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1. INTRODUCTION

How effectively one can accomplish persuasion has been of interest to ancient Greek philoso-

phers in the Lyceum of Athens,1 to early–modern English preachers in St Paul’s Cathedral,2 and

to contemporary American news producers at Fox News in New York City.3 Recently, economists

have been endeavoring to build theoretical models of persuasion (e.g. Kamenica and Gentzkow,

2011; Che, Dessein, and Kartik, 2013; Gentzkow and Kamenica, 2017; Prat, 2018; Bergemann and

Morris, 2019) and to quantify empirically to what extent persuasive effort affects the behavior of

consumers, voters, donors, and investors (see DellaVigna and Gentzkow, 2010, for a survey of the

recent literature).

In this paper, we set up an econometric model of persuasion, point out the key parameters of

interest, and study their identification under various scenarios of data availability. Because we have

observational data in mind, it is important that we allow for endogeneity (i.e. the possibility that

agents’ decisions on exposure to persuasive information are correlated with their potential actions).

To convey this idea, we consider DellaVigna and Kaplan (2007, DK hereafter), who study the effect

of exposure to Fox News on the probability of voting for a Republican presidential candidate. Here,

the persuasive information of interest is the viewership of the Fox News channel, where the agent’s

decision about whether to watch Fox News or not may be correlated with their political orientation.

In order to capture the causal effect of persuasion, we formulate the problem within the potential

outcome framework. In the paper, we do consider nonbinary outcomes, but we use the binary

outcome (e.g. voting for a Republican candidate or not) as a prototype model because it is simpler.

The persuasive treatment of interest is binary throughout the paper.

Let Ti denote the binary indicator that equals 1 if individual i is exposed to persuasive informa-

tion such as Fox News. Let Yi(t) be a binary indicator, which shows agent i’s potential action when

Ti is exogenously set to t ∈ {0, 1}. For example, Yi(1) equals 1 if individual i votes for a Republican

candidate after watching Fox News. The econometrician never observes both Yi(0) and Yi(1) but

can only observe either of the two: that is, Yi = TiYi(1) + (1− Ti)Yi(0). Then, the fraction of the

people who take the action of interest with an exposure to persuasion, among those who would

not without it, is given by

θ = P{Yi(1) = 1|Yi(0) = 0}, (1)

1See Rapp (2010) for three technical means of persuasion in Aristotle’s Rhetoric.
2See Kirby (2008) for historic details of the public persuasion at Paul’s Cross, the open-air pulpit in St Paul’s Cathedral in
the 16th century.
3DellaVigna and Kaplan (2007) and Martin and Yurukoglu (2017) measure the persuasive effects of slanted news using data
on Fox News.
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which we call the persuasion rate. Note that θ is defined by a conditional probability so that we rule

out the case of “preaching to the converted”; if Yi(0) = 1, then individual i is already persuaded to

take the action of interest even without the persuasive treatment.4

Before we further discuss θ, it is worth making a comparison with the estimand f used in DK,

DellaVigna and Gentzkow (2010), and many others. For a binary outcome and by using DK’s

notation, f is defined by

f =
yT − yC
eT − eC

· 1
1− y0

, (2)

where T and C denote treatment and control groups (representing an instrument assignment such

as having Fox News available via local cable or not), respectively. For j ∈ {T, C}, yj is the share of

group j adopting the target behavior (e.g. voting for a Republican candidate), and ej is the share of

group j exposed to persuasion. So, f is a rescaled version of the usual Wald statistic that estimates

the local average treatment effect (LATE; see Imbens and Angrist, 1994), where the scaling factor

depends on y0, which represents the share of the converted (i.e. those who would take the action

of interest even without exposure to persuasion). Here, y0 is often unobserved, and DK propose

using yC in its place as an approximation.

Since DK first introduced the estimand f , it has been used and modified by many authors (e.g.

Enikolopov, Petrova, and Zhuravskaya, 2011; Gentzkow, Shapiro, and Sinkinson, 2011; DellaVi-

gna, Enikolopov, Mironova, Petrova, and Zhuravskaya, 2014; Bassi and Rasul, 2017; Martin and

Yurukoglu, 2017). In their survey, DellaVigna and Gentzkow (2010) use f (or its approximation)

as a key summary statistic to compare persuasive effects across different studies. However, we

note that f might not be a proper conditional probability in a heterogeneous population and the

approximation of f proposed by DK can even be larger than one. We will articulate under what

assumptions f is reduced to θ and how we should interpret f in its relationship with θ in a gen-

eral set-up. In this sense, we build on the work of DK but we add important clarifications to the

literature.

Identification of θ is challenging for various reasons, including the fact that Ti is often difficult to

observe and that it tends to be endogenous. For instance, even if subscriptions to The Washington

Post can be randomized by design (Gerber, Karlan, and Bergan, 2009, GKB hereafter), the actual

readership is difficult to observe and it can be highly correlated with the political orientation of

agents. We will address the endogeneity issue by using an instrument Zi under the assumption

4The idea of using conditional probability to define a parameter of interest can also be found in Heckman, Smith, and
Clements (1997).
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that Yi(1) ≥ Yi(0).
5 For the data issue on Ti, we note that some authors have used a micro-level

survey to obtain auxiliary data on Ti, which motivates us to consider a few different data scenarios:

the outcome and the treatment are jointly observed, they are separately observed, or the treatment

is not observed at all. Under the three scenarios, we establish the sharp identified bounds of θ.

Therefore, our work builds on the econometrics literature on partial identification (e.g. Manski,

2003, 2007; Tamer, 2010) as well as the literature on program evaluation (see Heckman and Vytlacil,

2007; Imbens and Wooldridge, 2009, for surveys of the literature).

The main findings of this paper are as follows. The persuasion rate θ is partially identified, and

its sharp lower bound remains the same across the three data scenarios if the outcome is binary;

the sharp lower bound depends only on the joint distribution of (Yi, Zi). We also obtain point and

partial identification of the local persuasion rate (i.e. the persuasion rate for the group of compliers)

under the three data scenarios. If a continuous instrument is available, then we can target a mar-

ginal persuasion rate that is akin to the marginal treatment effect (e.g. Heckman and Vytlacil, 2005).

Therefore, having a continuous instrument opens up the possibility of point identification of the

persuasion rate for the entire (or policy-relevant) population if the instrument is sufficiently rich.

If the outcome is nonbinary, then we can condition on those who would not choose the outside

option without the treatment. In this case, we show that the resulting lower bound is always no

smaller than that of the binary outcome case.

The remainder of the paper is organized as follows. In Section 2, we discuss identification of θ,

and in Section 3 we consider the case with nonbinary outcomes. In Section 4, we study the local and

marginal versions of the persuasion rate. In Section 5, we discuss our recommendations on what

to do in practice, including inferential issues. In Section 6, we provide an empirical illustration.

We conclude in Section 7. The Appendices include additional results and examples, a detailed

discussion about methods for inference, and all the proofs.

2. IDENTIFICATION OF θ

Our objective is to quantify the causal effect of an informational treatment, such as watching

a particular news channel, on convincing the agent to take a particular action of interest (e.g.

Fox News promoting Republican candidates or The Washington Post supporting Democratic can-

didates). In this section, we assume that the potential outcomes, denoted by Yi(t), are binary (i.e.

the agent taking the action of interest or not). Further, we assume that the treatment Ti is binary and

5In DK’s study, they rely on the premise that Fox News availability via local cable in 2000 seems random after controlling
for a set of covariates.
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that a binary instrument Zi is available. Later, we extend our results to the case where the potential

outcomes are multinomial. The observed outcome is denoted by Yi = TiYi(t) + (1− Ti)Yi(0), as

mentioned earlier. We begin by making the following monotonicity assumption.

Assumption A (Monotonic Treatment Response). Yi(0) ≤ Yi(1) with probability one.

Assumption A is a binary version of the monotonic treatment response (MTR) assumption used

in Manski (1997) and Manski and Pepper (2000). Under MTR, a voter who would vote for a Repub-

lican candidate without watching Fox News would vote for a Republican with an exposure to Fox

News with probability one. In Appendix A, we present a simple expected utility model to provide

a microeconomic foundation of Assumption A. The following lemma shows that Assumption A

has an important implication for θ = P{Yi(1) = 1|Yi(0) = 0}.

Lemma 1. Under Assumption A,

θ =
P{Yi(1) = 1} −P{Yi(0) = 1}

1−P{Yi(0) = 1} . (3)

Therefore, identification of θ can be achieved by identifying two counterfactual probabilities

P{Yi(1) = 1} and P{Yi(0) = 1} (i.e. we do not need to know the joint distribution of Yi(0) and

Yi(1)). In fact, as Yi(t) is binary, θ is the average treatment effect (ATE) divided by P{Yi(0) = 0}.

The key point is that Assumption A makes it possible to obtain the conditional probability θ simply

by rescaling the ATE.

The next assumption is concerned about the treatment assignment Ti and the instrument Zi.

Assumption B (No Defiers and An Exogenous Instrument). Ti has a threshold structure, i.e.

Ti = 1{Vi ≤ e(Zi)}, (4)

where Vi is uniformly distributed, and 0 ≤ e(0) < e(1) ≤ 1. Further, Zi is independent of
(
Yi(t), Vi

)
for

t = 0, 1.

Namely, the intent-to-treat (ITT) Zi is randomly assigned; however, Ti can be endogenous via the

dependence between Vi and Yi(t). The function e(·) is the propensity score or, more descriptively

in our context, it can be referred to as the exposure rate. As Vytlacil (2002) has shown, the threshold

structure in equation (4) is equivalent to assuming the absence of defiers.

In addition to Yi, Ti, and Zi, it is possible to observe covariates Xi but we suppress Xi in our iden-

tification analysis. In other words, we implicitly assume throughout the paper that all assumptions

and results are conditional on the value of Xi.
4
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As we discussed in Section 1, Ti can be difficult to observe and there are several possibilities

to consider. The simplest is that everybody complies so that there is no difference between the

actual treatment and the ITT; this case is referred to as the sharp persuasion design. When Ti and Zi

are different, which we call the fuzzy persuasion design, we consider three sampling scenarios: (i)

(Yi, Ti, Zi) is jointly observed; (ii) (Yi, Zi) is observed and information about the persuasion rate is

available from auxiliary data;6 and (iii) (Yi, Zi) is observed and no other information is available.

In the following subsections, we investigate identification of θ in each of the above scenarios.7

Let

θL =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

1−P(Yi = 1|Zi = 0)
, (5)

which is an identified parameter from the distribution of (Yi, Zi). It turns out that θL is the sharp

lower bound of θ in each of the data scenarios described in the fuzzy persuasion design.

2.1. The Sharp Persuasion Design. We start with the simplest scenario in which everybody com-

plies with the ITT.

Theorem 1. Suppose that Assumptions A and B hold. If e(1)− e(0) = 1 (i.e. Ti = Zi with probability

one), then we have P{Yi(z) = 1} = P(Yi = 1|Zi = z), and hence θ = θL.

The condition of e(1)− e(0) = 1 means that everybody is a complier, and hence there is essen-

tially no difference between Ti and Zi; so, Ti is observed and essentially randomized. However,

this is rather an exceptional situation in social sciences. The key identification question should be

how far we can go when the design is not sharp (i.e. not everybody is a complier). We answer this

question in the following subsection.

2.2. The Fuzzy Persuasion Design. In the fuzzy design, we consider the three scenarios of data

availability. We see that θ is only partially identified even in the most favorable case where the full

joint distribution of (Yi, Ti, Zi) is available, and that the sharp lower bound is always given by θL.

2.2.1. Identification with the Joint Distribution of (Yi, Ti, Zi). Even the joint distribution of (Yi, Ti, Zi)

does not generally tell us about the ATE: the only subpopulation we can learn from Z = 0 and

Z = 1 in common is the one of compliers, so the Wald statistic estimates only the LATE, not the

ATE. Therefore, θ cannot be point identified; however, we can derive its sharp bounds.

6For example, DK used town-level election data to estimate P(Yi = 1|Zi = z) and micro-level media audience data to infer
e(z) = P(Ti = 1|Zi = z).
7Throughout the discussion, we assume that Ti is correctly measured if it is observed. See Calvi, Lewbel, and Tommasi
(2018), Nguimkeu, Denteh, and Tchernis (2019), and Ura (2018) for the issues of mismeasured treatment. Their subject
matters are distinct from ours.
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Assumption C (Full Observability). The joint distribution of (Yi, Ti, Zi) is known, where both e(0) and

1− e(1) are bounded away from zero.

Theorem 2. Suppose that Assumptions A to C are satisfied. Then, the sharp identified interval of θ is given

by [θL, θU ], where θL is given in equation (5) and

θU =
P(Yi = 1, Ti = 1|Zi = 1)−P(Yi = 1, Ti = 0|Zi = 0) + 1− e(1)

1−P(Yi = 1, Ti = 0|Zi = 0)
.

To prove Theorem 2, we first derive the sharp identified bounds for P{Yi(1) = 1} and P{Yi(0) =

1} separately; we denote them by the intervals [ma, Ma] and [mb, Mb], respectively. These bounds

are special cases of Manski and Pepper (2000) under the MTR assumption coupled with the exo-

geneity of the instrument. Then, we obtain the identified bounds of θ by solving

max
a,b

and min
a,b

a− b
1− b

subject to a ∈ [ma, Ma], b ∈ [mb, Mb], a ≥ b,

after which we appeal to continuity and the intermediate value theorem for the sharpness result.

The bounds in Theorem 2 shrink to a singleton as
(
e(0), e(1)

)
approaches (0, 1), which is consis-

tent with the result in Theorem 1. Also, it is worth noting that the lower bound θL only depends

on the distribution of (Yi, Zi): observing Ti along with (Yi, Zi) helps only for the upper bound. If

e(1) is too small, then the upper bound will not be very informative: θU converges to 1 as e(1)

approaches 0; that is, if nobody reads a newspaper when they receive free subscriptions, then we

do not learn much about how “persuading” the newspaper is. However, even if e(1) approaches

1, the upper bound does not necessarily shrink to the lower bound; i.e. we do not necessarily pin

down the persuasion rate of reading the newspaper even if everybody who has free subscriptions

actually reads it.

2.2.2. Identification with the Knowledge of the Exposure Rates. As in the case of DK, the researcher may

not directly observe Ti but may have auxiliary data from which the exposure rates e(1) and e(0)

can be estimated.8 In this case, the sharp identified bounds of θ become generally wider than those

of Theorem 2.

Assumption D (Observability of Two Marginals). Only the distribution of (Yi, Zi) and the exposure

rates {e(0), e(1)} are known.

8The case in which the outcome and the treatment are separately observed belongs to an identification problem called the
ecological inference problem. For instance, Cross and Manski (2002) and Manski (2018) discuss bounding a “long regression”
by using information from a “short regression”. Their substantive concerns are distinct from ours.
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Theorem 3. Suppose that Assumptions A, B and D are satisfied. Then, the sharp identified interval of θ is

given by [θL, θUe ], where θL is given in equation (5) and

θUe =
min{1, P(Yi = 1|Zi = 1) + 1− e(1)} −max{0, P(Yi = 1|Zi = 0)− e(0)}

1−max{0, P(Yi = 1|Zi = 0)− e(0)} . (6)

Therefore, the upper bound in this case is nontrivial if and only if e(1) > P(Yi = 1|Zi = 1).

Note that it is the relative size of the take-up rate e(1) (i.e. the probability of reading a newspaper

when a free subscription to it is offered) that determines how much we can hope to learn about the

persuasion rate. The length of the identified interval becomes smaller as e(1) approaches one for

each value of e(0).

Theorem 3 focuses on the case where e(0) and e(1) are known, but it is potentially useful even

when the researcher’s prior knowledge on them is just probabilistic (e.g. one can average out e(0)

and e(1) with the prior).

2.2.3. Identification with No Information Associated with Ti. The final scenario is the least informative

one. If the researcher has no information for e(0) and e(1), then the worst possibility from The-

orem 3 is that the upper bound is equal to one. For the sake of completeness, we state this in a

separate theorem.

Assumption E (Limited Observability). No information associated with Ti is available (i.e. the distribu-

tion of (Yi, Zi) is all that is known).

Theorem 4. Suppose that Assumptions A, B and E are satisfied. Then, the sharp bound of θ is given by

[θL, 1], where θL is given in equation (5).

3. THE PERSUASION RATE WITH NONBINARY OUTCOMES

When outcomes are not binary, one might want to treat an outside option slightly differently.

In the voting example, those who would go out and vote even without any informational treat-

ment may be the relevant subpopulation to consider in defining the rate of persuasion. Below we

formalize this idea.

Suppose that S = {0, 1,−1}, where 0 is an outside option, 1 is the target action of persuasion,

and −1 represents taking any other action. For instance, taking action 0 can mean that the agent

does not vote at all, whereas taking action 1 means that the agent votes for a candidate from party

1 and taking −1 means that the agent votes for a candidate from any other party. We then denote

agent i’s potential outcomes by the vector of binary variables Yi(t) =
(
Yi0(t), Yi1(t), Yi,−1(t)

)
for t ∈

7



Jun and Lee

{0, 1}. Finally, we assume that the choices in S are exclusive and exhaustive so that ∑j∈S Yij(t) =

1 for t ∈ {0, 1}.9 Similarly to the binary case, we impose monotonicity on the target action of

persuasion (i.e. Yi1(1) ≥ Yi1(0) with probability one). The following assumption summarizes our

set-up.

Assumption F (Multinomial Outcomes). Yi1(1) ≥ Yi1(0) and ∑j∈S Yij(t) = 1 for t = 0, 1 with

probability one.

If we only focus on the target action Yi1(t), then the persuasion rate θ can be defined as in Sec-

tion 2 (i.e. θ = P{Yi1(1) = 1|Yi1(0) = 0}). However, if one wants to be explicit about the presence

of the outside option, then conditioning on those who would not choose the outside option without

the treatment seems appropriate to define the rate of persuasion; that is,

θmult = P{Yi(1) = (0, 1, 0) | Yi(0) = (0, 0, 1)} = P{Yi1(1) = 1 | Yi0(0) = 0, Yi1(0) = 0}, (7)

where the second equality uses Assumption F. Note that θmult is a different parameter from θ, where

θmult now measures the fraction of the people who would vote for the candidate of interest among

those who would still vote but for somebody else without the persuasive treatment. The advantage

of having a multinomial model is that we can pay attention to this extra layer of conditioning that

comes from the presence of an outside option.

Similarly to the binary case, Assumption F enables us to express θmult in terms of the marginal

distributions of the potential outcomes.

Lemma 2. Under Assumption F, we have

θmult =
P{Yi1(1) = 1} −P{Yi1(0) = 1}

1−P{Yi0(0) = 1} −P{Yi1(0) = 1} .

Lemma 2 shows that the conditional probability θmult can be obtained by simply rescaling the

ATE as before. One complication (compared with the binary case) is that we have an extra term in

the denominator (i.e. P{Yi0(0) = 1}), which substantially complicates the identification analysis.

The assumption of Yi1(1) ≥ Yi1(0) is sufficient for Lemma 2, but it is not necessary. Indeed,

Assumption F rules out the possibility of having Yi(1) = (1, 0, 0) and Yi(0) = (0, 1, 0), but this is an

irrelevant event for θmult because θmult focuses only on the case where Yi0(t) = 0 for both t = 0, 1.

However, Assumption F turns out to be quite convenient to obtain informative bounds of θmult.

9Here, we note that there is no loss of generality in assuming that S has only three options; if not, we can simply define
Yi,−1(t) = ∑j∈S\{0,1} Yij(t).
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Assumption G (No Defiers and an Exogenous Instrument). Ti satisfies Assumption B. Further, for

t = 0, 1 and j ∈ {0, 1,−1},
(
Yij(t), Vi

)
is independent of Zi.

Assumption G is a trivial extension of Assumption B. In Appendix C, we provide a detailed

identification analysis of θmult under Assumption G in each of the three scenarios of data avail-

ability. However, we present here only the sharp lower bound of θmult when the joint distribu-

tion of (Yi, Ti, Zi) is available, as it seems to be the most useful result in practice. Here, Yi =

(Yi0, Yi1, Yi,−1) = TiYi(1) + (1− Ti)Yi(0) is now a three-dimensional vector of observed binary vari-

ables.

Theorem 5. Suppose that Assumptions C, F and G are satisfied. If P(Yi1 = 1|Zi = 1) + P(Yi0 = 1, Ti =

0|Zi = 0) < 1, then the lower bound of the sharp identified interval of θmult is given by

θL,mult =
P(Yi1 = 1|Zi = 1)−P(Yi1 = 1|Zi = 0)

1−P(Yi0 = 1, Ti = 0|Zi = 0)−P(Yi1 = 1|Zi = 0)
.

Theorem 5 shows the sharp lower bound of θmult in the most favorable data scenario; the com-

plete characterization of the sharp identified set of θmult in the other data scenarios can be found

in Appendix C. The condition of P(Yi1 = 1|Zi = 1) + P(Yi0 = 1, Ti = 0|Zi = 0) ≥ 1 represents

an extreme situation, in which case θmult can be shown to be equal to 1. The intuition is clear; if

there are too many people who do not vote while they are untreated, then there are too few peo-

ple to “persuade” as θmult focuses only on the group of people who would vote even without the

treatment. Including this trivial situation, the sharp lower bound θL,mult is always no less than that

of the binary persuasion rate. Therefore, ignoring the presence of an outside option can lead to

underestimating the persuasive effect of the treatment outside the people who do not vote without

the treatment.

Unlike the lower bound θL in the binary case, θL,mult depends on the joint distribution of (Yi, Ti)

given Zi. Therefore, if the sampling scheme does not allow the econometrician to access the full

joint distribution, then even the lower bound will change. By applying a version of the Fréchet–

Hoeffding bounds, we can derive the sharp identified bounds of θmult under the other two sampling

schemes (i.e. Assumptions D and E). Not surprisingly, in the least informative case of Assump-

tion E, the sharp lower bound of θmult becomes identical to that of θ (i.e. θL).

9
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4. THE LOCAL AND MARGINAL PERSUASION RATES

Focusing on the binary case again, we consider the local and marginal persuasion rates that are

defined as follows: for 0 < v < 1, θlocal = P{Yi(1) = 1|Yi(0) = 0, e(0) < Vi ≤ e(1)},

θmte(v) = P{Yi(1) = 1|Yi(0) = 0, Vi = v}.
(8)

Here, θlocal is the persuasion rate for the subpopulation characterized by e(0) < Vi ≤ e(1), that is,

the compliers (e.g. Imbens and Angrist, 1994), whereas θmte(v) is for the subpopulation such that

Vi = v (e.g. Heckman and Vytlacil, 2005).

First, we obtain identification results for θlocal under the three sampling scenarios in the fuzzy

persuasion design. The first step for this purpose is to note that the same reasoning as Lemma 1

yields

θlocal =
E{Yi(1)−Yi(0) | e(0) < Vi ≤ e(1)}

P(Yi(0) = 0 | e(0) < Vi ≤ e(1)} , (9)

where the numerator is the LATE, which has received great attention in the econometrics literature

(see Deaton, 2010; Heckman, 2010; Imbens, 2010, for a recent debate). The denominator that rescales

the LATE is also conditioned on the compliers so that we achieve proper conditioning again.

Just like the LATE, it is contentious whether or not θlocal should be the parameter of interest,

because the compliers are concerned with an unidentified subgroup of the population. We take a

practical view that the identification results on θlocal can complement the results obtained in Sec-

tion 2. The following theorem shows the identification of θlocal under the three scenarios of data

availability.

Theorem 6. Suppose that Assumptions A and B are satisfied.

(i) Under Assumption C, θlocal is point identified by θlocal = θ∗, where

θ∗ =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

P(Yi = 0, Ti = 0|Zi = 0)−P(Yi = 0, Ti = 0|Zi = 1)
.

(ii) Under Assumption D, the sharp identified interval of θlocal is given by [θ∗L, 1], where

θ∗L =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

min{1−P(Yi = 1|Zi = 0), e(1)− e(0)} .10

(iii) Under Assumption E, the sharp identified interval of θlocal coincides with that of θ, i.e.
[
θL, 1

]
.

10Alternatively, θ∗L can be written as the maximum between θL and the probability limit of the Wald statistic.
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The identification of the LATE requires the distribution of (Ti, Zi) and that of (Yi, Zi) separately,

but not the joint distribution of (Yi, Ti, Zi). Unlike the LATE, the point identification in Theorem 6(i)

demands the knowledge of the joint distribution of (Yi, Ti, Zi).
11 Theorem 6(ii) shows that this

requirement is not only sufficient but also necessary to achieve the point identification of θlocal.

The local persuasion rate θlocal represents the average persuasive effect for a population that is

different from the entire population. Given this caveat, it is interesting to note that, in Theorem 6(ii),

the upper bound of θlocal is always trivial in contrast to θ, but the lower bound of θlocal can never

be worse than that of θ. Therefore, in principle, the length of the identified interval of θ can be

smaller than that of θlocal. If Ti is not observed at all, then there is no advantage in focusing on the

compliers. Theorem 6(iii) confirms the intuition that the bounds for θlocal are identical to those for

θ if the distribution of (Yi, Zi) is the only piece of information available. This corresponds to an

uninteresting case for θlocal though, as we have no information on compliers.

Data requirement for the identification of θmte(v) is generally quite demanding; if Yi and Ti

are jointly observed along with a continuous instrument Zi, then θmte(v) can be point identified

as in Heckman and Vytlacil (2005); Carneiro, Heckman, and Vytlacil (2011). Examples of con-

tinuous instruments can be found in the literature on the media effects on voting. For instance,

Enikolopov, Petrova, and Zhuravskaya (2011) and DellaVigna, Enikolopov, Mironova, Petrova, and

Zhuravskaya (2014) use the signal strength of NTV and Serbian radio as instruments, respectively;

in both of the papers, (Yi, Ti, Zi) are jointly observed.

The following assumption describes the situation in which we can obtain point identification

of θmte(v). We use the standard results in the literature (e.g. Heckman and Vytlacil, 2005) for the

subsequent theorem.

Assumption H (Marginal Treatment Effects). (i) The joint distribution of (Yi, Ti, Zi) is known.

(ii) Ti has the threshold structure in equation (4), where Vi is uniformly distributed, and Zi is indepen-

dent of
(
Yi(t), Vi

)
for t = 0, 1.

(iii) The distribution of e(Zi) is absolutely continuous with respect to Lebesgue measure, where v is in

the interior of the support of e(Zi).

Theorem 7. Suppose that Assumptions A and H are satisfied. Then θmte(v) is point identified by

θmte(v) =
∂P{Yi = 1|e(Zi) = e}/∂e

∣∣
e=v

1− ∂P{Yi = 1, Ti = 0|e(Zi) = e}/∂e
∣∣
e=v

, (10)

11The denominator of equation (9) requires that we know the marginal distribution of Yi(0) for the compliers. Imbens and
Rubin (1997) show that the marginal distributions of Yi(1) and Yi(0) for the compliers are identified if the joint distribution
of (Yi , Ti , Zi) is known; however, they did not consider the local persuasion rate.
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provided that P{Yi = 1|e(Zi) = e} and P{Yi = 1, Ti = 0|e(Zi) = e} are continuously differentiable with

respect to e.

Theorem 7 does not consider the other two scenarios of data availability. This is mainly because

continuous instruments are rare in the context of persuasion and we are not aware of any applica-

tions where continuous instruments are available while the outcome and treatment are not jointly

observed.

If the support of the exposure rate e(Zi) is equal to the unit interval [0, 1], then Theorem 7 shows

the identification of θmte(v) for all v in the unit interval. Then, we can use θmte(v) to construct

different policy-oriented quantities as in Heckman and Vytlacil (2005) and Carneiro, Heckman,

and Vytlacil (2011). For instance, the persuasion rate of the entire population θ will be given by

θ =
∫ 1

0
θmte(v)dv,

because Vi is uniformly distributed on the unit interval.

5. DISCUSSION: MAIN TAKEAWAYS AND INFERENTIAL ISSUES

In this section, we focus on the binary outcome/binary instrument case to discuss the main

takeaways from our identification results as well as issues on estimation and inference; the same

principles also apply to the multinomial case.

The population version of DK’s proposal to approximate f is

θ̃DK =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

e(1)− e(0)
1

1−P(Yi = 1|Zi = 0)
. (11)

Note that θ̃DK would be a well-defined conditional probability if there were no exposure mea-

sures e(1), e(0) and Yi were replaced with Ti, which is equivalent to the sharp persuasion design.12

However, it turns out that θ̃DK may not be a conditional probability in general: see Section 6 for

numerical demonstration. Therefore, this paper clarifies identification issues when we insert expo-

sure as a choice variable and employ a proper causal framework that is used in policy evaluation

to model two causal links (i.e. Zi → Ti and Ti → Yi).
13

12The only difference is now relabeling Yi , Ti with Ti , Zi , respectively.
13We are grateful to an anonymous referee who provided us with insightful comments.
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In the most favorable data scenario, we recommend reporting [θL, θU ] along with θ∗; these can

be consistently estimated by their sample analogs. If (Yi, Zi) is observed with some auxiliary infor-

mation for e(1) and e(0), then [θL, θUe ] and [θ∗L, 1] should be reported. If Ti is not observed at all,

then θL is the only parameter we can hope to learn about.

Note that θL should always be estimated as it only requires data on (Yi, Zi). Because the actual

Ti can be difficult to observe, some authors, such as DK and GKB, have used a micro-level survey

to obtain data on Ti, which seems quite costly. However, the value of an attempt to observe Ti can

be limited, depending on which parameter the researcher wants to learn about. For instance, if the

researcher cares about the persuasion rate of the entire population, then the value of observing Ti

is only in tightening the upper bound. If the group of compliers is of interest, then whether we

observe Ti or not, and how we observe it, can be relevant issues; we have θ∗L ≥ θL in the second

data scenario and θ∗ is point identified if (Yi, Ti, Zi) is jointly observed. If Zi is continuously dis-

tributed, the value of observing (Yi, Ti, Zi) jointly increases dramatically as well. In summary, our

identification analysis shows that the value of observing Ti depends crucially on which population

is of interest to the researcher.

TABLE 1. Persuasion Rates: Papers on Voter Turnout

Paper ŷ(1) ŷ(0) ê(1)− ê(0) ˆ̃θDK θ̂L θ̂∗L
(1) (2) (3) (4) (5) (6)

Green and Gerber (2000) 47.2 44.8 27.9 15.6 4.3 8.6

Green, Gerber, and Nickerson (2003) 31.0 28.6 29.3 11.5 3.4 8.2

Green and Gerber (2001) 71.1 66.0 73.7 20.4 15.0 15.0

Green and Gerber (2001) 41.6 40.5 41.4 4.5 1.8 2.7

Gentzkow (2006) 45.5 43.5 80.0 4.4 3.5 3.5

Gentzkow, Shapiro, and Sinkinson (2011) 70.0 69.0 25.0 12.9 3.2 4.0

a The outcome variable is voter turnout except for Gentzkow (2006), where exposure to television discour-
aged voters to go to the polls. Thus, to have positive persuasive effects in all rows, the outcome variable
for Gentzkow (2006) is not to vote.

b In columns (1) and (2), ŷ(t) denotes estimates of P(Yi = 1|Zi = t) for t = 1, 0.
c θ̃DK is the persuasion rate reported in DellaVigna and Gentzkow (2010, table 1).
d θL and θ∗L are the sharp lower bounds of the average and local persuasion rates, respectively.
e The third row corresponds to the row in table 1 of DellaVigna and Gentzkow (2010) under the treatment

labeled “phone calls by youth vote”.
f The fourth row corresponds to the row in table 1 of DellaVigna and Gentzkow (2010) under the treatment

labeled “phone calls 18–30-year-olds”.
g Each entry in the table is a percentage.
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To illustrate the importance of measuring the effect of persuasion properly, we compare DK’s

persuasion rates with our lower bounds in Table 1. Specifically, we focus on the results reported

in DellaVigna and Gentzkow (2010, their table 1) when the outcome variable is voter turnout. We

have chosen this type of study as the turnout is among the most studied outcome variables in the

literature and it is naturally a binary measure. It can be seen that DK’s persuasion rates are higher

than the lower bound of θ or that of θlocal, thereby suggesting that the persuasive effects might not

be as large as those reported in DellaVigna and Gentzkow (2010, table 1).

As we are under partial identification, inference should also account for that. The method pro-

posed by Stoye (2009) is useful for that purpose, at least in the most favorable data scenario, in

which case the sample analog principle and the Delta method show that we can construct the es-

timators θ̂L and θ̂U that are asymptotically jointly normal. Therefore, by Stoye (2009), a (1 − α)

confidence interval for θ can be obtained by [θ̂L − cασ̂L, θ̂U + cασ̂U ], where σ̂L and σ̂U are the esti-

mated standard errors of θ̂L and θ̂U , respectively, and cα is chosen by solving

Φ
(

cα +
∆̂

max(σ̂L, σ̂U)

)
−Φ(−cα) = 1− α,

where Φ is the distribution function of the standard normal and ∆̂ is the estimated length of the

identified interval.

The second data scenario is slightly more complicated, because θUe and θ∗L contain the min or

max function that is not smooth; so, the Delta method does not apply. In Appendices F and G,

we propose a two-step method for inference to overcome this problem, which we have applied

to the empirical example we discuss in Section 6. In the third data scheme, confidence intervals

for θ and θ∗ always coincide and they can be obtained by using a one-side critical value on θ̂L.

Specifically, they are given by [θ̂L − z1−ασ̂L, 1], where z1−α is the (1− α) quantile of the standard

normal distribution. Please refer to Appendices F and G for a more detailed discussion on inference.

6. AN EMPIRICAL EXAMPLE

In this section, we illustrate our proposed methods using data from GKB, who report findings

from a field experiment to measure the effect of political news. We have chosen this example be-

cause it contains a credible binary instrument from the field experiment and we can also illustrate

all of the three sampling scenarios as well as the case of nonbinary outcomes. In GKB, there are

three statuses in the intention to treat: a control group, an offer of free subscription to The Washing-

ton Post, and one to The Washington Times. To illustrate the usefulness of our paper, we focus on The
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Washington Post and drop all observations from The Washington Times subscription. That is, Zi = 1

if the ith individual received free subscription to The Washington Post, and Zi = 0 if not.

Focusing on the ITT analysis, GKB have reported ITT estimates for various outcomes Yi. DellaV-

igna and Gentzkow (2010) compute persuasion rates for GKB, for which they simply set Ti = 1 if

the ith individual opted into the free subscription and Ti = 0 if they opted out of it. In this section,

for the purpose of illustrating our identification results, we consider a different treatment variable:

Ti = 1 if the ith individual reads a newspaper at least several times per week and Ti = 0 otherwise,

which is a variable that GKB kept track of in a follow-up survey. Therefore, the relevant treatment

we consider differs from that of DellaVigna and Gentzkow (2010), but it is whether individuals

have actually read the newspaper or not. The outcome variables we consider are as follows. For the

binary case, Yi = 1 if the ith individual reported voting for the Democratic candidate in the 2005

gubernatorial election, and Yi = 0 if the subject did not vote for the Democratic candidate or did

not vote at all. For the multinomial case, not voting at all is treated as an outside option. We use

only a subsample of the GKB data with those who responded to the follow-up survey to use in-

formation on (Yi, Ti, Zi) jointly. After dropping observations for The Washington Times subscription

and removing missing data, we summarize the GKB data in Table 2. Although the joint distribution

of (Yi, Ti, Zi) is observed in this example, we also consider using the two marginals of (Yi, Zi) and

(Ti, Zi) separately, to make a comparison. The estimates are summarized in Table 3. Because the

size of the sample extract we use is relatively modest (n = 701) for an interval-identified object,

we report the 80% confidence intervals obtained by the inference methods described in Section 5 as

well as in Appendices F and G.

First, we discuss the case where the full joint distribution of (Yi, Ti, Zi) is used. In this data

scenario, the average effect of persuasion by reading the newspaper is bounded between 7% and

63%. In contrast, the persuasion rate for the group of compliers is point estimated by 81%. It is

interesting to note that the estimate of θlocal is so large that it is greater than the upper bound of θ.

This suggests that individuals are highly heterogeneous in this example, indicating that θ̃DK might

not be a well-defined conditional probability here. Indeed, the estimate of θ̃DK in equation (11) is
ˆ̃θDK = 1.1027, which is greater than one.

When the marginals of (Yi, Zi) and (Ti, Zi) are used separately, the upper bound of θ increases

from 63% to 78%. Further, θlocal is no longer point estimated but we only know that it is bounded

between 78% and 100%. This difference illustrates the loss of identification power if we do not

observe the joint distribution of (Yi, Ti, Zi).
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TABLE 2. Summary Statistics of the GKB Data

The Washington Post (Zi = 1)

Reads a newspaper Total

Voted for Democrat Ti = 0 Ti = 1

Yi = 0 94 93 187

Yi = 1 31 68 99

Total 125 161 286

Control (Zi = 0)

Reads a newspaper Total

Voted for Democrat Ti = 0 Ti = 1

Yi = 0 162 130 292

Yi = 1 46 77 123

Total 208 207 415

The GKB data are used after dropping observations for The Washington Times subscription and removing
missing data.

TABLE 3. Estimates of the Key Parameters

(Yi, Ti, Zi) (Yi, Zi) and (Ti, Zi) (Yi, Zi) only

ITT 0.0498

{0.0036, 0.0959}
θ [0.0707, 0.6343] [0.0707, 0.7832] [0.0707, 1]

{0.0289, 0.6610} {0.0286, 0.8143} {0.0288, 1}
LATE 0.7759 -

{0, 1}
θlocal 0.8067 [0.7759, 1] [0.0707, 1]

{0.1243, 1} {0.0069, 1} {0.0288, 1}
a The first and third rows show the estimates of ITT and LATE, respectively.

The second row corresponds to [θ̂L, θ̂U ], [θ̂L, θ̂Ue ], and [θ̂L, 1], respectively.
The fourth row shows θ̂∗, [θ̂∗L, 1], and [θ̂L, 1], respectively.

b 80% confidence intervals are given in curly braces.

Finally, we estimate the lower bound of θmult in equation (7) with the outside action of not voting

at all. By additionally conditioning on those who would vote even without reading the newspa-

per, the estimated lower bound of the average persuasion increases from 0.0707 (0.0289) to 0.0975

(0.0554), where the numbers in the parentheses are the left-end point of the 80% confidence inter-

vals. Therefore, in terms of the lower bound, the persuasive effect increases from 5% in the ITT
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analysis to 7% in the average persuasion rate, and to 10% if we further focus on those who would

vote without reading the newspaper.

7. CONCLUSIONS

We have set up a simple econometric model of persuasion, we have introduced several param-

eters of interest, and we have analyzed their identification. The empirical example in Section 6 as

well as the examples in Appendices D and E demonstrate that the persuasive effects are highly

heterogeneous in the settings of media and fund raising. We have focused on the case of binary

treatments. In applications, treatments could be multivalued (e.g. watching Fox News, CNN or

MSNBC). It would be fruitful to build on recent developments in multiple treatments (e.g. Heck-

man and Pinto, 2018; Lee and Salanié, 2018) to investigate identification of persuasive effects. It

would also be interesting to estimate deep parameters in an economic model of persuasion by us-

ing a more structural approach in the set-up of multiple treatments. These are topics of future

research.

APPENDICES TO “IDENTIFYING THE EFFECT OF PERSUASION”

The appendices of the paper are grouped into four parts. Part I includes additional results that

are omitted from the main text. In appendix A, we present a simple economic model to motivate

our setup. Focusing on a binary treatment and a binary outcome, we formulate a model of per-

suasion within the framework of expected utility maximization. This formulation naturally leads

to a potential outcome setup with a certain monotonicity restriction. In appendix B, we clarify the

difference between f defined in equation (2) and θ as well as the relationship between f and θlocal.

In appendix C, we give further results on identification with nonbinary outcomes.

Part II provides additional empirical examples. In appendix D, we revisit the empirical literature

on the effects of news media on voting, where we apply our identification results to two published

articles. In particular, when we revisit DK using their original data, we find that the identification

region for the persuasion rate θ is between 1% and 99% and that the lower bound for the local

persuasion rate θlocal is either 12% or 37%, depending on the specification of the fixed effects. These

results suggest that the persuasive effect of Fox News is fairly large for compliers, i.e. those who

would watch Fox News if and only if it is randomly available, but that DK’s data are uninformative

about the general population. In appendix E, we look at the literature on door-to-door fund raising

and we illustrate the usefulness of our results by applying them to two published papers.
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Part III deals with estimation and inference problems. In appendix F, we explain methods for

Inference on the average persuasion rate; in appendix G, we describe methods for Inference on the

local persuasion rate. In appendix H, we consider semiparametrically efficient estimation of the

two key parameters, i.e. the lower bounds of θ and θlocal, and we provide an empirical illustration.

Part IV, which is appendix I, contains all the proofs.

PART I.

APPENDIX A. A MICROECONOMIC FOUNDATION FOR ASSUMPTION A

In this section, we consider a binary choice problem under binary states. The states are unknown

to the agent at the time of the decision and the agent relies on her subjective belief about them to

make a decision. Suppose that two possible states are denoted by S ∈ S = {High, Low}. Let

Ti ∈ {0, 1} indicate individual i’s status of the informational treatment. Further, let qi(t) describe

individual i’s subjective belief about the state when Ti is set to t ∈ {0, 1}: i.e. qi(t) = P(S =

High|Ti = t, Ii), where Ii denotes all other information available to individual i. Table A.1 describes

the utility individual i receives from each choice conditional on the state. The payoffs matrix in

table A.1 is from Bergemann and Morris (2019, see matrix (5)).

TABLE A.1. Utility by choice and state

S = Low S = High

Vote (1) −1 Ui ≥ 0

Not vote (0) 0 0

The utility from option 0 is normalized to be 0 for each state. Since the expected utility is all that

matters for the decision, the utility from option 1 when the state is “low” is normalized to be −1:

the sign restrictions are to make the choice nontrivial. The utility term Ui is not observed by the

econometrician.

Suppose that individual i maximizes her expected utility. Then, individual i chooses option 1 if

and only if her expected utility, −{1− qi(t)}+ qi(t)Ui for t ∈ {0, 1}, is positive with her belief qi(t)

about the state. Therefore, when the informational treatment is set to be t ∈ {0, 1}, the potential

outcome Yi(t) can be written as follows:

Yi(t) = 1
[
−
{

1− qi(t)
}
+ qi(t)Ui ≥ 0

]
, (A.1)

where 1[·] is the usual indicator function. We now make the following assumptions.
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Assumption A.1. Ui has a conditional density f {·|qi(0), qi(1)} such that f {u|qi(0), qi(1)} > 0 for all

u ∈ [0, ∞) with probability one.

Assumption A.2. qi(0) ≤ qi(1) with probability one.

Assumption A.1 says that Ui is continuously distributed given qi(0), qi(1). However, it does

not rule out the possibility that Ui and qi(t) are dependent on each other. Assumption A.2 simply

means that the informational treatment may shift an agent’s belief only in one direction.

Lemma A.1. Under assumption A.1, assumption A.2 is equivalent to Yi(0) ≤ Yi(1) with probability one.

Therefore, lemma A.1 provides a microeconomic foundation for assumption A.

APPENDIX B. MEASURING PERSUASIVE EFFECTS IN THE LITERATURE

We now discuss the relationship between our parameters of persuasive effects and the ones that

were used in the literature. For this purpose we focus on the case with binary outcomes and a

binary instrument.

The population version of DK’s proposal f is

θDK =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

e(1)− e(0)
1

1−P{Yi(0) = 1} , (A.2)

which is often approximated by

θ̃DK =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

e(1)− e(0)
1

1−P(Yi = 1|Zi = 0)
. (A.3)

Note here that θ̃DK does not require any knowledge about the joint distribution of (Yi, Ti) given Zi.

We now discuss the relationship between θ, θlocal, and θDK. By equation (A.24) in the proof of

theorem 6, we have

P{Yi(0) = 0}θDK = P{Yi(0) = 0|e(0) < Vi ≤ e(1)}θlocal = E{Yi(1)−Yi(0)|e(0) < Vi ≤ e(1)}

under assumptions A and B. Further, recall from lemma 1 that

P{Yi(0) = 0}θ = E{Yi(1)−Yi(0)}.

Therefore, θ, θlocal, and θDK are all different parameters in general. For example, θDK rescales the

LATE with an unconditional probability, and hence it does not render a well–defined conditional

probability in general.
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There are some special cases where the three parameters coincide. For example, θ = θDK holds

if and only if the ATE equals the LATE. This happens, for example, if at least one of the following

three conditions holds:

(i) the entire population consists of compliers, i.e. e(0) = 0 and e(1) = 1, as in the sharp

persuasion design;

(ii) Yi(1)−Yi(0) is a constant;

(iii) Vi is independent of
(
qi(t), Ui

)
for t = 0, 1, in which case the potential outcome Yi(t) is

independent of Ti conditional on Zi.

Condition (ii) corresponds to the situation with no heterogeneity in the treatment effect. This is

probably the least interesting condition because there are only two unrealistic possibilities for this:

either Yi(1) − Yi(0) = 1 (everyone is persuaded) or Yi(1) − Yi(0) = 0 (no one has room for per-

suasion). Under condition (i), there is no difference between the intent–to–treat and the actual

treatment, in which case randomizing the intent–to–treat is sufficient to identify θ. Condition (iii)

is often referred to as the condition of unconfoundedness or selection on observables in econometrics.

Since P{Yi(0) = 1} = P{Yi(0) = 1 | e(0) < Vi ≤ e(1)} under conditions (i) or (iii), we have

θ = θlocal = θDK under either of the two conditions.

Unlike the three parameters, θ̃DK generally does not measure the effect of persuasion even under

condition (iii). However, as DK correctly pointed out, it is an approximation of θDK(= θ = θlocal)

when e(0) is close to zero or θ = 0.14 θ̃DK has some interesting features: observing the two

marginals of (Yi, Zi) and (Ti, Zi) is sufficient for its identification, and it has a simple lower bound

θL that can be identified without observing Ti at all. Indeed, DellaVigna and Gentzkow (2010) ex-

tensively reports θ̃DK or its lower bound θL, depending on whether Ti is observed or not. However,

θ̃DK should be interpreted with caution: θL is always a meaningful estimand but θ̃DK is not. When

information about e(0) and e(1) is available, it seems a better practice to report θL together with θ∗L

than to estimate θ̃DK.

It is worth pointing out that θL is not only a lower bound of θ̃DK but also the sharp lower bound

of θ in a much more general sense. Specifically, neither condition (iii) nor approximation by θ̃DK

is needed, and therefore the bound is robust to both the presence of endogeneity in the treatment

assignment and poor approximation of θDK by θ̃DK.

Finally, as an aside we point out that without condition (iii), θDK does not measure the persuasion

rate of any subpopulation correctly: the first factor on the right–hand side of equation (A.2) focuses

14Under condition (iii), we have P(Yi = 1|Zi = z) = P(Yi = 1, Ti = 1|Zi = z) + P(Yi = 1, Ti = 0|Zi = z) = P{Yi(0) =
1}+

[
P{Yi(1) = 1} −P{Yi(0) = 1}

]
e(z).
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on a subpopulation of “compliers,” while the second factor is not conditioned on the complier

group.

APPENDIX C. FURTHER RESULTS ON IDENTIFICATION WITH NONBINARY OUTCOMES

In this section we provide further results on identification with nonbinary outcomes. In order to

present the results, we introduce the following notation. Let

pj(y|z) = P(Yij = y|Zi = z) and pj(y, t|z) = P(Yij = y, Ti = t|Zi = z). (A.4)

The first theorem is a complete characterization of the sharp identified set of θmult when (Yi, Ti, Zi)

is jointly observed.

Theorem A.1. Suppose that assumptions C, F and G are satisfied. Then, the sharp identified set of θmult is

given as follows.

(i) If p1(1|1) + p0(1, 0|0) ≥ 1, then θmult = 1;

(ii) If p1(1|1) + p0(1, 0|0) < 1 ≤ p1(1, 1|1) + p0(1, 0|0) + 1− e(1) + e(0), then

p1(1|1)− p1(1|0)
1− p0(1, 0|0)− p1(1|0)

≤ θmult ≤ 1.

(iii) If p1(1, 1|1) + p0(1, 0|0) + 1− e(1) + e(0) < 1, then

p1(1|1)− p1(1|0)
1− p0(1, 0|0)− p1(1|0)

≤ θmult ≤
p1(1, 1|1) + 1− e(1)− p1(1, 0|0)

1− p0(1, 0|0)− p1(1, 0|0) .

We now present the results under assumption D.

Theorem A.2. Suppose that assumptions F and G are satisfied. Further, suppose that the econometrician

observes the distribution of (Yi, Zi) with the knowledge of the exposure rates e(0) and e(1). Then, the sharp

identified set of θmult is given as follows.

(i) If p1(1|1) + max{0, p0(1|0)− e(0)} ≥ 1, then θmult = 1;

(ii) If p1(1|1) +max{0, p0(1|0)− e(0)} < 1 ≤ min{p1(1|1), e(1)}+min{p0(1|0), 1− e(0)}+

1− e(1) + e(0), then

max
{

p1(1|1)− p1(1|0)
1− p1(1|0)

,
p1(1|1)− p1(1|0)

1− p0(1|0) + e(0)− p1(1|0)

}
≤ θmult ≤ 1.

(iii) If min{p1(1|1), e(1)}+ min{p0(1|0), 1− e(0)}+ 1− e(1) + e(0) < 1, then

max
{

p1(1|1)− p1(1|0)
1− p1(1|0)

,
p1(1|1)− p1(1|0)

1− p0(1|0) + e(0)− p1(1|0)

}
≤ θmult
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≤ min{p1(1|1), e(1)}+ 1− e(1)−max{0, p1(1|0)− e(0)}
1−min{p0(1|0), 1− e(0)}+ e(0)−max{0, p1(1|0)− e(0)} .

We finally give the result under the assumption that Ti is not observed at all.

Theorem A.3. Suppose that assumptions F and G are satisfied. Further, suppose that the econometrician

observes the distribution of (Yi, Zi) without the knowledge of the exposure rates e(0) and e(1). Then, the

sharp identified set of θmult is the same as the binary case, i.e.

p1(1|1)− p1(1|0)
1− p1(1|0)

≤ θmult ≤ 1.

Therefore, unlike the binary case, the sharp lower bound of θmult depends on the sampling

scheme. If Ti is not observed at all, then observing the choices of the outside option does not help

to infer the persuasion rate with the extra conditioning on those who would participate without

the treatment.

PART II.

APPENDIX D. ADDITIONAL EXAMPLES: THE EFFECTS OF MEDIA ON VOTING

In this section we revisit the recent empirical literature on the effects of media on voting and

apply our identification results.

D.1. The Effect of Fox News: DellaVigna and Kaplan (2007) Revisited. In DK, the entry of Fox

News in cable markets plays a role of an instrument conditional on a set of covariates. That is, Zi is

a binary variable that equals one if Fox News was part of local cable package in the town where the

ith individual was living in 2000. To apply our result to DK, let Yi be the binary dependent variable

that equals one if individual i voted for the Republican candidate in the 2000 presidential election.

As DK argue in their paper, Fox News availability in 2000 is likely to be idiosyncratic, only after

controlling for a set of covariates. We will be explicit about conditioning on covariates Xi to apply

our identification results, and we write the lower bound as a function of the values of Xi: i.e.

θ̃L(x) =
P(Yi = 1|Zi = 1, Xi = x)−P(Yi = 1|Zi = 0, Xi = x)

1−P(Yi = 1|Zi = 0, Xi = x)
, (A.5)

which is the sharp lower bound of P{Yi(1) = 1|Yi(0) = 0, Xi = x}, the conditional persuasion rate.

Then, to obtain the lower bound for the persuasion rate in the population, we integrate (A.5) with

respect to the distribution FX of Xi, so that

θL =
∫

θ̃L(x)dFX(x).
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Note that Xi is first controlled for and is averaged out.

To estimate θL, we use DK’s data15 and adopt similar specifications as in DK. They estimated

P(Yi = 1|Zi, Xi) using a town–level linear regression model, where the dependent variable is the

Republican two–party vote share for the 2000 presidential election minus the same variable for the

1996 election. To be consistent with our econometric framework, we modify the dependent variable

to be the votes cast for the Republican candidate in the 2000 presidential election divided by the

population of age 18 and older. Recall that in our setup, Yi = 0 if individual i did not voted for

the Republican candidate. This event includes the case of voting for different candidates or that of

not voting for any candidate at all. As the town–level covariates, we include the Republican vote

share as a share of the voting–age population in the 1996 election, census controls for both 1990 and

2000, cable system controls, and U.S. House district fixed effects (or county fixed effects). These

specifications correspond to the main specifications of DK (see columns (4) and (5) of table IV in

DK). In the regression, the town–level observations are weighted by the population of age 18 and

older in 1996.

DK used two different data sources for (Yi, Zi) and (Ti, Zi). Hence, we can look at the upper

bound for θ and the lower bound for θlocal using these. Again, making use of the covariates explic-

itly, we rewrite (6) as

θUe =
∫

θ̃Ue(x)dFX(x),

where θ̃Ue(x) equals

min{1, P(Yi = 1|Zi = 1, Xi = x) + 1− e(1, x)} −max{0, P(Yi = 1|Zi = 0, Xi = x)− e(0, x)}
1−max{0, P(Yi = 1|Zi = 0, Xi = x)− e(0, x)} ,

and e(z, x) = P(Ti = 1|Zi = z, Xi = x). We also re-write the bounds in part (ii) of Theorem 6 as

∫
P(Yi = 1|Zi = 1, Xi = x)−P(Yi = 1|Zi = 0, Xi = x)
min{1−P(Yi = 1|Zi = 0, Xi = x), e(1, x)− e(0, x)} dFX

(
x|e(0) < Vi ≤ e(1)

)
≤ θlocal ≤ 1. (A.6)

By Bayes’ theorem, the lower bound in (A.6) can be re-written as∫
P(Yi = 1|Zi = 1, Xi = x)−P(Yi = 1|Zi = 0, Xi = x)
min{1−P(Yi = 1|Zi = 0, Xi = x), e(1, x)− e(0, x)} dFX(x|e(0) < Vi ≤ e(1))

=
∫

P(Yi = 1|Zi = 1, Xi = x)−P(Yi = 1|Zi = 0, Xi = x)
min{1−P(Yi = 1|Zi = 0, Xi = x), e(1, x)− e(0, x)}

e(1, x)− e(0, x)∫
{e(1, x)− e(0, x)}dFX(x)

dFX(x),

15The data used in DK are available at http://eml.berkeley.edu/~sdellavi/index.html.
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which can be estimated directly from data.

DK estimated e(z, x) using the microlevel Scarborough data on television audiences. We focus

on “diary audience” measure in DK16 and take the same specifications as in columns (2) and (3) of

table VIII from DK.

TABLE A.2. Persuasion Rates: Fox News Effects

(1) (2)

U.S. House district County

fixed effects fixed effects

θ [0.005,0.991] [0.011,0.992]

θlocal [0.115,1] [0.370,1]

Table A.2 summarizes our empirical results.17 Column (1) shows estimation results when U.S.

House district fixed effects are controlled for and column (2) displays corresponding results for

county fixed effects.

The bounds for θ are wide and uninformative. However, the lower bounds for θlocal are siz-

able and also comparable to the estimates of the persuasion rates reported in DK (0.11 and 0.28,

respectively). In sum, we conclude that the persuasive effect of Fox News seems fairly large for

the compliers, that is, those who would watch the Fox News channel if and only if it is randomly

available, although the data do not say much about the entire population.

D.2. The NTV Effect: Enikolopov, Petrova, and Zhuravskaya (2011) Revisited. As mentioned

earlier, Enikolopov, Petrova, and Zhuravskaya (2011, EPZ hereafter) used a continuous instrument,

i.e. the signal strength of NTV, to measure the persuasive effect of watching NTV (the anti-Putin TV

station) on a parliamentary election in 1999. Further, in the individual–level survey data in EPZ,

(Yi, Ti, Zi) are jointly observed. Therefore, in this subsection, we apply the identification result of

the marginal persuasion rate to this example using the EPZ data.

We look at two parties: the progovernment party “Unity” and the most popular opposition party

OVR (“Fatherland–All Russsia”). During the 1999 election campaign, Unity was opposed by NTV,

while OVR were supported by NTV. Thus, EPZ presumed a negative persuasion rate for voting

for Unity but a positive persuasion rate for OVR. To be consistent with our theoretical framework

16The microlevel Scarborough data contain the “recall” measure regarding whether a respondent watched a given channel
in the past seven days and the “diary” measure on whether a respondent watched a channel for at least one full half-an-hour
block according to the seven-day diary.
17To estimate the unconditional bounds reported in the table, the conditional ones are weighted by the number of respon-
dents in a town for the Scarborough data. In addition, the predicted probabilities are truncated to be between 0 and 1.
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and other empirical examples, Yi is either YUnity,i or YOVR,i, depending on which party we consider.

Specifically, we let YUnity,i = 1 if an individual did not vote for Unity and YUnity,i = 0 otherwise;

YOVR,i = 1 if an individual voted for OVR and YOVR,i = 0 otherwise. As in the previous section,

it is necessary to condition on covariates. We take the baseline covariates as in columns (1) and (2)

of table 6 and table 7 in EPZ. They include individual characteristics such as gender, age, marital

status, and education, and subregional variables such as population size and average wage.

FIGURE A.1. Estimates of Marginal and Average Persuasion Rates
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Notes: The left and right panels of the figure show estimates of the marginal and average persua-
sion rates for not voting for Unity and voting for OVR, respectively.

For the sake of simplicity, we estimate θmte parametrically. The population conditional probabil-

ities, e(z, x), P(Yi = 1|e(Zi) = e, Xi = x) and P(Yi = 1, Ti = 0|e(Zi) = e, Xi = x), are estimated by

probit,18 and the conditional estimates of equation (10) are averaged out with respect to covariates

by sample survey weight.

18The exposure rate e(z, x) is first estimated and its predicted values are included linearly as a regressor to estimate the
other two conditional probabilities.
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Figure A.1 presents the estimation results. In the left panel, θmte(v) and θ are plotted as a function

of v, when the outcome variable is not to vote for Unity. It can be seen that the marginal persuasive

rate is about 90% at v = 0.1 but just 54% for v = 0.9. In view of equation (4), Vi can be interpreted as

the unobserved cost of watching NTV. The estimation results suggest that the persuasive effect for

not voting for Unity is much stronger for those whose unobserved cost of watching NTV is lower.

In the right panel, corresponding results are shown for OVR. In this case, the persuasive effect is

much weaker for those with lower values of v.

A striking patten we can learn from figure A.1 is that persuasive effects are highly heteroge-

nous. This may partially answer the puzzle reported in EPZ. They found relatively modest posi-

tive persuasive effects for opposition parties but much stronger persuasive effects for Unity using

aggregate voting outcomes, while the magnitudes are similar using individual survey data.19 Our

estimation results indicate that the marginal persuasive effects are highly heterogenous, thereby

implying that different aggregate averages can be substantially different from each other. The aver-

age persuasive effect θ is plotted as a horizontal line in each panel of figure A.1: it is 75.4% against

Unity and 20.8% for OVR. In short, this application exemplifies the identification power of contin-

uous instruments that can uncover the patterns of heterogeneity in persuasive effects.

APPENDIX E. ADDITIONAL EXAMPLES: DOOR-TO-DOOR FUNDRAISING

Landry, Lange, List, Price, and Rupp (2006) and DellaVigna, List, and Malmendier (2012) de-

signed field experiments of door–to–door fund raising to examine various aspects of charity giving.

In this section, we use their data to illustrate the usefulness of our identification results.

The common data structure in both papers is that for each type of experimental treatments, we

observe (Yi, Ti, Zi):

• Yi = 1 if a household made a contribution to door–to–door fund raising,

• Ti = 1 if a household answered the door and spoke to a solicitor,

• Zi = 1 if a household was approached by a solicitor.

If Zi = 0 (a household was not approached by a solicitor), then Ti = 0 and furthermore it is very

likely that Yi = 0. Hence, in this section, we assume that P(Yi = 1, Ti = 0|Zi = 0) = P(Yi = 1|Zi =

0) = 0. In addition, we assume that if Yi = 1, it must be the case that Ti = 1. In other words,

we assume that it is impossible to have both Yi = 1 and Ti = 0 (making a contribution without

answering the door). Thus, P(Yi = 1, Ti = 1|Zi = 1) = P(Yi = 1|Zi = 1). These assumptions were

19EPZ estimated the persuasion rate using a continuous version of DK. See equations (3) and (4) in EPZ for their formulae.
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also used in computation of the persuasion rates for donors in DellaVigna and Gentzkow (2010).

Under these assumptions, we have the bound for θ as

θL = P(Yi = 1|Zi = 1) and θU = P(Yi = 1|Zi = 1) + 1− e(1).

In addition,

θlocal = P(Yi = 1|Zi = 1)/e(1);

θlocal is the same as the usual LATE.

E.1. Landry, Lange, List, Price, and Rupp (2006) Revisited. In this study, there were four treat-

ments: VCM (voluntary contributions mechanism), VCM with seed money, single-prize lottery,

and multiple-prize lottery. Using Table II of Landry, Lange, List, Price, and Rupp (2006), we com-

pute the persuasive effects by treatment and report results in table A.3.

TABLE A.3. Persuasive Effect by Treatment in Landry, Lange, List, Price, and Rupp (2006)

Treatment P(Yi = 1|Zi = 1) e(1) θL θU θlocal

VCM 9.5% 37.6% 9.5% 71.9% 25.3%

VCM with seed money 5.2% 35.3% 5.2% 69.9% 14.8%

Single-prize lottery 17.1% 37.7% 17.1% 79.4% 45.5%

Multiple-prize lottery 12.6% 35.2% 12.6% 77.5% 35.9%

All 10.8% 36.3% 10.8% 74.5% 29.7%

Based on the lower bound and the LATE parameter, it seems that the single–prize lottery is the

most effective fund raising tool, whereas the VCM with seed money is the least effective. However,

the identification regions for θ of all four treatments overlap and there is no clear ranking based on

those. This suggests that if one cares about the persuasive effect for the population, the evidence is

inconclusive.

E.2. DellaVigna, List, and Malmendier (2012) Revisited. In their study of charity giving, DellaVi-

gna, List, and Malmendier (2012, DLM hereafter) designed both fund raising and survey treatments

to test for altruism and social pressure in charity giving. In this section, we focus only on three fund

raising treatments: namely, the baseline treatment, the flyer treatment, and the opt-out treatment.

The baseline treatment is the standard door–to–door funding raising campaign, the flyer treatment

is with the flyer that provided information on fund raising the date before the solicitation, and the

opt–out treatment is with the flyer that had an additional feature of a “Do Not Disturb” checkbox.
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There were two charities in each of the fund raising treatments: La Rabida Children’s Hospital and

the East Carolina Hazard Center.

TABLE A.4. Persuasive Effect by Treatment in DLM

Treatment P(Yi = 1|Zi = 1) e(1) θL θU θlocal

La Rabida Children’s Hospital

Baseline 7.1% 40.5% 7.1% 66.6% 17.5%

Flyer 6.8% 36.4% 6.8% 70.4% 18.8%

Opt–Out 5.4% 30.4% 5.4% 74.9% 17.7%

East Carolina Hazard Center

Baseline 4.7% 43.0% 4.7% 61.7% 10.9%

Flyer 5.1% 39.6% 5.1% 65.5% 12.9%

Opt–Out 3.0% 34.4% 3.0% 68.6% 8.6%

DLM pointed out that treatments were randomized within a date–solicitor time block and es-

timated linear probability models with covariates: solicitor fixed effects, date–town fixed effects,

hourly time block fixed effects, and area rating dummies. We use the same specification as in DLM,

estimate P(Yi = 1|Zi = 1, Xi = x) and e(1, x), and then average out the conditional estimates as in

appendix D.1.20 The resulting estimates are reported in table A.4, where we report the persuasive

effect by treatment/charity.

The local persuasion rate is point identified and is higher for the in–state charity, La Rabida

Children’s Hospital. The estimates of θlocal are the highest for the flyer treatment in both charities.

This does not mean that the flyer treatment is the most effective in fund raising for the general

population. Note that the compliers of the baseline treatment are different from those of the flyer

treatment. For example, it could be the case that households at the margin of giving might have

decided to not answer the door after they noticed the flyer. Unlike θlocal, θL and θU are comparable

across different treatments. However, as in the previous section, it is difficult to see whether there

is a significant difference across treatments if we focus on the bounds for θ.21

20The data collected in DLM are available at http://eml.berkeley.edu/~sdellavi/index.html. As before, the predicted
probabilities are truncated to be between 0 and 1, when they are averaged out.
21In addition to the fund raising treatments, DLM relied on survey treatments and structural estimates to draw conclusions
in their paper.
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PART III.

APPENDIX F. INFERENCE ON THE AVERAGE PERSUASION RATE

In this section, we provide methods for carrying out inference on the average persuasion rate,

for which we assume that the data are independent and identically distributed.

F.1. The case of Theorem 2. In this subsection, we consider Theorem 2, where the sharp identified

interval of θ is given by [θL, θU ]. Recall that

θL =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

1−P(Yi = 1|Zi = 0)
,

θU =
P(Yi = 1, Ti = 1|Zi = 1)−P(Yi = 1, Ti = 0|Zi = 0) + 1− e(1)

1−P(Yi = 1, Ti = 0|Zi = 0)
.

To define the sample analog estimators of θL and θU , define

P̂(Yi = 1|Zi = 1) =
∑n

i=1 1(Yi = 1, Zi = 1)
∑n

i=1 1(Zi = 1)
,

P̂(Yi = 1|Zi = 0) =
∑n

i=1 1(Yi = 1, Zi = 0)
∑n

i=1 1(Zi = 0)
,

P̂(Yi = 1, Ti = 1|Zi = 1) =
∑n

i=1 1(Yi = 1, Ti = 1, Zi = 1)
∑n

i=1 1(Zi = 1)
,

P̂(Yi = 1, Ti = 0|Zi = 0) =
∑n

i=1 1(Yi = 1, Ti = 0, Zi = 0)
∑n

i=1 1(Zi = 0)
,

ê(1) = ∑n
i=1 1(Ti = 1, Zi = 1)

∑n
i=1 1(Zi = 1)

.

Then we define

θ̂L =
P̂(Yi = 1|Zi = 1)− P̂(Yi = 1|Zi = 0)

1− P̂(Yi = 1|Zi = 0)
,

θ̂U =
P̂(Yi = 1, Ti = 1|Zi = 1)− P̂(Yi = 1, Ti = 0|Zi = 0) + 1− ê(1)

1− P̂(Yi = 1, Ti = 0|Zi = 0)
.

Since θ̂L and θ̂U are asymptotically jointly normal, we follow Imbens and Manski (2004) and Stoye

(2009) to construct a confidence interval for θ. Standard arguments based on the delta method yield

that θ̂L and θ̂U have asymptotically linear approximations:

θ̂L − θL = n−1
n

∑
i=1

ϕL,i + op(n−1/2),

θ̂U − θU = n−1
n

∑
i=1

ϕU,i + op(n−1/2),
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where ϕL,i and ϕU,i are influence functions that can be approximated by the following sample

analogs:

ϕ̂L,i =
1

[1− P̂(Yi = 1|Zi = 0)]
1

P̂(Zi = 1)

{
1(Yi = 1, Zi = 1)− P̂(Yi = 1, Zi = 1)

}
− 1

[1 = P̂(Yi = 1|Zi = 0)]
P̂(Yi = 1|Zi = 1)

P̂(Zi = 1)

{
1(Zi = 1)− P̂(Zi = 1)

}
+

θ̂L − 1
[1− P̂(Yi = 1|Zi = 0)]

1
P̂(Zi = 0)

{
1(Yi = 1, Zi = 0)− P̂(Yi = 1, Zi = 0)

}
− θ̂L − 1

[1− P̂(Yi = 1|Zi = 0)]
P̂(Yi = 1|Zi = 0)

P̂(Zi = 0)

{
1(Zi = 0)− P̂(Zi = 0)

}
,

ϕ̂U,i =
1

[1− P̂(Yi = 1, Ti = 0|Zi = 0)]
1

P̂(Zi = 1)

×
{

1(Yi = 1, Ti = 1, Zi = 1)− P̂(Yi = 1, Ti = 1, Zi = 1) + 1(Ti = 0, Zi = 1)− P̂(Ti = 0, Zi = 1)
}

− 1
[1− P̂(Yi = 1, Ti = 0|Zi = 0)]

P̂(Yi = 1, Ti = 1, Zi = 1) + P(Ti = 0, Zi = 1)
P̂(Zi = 1)

×
{

1(Zi = 1)− P̂(Zi = 1)
}

+
θ̂U − 1

[1− P̂(Yi = 1, Ti = 0|Zi = 0)]
1

P̂(Zi = 0)

{
1(Yi = 1, Ti = 0, Zi = 0)− P̂(Yi = 1, Ti = 0, Zi = 0)

}
− θ̂U − 1

[1− P̂(Yi = 1, Ti = 0|Zi = 0)]
P̂(Yi = 1, Ti = 0|Zi = 0)

P̂(Zi = 0)

{
1(Zi = 0)− P̂(Zi = 0)

}
.

Now define

σ̂2
L = n−2

n

∑
i=1

ϕ̂2
L,i, σ̂2

U = n−2
n

∑
i=1

ϕ̂2
U,i, and ∆̂ = θ̂U − θ̂L.

That is, σ̂L and σ̂U are standard errors of θ̂U and θ̂L, respectively, and ∆̂ is the estimated length of

the identification region. Let

CITheorem 2
α =

[
θ̂L − cασ̂L, θ̂U + cασ̂U

]
, (A.7)

where cα solves

Φ

(
cα +

∆̂
max{σ̂L, σ̂U}

)
−Φ (−cα) = 1− α.

Since θ̂L ≤ θ̂U by construction, Lemma 3 and Proposition 1 of Stoye (2009) imply that θ ∈ CITheorem 2
α

with probability 1− α uniformly as n→ ∞, provided that the data generating process satisfies mild

regularity conditions given in Assumption 1 (i) and (ii) of Stoye (2009).
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F.2. The case of Theorem 3. Recall that in this case, the sharp identified interval of θ is given by

[θL, θUe ], where

θUe =
min{1, P(Yi = 1|Zi = 1) + 1− e(1)} −max{0, P(Yi = 1|Zi = 0)− e(0)}

1−max{0, P(Yi = 1|Zi = 0)− e(0)} .

It is convenient to introduce additional notation. Let

ξ1 = P(Yi = 1|Zi = 1) + 1− e(1) and ξ2 = P(Yi = 1|Zi = 0)− e(0).

Then ξ1 and ξ2 can be estimated by their sample analogs as before: i.e.

ξ̂1 = P̂(Yi = 1|Zi = 1) + 1− ê(1) and ξ̂2 = P̂(Yi = 1|Zi = 0)− ê(0).

Furthermore, let σ̂(ξ1) and σ̂(ξ2) denote respective standard errors. For any α ∈ (0, 1/2), define

zα such that Φ(zα) = 1− α. Hence, zα/2 is the two-sided standard normal critical value. We now

choose α that is close to zero, say α = 0.001, by which we define the following three possibilities.

(i) ξ̂1 − zα/4 · σ̂(ξ1) ≥ 1;

(ii) ξ̂1 + zα/4 · σ̂(ξ1) ≤ 1 and ξ̂2 + zα/4 · σ̂(ξ2) ≤ 0;

(iii) neither (i) nor (ii).

The critical value zα/4 is used here to reflect the fact that the two equalities are tested jointly against

both positive and negative directions, which can be viewed as pretesting. Case (i) corresponds to

the case that ξ̂1 is much larger than 1, implying that the upper bound is 1. Then we recommend

using the confidence set such that
[
θ̂L − zα−ασ̂L, 1

]
. To accommodate the error in the pretesting

stage, we recommend using the zα−α critical value here. Case (ii) suggests that ξ̂1 is much smaller

than 1 and ξ̂2 is sufficiently less than zero. Therefore, in this subcase, the upper bound reduces to

θUe = ξ1. Then the estimators of both lower and upper bounds are asymptotically linear, implying

that one can use the confidence interval similar to (A.7). Again, to accommodate the error in the

pretesting stage, we recommend using the zα−α critical value in applying (A.7). This ensures that

the asymptotic coverage probability is at least as large as 1− α in applying (A.7). It turns out that

case (ii) was the relevant case for the empirical example reported section 6.

Case (iii) is more complicated. We rely on a simple projection method to construct a valid con-

fidence set. It follows from the proofs of lemma A.5 and theorem 3 that the two end points of the
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sharp identified interval of θ have the form:

max
a,b∈[0,1]2

and min
a,b∈[0,1]2

a− b
1− b

s.t.


a ≥ b,

a ∈
[
P(Yi = 1|Zi = 1), P(Yi = 1|Zi = 1) + 1− e(1)

]
,

b ∈
[
P(Yi = 1|Zi = 0)− e(0), P(Yi = 1|Zi = 0)

]
.

(A.8)

Rewrite the constraints above as

a ∈
[
E(1{Yi = 1}|Zi = 1), E(1{Yi = 1}|Zi = 1) + E(1{Ti = 0}|Zi = 1)

]
≡ [ma, Ma],

b ∈
[
E(1{Yi = 1}|Zi = 0)−E(1{Ti = 1}|Zi = 0), E(1{Yi = 1}|Zi = 0)

]
≡ [mb, Mb].

Since a and b are bounded by conditional expectations, it is simple to construct a joint confidence

set for a and b in the form of the Cartesian product (e.g. using a Bonferroni correction). That is, we

can find the confidence set such that the following holds asymptotically with probability at least

1− α:

a ∈
[
m̂a, M̂a

]
and b ∈

[
m̂b, M̂b

]
.

Consequently, the following optima include the true identified set of θ defined in equation (A.8),

asymptotically with probability at least 1− α:

max
a,b∈[0,1]2

and min
a,b∈[0,1]2

a− b
1− b

s.t.


a ≥ b,

a ∈
[
m̂a, M̂a

]
,

b ∈
[
m̂b, M̂b

]
.

F.3. The case of Theorem 4. In this case, the sharp bound of θ is given by [θL, 1]. Thus, the one-

sided confidence interval for θL provides the valid confidence set for θ. That is, θ ∈
[
θ̂L − zασ̂L, 1

]
holds asymptotically with probability at least 1− α, where zα satisifies Φ(zα) = 1− α.

APPENDIX G. INFERENCE ON THE LOCAL PERSUASION RATE

G.1. Case under assumption C. Recall that in this case, θlocal is point identified by θlocal = θ∗,

where

θ∗ =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

P(Yi = 0, Ti = 0|Zi = 0)−P(Yi = 0, Ti = 0|Zi = 1)
.

Thus, in this case, one can use the standard delta method to construct the two-sided confidence

interval based on the asymptotic normality of the sample analog estimator of θ∗. Let θ̂∗ and σ̂∗
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denote the sample analog estimator of θ∗ and its standard error, respectively. Then the random

interval [θ̂∗ − zα/2σ̂∗, θ̂∗ + zα/2σ̂∗] includes θlocal asymptotically with probability 1− α.

G.2. Case under assumption D. The sharp identified interval of θlocal is given by [θ∗L, 1], where

θ∗L = max(Wald, θL) with

Wald =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

e(1)− e(0)
.

Thus, the lower bound of θlocal has the form of the intersection bound (Chernozhukov, Lee, and

Rosen, 2013). To describe how to conduct inference, define the sample analog estimator of Ŵald:

Ŵald =
P̂(Yi = 1|Zi = 1)− P̂(Yi = 1|Zi = 0)

ê(1)− ê(0)
.

Let σ̂Wald be its standard error. Then, the random interval [θ̂∗L(α), 1] includes θlocal with probability

at least 1− α, where

θ̂∗L(α) = max{0, Ŵald− zα/2σ̂Wald, θ̂L − zα/2σ̂L}.

Here, the critical value zα/2 is based on simple Bonferroni correction. An adaptive inequality se-

lection proposed in Chernozhukov, Lee, and Rosen (2013) can be adopted to construct a sharper

critical value than zα/2.

G.3. Case under assumption E. In this case, the sharp identified interval of θlocal coincides with

that of θ. Hence, one can use the inference method presented in appendix F.3.

APPENDIX H. SEMIPARAMETRIC ESTIMATION

H.1. Efficient Estimation. In this section, we are explicit about the vector Xi of exogenous covari-

ates and consider semiparametrically efficient estimation of the two key parameters, i.e. θL and

θ∗.22 We focus on independent and identically distributed (i.i.d.) data again. For θL we work with

the dataset {(Yi, Zi, Xᵀ
i )

ᵀ : i = 1, 2, · · · n}, whereas we use {(Yi, Ti, Zi, Xᵀ
i )

ᵀ : i = 1, 2, · · · n} for

θ∗. Since we are now explicit about Xi, the objects of interest will be defined by integrating Xi out:

when we analyze the local persuasion rate, we will use the conditional distribution of Xi given the

group of compliers. Recall that θ̃L(x) is defined in (A.5). Let

θ̃∗(x) =
P(Yi = 1|Zi = 1, Xi = x)−P(Yi = 1|Zi = 0, Xi = x)

P(Yi = 0, Ti = 0|Zi = 0, Xi = x)−P(Yi = 0, Ti = 0|Zi = 1, Xi = x)
,

22Efficient estimation of θ∗L or θUe is significantly more challenging because of the min function. It also requires a careful
construction of an estimator for the marginal persuasion rate. These are beyond the scope of the current paper but interesting
topics for future research.
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which correspond to the local persuasion rate conditional on Xi = x. Now, we average out Xi

with respect to an appropriate distribution to obtain the parameters we consider estimating in this

section: i.e.

θL =
∫

θ̃L(x)dF(x), (A.9)

θ∗ =
∫

θ̃∗(x)dF{x|e(0, Xi) < Vi ≤ e(1, Xi)}, (A.10)

where F(·) and F(·|·) denote the marginal and conditional distribution function of Xi, respectively,

and e(j, x) = P(Ti = 1|Zi = j, Xi = x) for j = 0, 1 is the exposure rate conditional on Xi = x: we

will let f (·) denote the density of Xi. By Bayes’ theorem θ∗ can be alternatively written as

θ∗ =
∫

θ̃∗(x){e(1, x)− e(0, x)} f (x)
P{e(0, Xi) < Vi ≤ e(1, Xi)}

dx =

∫
θ̃∗(x){e(1, x)− e(0, x)} f (x)dx∫
{e(1, x)− e(0, x)} f (x)dx

. (A.11)

Here, we emphasize that θ∗ is defined by averaging out Xi conditional on the event that individual

i is a complier—since the local persuasion rate is meaningful only for the group of compliers, it

would not make sense to average over the entire population.

Semiparametric estimation of θL and θ∗ is straightforward. Let

θ̂L =
1
n

n

∑
i=1

ˆ̃θ(Xi) and θ̂∗ =
∑n

i=1
ˆ̃θ(Xi){ê(1, Xi)− ê(0, Xi)}

∑n
i=1{ê(1, Xi)− ê(0, Xi)}

, (A.12)

where ê(j, x) is a consistent estimator of e(j, x) for j = 0, 1, ˆ̃θL(x) and ˆ̃θ∗(x) are defined by replacing

all the probabilities in the definition of θ̃L(x) and θ̃∗(x) with their consistent estimators, respec-

tively.

Semiparametric estimators like the ones in equation (A.12) converge at the usual
√

n rate. In-

stead of listing all regularity conditions, which are well understood in the literature (see, e.g.

Newey, 1994; Ai and Chen, 2003; Chen, Linton, and Van Keilegom, 2003; Ai and Chen, 2012; Acker-

berg, Chen, Hahn, and Liao, 2014), we will derive the pathwise derivatives of θL and θ∗. The

theorem stated below is the first main result of this section.

Theorem A.4. Suppose that e(0, x) < e(1, x) with infx e(0, x) > 0 and supx e(1, x) < 1. Further,

suppose that infx P
{

Yi(0) = 0 | e(0, x) < Vi ≤ e(1, x), Xi = x
}

> 0. Then, the parameters θL

and θ∗ in equations (A.9) and (A.10) are well defined and they are pathwise differentiable in the sense of

Newey (1994). Also, their (mean–zero) pathwise derivatives, denoted by FL(Y, Z, X) and F∗(Y, T, Z, X),

respectively, depend only on the objects that can be directly identified from data.
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Theorem A.4 does not display the specific forms of FL and F∗ simply because their expressions

are too long and distracting; they are provided in lemmas A.10 and A.12, respectively. Below we

discuss the relevance of theorem A.4.

The pathwise differentiability can tell us a couple of things about the semiparametric estima-

tors θ̂L and θ̂∗. First, FL(Yi, Zi, Xi) and F∗(Yi, Ti, Zi, Xi) will coincide with the influence functions

of the semiparametric estimators θ̂L and θ̂∗ as long as they are asymptotically linear. Therefore,

the asymptotic variance of θ̂L and θ̂∗ will be V
{

FL(Yi, Zi, Xi)
}

and V
{

F∗(Yi, Ti, Zi, Xi)
}

, respec-

tively. Further, we show in the appendix that FL and F∗ are contained in the appropriate tangent

space, which means that V
{

FL(Yi, Zi, Xi)
}

and V
{

F∗(Yi, Ti, Zi, Xi)
}

are in fact the semiparametric

efficiency bounds of θL and θ∗, respectively. We summarize these implications in the following

theorem.

Theorem A.5. Suppose that θ̂L and θ̂∗ are
√

n–consistent and asymptotically linear. Then, their asymptotic

variances are given by VL = E
{

F2
L(Yi, Zi, Xi)

}
and V∗ = E

{
F∗2(Yi, Ti, Zi, Xi)

}
. Further, VL and V∗ are

the semiparametric efficiency bounds for estimating θL and θ∗, respectively.

By using the formulas of FL and F∗ provided in lemmas A.10 and A.12, we can consistently

estimate VL and V∗. Alternatively, one can simply rely on some resampling techniques such as the

bootstrap. Once we obtain the estimates V̂L and V̂∗ of the asymptotic variances, we can conduct

inference on θL and θ∗. In fact, inference on θL can be naturally extended to that of θ. Consider

the simplest case where there is no uncertainty in the upper bound: i.e. we only have data on

(Yi, Zi, Xᵀ
i )

ᵀ. In this case, the sharp identified bounds of θ is simply [θL, 1], the asymptotically valid

confidence interval for θ with the shortest length will be
[
θ̂L− zα×

√
V̂L/n, 1

]
, where zα is the one–

sided critical value from the standard normal distribution (e.g. when α = 0.05, we have zα = 1.645).

When we observe all of (Yi, Ti, Zi, Xᵀ
i )

ᵀ, θ∗ is point identified and therefore the shortest confidence

interval of θ∗ can be obtained by using the usual two–sided critical value as in θ̂∗ ± zα/2 ×
√

V̂∗/n.

H.2. Revisiting the NTV Example. We revisit the NTV example in appendix D.2 to illustrate the

results of appendix H.1. For simplicity, we focus on estimating the lower bound θL using a two–step

parametric approach. For this exercise, we first create a binary instrument

Zi = 1
{

Signal Poweri > median(Signal Power)
}

by using the original continuous instrument. The conditional lower bound θ̃L(x) is estimated using

probit models that are linear in covariates used in appendix D.2 and is averaged out with respect

A-19



Jun and Lee

to covariates by sample survey weight. The standard error is obtained by replacing population

quantities of FL(Yi, Zi, Xi) in lemma A.10 with parametric estimates.

TABLE A.5. Persuasion Rates: NTV Effects Using a Binary Instrument

(1) (2)

Not voting for Voting for

Unity OVR

Point estimate of the lower bound 0.191 0.056

Standard error of the lower bound 0.083 0.024

One-sided 95% confidence interval for θ [0.055,1] [0.016,1]

The estimation results are summarized in table A.5. Both lower bounds are significantly different

from zero; however, they are far smaller than the estimates of θ based on the original continuous

instrument. This again illustrates the limitation of the identifying power of a binary instrument.

PART IV.

APPENDIX I. PROOFS

I.1. Proofs of lemma 1 and lemma A.1. If qi(0) ≤ qi(1), then Yi(0) = 1 and Yi(1) = 0 cannot hap-

pen. Now, conversely, suppose that Yi(0) ≤ Yi(1). If P{qi(1) < qi(0)} > 0, then assumption A.1

implies that P{qi(1) < 1/(1 + Ui) < qi(0)} > 0. This contradicts P{Yi(0) ≤ Yi(1)} = 1. The

denominator on the right-hand side of equation (3) is nonzero since P{Yi(0) = 1} < 1 by assump-

tion A.1. Finally, equation (3) follows from the fact that Yi(1)− Yi(0) = 1{Yi(1) = 1, Yi(0) = 0}

with probability one. 2

I.2. Proof of theorem 1. By assumption B,

P{Yi(z) = 1} = P(Yi(z) = 1|Zi = z) = P(Yi = 1|Ti = z) = P(Yi = 1|Zi = z). (A.13)

So, the assertion follows from lemma 1 and the definition of θL. 2

I.3. Under assumption C.

Lemma A.1. P{Yi(1) = 1 | e(0) < Vi ≤ e(1)} is identified by

P(Yi = 1, Ti = 1|Zi = 1)−P(Yi = 1, Ti = 1|Zi = 0)
e(1)− e(0)

.
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Similarly, P{Yi(0) = 1 | e(0) < Vi ≤ e(1)} is identified by

P(Yi = 1, Ti = 0|Zi = 0)−P(Yi = 1, Ti = 0|Zi = 1)
e(1)− e(0)

.

Proof. The first assertion follows from

P(Yi = 1, Ti = 1|Zi = z) = P{Yi(1) = 1, Vi ≤ e(z)}. (A.14)

The second statement is similar. 2

Lemma A.2. For z = 0, 1, P{Yi(1) = 1 | Vi ≤ e(z)} is identified by

P(Yi = 1, Ti = 1|Zi = z)/e(z).

Similarly, P{Yi(0) = 1 | Vi > e(z)} is identified by

P(Yi = 1, Ti = 0|Zi = z)/{1− e(z)}.

Proof. The first assertion follows from

P(Yi = 1, Ti = 1|Zi = z) = P{Yi(1) = 1, Vi ≤ e(z)}. (A.15)

The second assertion is similar. 2

Lemma A.3. The sharp identified interval of P{Yi(1) = 1} is given by

[
P(Yi = 1|Zi = 1), P(Yi = 1, Ti = 1|Zi = 1) + 1− e(1)

]
.

Similarly, the sharp identified interval of P{Yi(0) = 1} is given by

[
P(Yi = 1, Ti = 0|Zi = 0), P(Yi = 1|Zi = 0)

]
.

Proof. For the first assertion, note that

P{Yi(1) = 1} = P{Yi(1) = 1 | e(0) < Vi ≤ e(1)}{e(1)− e(0)}

+ P{Yi(1) = 1 | Vi ≤ e(0)}e(0) + P{Yi(1) = 1 | Vi > e(1)}{1− e(1)}. (A.16)

By lemmas A.1 and A.2, the first two terms on the right–hand side of equation (A.16) are identified

and their sum is equal to P(Yi = 1, Ti = 1|Zi = 1). For the third term on the right–hand side of

equation (A.16), note that
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P{Yi(1) = 1 | Vi > e(1)}{1− e(1)}

≥ P{Yi(0) = 1 | Vi > e(1)}{1− e(1)} = P(Yi = 1, Ti = 0|Zi = 1), (A.17)

where P{Yi(1) = 1 | Vi > e(1)} ≤ 1. Therefore, the sharp bounds of the third term on the right–

hand side of equation (A.16) is the interval between P(Yi = 1, Ti = 0|Zi = 1) and 1− e(1). Com-

bining all these proves the first assertion. The second assertion is similar. 2

Proof of Theorem 2: Let a = P{Yi(1) = 1} and b = P{Yi(0) = 1}: so, θ = (a− b)/(1− b). Let

ma, Ma be the lower and upper bounds of a provided in lemma A.3. Similarly, let mb, Mb be the

bounds of b given in lemma A.3. By lemma A.3 and the fact that the dependence between Yi(0)

and Yi(1) is unrestricted except that Yi(0) ≤ Yi(1), the identified bounds of θ can be obtained by

max
a,b

and min
a,b

a− b
1− b

subject to a ∈ [ma, Ma], b ∈ [mb, Mb], a ≥ b. (A.18)

Here, note that the restriction a ≥ b is redundant, because

ma −Mb = P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

= P{Yi(1) = 1, e(0) < Vi ≤ e(1)} −P{Yi(0) = 1, e(0) < Vi ≤ e(1)} ≥ 0, (A.19)

where the last inequality is from Yi(1) ≥ Yi(0). So, the minimum is θL = (ma −Mb)/(1−Mb) ≥ 0

and the maximum is θU = (Ma −mb)/(1−mb): the monotonicity of the probability measure triv-

ially shows that θU ≤ 1. Finally, sharpness follows from the intermediate value theorem because

(a− b)/(1− b) varies continuously between θL and θU . 2

I.4. Under assumption D.

Lemma A.4. For any events A, B and for any probability measure P∗, we have

max{0, P∗(A)−P∗(Bc)} ≤ P∗(A ∩ B) ≤ min{P∗(A), P∗(B)},

where the bounds are sharp in that P∗(A∩ B) can be anything between the bounds without changing P∗(A)

and P∗(B).

Proof. This is a version of the Fréchet–Hoeffding bounds. The upper bound is trivially true. For the

lower bound, simply note that

P∗(A) ≤ P∗(A ∩ B) + P∗(Bc) and P∗(B) ≤ P∗(A ∩ B) + P∗(Ac),
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where P∗(A)−P∗(Bc) = P∗(B)−P∗(Ac). For sharpness, note that the upper bound is achieved

when A ⊂ B or B ⊂ A. Also, the lower bound is achieved when A ∩ B = ∅ or A ∪ B = Ω, where

Ω is the entire sample space. To show that anything between the bounds can be achieved, consider

the canonical probability space without loss of generality: i.e. Ω = [0, 1] and P∗ be the Lebesgue

measure on the Borel σ–algebra on Ω. Choose pA, pB ∈ [0, 1], where we assume that pA ≥ pB

without loss of generality; the other case is symmetric. Let A = [0, pA] and B = x + [pA − pB, pA],

where 0 ≤ x ≤ 1− pA. So, A, B are events in Ω with P∗(A) = pA, P∗(B) = pB for all x ∈ [0, 1− pA].

Now, note that P∗(A ∩ B) = max(pB − x, 0) is a continuous function in x ∈ [0, 1− pA], where its

maximum and the minimum are given by pB and max(pB − 1 + pA, 0). 2

Lemma A.5. The sharp identified interval of P{Yi(1) = 1} is given by

[
P(Yi = 1|Zi = 1), min{1, P(Yi = 1|Zi = 1) + 1− e(1)}

]
(A.20)

Similarly, the sharp identified interval of P{Yi(0) = 1} is given by

[
max{0, P(Yi = 1|Zi = 0)− e(0)}, P(Yi = 1|Zi = 0)

]
. (A.21)

Proof. It follows from lemmas A.3 and A.4. 2

Proof of theorem 3: Similarly to the proof of theorem 2, we need to consider

max
a,b

and min
a,b

a− b
1− b

subject to a ∈ [ma, M̃a], b ∈ [m̃b, Mb], a ≥ b, (A.22)

where ma, M̃a, m̃b, Mb are given in lemma A.5. Follow the same reasoning as theorem 2. 2

I.5. Under assumption E.

Proof of theorem 4: Since theorem 3 uses more information but its lower bound only depends on

the distribution of (Yi, Zi), it suffices to focus on the upper bound. From theorem 3, we can find the

sharp upper bound in this case by

max
0<e(0)≤e(1)<1

θUe =
min{1, P(Yi = 1|Zi = 1) + 1− e(1)} −max{0, P(Yi = 1|Zi = 0)− e(0)}

1−max{0, P(Yi = 1|Zi = 0)− e(0)} .

(A.23)

Note that setting e(0) = P(Yi = 1|Zi = 0) ≤ P(Yi = 1|Zi = 1) = e(1) yields the maximum value 1.

Sharpness follows from the fact that θUe is continuous in
(
e(0), e(1)

)
. 2

I.6. For the Compliers.

A-23



Jun and Lee

Proof of theorem 6: For part (i), note that

P(Yi = 1|Zi = z) = P{Yi(1) = 1, Vi ≤ e(z)}+ P{Yi(0) = 1, Vi > e(z)},

from which it follows that

θlocal =
P(Yi = 1|Zi = 1)−P(Yi = 1|Zi = 0)

{e(1)− e(0)}P{Yi(0) = 0|e(0) < Vi ≤ e(1)} . (A.24)

Finally, note that the denominator on the right–hand side of equation (A.24) is equal to

P{Yi(0) = 0, e(0) < Vi ≤ e(1)} = P{Yi(0) = 0, e(0) < Vi} −P{Yi(0) = 0, e(1) < Vi},

where P{Yi(0) = 0, e(z) < Vi} = P{Yi = 0, Ti = 0|Zi = z}.

For part (ii), we look for sharp bounds for P{Yi(0) = 0, e(0) < Vi ≤ e(1)} under assumption D.

Using the fact that the sharp bounds of P(A ∩ B ∩ C) when P(A ∩ B), P(B ∩ C), and P(C ∩ A) are

given are equal to the interval between 0 and min{P(A ∩ B), P(B ∩ C), P(C ∩ A)}, we know that

0 ≤ P{Yi(0) = 0, e(0) < Vi ≤ e(1)}

≤ min
[
P{Yi(0) = 0, Vi > e(0)}, e(1)− e(0), P{Yi(0) = 0, Vi ≤ e(1)}

]
, (A.25)

where it suffices to look for the sharp upper bound of the expression on the utmost left–hand side.

First,

P{Yi(0) = 0, Vi > e(0)} = P(Yi = 0, Ti = 0|Zi = 0) ≤ P(Yi = 0|Zi = 0),

where the inequality holds with equality when P(Yi = 0, Ti = 1|Zi = 0) = 0. Second, note that

P{Yi(0) = 0, Vi ≤ e(1)} = P{Yi(0) = 0, Ti = 1|Zi = 1}

is totally unidentified. So, we conclude that the sharp upper bound of the term on the right–hand

side of equation (A.25) is

min{P(Yi = 0|Zi = 0), e(1)− e(0)}. (A.26)

The bound in part (iii) corresponds to the case where e(1)− e(0) = 1. 2

Proof of theorem 7: By the same reasoning as lemma 1, we have

θmte(v) =
E{Yi(1)−Yi(0) |Vi = v}

P(Yi(0) = 0 | Vi = v} . (A.27)
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Then as shown in Heckman and Vytlacil (2005),

E{Yi(1)−Yi(0) |Vi = v} = ∂P{Yi = 1|e(Zi) = e}
∂e

∣∣∣∣
e=v

.

Also, by the same argument as in Heckman and Vytlacil (2005),

E{Yi(0) |Vi = v} = −∂P{Yi = 1, Ti = 0|e(Zi) = e}
∂e

∣∣∣∣
e=v

.

The desired result follows immediately. 2

I.7. Proofs with Nonbinary Outcomes.

Proof of Lemma 2: Fixing Yi0(t) = 0 for t = 0, 1, there are only four possibilities, where one

of them can be ruled out by Yi1(1) ≥ Yi1(0): this is illustrated in the following table, where the

outcomes in the third row (those with ∗) have probability zero.

Y(1) Y(0)

(0, 1, 0) (0, 1, 0)

(0, 1, 0) (0, 0, 1)

(0, 0, 1)∗ (0, 1, 0)∗

(0, 0, 1) (0, 0, 1)

Therefore,

P{Yi(1) = (0, 1, 0), Yi(0) = (0, 0, 1)} = P{Yi(1) = (0, 1, 0)} −P{Yi(0) = (0, 1, 0)},

which takes care of the numerator of the conditional probability of θmult. For the denominator, note

that

P{Yi(0) = (0, 0, 1)} = P{Yi,−1(0) = 1} = 1−P{Yi0(0) = 1} −P{Yi1(0) = 1}. 2

Lemma A.6. For j ∈ {0, 1,−1}, we have

P{Yij(1) = 1 | e(0) < Vi ≤ e(1)} =
pj(1, 1|1)− pj(1, 1|0)

e(1)− e(0)
.

Similarly,

P{Yij(0) = 1 | e(0) < Vi ≤ e(1)} =
pj(1, 0|0)− pj(1, 0|1)

e(1)− e(0)
.

Proof. It follows from the same proof as lemma A.1. 2
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Lemma A.7. For z = 0, 1 and j ∈ {0, 1,−1}, we have

P{Yij(1) = 1 | Vi ≤ e(z)} =
pj(1, 1|z)

e(z)
.

Similarly,

P{Yij(0) = 1 | Vi > e(z)} =
pj(1, 0|z)
1− e(z)

.

Proof. It follows from the same proof as lemma A.2. 2

Lemma A.8. The sharp identified region of
(
P{Yi1(1) = 1}, P{Yi0(0) = 1}, P{Yi1(0) = 1}

)
is given

by S1(1) × S01(0), where S1(1) =
[
p1(1|1), p1(1, 1|1) + 1 − e(1)

]
is the sharp identified interval of

P{Yi1(1) = 1} and

S01(0) =
{
(x, y) ∈ [0, 1]2 : p0(1, 0|0) ≤ x ≤ p0(1, 0|0) + e(0),

p1(1, 0|0) ≤ y ≤ p1(1|0), x + y ≤
1

∑
j=0

pj(1, 0|0) + e(0)
}
6= ∅

is the sharp identified region of
(
P{Yi0(0) = 1}, P{Yi1(0) = 1}

)
.

Proof. Note that

P{Yi1(1) = 1} = P{Yi1(1) = 1 | Vi ≤ e(0)}e(0)

+ P{Yi1(1) = 1 | e(0) < Vi ≤ e(1)}{e(1)− e(0)}+ P{Yi1(1) = 1 | Vi > e(1)}{1− e(1)}, (A.28)

where the first two terms on the right-hand side are identified by lemmas A.6 and A.7. Specifically,

P{Yi1(1) = 1} = p1(1, 1|1) + P{Yi1(1) = 1 | Vi > e(1)}{1− e(1)}. (A.29)

Similarly, for j ∈ {0, 1,−1}, we obtain

P{Yij(0) = 1} = pj(1, 0|0) + P{Yij(0) = 1 | Vi ≤ e(0)}e(0). (A.30)

Here, note that there is no restriction on the relationship between ã := P{Yi1(1) = 1 | Vi > e(1)}

and (b̃, c̃) :=
(
P{Yi0(0) = 1 | Vi ≤ e(0)}, P{Yi1(0) = 1 | Vi ≤ e(0)}

)
. Therefore, it suffices

to consider ã and (b̃, c̃) separately, after which we take the Cartesian product of the two sharp

identified sets. For the sharp interval of ã, we simply combine equation (A.29) with

1 ≥ P{Yi1(1) = 1 | Vi > e(1)} ≥ P{Yi1(0) = 1 | Vi > e(1)} = P(Yi1 = 1|Ti = 0, Zi = 1), (A.31)
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which yields P{Yi1(1) = 1} ∈ S1(1). For the sharp region of (b̃, c̃), we use equation (A.30) with the

fact that

0 ≤ P{Yi1(0) = 1 | Vi ≤ e(0)} ≤ P{Yi1(1) = 1 | Vi ≤ e(0)} = P(Yi1 = 1|Ti = 1, Zi = 0). (A.32)

Therefore, it follows that

P{Yi0(0) = 1} ∈
[
p0(1, 0|0), p0(1, 0|0) + e(0)

]
, (A.33)

P{Yi1(0) = 1} ∈
[
p1(1, 0|0), p1(1|0)

]
, (A.34)

P{Yi,−1(0) = 1} ∈
[
p−1(1, 0|0), p−1(1, 0|0) + e(0)

]
, (A.35)

where we must have

∑
j∈{0,1,−1}

P{Yij(0) = 1} = 1 and ∑
j∈{0,1,−1}

pj(1, 0|0) = 1− e(0). (A.36)

by assumption F.23 Therefore, we can rewrite equation (A.35) by using equation (A.36). Specifically,

equation (A.35) can be written as

P{Yi,−1(0) = 1} = 1−P{Yi0(0) = 1} −P{Yi1(0) = 1}

∈
[
1− e(0)− p0(1, 0|0)− p1(1, 0|0), 1− e(0)− p0(1, 0|0)− p1(1, 0|0) + e(0)]

]
, (A.37)

which implies

P{Yi0(0) = 1}+ P{Yi1(0) = 1} ∈
[ 1

∑
j=0

pj(1, 0|0),
1

∑
j=0

pj(1, 0|0) + e(0)
]
. (A.38)

But the lower bound in equation (A.38) is implied by equations (A.33) and (A.34), whereas the

upper bound is not redundant. Note that S01(0) is not empty, unless

−p0(1, 0|0) +
1

∑
j=0

pj(1, 0|0) + e(0) < p1(1, 0|0),

which is not possible. 2

23The upper end point of the bounds in equation (A.34) is no larger than the lower end point of the interval S1(1) because

p1(1|1)− p1(1|0) = P{Yi1(1) = 1, e(0) < Vi ≤ e(1)} −P{Yi1(0) = 1, e(0) < Vi ≤ e(1)} ≥ 0,

where the inequality is by Yi1(1) ≥ Yi1(0).
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Proof of Theorem A.1: Let a := P{Yi1(1) = 1}, b := P{Yi0(0) = 1}, and c := P{Yi1(0) = 1}, and

we have

θmult =
a− c

1− b− c
,

where the sharp identified region of (a, b, c) is S1(1) × S01(0) by lemma A.8. Therefore, we can

obtain the sharp identified bounds of θmult by solving constrained maximization/minimization

problems:

max / min
a,b,c

a− c
1− b− c

s.t.



ma ≤ a ≤ Ma,

mb ≤ b ≤ Mb,

mc ≤ c ≤ Mc,

b + c ≤ Mb+c,

(A.39)

where ma, Ma, · · · , Mb+c are given in the definitions of S1(1) and S10(0). Here, the restriction of

a ≥ c is automatic, because ma = p1(1|1) ≥ p1(1|0) = Mc as we explained in footnote 23. Further,

note that mb + mc < Mb+c because e(0) > 0; therefore, the set of (b, c) that satisfies the constraints

is not empty. In the following arguments, the set of the feasible values of (b, c) is important, which

is illustrated in figure A.2.

FIGURE A.2. The set of the feasible values of (b, c)

b

c

mb Mb DMbCc �mc

mc

Mc

MbCc

Note: Mb+c −mb = p0(1, 0|0) + p1(1, 0|0) + e(0)− p0(1, 0|0) ≥ p1(1, 0|0) + p1(1, 1|0) = Mc.
Note: Mb+c −mc = p0(1, 0|0) + e(0) = Mb.
Note: Mb+c −Mb = p0(1, 0|0) + p1(1, 0|0) + e(0)− p0(1, 0|0)− e(0) ≤ p1(1, 0|0) + p1(1, 1|0) = Mc.
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Consider the minimization first, for which it suffices to solve

min
b,c

ma − c
1− b− c

s.t.


mb ≤ b ≤ Mb,

mc ≤ c ≤ Mc,

b + c ≤ Mb+c.

(A.40)

Here, the objective function is monotonically increasing in b for every c. Therefore,

min
( ma − c

1−mb − c
, 1
)
≤ min

( ma − c
1− b− c

, 1
)
≤ θmult ≤ 1 (A.41)

for all mc ≤ c ≤ min(Mb+c − mb, Mc) = Mc, where the utmost left–hand side inequality in

equation (A.41) holds with equality when b = mb.

Now, we consider two possibilities: i.e. ma + mb ≥ 1 and ma + mb < 1. If ma + mb ≥ 1, then the

utmost left–hand side of equation (A.41) becomes 1 for any c ≤ 1−mb. But, taking c = mc leads to

mc ≤ Mb+c −mb ≤ 1−mb by

Mb+c = p0(1, 0|0) + p1(1, 0|0) + e(0) = 1− e(0)− p−1(1, 0|0) + e(0) ≤ 1. (A.42)

Therefore, we conclude θmult = 1 in this case, which is achieved when a = ma, b = mb, and c = mc.

If ma + mb < 1, then (ma − c)/(1−mb − c) is decreasing in c, and therefore, we simply take the

largest value of c to achieve the minimum: i.e.

ma −Mc

1−mb −Mc
≤ θmult. (A.43)

This is indeed the sharp lower bound, because (a− c)/(1− b− c) is a continuous function in (a, b, c)

and the lower bound is achieved when a = ma, b = mb, and c = Mc.

The sharp upper bound can be similarly obtained by solving the maximization problem in equa-

tion (A.39), for which it suffices to consider

max
b,c

Ma − c
1− b− c

s.t.


mb ≤ b ≤ Mb,

mc ≤ c ≤ Mc,

b + c ≤ Mb+c.

(A.44)

Since the objective function is increasing in b, it suffices to have b take its largest value within the

feasible set, i.e. b = min(Mb+c −mc, Mb) = Mb.

Then, we have

θmult ≤
Ma − c

1− b− c
≤ Ma − c

1−Mb − c
, (A.45)
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for all mc ≤ c ≤ min(Mb+c − mb, Mc) = Mc, where the utmost right–hand side inequality in

equation (A.45) holds with equality when b = Mb.

Now, we consider two possibilities: i.e. Ma + Mb ≥ 1 and Ma + Mb < 1. First, suppose that

Ma + Mb ≥ 1. Then, the utmost right–hand side of equation (A.45) is no smaller than 1 for any

c ≤ 1−Mb. Therefore, the sharp upper bound of θmult is trivial and equal to 1 in this case. Suppose

that Ma + Mb < 1. Then, the utmost right–hand side expression in equation (A.45) is decreasing in

c, and therefore

θmult ≤
Ma − c

1− b− c
≤ Ma −mc

1−Mb −mc
. (A.46)

Sharpness follows from the fact that (a − c)/(1 − b − c) is continuous in (a, b, c) and the upper

bound is achieved when a = Ma, b = Mb, and c = mc.

Finally, since ma + mb ≤ Ma + Mb, what we have shown so far yields the sharp upper and lower

bounds in all of the three possible cases, i.e. (i) 1 ≤ ma + mb, (ii) ma + mb < 1 ≤ Ma + Mb, and (iii)

ma + mb ≤ Ma + Mb < 1. 2

Proof of Theorem A.2: We use lemmas A.4 and A.8 to obtain the sharp identified region of(
P{Yi1(1) = 1}, P{Yi0(0) = 1}, P{Yi1(0) = 1}

)
, after which we follow the same reasoning as

in the proof of theorem A.1. 2

Proof of Theorem A.3: The case of p1(1|1) = 1 is trivial, because we can simply take e(0) =

p0(1|0); this leads us to case (i) in theorem A.2 but the claimed bounds yields the same conclusion.

Suppose that p1(1|1) < 1. Then, we can always choose e(1) = max{p0(1|0), p1(1|0)} and take e(0)

smaller than but arbitrarily close to e(1), which leads us to case (ii) in theorem A.2 with the claimed

bounds. 2

I.8. Proofs for the Results for Efficient Estimation of θL.

In this part of the appendix we consider the efficiency issues for the θL parameter defined in equa-

tion (A.9). So, we assume that the data available to us are the i.i.d. observations of (Yi, Zi, Xᵀ
i )

ᵀ.

Below we write f for F′, i.e. the density of Xi. Further, we use the following notation:

Py1|z1
(x) = P(Yi = 1|Zi = 1, Xi = x) and Py0|z1

(x) = 1−Py1|z1
(x),

Py1|z0
(x) = P(Yi = 1|Zi = 0, Xi = x) and Py0|z0

(x) = 1−Py1|z0
(x),

Pz1(x) = P(Zi = z|Xi = x) and Pz0(x) = 1−Pz1(x).
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Then, we can write the likelihood function as follows.

qL(y, z, x) = f (x) ∏
j∈{1,0}

[
Pzj(x)

{
Py1|zj

(x)yPy0|zj
(x)1−y}]z̃j

,

where z̃1 = z and z̃0 = 1− z. Therefore, the loglikelihood function is given by

log qL(y, z, x) = log f (x) + ∑
j∈{1,0}

{
z̃j logPzj(x) + z̃jy logPy1|zj

(x) + z̃j(1− y)Py0|zj
(x)
}

. (A.47)

Lemma A.9. The tangent space for θL is given by

TL =
{

α f (x) + {z−Pz1(x)}αz(x) + ∑
j∈{0,1}

z̃j{y−Py1|zj
(x)}αy|zj

(x)
}

,

where α f is any square–integrable function with E{α f (Xi)} = 0 and αz, αy|zj
are any square–integrable

functions of x.

Proof. Let Pzj(x|γ),Pyk |zj
(x|γ) denote regular parametric submodels indexed by γ:24 we will de-

note the true value by γ0. Then, it follows from equation (A.47) that the score is given by

s(y, z, x|γ0) = sX(x|γ0) + sZ|X(z, x|γ0) + sY|Z,X(y, z, x|γ0), (A.48)

where

sX(x|γ0) =
1

f (x)
∂ f (x|γ)

∂γ
,

sZ|X(z, x|γ0) =
{ z
Pz1(x)

− 1− z
Pz0(x)

}∂Pz1(x|γ)
∂γ

,

sY|Z,X(y, z, x|γ0) = ∑
j∈{1,0}

z̃j

{ y
Py1|zj

(x)
− 1− y
Py0|zj

(x)

}∂Py1|zj
(x|γ)

∂γ
,

where all the derivatives are evaluated at γ0. The conclusion follows from the fact that all the

derivatives are unrestricted here. 2

Lemma A.10. The pathwise derivative of θL is given by

FL(Y, Z, X) =
Z

Pz1(X)

Y−Py1|z1
(X)

1−Py1|z0
(X)

+
1− Z
Pz0(X)

{
Y−Py1|z0

(X)
}{

θ̃L(X)− 1
}

1−Py1|z0
(X)

+ θ̃L(X)− θL.

24There is no loss of generality in assuming that γ is a scalar.
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Proof. Let θ̄L(γ) be the parameter corresponding to θL along regular parametric submodels indexed

by γ: i.e.

θ̄L(γ) =
∫ Py1|z1

(x|γ)−Py1|z0
(x|γ)

1−Py1|z0
(x|γ) f (x|γ)dx.

Then,

∂θ̃L(γ0)

∂γ
=
∫ 1

1−Py1|z0
(x)

∂Py1|z1
(x|γ)

∂γ
f (x)dx

+
∫

θL(x)− 1
1−Py1|z0

(x)
∂Py1|z0

(x|γ)
∂γ

f (x)dx +
∫

θL(x)
∂ f (x|γ)

∂γ
dx. (A.49)

Now, note that the score s(Y, Z, X|γ0) given in equation (A.48) is the sum of Bernoulli scores, and

therefore it follows that
∂θ̄L(γ0)

∂γ
= E

{
FL(Y, Z, X)s(Y, Z, X|γ0)

}
. 2

I.9. Proofs for the Results for Efficient Estimation of θ∗.

We now derive the efficient influence function of the integrated local persuasion parameter defined

in equation (A.10) when an i.i.d. sample of (Yi, Ti, Zi, Xi) is available. Similarly to the previous

subsection we use the following notation:

Pz1(x) = P(Zi = 1|Xi = x) and Pz0 = 1−Pz1(x),

Pt1|z1
(x) = P(Ti = 1|Zi = 1, Xi = x) and Pt0|z1

(x) = 1−Pt1|z1
(x),

Pt1|z0
(x) = P(Ti = 1|Zi = 0, Xi = x) and Pt0|z0

(x) = 1−Pt1|z0
(x),

Py1|t1,z1
(x) = P(Yi = 1|Ti = 1, Zi = 1, Xi = x) and Py0|t1,z1

(x) = 1−Py1|t1,z1
(x),

Py1|t0,z1
(x) = P(Yi = 1|Ti = 0, Zi = 1, Xi = x) and Py0|t0,z1

(x) = 1−Py1|t0,z1
(x),

Py1|t1,z0
(x) = P(Yi = 1|Ti = 1, Zi = 0, Xi = x) and Py0|t1,z0

(x) = 1−Py1|t1,z0
(x),

Py1|t0,z0
(x) = P(Yi = 1|Ti = 0, Zi = 0, Xi = x) and Py0|t0,z0

(x) = 1−Py1|t0,z0
(x).

Using this notation, the likelihood function can be written as

q∗(y, t, z, x) = f (x) ∏
j={1,0}

[
Pzj(x) ∏

k={1,0}

{
Ptk |zj

(x) ∏
`={1,0}

Py` |tk ,zj
(x)ỹ`

}t̃k
]z̃j

= f (x) ∏
j={1,0}

[
Pzj(x)z̃j ∏

k={1,0}

{
Ptk |zj

(x)t̃k z̃j ∏
`={1,0}

Py` |tk ,zj
(x)ỹ` t̃k z̃j

}]
, (A.50)
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where z̃1 = z, z̃0 = 1− z, t̃1 = t, t̃0 = 1− t, and ỹ1 = y, ỹ0 = 1− y. Therefore, the loglikelihood

function is given by

log q∗(y, t, z, x) = log f (x) + ∑
j∈{1,0}

z̃j logPzj(x)

+ ∑
j∈{1,0}

∑
k∈{0,1}

t̃k z̃j logPtk |zj
(x) + ∑

`∈{1,0}
∑

j∈{1,0}
∑

k∈{0,1}
ỹ` t̃k z̃j logPy` |tk ,zj

(x). (A.51)

Lemma A.11. The tangent space for θ∗ is given by

T ∗ =
{

α f (x) + {z−Pz1(x)}αz(x) + ∑
j∈{0,1}

z̃j{t−Pt1|zj
(x)}αt|zj

(x)

+ ∑
j∈{0,1}

∑
k∈{0,1}

t̃k z̃j{y−Py1|tk ,zj
(x)}αy|tkzj

(x)
}

,

where α f is any square–integrable function with E{α f (X1)} = 0, and αz, αt|zj
, αy|tk ,zj

are any square–

integrable functions of x.

Proof. Let Pzj(x|γ),Ptk |zj
(x|γ),Py` |tk ,zj

(x|γ) denote regular parametric submodels indexed by γ:

as in the proof of lemma A.9, γ is a scalar–valued parameter and its true value is denoted by γ0.

From the loglikelihood function described in equation (A.51), we know that the score of the regular

parametric submodel can be written as follows:

s∗(y, t, z, x|γ0) =
1

f (x)
∂ f (x|γ)

∂γ
+
{ z̃1

Pz1(x)
− z̃0

Pz0(x)

}∂Pz1(x|γ)
∂γ

+ ∑
j∈{1,0}

z̃j

{ t̃1

Pt1|zj
(x)
− t̃0

Pt0|zj
(x)

}∂Pt1|zj
(x|γ)

∂γ

+ ∑
j∈{1,0}

∑
k∈{1,0}

t̃k z̃j

{ ỹ1

Py1|tk ,zj
(x)
− ỹ0

Py0|tk ,zj
(x)

}∂Py1|tk ,zj
(x|γ)

∂γ
, (A.52)

where all the derivatives are evaluated at γ0. Here, we can do further albegra by using

∂Pz1(x|γ)
∂γ

= −∂Pz0(x|γ)
∂γ

, (A.53)

∂Pt1|zj
(x|γ)

∂γ
= −

∂Pt0|zj
(x|γ)

∂γ
for j = 0, 1 (A.54)

∂Py1|tk ,zj
(x|γ)

∂γ
= −

∂Py0|tk ,zj
(x|γ)

∂γ
for j, k = 0, 1. (A.55)
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Therefore, the score can be rewritten as follows:

s∗(y, t, z, x|γ0) = sX(x|γ0) + sZ|X(z, x|γ0) + sT|Z,X(t, z, x|γ0) + sY|T,Z,X(y, t, z, x|γ0), (A.56)

where

sX(x|γ0) =
1

f (x)
∂ f (x|γ)

∂γ
, (A.57)

sZ|X(z, x|γ0) =
z−Pz1(x)

Pz1(x)
{

1−Pz1(x)
} ∂Pz1(x|γ)

∂γ
, (A.58)

sT|Z,X(t, z, x|γ0) = ∑
j∈{1,0}

z̃j
{

t−Pt1|zj
(x)
}

Pt1|zj
(x)
{

1−Pt1|zj
(x)
} ∂Pt1|zj

(x|γ)
∂γ

, (A.59)

sY|T,Z,X(y, t, z, x|γ0) = ∑
j∈{1,0}

∑
k∈{1,0}

t̃k z̃j
{

y−Py1|tk ,zj
(x)
}

Py1|tk ,zj
(x)
{

1−Py1|tk ,zj
(x)
} ∂Py1|tk ,zj

(x|γ)
∂γ

. (A.60)

Interpretation of each term should be straightforward. For example, sT|Z,X(y, z, x|γ0) is the score

of T at t conditional on Z = z, X = x. Finally, the conclusion follows from equation (A.56) and the

fact that all the derivatives here are unrestricted. 2

Now, we derive the pathwise derivative of θ∗. For this purpose it is convenient to write

θ∗ =
∫

Q1(x)Q2(x) f (x)dx, (A.61)

where Q1(x) = Q1n(x)/Q1d(x) = θ∗(x) and Q2(x) = Q2n(x)/Q2d with

Q1n(x) = ∑
k∈{1,0}

Py1|tk ,z1
(x)Ptk |z1

(x)− ∑
k∈{1,0}

Py1|tk ,z0
(x)Ptk |z0

(x),

Q1d(x) = Py0|t0,z0
(x)Pt0|z0

(x)−Py0|t0,z1
(x)Pt0|z1

(x),

Q2n(x) = Pt1|z1
(x)−Pt1|z0

(x),

Q2d =
∫ {
Pt1|z1

(x)−Pt1|z0
(x)
}

f (x)dx.

Further, we define the following functions:

F∗1 (Y, T, Z, X) =
TZ

Pt1|z1
(X)Pz1(X)

{
Y−Py1|t1,z1

(X)
} Q2(X)

Q1d(X)
Pt1|z1

(X),

F∗2 (Y, T, Z, X) =
(1− T)Z

Pt0|z1
(X)Pz1(X)

{
Y−Py1|t0,z1

(X)
} Q2(X)

Q1d(X)

{
1−Q1(X)

}
Pt0|z1

(X),

F∗3 (Y, T, Z, X) = − T(1− Z)
Pt1|z0

(X)Pz0(X)

{
Y−Py1|t1,z0

(X)
} Q2(X)

Q1d(X)
Pt1|z0

(X),

A-34



Jun and Lee

F∗4 (Y, T, Z, X) = − (1− T)(1− Z)
Pt0|z0

(X)Pz0(X)

{
Y−Py1|t0,z0

(X)
} Q2(X)

Q1d(X)

{
1−Q1(X)

}
Pt0|z0

(X),

F∗5 (Y, T, Z, X) =
Z
{

T −Pt1|z1
(X)

}
Pz1(X)

(
Q2(X)

Q1d(X)

[
Py1|t1,z1

(X)−
{

1−Q1(X)
}
Py1|t0,z1

(X)−Q1(X)
]
+

Q1(X)

Q2d
− S2

)
,

F∗6 (Y, T, Z, X) = −
(1− Z)

{
T −Pt1|z0

(X)
}

Pz0(X)

×
(

Q2(X)

Q1d(X)

[
Py1|t1,z0

(X)−
{

1−Q1(X)
}
Py1|t0,z0

(X)−Q1(X)
]
− Q1(X)

Q2d
+ S2

)
,

F∗7 (Y, T, Z, X) = Q1(X)Q2(X)− S2

{
Pt1|z1

(X)−Pt1|z0
(X)−Q2d

}
− θ∗,

where S2 =
∫

Q1(x)Q2(x) f (x)dx/Q2d.

Lemma A.12. The pathwise derivative of θ∗ is given by the function F∗ defined by F∗(Y, T, Z, X) =

∑7
j=1 F∗j (Y, T, Z, X).

Proof. Let θ̄∗(γ) be the parameter corresponding to θ∗ along regular parametric submodels indexed

by γ: i.e.

θ̄∗(γ) =
∫

Q1(x|γ)Q2(x|γ) f (x|γ)dx,

where Q1(x|γ), Q2(x|γ), and f (x|γ) are naturally defined from Q1, Q2, and f , respectively.

We now calculate the derivatives of the Q functions with respect to γ (evaluated at γ0). For this

calculation there are only seven relevant derivatives, i.e.

∂Py1|t1,z1
(x|γ)

∂γ
,

∂Py1|t0,z1
(x|γ)

∂γ
,

∂Py1|t1,z0
(x|γ)

∂γ
,

∂Py1|t0,z0
(x|γ)

∂γ
,

∂Pt1|z1
(x|γ)

∂γ
,

∂Pt1|z0
(x|γ)

∂γ
,

∂ f (x|γ)
∂γ

.

Consider the easy ones first:

∂Q2n(x|γ)
∂γ

=
∂Pt1|z1

(x|γ)
∂γ

−
∂Pt1|z0

(x|γ)
∂γ

,

∂Q2d(γ)

∂γ
=
∫ {∂Pt1|z1

(x|γ)
∂γ

−
∂Pt1|z0

(x|γ)
∂γ

}
f (x)dx +

∫ {
Pt1|z1

(x)−Pt1|z0
(x)
}∂ f (x|γ)

∂γ
dx.
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Now, here are the messier ones:

∂Q1n(x|γ)
∂γ

= ∑
k∈{1,0}

∂Py1|tk ,z1
(x|γ)

∂γ
Ptk |z1

(x) +
{
Py1|t1,z1

(x)−Py1|t0,z1
(x)
}∂Pt1|z1

(x|γ)
∂γ

− ∑
k∈{1,0}

∂Py1|tk ,z0
(x|γ)

∂γ
Ptk |z0

(x)−
{
Py1|t1,z0

(x)−Py1|t0,z0
(x)
}∂Pt1|z0

(x|γ)
∂γ

,

∂Q1d(x|γ)
∂γ

=
∂Py1|t0,z1

(x|γ)
∂γ

Pt0|z1
(x)−

∂Py1|t0,z0
(x|γ)

∂γ
Pt0|z0

(x)

+ Py0|t0,z1

∂Pt1|z1
(x|γ)

∂γ
−Py0|t0,z0

∂Pt1|z0
(x|γ)

∂γ
.

Now, note that ∂θ∗(γ)/∂γ is the sum of the following terms:∫
∂Q1(x|γ)

∂γ
Q2(x) f (x)dx =

∫ Q2(x)
Q1d(x)

A1(x|γ) f (x)dx (A.62)

∫
Q1(x)

∂Q2(x|γ)
∂γ

f (x)dx =
∫ Q1(x)

Q2d
A2(x|γ) f (x)dx (A.63)∫

Q1(x)Q2(x)
∂ f (x|γ)

∂γ
dx, (A.64)

where

A1(x|γ) = ∂Q1n(x|γ)
∂γ

−Q1(x)
∂Q1d(x|γ)

∂γ
and A2(x|γ) = ∂Q2n(x|γ)

∂γ
−Q2(x)

∂Q2d(γ)

∂γ
.

Again, consider the easy one first:

A2(x|γ) = A21(x|γ) + A22(x|γ) + A23(x|γ), (A.65)

where

A21(x|γ) =
∂Pt1|z1

(x|γ)
∂γ

−Q2(x)
∫ ∂Pt1|z1

(r|γ)
∂γ

f (r)dr

A22(x|γ) = −
∂Pt1|z0

(x|γ)
∂γ

+ Q2(x)
∫ ∂Pt1|z0

(r|γ)
∂γ

f (r)dr,

A23(x|γ) = −Q2(x)
∫ {
Pt1|z1

(r)−Pt1|z0
(r)
}∂ f (r|γ)

∂γ
dr.

Here, note that∫ Q1(x)
Q2d

A21(x|γ) f (x)dx =
∫ {Q1(x)

Q2d
− S2

}
f (x)

∂Pt1|z1
(x|γ)

∂γ
dx, (A.66)

∫ Q1(x)
Q2d

A22(x|γ) f (x)dx = −
∫ {Q1(x)

Q2d
− S2

}
f (x)

∂Pt1|z0
(x|γ)

∂γ
dx, (A.67)
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Q2d

A23(x|γ) f (x)dx = −S2

∫ {
Pt1|z1

(x)−Pt1|z0
(x)
}∂ f (x|γ)

∂γ
dx. (A.68)

Next, here are the messier one:

A1(x|γ) = A11(x|γ) + A12(x|γ) + A13(x|γ) + A14(x|γ) + A15(x|γ) + A16(x|γ), (A.69)

where

A11(x|γ) = Pt1|z1
(x)

∂Py1|t1,z1
(x|γ)

∂γ
, (A.70)

A12(x|γ) =
{

1−Q1(x)
}
Pt0|z1

(x)
∂Py1|t0,z1

(x|γ)
∂γ

, (A.71)

A13(x|γ) = −Pt1|z0
(x)

∂Py1|t1,z0
(x|γ)

∂γ
, (A.72)

A14(x|γ) = −
{

1−Q1(x)
}
Pt0|z0

(x)
∂Py1|t0,z0

(x|γ)
∂γ

, (A.73)

A15(x|γ) =
[
Py1|t1,z1

(x)−
{

1−Q1(x)
}
Py1|t0,z1

(x)−Q1(x)
]∂Pt1|z1

(x|γ)
∂γ

, (A.74)

A16(x|γ) = −
[
Py1|t1,z0

(x)−
{

1−Q1(x)
}
Py1|t0,z0

(x)−Q1(x)
]∂Pt1|z0

(x|γ)
∂γ

. (A.75)

Therefore, combining equations (A.62) to (A.64), (A.66) to (A.68) and (A.70) to (A.75), we conclude

that ∂θ∗(γ)/∂γ is the sum of the following terms:

∫ Q2(x)
Q1d(x)

Pt1|z1
(x) f (x)

∂Py1|t1,z1
(x|γ)

∂γ
dx,

∫ Q2(x)
Q1d(x)

{
1−Q1(x)

}
Pt0|z1

(x) f (x)
∂Py1|t0,z1

(x|γ)
∂γ

dx,

−
∫ Q2(x)

Q1d(x)
Pt1|z0

(x) f (x)
∂Py1|t1,z0

(x|γ)
∂γ

dx,

−
∫ Q2(x)

Q1d(x)
{

1−Q1(x)
}
Pt0|z0

(x) f (x)
∂Py1|t0,z0

(x|γ)
∂γ

dx,

∫ ( Q2(x)
Q1d(x)

[
Py1|t1,z1

(x)−
{

1−Q1(x)
}
Py1|t0,z1

(x)−Q1(x)
]
+

Q1(x)
Q2d

− S2

)
f (x)

∂Pt1|z1
(x|γ)

∂γ
dx,

−
∫ ( Q2(x)

Q1d(x)

[
Py1|t1,z0

(x)−
{

1−Q1(x)
}
Py1|t0,z0

(x)−Q1(x)
]
− Q1(x)

Q2d
+ S2

)
f (x)

∂Pt1|z0
(x|γ)

∂γ
dx,

∫ [
Q1(x)Qx(x)− S2

{
Pt1|z1

(x)−Pt1|z0
(x)
}]∂ f (x|γ)

∂γ
dx.
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Finally, we note that the function F∗ satisfies that

∂θ∗(γ)

∂γ
= E

{
F(Y, T, Z, X)s∗(Y, T, Z, X|γ0)

}
,

where s∗ is defined in equation (A.56): in fact, this equation can be seen immediately from the fact

that s∗ is the sum of Bernoulli scores.25 2

Proof of Theorem A.4 It directly follows from lemmas A.10 and A.12. 2

Proof of Theorem A.5 It follows from Theorem 2.1 in Newey (1994) and the fact that the scores

given in equations (A.48) and (A.52) can approximate any mean zero random variable with an

arbitrarily small mean squared error. 2
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