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Abstract

We investigate the consequences of discreteness in the assignment variable in regression-

discontinuity designs for cases where the outcome variable is itself discrete. We �nd that

constructing con�dence intervals that have the correct level of coverage in these cases is sensi-

tive to the assumed distribution of unobserved heterogeneity. Since local linear estimators are

improperly centered, a smaller variance for unobserved heterogeneity in discrete outcomes ac-

tually requires larger con�dence intervals, since standard con�dence intervals become narrower

around a biased estimator, leading to a higher-than-nominal false positive rate. We provide a

method for mapping structural assumptions regarding the distribution and variance of unob-

served heterogeneity to the construction of �honest� con�dence intervals that have the correct

level of coverage. An application to retirement behavior reveals that the spike in retirement at

age 62 in the United States can be reconciled with a wider range of values for the variance of

unobserved heterogeneity (due to reservation wages or o�ers) than the spike at age 65.

1 Introduction

Most empirical researchers are aware that their inferences depend on unveri�able assumptions.

Usually these assumptions can be written in terms of conditional independence between two random

variables Y and Z so that E[Y |Z] = 0 with probability 1. It is less common for an inference

∗Birkbeck, University of London. Corresponding author: d.kaliski@bbk.ac.uk. We are grateful to seminar partic-
ipants at Birkbeck for comments and advice.
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to be made conditional on some variable Y being Normally distributed, or that its variance has

a particular magnitude. It is likely that this is because economic theory tends to make strong

predictions about the signs of parameters of interest, but few predictions regarding their magnitude

or the distribution of unobservables.

We nonetheless show that distributional assumptions regarding unobservables, and the mag-

nitude of their variance, are necessary for inference in at least one common empirical setting:

regression-discontinuity designs where the assignment variable is discrete and the outcome variable

is also discrete.1 The missing data problem arises from the impossibility of observing how close

individuals are to the margin of choosing one option over another if the outcome is a discrete choice

and that of observing individuals in�nitely close to the cuto� in a regression-discontinuity setting

where the running variable is discrete. In these cases, researchers need to specify both a prior distri-

bution for the unobserved heterogeneity term, and a prior value for the variance of the unobserved

heterogeneity, in order to obtain hypothesis tests that have the correct size.

The necessity of specifying the size of the variance term has an analogy in the literature on

the distribution of reservation wages and extensive-margin labor supply elasticities (Attanasio,

2012). If the distribution of reservation wages is di�use, then even a large exogenous change in the

o�ered wage will result in a small mass of individuals moving in or out of employment. Since this

distribution is not observed by the econometrician, it is implicit in a test of the null hypothesis

that an observed mass of individuals moving into or out of employment at a discontinuous policy

threshold is statistically signi�cant. For a su�ciently concentrated distribution of reservation wages,

even large movements in and out of employment could be present in the absence of the discontinuity,

making it spurious to infer that a large change observed at the discontinuity is signi�cant.

Formally, the importance of unobserved variability follows from the results of Kolesár and

Rothe (2018), who introduce Bounded Second Derivative (BSD) con�dence intervals for regression-

discontinuity designs with discrete running variables. They show these con�dence intervals have

the correct size conditional on researchers assuming some value for K, the uniform bound on the

second derivative of the conditional expectation function. Armstrong and Kolesár (2018) moreover

1Papers that include both of these types of discreteness include, but are not limited to: Card et al. (2008), Card
et al. (2009), Almond et al. (2010), and Shigeoka (2014).

2



show that any �data-driven� method for constructing con�dence intervals necessarily implicitly as-

sumes some value for K even if one isn't explicitly chosen. This formalizes the argument above that

some notion of �usual variability� is implict in tests of the hypothesis that a discontinous change

exists at some threshold. In discrete outcome models, what determines this usual variability are

the distribution of unobserved heterogeneity and the functional forms present in the process that

generates the outcomes. Hence the results in this paper, which show that choosing K in the context

of discrete-outcome models is equivalent to choosing some set of distributional and functional-form

assumptions that are consistent with prior evidence (even though economic theory typically provides

little guidance on these questions).2

The necessity of assumptions regarding the distribution of unobserved heterogeneity has an

earlier precedent in regression-discontinuity designs. Consistency of the regression-discontinuity

estimator for the discontinuous change in mean outcomes at the cuto� for some assignment rule

relies on the assumption that mean unobserved traits do not also discontinuously change at the cuto�

(Lee and Lemieux, 2010). This motivated the McCrary test for whether individuals were sorting

on unobservables around the cuto�, an important confounder if the assignment is based on a rule

that can induce strategic behavior such as a minimum test score (McCrary, 2008). The insight of

papers such as Lee and Card (2008) and Kolesár and Rothe (2018) is that even with this identifying

assumption satis�ed, misspeci�cation of the true relationship between outcomes and assignment

when the assignment variable is discrete can lead to con�dence intervals that are inappropriately

narrow. Our contribution is to connect an explicit distributional assumption regarding unobserved

heterogeneity in the utility of alternative choices to construction of con�dence intervals which have

at least the nominal coverage probability when the outcome variable is also discrete.

Our results are analogous to the parallel literature on the necessity of distributional assump-

tions in identifying the taxable income elasticity (Blomquist et al., 2018). More broadly, this paper

is in the tradition of studies of how quasi-experimental results depend on theoretical assumptions

(Rosenzweig and Wolpin, 2000, Keane, 2010a,b, Wolpin, 2013). It is most closely connected with the

2A notable exception is the Roy Model of occupational choice. If individuals pursue their comparative advantage,
and skills are log-concave, then earnings inequality is reduced relative to random assignment of individuals to oc-
cupations (Heckman and Honore, 1990). The Roy Model moreover makes testable predictions regarding the means
and variances of truncations of the overall earnings distribution.
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recent papers by Andrews et al. (2017, 2018), which examine how �sensitive� structural parameters

are to moments estimated from data and how �informative� reduced-form results are for the iden-

ti�cation of structural parameters respectively. Our paper asks the inverse of the former question:

how sensitive is inference regarding a particular reduced-form result to the assumed underlying

structure?

We answer this question in one much-studied context: the strength of retirement incentives at

ages 62 and 65 in the United States. We estimate one parameter from a simple latent index model

of retirement, and construct con�dence intervals that are conditional on the assumed value for the

other, unidenti�ed parameter, the variance of unobserved heterogeneity. We �nd that the range of

assumptions consistent with a statistically signi�cant spike in retirement at age 62 is broader than

the range consistent with a spike at age 65. Proceeding in this way allows researchers to commit to

a single value of a parameter of the data-generating process when performing di�erent analyses so

that assumptions do not vary arbitrarily across analyses. It also allows researchers to analyse the

sensitivity of their results to economically interpretable assumptions.

An alternative approach to the one we pursue here is to use Probit and Logit estimation in con-

junction with a regression-discontinuity design, derived by Xu (2017). The result in Armstrong and

Kolesár (2018) that necessitates an assumption regarding bounds on the second derivative of the

conditional expectation function (CEF) implies that the con�dence intervals derived in Xu (2017)

are conservative relative to the local linear estimator if the assumption that the second derivative

of the CEF is no more than K is true. It also does not necessarily allow for the sensitivity analyses

of the kind we perform in this paper, since if the variance-covariance matrix is not consistently esti-

mated in a nonlinear model the estimators of the coe�cients will also be inconsistent (Wooldridge,

2010).

The rest of this paper is organized as follows. Section 2 presents our results for some well-known

distributions and the implicit bounds on the second derivative of the conditional expectation func-

tion necessary to yield tests with the nominal size, as well as our more general result for models

where the index function is linear in the running variable, which �nds a previously-unremarked gen-

eral relationship between log-concave random variables' maximal �rst derivative and their variance.
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Section 3 applies our method to a common empirical setting that admits a regression-discontinuity

design with both a discrete running variable and a discrete outcome of interest. Section 4 concludes.

2 Theoretical Results

In this section, we �rst present some results for speci�c distributions of unobserved heterogeneity.

Then we provide the more general result that underlies these speci�c results: for random variables

with log-concave density functions, the maximum of the density function's �rst derivative is inversely

proportional to the variance of the random variable.

2.1 Set-Up and Notation

We randomly sample N individuals, and for each i ∈ {1, ..., N} we observe all the pairs of the

outcome of interest, Y and some covariate R, (Yi, Ri) for every i. We will be concerned with these

joint observations of Yi and Ri within an interval of length 2h, where h > 0 de�nes the bandwidth,

and there is a cuto� for assignment to the �treatment� group R∗ (normalised to be 0 throughout, as

is standard practice in the literature), so that we examine observations in the window Ri ∈ [−h, h].

Denote the Conditional Expectation Function (CEF) E[Y |R] = m(R). Suppose Di = 1 if an

individual is exposed to treatment, and 0 otherwise, with the potential outcomes of individual i

being written Yi(Di) = Yi(1) for the treated state and Yi(0) for the untreated state. The object of

interest is

τ = E[Yi(1)− Yi(0)|Ri = R∗ = 0] = lim
R→0+

m(R)− lim
R→0−

m(R), (1)

We will assume that m(R) is twice continuously di�erentiable. The following assumption has

been shown (Armstrong and Kolesár, 2018, Kolesár and Rothe, 2018) to be important for the

construction of con�dence intervals that have the correct level of coverage for inference on τ (esp.

in regression discontinuity designs):

Assumption A1. |m′′(R)| < K for some K > 0.
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Let M denote the set of all m(.) that satisfy this assumption. Assumption A1 is shown by

Kolesár and Rothe (2018) to be su�cient for con�dence intervals C1−α, where α is the nominal

signi�cance level, to have the property that

lim inf
N→∞

inf
m∈M

Pm(τ ∈ C1−α) ≥ 1− α, (2)

which is known as �honesty�, with con�dence intervals that satisfy this property being known

as honest con�dence intervals (Li et al., 1989). Con�dence intervals that are honest by virtue of

having been derived under Assumption A1 are called by Kolesár and Rothe (2018) �Bounded Second

Derivative� con�dence intervals. As they point out, honesty is a desirable property for con�dence

intervals to have, as �it guarantees good coverage properties even when facing 'the worst possible'

CEF that still satis�es the postulated constraints� (Kolesár and Rothe, 2018). Details of how to

construct con�dence intervals for τ that are honest conditional on a pre-speci�ed value for K can

be found in Kolesár and Rothe (2018).

Now suppose that Y ∈ {0, 1} and whether Yi = 1 or 0 is determined by the rule

Yi = 1[g(Ri) ≤ ηi] (3)

where η is unobserved, and g(R) is twice continuously di�erentiable. In this case

m(Ri) = E[Yi|Ri] = Fη(g(Ri)) (4)

where Fη(.) denotes the CDF of η. The derivatives of m(Ri) in this case are

m′(Ri) = fη(g(Ri))g
′(Ri), (5)

m′′(Ri) = fη(g(Ri))g
′′(Ri) + f ′η(g(Ri))[g

′(Ri)]
2, (6)

so the assumption of interest becomes
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|m′′(Ri)| = |fη(g(Ri))g
′′(Ri) + f ′η(g(Ri))[g

′(Ri)]
2| < K, (7)

To illustrate the consequences of this condition for some common distributional choices for η,

and build intuition, we now consider some common distributional choices for η and their e�ect on

this assumption. At the end of this section, we provide a general result for the case g(R) = δR: in

this case, the condition reduces to

|f ′η(g(Ri))|δ2 < K, (8)

and the general result is that the maximum value for |f ′η(g(Ri))| is decreasing in the variance

of η for log-concave random variables.

2.2 Uniform Unobserved Heterogeneity

Suppose η ∼ U(ω1, ω2). Then fη(g(Ri)) = 1
ω2−ω1

for all Ri, and f
′
η(g(Ri)) = 0 for all Ri. So we

require that

| g
′′(Ri)

ω2 − ω1
| < K, (9)

which, using the formula for the variance of the Uniform distribution, can also be written

|g′′(Ri)|
2
√

3ση
< K (10)

with ση denoting the standard deviation of η. This will provide a connection with the formulae

for the distributions considered later: the less dispersion there is in the distribution of η, the harder

it is to satisfy the condition under which the con�dence intervals are constructed.

Consider the null hypothesis that is being tested in these cases: that there is no change (especially

a discontinuous change) that could not have been produced by chance alone. The tighter is the

distribution of unobserved heterogeneity η, the more common are �uctuations in E[Y |R] since the

mass of individuals close to their reservation utilities is greater at any one time (there are more
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individuals �at the margin� for every value of Ri). In consequence, we need to observe a larger

discontinuous change to reject the null, and the range of �uctuations that could be explained by

chance expands. Hence, the con�dence interval that has the correct level of coverage becomes wider

for smaller values of ση.

If g(.) is an a�ne function, then the con�dence intervals are honest for any value of K. Though

su�cient, this combination of Uniform η and a�ne g(.) is not necessary, though it is plain that the

necessary condition fη(g(Ri))g
′′(Ri) + f ′η(g(Ri))[g

′(Ri)]
2 = 0 requires a fortuitous coincidence of

the shapes of g(.) and the distribution of η. It follows that assuming con�dence intervals have the

correct level of coverage with a discrete outcome variable in these empirical settings amounts to

implicitly making restrictive functional form and distributional assumptions.

2.3 Normal Unobserved Heterogeneity

Let the distribution of unobserved heterogeneity be distributed N(0, σ2
η). We then have fη(g(Ri)) =

σ−1η φ( g(Ri)ση
) and f ′η(g(Ri)) = σ−1η φ( g(Ri)ση

) × (−g(Ri)σ2
η

). φ( g(Ri)ση
) ≤ 1 since the Standard Normal

density function is bounded from above by 1, so we obtain

|g′′(Ri)− [g′(Ri)]
2 g(Ri)

σ2
η

| < K (11)

if g(.) is a linear function g(Ri) = δRi then this simpli�es to

|δ
3Ri
σ2
η

| < K,∀Ri (12)

equivalently, max(0, δ
3Ri
σ2
η

) < K.

2.4 Logistic Unobserved Heterogeneity

Let the distribution of unobserved heterogeneity be Type I extreme value with location µ = 0 and

scale sη =
√
3
π ση. Then if g is linear, condition (4) becomes
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2
√

3δ2

πση
< K (13)

In all of the above cases, the variance of the unobserved heterogeneity plays a key role in inference.

This seems to con�rm that distributional assumptions are necessary for inference - and not just

external validity, as is commonly assumed. In particular, we need some assumption regarding the

variance of η conditional on a distributional assumption for η.

The next subsection presents the general result for random variables that have log-concave

densities: the maximum of their �rst derivative is bounded from above by the inverse of their

variance. This shows that the inverse relationship between K and ση that holds for the three

speci�c distributions considered here is in fact a more general relationship that will hold for any

log-concave random variable and linear g(.).

2.5 General Result for Log-Concave Density Functions

The general result in this section says that if we rescale a log-concave random variable by a factor

α > 1, then the maximum of the �rst derivative of its probability density function will decrease.

Accordingly, if a log-concave random variable's variance increases, all else equal, the maximum

of the �rst derivative of its pdf will decrease. This has the consequence that if g(.) is a�ne, the

uniform bound K on the second derivative of the CEF is required to be larger for distributions of

η for which the variance is smaller (since this will increase f ′η).

Proposition 1. If X and Z are log-concave random variables, with Z = αX, and |α| > 1, then

the maximum of the �rst derivative of fZ(.) is smaller than the maximum of the �rst derivative of

fX(.).

Proof. Consider a continuously distributed scalar random variable X with support X ⊆ R.

Suppose the distribution of X has a density that is log-concave, i.e. it is of the form fX(x) =

exp(g(x)), x ∈ X , where g(·) is concave. The family of log-concave densities includes the exponential

family, the uniform and also the extreme value distribution EV(µ, σ).
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Log-concavity implies that the density exp(g(x)) is unimodal.3 The mode x? satis�es g′(x?) = 0,

provided x? ∈ int(X ).4

The sharpness of the peak of the density that corresponds to x? is determined by g′′(x?) ≤ 0.

Clearly, the location (parameter) of the density is irrelevant for the sharpness of the peak. The

scale, however, matters. Consider Z = αX, α 6= 0. Then, Z has density fZ(z) = 1
α exp(g(z/α)) =

1
αfX(z/α); the mode z? of the density of Z is z? = αx?; and f ′′Z(z?) = 1

α2 fX(z?/α)g′′(z?/α) =

1
α2 f

′′
X(x?). Hence, the larger the scale |α|, the �atter the peak.

In fact, for |α| > 1, the density of X is more peaked about its mode x? than the density of Z is

about z?: For any τ ≥ 0,

∫ x?+τ

x?−τ
fX(x)dx−

∫ z?+τ

z?−τ
fZ(z)dz =

∫ x?+τ

x?−τ
fX(x)dx−

∫ z?+τ

z?−τ

1

α
fX(z/α)dz

=

∫ x?+τ

x?−τ
fX(x)dx−

∫ x?+τ/α

x?−τ/α
fX(x)dx

=

∫ x?−τ/α

x?−τ
fX(x)dx+

∫ x?+τ

x?+τ/α

fX(x)dx

≥ 0.

De�ne x̌ = arg maxx∈X f
′
X(x) = arg maxx∈X fX(x)g′(x), and analogously for ž. Then, ž = αx̌,

and so

f ′Z(ž) =
1

α2
exp(g(ž/α))g′(ž/α)

=
1

α2
exp(g(x̌))g′(x̌)

=
1

α2
f ′X(x̌),

and therefore f ′Z(ž) < f ′X(x̌) for |α| > 1. �

Corollary. If X and Z are log-concave random variables, identical except for V ar(Z) > V ar(X),

max f ′Z < max f ′X .

3It is not necessarily symmetric; e.g. the extreme value distribution has X = R and is not symmetric.
4Here and in what follows, g′(x?) = 0 is shorthand notation for d

dx
g(x)|x=x? = 0. Interiority places restrictions

on the parameterization; e.g., for the Gamma density f(x) ∝ xν−1 exp(− ν
µ
x), it is required that ν > 1 (and µ > 0).
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2.6 Consequences for Inference of Distributional Assumptions

Distributions of unobserved heterogeneity with higher variance allow for honest inference with lower

values ofK and hence smaller critical values than do those with lower variance. The intuition behind

this result is both econometric and economic.

The econometric intuition is that while for a correctly centered estimator, a smaller standard

error allows for more power with no sacri�ce in the size of the test, for an improperly centered

estimator, the distribution of the estimator becomes more tightly distributed around a value that

deviates from the true value of the population parameter. This increases the number of false

positives (equivalently, worsens the size of the test).

The economic intuition can be derived from the role of reservation wages in the estimation of

extensive margin labor supply elasticities. If the unobserved distribution of reservation wages is

di�use, even large changes in wages do not lead to large movements in and out of the labor market.

If the distribution is tightly concentrated, small changes in wage o�ers can produce large movements

in and out of the labor market (Attanasio, 2012). Since the null hypothesis concerns the degree

of discontinuity in outcomes that could be obtained by chance, the discreteness of the outcome

variable necessitates some assumption regarding the closeness or otherwise of outcomes to being

perturbed away from the discontinuity examined at the cuto�.

For a �xed variance, the Uniform distribution is signi�cantly more forgiving than the more

commonly used Normal or Logistic distributions. To take a simple example: suppose R ∈ [−4, 4],

�x g(R) = 0.1R2, max
R∈[−4,4]

|R| = 4, and ση = 1. Then the minimal allowable K for Normal η is

0.824, and Logistic η it is 0.906, whereas for Uniformly distributed η it is 0.058. If instead we have

g(R) = 0.9R, then any K > 0 bounds the second derivative of the CEF from above if η is Uniform,

whereas we require K > 2.916 if η is Normal and K > 0.893 if η is Logistic. From this example it is

clear that even for a given assumption regarding the variance of η, ση, the distribution η is assumed

to follow can have a large in�uence on the size of the con�dence intervals that are necessary for

honest inference in the discrete outcome case. Whether the Logistic or Normal distributions allows

for lower values of K seems likely to vary from case to case.
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In the next section, we examine the consequences of di�erent distributional assumptions for the

conclusions of a recent empirical study that used both a discrete running variable and a discrete

outcome variable in a regression-discontinuity design.

3 Empirical Application: Spikes in Retirement at Ages 62

and 65 in the United States

In this section, we use our mapping from assumptions regarding unobserved heterogeneity to con-

�dence intervals to study retirement behaviour. In this context, unobserved heterogeneity will

correspond to unobserved determinants of labor force participation that vary across individuals.

Accordingly, whether the distribution of unobserved heterogeneity has low or high dispersion will

correspond to whether the distribution of reservation wages has high or low dispersion.

3.1 Institutional Background

In the United States, Social Security is the main source of income in retirement for low-income

individuals. Individuals become eligible for Social Security at age 62, producing a spike in retirement

at 62 that is not typical of other countries (Gustman and Steinmeier, 2005). It is a matter of some

debate as to whether the spike in retirement at age 65 that existed before the abolition of mandatory

retirement in 1986 still remains (Von Wachter, 2002). Studies that examine the e�ect of qualifying

for health insurance at age 65 via Medicare on United States residents' health outcomes and health

behaviors check for the spike in retirement at this age as a possible confounder (Card et al., 2008,

2009, Dave and Kaestner, 2009, Kaliski, 2019), and typically �nd that from the late 90s onwards

there is little evidence of a spike at age 65 (though the spike at 62 remains).

3.2 Data and Estimation

The data are drawn from the Health and Retirement Study (HRS), a nationally representative

household survey run by the University of Michigan since 1992. Individuals are followed every two

12



years. New cohorts were added in 1998, the fourth wave of the survey, to increase the sample size

and survey a broader range of cohorts in the study. We use a cleaned version of the HRS data

informally titled the �RAND HRS� data set (for details of its construction, see Chien et al. (2013)).

Taking data on individuals' age in years, gender, and self-identi�ed retirement status (dropping

the partially retired, or those who say the question is irrelevant from the sample), we obtain

158326 nonmissing person-year observations from the 12 waves of the survey spanning the period

1992-2014. The �e�ective� sample size is typically much smaller than this since only observations

within a narrow window of the cuto�s of 62 or 65 are used in estimation, but is larger than in

many applications of the regression-discontinuity design, with around 3000 observations within a

two-year radius of the cuto� per regression.

We use the R package RDHonest to compute con�dence intervals according to the method

described in Kolesár and Rothe (2018). The package is freely available online at the URL

https://github.com/kolesarm/RDHonest/. We compute, for each value of ση ∈ {0.25, 0.5, 0.75, 1},

the associated implied minimal feasible K from the formulae in Equations 12 and 13.5 We then

estimate con�dence intervals that have coverage rates of 95% given the assumed uniform bound on

the second derivative of the conditional expectation function, K.

The estimating equation is the local linear speci�cation

Yi = α+ τ × 1[Ri ≥ R∗] + βRi + γRi × 1[Ri ≥ R∗] + εi,
|Ri −R∗|

h
< 1, (14)

where Yi = 1 if an individual responds that they are retired in the HRS data, and 0 otherwise,

Ri is the respondent's age in years, R∗ is one of {62, 65} in each regression, h > 0 is the bandwidth

and εi is a combination of unobserved heterogeneity and speci�cation error. We pool the years of

data together, ignoring period e�ects. Throughout we assume that away from the cuto� the data

are generated by the process

Yi = 1[−δRi ≤ ηi], (15)

where g(Ri) = −δRi, so that a higher estimated value for δ corresponds to a higher probability

5We do not include results for η ∼ U(ω1, ω2) since as discussed above when g(.) is a�ne this allows for K = 0
regardless of the value of ση .
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of Yi = 1. The sign of δ is irrelevant in the formula for the minimal feasible K given in Equations

12 and 13.

3.3 Results

As a preliminary, we estimate the Logit and Probit coe�cients on age in years that are relevant for

calculating the value of K, the upper bound on the second derivative of the conditional expectation

function. The results are displayed in Table 2. Men and women's age pro�les within a model that has

a linear index function do not seem to di�er markedly, but as is to be expected the Logit and Probit

coe�cient estimates di�er. In what follows we use δ̂probit for δ in the calculations involving Normal

unobserved heterogeneity and δ̂logit for the calculations involving logistic unobserved heterogeneity.

This allows us to produce 95% con�dence intervals that vary with a single parameter, ση, the

standard deviation of η, by mapping between ση, conditional on δ, and K, the uniform bound on

the second derivative of the conditional expectation function (CEF). For comparison with the case

where the researcher assumes a value for δ2

ση
or |δ

3|
σ2
η
, the interested reader is referred to Table 1.

The main empirical results are displayed in Tables 3, 4, 5 and 6, which contain the results

for men and women's self-identi�ed retirement rates at ages 62 and 65, respectively. We vary

the distribution and magnitude of ση and generate the con�dence intervals corresponding to the

minimal allowable value for K that is implied by the assumed ση, the relevant value for δ, and the

max |Ri| chosen by the RDHonest package's chosen bandwidth, which is chosen so as to be optimal

conditional on K. The values of ση are chosen from the set {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5},

with 5 providing an extreme case for contrast with the rest of the values ranging between 0.25 and

2.

Turning to Table 3, it appears that even as well-established an empirical regularity as the

spike in retirement at age 62 for men in the U. S. (1) cannot be supported for all values of ση,

given an assumed distribution, and (2) the choice of distribution implies di�erent values of ση that

are compatible with 95% con�dence intervals that do not contain zero. For both men and women

(Tables 3 and 5, the 95% con�dence interval conditional on Normally distributed η does not contain

zero for all ση ≥ 0.5, whereas for Logistic η the higher values of ση ≥ 1 for men and ση ≥ 1.25
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for women are required. It appears that in this relatively simple set-up, ση of at least 1.25 gives

the most credible results, since it is consistently associated with a statistically signi�cant spike in

retirement for both men and women at age 62, the Social Security eligibility age.

The spike at age 65 requires the researcher to commit to a narrower range of assumptions

regarding ση. From Tables 4 and 6, we can observe that the 95% con�dence intervals only fail to

contain zero with Normally distributed η and ση = 5, an order of magnitude greater than the value

required to recover a statistically signi�cant spike in retirement behavior for men at age 62.

When η is assumed to be Logistic, none of the values for ση, even the largest considered of

ση = 5, produces a statistically signi�cant spike in retirement for men or women. It follows that

the spike in retirement at age 65 is furthermore more sensitive to implicit distributional assumptions

than is the spike in retirement at age 62.

The results imply that statistical signi�cance of the spike in retirement at age 62 is consistent

with a broader range of assumptions regarding ση than is the spike in retirement at age 65. There

are two observationally equivalent explanations for this outcome. The �rst is that the distribution

of unobserved determinants of reservation wages and wage o�ers changes between 62 and 65 so that

ση is larger at age 65 than it is at age 62. The other is that over the majority of the sample period

the apparent spike in retirement at age 65 is an artifact rather than a truly discontinuous jump in

retirement behavior.

The �rst explanation requires the individuals who choose to retire at age 62 to be drawn from a

di�erent part of the distribution of unobserved heterogeneity to those who choose to remain in the

labor force. In the limit, if they are drawn at random from the distribution, ση should be unchanged

between 62 and 65, absent especially strong age trends in the unobservables (if η is allowed to vary

with age). If the distribution is skewed, and the mass of individuals are left after those in the tail of

the distribution of η retire at 62, then ση can actually be lower at 65 than 62, making transitions in

and out of the labor force more frequent between 62 and 70 than before age 62, raising the second

derivative of the population conditional expectation function E[Y |R].

The second explanation is simply that the evidence in favor of the spike in retirement at age 65,

for an age-invariant ση, is weaker than for the spike at age 62, the Social Security eligibility age.
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We leave which of these arguments is most plausible as a question for future research.

4 Conclusion

This paper has provided the �rst analysis of honest inference for regression-discontinuity designs

where both the assignment variable and the outcome of interest is discrete. In doing so, it provides

a test case where an explicit assumption regarding the magnitude of an unknown parameter is

necessary for inference. This is in distinction with the majority of preceding literature, where

the assumptions needed for point identi�cation and inference typically require some population

moments to be zero.6 The best-known exception is the original regression-discontinuity design

itself, which relies on the conditional distribution of the error term's continuity at the cuto�.

Since McCrary (2008) a variant of this assumption - that there is no strategic sorting around the

cuto� - has been testable. The standard RDD assumptions do not require any restrictions on the

magnitudes of parameters governing the error term, nor anything regarding its distribution beyond

continuity at a particular point. We have shown that when the running variable and outcome

variable are both discrete, the apparently undemanding assumption of the continuity of unobserved

outcomes at the cuto� R∗ has to be supplemented by signi�cantly stronger assumptions regarding

the distribution of unobserved heterogeneity and the magnitude of its variance. We expect similar

results to be formalized in the future for other settings where a quasi-experimental method is used

in combination with a discrete dependent variable.
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Tables and Figures

Table 1: Minimal Implied Bounds on Second Derivatives Given
Distributions and Variances of Unobserved Heterogeneity, As-
suming Linear Index Function

(1) (2) (3) (4) (5) (6)
Uniform K Normal K Logistic K

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 0 0 δ2

ση
= 0 0

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 0.25 0.25 δ2

ση
= 0.25 0.276

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 0.5 0.5 δ2

ση
= 0.5 0.551

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 0.75 0.75 δ2

ση
= 0.75 0.827

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 1 1 δ2

ση
= 1 1.103

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 1.25 1.25 δ2

ση
= 1.25 1.378

g′′

2
√
3ση

= 0 0 | δ
3Ri
σ2
η
| = 1.5 1.5 δ2

ση
= 1.5 1.654

Notes: K refers to uniform bound on second derivative of the con-
ditional expectation function (CEF) E[Y |R], while δ and ση are
the linear index parameter and standard deviation of unobserved
heterogeneity η in a linear index model of discrete choice. R is
the assigment variable and Y the outcome variable in a regression-
discontinuity design.

Table 2: Probit and Logit Estimates of the Lin-
ear Index Parameter δ

(1) (2) (3) (4)
Normal Logistic

Men Women Men Women

0.128∗∗∗ 0.124∗∗∗ 0.233∗∗∗ 0.225∗∗∗

(0.001) (0.001) (0.002) (0.001)

Notes: Standard errors in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3: The Spike in Retirement at Age 62: Men

(1) (2) (3) (4) (5) (6) (7) (8)
Normal Logistic

ση Implied K 95% CI ση Implied K 95% CI

0.250 0.067 -0.006 0.224 0.250 0.239 -0.206 0.424
0.500 0.017 0.053 0.165 0.500 0.120 -0.067 0.285
0.750 0.007 0.061 0.146 0.750 0.080 -0.020 0.239
1.000 0.004 0.068 0.139 1.000 0.060 0.003 0.215
1.250 0.003 0.088 0.151 1.250 0.048 0.017 0.201
1.500 0.002 0.091 0.148 1.500 0.040 0.026 0.192
1.750 0.001 0.107 0.160 1.750 0.034 0.033 0.186
2.000 0.001 0.119 0.169 2.000 0.030 0.037 0.181

5.000 0.000 0.214 0.246 5.000 0.012 0.058 0.160

Notes: Formulae for mapping assumed values for ση to the uniform bound on the
second derivative of the conditional expectation function K can be found in
Equations 12 and 13. 95% con�dence intervals are computed using the R package
RDHonest, according to the method described in Kolesár and Rothe (2018).

Table 4: The Spike in Retirement at Age 65: Men

(1) (2) (3) (4) (5) (6) (7) (8)
Normal Logistic

ση Implied K 95% CI ση Implied K 95% CI

0.250 0.067 -0.084 0.153 0.250 0.239 -0.283 0.352
0.500 0.017 -0.026 0.095 0.500 0.120 -0.145 0.214
0.750 0.007 -0.026 0.065 0.750 0.080 -0.099 0.168
1.000 0.004 -0.065 0.013 1.000 0.060 -0.076 0.145
1.250 0.003 -0.060 0.008 1.250 0.048 -0.062 0.131
1.500 0.002 -0.043 0.018 1.500 0.040 -0.053 0.122
1.750 0.001 -0.041 0.016 1.750 0.034 -0.047 0.115
2.000 0.001 -0.020 0.033 2.000 0.030 -0.042 0.110

5.000 0.000 0.135 0.169 5.000 0.012 -0.036 0.074

Notes: Formulae for mapping assumed values for ση to the uniform bound on the
second derivative of the conditional expectation function K can be found in
Equations 12 and 13. 95% con�dence intervals are computed using the R package
RDHonest, according to the method described in Kolesár and Rothe (2018).
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Table 5: The Spike in Retirement at Age 62: Women

(1) (2) (3) (4) (5) (6) (7) (8)
Normal Logistic

ση Implied K 95% CI ση Implied K 95% CI

0.250 0.061 -0.018 0.191 0.250 0.223 -0.206 0.378
0.500 0.015 0.035 0.138 0.500 0.112 -0.077 0.249
0.750 0.007 0.038 0.116 0.750 0.074 -0.034 0.206
1.000 0.004 0.044 0.110 1.000 0.056 -0.012 0.185
1.250 0.002 0.065 0.123 1.250 0.045 0.001 0.172
1.500 0.002 0.067 0.120 1.500 0.037 0.009 0.163
1.750 0.001 0.080 0.129 1.750 0.032 0.015 0.157
2.000 0.001 0.103 0.149 2.000 0.028 0.020 0.152

5.000 0.000 0.202 0.232 5.000 0.011 0.039 0.133

Notes: Formulae for mapping assumed values for ση to the uniform bound on the
second derivative of the conditional expectation function K can be found in
Equations 12 and 13. 95% con�dence intervals are computed using the R package
RDHonest, according to the method described in Kolesár and Rothe (2018).

Table 6: The Spike in Retirement at Age 65: Women

(1) (2) (3) (4) (5) (6) (7) (8)
Normal Logistic

ση Implied K 95% CI ση Implied K 95% CI

0.250 0.061 -0.108 0.110 0.250 0.223 -0.294 0.296
0.500 0.015 -0.056 0.058 0.500 0.112 -0.166 0.168
0.750 0.007 -0.020 0.065 0.750 0.074 -0.124 0.126
1.000 0.004 -0.052 0.020 1.000 0.056 -0.102 0.104
1.250 0.002 -0.047 0.015 1.250 0.045 -0.089 0.091
1.500 0.002 -0.032 0.025 1.500 0.037 -0.081 0.083
1.750 0.001 -0.030 0.023 1.750 0.032 -0.075 0.077
2.000 0.001 -0.014 0.036 2.000 0.028 -0.070 0.072

5.000 0.000 0.142 0.174 5.000 0.011 -0.030 0.074

Notes: Formulae for mapping assumed values for ση to the uniform bound on the
second derivative of the conditional expectation function K can be found in
Equations 12 and 13. 95% con�dence intervals are computed using the R package
RDHonest, according to the method described in Kolesár and Rothe (2018).
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