together with our Assumption A(ii) that all regressors and parame-
ters are uniformly bounded over i, j, N, T implies that for the T × T expected Hessian
H̄ij := E

[
−∂2`ij/∂πij∂π

′
ij(β0, α0, γ0)

]
there exists a constant b > 0 that is independent of

i, j, N, T such that

min
{v∈R : ι′T v=0}

v′H̄ijv ≥ b > 0.
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The last display states that H̄ij is positive definite in all directions orthogonal to ιT .
Again, the lower bound b > 0 holds uniformly due to Assumption A(ii). The last display
result can equivalently be written as

H̄ij ≥ bMιT , (31)

where ≥ means that the difference between the matrices is positive definite.
Next, let ei = (0, . . . , 0, 1, 0, . . . , 0)′ be the i’th standard unit vector of dimension N .

For all i, j ∈ N := {1, . . . , N} we then have

∂φπ
′
ij =

(
ei
ej

)
⊗ IT ,

which are 2NT × T matrices. Because L(β, φ) = ∑N
i=1

∑
j∈N\{i} `ij(β, πij) we thus find

that

H̄ = E [−∂φφ′L] =
N∑
i=1

∑
j∈N\{i}

(
∂φπ

′
ij

)
E
[
−∂πijπ′

ij
`ij
] (
∂φπ

′
ij

)′

=
N∑
i=1

∑
j∈N\{i}

[(
ei
ej

)
⊗ IT

]
H̄ij

[(
ei
ej

)
⊗ IT

]′

≥ b
N∑
i=1

∑
j∈N\{i}

[(
ei
ej

)
⊗ IT

]
MιT

[(
ei
ej

)
⊗ IT

]′

= b

 N∑
i=1

∑
j∈N\{i}

(
ei
ej

)(
ei
ej

)′⊗MιT

= b

 (N − 1)IN ιN ι
′
N − IN

ιN ι
′
N − IN (N − 1)IN


︸ ︷︷ ︸

=:QN

⊗MιT

where we also used (31). It is easy to show that for N > 2 the 2N × 2N matrix QN has
an eigenvalue zero with multiplicity one, an eigenvalue N − 2 with multiplicity N − 1,
an eigenvalue N with multiplicity N − 1, and an eigenvalue 2(N − 1) with multiplicity
one. Thus, the smallest non-zero eigenvalue of QN is (N − 2). Also, the zero-eigenvector
of QN is given by v0 := (ι′N ,−ι′N)′, and therefore we have QN ≥ (N − 2)Mv0 , where
Mv0 = I2N − (2N)−1v0v

′
0 is the projector orthogonal to v0. We therefore have

H̄ ≥ b (N − 2)M(ι′N ,−ι
′
N )′ ⊗MιT

= b (N − 2) (I2NT − Pnull) ,
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where Pnull is the projector onto the null-space of H̄, as already defined above. From this
it follows that

H̄† ≤ 1
b (N − 2) (I2NT − Pnull) ,

and therefore for the spectral norm∥∥∥H̄†∥∥∥ ≤ 1
b (N − 2) = O(1/N). (32)

# Final bound on
∥∥∥H̄† −D†

∥∥∥
max

: Using (31) we find

max
i∈N

 1
N − 1

∑
j∈N\{i}

H̄ij

† = OP (1), max
j∈N

 1
N − 1

∑
i∈N\{j}

H̄ij

† = OP (1).

This together with our boundedness Assumption A(ii) implies that∥∥∥D†∥∥∥
max

= OP (1/N), ‖G‖max = OP (1). (33)

The definition of the 2NT × T matrix v in (22) implies that

‖Pv‖max =
∥∥∥P(ι′N ,−ι

′
N )′ ⊗MιT

∥∥∥
max
≤
∥∥∥P(ι′N ,−ι

′
N )′

∥∥∥
max

= (2N)−1 ‖(ι′N ,−ι′N)′(ι′N ,−ι′N)‖max

= (2N)−1 = O(1/N), (34)

where we also used that ‖MιT ‖max ≤ 1. In the following display, let ek = (0, . . . , 0, 1, 0, . . . , 0)′

be the k’th standard unit vector of dimension 2NT . We find that∥∥∥GH̄†G∥∥∥
max

= max
k,`∈{1,...,2NT}

∣∣∣e′k GH̄†Ge`∣∣∣
≤
(

max
k∈{1,...,2NT}

‖Gek‖
)∥∥∥H̄†∥∥∥( max

`∈{1,...,2NT}
‖Ge`‖

)

=
(

max
k∈{1,...,2NT}

‖Gek‖
)2 ∥∥∥H̄†∥∥∥

≤
(√

2NT ‖G‖max

)2 ∥∥∥H̄†∥∥∥
= OP (1), (35)

where the first line is just the definition of ‖·‖max, the second step uses definition of the
spectral norm

∥∥∥H̄†∥∥∥, the third step is an obvious rewriting, the fourth step uses that the
norm of 2NT -vector Gek can at most be

√
2NT times the maximal absolute element of
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the vector, and the final step uses that T is fixed in our asymptotic and ‖G‖max = OP (1)
and also (32).

Next, for general 2NT×2NT matrices A and B we have the bound (notice that ‖·‖max

is not a matrix norm)

‖AB‖max ≤ 2NT ‖A‖max ‖B‖max,

but because D is block-diagonal (with non-zero T × T blocks on the diagonal) we have
for any 2NT × 2NT matrix A the much improved bound

‖DA‖max ≤ T ‖D‖max ‖A‖max .

Applying those inequalities to the expansion of H̄† − D† obtained from (30), and also
using (33) and (34) and (35), we find that∥∥∥H̄† −D†

∥∥∥
max
≤ T 2

∥∥∥D†∥∥∥2

max
‖G‖max + 2T

∥∥∥D†∥∥∥
max
‖Pv‖max + T 2

∥∥∥D†∥∥∥2

max

∥∥∥GH̄†G∥∥∥
max

= OP (1/N2),

as N → ∞ (remember that T is fixed in our asymptotic.) This is what we wanted to
show. �

Proof of Proposition 3

The pseudo-likelihood function of the Poisson model is strictly concave in the single
index. Therefore, Assumption A together with Lemma 1 guarantee that the conditions
of Theorem B.1 in Fernández-Val and Weidner (2016) are satisfied for the rescaled and
penalized objective function32

1√
N(N − 1)

L(β, φ)− 1
2φ
′ Pnull φ,

with Pnull defined in (24). Here, the penalty term φ′ Pnull φ guarantees strict concavity
in (β, φ). However, in the following all derivatives of L(β, φ) are evaluated at the true
parameters, and since we impose the normalization Pnull φ0 = 0 the only derivative of

32Since we have a concave objective function, we can apply Theorem B.3 in FW to obtain preliminary
convergence results for both β̂ and φ̂. That theorem guarantees that that the consistency condition
on φ̂(β) in Assumption (iii) of Theorem B.1 in FW is satisfied under our Assumption A, and it also
guarantees

∥∥∥β̂ − β0
∥∥∥ = OP (N−1/2), which is important to apply Corollary B.2 in FW to obtain the

expansion result in our equation (36).
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L(β, φ) where the penalty term gives a non-zero contribution is the incidental parameter
Hessian matrix H̄ = E [−∂φφ′L(β0, φ0)] for which the penalty term provides exactly the
correct regularization. However, instead of that regularization, we can equivalently use
the pseudoinverse; namely we have(

H̄ + c Pnull
)−1

= H̄† + 1
c
Pnull,

for any c > 0. In all expressions below where H̄† appears we could equivalently write
H̄† + 1

N
Pnull, but the additional contributions from 1

N
Pnull will always vanish because the

gradient of L(β, φ) with respect to φ is orthogonal to Pnull.
By applying Theorem B.1 and its Corollary B.2 in FW we thus obtain√

N(N − 1)(β̂ − β0) = W−1
N UN + oP (1), (36)

where

WN = − 1
N(N − 1)

(
∂ββ′L̄+ [∂βφ′L̄] H̄† [∂φβ′L̄]

)
= − 1

N(N − 1)

N∑
i=1

∑
j∈N\{i}

∂ββ′ ¯̀∗ij

was already defined in Proposition 3, and we have UN := U
(0)
N + U

(1)
N , with

U
(0)
N = 1√

N(N − 1)

[
∂βL+ [∂βφ′L̄] H̄†∂φL

]
= 1√

N(N − 1)
∂βL∗

= 1√
N(N − 1)

N∑
i=1

∑
j∈N\{i}

∂β`
∗
ij,

√
N(N − 1)U (1)

N = [∂βφ′L − ∂βφ′L̄]H̄†∂φL − [∂βφ′L̄] H̄†
[
H− H̄

]
H̄† ∂φL

+ 1
2

dimφ∑
g=1

(
∂βφ′φgL̄+ [∂βφ′L̄] H̄†[∂φφ′φgL̄]

)
[H̄†∂φL]gH̄†∂φL

= [∂βφ′L∗ − ∂βφ′L̄∗]H̄†∂φL+ 1
2

dimφ∑
g=1

∂βφ′φgL̄∗[H̄†∂φL]gH̄†∂φL.

Here, `∗ij was defined in (20), all “bars” denote expectations conditional onX and φ, and all
the partial derivatives are evaluated at the true parameters. We also defined L∗(β, φ) :=∑N
i=1

∑
j∈N\{i} `

∗
ij(β, αit, γjt). Remember that we use a different scaling of the (profile) like-

lihood function than FW; namely in (6) we define L(β, φ) = ∑N
i=1

∑
j∈N\{i} `ij(β, αit, γjt),

while in FW this function would have an additional factor 1/
√
N(N − 1). This explains
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the additional
√
N(N − 1) factors in WN , U (0)

N and U (1)
N as compared to Theorem B.1 in

FW.
The score term ∂β`

∗
ij = x̃′ijSij has zero mean and finite variance and is independent

across i and j, conditional on X and φ. By the central limit theorem we thus find

U
(0)
N ⇒ N (0,ΩN),

where

ΩN = 1
N(N − 1)

N∑
i=1

∑
j∈N\{i}

Var
(
∂β`
∗
ij

∣∣∣xij)

= 1
N(N − 1)

N∑
i=1

∑
j∈N\{i}

x̃′ij
[
Var

(
Sij

∣∣∣xij)] x̃ij.
Thus, the term U

(0)
N only contributes variance to the asymptotic distribution of β̂, but

no asymptotic bias. By contrast, the term U
(1)
N only contributes bias to the asymptotic

distribution of β̂, but no variance. Namely, one finds that

U
(1)
N →p BN +DN , (37)

with BN and DN as given in the proposition. The proof of (37) is exactly analogous to
the corresponding discussion of those terms in the proof of Theorem 4.1 in FW, which we
restated above as Theorem 1 (remember that for T = 2 our result here is indeed just a
special case of Theorem 4.1 in FW.) Therefore, instead of repeating those derivations here,
we provide in the following a slightly less rigorous, but much easier to follow, derivation
of those bias terms.

Derivation of the asymptotic bias in Proposition 3

Remember that the main difference between Theorem 1 and our case here is that for us the
incidental parameters αi and γj are T -vectors, while in Theorem 1 the index πij = αi +γj

is just a scalar. An easy way to generalize the asymptotic bias formulas in Theorem 1 and
display (19) to vector-valued incidental parameters is to use a suitable parameterization
for the incidental parameters αi and γj. The formulas for B1 and D1 can most easily be
generalized by parameterizing the incidental parameters as follows

αi = Ai α̃i, γj = Cj γ̃j, (38)
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where α̃i and γ̃j are T − 1 vectors, and Ai and Cj are T × (T − 1) matrices that satisfy

AiA
′
i =

∑
j

H̄ij

† , CjC
′
j =

(∑
i

H̄ij

)†
. (39)

Let L̃(β, α̃, γ̃) = L(β, (Ai α̃i), (Cj γ̃j)). This reparameterization guarantees that

∂2L̃(β0, α̃0, γ̃0)
(∂α̃i)(∂α̃i)′

= A′i

∑
j

H̄ij

Ai = IT−1,

∂2L̃(β0, α̃0, γ̃0)
(∂γ̃j)(∂γ̃j)′

= C ′j

(∑
i

H̄ij

)
Cj = IT−1. (40)

That is, the Hessian matrix with respect to the incidental parameters α̃i and γ̃j is nor-
malized to be an identity matrix under that normalization. It can be shown that this
implies that the incidental parameter biases B1 and D1 “decouple” across the T − 1 com-
ponents of α̃i and γ̃j; that is, the total contribution to the incidental parameter bias of β̂
just becomes a sum over T − 1 contributions of the form B1 and D1 in (19). Thus, for
k ∈ {1, . . . , K} we have

B1,k =
T−1∑
q=1

− 1
N

∑
i,j

E
(
∂α̃i,q`ijDβkα̃i,q`ij

)
∑
j′ E

(
∂α̃2

i,q
`ij′

)
 =

T−1∑
q=1

− 1
N

∑
i,j

E
(
∂α̃i,q`ijDβkα̃i,q`ij

)
= − 1

N

∑
i,j

E
[
(∂α̃i`ij)

′ (Dβkα̃i`ij)
]

= − 1
N

∑
i,j

E
[
(∂αi`ij)

′AiA
′
i (Dβkαi`ij)

]

= − 1
N

∑
i,j

E

S ′ij
∑

j′
H̄ij′

†Hij x̃ij,k

 ,
where in the second step we used the fact that ∑j′ E

(
∂α̃2

i,q
`ij′

)
= 1 according to (40), in

the third step we rewrote the sum over q ∈ {1, . . . , T − 1} in terms of the vector product
of the T − 1 vectors ∂α̃i`ij and Dβkα̃i`ij, in the fourth step we used that αi = Ai α̃i, and
in the final step we used (39) and the definitions of Sij, Hij and x̃ij,k. All expectations
here are conditional on X (in the main text we always make that conditioning explicit),
and H̄ij′ and x̃ij,k are non-random conditional on X; that is, we can also write this last
expression as

B1,k = − 1
N

∑
i

Tr


∑

j′
H̄ij′

†∑
j

E
(
Hij x̃ij,k S

′
ij

) .
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Analogously we find

D1,k = − 1
N

∑
i,j

E

S ′ij
(∑

i′
H̄i′j

)†
Hij x̃ij,k

 .
Next, to generalize the incidental parameter biases B2 and D2 in (19) to vector-values αi
and γj we again make a transformation (38), but this time we choose

AiA
′
i =

∑
j

H̄ij

† ∑
j

E
(
Sij S

′
ij

∣∣∣xij)
∑

j

H̄ij

† .
CjC

′
j =

(∑
i

H̄ij

)† [∑
i

E
(
Sij S

′
ij

∣∣∣xij)
](∑

i

H̄ij

)†
. (41)

Notice that for a correctly specified likelihood we have the Bartlett identities H̄ij =
E
(
Sij S

′
ij

∣∣∣xij), implying that (39) and (41) are identical for correctly specified likelihoods.
In general, however, the transformation now is different. Instead of normalizing the
Hessian matrices to be identities, as in (40), the new transformation defined by (41)
guarantees that

AsyVar
(̂̃αi) =

[
∂2L̃(β0, α̃0, γ̃0)

(∂α̃i)(∂α̃i)′

]†
Var

∂L̃(β0, α̃0, γ̃0)
∂α̃i

∣∣∣∣∣∣X
 [∂2L̃(β0, α̃0, γ̃0)

(∂α̃i)(∂α̃i)′

]†
= IT−1,

AsyVar
(̂̃γj) =

[
∂2L̃(β0, α̃0, γ̃0)

(∂γ̃j)(∂γ̃j)′

]†
Var

∂L̃(β0, α̃0, γ̃0)
∂γ̃j

∣∣∣∣∣∣X
 [∂2L̃(β0, α̃0, γ̃0)

(∂γ̃j)(∂γ̃j)′

]†
= IT−1.

(42)
Again, it can be shown that with this normalization the incidental parameter bias con-
tributions B2 and D2 “decouple”; that is, each component of ̂̃αi contributes an incidental
parameter bias of the form B2 in (19) to β̂, and each component of ̂̃γi contributes an
incidental parameter bias of the form D2 in (19) to β̂. The total contribution thus reads,
for k ∈ {1, . . . , K},

B2,k =
T−1∑
q=1

1
2

1
N

∑
i

[∑
j E(∂α̃i,q`ij)2

]∑
j E(Dβkα̃2

i,q
`ij)[∑

j E
(
∂α̃2

i,q
`ij
)]2


=

T−1∑
q=1

1
2

1
N

∑
i,j

E(Dβkα̃2
i,q
`ij) = 1

2
1
N

∑
i,j

Tr
[
E(Dβk α̃iα̃′

i
`ij)

]
= 1

2
1
N

∑
i,j

Tr
[
A′i E(Dβk αiα′

i
`ij)Ai

]

= 1
2N

∑
i

Tr


∑

j

Ḡij x̃ij,k

∑
j

H̄ij

† ∑
j

E
(
Sij S

′
ij

∣∣∣xij,k)
∑

j

H̄ij

†
 ,

56



where in the second step we used that
[∑

j E(∂α̃i,q`ij)2
]
/
[∑

j E
(
∂α̃2

i,q
`ij
)]2

= 1 according
to (42), in the third step we rewrote the sum over q ∈ {1, . . . , T − 1} as a trace over the
(T −1)× (T −1) matrix of third-order partial derivatives E(Dβk α̃iα̃′

i
`ij), in the fourth step

we used that αi = Ai α̃i, and in the final step we used the cyclicity of the trace and (41)
and the definitions of Ḡij, x̃ij,k, and the tensor-vector product Ḡijx̃ij,k (which, recall, is a
T × T matrix).

Analogously we find

D2,k =
T−1∑
q=1

1
2

1
N

∑
j

[∑
i E(∂γ̃j,q`ij)2

]∑
i E(Dβkγ̃2

j,q
`ij)[∑

i E
(
∂γ̃2

j,q
`ij
)]2


= 1

2N
∑
j

Tr
(∑

i

Ḡij x̃ij,k

)(∑
i

H̄ij

)† [∑
i

E
(
Sij S

′
ij

∣∣∣xij,k)
](∑

i

H̄ij

)† .
We have thus translated all the formulas in Theorem 1 and in display (19) to the case
of vector-valued αi and γj to find exactly the expression for the asymptotic biases Bk

N =
B1,k +B2,k and Dk

N = D1,k +D2,k in Proposition 3.

Rewriting the bias expressions as in Remarks 1 and 2

Remember that E(yijt|xijt, αit, γij) = λijt := exp(x′ijtβ + αit + γij) and ϑijt := λijt∑
τ
λijτ

,
and denote the corresponding T -vectors by yij, λij and ϑij. It is convenient to define the
T × T matrices

Λij := diag (λij) ,

and

Mij := IT −
λij ι

′
T

ι′Tλij
= IT − ϑijι′T ,

which is the unique idempotent T×T matrix (i.e.MijMij = Mij) that satisfies rank(Mij) =
T − 1, Mijλij = 0, and ι′TMij = 0. Notice also that λij = ΛijιT , and therefore
MijΛij = ΛijM

′
ij. We then have

Sij = M ′
ijyij,

H̄ij = Mij ΛijM
′
ij = Mij Λij = ΛijM

′
ij = Λij −

λijλ
′
ij

ι′Tλij
,

Hij = H̄ij

(
ι′Tyij
ι′Tλij

)
,
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and

Ḡij,tsr = −
T∑
u=1

λij,uMij,tuMij,suMij,ru,

where t, s, r ∈ {1, . . . , T}.
Next, define x̃∗ij,k := M ′

ijx̃ij,k. Noting that λ′ijx̃∗ij,k = 0, we find

WN,k` = 1
N (N − 1)

∑
i,j

x̃∗′ij,k Λij x̃
∗
ij,`

= 1
N (N − 1)

∑
i,j,t

λijt x̃
∗
ijt,k x̃

∗
ijt,`.

This shows that WN has an additional sum over t, so WN increases linearly in T , and
W−1
N = O(T−1), for T →∞.
Now, also define Dij,k := diag

[(
λijt x̃

∗
ijt,k

)
t=1,...,T

]
, which is the diagonal T ×T matrix

with diagonal entries λijt x̃∗ijt,k. The first-order conditions of the optimization problem
that defines x̃ij,k read∑

i

H̄ij x̃ij,k = 0,
∑
j

H̄ij x̃ij,k = 0,

or equivalently ∑
i

Λij x̃
∗
ij,k = 0,

∑
j

Λij x̃
∗
ij,k = 0,

which can also be written as∑
i

Dij,k = 0,
∑
j

Dij,k = 0. (43)

These FOC’s are only important to simplify the term B2,k in what follows. We have

B1,k = − 1
N

∑
i,j

E
[
(ι′Tyij)S ′ij

]
ι′Tλij

∑
j′
H̄ij′

† Λij x̃
∗
ij,k

= − 1
N(N − 1)

∑
i,j

ι′T
ι′Tλij

Var(yij)M ′
ij

 1
N

∑
j′
H̄ij′

† ΛijM
′
ij x̃ij,k,

B2,k = − 1
2N

∑
i

Tr


∑

j

Mij Dij,kM
′
ij

∑
j

H̄ij

† ∑
j

MijVar(yij)M ′
ij

∑
j

H̄ij

†


= 1
N(N − 1)

∑
i,j

λ
′
ij Qi Λij x̃

∗
ij,k

ι′Tλij
−

(
λ′ij x̃

∗
ij,k

) (
λ′ijQiλij

)
(ι′Tλij)

2


= 1
N(N − 1)

∑
i,j

λ′ij Qi ΛijM
′
ij x̃ij,k

ι′Tλij
,
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where, in the second-to-last step, we used the definition of Mij, (43), that ι′TDij,kιT =
λ′ij x̃

∗
ij,k, and that Dij,kιT = Λij x̃

∗
ij,k; and in the last step, we used that Λij x̃

∗
ij,k =

ΛijM
′
ijx̃ij,k and λ′ij x̃

∗
ij,k = 0. We also used the definition of Qi given in Remark 1.

We then have for Bk
N = B1,k +B2,k that

Bk
N = − 1

N(N − 1)
∑
i,j

1
T
ι′T Rij x̃ij,k

1
T
ι′Tλij

+ 1
N(N − 1)

∑
i,j

1
T
λ′ij Qi ΛijM

′
ij x̃ij,k

1
T
ι′Tλij

,

where we have now also used the definition of Rij from Remark 1 in order to simplify B1,k.
Under appropriate regularity conditions, the T × T matrices Qi and Rij each maintain
diagonal elements of order one and off-diagonal elements of order 1/T 2 through their
dependence on Var(yij). Therefore, all the numerators and denominators in the last
expression for Bk

N remain of order one as T →∞, such that Bk
N = O(1) as T →∞, with

an analogous result also following for Dk
N . Recalling that WN increases linearly with T ,

we thus conclude that the bias term

W−1
N (BN +DN)
N − 1 ,

is of order 1/(NT ) as both N and T grow large.

Comment on Proposition 1

We note that the consistency result from Proposition 1 also follows from the above proof
of Proposition 3.

Remark 4. If the asymptotic bias in β̂ is characterized by Proposition 3, then β̂ is
consistently estimated as N →∞.

As we have noted in the text, for this consistency result to hold, we need for the two-
way profile score in (9) to be unbiased at the true parameters (β, α, γ). In particular, we
need for there to be no incidental parameter bias term of order 1/T associated with the
pair fixed effect ηij. As the following discussion clarifies, the FE-PPML model is quite
special in this regard.

A.2 Proof of Proposition 2

To prove Proposition 2, it will first be useful to prove the following lemma:
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Lemma 2. Consider the class of “one-way” FE-PML panel estimators with conditional
means given by λit := exp(x′itβ + αi) and FOC’s given by

β̂:
N∑
i=1

T∑
t=1

xit
(
yit − λ̂it

)
g(λ̂it) = 0, α̂i:

T∑
t=1

(
yit − λ̂it

)
g(λ̂it) = 0,

where i = 1, . . . , N , t = 1, ..., T, and g(λ̂it) is an arbitrary positive function of λ̂it. If T is
small, β̂ is only consistent under general assumptions about Var(y|x, α) if g(λ) is constant
over the range of λ’s that are realized in the data-generating process.

Put simply, if Lemma 2 holds, then no other FE-PML estimator of the form described
in Proposition 2 aside from FE-PPML can be consistent under general assumptions about
the conditional variance Var(y|x, α, γ, η). We have already shown that the three-way FE-
PPML estimator is generally consistent regardless of the conditional variance. Thus, if
we can prove Lemma 2, Proposition 2 follows directly.

Proof of Lemma 2. Our strategy here will be to adopt a specific parameterization for
the conditional variance Var(y|x, α) and then examine the conditions under which β̂ is
sensitive to small changes in the conditional variance. If β̂ depends on Var(y|x, α) even
for large N , then it is not possible for β̂ to be consistent under general assumptions about
Var(y|x, α).

To proceed, let the true data generating process be given by

yit = λitωit,

where λit is the true conditional mean and

ωit := exp
[
−1

2 ln (1 + λρit) +
√

ln (1 + λρit)zit
]

(44)

with zit a randomly-generated variable distributedN (0, 1). ωit is therefore a heteroscedas-
tic multiplicative disturbance that follows a log-normal distribution with E[ωit] = 1 and
Var(ωit) = λρit. The conditional mean of yit is in turn given by E[yit|x, α] = λit and the
conditional variance is given by Var(yit|x, α) = Var(yit|λit) = λ2

itVar(ωit) = λρ+2
it . Our

focus is the exponent ρ, which governs the nature of the heteroscedasticity and can be
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any real number. With this in mind, it is useful to document the following results,

E
[
∂ωit
∂ρ

]
= ∂E [ωit]

∂ρ
= 0 (45)

E
[
∂ (ω2

it)
∂ρ

]
= E

[
2ωit

∂ωit
∂ρ

]
= ∂E (ω2

it)
∂ρ

= ∂V [ωit]
∂ρ

= λρit ln λit 6= 0. (46)

Put another way, the expected value of the change in ωit with respect to ρ must always
be zero because E[ωit] = 1 regardless of ρ. Similarly, the expected change in the second
moment of ωit must be λρit ln λit because this gives the change in the variance of ωit.33

To facilitate the rest of the proof, we invoke the following conceit: the random distur-
bance term zit, once drawn from N (0, 1), is known and fixed, such that each ωit may be
treated as a known transformation of the underlying value for zit given by (44). Among
other things, this means we can always treat the partial derivatives ∂ωit

∂ρ
and ∂yit

∂ρ
= λit

∂ωit
∂ρ

as well-defined; similarly, we can treat the estimated parameters β̂ and α̂i as deterministic
functions of the variance parameter ρ with well-defined total derivatives dβ̂

dρ
and dα̂i

dρ
. That

is, for a given draw of zit’s, we can perturb how the corresponding ωit’s are generated and
consider comparative statics for how estimates are affected. If β̂ is consistent regardless
of the variance assumption used to generate ωit, then small changes in ρ should have no
effect on β̂ asymptotically. Thus, our goal in the following is to determine if there are
any estimators in this class other than FE-PPML under which limN→∞

dβ̂
dρ

= 0 in this
experiment.

The next step is to totally differentiate the FOC’s for β̂ and α̂i with respect to a change
in ρ. Let L denote the pseudo-likelihood function to be maximized.34 For notational
convenience, we can express the scores for β̂ and α̂i as Lβ and Lαi , such that their FOCs
can respectively be written as Lβ = 0 and Lαi = 0. Differentiating the FOC for β̂, we
obtain

dβ̂

dρ
= −L−1

ββLβρ − L−1
ββ

∑
i

Lβαi
dα̂i
dρ

, (47)

where Lββ is the matrix obtained from partially differentiating the score for β̂ with respect
to β̂, Lβρ (a vector) is the partial derivative of Lβ with respect to ρ, and Lβαi (also a

33Note here that ∂(ω2
it)

∂ρ = 2ωit ∂ωit

∂ρ .
34The implied pseudo-likelihood function is given here by L :=

∑N
i=1
∑T
t=1yit

∫ g(λit)
λit

dλit −∑N
i=1
∑T
t=1
∫
g(λit)dλit.
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vector) is its partial derivative with respect to α̂i. Applying a similar set of operations to
the FOC for α̂i then gives

dα̂i
dρ

= −L−1
αiαi
Lαiρ − L−1

αiαi
L′βαi

dβ̂

dρ
, (48)

where Lαiαi and Lαiρ are scalars that respectively contain the partial derivatives of Lαi
with respect to α̂i and ρ. Plugging (48) into (47), we have

dβ̂

dρ
= −L−1

ββLβρ + L−1
ββ

N∑
i=1
L−1
αiαi
LβαiLαiρ + L−1

ββ

N∑
i=1
L−1
αiαi
LβαiL′βαi

dβ̂

dρ

= −
(

I− L−1
ββ

N∑
i=1
L−1
αiαi
LβαiL′βαi

)−1

L−1
ββLβρ (49)

+
(

I− L−1
ββ

N∑
i=1
L−1
αiαi
LβαiL′βαi

)−1

L−1
ββ

N∑
i=1
L−1
αiαi
LβαiLαiρ, (50)

where I is an identity matrix whose dimensions equal the size of β.
Let P henceforth denote the combined matrix object I − L−1

ββ

∑
i L−1

αiαi
LβαiL′βαi . It is

straightforward to show that that first term in (50), −P−1L−1
ββLβρ, converges in proba-

bility to a zero vector when N → ∞. To see this, note first that P and Lββ must be
non-singular and finite for β̂ to be at a maximum point of L and for dβ̂

dρ
to exist. Fur-

thermore, limN→∞NTL−1
ββ = −E[xitλ̂itg(λ̂it)x′it]−1 must also be non-singular and finite.

Slutsky’s theorem then implies limN→∞−P−1L−1
ββLβρ →p 0 if limN→∞N

−1T−1Lβρ →p 0.
Examining the vector Lβρ more closely, we have

Lβρ =
N∑
i=1

T∑
t=1

xit
∂yit
∂ρ

g(λ̂it) =
N∑
i=1

T∑
t=1

xitλit
∂ωit
∂ρ

g(λ̂it).

limN→∞N
−1T−1Lβρ →p 0 then follows via standard arguments because E

[
∂ωit
∂ρ

]
= 0 (by

(45)). We may therefore focus our attention on the second term on the RHS in (50),
P−1L−1

ββ

∑
i L−1

αiαi
LβαiLαiρ. Noting that L−1

αiαi
must be < 0, in this case we consider the

conditions under which limN→∞N
−1T−1∑

i L−1
αiαi
LβαiLαiρ similarly converges in proba-

bility to zero. The summation in this latter term may be expressed as
N∑
i=1
L−1
αiαi
LβαiLαiρ =

N∑
i=1
L−1
αiαi

[
T∑
t=1

xit
(
yit − λ̂it

)
g′(λ̂it)λ̂it −

T∑
t=1

xitλ̂itg(λ̂it)
]

T∑
t=1

∂yit
∂ρ
g(λ̂it).

Re-arranging this expression, we have that
N∑
i=1
L−1
αiαi
LβαiLαiρ =

N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xityitg
′(λ̂it)λ̂itg(λ̂is)

∂yis
∂ρ

−
N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xit
(
λ̂itg

′(λ̂it) + g(λ̂it)
)
λ̂itg(λ̂is)

∂yis
∂ρ

. (51)
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Focusing first on the second of the two summation terms in (51), we again apply yit =
λitωit, ∂yis∂ρ

= λit
∂ωis
∂ρ
, and E

[
∂ωit
∂ρ

]
= 0. We have that

lim
N→∞

1
NT

N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xit
(
λ̂itg

′(λ̂it) + g(λ̂it)
)
λ̂itg(λ̂is)λis

∂ωis
∂ρ
→p 0.

This follows for the same reason limN→∞N
−1T−1Lβρ →p 0 above. The first summation

term in (51) obviously→p 0 as well if the estimator is FE-PPML, in which case g′(λ̂it) = 0.
To complete the proof, we just need to show that this term does not reduce to 0 if
g′(λ̂it) 6= 0. A final step gives us

lim
N→∞

1
NT

N∑
i=1

T∑
t=1

T∑
s=1
L−1
αiαi

xityitg
′(λ̂it)λ̂itg(λ̂is)

∂yis
∂ρ

= lim
N→∞

1
NT

N∑
i=1

T∑
t=1
L−1
αiαi

xitg
′(λ̂it)λ̂itg(λ̂it)yit

∂yit
∂ρ

= lim
N→∞

1
NT

N∑
i=1

T∑
t=1
L−1
αiαi

xitg
′(λ̂it)λ̂itg(λ̂it)λ2

itωit
∂ωit
∂ρ

6= 0.

To elaborate, the terms where s 6= t vanish as N →∞ because disturbances are assumed
to be independently distributed (E[ωit ∂ωis∂ρ

] = 0 if s 6= t.)35 The remaining details follow
from (46).36 We have now shown limN→∞

dβ̂
dρ

= 0 if and only if g′(λ̂it) = 0. In other
words, the estimator must be FE-PPML, which assumes g(λ̂it) is a constant. For other
FE-PML estimators, even if β̂ is consistent for a particular ρ, it cannot be consistent for
all ρ because β̂ does not converge to the same value for N →∞ when we vary ρ. As we
discuss below, this is what happens for FE-Gamma PML (where g(λ̂it) = λ̂−1

it ) and some
other similar models. �

To be clear, the robustness of the FE-PPML estimator to misspecification is a known
result established by Wooldridge (1999). However, to our knowledge, it has not previ-
ously been shown that FE-PPML is the only estimator in the class we consider that has

35Note that under FE-PPML, where g′(λ̂it) = 0, the estimator is consistent even if disturbances are
correlated. This is yet another reason why FE-PPML is an especially robust estimator.

36Notice that if T → ∞ also, we have that limT→∞ TL−1
αiαi

= −E
[
λ̂itg(λ̂it)

]−1
must be finite. We

would therefore have

lim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

[
TL−1

αiαi

]
xitg
′(λ̂it)λ̂itg(λ̂it)λ2

it

[
T−1ωit

∂ωit
∂ρ

]
= 0,

ensuring that β̂ does not depend on ρ for the large N, large T case. This follows because
limT→∞ T−1V [ωit] = 0 =⇒ limT→∞ T−1E

[
ωit

∂ωit

∂ρ

]
= 0.
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this property.37 At the same time, it is worth clarifying that FE-PPML is not the only
estimator that is capable of producing consistent estimates of three-way gravity models.
Rather, it is the only estimator in the class we consider that only requires correct spec-
ification of the conditional mean and for the covariates to be conditionally exogenous in
order to be consistent. The following discussion describes some known cases in which
other estimators will be consistent.

A.3 Results for Other Three-way Estimators

Depending on the distribution of the data, there may be some other consistent estimator
available aside from FE-PPML. In particular, if g(λ̂ijt) is of the form g(λ̂ijt) = λ̂qijt,
with q an arbitrary real number, the FOC for η̂ij has a solution of the form η̂ij =
[∑T

t=1 µ̂
q+1
ijt ]−1∑T

t=1 yijtµ̂
q
ijt. It is therefore possible to “profile out” η̂ij from the FOC for

β̂, just as in the FE-PPML case. As such, it is possible for the estimator to be consis-
tently estimated, but only if the conditional variance is correctly specified (more precisely,
we must have Var(y|x, α, γ, η) ∝ λ̂1−q

it , the equivalent of ρ = −1 − q.) In this case, the
estimator is not only consistent, but should be more efficient as well.

An interesting example to consider in the gravity context is the Gamma PML (GPML)
model, which imposes g(λ̂ijt) = λ̂−1

ijt . Generally speaking, GPML is considered the primary
alternative to PPML and OLS as an estimator for use with gravity equations (see Head
and Mayer, 2014; Bosquet and Boulhol, 2015.) However, to our knowledge, no references
to date on gravity estimation make it clear that, unlike in a two-way setting, the three-
way FE-GPML estimator is only consistent when the conditional variance is correctly
specified.38 Thus, it is possible that researchers could mistakenly infer that the appeal
of FE-GPML as an alternative to FE-PPML in the two-way gravity setting carries over
to the three-way setting.39 This is especially a concern now that recent computational

37Alternatively, it is possible to extend the above result to an even more general class of models by
considering estimators that depend on g(α̂i) rather than g(λ̂it). The same type of proof may be used to
show that β̂ depends on the variance assumption if g′(α̂i) 6= 0. Furthermore, the estimator can be shown
to be consistent if g′(α̂i) = 0.

38As discussed in Greene (2004), the fixed effects Gamma model is generally known not to suffer from
an incidental parameter problem, similar to FE-Poisson. However, the result stated in Greene (2004) is
for the Gamma MLE estimator, which restricts the conditional variance to be equal to the square of the
conditional mean. The FE-Gamma PML model is consistent under the slightly more general assumption
that the conditional variance is proportional to the square of the conditional mean.

39For example, Head and Mayer (2014), arguably the leading reference to date on gravity estimation,
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advances have made estimation of FE-GLM models significantly more feasible.
To illuminate the unique IPP-robustness properties of FE-PPML in the three-way

context, Fig. 2 shows a comparison of simulation results for FE-PPML versus log-OLS
and Gamma PML.40 The displayed kernel densities are computed using 500 replications
of a three-way panel structure with N = 50 and T = 5.41 The i and j dimensions of
the panel both have size N = 50 and the size of the time dimension is T = 5. The fixed
effects are generated according to the same procedures described in the text and we again
model four different scenarios for the distribution of the error term (Gaussian, Poisson,
Log-heteroscedastic, and Quadratic).

As we would expect based on Proposition 2, FE-PPML is relatively unbiased across all
four different assumptions considered for the distribution of the error term. The general
inconsistency of the three-way linear model—which is only unbiased for DGP III where
the error term is log-homoscedastic—is also as expected. However, the reasons behind
the bias in the OLS estimate are well-documented (see Santos Silva and Tenreyro, 2006)
and do not have to do with the incidental parameters included in the model. The three-
way FE-GPML is also consistent under DGP III because it assumes the error term has
a variance equal to the square of the conditional mean. Both OLS and GPML are also
more efficient than PPML in this case. However, as the other three panels show, when
this variance assumption is relaxed, the three-way FE-GPML model clearly suffers from
an IPP, exhibiting an average bias equal to roughly half that of OLS in all three cases.

We have also performed some simulations with three-way FE-Gaussian PML, which
imposes g(λ̂ijt) = λ̂ijt. We do not show results for this other estimator because the
HDFE-IRLS algorithm we used to produce the FE-PPML and FE-Gamma PML estimates
frequently did not converge for the FE-Gaussian PML model. However, the results we did
obtain were in line with our results for FE-GPML and with our discussion of Proposition
2 above: the FE-Gaussian PML estimates were unbiased when the DGP for ωijt was itself

suggest comparing PPML estimates with GPML estimates to determine if the RHS of the model is
potentially misspecified. Such a comparison is not straightforward in a three-way setting because the
GPML estimator is likely to be inconsistent. Their other suggestion to compare GPML and OLS estimates
still seems sensible, however. As we show below, both estimators give similar results when the Gamma
variance assumption is satisfied and give different results otherwise.

40We were able to compute three-way FE-Gamma PML estimates using a modified version of the
HDFE-IRLS algorithm used in Correia, Guimarães, and Zylkin (2019). To our knowledge, these are the
first results presented anywhere documenting the inconsistency of the three-way Gamma PML estimator.

41Simulations with larger N are more narrowly distributed, but otherwise are very similar.
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Gaussian (as in DGP I), but were biased and inconsistent otherwise.

A.4 Showing Bias in the Cluster-robust Sandwich Estimator

For convenience, let xij := (xij, dij) be the matrix of covariates associated with pair
ij, inclusive of the it- and jt-specific dummy variables needed to estimate αi and γj.
Similarly, let b := (β′, φ′)′ be the vector of coefficients to be estimated and let b̂ be the
vector of coefficient estimates. Note that we can write a first-order approximation for Ŝij
as

Ŝij ≈ Sij − H̄ijxij(b̂− b),

which is consistent with the approximation provided in (14). We can then replace b̂ − b
with the standard first-order expansion b̂− b ≈ −L̄−1

bb L0
b , where L = ∑

i,j `ij is the profile
likelihood. This expansion in turn can be written out as

b̂− b ≈ −L̄−1
bb

[∑
m,n

x′mnSmn
]
,

Now we turn our attention to the outer product ŜijŜ ′ij:

ŜijŜ
′
ij ≈ SijS

′
ij + H̄ijxij(b̂− b)2x′ijH̄ij − 2H̄ij

[
xij(b̂− b)

]
S ′ij

= SijS
′
ij + H̄ijxij(b̂− b)2x′ijH̄ij + 2H̄ijxijL̄−1

bb

[∑
m,n

x′mnSmn
]
S ′ij

Because we assume we are in the special case where FE-PPML is correctly specified, we
have that E[(b̂− b)2] = −κL̄−1

bb , where L̄bb := E[Lbb]. We also have that E[SijS ′ij] = κH̄ij.
Therefore, after applying expectations where appropriate, we have that

E[ŜijŜ ′ij] ≈ SijS
′
ij + κH̄ijxijL̄−1

bb x′ijH̄ij,

which can be seen as extending Kauermann and Carroll (2001)’s results to the case of
a panel data pseudo-likelihood model with within-panel clustering. We are not done,
however, as we have not yet isolated the influence of the incidental parameters. To
complete the derivation of the bias, we must more carefully consider the full inverse
Hessian term L̄−1

bb . Using standard matrix algebra, this inverse can be written as:

L̄−1
bb =


(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1

−
(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1
L̄′φβL̄−1

φφ

−L̄−1
φφ L̄φβ

(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1

L̄−1
φφ+ L̄−1

φφ L̄φβ
(
L̄ββ − L̄′φβL̄−1

φφ L̄φβ
)−1
L̄′φβL̄−1

φφ

 ,
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Comparing Three-way Gravity Estimators (N=50; T=5)

Figure 2: Kernel density plots of three-way gravity model estimates using different FE
estimators, based on 500 replications. The model being estimated is yijt = exp[αit + γjt +
ηij + xijtβ]ωijt, where the distribution of ωijt depends on the DGP and the true value of
β is 1 (indicated by the vertical dotted lines). The size of the i and j dimensions is given
by N = 50 and the t dimension has size T = 5. See text for further details.
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where we have used L̄φφ in place of H̄ in order to add clarity. Making use of some
already-established definitions, we have that the top-left term (L̄ββ − L̄∗′φβL̄−1

φφ L̄φβ)−1 =
−[N(N−1)]−1W−1

N and, similarly, that L̄−1
φφ = −[N(N−1)]−1W

(φ)−1
N . If we again consider

E[ŜijŜ ′ij], we can now write

E[ŜijŜ ′ij − SijS ′ij] ≈ −
κ

N(N − 1)H̄ij(xij dij) × W−1
N −W−1

N L̄′φβL̄−1
φφ

−L̄−1
φφ L̄φβW−1

N W
(φ)−1
N + L̄−1

φφ L̄∗φβW−1
N L̄′φβL̄∗−1

φφ

(xij dij)′H̄ij

= − κ

N(N − 1)H̄ij

{
xijW

−1
N x′ij − xijW−1

N L̄′φβL̄−1
φφd

′
ij − dijL̄−1

φφ L̄∗φβW−1
N x′ij

+dijL̄−1
φφ L̄φβW−1

N L̄′φβL̄−1
φφd

′
ij + dijW

(φ)−1
N d′ij

}
H̄ij,

which simplifies to the expression shown in (14).

Results for the two-way model. The sandwich estimator is also known to be biased
for the standard two-way gravity model without pair fixed effects. This bias has been
documented in numerous places (Egger and Staub, 2015; Jochmans, 2016; Pfaffermayr,
2019) but the literature has yet to offer a bias correction that may be used to obtain
improved inferences for this very popular model. As it turns out, the analytics for the
two-way and three-way models are very similar here, and we can easily adapt our results
to the simpler two-way setting. The main change we would need to make is to replace Hij

everywhere it appears with Λij, including in the definitions of x̃ij, WN , and W
(φ)
N . The

rest of the derivations then follow in the same manner as for the three-way model.
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