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Summary. Predicting scalar outcomes by using functional predictors is a classical problem in
functional data analysis. In many applications, however, only specific locations or time points of
the functional predictors have an influence on the outcome. Such ‘points of impact’ are typically
unknown and must be estimated in addition to estimating the usual model components.We show
that our points-of-impact estimator enjoys a superconsistent rate of convergence and does not
require knowledge or pre-estimates of the unknown model components. This remarkable result
facilitates the subsequent estimation of the remaining model components as shown in the theo-
retical part, where we consider the case of non-parametric models and the practically relevant
case of generalized linear models. The finite sample properties of our estimators are assessed
by means of a simulation study. Our methodology is motivated by data from a psychological
experiment in which the participants were asked to rate their emotional state continuously while
watching an affective video eliciting a varying intensity of emotional reactions.

Keywords: Emotional stimuli; Functional data analysis; Non-parametric regression; On-line
video rating; Quasi-maximum-likelihood; Variable selection

1. Introduction

Identifying important time points in time continuous trajectories is a difficult but highly relevant
problem. For instance, current psychological research on emotional experiences often includes
time continuous stimuli such as videos to induce emotional states, say X.t/∈ R, with t ∈ [a, b],
where a denotes the start of the video and b the end (Fig. 1). The evaluation of such stimuli is
based on asking participants whether the video made them feel negative, say Y =0, or positive,
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Fig. 1. Continuously self-reported emotion trajectories {X.t/ : 0 � t � 1} of n D 65 participants with two
estimated points of impact τ̂1 and τ̂2; see the application in Section 5

say Y =1. In this paper we consider a novel data set where participants were asked to report their
emotional states continuously while watching an affective documentary video on the persecution
of African albinos. After watching the video, the participants were asked to rate their final overall
feeling. Psychologists are interested in understanding how such concluding overall ratings relate
to the fluctuations of the emotional states while watching the video, as this has implications for
the way that emotional states are assessed in research using such material. Because of a lack
of appropriate statistical methods, existing approaches use heuristics such as the ‘peak-and-
end rule’ (PER) approach to link the overall ratings with the continuous emotional stimuli
(see Section 5). Such heuristic approaches, however, can produce results that do not accurately
capture the summary rating and can be easily overinterpreted, as there is no unbiased formal
inference about which time points contribute to the summary rating. By contrast, our new
methodology enables us to identify the crucial affective video scenes—the basic prerequisite to
understanding the emergence of emotional states in this kind of experiment.

The identification of ‘influential’ stimuli in a video corresponds to identifying corresponding
time points τ ∈ .a, b/. We aim to estimate such time points within the non-parametric model

Y =g{X.τ1/, : : : , X.τS/}+ ", .1/

where τ1, : : : , τS ∈ .a, b/ and their number S ∈ N are unknown and need to be estimated. The
values τ1, : : : , τS are called points of impact and provide specific locations at which the functional
predictor X∈L2.[a, b]/ influences the scalar outcome Y . In our real data application in Section
5, Y is a binary variable and the functional predictor X is evaluated at two estimated points of
impact τ̂1 and τ̂2; see Fig. 5 in Section 4.1.

Our method builds on the work of Kneip et al. (2016); however, we consider the much more
challenging case of estimating points of impact within a fully non-parametric function g. A
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remarkable feature of our method is that identification and estimation of the points of impact
τ1, : : : , τS neither require knowledge about the non-parametric function g nor an estimate of g.
The estimation of the points of impact τ1, : : : , τS is thus robust to model misspecifications and is
free of additional contaminating estimation errors. This result goes far beyond the special case
of a functional linear model as considered by Kneip et al. (2016).

To the best of our knowledge, the problem of estimating τ1, : : : , τS in model (1) has, so far, been
considered by Ferraty et al. (2010) only, who proposed to estimate g non-parametrically for any
combination of point-of-impact candidates tÅ1 , : : : , tÅSÆ ∈{tj : tj =a+j.b−a/=p with j=1, : : : , p}
and to select the best model by using cross-validation. This brute force method, however, be-
comes problematic in practice for S � 2 and large p. Furthermore, the non-parametric esti-
mation of g implies that the points of impact τ1, : : : , τS can be estimated at most with the
non-parametric rate n−2=.4+S/, where n denotes the sample size. Here the speed of convergence
decreases dramatically for dimensions S �2. By contrast, we can estimate the points of impact
with a superconsistent rate of convergence, i.e. faster than the parametric rate n−1=2, and our
estimation algorithm is applicable in practice for any fixed S and large p�n.

The superconsistency result for our points-of-impact estimators is very beneficial for subse-
quent estimation problems and enables us to estimate the unknown function g as if the points
of impact were known. We demonstrate this for a non-parametric model g as well as for the
practically relevant case of generalized linear models with linear predictors, i.e.

g{X.τ1/, : : : , X.τS/}=g

{
α+

S∑
r=1

βrX.τr/

}

with assumed known parametric link function g.
So far, the purely non-parametric framework has been considered by Ferraty et al. (2010)

only. The case of a known g and linear predictor function α+ΣS
r=1βrX.τr/ had already been

considered by previous studies; however, none of these studies provides a superconsistent esti-
mation of points of impact independent of the model g. The term ‘impact point’ was coined
by Lindquist and McKeague (2009) and McKeague and Sen (2010). Lindquist and McKeague
(2009) considered a logistic regression framework and McKeague and Sen (2010) considered a
linear regression framework. A point-of-impact model, where S =1 is assumed known, has also
been studied in survival analysis for the Cox regression model (Zhang, 2012). Kneip et al. (2016)
allowed for an unknown number S � 0 of points of impact augmenting the functional linear
regression model. Liebl et al. (2020) proposed an improved estimation algorithm for the latter
work. Aneiros and Vieu (2014) considered a linear regression framework with multiple points
of impact postulating the existence of some consistent estimation procedure. Berrendero et al.
(2019) considered a linear regression framework and proposed a reproducing kernel Hilbert
space approach. Selecting sparse features from functional data X is also useful for clustering.
For instance, Floriello and Vitelli (2017) proposed a method for sparse clustering of functional
data. In a slightly different context, Park et al. (2016) focused on selecting predictive subdomains
of the functional data. Related to this paper is also the work of Lindquist (2012) and Sobel and
Lindquist (2014). Lindquist (2012) extended structural equation models to the functional data
analysis setting and used his methodology to select significantly impacting time intervals in func-
tional magnetic resonance imaging data. Sobel and Lindquist (2014) proposed a mixed effects
model which facilitates selecting significant impact regions in functional magnetic resonance
imaging data by controlling for systematic measurement errors.

The rest of this work is structured as follows. Section 2 considers the estimation of the points
of impact τr and their number S independent of the model g. Subsequent estimation of the
function g is discussed in Section 3. The simulation study and the real data application are in
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Sections 4 and 5. All proofs and additional simulation results can be found in the appendices
of the on-line supplementary paper supporting this paper. The R package fdapoi and the R
scripts for reproducing our main empirical results are also available from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets.

2. Estimating points of impact

In what follows we present our theoretical framework (Section 2.1), the estimation algorithm
(Section 2.2) and our asymptotic results (Section 2.3). The section concludes with a discussion
of possibilities to generalize our theoretical results (Section 2.4).

2.1. Theoretical framework
In this section we present our theoretical framework for estimating the points of impact τ1, : : : , τS

without knowing or (pre-)estimating the possibly non-parametric model function g. The identifi-
cation of points of impact constitutes a particular variable-selection problem. Since we consider
the case where the functional predictor is observed over a densely discretized grid, one might be
tempted to apply multivariate variable-selection methods like the lasso or related procedures.
Note, however, that the high correlation of the predictor at neighbouring discretization points
violates the basic requirements of these multivariate variable-selection procedures.

Suppose that we are given an independent and identically distributed sample of data .Xi, Yi/,
i=1, : : : , n, where Xi ={Xi.t/, t ∈ [a, b]} is a stochastic process with E{∫ b

a Xi.t/
2 dt}<∞, [a, b] is

a compact subset of R and Yi is a real-valued random variable. It is assumed that the relationship
between Yi and the functional predictor Xi can be modelled as

Yi =g{Xi.τ1/, : : : , Xi.τS/}+ "i, .2/

where "i denotes the statistical error term with E{"i|Xi.t/} = 0 for all t ∈ [a, b]. The number
0 � S < ∞ and the points of impact τ1, : : : , τS are unknown and must be estimated from the
data—without knowing the true model function g. The points of impact τ1, : : : , τS indicate
the locations at which the functional values Xi.τ1/, : : : , Xi.τS/ have a specific influence on Yi.
Without loss of generality, we consider centred random functions Xi with E{Xi.t/}= 0 for all
t ∈ [a, b].

Surprisingly, the unknown function g must fulfil only some very mild regularity conditions
and does not have to be estimated to estimate the points of impact τ1, : : : , τS (see theorem 1 later).
Estimating points of impact, however, necessarily depends on the structure of Xi. Motivated by
our application we consider stochastic processes with rough sample paths such as (fractional)
Brownian motion, Ornstein–Uhlenbeck processes (OUPs) and Poisson processes. These pro-
cesses also have important applications in fields such as finance, chemometrics, econometrics
and the analysis of gene expression data (Lee and Ready, 1991; Levina et al., 2007; Dagsvik
and Strøm, 2006; Rohlfs et al., 2013). Common to these processes are covariance functions
σ.s, t/ = E{Xi.s/Xi.t/} which are two-times continuously differentiable for all points s �= t, but
not two-times differentiable at the diagonal s= t. The following assumption on the covariance
function of Xi describes a very large class of such stochastic processes and enables us to derive
precise theoretical results.

Assumption 1. For some open subset Ω ⊂ R3 with [a, b]2 × [0, b − a] ⊂ Ω, there is a twice
continuously differentiable function ω :Ω→R as well as some 0<κ<2 such that for all s, t ∈ [a, b]
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σ.s, t/=ω.s, t, |s− t|κ/: .3/

Moreover, 0 < inf t∈[a,b] c.t/, where

c.t/ :=− @

@z
ω.t, t, z/|z=0:

The parameter κ quantifies the degree of smoothness of the covariance function σ at the diag-
onal. Although a twice continuously differentiable covariance function will satisfy assumption
(3) with κ=2, small values 0 <κ< 2 indicate a process with non-smooth sample paths.

Assumption 1 covers several important classes of stochastic processes. Recall, for instance,
that the class of self-similar (not necessarily centred) processes Xi ={Xi.t/ : t �0} has the prop-
erty that Xi.c1t/ = cH

1 Xi.t/ for any constant c1 > 0 and some exponent H > 0. It is then well
known that the covariance function of any such process Xi with stationary increments and
0 < E{Xi.1/2}<∞ satisfies

σ.s, t/=ω.s, t, |s− t|2H/= .s2H + t2H −|s− t|2H/c2

for some constant c2 >0; see theorem 1.2 in Embrechts and Maejima (2000). If 0<H<1 such a
process respects assumption 1 with κ=2H and c.t/=c2. A prominent example of a self-similar
process is fractional Brownian motion.

Another class of processes is given when Xi = {Xi.t/ : t � 0} is a second-order process with
stationary and independent increments. In this case it is easy to show that σ.s, t/=ω.s, t, |s− t|/=
.s + t −|s − t|/c3 for some constant c3 > 0. Assumption 1 then holds with κ= 1 and c.t/ = c3.
These conditions on Xi are, for instance, satisfied by second-order Lévy processes which include
important processes such as Poisson processes, compound Poisson processes or jump diffusion
processes.

A third important class of processes satisfying assumption 1 are those with a Matérn covari-
ance function. For this class of processes the covariance function depends only on the distance
between s and t through

σ.s, t/=ων.s, t, |s− t|/= πφ

2ν−1Γ.ν + 1
2 /α2ν

.α|s− t|/νKν.α|s− t|/,

where Kν is the modified Bessel function of the second kind, and ρ, ν and α are non-negative
parameters of the covariance. It is known that this covariance function is 2m-times differentiable
if and only if ν > m (see Stein (1999), chapter 2.7, page 32). Assumption 1 is then satisfied for
ν < 1. For the special case where ν = 0:5 one may derive the long-term covariance function of
an OUP which is given as

σ.s, t/=ω.s, t, |s− t|/=0:5 exp.−θ|s− t|/σ2
OU=θ,

for some parameter θ > 0 and σOU > 0. Assumption 1 is then covered with κ = 1 and c.t/ =
0:5σ2

OU.
The remarkable result that identification and estimation of the points of impact τ1, : : : , τS

require neither knowledge about the possibly non-parametric function g nor an estimate of g is
based on the following theorem.

Theorem 1. Let Xi be a Gaussian process. For any function g.x1, : : : , xS/ such that for all
r =1, : : : , S the partial derivative @g.x1, : : : , xS/=@xr is continuous almost everywhere and

0 <
∣∣∣E[ @

@xr
g{Xi.τ1/, : : : , Xi.τS/}

]∣∣∣<∞,
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we define

ϑr =E

[
@

@xr
g{Xi.τ1/, : : : , Xi.τS/}

]
:

Then the equation

E{Xi.s/Yi}=
S∑

r=1
ϑrσ.s, τr/

holds for all s∈ [a, b].

Theorem 1 enables us to decompose the cross-covariance E{Xi.s/Yi} into coefficients ϑr,
which depend on the unknown function g, and the covariance function σ, which depends on Xi

only. Our estimation strategy for the points of impact τr works for unknown ϑr with 0< |ϑr|<∞.
The latter imposes only mild regularity assumptions on g and is fulfilled, for instance, by any
non-parametric single-index model, g{Xi.τ1/, : : : , Xi.τS/}≡ g.ηi/ with ηi =α +ΣS

r=1βrXi.τr/,
where 0< |E{g′.ηi/}|<∞. Of course, the class of possible functions g that is defined by theorem
1 also contains much more complex cases than single-index models.

The intention of our estimator for the points of impact τr is to exploit the covariance structure
of processes that is described by assumption 1. Covariance functionsσ.s, t/ satisfying assumption
1 are obviously not two-times differentiable at the diagonal s= t but are two-times differentiable
for s �= t. Using theorem 1 in conjunction with assumption 1 enables us to identify uniquely
the locations of the points of impact from the cross-covariance E{Xi.s/Yi}. We make this more
precise by defining

fXY .s/ :=E{Xi.s/Yi}=
S∑

r=1
ϑrσ.s, τr/ for s∈ [a, b]:

Since σ.s, t/ is not two-times differentiable at s= t, the cross-covariance fXY .s/ will not be two-
times differentiable at s= τr, for all r =1, : : : , S, resulting in kink-like features at τr as depicted
in Fig. 2(a).

A natural strategy for estimating τr is to detect these kinks by considering the following
modified central difference approximation of the second derivative of f at a point s∈ [a−δ, b−δ]
for some δ > 0:

fXY .s/− 1
2{fXY .s+ δ/+fXY .s− δ/}: .4/

By defining the auxiliary process

Zδ,i.s/ :=Xi.s/− 1
2{Xi.s− δ/+Xi.s+ δ/} for s∈ [a+ δ, b− δ],

we have the following equivalent moment expression for approximation (4):

E{Zδ,i.s/Yi}=fXY .s/− 1
2{fXY .s+ δ/+fXY .s− δ/}: .5/

At s=τr, expression (5) will decline more slowly to 0 as δ →0 than for s �=τr, r =1, : : : , S. For
suitable values of δ, the points of impact τr can then be estimated by using the local extrema of
the empirical counterpart of |E{Zδ,i.s/Yi}| (see Fig. 2(b)).
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More precisely, theorem 1 together with proposition C.1 and lemma C.4 in the on-line ap-
pendix C imply that as δ →0

E{Zδ,i.s/Yi}=
{

ϑrc.τr/δ
κ +o.δκ/ if s∈{τ1, : : : , τS},

O.δ2/ if s �∈{τ1, : : : , τS},

where 0 <κ< 2 and c.·/> 0 are as defined in assumption 1.
Of course, E{Zδ,i.s/Yi} is not known and we must rely on n−1Σn

i=1Zδ,i.s/Yi as its estimate.
Under our setting we shall have that the variance V{Zδ,i.s/Yi}=O.δκ/, which implies that

1
n

n∑
i=1

Zδ,i.s/Yi −E{Zδ,i.s/Yi}=OP

{√(
δκ

n

)}
:

Consequently, the identification of points of impact requires a sensible choice of δ. For too small
δ-values (e.g. δκ ∼ n−1) the estimation noise will overlay the signal; this situation is depicted
in Fig. 2(c). For too large δ-values, however, it will not be possible to distinguish between
neighbouring points of impact.

Remark 1. Even if the covariance function σ.s, t/ does not satisfy assumption 1, the points of
impact τr may still be estimated by using the local extrema of E{Zδ,i.s/Yi}. Suppose, for instance,
that there is an m�2 times differentiable function σ̃ : R→R such that σ.s, t/= σ̃.|s− t|/, where
σ̃.|s − t|/ decays sufficiently fast, as |s − t| increases, such that Xi.s/ is essentially uncorrelated
with Xi.τr/ for |τr − s|�0. If |σ̃′′.0/|> |σ̃′′.|s− t|/|, for s �= t, and minr �=k |τr − τk| is suffieciently
large, then all points of impact might be identified as local extrema of E{Zδ,i.s/Yi}.

2.2. Estimation algorithm
In what follows we consider the case where each Xi has been observed over p equidistant points
tj =a+ .j −1/.b−a/=.p−1/, j =1, : : : , p, where p may be much larger than n. Estimators for
the points of impact τr are determined by sufficiently large local maxima of |n−1Σn

i=1Zδ,i.tj/Yi|.
The procedure in algorithm 1 (Table 1) will result in estimates τ̂1, τ̂2, : : : , τ̂Mδ , where Mδ <∞

denotes the maximum number of possible repetitions. The estimator of S is

Ŝ =min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l∈N0 :

∣∣∣∣∣∣∣∣∣

.1=n/
n∑

i=1
Zδ,i.τ̂ l+1/Yi

{
.1=n/

n∑
i=1

Zδ,i.τ̂ l+1/2

}1=2

∣∣∣∣∣∣∣∣∣
<λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for some threshold λ> 0:

An asymptotically valid choice of the threshold λ is presented in theorem 2 in Section 2.3 and
a practical implementation of λ is discussed below theorem 2.

Remark 2. This estimation algorithm is made for the case of densely observed functional
data. In practice this means functional data that are sampled at a high frequency such as in
our real data example (Section 5). Unfortunately, we do not see a simple way to generalize our
method to the case of irregularly or sparsely sampled functional data. Such a generalization
would require a very different approach based on non-parametric smoothing procedures.

2.3. Asymptotic results
In this section, we consider asymptotics as n → ∞ with p ≡ pn � Ln1=κ for some constant
.b−a/=2 <L<∞. We introduce the following assumption.
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Table 1. Algorithm 1 (estimating points of impact)

Step 1: calculate f̂ XY .tj/ := .1=n/Σn
i=1Xi.tj/Yi, for each j =1, : : : , p

Step 2: choose δ > 0 such that there exists some kδ ∈N with 1� kδ <.p−1/=2
and δ =kδ.b−a/=.p−1/

Step 3: calculate f̂ ZY .tj/ := f̂ XY .tj/− 1
2 {f̂ XY .tj − δ/+ f̂ XY .tj + δ/}, for all j ∈Jδ ,

where Jδ :={kδ +1, : : : , p−kδ}
Step 4: repeat

initiate the repetition by setting l=1
estimate the lth point-of-impact candidate as

τ̂ l =arg max
tj :j∈Jδ

|f̂ ZY .tj/|

update Jδ by eliminating all points in Jδ in an interval of size
√

δ around τ̂ l
set l= l+1

end repetition if Jδ =∅

Assumption 2.

(a) X1, : : : , Xn are independent and identically distributed random functions distributed ac-
cording to X. The process X is Gaussian with covariance function σ.s, t/.

(b) There is a 0 <σ|y| <∞ such that for each m=1, 2, : : : we have E.|Yi|2m/�2m−1m!σ2m
|y| .

The moment condition (b) is obviously fulfilled for bounded Yi. For instance, in the functional
logistic regression we have that E.|Yi|m/ � 1 for all m = 1, 2, : : :. Condition (b) holds also for
any centred sub-Gaussian Yi, where a centring of Yi can always be achieved by substituting
g{Xi.τ1/, : : : , Xi.τS/} + E[g{Xi.τ1/, : : : , Xi.τS/}] for g{Xi.τ1/, : : : , Xi.τS/} in model (2). If Xi

satisfies condition (a), then condition (b) in particular holds if the errors "i are sub-Gaussian
and g is differentiable with bounded partial derivatives.

The following result shows consistency of our estimators for the points of impact τ̂ r and the
estimator Ŝ.

Theorem 2. Under assumptions 1 and 2, and the assumptions of theorem 1, let δ ≡ δn → 0
as n→∞ such that nδκ=| log.δ/|→∞ and δκ=n−κ+1 →0. We then obtain that

max
r=1,:::,Ŝ

min
s=1,:::,S

|τ̂ r − τs|=OP.n−1=κ/: .6/

Moreover, there is a constant 0<D<∞ such that when algorithm 1 is applied with threshold

λ≡λn =A

√{
σ2

|y|
n

log
(

b−a

δ

)}
, A>D, and δ2 =O.n−1/,

then

P.Ŝ =S/→1 as n→∞: .7/

Note that the rates of convergence in expression (6) are superconsistent, since 0 <κ< 2. For
instance, for OUPs or Brownian motions we have κ=1, such that maxr=1,:::,Ŝ mins=1,:::,S |τ̂ r −
τs| = OP.n−1/.

In principle, arbitrarily fast rates of convergence can be achieved for κ-values that are close to
0, because small κ-values correspond to rough processes Xi. Roughness means that the process
has strong local variations also within small intervals [τr − ε, τr + ε], ε > 0, which facilitates
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differentiating a point of impact τr, r =1, : : : , S, from the neighbouring points t ∈ [τr − ε, τr + ε].
By contrast, for smooth processes (large κ-values) all values of Xi.t/ with t ∈ [τr − ε, τr + ε] will
be almost identical, which makes it difficult to identify the correct point of impact τr.

A practical and asymptotically valid threshold specification which performed well in our
simulation studies is given by λ=A[E.Y4

i /1=2 log{.b−a/=δ
}

=n]1=2, where E.Y4
i / is estimated by

Ê.Y4
i /=n−1Σn

i=1Y4
i and A=√

.2
√

3/. This value is motivated by an argument using the central
limit theorem in the derivations of the threshold for theorem 2. See the remark after the proof
of lemma C.3 in the on-line appendix C for additional information.

The superconsistency result in theorem 2 is very general and does not require knowledge
of g or a pre-estimate of g; only a set of mild and verifiably assumptions on g is postulated.
Therefore, we expect that theorem 2 will be found to be useful for deriving inferential results
for a broad variety of models g. In what follows we demonstrate the usefulness of theorem
2 for deriving inferential results for non-parametric models and parametric generalized linear
models. Note that the related corollary 1 in Ferraty et al. (2010) requires the simultaneous
estimation of the non-parametric model function g and the points of impact. This approach
results in substantially slower non-parametric convergence rates and limits the applicability of
their result considerably.

2.4. Generalizations
The above theoretical assumptions provide a tractable set-up that will be used also in the re-
maining parts of the paper. In this subsection, however, we show that the Gaussian assumption
of theorem 1 and theorem 2 can be relaxed and that our approach for identifying and estimating
the points of impact may also work for a large class of non-Gaussian processes (Section 2.4.1).
Moreover, we outline how our estimation procedure can be adapted to a more general version
of the covariance assumption 1 (Section 2.4.2).

2.4.1. Non-Gaussian processes
To generalize theorem 1 we can build on the framework of elliptical processes which includes the
case of non-Gaussian, heavy-tailed distributions, i.e. we can consider processes Xi that depend
on some latent random variable Vi such that the conditional distribution of Xi given Vi = v is
Gaussian. However, the (unconditional) distribution of Xi then additionally depends on the
distribution of Vi and may be far from Gaussian.

Our conditions A and B in the on-line appendix B.2 define a general framework for such non-
Gaussian processes Xi and proposition B.1 in appendix B.2 generalizes theorem 1 for this general
framework. Here in this subsection, however, we focus on the arguably most important special
case of our general framework—namely, the case of elliptically distributed processes. Elliptical
distributions include the special case of a Gaussian distribution as considered in theorem 1,
but also many important non-Gaussian distributions such as the t-distribution the Laplace
distribution and the logistic distribution (see, for instance, Boente et al. (2014)).

Let Xi be a (centred) elliptical process, i.e. let Xi.t/=dViX
Å
i .t/, t ∈ [a, b], where Vi >0 is a strictly

positive real-valued random variable and XÅ
i is a zero-mean Gaussian process with covariance

function σÅ.s, t/, and where Vi and XÅ
i are independent of each other. Moreover, let the error

term "i in expression (2) be independent of Vi and Xi and let V.Vi/ <∞. Then the elliptically
distributed random function Xi fulfils our conditions A and B in the on-line appendix B.2 and
it follows by proposition B.1 in appendix B.2 that

E{Xi.s/Yi}=
S∑

r=1
σÅ.s, τr/E{V 2

i ϑr.Vi/}=
S∑

r=1
σ.s, τr/

E{V 2
i ϑr.Vi/}
V.Vi/

,
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where

ϑr.Vi/=E

[
@

@xr
g{Xi.τ1/, : : : , Xi.τS/}|Vi

]

and σ.s, t/ = V.Vi/σ
Å.s, t/ is the covariance function of the elliptically distributed process Xi.

As in the case of theorem 1, the above result enables us to decompose the cross-covariance
E{Xi.s/Yi} into a scaling coefficient E{V 2

i ϑr.Vi/}=V.Vi/ which depends on the unknown func-
tion g (via ϑr) and the covariance function σ.s, τr/ which depends only on Xi. This result holds
for elliptically distributed Xi and requires only mild regularity assumptions on g which are
essentially equivalent to those imposed by theorem 2.1; see conditions A and B in appendix B.2.

As in the preceding section, the identification of the points of impact relies only on the struc-
tural covariance assumption 1 which holds for rough—Gaussian or non-Gaussian—processes
Xi. Since σ.s, t/=V.Vi/σ

Å.s, t/, the requirements of assumption 1 may directly be applied to the
covariance function σÅ.s, t/ of the Gaussian process component XÅ

i of the elliptical process Xi.
If σÅ satisfies assumption 1 for some ωÅ :Ω→R, then proposition B.1 in the on-line appendix
B.2 leads to

E{Zδ,i.s/Yi}=
{

C.τr/δ
κ +o.δκ/ if s∈{τ1, : : : , τr},

O.δ2/ if s �∈{τ1, : : : , τr}

as δ →0 with C.τr/= cÅ.τr/E{V 2
i ϑr.Vi/}, where

cÅ.τr/=− @

@z
ωÅ.τr, τr, z/|z=0, r =1, : : : , S:

Theorem 2 can also be generalized to the case that Xi is elliptically distributed. Then
Zδ,i.s/Yi=dZÅ

δ,i.s/Y
Å
i , where

ZÅ
δ,i.s/=XÅ

i .s/− 1
2{XÅ

i .s− δ/+XÅ
i .s+ δ/},

for s∈ [a+ δ, b− δ], and YÅ
i =ViYi. Therefore, estimating points of impact from data .Xi, Yi/ is

equivalent to estimating points of impact from data .XÅ
i , YÅ

i /. Thus, theorem 2 remains valid if
all conditions on Xi and Yi in theorem 2.2 now apply to XÅ

i and YÅ
i .

Our more general framework of conditions A and B in the on-line appendix B.2 includes
even more complex cases than the elliptical processes discussed above. For instance, one may
consider processes Xi=dVi1.t/XÅ

i .t/ + Vi2.t/, where .Vi1, Vi2/ is jointly independent of XÅ
i and

where Vi1 and Vi2 are almost surely twice continuously differentiable functions on [a, b] (see
appendix B.2 for more details).

2.4.2. Generalizing covariance assumption 1
Assumption 1 holds for non-smooth or rough processes Xi with covariance function σ.s, t/ =
ω.s, t, |s− t|κ/, where the requirement 0 <κ< 2 excludes all smooth, twice continuously differ-
entiable processes Xi, with κ�2.

However, the degree of roughness of the processes Xi is actually not a necessary requirement
for identifying and estimating points of impact. The crucial property is that the covariance
function σ.s, t/ of Xi is less smooth at the diagonal than for |t − s|> 0. For instance, let σ.s, t/

be d = 4 times continuously differentiable at all off-diagonal points, s �= t, but not d = 4 times
differentiable at the diagonal points, s= t. This scenario corresponds to a generalization of as-
sumption 1 with 0<κ<d =4 which now excludes only all four-times continuously differentiable
processes Xi, with κ�d =4. In this case, we may look at the modified fourth central difference
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approximation of the fourth derivative of E{Xi.s/Yi} and replace Zδ,i.s/ by

Z̃
.4/

δ,i .s/ :=Xi.s/− 2
3{Xi.s− δ/+Xi.s+ δ/}+ 1

6{Xi.s−2δ/+Xi.s+2δ/}:

Theoretical results may then be derived under a generalized version of assumption 1 demanding
that there is a d =4 times differentiable function ω such that condition (3) holds for any κ<d =4.

Equivalent generalizations can, for instance, be made for any d ∈{2, 4, 6, 8, : : :}, which would
involve then a modified dth-order central difference processes Z̃

.d/

δ,i .s/. This way, assumption 1
can be generalized to the requirement 0 <κ< d which also then includes smooth processes Xi.
Deriving the estimation theory under this set-up would then lead to even more accurate points-
of-impact estimators with an even faster superconsistent convergence rate. However, taking
higher order differences in practice usually involves numerical instabilities.

3. Subsequent estimation of g

Given estimates of the points of impact τ1, : : : , τS and their number S, one is typically interested
in the subsequent estimation and inference regarding the remaining model components. The
following section considers the case of a non-parametric model g. Section 3.2 considers the case
of a generalized linear model, which is of particular practical relevance.

In what follows we assume the existence of some consistent estimation procedure for the
points of impact satisfying maxr=1,:::,Ŝ |τ̂ r − τr| = OP.n−1=κ/ and P.Ŝ =S/→ 1, where we use
matched labels in the sense that τr = arg mins=1,:::, S |τ̂ r − τs|. These requirements are fulfilled
by our estimation procedure described in Section 2.2 but may also be fulfilled for alternative
procedures.

3.1. Non-parametric estimation
Estimating the non-parametric function g in expression (2) is a non-standard estimation prob-
lem, since the unknown points of impact τr of the predictor variables Xi.τr/ must be replaced
by their estimates τ̂ r, i.e. for given estimates τ̂1, : : : , τ̂S we may estimate the unknown regression
function g by the following Nadaraya–Watson-type estimator

ĝτ̂ .x1, : : : , xS/=
n∑

i=1
K

{
Xi.τ̂1/−x1

h1
, : : : ,

Xi.τ̂S/−xS

hS

}
Yi

/
n∑

i=1
K

{
Xi.τ̂1/−x1

h1
, : : : ,

Xi.τ̂S/−xS

hS

}
,

.8/

where K denotes a standard non-negative symmetric bounded second-order kernel function
with

∫
K.u/du=1, and where h1, : : : , hS denote the bandwidth parameters.

For the following result we make use of our superconsistency result in theorem 2. Note,
however, that the rates of consistency for the point-of-impact estimators τ̂ r of theorem 2 cannot
be used directly to quantify the errors |Xi.τ̂ r/−Xi.τr/|, r =1, : : : , S, since under assumption 1
we cannot make use of Taylor series expansions of Xi. Therefore, the following result is non-
standard because of the additional error component

ĝτ̂ .x1, : : : , xS/− ĝτ .x1, : : : , xS/=Op

{
S∑

r=1

1

nmin{1,1=κ}.h1: : : hS/h2
r

}

that is contained in equation (9) in the following theorem, where ĝτ is defined as in equation
(8), but using the true predictor variables Xi.τ1/, : : : , Xi.τS/.



Superconsistent Estimation of Points of Impact 1127

Theorem 3. Let Ŝ =S, maxr=1,:::,S |τ̂ r −τr|=Op.n−1=κ/, and let assumptions 1 and 2 and the
assumptions of theorem 2 hold. Moreover, let the kernel function K : RS → R be a second-
order kernel (i.e. a density function that is symmetric around zero) with continuous second-
order partial derivatives and let the regression function g have continuous second-order partial
derivatives. We then have for any points x1, : : : , xS in the interior of the support of X that

ĝτ̂ .x1, : : : , xS/−g.x1, : : : , xS/=Op

{
S∑

r=1
h2

r + .nh1: : : hS/−1=2 +
S∑

r=1

1

nmin{1,1=κ}.h1: : : hS/h2
r

}

.9/

for n→∞, and h1, : : : , hS →0 with nmin{1,1=κ}.h1: : : hS/h2
r →∞, for each r =1, : : : , S.

If each bandwidth has the same order of magnitude and 0<κ�1, the well-known optimal
bandwidth choice hr ∼n−1=.S+4/, r =1, : : : , S, can be used to simplify theorem 3 as follows.

Corollary 1. Under the assumptions of theorem 3, let 0 < κ� 1 and hr ∼ n−1=.S+4/ for all
r =1, : : : , S. Then

ĝτ̂ .x1, : : : , xS/−g.x1, : : : , xS/=Op.n−2=.S+4//:

That is, under the conditions of corollary 1, we have the same optimal rates of convergence
as in the case where the points of impact were known.

3.2. Parametric estimation
In this section it is assumed that the relationship between Yi and the functional predictor Xi

can be modelled by using the framework of generalized linear models with known parametric
function g,

Yi =g

{
α+

S∑
r=1

βrXi.τr/

}
+ "i, .10/

in which the independent and identically distributed errors term "i respects E{"i|Xi.t/} = 0
for all t ∈ [a, b] and where V{"i|Xi.t/, t ∈ [a, b]}=σ2{g.ηi/}<∞ with strictly positive variance
function σ2.·/ defined over the range of g. For simplicity the function g is assumed to be a known,
strictly monotone and smooth function with bounded first- and second-order derivatives and
hence is invertible (see, for instance, Müller and Stadtmüller (2005) for similar assumptions).
The constant α enables us to consider centred random functions Xi with E{Xi.t/}= 0 for all
t ∈ [a, b]. Note that we do not assume that the conditional distribution of Yi belongs to the
exponential family of distributions. Denoting the linear predictor

ηi =α+
S∑

r=1
βrXi.τr/ .11/

enables us to write E.Yi|Xi/ = g.ηi/ as well as V.Yi|Xi/ = σ2{g.ηi/} < ∞. Hence, this set-up
of model (10) belongs to the broad class of quasi-likelihood models which can be seen as a
generalization of a generalized linear model framework (see McCullagh and Nelder (1989),
chapter 9).

Identifiability of the model parameters in model (10) is not obvious because of the functional
predictor Xi.·/, which, in principle, allows for infinitely many alternative model candidates.
The following theorem 4 shows that any possible kind of model misspecification in α, βr, τr,
r = 1, : : : , S, or S, will lead to a different model in the mean-squared error sense implying the
identifiability of model (10).
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Theorem 4. Let g.·/ be invertible and assume that Xi satisfies assumptions 1 and 2. Then
for all SÅ � S, all αÅ, βÅ

1 , : : : , βÅ
SÆ ∈ R and all τ1, : : : , τSÆ ∈ .a, b/ with τk �∈ {τ1, : : : , τS}, k =

S +1, : : : , SÅ, we obtain

E

([
g

{
α+

S∑
r=1

βrXi.τr/

}
−g

{
αÅ +

SÆ∑
r=1

βÅ
r Xi.τr/

}]2)
> 0, .12/

whenever |α−αÅ|> 0 or supr=1,:::,S |βr −βÅ
r |> 0 or supr=S+1,:::,SÆ |βÅ

r |> 0.

Note that the proof of theorem 4 does only require the existence of second moments and,
therefore, may be generalized also to the case of non-Gaussian processes Xi.

Estimation of β0 = .α, β1, : : : , βS/T is performed by quasi-maximum-likelihood. Define
Xi.τ̂ / = .1, Xi.τ̂1/, : : : , Xi.τ̂S//T and denote the jth, 1 � j � S + 1, element of the latter vec-
tor as X̂ij. For β∈RS+1 let η̂i.β/=Xi.τ̂ /Tβ, μ̂n.β/= .g{η̂1.β/}, : : : , g{η̂n.β/}/T and D̂n.β/ be
the n× .S +1/ matrix with entries g′{η̂i.β/}X̂ij, and let V̂n.β/ be an n×n diagonal matrix with
elements σ2[g{η̂i.β/}]. Furthermore, denote the corresponding objects evaluated at the true
points of impact τr by Xi.τ /, Xij, ηi.β/, μn.β/, Dn.β/ and Vn.β/; this notational convention
applies also to the objects defined below.

Our estimator β̂ for β0 = .α, β1, : : : , βS/T is defined as the solution of the S +1 score equations
Ûn.β̂/=0, where

Ûn.β/= D̂n.β/TV̂n.β/−1.Yn − μ̂n.β//: .13/

Note that these are non-classic score equations evaluated at the estimates τ̂ r instead of τr.
In what follows, it will be convenient to define

Fn.β/=Dn.β/TVn.β/−1Dn.β/

and

F̂n.β/= D̂n.β/TV̂n.β/−1D̂n.β/:

By definition it holds that

E{n−1Fn.β/}= [E.g′{ηi.β/}2=σ2[g{ηi.β/}]XikXil/]k,l

with k, l=1, : : : , S +1. Let η.β/ and Xj be generic copies of ηi.β/ and of the jth component of
Xi.τ / respectively. This enables us to write E{n−1Fn.β/}=E{F.β/} with

E{F.β/}= [E.g′{η.β/}2=σ2[g{η.β/}]XkXl/]k,l,

where we point out that E{F.β/} is for all β ∈ RS+1 a symmetric and strictly positive definite
matrix with inverse E{F.β/}−1. Indeed, suppose that E{F.β/} were not strictly positive definite;
we would then derive the contradiction

E

{(
S+1∑
j=1

ajXjg
′{η.β/}

σ[g{η.β/}]

)2}
=0

for non-zero constants a1, : : : , aS+1. A similar argument can be used to show that E{F̂.β/} is
strictly positive definite, where

E{F̂.β/}=
[

E

(
g′{η̂.β/}2

σ2[g{η̂.β/}]
X̂kX̂l

)]
k,l

:
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The following additional set of assumptions is used to derive more precise theoretical state-
ments.

Assumption 3.

(a) There is a constant 0 <M" <∞, such that E{"
p
i |Xi.t/}�M", for all t ∈ [a, b] and for some

even p with p�max{2=κ+ ε, 4} and some ε> 0.
(b) The function g is monotone, invertible, with two bounded derivatives |g′.·/|�cg, |g′′.·/|�

cg, for some constant 0� cg <∞.
(c) h.·/ :=g′.·/=σ2{g.·/} is a bounded function with two bounded derivatives.

Condition (a) states that some higher moments of "i exist. Although the condition on p�4
and p being even simplifies the proofs, the condition p > 2=κ is more crucial and is used in the
proof of proposition D.2 in the on-line supplementary appendix D.2. Conditions (a)–(c) hold,
for example, in the important case of a functional logistic regression with points of impact, where
g is the standard logistic function. Condition (c) is satisfied, for instance, in the special case of
generalized linear models with natural link functions. For that case, we have σ2{g.x/}= g′.x/

such that h.x/=1.

Theorem 5. Let Ŝ = S, maxr=1,:::,S |τ̂ r − τr| = OP.n−1=κ/ and let Xi be a Gaussian process
satisfying assumption 1. Under assumption 3 we then obtain

√
n1=2.β̂−β0/

d→N[0, E{F.β0/}−1]: .14/

That is, our estimator based on τ̂ r enjoys the same asymptotic efficiency properties as if the
true points of impact τr were known. In fact, it achieves the same asymptotic efficiency properties
as under classical multivariate set-ups (see McCullagh (1983)). In practice one might replace
E{F.β0/} with its consistent estimator n−1F̂n.β̂/ to derive approximate results. This is a direct
consequence of equations (129) and (155) in the on-line supplementary appendix D.2.

3.2.1. Parametric estimation: practical implementation
An implementation of our parametric estimation procedure comprises, first, the estimation of
the points of impact τr and, second, the estimation of the parameters α and βr. Estimating the
points of impact τr relies on the choice of δ and a choice of the threshold parameter λ (see
Section 2.2). Asymptotic specifications are given in theorem 2; however, these determine the
tuning parameters δ and λ up to constants only and are generally of a limited use in practice.
In what follows we propose an alternative fully data-driven model selection approach.

For a given δ, our estimation procedure leads to a set of potential point-of-impact candidates
{τ̂1, τ̂2, : : : , τ̂Mδ} (see Section 2.2). Selecting final point-of-impact estimates from this set of can-
didates corresponds to a classical variable-selection problem. In the case where the distribution
of Yi|Xi belongs to the exponential family (as in logistic regression) one may perform a best sub-
set selection optimizing a standard model selection criterion such as the Bayesian information
criterion (BIC):

BICX .δ/=−2 log.LX /+KX log.n/: .15/

Here, log.LX / is the log-likelihood of the model with intercept and predictor variables X ⊆
{Xi.τ̂1/, Xi.τ̂2/, : : : , Xi.τ̂Mδ /}, where KX =1+|X | denotes the number of predictors. Minimiz-
ing BICX .δ/ over 0 < δ <.b−a/=2 leads to the final model choice.

In the more general case of quasi-likelihood models (see McCullagh and Nelder (1989),
chapter 9) where only the first two moments E.Yi|Xi/ = g.ηi/ and V.Yi|Xi/ = σ2{g.ηi/} are
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known, we may replace the deviance −2 log.LX / by the expression for the quasi-deviance

−2QX =−2
n∑

i=1

∫ g.η̂X ,i/

yi

yi − t

σ2.t/
dt,

where η̂X ,i is the linear predictor with intercept and predictor variables X .
To calculate BICX .δ/, we need the estimates β̂ solving the estimation equations Ûn.β̂/= 0.

In practice these equations are solved iteratively, for instance, by the usual Newton–Raphson
method with Fisher-type scoring, i.e. for an arbitrary initial value β̂0 sufficiently close to β̂ one
generates a sequence of estimates β̂m, with m=1, 2, : : ::

β̂m = β̂m−1 + F̂n.β̂m−1/−1Ûn.β̂m−1/: .16/

Iteration is executed until convergence and the final step of the procedure yields the estimate
β̂. Here, F̂n.β/ and Ûn.β/ replace Fn.β/ and Un.β/ in the usual Fisher scoring algorithm,
since the unknown τr, 1� r �S, are replaced by their estimates τ̂ r. This replacement is justified
asymptotically by our results in corollary D.1 and proposition D.3 in the on-line appendix D.2.

4. Simulation

We investigate the finite sample performance of our estimators by using Monte Carlo sim-
ulations. After simulating a trajectory Xi over p equidistant grid points tj, j = 1, : : : , p, on
[a, b]= [0, 1], linear predictors of the form ηi =α+ΣS

r=1βrXi.τr/ are constructed for some pre-
determined model parameters α, βr, τr and S, where a point of impact is implemented as the
smallest observed grid point tj closest to τr. The response Yi is derived as a realization of a
Bernoulli random variable with success probability g.ηi/= exp.ηi/={1+ exp.ηi/}, resulting in a
logistic regression framework with points of impact. The simulation study is implemented in R
(R Core Team, 2020), where we use the R package glmulti (Calcagno, 2013) to implement
the fully data-driven BIC-based best subset selection estimation procedure that was described
in Section 3.2.1. The threshold estimator from Section 2.2 requires appropriate choices of δ=δn

and λ=λn. Theorem 2 suggests that a suitable choice of δ is given by δ = cδn−1=2 for some con-
stant cδ >0. Our simulation results are based on cδ =1:5; similar qualitative results were derived
for a broader range of values cδ. For the threshold λ we use λ=A[Ê.Y4/1=2 log{.b−a/=δ}=n]1=2,
where A=√

.2
√

3/ and Ê.Y4/=n−1Σn
i=1Y4

i , as motivated below theorem 2.
In what follows, we denote the BIC-based selection (see Section 3.2.1) of points of impact

by POI and the threshold-based selection (algorithm 1) by TRH. Estimated points of impact
candidates are related to the true impact points by the following matching rule: in the first step
the interval [a, b] is partitioned into S subintervals of the form Ij = [mj−1, mj/, where m0 = a,
mS = b and mj = .τj + τj+1/=2 for 0 < j < S. The candidate τ̂ l in interval Ij with the closest
distance to τj is then taken as the estimate of τj.

The simulation results for our parametric estimation procedure (Section 3.2) are based on
1000 Monte Carlo iterations for each constellation of n ∈ {100, 200, 500, 1000, 3000} and p ∈
{100, 500, 1000}. The results for our non-parametric estimation procedure (Section 3.1) are
based on the same general set-up but consider the reduced set of sample sizes n∈{100, 200, 500}.
Estimation errors for the parametric estimation procedure are illustrated by boxplots with error
bars representing the 10% and 90% quantiles. The estimation errors for the non-parametric
estimation procedure are quantified by the mean average squared error

MASE=1000−1
1000∑
r=1

n−1
n∑

i=1
[g.ηi/− ĝr

τ̂{Xr
i .τ̂

r
1/, : : : , Xr

i .τ̂
r
Ŝ
/}]2,
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Table 2. DGPs considered in the simulations

Model Points of impact Parameters

Label Process S τ1 τ2 τ3 τ4 α β1 β2 β3 β4

DGP 1 OUP 1† 1
2 1 4

DGP 2 OUP 2 1
3

2
3 1 −6 5

DGP 3 OUP 4 1
6

2
6

4
6

5
6 1 −6 6 −5 5

DGP 4 GCM 2 1
3

2
3 1 −6 5

DGP 5 EBM 2 1
3

2
3 1 −6 5

†S =1 is assumed known (only for DGP 1).

where the superscript r denotes the rth simulation run.
Five data-generating processes (DGPs) are considered (Table 2) using the following three

processes {Xi.t/ : 0� t �1} covering a broad range of situations.

(a) OUP, a Gaussian process with covariance function σ.s, t/ = σ2
u=.2θ/[exp.−θ|s − t|/ −

exp{−θ.s+ t/}]; we choose θ =5 and σ2
u =3:5;

(b) Gaussian covariance model (GCM), a Gaussian process with covariance function σ.s, t/=
σ.|s− t|/= exp{−.|s− t|=d/2}; we choose d =1=10;

(c) exponential Brownian motion (EBM), a non-Gaussian process with covariance func-
tion σ.s, t/= exp{.s+ t +|s− t|/=2}−1; it is defined by Xi.t/= exp{Bi.t/}, where Bi.t/ is
Brownian motion.

DGPs 1–3 are increasingly complex but satisfy our theoretical assumptions. The general set-
ups of DGP 4 and DGP 5 are equivalent to DGP 2, but the processes Xi (GCM and EBM)
violate our theoretical assumptions. The covariance function in DGP 4 is infinitely many times
differentiable, even at the diagonal where s= t, contradicting assumption 1, but fitting the remark
underneath assumption 1. DGP 4 contradicts the Gaussian assumption 2.

4.1. Evaluation of the parametric estimation procedure
DGP 1 enables us to compare our data-driven BIC-based estimation procedure from Section
3.2.1 (denoted as POI) with the estimation procedure of Lindquist and McKeague (2009) (de-
noted as LMcK). Lindquist and McKeague (2009) considered situations where S =1 is known
and proposed estimating the unknown parameters α, β1 and τ1 by simultaneously maximizing
the likelihood over α, β1 and the grid points tj. Our estimation procedure does not require
knowledge about S but profits from a situation where S = 1 is known. Therefore, for compa-
rability, we restrict the BIC-based model selection process to allow only for models containing
one point-of-impact candidate. The simulation results are depicted in Fig. 3 and are virtu-
ally identical for both methods and show satisfying behaviour of the estimates. However, our
estimator is computationally advantageous as it greatly thins out the number of possible point-
of-impact candidates by allowing only the local maxima of |n−1Σn

i=1Zδ,i.s/Yi| as possible point-
of-impact candidates. Our threshold-based estimation procedure leads to similar qualitative
results. We omit these results, however, to enable a clear display in Fig. 3. The performance of
our threshold-based procedure is reported in detail for the remaining simulation studies (DGPs
2–5).
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DGP 2 is more complex than DGP 1 since S =2 and is considered unknown. Fig. 4 compares
the estimation errors from using our BIC-based POI estimator with those from our threshold-
based estimator (denoted as TRH). For smaller sample sizes n, the POI estimator seems to be
preferable to the TRH estimator. Although estimating the locations of the points of impact τ1
and τ2 is quite accurate for both procedures, the number S is estimated correctly more often by
using the POI estimator (see Fig. 4(c)). The more precise estimation of S when using the POI
estimator results in essentially unbiased estimates of the parameters α, β1 and β2. By contrast,
the less precise estimation of S by using the TRH estimator leads to clearly visible omitted
variable biases in the estimates of the parameters α, β1 and β2. As the sample size increases,
however, the accuracy of estimating Ŝ improves for the TRH estimator such that both estimators
show eventually a similar performance.

DGP 3 with S = 4 unknown points of impact comprises an even more complex situation
than DGP 2. For brevity, Fig. 7 has been deferred to the on-line appendix A. It shows that
the qualitative results from DGP 2 still hold. For large n, the POI and TRH estimators both
lead to accurate estimates of the model parameters for all choices of p. As already observed in
DGP 2, however, the TRH estimator leads to imprecise estimates of S for small n, which results
in omitted variables biases in the estimates of the parameters α, β1, β2, β3 and β4. Because of
the increased complexity of DGP 3, these biases are even more pronounced than in DGP 2.
The reason for this is partly the construction of the TRH estimator, where we set the value of
δ to δ = cδn−1=2 with cδ = 1:5. Asymptotically, the choice of cδ has a negligible effect, but it
may be inappropriate for small n, since the estimation procedure eliminates all points within
a

√
δ-neighbourhood around a chosen candidate τ̂ r (see Section 2.2). For DGP 3, the choice

of cδ = 1:5 results in a too-large
√

δ-neighbourhood, such that the estimation procedure also
eliminates true point-of-impact locations for small n. By contrast, the POI estimator can avoid
such adverse eliminations as the BIC value is also minimized over δ.

DGP 4 takes up the general set-up of DGP 2, but the functional data Xi are simulated by using
a GCM which is characterized by an infinitely many times differentiable covariance function.
This setting contradicts our basic assumption 1 but fits our remark at the end of Section 2.1.
From Fig. 5 it can be concluded that, even under the failure of assumption 1, both estimation
procedures are capable of consistently estimating the points of impact and the model parameters.
The TRH estimator, however, fails to estimate the number of points of impact S even for large n,
since the λ-threshold is tailored for situations under assumption 1. Here the TRH estimator can
estimate the true points of impact but additionally selects increasingly more redundant point-of-
impact candidates as n becomes large, i.e. the TRH estimator becomes more a screening than
a selection procedure, which can be problematic in practice. By contrast, the POI estimator
can avoid such redundant selections of point-of-impact candidates, as the BIC selects point-of-
impact candidates only if they result in a sufficiently large improvement in the model fit.

DGP 5 also takes up the set-up of DGP 2; however, the process Xi is simulated as an EBM
violating assumption 2, but still satisfying assumption 1. Here we set the asymptotically negligi-
ble tuning parameter cδ of the TRH estimator equal to 3. The evolution of the estimation errors
can be seen in Fig. 8 in the on-line appendix A. The results are comparable with our previous
simulations in DGP 2 and DGP 3, indicating that the estimation procedure is robust to at least
some violations of assumption 2.

4.2. Evaluation of the non-parametric estimation procedure
Table 3 contains the simulation results for our non-parametric estimation procedure described in
Section 3.1. We focus on the more challenging DGPs 2–5, with at least two points of impact and
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Table 3. MASE for the non-parametric estimator ĝτ̂

DGP p n MASE DGP p n MASE

TRH MPDP TRH MPDP

2 100 100 0.098 0.100 4 100 100 0.089 0.093
2 100 200 0.061 0.089 4 100 200 0.044 0.087
2 100 500 0.017 4 100 500 0.011
2 500 100 0.097 0.098 4 500 100 0.085 0.096
2 500 200 0.064 0.092 4 500 200 0.045 0.087
2 500 500 0.023 4 500 500 0.010
2 1000 100 0.094 4 1000 100 0.086
2 1000 200 0.060 4 1000 200 0.045
2 1000 500 0.022 4 1000 500 0.010
3 100 100 0.155 0.175 5 100 100 0.096 0.180
3 100 200 0.105 0.156 5 100 200 0.089 0.177
3 100 500 0.058 5 100 500 0.069
3 500 100 0.150 0.173 5 500 100 0.094 0.179
3 500 200 0.102 0.161 5 500 200 0.090 0.176
3 500 500 0.060 5 500 500 0.069
3 1000 100 0.149 5 1000 100 0.092
3 1000 200 0.100 5 1000 200 0.091
3 1000 500 0.059 5 1000 500 0.066

compare our non-parametric method with the most-predictive design point (MPDP) method of
Ferraty et al. (2010). To the best of our knowledge, the MPDP method is the only comparable
method in the literature. We tried hard to carry out the full simulation study for the MPDP
method; however, Ferraty et al. (2010) used a brute force minimization approach based on cross-
validation considering 2p grid point combinations, which makes their method computationally
extremely expensive. (Because of the high computational costs, the simulation study in Ferraty
et al. (2010) is based on only 50 Monte Carlo replications. In a ‘readme’ file, provided at Frederic
Ferraty’s homepage, the authors report that one run with a data set of n=149 curves and p=700
grid points lasts about 30 min.) For the MPDP method, we, therefore, had to limit the number
of Monte Carlo replications to 500, the number of grid points to p∈{100, 500} and the sample
sizes to n∈{100, 200}.

The results in Table 3 show that MASE decreases with increasing sample size n and that
the effect of different numbers of grid points p is essentially negligible for both methods. The
differences in the simulation results for the different DGPs are generally equivalent to those
discussed for the parametric estimation procedure. DGP 3 with its four points of impact is the
most challenging case and, therefore, produces the largest estimation errors. The MPDP method
of Ferraty et al. (2010) has throughout larger estimation errors than does our non-parametric
estimation results based on the TRH estimator (algorithm 1). The larger estimation errors in ĝ of
the MPDP method can be explained by its larger estimation errors when estimating the points of
impact τ1, : : : , τS (Table 4). In fact, our superconsistent points-of-impact estimator has substan-
tially smaller estimation errors (factors of from 1=10 to 1=100) than does the MPDP method.

5. Points of impact in continuous emotional stimuli

Current psychological research on emotional experiences increasingly includes continuous emo-
tional stimuli such as videos to induce emotional states as an attempt to increase ecological



Superconsistent Estimation of Points of Impact 1137

Table 4. Average mean-squared errors AvgMSE for τ̂1,: : : , τ̂S†

DGP p n AvgMSE DGP p n AvgMSE

TRH MPDP TRH MPDP

2 100 100 0.0002 0.0063 4 100 100 0.0003 0.0072
2 100 200 0.0001 0.0023 4 100 200 0.0001 0.0029
2 100 500 0.0000 4 100 500 0.0001
2 500 100 0.0002 0.0084 4 500 100 0.0002 0.0062
2 500 200 0.0001 0.0013 4 500 200 0.0001 0.0023
2 500 500 0.0000 4 500 500 0.0000
2 1000 100 0.0002 4 1000 100 0.0002
2 1000 200 0.0001 4 1000 200 0.0001
2 1000 500 0.0000 4 1000 500 0.0000
3 100 100 0.0002 0.0186 5 100 100 0.0004 0.0111
3 100 200 0.0001 0.0036 5 100 200 0.0006 0.0025
3 100 500 0.0000 5 100 500 0.0002
3 500 100 0.0002 0.0218 5 500 100 0.0004 0.0097
3 500 200 0.0001 0.0035 5 500 200 0.0006 0.0009
3 500 500 0.0000 5 500 500 0.0001
3 1000 100 0.0002 5 1000 100 0.0004
3 1000 200 0.0001 5 1000 200 0.0007
3 1000 500 0.0000 5 1000 500 0.0002

†AvgMSE =S−1ΣS
l=1MSE.τ̂ l/.

validity (Trautmann et al., 2009). Asking participants to evaluate those stimuli is most often
done by using an overall rating such as ‘How positive or negative did this video make you feel?’.
Such global overall ratings are guided by the participant’s affective experiences while watching
the video (Schubert, 1999; Mauss et al., 2005) which makes it crucial to identify the relevant
parts of the stimulus impacting the overall rating to understand the emergence of emotional
states and to make use of specific ‘impacting’ parts of the stimuli.

Because of a lack of appropriate statistical methods, existing approaches use heuristics such
as the ‘PER rule’ to link the overall ratings with the continuous emotional stimuli. The PER
rule states that people’s evaluations can be well predicted by using just two characteristics: the
moment of emotional peak intensity and the ending of the emotional stimuli (Fredrickson,
2000). Such a heuristic approach, however, is only of limited practical use. The peak intensity
moment and the ending are not necessarily good predictors. Furthermore, the peak intensity
moment can vary strongly across participants, which prevents linking the overall rating to
specific moments in the continuous emotional stimuli that are of a common relevance.

Our case-study comprises data from n=65 participants, who were asked to report their emo-
tional state continuously (from very negative to very positive) while watching a documentary
video (112 s) on the persecution of African albinos. A version of the video can be found on line
in YouTube (https://youtu.be/9F6UpuJIFaY; the video clip that was used in the exper-
iment corresponds approximately to the first 115 s of the video in YouTube). The first six data
points (within 1 s) have been removed as they contain some obviously erratic components. Fig.
1 shows the standardized emotion trajectories Xi.tj/, where tj are equidistant grid points within
the unit interval 0 = t1 < : : : < tp = 1 with p = 167. After watching the video, the participants
were asked to rate their final overall feeling. This overall rating was coded as a binary variable
Yi ∈{0, 1}, where Yi =0 denotes ‘I feel negative’ (48% of the participants) and Yi =1 denotes ‘I do
not feel negative’ (52% of the participants). The data were collected in May 2013. Participants
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Table 5. Estimation results, with standard errors in parentheses

Regressor POI coefficients PER 1 coefficients PER 2 coefficients

X.τ̂1/ 1.16† (0.41)
X.τ̂2/ 0.71‡ .0:32/

X.pabs/ 0.41 .0:36/
X.ppos/ 0.46 (0.29)
X.pneg/ 0.54 .0:43/
X.1/ 0.20 (0.26) 0.04 (0.28)
Constant −0:29 (0.29) −0:98 (0.71) −0:29 (0.73)

Log-likelihood −36:03 −43:48 −41:58
Akaike information criterion 78.07 92.96 91.15
McFadden pseudo-R2 0.19 0.03 0.07
Somers’s Dxy 0.53 0.20 0.34

†p-value <0.01.
‡p-value <0.05.
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Movie scene:
Portrait shot of African albino

nervously moving eyes

Spoken words:
''[...] the money we've got

from selling his body parts''

Fig. 6. Visualization of the impact points τ̂1 and τ̂2 ( ): positive ‘p’ and negative ‘n’ peak intensity predictors
Xi .p

pos
i / and Xi .p

neg
i /

were recruited through Amazon Mechanical Turk (www.mturk.com) and received $1 for com-
pleting the ratings via the on-line survey platform SoSci Survey (www.soscisurvey.de). The
study was approved by the local institutional review board (University of Colorado Boulder).
The documentary video is taken from the Interdisciplinary Affective Science Laboratory movie
set (L. Feldman Barrett, unpublished).
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To analyse the data we use our parametric estimation procedure (Section 3.2) using a logit
link function g and the BIC-based selection of points of impact (Section 3.2.1). We compare our
estimation procedure with the performance of the following two logit regression models based
on PER predictor variables:

(a) PER model 1, logit regression with peak intensity predictor Xi.p
abs
i / and the end feeling

predictor Xi.1/, where pabs
i =arg maxt.|Xi.t/|/;

(b) PER model 2, logit regression with peak intensity predictors Xi.p
pos
i / and Xi.p

neg
i / and

end feeling predictor Xi.1/, where p
pos
i =arg maxt{Xi.t/} and p

neg
i =arg mint{Xi.t/}:

Table 5 shows the estimated coefficients and standard errors, as well as summary statistics
for each of the three models, where our estimation procedure is denoted by POI. In comparison
with our POI estimator, both benchmark models (PER 1 and PER 2) have significantly lower
model fits (McFadden pseudo-R2) and significantly lower predictive abilities (Somers’s Dxy),
where Dxy = 0 means that a model is making random predictions and Dxy = 1 means that a
model discriminates perfectly.

Fig. 6 shows the positive p and negative n peak intensity predictors Xi.p
pos
i / and Xi.p

neg
i /

for all participants; the absolute intensity predictors Xi.p
abs
i / form a subset of these. The peak

intensity predictors are distributed across the total domain and, therefore, do not allow linking
the overall ratings Yi to specific common time points t ∈ [0, 1] in the continuous emotional stimuli.
By contrast, the estimated points of impact τ̂1 and τ̂2 allow for such a link and point to two
emotionally arousing movie scenes:

(a) τ̂1, a portrait shot of the traumatized African albino protagonist nervously moving eyes;
(b) τ̂2, spoken words, ‘: : : the money we’ve got from selling his body parts’.

6. Supplementary materials

The on-line supplementary materials include the supplementary paper containing additional
simulation results and the proofs of our theoretical results, the R package fdapoi and R scripts
for reproducing our main empirical results.
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