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Abstract
The notion of statistical arbitrage introduced in Bon-
darenko (2003) is generalized to statistical 𝒢-arbitrage
corresponding to trading strategies which yield positive
gains on average in a class of scenarios described by
a 𝜎-algebra 𝒢. This notion contains classical arbitrage
as a special case. Admitting general static payoffs as
generalized strategies, as done in Kassberger and Lieb-
mann (2017) in the case of one pricing measure, leads
to the notion of generalized statistical 𝒢-arbitrage. We
show that even under standard no-arbitrage there may
exist generalized gain strategies yielding positive gains
on average under the specified scenarios. In the first part
of the paper we prove that the characterization in Bon-
darenko (2003), no statistical arbitrage being equivalent
to the existence of an equivalent local martingale mea-
sure with a path-independent density, is not correct in
general. We establish that this equivalence holds true
in complete markets and we derive a general sufficient
condition for statistical 𝒢-arbitrages. As a main result
we derive the equivalence of no statistical𝒢-arbitrage to
no generalized statistical𝒢-arbitrage. In the second part
of the paper we construct several classes of profitable
generalized strategies with respect to various choices of
the 𝜎-algebra𝒢. In particular, we consider several forms
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of embedded binomial strategies and follow-the-trend
strategies as well as partition-type strategies. We study
and compare their behavior on simulated data and also
evaluate their performance on market data.

KEYWORDS
no-arbitrage concepts, statistical arbitrage, trading strategies

1 INTRODUCTION

Since the mid-1980s trading strategies which offer profits on average in comparison to little
remaining risk have been implemented and analyzed. The starting point were pairs trading strate-
gies, see Gatev et al. (2006) for an historic account and further details. In this strategy one trades
two stocks whose prices have a high historic correlation and whose spread widened recently, by
buying the loser and shorting the winner. Many variants of this simple strategy followed, see
Krauss (2017) and Lazzarino et al. (2018) for surveys and guides to the literature. This raised inter-
est in a deeper theoretical understanding of these approaches.
In this paper, we elaborate and generalize the notion of statistical arbitrage (SA) introduced in

Bondarenko (2003). The author considers a finite horizonmarket, represented by the price process
of the assets (𝑆𝑡)𝑡∈[0,𝑇]. A trading strategy with zero initial cost is called statistical arbitrage if

1. the expected payoff is positive and,
2. the expected payoff is non-negative conditional on 𝑆𝑇 .

Unlike pure arbitrage strategies, a statistical arbitrage can have negative payoffs provided the
average payoff in each final state is non-negative. This concept supplements previous forms of
restrictions like “good deals” or opportunities with high Sharpe ratios or with high utility (see
Hansen & Jagannathan, 1991, Cochrane & Saa-Requejo, 2000 and Černý & Hodges, 2002) or
“approximate arbitrage opportunities” and investment opportunities with a high gain-loss ratio
(see Bernardo & Ledoit, 2000). All these restrictions lead to essential reductions of the pric-
ing intervals.
Bondarenko (2003) discusses the concept of statistical arbitrage in connection with various

forms of risk preferences, w.r.t. the solution of the joint hypothesis problem, for tests of the effi-
cient market hypothesis (EMH) and the efficient learning market (ELM). The main economic
assumption introduced by Bondarenko is the assumption that the pricing kernel is path indepen-
dent, that is, it is a function depending only on the final state of the underlying price model but
not depending on the whole history. This assumption implies that the payoff process deflated by
the conditional risk neutral density of the final state is a martingale, that is, has no systematic
trend. The main result in (Bondarenko, 2003, Proposition 1) states that the existence of a path-
independent pricing kernel is equivalent to the absence of SA strategies.
Hogan et al. (2004) introduce a related approach which considers on an infinite time horizon

with trading strategies achieving positive gains on average together with vanishing risk, both in
an asymptotic sense. See also Elliott et al. (2005); Avellaneda and Lee (2010).
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In Section 2, we generalize the concept of statistical arbitrage. Starting from a 𝜎-field 𝒢, a sta-
tistical 𝒢-arbitrage is a trading strategy with positive expected gain, conditional on 𝒢. The exis-
tence of a pricing measure with 𝒢-measurable density implies absence of statistical 𝒢-arbitrage.
Investigating in detail a class of trinomial models we find that the converse direction in
Bondarenko’s equivalence theorem is not valid in general. Kassberger and Liebmann (2017) intro-
duced and characterized statistical 𝒢-arbitrage w.r.t. generalized (static) strategies in the case
where one pricing measure is fixed. In Section 3, we introduce generalized trading strategies
including also static or semi-static strategies and derive various characterizations of the corre-
sponding SA concepts for the class of all martingale pricing measures. In Section 4, we fully char-
acterize SA for two-period binomial models and construct statistical arbitrage strategies. These
results are used in Section 5 to construct for discrete- and continuous-time models various SA-
strategies. We test them in several examples and give an application to market data. A basic class
of strategies is obtained by embedding binomial trading strategies into the continuous timemodels
using first-hitting times. Further classes are strategies induced by partitioning the path space and
strategies which follow some trend in the data. Several of theses strategies are examined and com-
pared.

2 STATISTICAL𝓖-ARBITRAGE STRATEGIES

Consider a filtered probability space (Ω,ℱ, 𝑃) with a filtration 𝔽 = (ℱ𝑡)0≤𝑡≤𝑇 and a finite time
horizon 𝑇. The filtration is assumed to satisfy the usual conditions, that is, it is right continuous
andℱ0 contains all null sets ofℱ: if 𝐵 ⊂ 𝐴 ∈ ℱ and 𝑃(𝐴) = 0 then 𝐵 ∈ ℱ0. We also suppose that
ℱ = ℱ𝑇 .
We follow the classical approach to financial markets as for example in Delbaen and Schacher-

mayer (2006). The market itself is given by a ℝ𝑑+1-valued locally bounded semi-martingale
𝑆 = (𝑆0, … , 𝑆𝑑), that is, there exists a sequence of stopping times (𝑇𝑛)𝑛≥1 tending to ∞ a.s. and
a sequence (𝐾𝑛)𝑛≥1 of positive constants, such that |𝑆𝟙[[0,𝑇𝑛]]| < 𝐾𝑛, 𝑛 ≥ 1. The numéraire 𝑆0 is
set equal to one, such that the prices are considered as already discounted.
A dynamic trading strategy 𝜙 is an 𝑆-integrable and predictable process such that the associated

value process 𝑉 = 𝑉(𝜙) is given by

𝑉𝑡(𝜙) = ∫
𝑡

0

𝜙𝑠𝑑𝑆𝑠, 0 ≤ 𝑡 ≤ 𝑇. (1)

The trading strategy 𝜙 is called 𝑎-admissible if 𝜙0 = 0 and 𝑉𝑡(𝜙) ≥ −𝑎 for all 𝑡 ≥ 0. 𝜙 is called
admissible if it is admissible for some 𝑎 > 0. We further assume that themarket is free of arbitrage
in the sense of no free lunchwith vanishing risk (NFLVR), which is equivalent to the existence of an
equivalent local martingale measure 𝑄, see Delbaen and Schachermayer (2006). Here, a measure
𝑄which is equivalent to 𝑃,𝑄 ∼ 𝑃, such that 𝑆 is an 𝔽-(local) martingale with respect to𝑄 is called
equivalent (local) martingale measure, EMM (ELMM). Let ℳ𝑒 denote the set of all equivalent
local martingale measures.
A statistical arbitrage is a dynamic trading strategy which is on average profitable, con-

ditional on the final state of the economy 𝑆𝑇 . More generally, we consider a general
𝜎-field 𝒢 ⊂ ℱ𝑇 and consider strategies which are on average profitable conditional on 𝒢. For
example, 𝒢 could be generated by the event {𝑆𝑇 > 𝐾}. We call such strategies 𝒢-arbitrage strate-
gies. Sometimes we call a statistical 𝒢-arbitrage strategy also a 𝒢-profitable strategy or 𝒢-
arbitrage, for short. By 𝐸 we denote expectation with respect to the reference measure 𝑃.
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Definition 2.1. Let 𝒢 ⊆ ℱ𝑇 be a 𝜎-algebra. An admissible dynamic trading strategy 𝜙 is called a
statistical 𝒢-arbitrage strategy, if

1. 𝐸[𝑉𝑇(𝜙)|𝒢] ≥ 0, 𝑃-a.s.,
2. 𝐸[𝑉𝑇(𝜙)] > 0.

Let

SA ∶= {𝜙 ∶ 𝜙 is a 𝒢arbitrage}

denote the set of all statistical 𝒢-arbitrage strategies. The market model satisfies the condition of
no statistical 𝒢-arbitrage NSA if

SA = ∅.

For 𝒢 = ℱ𝑇 , NSA is equivalent to the classical no-arbitrage condition (NA) since then
𝐸[𝑉𝑇(𝜙)|𝒢] = 𝑉𝑇(𝜙). Recall that NA is implied by NFLVR. If 𝒢 = 𝜎(𝑆𝑇), one recovers the
notion of statistical arbitrage introduced in Bondarenko (2003) and we use the notation NSA =
NSA(𝜎(𝑆𝑇)).
A further interesting type of examples is the casewhere𝒢 = 𝜎({𝑆𝑇 ∈ 𝐾𝑖, 𝑖 ∈ }), {𝐾𝑖}𝑖∈ being a

partition of the state space, such that a statistical arbitrage offers a gain in any {𝑆𝑇 ∈ 𝐾𝑖} onaverage,
that is, 𝐸[𝑉𝑇(𝜙)|𝑆𝑇 ∈ 𝐾𝑖] ≥ 0 for all 𝑖 ∈  s.t. 𝑃(𝑆𝑇 ∈ 𝐾𝑖) > 0. Similarly one can also consider
path-dependent strategies, like for example 𝒢 = 𝜎({max0≤𝑡≤𝑇𝑆𝑡 ∈ 𝐾𝑖, 𝑖 ∈ }).
Remark 2.2.

1. Some immediate consequences of Definition 2.1 are the following:
1. The tower property of conditional expectations yields that larger 𝜎-fields𝒢 allow for fewer
profitable 𝒢-arbitrage strategies i.e. 𝒢1 ⊂ 𝒢2 implies that SA(𝒢2) ⊂ SA(𝒢1). As a conse-
quence we get that in this case

NSA(𝒢1) ⇒ NSA(𝒢2). (2)

2. If 𝒢 = {∅,Ω}, then 𝜙 ∈ SA iff 𝐸𝑃[𝑉𝑇(𝜙)] > 0.
2. The general approach to good-deal bounds in Černý & Hodges (2002) allows to consider sta-

tistical arbitrages as a special case: indeed, if we define

𝐴 = {𝑍 ∶ 𝐸[𝑍|𝒢] ≥ 0 and 𝐸[𝑍] > 0}

as set of good deals then a statistical 𝒢-arbitrage 𝜙 is a good-deal strategy if 𝑉𝑇(𝜙) ∈ 𝐴. The
corresponding good-deal pricing bound for an option 𝑋 is given by

𝜋(𝑋) = inf {𝑥 ∶ ∃𝜙 admissible s.t. 𝑋 + 𝑥 + 𝑉𝑇(𝜙) ∈ 𝐴},

that is, the smallest price 𝑥, such that the portfolio of the option, the price 𝑥 and the value from
a hedging strategy 𝑉𝑇(𝜙) is a good deal.
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Remark 2.3 (Connection to other concepts of statistical arbitrage). A comprehensive overview of
the variety of statistical arbitrage definitions can be found in Lazzarino et al. (2018). This overview
shows that in one group of definitions a particular strategy is considered (e.g., pairs trading, coin-
tegration strategies, or arbitrage testing strategies) and statistical arbitrage corresponds to the per-
formance in simulations or on real data. A general and far reaching analysis of statistical arbitrage
strategies based on the excursion theory of processes (in particular of Markov processes) is given
in the recent preprint Ananova et al. (2020).
In comparison to that, the definitions of Bondarenko (2003) and Hogan et al. (2004) and their

generalizations are more conceptual. They are not restricted to particular strategies, but ask the
question: is there a general trading strategy available implying arbitrage in the sense of positive
conditional expectation.
These two concepts can be linked as follows: note that the definition of Bondarenko considers a

finite time horizon. Iterating this strategy over time under some kind of stationarity ormean rever-
sion, one gets as a consequence a statistical arbitrage strategy in the asymptotic sense of Hogan
et al. The main technical tool to achieve this are boundary crossing probabilities and in partic-
ular the results from excursion theory as in Ananova et al. From this viewpoint, the definition
of statistical arbitrage as in the (weak) sense of Bondarenko is also of interest for the asymptotic
definition in Hogan et al.
Also for a finite time horizon statistical arbitrage can be realized by repetition making use of

a law of large numbers. We use this principle in examples in Section 5 of this paper. There we
more generally construct profitable strategies in the sense of measuring statistical arbitrage with
respect to several classes of 𝜎-fields.
The connection of the statistical arbitrage notions of Bondarenko and Hogan et al. to the above

mentioned group of definitions focussing on particular strategies (pairs trading, cointegration,
etc., as in Lazzarino et al. (2018) or Avellaneda & Lee, 2010), is in more detail as follows: in these
works several strategies are compared on the basis of the realized Sharpe ratio. This is in agree-
ment with the asymptotic viewpoint in Hogan et al. who require, in economic terms, that a statis-
tical arbitrage opportunity produces riskless incremental profit with an persisting positive Sharpe
ratio in the limit. Therefore, also the Bondarenko notion, even if seemingly formulated in a weak
sense, can be seen in close connection with the other more specific statistical arbitrage notions in
the literature and therefore, is also well motivated from a practical point of view. ⋄

Proposition 1 in Bondarenko (2003) states that (in discrete time), NSA is equivalent to the exis-
tence of an equivalent martingale measure 𝑄 with path independent density 𝑍, that is,

dQ
dP

= 𝑍 ∈ 𝜎(𝑆𝑇), (3)

where we use the notation 𝑍 ∈ 𝜎(𝑆𝑇) for 𝑍 being 𝜎(𝑆𝑇)-measurable. We establish in Section 2.2,
that this equivalence is incorrect in general. However, in Section 3 we show that this equivalence
holds if the market is complete. We also establish that the statistical no 𝒢-arbitrage NSA(𝒢)-
condition is equivalent to the corresponding no-𝒢-arbitrage conditionw.r.t. generalized strategies.
In Sections 4 and 5, we explicitly construct statistical arbitrages.
On the other side, existence of an equivalent martingale measure with path independent den-

sity𝑍 implies thatNSAholdswithout further assumptions. This also holds true for the generalized
notion NSA, as we show next.

Theorem 2.4. If there exists 𝑄 ∈ ℳ𝑒 such that dQ
dP

is 𝒢-measurable, then NSA holds.
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Proof. The proof follows from the Bayes formula for conditional expectations. We denote by 𝐿
𝑏
=

𝐿
𝑏
(𝑃) the set of random variables bounded 𝑃-almost surely from below. If 𝑍 = dQ

dP
∈ 𝒢, then for

any 𝑋 ∈ 𝐿
𝑏
it holds that

𝐸𝑄[𝑋|𝒢] = 𝐸𝑃[XZ|𝒢]
𝐸𝑃[𝑍|𝒢] = 𝐸𝑃[𝑋|𝒢]. (4)

If there would be a statistical arbitrage strategy 𝜙 with 𝐸𝑃[𝑋|𝒢] ≥ 0 and 𝐸𝑃[𝑋] > 0, where 𝑋 =
𝑉𝑇(𝜙), then, by (4),

𝐸𝑄[𝑋|𝒢] ≥ 0, 𝑄-a.s.

Moreover, since 𝜙 is admissible, 𝑉(𝜙) is a 𝑄-supermartingale by Fatou’s lemma, and we obtain
that

𝐸𝑄[𝑋] = 𝐸𝑄[𝑉𝑇(𝜙)] ≤ 𝑉0(𝜙) = 0. (5)

Hence,

0 = 𝐸𝑄[𝑋|𝒢] = 𝐸𝑃[𝑋|𝒢]
in contradiction to 𝐸𝑃[𝑋] > 0. □

Remark 2.5 (Alternative admissible strategies). An inspection of the proof, in particular Equation
(5), shows that the claim also holds when we consider as admissible such strategies 𝜙 for which
𝑉(𝜙) is a 𝑄-supermartingale.

In the following we establish that the converse direction in the Bondarenko result is not true.
For the construction of a counterexample we characterize next statistical arbitrage in a certain
class of trinomial models.

2.1 Statistical arbitrage in trinomial models

In this subsection we consider a one-dimensional trinomial model of the following type which
we call the trinomial model. While the first step is binomial, the second time-step is trinomial.
Assume that 𝑑 = 1,Ω = {𝜔1, … , 𝜔6} and 𝑇 = 2. Let 𝑆0 = 𝑠0 ∈ ℝ≥0 and let 𝑆1 and 𝑆2 be defined by

𝑆1(𝜔1) = 𝑆1(𝜔2) = 𝑆1(𝜔3) = 𝑠
+
1 , 𝑆1(𝜔4) = 𝑆1(𝜔5) = 𝑆1(𝜔6) = 𝑠

−
1 .

𝑆2(𝜔2) = 𝑠
++
2 , 𝑆2(𝜔3) = 𝑆2(𝜔5) = 𝑠

+−
2 , 𝑆2(𝜔6) = 𝑠

−−
2 ,

𝑆2(𝜔1) = 𝑆2(𝜔4) = 𝑠
◦
2 ;

𝑠+1 − 𝑠0 > 0, 𝑠
−
1 − 𝑠0 < 0 together with 𝑠

◦
2 > 𝑠

++
2 > 𝑠+−2 > 𝑠−−2 > 0, see Figure 1.

The existence of an equivalent martingale measure is equivalent to Δ𝑆𝑖 = 𝑆𝑖 − 𝑆𝑖−1 taking pos-
itive as well as negative values in each sub-tree and we assume that 𝑠++2 − 𝑠+1 > 0, 𝑠

−
1 < 𝑠

+−
2 < 𝑠+1 ,
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F IGURE 1 The considered trinomial model with 𝑇 = 2 time steps. The first step is binomial, the second step
is also (recombining) binomial with an additional top state {𝜔1, 𝜔4}

𝑠−−2 − 𝑠−1 < 0. The gains from trading with a self-financing strategy 𝜙 = (𝜙1, 𝜙2) are given by

𝑉2(𝜙) = 𝜙1Δ𝑆1 + 𝜙2Δ𝑆2. (6)

While 𝜙1 is constant since ℱ0 = {∅,Ω}, 𝜙2 can take two different values which we denote by
𝜙+2 and 𝜙−2 (taken in the states {𝜔1, 𝜔2, 𝜔3} and {𝜔4, 𝜔5, 𝜔6}, respectively). With 𝒢 = 𝜎(𝑆2) =
𝜎({𝜔1, 𝜔4}, {𝜔3, 𝜔5}, {𝜔2}, {𝜔6}) the strategy 𝜙 is a statistical arbitrage if and only if

𝜙1Δ𝑆1(𝜔2) + 𝜙
+
2 Δ𝑆2(𝜔2) ≥ 0,

𝜙1Δ𝑆1(𝜔6) + 𝜙
−
2 Δ𝑆2(𝜔6) ≥ 0,

𝜙1Δ𝑆1(𝜔1)𝑃(𝜔1) + 𝜙
+
2 Δ𝑆2(𝜔1)𝑃(𝜔1) + 𝜙1Δ𝑆1(𝜔4)𝑃(𝜔4) + 𝜙

−
2 Δ𝑆2(𝜔4)𝑃(𝜔4) ≥ 0,

𝜙1Δ𝑆1(𝜔3)𝑃(𝜔3) + 𝜙
+
2 Δ𝑆2(𝜔3)𝑃(𝜔3) + 𝜙1Δ𝑆1(𝜔5)𝑃(𝜔5) + 𝜙

−
2 Δ𝑆2(𝜔5)𝑃(𝜔5) ≥ 0,

(7)

and, in addition, at least one of the inequalities is strict.
Moreover, if we consider an equivalent martingale measure 𝑄 then the density 𝑍 is path-

independent if and only if 𝑍(𝜔1) = 𝑍(𝜔4) and 𝑍(𝜔3) = 𝑍(𝜔5). In order to establish a criterion
for our model to be free of statistical arbitrage, denote

Γ1 =
−Δ𝑆1(𝜔5) + Δ𝑆2(𝜔5)

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)

Δ𝑆1(𝜔3) − Δ𝑆2(𝜔3)
Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

,

Γ2 =

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)
(Δ𝑆2(𝜔4) + Δ𝑆2(𝜔5)) − Δ𝑆1(𝜔4) − Δ𝑆1(𝜔5)

Δ𝑆1(𝜔3) − Δ𝑆1(𝜔1)
Δ𝑆2(𝜔3)

Δ𝑆2(𝜔1)

.

Lemma 2.6. Let 𝜈1 ∶=
𝑃(𝜔1)

𝑃(𝜔4)
, 𝜈2 ∶=

𝑃(𝜔3)

𝑃(𝜔5)
. In the trinomial model there is no statistical arbitrage, if

1. 𝜈1 = −
Δ𝑆2(𝜔3)

Δ𝑆2(𝜔1)
𝜈2, and

2. Γ1 < 𝜈2 ≤ Γ2.
The proof is relegated to the appendix.
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2.2 A counter example

In the following we use Lemma 2.6 to show that the equivalence result in Proposition 1 in Bon-
darenko (2003) is not valid in general. Consider the incomplete trinomial model with(

𝑠0, 𝑠
+
1 , 𝑠

−
1 , 𝑠

++
2 , 𝑠+−2 , 𝑠−−2 , 𝑠◦2

)
= (10, 12, 8, 13, 10, 6, 14).

It is easy to check that the equivalentmartingalemeasures𝑄 specified by 𝑞 = (𝑄(𝜔1), … , 𝑄(𝜔6))
are given by the set

𝒬 =

{
𝑞 ∈ ℝ6 | 𝑞1 = −34𝑞2 + 1

4
, 𝑞3 = −

1

4
𝑞2 +

1

4
, 𝑞4 = 𝑞6 −

1

4
,

𝑞5 = −2𝑞6 +
3

4
∶ 𝑞2 ∈

(
0,
1

3

)
, 𝑞6 ∈

(
1

4
,
3

8

)}
.

Furthermore, the underlying measure 𝑃 is specified by the vector 𝑝 = (𝑃(𝜔1), … , 𝑃(𝜔6)) with

𝑝 = (0.15, 0.2, 0.3, 0.05, 0.1, 0.2).

We compute 𝜈1 =
𝑝1

𝑝4
= 3 and 𝜈2 =

𝑝3

𝑝5
= 3. Then

Γ2 =

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)
(Δ𝑆2(𝜔4) + Δ𝑆2(𝜔5)) − Δ𝑆1(𝜔4) − Δ𝑆1(𝜔5)

Δ𝑆1(𝜔3) − Δ𝑆1(𝜔1)
Δ𝑆2(𝜔3)

Δ𝑆2(𝜔1)

= 3 = 𝜈2,

Γ1 =
−Δ𝑆1(𝜔5) + Δ𝑆2(𝜔5)

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)

Δ𝑆1(𝜔3) − Δ𝑆2(𝜔3)
Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

=
2

3
< 𝜈2

and

𝜈1 = −
Δ𝑆2(𝜔3)

Δ𝑆2(𝜔1)
𝜈2 = 𝜈2 = 3 =

𝑝1
𝑝4
.

According to Lemma 2.6 there is no statistical arbitrage in the stated example. But, on the other
hand, there is no path independent density in this case because if there would be a path inde-
pendent density, that is, a density 𝑍 with 𝑍(𝜔1) = 𝑍(𝜔4) and 𝑍(𝜔3) = 𝑍(𝜔5), there would exist an
equivalent martingale measure 𝑄 fulfilling the conditions

𝑞1
𝑞4
=
𝑝1
𝑝4

= 3 and
𝑞3
𝑞5
=
𝑝3
𝑝5

= 3. (8)

But the only 𝑞 ≥ 0 fulfilling (8) is 𝑞 = (1
4
, 0,

1

4
,
1

12
,
1

12
,
1

3
) which is not an element of the set 𝒬 of

equivalent martingale measures.
This example shows that the converse of Theorem 2.4 does not hold in general and therefore,

Proposition 1 in Bondarenko (2003) needs additional assumptions: indeed, we have shown that
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there does not exist a statistical arbitrage and at the same time there is no path-independent den-
sity to an equivalent martingale measure.

3 GENERALIZED STATISTICAL𝓖-ARBITRAGE STRATEGIES

For risk and investment optimization problems it has been shown that conditioning of payoffs
on the pricing density leads to improved (cost efficient) payoffs (see Burgert & Rüschendorf,
2006, Kassberger and Liebmann (2017) and several papers cited therein). In connectionwith these
improvement procedures, Kassberger and Liebmann (2017) introduced, in the case where one
pricing measure 𝑄 is specified, the following notion of generalized statistical 𝒢-arbitrage for a
general static payoff 𝑋 considered as a generalized strategy. Note that in their context no finan-
cial market is specified, 𝑄 is any probability measure dominated by 𝑃. When a concrete financial
market is considered, only martingale pricing measures 𝑄 will be considered.

Definition 3.1. Let 𝒢 ⊆ ℱ be a 𝜎-algebra. The set of generalized statistical 𝒢-arbitrage-strategies
with respect to a pricing measure 𝑄 ≪ 𝑃 is defined as

SA(𝑄,𝒢) ∶= {𝑋 ∈ 𝐿
𝑏
∶ 𝐸𝑄[𝑋] ≤ 0, 𝐸𝑃[𝑋|𝒢] ≥ 0 𝑃-a.s. and 𝐸𝑃[𝑋] > 0}.

The market satisfies NSA, the condition of no generalized statistical𝒢-arbitragewith respect to𝑄,
if

SA(𝑄,𝒢) = ∅.

The following result in Kassberger and Liebmann (2017), Proposition 6, characterizes the gen-
eralized NSA-condition by showing that this notion is equivalent to 𝒢-measurability of dZ = dQ

dP
.

Proposition 3.2. Let𝑄 ∼ 𝑃 be an equivalent pricingmeasure. Then, the no-arbitrage conditionNSA
is equivalent to the existence of a 𝒢-measurable version of the Radon–Nikodym derivative 𝑍 = dQ

dP
.

The proof of this result is achieved by Jensen’s inequality andusing as candidate of a generalized
𝒢-arbitrage

𝑋 =
𝐸𝑃[𝑍|𝒢]

𝑍
− 1 ≥ −1. (9)

We aim at studying under which conditions there exist generalized statistical𝒢-arbitrages and
to describe connections between NSA and NSA. One consequence of Proposition 3.2 is the char-
acterization of NSA for the case of complete market models. Recall that the Radon–Nikodym
derivative 𝑍 = dQ

dP
is path-independent, iff 𝑍 is 𝜎(𝑆𝑇)-measurable.

A financialmarket is called complete, if every contingent claim is attainable, that is, for everyℱ-
measurable random variable𝑋 bounded from below, we find an admissible self-financing trading
strategy 𝜙, such that 𝑥 + 𝑉𝑇(𝜙) = 𝑋. This is implied by the assumption that ℳ𝑒 = {𝑄}: indeed,
under this assumption, Theorem 16 in Delbaen and Schachermayer (1995) yields that any 𝑋,
bounded from below, is hedgeable and hence attainable.
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Theorem 3.3. Assume thatℳ𝑒 = {𝑄}. Then NSA(𝒢) holds if and only if dQ
dP

is 𝒢-measurable.

Proof. If 𝑄 ∈ ℳ𝑒 has a 𝒢-measurable density dQ
dP
, then, by Theorem 2.4, NSA(𝒢) holds.

For the converse direction assume that 𝑍 is not𝒢-measurable. By Proposition 3.2 it follows that
there exists a generalized𝒢-arbitrage, i.e. an𝑋 ∈ 𝐿

𝑏
with𝐸𝑄[𝑋] ≤ 0,𝐸𝑃[𝑋|𝒢] ≥ 0 and𝐸𝑃[𝑋] > 0.

Hence, Theorem 16 in Delbaen and Schachermayer (1995) yields existence of an admissible self-
financing trading strategy 𝜙, such that 𝑥 + 𝑉𝑇(𝜙) = 𝑋. Moreover, the superhedging duality, i.e.
Theorem 9 in Delbaen and Schachermayer (1995) implies that 𝑥 = 𝐸𝑄[𝑋] = 0, and hence 𝜙 is a
𝒢-arbitrage. This is a contradiction and the claim follows. □

In particular this result implies that equivalence result (Bondarenko, 2003, Proposition 1) gives
a correct characterization of NSA for complete markets. In the following example we give a class
of diffusion processes for which, as consequence of Proposition 3.2 and Theorem 3.3, no statistical
𝒢-arbitrage for 𝒢 = 𝜎(𝑆𝑇) exists.

Example 3.4 (Statistical arbitrage for diffusions). This example discusses the consequences of
Proposition 3.2 and Theorem 3.3 in the case of a diffusion model. Consider a 𝑃-Brownian motion
𝐵 generating the filtration𝔽 = 𝔽𝐵. Let 𝑆 be a one-dimensional diffusion process satisfying 𝑆0 = 𝑠0,
𝑠0 ∈ ℛ and

𝑑𝑆𝑡 = 𝑆𝑡𝑎𝑡𝑑𝑡 + 𝑆𝑡𝑏𝑡𝑑𝐵𝑡, 0 ≤ 𝑡 ≤ 𝑇, (10)

𝑎 and 𝑏 deterministic and sufficiently integrable. Denote the market price of risk by 𝜆𝑡 = 𝑎𝑡∕𝑏𝑡.
Then this model is complete and by Girsanov’s theorem has a unique equivalent local martingale
measure 𝑄 with Radon-Nikodym derivative

𝑍𝑇 = exp

(
−∫

𝑇

0

𝜆𝑡𝑑𝐵𝑡 −
1

2 ∫
𝑇

0

𝜆2𝑡 𝑑𝑡

)
. (11)

This representation implies that in typical cases, 𝑍𝑇 will not be a function of 𝑆𝑇 . In the particular
case where 𝜆 = 𝑐 ⋅ 𝑏, 𝑐 ∈ ℛ,

𝑍𝑇 = exp

(
−𝑐 ∫

𝑇

0

𝑏𝑡𝑑𝐵𝑡 − ∫
𝑇

0

𝑎2𝑡

2𝑏2𝑡
𝑑𝑡,

)

which implies that 𝑍𝑇 is a function of 𝑆𝑇 . We obtain from Theorem 3.3 that there are no statistical
arbitrage opportunities with respect to𝒢 = 𝜎(𝑆𝑇). This holds in particular when 𝑎𝑡 = 𝑎0 and 𝑏𝑡 =
𝑏0, 0 ≤ 𝑡 ≤ 𝑇, i. e. in the case of constant drift and volatility (the Black-Scholes model). On the
other side, the diffusionmodel allows for statistical arbitrage in typical cases. A comparable result
was obtained in Göncü (2015) when studying the concept of statistical arbitrage introduced in
Hogan et al. (2004).

The following definition extends the notion of generalized statistical 𝒢-arbitrage with respect
to a single pricing measure 𝑄 in Definition 3.1 to the consideration of a class 𝒬 of pricing
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measures. As a main result of this paper we obtain that in the case 𝒬 = ℳ𝑒 the corresponding
no-arbitrage condition w.r.t. generalized strategies is equivalent to the no-arbitrage condition
NSA(𝒢) w.r.t. trading strategies.

Definition 3.5. Let 𝒢 ⊆ ℱ be a 𝜎-algebra. The set of generalized statistical 𝒢-arbitrage-strategies
is defined as

SA(𝒢) ∶=
{
𝑋 ∈ 𝐿

𝑏
∶ sup
𝑄∈ℳ𝑒

𝐸𝑄[𝑋] ≤ 0, 𝐸𝑃[𝑋|𝒢] ≥ 0 𝑃-a.s. and 𝐸𝑃[𝑋] > 0

}
.

The market satisfies NSA(𝒢), that is, no generalized statistical 𝒢-arbitrage, if

SA(𝒢) = ∅.

To establish a connection between statistical𝒢-arbitrage trading strategies and generalized sta-
tistical 𝒢-arbitrage strategies, we recall that we assumed use the concept of NFLVR. Recall that
the underlying process 𝑆 is assumed to satisfy (NFLVR).

Theorem 3.6. On the financial market given by 𝑆 it holds that

SA(𝒢) = SA(𝒢),

and, in particular,

NSA(𝒢) ⇔ NSA.

Proof. We first show that every𝒢-arbitrage strategy is a generalized𝒢-arbitrage strategy: consider
𝜙 ∈ SA, that is, 𝐸[𝑉𝑇(𝜙)|𝒢] ≥ 0 and 𝐸[𝑉𝑇(𝜙)] > 0. By the superreplication duality, Theorem 9 in
Delbaen and Schachermayer (1995), it holds that

sup
𝑄∈ℳ𝑒

𝐸𝑄[𝑉𝑇(𝜙)] = inf {𝑥|∃ admissible �̃�, 𝑥 + 𝑉𝑇(�̃�) ≥ 𝑉𝑇(𝜙)}.
Choosing �̃� = 𝜙 it follows sup𝑄∈ℳ𝑒𝐸𝑄𝑉𝑇(𝜙) ≤ 0. Note that in addition, admissibility of 𝜙 implies
that 𝑉𝑇(𝜙) is bounded from below and so 𝑉𝑇(𝜙) ∈ SA(𝒢).
For the reverse implication we have, again by the superreplication duality, for 𝑋 ∈ SA(𝒢) that

0 ≥ sup
𝑄∈ℳ𝑒

𝐸𝑄𝑋 = inf {𝑥 ∈ ℝ|∃ admissible 𝜙, 𝑥 + 𝑉𝑇(𝜙) ≥ 𝑋}.
Since the infimum is finite, Theorem 9 in Delbaen and Schachermayer (1995) yields that it is
indeed a minimum. Without loss of generality, we may chose 𝑥 = 0 and obtain the existence of
an admissible dynamic trading strategy 𝜙 with 𝑋 ≤ 𝑉𝑇(𝜙). As 𝑋 ∈ SA(𝒢) it holds further that
𝐸𝑃[𝑋|𝒢] ≥ 0, 𝑃-a.s., which leads us to

𝐸𝑃[𝑉𝑇(𝜙)|𝒢] ≥ 𝐸𝑃[𝑋|𝒢] ≥ 0 𝑃-a.s.
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Then, 𝐸𝑃[𝑉𝑇(𝜙)] ≥ 𝐸𝑃[𝑋] > 0, such that 𝑉𝑇(𝜙) ∈ SA. So the existence of generalized𝒢-arbitrage
strategies is equivalent to the existence of 𝒢-arbitrage strategies 𝑉𝑇(𝜙) in SA and the claim
follows. □

Using Theorem 2.4, we obtain from Theorem 3.6, that existence of an equivalent local martin-
gale measure with a 𝒢-measurable density implies even the absence of generalized 𝒢-statistical
arbitrages.

Corollary 3.7. If there exists 𝑄 ∈ ℳ𝑒 such that dQ
dP

is 𝒢-measurable, then NSA(𝒢) holds.

We remark that the converse of this corollary is still open in the general case.

4 STATISTICAL ARBITRAGE STRATEGIES IN BINOMIALMODELS

In this section we propose a method to construct trading strategies in binomial models yielding
statistical arbitrages. These strategieswill be used in the Section 5 for the construction of profitable
trading strategies in continuous time by embedding binomial models.
Consider the recombining two-period binomial model: assume thatΩ = {𝜔1, … , 𝜔4} and 𝑇 = 2.

Let 𝑆0 = 𝑠0 > 0 and let 𝑆1(𝜔1) = 𝑆1(𝜔2) = 𝑠+, and 𝑆1(𝜔3) = 𝑆1(𝜔4) = 𝑠− as well as 𝑠++ = 𝑆2(𝜔1),
𝑠+− = 𝑆2(𝜔2) = 𝑆2(𝜔3), and 𝑠−− = 𝑆2(𝜔4). Absence of arbitrage is equivalent toΔ𝑆𝑖, 𝑖 = 1, 2 taking
positive as well as negative values. We assume without loss of generality that 𝑠+ > 𝑠0, 𝑠− < 𝑠0, and
𝑠++ > 𝑠+, 𝑠− < 𝑠+− < 𝑠+, and 𝑠−− < 𝑠−. Gains from trading are again given by (6). Moreover, 𝜙1
is constant and 𝜙2 can take the two values {𝜙+2 , 𝜙

−
2 }. Then 𝜙 = (𝜙1, 𝜙2) is a statistical arbitrage,

iff

𝜙1Δ𝑆1(𝜔1) + 𝜙
+
2 Δ𝑆2(𝜔1) ≥ 0

𝜙1Δ𝑆1(𝜔4) + 𝜙
−
2 Δ𝑆2(𝜔4) ≥ 0

𝜙1Δ𝑆1(𝜔2)𝑃(𝜔2) + 𝜙
+
2 Δ𝑆2(𝜔2)𝑃(𝜔2) + 𝜙1Δ𝑆1(𝜔3)𝑃(𝜔3) + 𝜙

−
2 Δ𝑆2(𝜔3)𝑃(𝜔3) ≥ 0

(12)

and at least one of the inequalities is strict. The density 𝑍 is path-independent if and only if
𝑍(𝜔2) = 𝑍(𝜔3). Equations (12) are equivalent to 𝐴𝝓 ≥ 0, 𝝓 = (𝜙1, 𝜙+2 , 𝜙−2 )⊤ with

𝐴 =
⎛⎜⎜⎝

Δ𝑆1(𝜔1) Δ𝑆2(𝜔1) 0

Δ𝑆1(𝜔4) 0 Δ𝑆2(𝜔4)

𝑞Δ𝑆1(𝜔2) + Δ𝑆1(𝜔3) 𝑞Δ𝑆2(𝜔2) Δ𝑆2(𝜔3)

⎞⎟⎟⎠ , (13)

where 𝑞 = 𝑃(𝜔2)

𝑃(𝜔3)
.

Proposition 4.1. In the recombining two-period binomial model NSA holds if and only if det(𝐴) =
0. Moreover, det(𝐴) = 0 is equivalent to

𝑃(𝜔2)

𝑃(𝜔3)
=
Δ𝑆2(𝜔1)(Δ𝑆1(𝜔3)Δ𝑆2(𝜔4) − Δ𝑆1(𝜔4)Δ𝑆2(𝜔3))

Δ𝑆2(𝜔4)(Δ𝑆1(𝜔1)Δ𝑆2(𝜔2) − Δ𝑆1(𝜔2)Δ𝑆2(𝜔1))
=∶ 𝑞. (14)

The proof is relegated to the appendix.
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Lemma 4.2. Consider the recombining two-period binomial model with statistical arbitrage. In this
model, 𝝓 = 1

𝐷
(𝜉1, 𝜉2, 𝜉3) with

𝜉1 = (𝑞Δ𝑆2(𝜔2) − Δ𝑆2(𝜔1)) Δ𝑆2(𝜔4) + Δ𝑆2(𝜔1)Δ𝑆2(𝜔3),

𝜉2 = − (Δ𝑆1(𝜔3) + 𝑞Δ𝑆1(𝜔2) − Δ𝑆1(𝜔1)) Δ𝑆2(𝜔4) − (Δ𝑆1(𝜔1) − Δ𝑆1(𝜔4)) Δ𝑆2(𝜔3),

𝜉3 = − (𝑞Δ𝑆1(𝜔4) − 𝑞Δ𝑆1(𝜔1)) Δ𝑆2(𝜔2) − (−Δ𝑆1(𝜔4) + Δ𝑆1(𝜔3) + 𝑞Δ𝑆1(𝜔2)) Δ𝑆2(𝜔1), 𝑞 =
𝑃(𝜔2)

𝑃(𝜔3)
, and

𝐷 = (𝑞Δ𝑆1(𝜔1)Δ𝑆2(𝜔2) + (−Δ𝑆1(𝜔3) − 𝑞Δ𝑆1(𝜔2)) Δ𝑆2(𝜔1)) Δ𝑆2(𝜔4) + Δ𝑆1(𝜔4)Δ𝑆2(𝜔1)Δ𝑆2(𝜔3)

is a statistical arbitrage.

Proof. If 𝑃(𝜔2)
𝑃(𝜔3)

≠ 𝑞 we have statistical arbitrage according to Proposition 4.1 and that the deter-
minant of the matrix 𝐴 in (13) is not equal to zero. In this case the matrix 𝐴 is invertible. Hence,
𝝓 = 𝐴−1𝟙 is a statistical arbitrage and it is easily verified that 𝝓 = 1

𝐷
(𝜉1, 𝜉2, 𝜉3). □

Remark 4.3 (Risk of statistical arbitrages). The word arbitrage might be misleading on the riski-
ness of statistical arbitrages, because in the classical sense, an arbitrage is a strategy without risk.
This is of course not the case for statistical arbitrages (or the following generalizations of this
concept). Since we consider arbitrage-free markets, all gains come with a certain risk and, higher
profits are associatedwith higher risk. This is confirmed by our simulation results in the following
section.
As a simple example consider the case of the binomial model where Δ𝑖𝑆(𝜔𝑗) ∈ {5, −5}, that

is, the stock either rises by 5 or falls by 5. In addition, assume that 𝑞 = 𝑃(𝜔2)∕𝑃(𝜔3) = 1.2. Then,
using Equation (13) it is not difficult to compute 𝝓 = 𝐴−1𝟏 = (1.6, −1.4, −1.8)⊤. From this strategy
we obtain that the gains at time 2, given by

𝐺2(𝜔) = 𝜙1(𝜔)Δ𝑆1(𝜔) + 𝜙2(𝜔)Δ𝑆2(𝜔),

yield 𝐺2(𝜔1) = 𝐺2(𝜔4) = 1, corresponding to (12). In addition, we obtain that 𝐺2(𝜔2) = 15 and
𝐺2(𝜔3) = −17. If we assume that 𝑃(𝜔2) = 0.3we obtain that the average expected gain on {𝜔2, 𝜔3}
computes to

𝑃(𝜔2)𝐺2(𝜔2) + 𝑃(𝜔3)𝐺3(𝜔3) = 0.3 ⋅ 15 + 0.25 ⋅ (−17) = 0.25 ≥ 0, (15)

such that the strategy is indeed a statistical arbitrage. While the (average) gains in
the three relevant scenarios are 1,0.25,1, the possible loss in scenario 𝜔3 is equal to
−17, which is attained with probability 0.25, clearly pointing out the riskiness of the
strategy.
To exploit the averaging property of statistical arbitrage, we keep repeating this strategy until

we first record a positive P&L. These considerations show clearly, that a risk analysis of the imple-
mented strategy is important.
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5 PROFITABLE STRATEGIES

Up to nowwe saw conditions and examples of statistical arbitrages in a variety of models. Here we
are considering several classes of simple statistical arbitrage strategies for several classes of𝜎-fields
𝒢. While these strategies are useful and easy to apply for general stochastic models we investigate
them on the Black–Scholes model which allows to explicitly check by analytic formulas for the
involved stopping times the corresponding (no-)arbitrage condition. Formore generalmodels this
has to be checked numerically.
The Black–Scholes model is, according to Example 3.4, free of statistical arbitrage. For some

choices of 𝒢, however, 𝒢-arbitrage strategies may exist in the Black–Scholes model. We show
in the following how to construct dynamic trading strategies allowing statistical 𝒢-arbitrage for
various choices of 𝒢. To this end, assume that 𝑆 is a geometric Brownian motion, that is, the
unique strong solution of the stochastic differential equation

𝑑𝑆𝑡 = 𝜇𝑆𝑡dt + 𝜎𝑆𝑡𝑑𝐵𝑡, 0 ≤ 𝑡 ≤ 𝑇 (16)

where 𝐵 is a 𝑃-Brownian motion and 𝜎 > 0. In the simulation we will first chose 𝜇 = 0.1241,
𝜎 = 0.0837, 𝑆0 = 2186 according to estimated drift and volatility from the S&P 500 (September
2016 to August 2017), and later consider small variations.
Motivated by our findings in Section 2.1, we begin by embedding binomial trading strategies

into the diffusion setting by considering two limits (up/down) and taking actions at the first times
these limits are reached. In Section 5.3 we will introduce some related follow-the-trend strategies.

5.1 Embedded binomial trading strategies

We introduce a recombination of several two-step binomial models embedded in the continuous-
time model as long as the final time 𝑇 is reached. We consider the 𝜎-fields generated by the stop-
ping times when the final states of each of the binomial models are reached (or the trivial 𝜎-field
otherwise).
As we repeatedly consider embedded binomial models it makes sense to consider the outcome

of the trading strategy on average conditional on the final states of each binomial model, that is, by
averaging the outcome over many repeated applications of the trading strategy and hence we get
in this way an estimate for the statistical arbitrage in the whole time interval [0, 𝑇].
Let 𝑖 denote the current step of our iteration and consider a multiplicative step size 𝑐 > 0. We

initialize at time 𝑡00 = 0. Otherwise consider the initial time of our next iteration given by the time
when the last repetition finished and denote this time by 𝑡𝑖0 and the according level by 𝑠

𝑖
0 = 𝑆𝑡𝑖0

.
Then we define the following two stopping times corresponding to the first and second period of
our binomial model by

𝑡𝑖1 = inf
{
𝑡 ∈

[
𝑡𝑖0, 𝑇

] |𝑆𝑡 ∈ {
𝑠𝑖0(1 − 𝑐), 𝑠

𝑖
0(1 + 𝑐)

}}
and (17)

𝑡𝑖2 = inf
{
𝑡 ∈

[
𝑡𝑖1, 𝑇

] |𝑆𝑡 ∈ {
𝑠𝑖0(1 − 2𝑐), 𝑠

𝑖
0, 𝑠

𝑖
0(1 + 2𝑐)

}}
, (18)
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with the convention that inf ∅ = 𝑇. This induces a sequence of 𝜎-fields

𝒢𝑖 ∶= 𝜎
(
𝑆𝑡𝑖
2

)
.

Since 𝑆 is continuous, this scheme allows to embed repeated binomial models 𝑆𝑡𝑖
0
, 𝑆𝑡𝑖

1
, 𝑆𝑡𝑖

2
,

𝑖 = 1, 2, … ,𝑁 into continuous time with a random number 𝑁 of repetitions. The proposed trad-
ing strategy then is to execute successively the statistical arbitrage strategy for binomial models
computed in Lemma 4.2 at the stopping times 𝑡𝑖0, 𝑡

𝑖
1, 𝑡

𝑖
2. At 𝑡

𝑖
2 the position will be cleared and

we start the procedure afresh by letting 𝑡𝑖+10 = 𝑡𝑖2. Generally, we assume that the time horizon 𝑇
is sufficiently large such that the (typically small) levels 𝑠𝑖0(1 − 2𝑐), … , 𝑠

𝑖
0(1 + 2𝑐) are reached at

least once.
Using the independent increments property of the Black–Scholes model we find that the

achieved repeated statistical𝒢𝑖-arbitrage strategies constitute a statistical𝒢-arbitragewith respect
to

𝒢 = 𝜎
(
𝑆𝑡1
2
, 𝑆𝑡2

2
, … , 𝑆𝑡𝑁

2

)
.

The constant 𝑐 and with it the barriers for the hitting times will be chosen in dependence of 𝜇
and 𝜎 to ensure that we do not lose the statistical arbitrage opportunity. To bemore precise we use

𝑐 = 0.01 ⋅
𝜇

𝜎

which showed a good performance in our simulations. According to Proposition 4.1 there is a
statistical arbitrage opportunity if 𝑃(𝜔2)

𝑃(𝜔3)
≠ 𝑞. It is easy to check from Equation (14) that 𝑞 = 1 in

the case considered here.
To guarantee existence of a statistical arbitragewe calculate the path probabilities 𝑃(𝜔2), 𝑃(𝜔3).

The first exit time 𝜏 = inf {𝑡 ≥ 0|𝑆𝑡 ∉ (𝑎, 𝑏)} from the interval (𝑎, 𝑏) satisfies

𝑃(𝑆𝜏 = 𝑎) =

(
𝑎

𝑠0

)𝜈 ( 𝑏

𝑠0

)|𝜈|
−
(
𝑠0

𝑏

)|𝜈|
(
𝑏

𝑎

)|𝜈|
−
(
𝑎

𝑏

)|𝜈| , 𝑎 < 𝑏, (19)

where 𝜈 = 𝜇

𝜎2
−

1

2
, see Borodin and Salminen (2012), formula 3.0.4 in Section 9 of Part II. This in

turn yields that

𝑞 =
𝑃(𝜔2)

𝑃(𝜔3)
=
𝑃
(
𝑆𝑡1 = 𝑠0(1 + 𝑐)

)
𝑃
(
𝑆𝑡2 = 𝑠0|𝑆𝑡1 = 𝑠0(1 + 𝑐))

𝑃
(
𝑆𝑡1 = 𝑠0(1 − 𝑐)

)
𝑃
(
𝑆𝑡2 = 𝑠0|𝑆𝑡1 = 𝑠0(1 − 𝑐))

=

⎛⎜⎜⎝1 − (1 − 𝑐)𝜈 (1+𝑐)
|𝜈|
−(1+𝑐)

−|𝜈|(
1+𝑐

1−𝑐

)|𝜈|
−
(
1−𝑐

1+𝑐

)|𝜈| ⎞⎟⎟⎠ (1 + 𝑐)−𝜈
(
1+2𝑐

1+𝑐

)|𝜈|
−
(
1+𝑐

1+2𝑐

)|𝜈|
(1+2𝑐)

|𝜈|
−(1+2𝑐)

−|𝜈|
⎛⎜⎜⎝(1 − 𝑐)𝜈 (1+𝑐)

|𝜈|
−(1+𝑐)

−|𝜈|(
1+𝑐

1−𝑐

)|𝜈|
−
(
1−𝑐

1+𝑐

)|𝜈| ⎞⎟⎟⎠
(
1 −

(
1−2𝑐

1−𝑐

)𝜈
(1−𝑐)

−|𝜈|
−(1−𝑐)

|𝜈|
(1−2𝑐)

−|𝜈|
−(1−2𝑐)

|𝜈|
) . (20)
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TABLE 1 Simulation results for the embedded binomial trading strategy for 1 mio runs. This example serves
as benchmark. Gain p.a. denotes the overall average gain in the time period of one year, [0,1]; we also show its
median and the associated estimated VaR at level 95%. Gain/trade denotes the average gain per trade, losses
denotes the fraction of simulations where the outcome of the trading strategy was negative, and we also show the
average of the negative part of the outcomes, titledmean. Finally, we also state the average number and maximal
number of embedded binomial models

gain p.a. median VaR(0.95) gain/trade losses (mean) ø𝑵 max.𝑵
33.4 206 5,320 8.74 0.133 −628 3.82 24

Clearly, in general 𝑞 ≠ 1, such that in these cases statistical arbitrage exists, which we exploit in
the following.
From Lemma 4.2 we obtain with 𝐷 = 2(𝑞 − 2)(𝑐 𝑠𝑖0)

3
that the trading strategy 𝝓 = (𝜙1, 𝜙+2 , 𝜙

−
2 )

is given by

𝜙1 = (2 + 𝑞)(𝑐 𝑠
𝑖
0)
2
𝐷−1, 𝜙+2 = (𝑞 − 4)(𝑐 𝑠

𝑖
0)
2
𝐷−1, 𝜙−2 = −3𝑞(𝑐 𝑠

𝑖
0)
2
𝐷−1. (21)

We call the trading strategy which results by repeated application of 𝜙 at the respective hitting
times the embedded binomial trading strategy.

5.2 Simulation results

As already mentioned, we simulate a geometric Brownian motion according to Equation (16)
with 𝜇 = 0.1241, 𝜎 = 0.0837, 𝑆0 = 2186, 𝑇 = 1 (year), discretize by 1000 steps and embed the cor-
responding binomial models repeatedly in this time interval. In this case we have 𝑞 = 1.00189
(rounded to five digits) which is not equal to one and therefore 𝑞 ≠ 𝑞, that is, each of the repeated
embedded binomial strategies, is a𝒢𝑖-arbitrage strategy in the associated period 𝑖. We denote by𝑁
the (random) number of binomial models that are necessary for each simulated diffusion to gain
either a profit from trading or to reach 𝑇 and by 𝐺𝑖 the gain or loss of the 𝑖-th binomial model.
Hence either

∑𝑁

𝑖=1
𝐺𝑖 > 0 or we record a loss at the final iteration 𝑁.

For 1 million runs, we obtain the results presented in Table 1. For each run we record either
a gain or a loss from trading. The average gain per simulation run is shown in column one, its
median in column two. The distribution of the P&L is skewed to the left with potential large
losses with small probability which is reflected by a median of 206 in comparison to an average
gain of 33. In column 3 we depict the 95% Value-at-Risk which is of size 5,320. Column 4 denotes
the average gain per trade which is obtained by dividing the average gain by the average number
of trades (i.e., repeated binomial models). In column 5 we show the (fraction of) losses, that is, the
fraction of simulated processes exhibiting no gain from trading before reaching the final time 𝑇,
followed by themean of the negative part of the outcomes. The average number of trading repeats
𝜙𝑁 is followed by the maximal number of trading repeats over all runs (max 𝑁).
As becomes clear fromTable 1 we can record an overall profit formost cases.We have a negative

outcome in 13.3% in average of all simulations with an average size of -628. The median of the
profits is about 200, with a smaller average of about 30. The risk measured by the Value-at-Risk at
95% is 5320 pointing to the fact that the average gain by the statistical arbitrage is (of course) not
without risk. For clarification, we plot the associated histogram of the P&L in Figure 2.
Although the actual amount of the profit depends on many parameters we can confirm the

possibility of statistical arbitrage. Besides, we see that on average ourmulti-period binomialmodel
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F IGURE 2 Histogram of the profits
and losses from the embedded binomial
trading strategy used in Table 1 (the 𝑦-axis
records the frequency, we did 1 million runs)

TABLE 2 Simulations for the embedded binomial trading strategy with varying boundary levels. In the
simulations for Table 1 we used 𝑐 = 0.01𝜇∕𝜎

𝒄 ⋅ 𝝈∕𝝁 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.0025 8,890 48,700 −373 743 0.045 −57,900 12 150
0.005 465 3,810 58,400 66 0.077 −6,210 7 63
0.01 41 206 5,250 11 0.132 −621 4 24
0.02 9 10 371 5 0.185 −50 2 9
0.04 3 2 24 3 0.109 −2 1 4

has a small number of periods and the number of periods does not explode, which is important
with a view on trading costs.

5.2.1 Varying barrier levels

The most interesting parameter turns out to be the parameter 𝑐. It decodes the varying the barrier
level and the results are given in Table 2. It turns out that this parameter allows to balance gains
and risk very well.
First, the smaller the parameter 𝑐 is chosen, the higher are the gains in general. The additional

gain does imply an increase of risk: most prominently, the mean of the negative part of the out-
come decreases with 𝑐. The Value-at-Risk confirms the increase of risk with decreasing 𝑐, except
for the lowest 𝑐 = 0.0025. In this case, the probability of having large losses is below 5%, such that
the Value-at-Risk at level 0.95% does no longer see this risk (while it is of course still present).
A high value of 𝑐 corresponds intuitively to a larger step sizes, which leads to less trades on

average. The largest value of 𝑐 gives a statistical arbitrage with small gain and smallest risk.

5.2.2 The role of drift and volatility

For the investor it is of interest which drift and which volatility of an asset promises a good profit.
To investigate this question we define the fraction

𝜂 ∶=
𝜇

𝜎
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TABLE 3 Simulations for the embedded binomial trading strategy with different values of the drift 𝜇 (and
hence 𝜂), fixed 𝜎 = 0.1 and 𝑛 = 250, 000 runs; gain p.a. denotes the gain per year, gain p.t. denotes gain per trade

𝜼 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.50 170 4,360 94,500 36 0.13 −11,000 5 30
0.75 109 1,730 38,100 23 0.13 −4,400 5 30
1.00 64 913 20,400 14 0.12 −2,340 5 30
1.25 77 561 12,400 17 0.12 −1,400 5 30
2.00 42 197 4,430 9 0.11 −490 4 31

TABLE 4 Simulations for the embedded binomial trading strategy with different values of the volatility (and
hence 𝜂), fixed 𝜇 = 0.1; gain pa denotes the gain per year, gain pt denotes gain per trade

𝜼 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.50 74,500 222,000 −48,400 4,340 0.036 −2,770,000 17 270
0.75 6,020 59,900 480,000 582 0.056 −79,400 10 120
1.00 241 4,710 80,500 37 0.090 −8,520 7 51
1.25 67 541 12,700 16 0.124 −1,460 4 28
2.00 8 6 165 5 0.144 −22 2 9

and show simulation results for different values of 𝜂. In Table 3 we fix the volatility 𝜎 and consider
varying drift, while in Table 4 we fix the drift 𝜇 and consider varying volatility.
Larger values of 𝜂 point to a high drift relative to volatility situations which we would expect to

be very well exploitable. In fact, our simulations show quite the contrary: we observe large gains
when 𝜂 is actually small, while for larger 𝜂 we observe only minor gains. More precisely, for fixed
𝜎 we obtain decreasing gains for increasing drift, while for fixed 𝜇 we observe increasing gains
for increasing volatility. This effect is much more pronounced for the latter case (increasing 𝜎).
Already from the results with varying step sizes in Table 2 such an effect was to be expected, as
higher values of 𝜂 lead to larger step sizes here and to lower gains. Intuitively, larger volatility
implies more repetitions and therefore a higher likelihood for the statistical arbitrage to end up
with gains. This is also reflected by increasing values of 𝑁 in Table 4.

5.3 Follow-the-trend strategy

Aswe have seen in the previous section, embedding a binomial model into continuous time is not
able to exploit a large drift. This motivates the introduction of a further step into the embedded
model in order to exploit existing trends in the underlying. We focus on an upward trend, while
the strategy is easily adopted to the case for a downward trend. We consider two-step binomial
embedding: first, we specify barriers (up/down) as previously. If we twice observed up move-
ments, we expect an upward trend and exploit this in a further step. Consequently, here we will
consider four stopping times (for iteration 𝑖): initial time 𝜏𝑖0, and stopping times 𝜏

𝑖
1, 𝜏

𝑖
2 as previously

and, in addition 𝜏𝑖3. Most notably, this modeling implies a different choice of the filtration 𝒢, see
Equation (25).
The associated strategy is to trade in the following way: the first trading occurs as previously at

the first time when the barriers 𝑠(1 + 𝑐) or 𝑠(1 − 𝑐) are hit. The next trading takes place when the
neighboring barriers are hit, in the first case 𝑠 or 𝑠(1 + 2𝑐) and in the second case 𝑠 or 𝑠(1 − 2𝑐),
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respectively. If a trend was detected (i.e., the upper barrier 𝑠(1 + 2𝑐) was hit, as we consider the
case of a positive drift), trading continues until a suitable stopping time.
More formally, this leads to the following procedure: let 𝑖 denote the current step of our itera-

tion. We initialize at time 𝜏00 = 0. Otherwise consider the initial time of our next iteration given
by the the time where we finished the last repetition and denote this time by 𝜏𝑖0 and the according
level by 𝑠𝑖0 = 𝑆𝜏𝑖0 . Then, using again the property that 𝑆 is continuous, we define the following
successive stopping times: first, analogously to 𝑡𝑖1 from Equation (17), let

𝜏𝑖1 = inf
{
𝑡 ∈ (𝜏𝑖0, 𝑇]|𝑆𝑡 ≥ 𝑠𝑖0(1 + 𝑐) or 𝑆𝑡 ≤ 𝑠𝑖0(1 − 𝑐)} . (22)

In the same manner the second stopping occurs if either the upper level is reached, or the mid-
level is crossed, or the bottom level is reached. The levels of course differ depending on whether
𝑆𝜏𝑖

1
= 𝑠𝑖0(1 + 𝑐) or 𝑆𝜏𝑖1 = 𝑠

𝑖
0(1 − 𝑐). In this regard, we define (for the first case)

𝜎𝑖1 = inf
{
𝑡 ∈ (𝜏𝑖1, 𝑇]|𝑆𝑡 ≥ 𝑠𝑖0(1 + 2𝑐)} , 𝜎𝑖2 = inf

{
𝑡 ∈ (𝜏𝑖1, 𝑇]|𝑆𝑡 ≤ 𝑠𝑖0} .

For the second case, we set

𝜎𝑖3 = inf
{
𝑡 ∈ (𝜏𝑖1, 𝑇]|𝑆𝑡 ≤ 𝑠𝑖0(1 − 2𝑐)} , 𝜎𝑖4 = inf

{
𝑡 ∈ (𝜏𝑖1, 𝑇]|𝑆𝑡 ≥ 𝑠𝑖0} .

Altogether we obtain that

𝜏𝑖2 =

{
𝜎𝑖1 ∧ 𝜎

𝑖
2 if 𝑆𝜏𝑖

1
= 𝑠𝑖0(1 + 𝑐),

𝜎𝑖3 ∧ 𝜎
𝑖
4 otherwise.

)
(23)

Finally, we set

𝜏𝑖3 =

{
inf

{
𝑡 ∈

[
𝜏𝑖2, 𝑇

] |𝑆𝑡 ≤ 𝑠0 or 𝑆𝑡 ≥ 𝑠𝑖0(1 + 4𝑐)} , if 𝑆𝜏𝑖2 = 𝑠𝑖0(1 + 2𝑐),
𝜏𝑖2, otherwise.

)
(24)

Denote by 𝜏max the last stopping time of 𝜏13, 𝜏
2
3, … which lies before 𝑇. Then the statistical arbi-

trages traded on the partition of 𝑆𝜏max generated by the values 𝑠0(1 + 2kc), 𝑘 = 0, 1, 2, … which
defines the 𝒢 on the path space of the diffusion.
Tradingwill be executed at times 𝜏𝑖1 to 𝜏

𝑖
3when the process reaches one of the predefined bound-

aries (or trading time is over). At time 𝜏𝑖2 we check if a positive trend persists and trade on this
trend. Recall the trading strategy 𝝓 = (𝜙1, 𝜙+2 , 𝜙

−
2 ) from Equation (21). First, trading at the first

two times is executed as previously at times 𝑡𝑖0, 𝑡
𝑖
1, see Lemma 4.2: we hold on [𝜏

𝑖
0, 𝜏

𝑖
1) the frac-

tion 𝜙1 shares of 𝑆. After reaching 𝑠𝑖0(1 + 𝑐) (𝑠
𝑖
0(1 − 𝑐), respectively) at time 𝜏

𝑖
1 the trading strategy

changes to holding 𝜙+2 (𝜙
−
2 ) shares of 𝑆 until 𝜏

𝑖
2. The next trading can be split into the following

three cases:

1. 𝜏𝑖2 = 𝜎
𝑖
1: in this case we reached the upper level 𝑠

𝑖
0(1 + 2𝑐) and follow the (upward) trend by

holding 𝜙++3 shares of 𝑆. This position will be equalized at 𝜏𝑖3 or if the final time is reached.
2. 𝜏𝑖2 equals 𝜎

𝑖
2 or 𝜎

𝑖
4: from the state 𝑠𝑖0(1 + 𝑐) resp. 𝑠

𝑖
0(1 − 𝑐) we arrived back at 𝑠

𝑖
0 (or below resp.

above). No trendwas detected and the embedded binomial trading strategy ends by liquidating
the position.



582 REIN et al.

F IGURE 3 Illustration of the stopping times defined in (22), (23) resp. (24). The first stopping takes place
when the process reaches either the first upper or lower boundary 𝑠𝑖0(1 ± 𝑐). Starting from the upper boundary the
next stopping takes place if the process increases to the level 𝑠𝑖0(1 + 2𝑐), decreases to the level 𝑠

𝑖
0(1 − 2𝑐) or crosses

the level 𝑠0. In case the process reached the upper level a third stopping occurs at 𝜏𝑖3

3. 𝜏𝑖2 equals 𝜎
𝑖
4: again, no (upward) trend was detected and the strategy ends by liquidation the

position.

Since Lemma 4.2 treats a related, but slightly different case we explicitly check in the following
that the embedded binomial model indeed allows for statistical arbitrage.

5.3.1 The embedded binomial follow-the-trend strategy

We consider Ω̃ = {𝜔1, … , 𝜔5} as depicted in Figure 4. Let 𝑆0 = 𝑠0 ∈ ℝ≥0 and 𝑆1 take the two values
𝑠+ and 𝑠− such that

𝑆1(𝜔1) = 𝑆1(𝜔2) = 𝑆1(𝜔5) = 𝑠
+, 𝑆1(𝜔3) = 𝑆1(𝜔4) = 𝑠

−.

At time 2 we have the three possibilities 𝑆2(𝜔1) = 𝑆2(𝜔5) = 𝑠++, 𝑆2(𝜔2) = 𝑆2(𝜔3) = 𝑠+− and
𝑆2(𝜔4) = 𝑠

−−. In the cases of 𝜔2, … , 𝜔4 the model stops. If, however, we saw two up-movements,
the model continues and ends up at time 3 in the states 𝑆3(𝜔1) = 𝑠+++ or 𝑆3(𝜔5) = 𝑠++−. We
assume without loss of generality that 𝑠+ > 𝑠0, 𝑠− < 𝑠0, and 𝑠++ > 𝑠+, 𝑠− < 𝑠+− < 𝑠+, and 𝑠−− <
𝑠− as well as 𝑠++− < 𝑠++ < 𝑠+++, that is, we consider binomial models as presented in Figure 4.
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F IGURE 4 The embedded binomial model for the follow-the-trend strategy with positive drift. The filtration
generated by the final states is generated by each {𝜔𝑖} for 𝑖 = 1, 4, 5 and {𝜔2, 𝜔3}. We also denote the resulting
outcomes by 𝑠 = 𝑠0, 𝑠+, 𝑠−, . . . and indicate this notation at some places

The dynamic trading strategies can be described by

𝑉3(𝜙) = 𝜙1Δ𝑆1 + 𝜙2Δ𝑆2 + 𝜙3Δ𝑆3,

with 𝜙1, 𝜙+2 , 𝜙
−
2 and 𝜙++3 being the respective values in the states Ω̃, {𝜔1, 𝜔2, 𝜔5}, {𝜔3, 𝜔4} and

{𝜔1, 𝜔5} at times 1,2, and 3, respectively. Moreover, we choose

�̃� = 𝜎({𝜔1}, {𝜔2, 𝜔3}, {𝜔4}, {𝜔5}), (25)

i.e. the𝜎-field generated by the final states of the embedded binomialmodel. The following lemma
shows that there is statistical arbitrage in the follow-the-trend strategy if there is statistical arbi-
trage in the recombining two-period sub-model consisting only of the first two periods.
Denote

𝜸 =
1

𝐷

⎛⎜⎜⎝
𝑞Δ𝑆2(𝜔2)Δ𝑆2(𝜔4)

Δ𝑆1(𝜔4)Δ𝑆2(𝜔3) − (𝑞Δ𝑆1(𝜔2) + Δ𝑆1(𝜔3)) Δ𝑆2(𝜔4)

−𝑞Δ𝑆2(𝜔2)Δ𝑆1(𝜔4)

⎞⎟⎟⎠ (26)

with 𝐷 given in Lemma 4.2. We recall from Proposition 4.1, that statistical arbitrages exist if and
only if 𝑃(𝜔2)∕𝑃(𝜔3) ≠ 𝑞. The following results shows, that in the follow-the-trend model there is
statistical arbitrage under the same condition.

Proposition 5.1. If 𝝓 is the strategy from Lemma 4.2, then for any 𝛼 ≥ 0, 𝝍 = (𝜓1, 𝜓+2 , 𝜓−2 , 𝜓++3 )

with

𝜓++3 =
1 − 𝛼

Δ𝑆3(𝜔1) − Δ𝑆3(𝜔5)

and

⎛⎜⎜⎝
𝜓1
𝜓+2
𝜓−2

⎞⎟⎟⎠ = 𝝓 − Δ𝑆3(𝜔1)𝜓++3 𝜸

is a �̃�-arbitrage strategy, if 𝑃(𝜔2)
𝑃(𝜔3)

≠ 𝑞.
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TABLE 5 Simulations for the follow-the-trend strategy for 1 mio runs. In comparison to Table 1 (where the
notation is explained) we find slightly smaller gains together with a smaller risk

gain pa mean VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
27.8 164 4,180 9.17 0.171 −554 3 21

TABLE 6 Simulations for the follow-the-trend strategy with varying barrier levels 𝑐. In the simulations for
Table 5 we used 𝑐 = 0.01 𝜇∕𝜎

c gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.005 𝜇∕𝜎 404 3,300 51,300 71.1 0.098 −5,590 6 44
0.01 𝜇∕𝜎 32 162 4,130 10.7 0.169 −548 3 18
0.02 𝜇∕𝜎 6 8 272 3.9 0.238 −45 2 7
0.04 𝜇∕𝜎 3 1 23 2.6 0.122 −2 1 3

The proof is deferred to the Appendix. Note that the possible choice 𝛼 = 1 leads to 𝜓++3 = 0,
such that in this case the statistical arbitrage in the first two periods is exploited and the strategy
coincides with that of Lemma 4.2.

Simulation results

We study the performance of the follow-the-trend strategy on the basis of various simulations
and compare it to the results of the embedded binomial strategies. As previously, we simulate a
geometric Brownian motion according to Equation (16) with 𝜇 = 0.1241, 𝜎 = 0.0837, 𝑆0 = 2186,
𝑇 = 1 (year), discretize by 1000 steps and embed the according models repeatedly in this time
interval. In this case, Proposition 5.1 grants the existence of statistical arbitrage which we will
exploit in the following.
Contrary to the intention of improving the average gain of the follow-the-trend strategy, the

simulations show that this goal is not achieved. But, in general, the follow-the-trend strategy leads
to a reduction of risk compared to the embedded-binomial trading strategy, visible through the
reduced Value-at-Risk in Tables 5 to 8. The reduction of the average gain and its mean can be
explained from the observations in Section 4.3: the follow-the-trend-strategy introduces additional
scenarios with smaller gains (compare Figure 4). This leads to a reduction of the average gain and,
at the same time, to a reduction of risk.
The results from Table 6 to 8 show a similar dependence on the choice of the parameters and

of the barrier of the follow-the-trend strategy compared to the embedded binomial strategy. In
general, we record smaller gains together with smaller risk with one exception: the last line of

TABLE 7 Simulations for the follow-the-trend strategy with varying values of the drift (and hence 𝜂 = 𝜇∕𝜎)
with fixed 𝜎 = 0.1

𝜼 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.50 122 3,500 76,200 31 0.16 −9,780 4 24
0.75 99 1,390 30,400 26 0.16 −3,890 4 22
1.00 78 734 16,200 20 0.15 −2,050 4 23
1.25 54 452 9,950 15 0.15 −1,260 4 23
2.00 34 162 3,570 10 0.14 −436 3 21
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TABLE 8 Simulations for the follow-the-trend strategy with varying values of the volatility 𝜎 and fixed
𝜇 = 0.1

𝜼 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.50 2,010 40,700 586,000 284 0.09 −62,500 7 58
0.75 292 3,930 69,200 60 0.12 −7,940 5 34
1.00 44 732 16,400 11 0.15 −2,080 4 24
1.25 27 200 5,330 9 0.18 −729 3 17
2.00 10 15 469 5 0.20 −68 2 9

Table 8 shows that a small 𝜂 (and hence a large 𝜎) allows the follow-the-trend strategy to exploit
the existing (although small) positive trend in the data better. Of course, this comes with a higher
risk, which is clearly visible.
Summarizing, the follow-the-trend strategy shows (in general) smaller gains together with a

smaller risk. The follow-the-trend strategy is, however, able to exploit a positive trend when 𝜎 is
very small.

5.4 Partition strategies on the final value

In this section we study statistical arbitrage with respect to 𝒢fin generated by

{𝑆𝑇 ≥ 𝑠0} = {𝜔1, 𝜔2, 𝜔3}, and {𝑆𝑇 < 𝑠0} = {𝜔4, 𝜔5}. (27)

This 𝜎-field corresponds to the two scenarios that the value of the asset increased or decreased at
time 𝑇. The statistical 𝒢fin-arbitrage corresponds to a strategy which yields an average profit in
both of these scenarios.
As an example, we continue in the setting of the follow-the-trendmodel considered in the previ-

ous Section 5.3, although other settings are clearly possible. Recall that thismeans we are focusing
on an upward trend. We add the assumption that 𝑠++− < 𝑠0 such that also the third period allows
for interesting outcomes (below or above 𝑠0, compare Figure 4). The new 𝜎-field will lead to a
different trading strategy as we detail in the following.

Proposition 5.2. In the follow-the-trend model with 𝑠++− < 𝑠0 there is 𝒢fin-arbitrage if

(
𝜓1Δ𝑆1(𝜔1) + 𝜓

+
2 Δ𝑆2(𝜔1) + 𝜓

++
3 Δ𝑆3(𝜔1)

)
+

(
𝜓1Δ𝑆1(𝜔3) + 𝜓

−
2 Δ𝑆2(𝜔3)

) 𝑃(𝜔3)
𝑃(𝜔1)

+
(
𝜓1Δ𝑆1(𝜔2) + 𝜓

+
2 Δ𝑆2(𝜔2)

) 𝑃(𝜔2)
𝑃(𝜔1)

≥ 0, (28)

(
𝜓1Δ𝑆1(𝜔4) + 𝜓

−
2 Δ𝑆2(𝜔4)

)
+
(
𝜓1Δ𝑆1(𝜔5) + 𝜓

+
2 Δ𝑆2(𝜔5) + 𝜓

++
3 Δ𝑆3(𝜔5)

) 𝑃(𝜔5)
𝑃(𝜔4)

≥ 0 (29)

and, in addition, at least one of the inequalities is strict.

The proof is immediate. Note that there is a lot of freedom in choosing such strategies. Indeed,
we will pursue choosing a strategy matching our previous strategies for better comparability.
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Example 5.3. We consider a special case of (28), (29): we additionally assume that the first line
of Equation (28) and the first line of Equation (29) is non-negative. Then, the strategy 𝝍 is a 𝒢fin-
arbitrage if

𝜓1Δ𝑆1(𝜔1) + 𝜓
+
2 Δ𝑆2(𝜔1) + 𝜓

++
3 Δ𝑆3(𝜔1) ≥ 0,

𝜓1Δ𝑆1(𝜔3) + 𝜓
−
2 Δ𝑆2(𝜔3) +

(
𝜓1Δ𝑆1(𝜔1) + 𝜓

+
2 Δ𝑆2(𝜔2)

) 𝑃(𝜔2)
𝑃(𝜔3)

≥ 0,
𝜓1Δ𝑆1(𝜔3) + 𝜓

−
2 Δ𝑆2(𝜔4) ≥ 0

𝜓1Δ𝑆1(𝜔1) + 𝜓
+
2 Δ𝑆2(𝜔1) + 𝜓

++
3 Δ𝑆3(𝜔5) ≥ 0,

(30)

and at least one inequality is strict. Note that we used Δ𝑆1(𝜔3) = Δ𝑆1(𝜔4), Δ𝑆1(𝜔1) = Δ𝑆1(𝜔2) =
Δ𝑆1(𝜔5) and Δ𝑆2(𝜔1) = Δ𝑆2(𝜔5) from Section 5.3. This choice is similar to the previously studied
partition strategies and we compute a strategy explicitly. In this regard, define the matrix 𝐴 by

𝐴 =

⎛⎜⎜⎜⎜⎝
Δ𝑆1(𝜔1) Δ𝑆2(𝜔1) 0 Δ𝑆3(𝜔1)

Δ𝑆1(𝜔3) + 𝑟Δ𝑆1(𝜔1) 𝑟Δ𝑆2(𝜔2) Δ𝑆2(𝜔3) 0

Δ𝑆1(𝜔3) 0 Δ𝑆2(𝜔4) 0

Δ𝑆1(𝜔1) Δ𝑆2(𝜔1) 0 Δ𝑆3(𝜔5)

⎞⎟⎟⎟⎟⎠
with 𝑟 = 𝑃(𝜔2)

𝑃(𝜔3)
. If 𝐴 is invertible, for any 𝛼 ≥ 0, the strategy 𝝍 given by

𝜓++3 =
1 − 𝛼

Δ𝑆3(𝜔1) − Δ𝑆3(𝜔5)

and

⎛⎜⎜⎝
𝜓1
𝜓+2
𝜓−2

⎞⎟⎟⎠ = 𝝓 − Δ𝑆3(𝜔1)𝜓++3 𝜸

is a 𝒢fin-arbitrage. Here, 𝝓 = 1

𝐷
(𝜉1, 𝜉2, 𝜉3) with

𝜉1 = (𝑟Δ𝑆2(𝜔2) − Δ𝑆2(𝜔1)) Δ𝑆2(𝜔4) + Δ𝑆2(𝜔1)Δ𝑆2(𝜔3),

𝜉2 = (Δ𝑆1(𝜔3) − Δ𝑆1(𝜔1)) Δ𝑆2(𝜔3) + (Δ𝑆1(𝜔1) − Δ𝑆1(𝜔3) − 𝑟Δ𝑆1(𝜔1)) Δ𝑆2(𝜔4),

𝜉3 = 𝑟Δ𝑆1(𝜔1) (Δ𝑆2(𝜔2) − Δ𝑆2(𝜔1)) − 𝑟Δ𝑆2(𝜔2)Δ𝑆1(𝜔3), and

𝐷 = (𝑟Δ𝑆1(𝜔1)Δ𝑆2(𝜔2) − (Δ𝑆1(𝜔3) + 𝑟Δ𝑆1(𝜔2)) Δ𝑆2(𝜔1)) Δ𝑆2(𝜔4) + Δ𝑆1(𝜔3)Δ𝑆2(𝜔1)Δ𝑆2(𝜔3),

computed analogously to Lemma 4.2. In addition,

𝜸 =
1

𝐷

⎛⎜⎜⎝
𝑟Δ𝑆2(𝜔2)Δ𝑆2(𝜔4)

Δ𝑆1(𝜔3)Δ𝑆2(𝜔3) − (𝑟Δ𝑆1(𝜔1) + Δ𝑆1(𝜔3)) Δ𝑆2(𝜔4)

−𝑟Δ𝑆2(𝜔2)Δ𝑆1(𝜔3)

⎞⎟⎟⎠ ,
and the computation of the strategy is finished. ⋄
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TABLE 9 Statistical 𝒢fin-arbitrage trading strategy simulation results for 1 mio simulations with
𝑐𝑖 = 0.01 𝜂 𝑆𝜎𝑖0

gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
28.6 167 4,290 8.76 0.158 −544 3 20

TABLE 10 Simulation results for the statistical 𝒢fin-arbitrage trading strategy with varying boundaries of
the embedded binomial model

c gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.005 𝜇∕𝜎 356 3,280 51,500 58 0.09 −5,510 6 49
0.01 𝜇∕𝜎 28 166 4,290 9 0.15 −543 3 19
0.02 𝜇∕𝜎 6 8 288 4 0.22 −44 2 8
0.04 𝜇∕𝜎 3 1 22 3 0.12 −2 1 4

Simulation results

Again, we study the performance of the strategy, this time the strategy derived in Example 5.3
with a partition (above/below) on the final value of the stock.We perform various simulations. As
previously, we simulate a geometric Brownianmotion according to Equation (16)with𝜇 = 0.1241,
𝜎 = 0.0837, 𝑆0 = 2186, 𝑇 = 1 (year), discretize by 1000 steps and embed the according models
repeatedly in this time interval. The properties for existence of a statistical arbitrage in this setting
are confirmed numerically.
As pointed out before, the statistical arbitrages are with respect to different 𝜎-algebras. By our

variant of𝒢fin-arbitrage chosen in Example 5.3 we find very similar results to the follow-the-trend
strategy as one can see in Tables 9 to 12.

5.5 Summary on the different embedded strategies

The previous results confirm that all three introduced strategies are statistical 𝒢-arbitrage strate-
gies with respect to the corresponding choices of𝒢. Althoughwe observe similar patterns through
all strategies, like higher gains for smaller boundaries or an average profit decreasing in 𝜂, there
are significant differences between the strategies:

1. the average profit achieved is best for the embedded binomial strategy.
2. The follow-the-trend strategy and the 𝒢fin-arbitrage strategy show similar behavior: while

showing smaller gains on average, these two strategies have smaller risk.

TABLE 11 Statistical 𝒢fin-arbitrage trading strategy for varying 𝜇 but with fixed 𝜎 = 0.01

𝜼 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (mean) ø𝑵 (max)
0.50 112 3,560 77,700 26.7 0.15 −9,600 4 25
0.75 97 1,430 31,200 23.7 0.14 −3,830 4 26
1.00 73 751 16,600 18.3 0.14 −2,020 4 26
1.25 55 458 10,100 13.9 0.14 −1,230 4 24
2.00 34 163 3,600 9.15 0.13 −428 3 25
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TABLE 1 2 Statistical 𝒢fin-arbitrage trading strategy for varying 𝜎 but fixed 𝜇 = 0.1

𝜼 gain pa median VaR𝟎.𝟗𝟓 gain pt losses (losses) ø𝑵 (max)
0.75 203 3,890 69,800 38 0.11 −7,810 5 37
1.00 71 752 16,600 18 0.14 −2,020 4 25
1.25 28 205 5,500 9 0.17 −715 3 18
2.00 10 15 494 5 0.19 −67 2 11

5.6 The Bachelier model in discrete time

The explicit calculations in the previous sections were given for the complete Black-Scholes
model. Here, we provide a simple example to illustrate that statistical arbitrage can be exploited
also in incompletemodels. To this end, we consider a (modified) Bacheliermodel in discrete time,

𝑆𝑡 =

𝑡∑
𝑖=1

𝜉𝑖, 𝑡 = 0, 1, 2.

We assume that 𝜉1 and 𝜉2 are independent and normally distributed with standard variance. We
choose 𝒢 = 𝜎(𝑆2).
If 𝐸[𝜉1] = 𝐸[𝜉2] = 0, then the measure 𝑃 is already a martingale measure. Hence the den-

sity dQ∕dP = 1 and therefore 𝒢-measurable. Proposition 2.4 yields that there is no statistical 𝒢-
arbitrage. We hence assume 𝐸[𝜉1] = 0 and 𝐸[𝜉2] = 𝜇2 ≠ 0. In this case, the conditional distribu-
tion of 𝜉1 given 𝑆2 is again normal and computes to

𝜉1 |𝑆2 = (𝜌(𝑆2 − 𝜇2), 1 − 𝜌
2),

where the correlation is 𝜌 = 𝐸[𝜉1(𝜉1+𝜉2)]√
1
√
2

=
1√
2
. The self-financing trading strategy 𝜙 is defined

by the deterministic position 𝜙1 at time 0 and the 𝜉1-measurable position 𝜙2 = 𝜙2(𝜉1) at time 1.
Statistical arbitrage is equivalent to

𝜙1𝐸[𝜉1|𝑆2] + 𝐸 [𝜙2(𝜉1) ⋅ (𝑆2 − 𝜉1)|𝑆2] ≥ 0, (31)

and being not equal to zero almost surely. Of course, there are many possible choices for 𝜙1 and
𝜙2 and we provide a simple example: choose 𝜙2 of the form 𝜙2(𝑥) = ax𝟙𝑥>𝛼 + bx𝟙𝑥<𝛽 . In this case
the left hand side of (31) can be computed and we obtain that1

𝜙1𝐸[𝜉1|𝑆2] + 𝐸 [𝜙2(𝜉1) ⋅ (𝑆2 − 𝜉1)|𝑆2]
= 𝜙1𝜌𝜇 + 𝑎𝑆2

[
𝜇(1 − Φ(𝑐𝛼)) +

𝜎√
2𝜋
𝑒
−
1

2
𝑐2𝛼

]
− 𝑎

[
(𝜇2 + 𝜎2)(1 − Φ(𝑐𝛼)) +

1√
2𝜋
(2𝜇𝜎 + 𝜎2𝑐𝛼)𝑒

−
1

2
𝑐2𝛼

]

+ 𝑏𝑆2

[
𝜇Φ(𝑐𝛽) −

𝜎√
2𝜋
𝑒
−
1

2
𝑐2
𝛽

]
− 𝑏

[
(𝜇2 + 𝜎2)Φ(𝑐𝛽) −

1√
2𝜋
(2𝜇𝜎 + 𝜎2𝑐𝛽)𝑒

−
1

2
𝑐2
𝛽

]
;

where we use 𝜇 = 𝜇(𝑆2) ∶= 𝜌(𝑆2 − 𝜇), 𝜎 = 2−1∕2, 𝑐𝛼 = 𝑐𝛼(𝑆2) ∶= 𝛼−𝜇(𝑆2)∕𝜎, and 𝑐𝛽 = 𝑐𝛽(𝑆2) ∶=
𝛽−𝜇(𝑆2)∕𝜎. For the parameters 𝜇2 = 10, 𝜙1 = 1, 𝑎 = 1, 𝛼 = 0, 𝑏 = −2, 𝛽 = −1we numerically verify
that this is indeed a statistical arbitrage.
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TABLE 13 Gains per traded assets (GPTA) for the embedded binomial strategy, applied to the three indices.
Volatility was estimated by maximum-likelihood methods with a rolling window of length 3 years and the drift set
equal to 𝜇 = 0.1. The boundaries for the embedding were chosen as 𝑆𝜎𝑖 ⋅ 𝑐 ⋅

𝜇∕𝜎. The number of trades range from
2 to 70, which is moderate. The far right column shows the strategy when 𝜇 is estimated, but 𝑐𝜇𝜎−1 is capped at a
minimum level of 0.1. This strategy clearly takes up the positive impression from the FTSE strategy with 𝑐 = 0.1

𝒄 S&P 500 DJI FTSE FTSE (min 𝒄)
0.1 −7791 −390 4618 4300
0.2 −574 1.54 −1171 4300
0.3 259 3.35 0.526 4300
0.4 0.186 16.3 −115 4424
0.5 66.7 7.68 1.12 4300
0.6 41.7 8.08 7.39 7647

6 APPLICATION TOMARKET DATA

In this section we apply the previously studied approaches to real stock data. A full application
study of statistical arbitrages arising from our previous considerations is beyond the scope of this
article. However, we show a small number of applications to point out certain subtleties and dif-
ficulties with the applications, leaving a thorough study for future work.

Three major indices

We consider the S&P 500, the Dow Jones Industrial and the FTSE index from January 2000 to
November 2019. Even if the prices will not follow exactly a Black-Scholes model, we see in this
section that the introduced strategies are able to ensure statistical arbitrage. Trading strategies
are used by implementing the embedded binomial strategy from Section 5.1 while the parameters
(𝜇, 𝜎) of the geometric Brownian motion have to be estimated. The estimated parameters have
two effects: on the one side, they are necessary to compute the portfolio weights, and, on the other
side, they are used to choose the grid size in the embedding appropriately. Our previous choice
choosing the grid proportional to 𝜇𝜎−1 will naturally depend on the properties of the estimators.
Since the drift 𝜇 is difficult to estimate, we expect difficulties here. Indeed, it turns out that a drift
estimated to be close to zero will imply a very small grid size. Our considerations in Section 5.2
showed that a small grid size implies a large risk, which might be undesired.
As a first solution to this we simply fix the drift to 𝜇 = 0.1 and estimate the volatility with a

sliding-window approach with a window length of 3 years. Already these results are quite promis-
ing, compare Table 13. Compared to the simulation studies, monotonicity with respect to the
increasing parameter 𝑐 does no longer hold: this is because now we are working on a single sam-
ple path and not averaging over many paths. Increasing 𝑐 leads to a completely new construction
of the grid, with possibly disruptive outcome. In general the picture from our previous findings
can be confirmed on data (results not shown): first, increasing 𝑐 lowers the risk of the strategy. In
particular for small 𝑐 this implies a high volatility of the outcome (since we have moderate num-
ber of trades, ranging from 15 to 70 for 𝑐 = 0.1 or 𝑐 = 0.2). For larger 𝑐 the strategies get less risky
and the overall picture improves.
However, the performance on the FTSE index could be improved. In a second attempt, we

instead estimate 𝜇 also with a sliding window of the same length. This improves the result
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dramatically, but this also induces a high risk of the strategy, which might be undesirable. To
balance these two aspects we introduced a lower bound on 𝑐𝜇(𝜎)−1, set to 0.1. The outcomes are
shown on the far right column in Table 13 underlining the improvement with this strategy.
Summarizing, the results of our application to market data shows that the right choice of the

parameter 𝑐 is very important. For each studied index, we could achieve a positive outcome with
the right choice of 𝑐. However, our restricted application study indicates the requirement of further
detailed empirical study of the strategies suggested in this paper, and in particular on the optimal
choice of boundaries for the embedding. From the many open problems of interest we mention
the following three:

1. Are the proposed strategies in this paper competitive to pair trading or related strategies in
mean-reverting models?

2. Can one improve the embedded binomial strategy by considering more general tree-like
embedding models (for example trinomial or more sophisticated ones)?

3. Is the method of capping the boundary level 𝑐 a generally good compromise between risk and
profit ? What is the best capping level?

7 CONCLUSION

We introduce the concept NSA(𝒢) of no statistical𝒢-arbitrage w.r.t. trading strategies, give a suffi-
cient condition for its absence and show its equivalence to non-existence of generalized statistical
𝒢-arbitrage strategies, NSA(𝒢). Moreover, we examine various profitable strategies both on simu-
lated and onmarket data. The choice of the 𝜎-algebra𝒢 is either motivated by the aim to generate
profitable strategies in average over certain pre-determined scenarios or, alternatively, it can be
used as a technical tool to generate profitable strategies.
Our data experiments based on simulated data give hints on the choice of parameters for var-

ious algorithms in order to gain a good balance of the algorithms between profit and risk. We
also show the potential usefulness of the algorithms on simple portfolios of market data. For the
application in practice the strategies introduced have to be investigated in more detail, adapted to
large portfolios, and adjusted to include transaction costs. This is subject to future research.
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APPENDIX A: PROOFS
Proof of Lemma 2.6. Note that equations (7) reads 𝐴𝜉 ≥ 0 with

𝐴 =

⎛⎜⎜⎜⎜⎝
Δ𝑆1(𝜔2) Δ𝑆2(𝜔2) 0

Δ𝑆1(𝜔6) 0 Δ𝑆2(𝜔6)

Δ𝑆1(𝜔1)𝜈1 + Δ𝑆1(𝜔4) Δ𝑆2(𝜔1)𝜈1 Δ𝑆2(𝜔4)

Δ𝑆1(𝜔3)𝜈2 + Δ𝑆1(𝜔5) Δ𝑆2(𝜔3)𝜈2 Δ𝑆2(𝜔5)

⎞⎟⎟⎟⎟⎠
.

We do a change of basis for themapping𝐴 and substitute the vector in the first column. This leads
to a matrix �̃�,

�̃� =

⎛⎜⎜⎜⎜⎝
0 Δ𝑆2(𝜔2) 0

0 0 Δ𝑆2(𝜔6)

𝐵1 Δ𝑆2(𝜔1)𝜈1 Δ𝑆2(𝜔4)

𝐵2 Δ𝑆2(𝜔3)𝜈2 Δ𝑆2(𝜔5)

⎞⎟⎟⎟⎟⎠

https://doi.org/10.1111/mafi.12300
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where

𝐵1 = 𝜈1

(
Δ𝑆1(𝜔1) − Δ𝑆2(𝜔1)

Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

)
+ Δ𝑆1(𝜔4) − Δ𝑆2(𝜔4)

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)

𝐵2 = 𝜈2

(
Δ𝑆1(𝜔3) − Δ𝑆2(𝜔3)

Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

)
+ Δ𝑆1(𝜔5) − Δ𝑆2(𝜔5)

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)
.

We denote byℑ(�̃�) the image of amapping �̃�. There exists statistical arbitrage ifℑ(�̃�) ∩ ℝ4>0 ≠ ∅.
The linear subspace spanned by �̃� is given by

𝛼

⎛⎜⎜⎜⎜⎝
0

0

𝐵1
𝐵2

⎞⎟⎟⎟⎟⎠
+ 𝛽

⎛⎜⎜⎜⎜⎝
Δ𝑆2(𝜔2)

0

Δ𝑆2(𝜔1)𝜈1
Δ𝑆2(𝜔3)𝜈2

⎞⎟⎟⎟⎟⎠
+ 𝛾

⎛⎜⎜⎜⎜⎝
0

Δ𝑆2(𝜔6)

Δ𝑆2(𝜔4)

Δ𝑆2(𝜔5)

⎞⎟⎟⎟⎟⎠
, (A1)

with 𝛼, 𝛽, 𝛾 ∈ ℝ. Assume this space meets ℝ4≥0. Then it follows from the condition 𝛽Δ𝑆2(𝜔2) =
𝛽(𝑠++2 − 𝑠+1 ) ≥ 0 that 𝛽 ≥ 0. Similarly, 𝛾 ≤ 0 because Δ𝑆2(𝜔6) = 𝑠−−2 − 𝑠−1 < 0. Summing up the
third and fourth coordinate from (A1) we get

𝛼

(
𝜈1

(
Δ𝑆1(𝜔1) − Δ𝑆2(𝜔1)

Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

)
+ 𝜈2

(
Δ𝑆1(𝜔3) − Δ𝑆2(𝜔3)

Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

))
(
+
Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)
(−Δ𝑆2(𝜔4) − Δ𝑆2(𝜔5)) + Δ𝑆1(𝜔4) + Δ𝑆1(𝜔5)

)
+ 𝛾 (Δ𝑆2(𝜔4) + Δ𝑆2(𝜔5)) + 𝛽 (Δ𝑆2(𝜔1)𝜈1 + Δ𝑆2(𝜔3)𝜈2) . (A2)

Choosing 𝜈1 = −
Δ𝑆2(𝜔3)

Δ𝑆2(𝜔1)
𝜈2, we obtain that 𝛽(Δ𝑆2(𝜔1)𝜈1 + Δ𝑆2(𝜔3)𝜈2) = 0, such that the last term

in the above equation vanishes. As we assumed that the space spanned by (A1) meetsℝ4≥0 it must
also hold true that (A2) ≥ 0. For

𝜈2 <

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)
(Δ𝑆2(𝜔4) + Δ𝑆2(𝜔5)) − Δ𝑆1(𝜔4) − Δ𝑆1(𝜔5)

Δ𝑆1(𝜔3) − Δ𝑆1(𝜔1)
Δ𝑆2(𝜔3)

Δ𝑆2(𝜔1)

= Γ2

the coefficient of 𝛼 in (A2) is negative. Together with 𝛾 ≤ 0 and Δ𝑆2(𝜔4), Δ𝑆2(𝜔5) > 0 by assump-
tion this choice of 𝜈2 results in 𝛼 ≤ 0 in order to obtain (𝐴2) ≥ 0. On the other hand, if we claim

𝜈2 >
−Δ𝑆1(𝜔5) + Δ𝑆2(𝜔5)

Δ𝑆1(𝜔6)

Δ𝑆2(𝜔6)

Δ𝑆1(𝜔3) − Δ𝑆2(𝜔3)
Δ𝑆1(𝜔2)

Δ𝑆2(𝜔2)

= Γ1

it follows that 𝐵2 > 0 and it results for the fourth coordinate of (A1) that 𝛼𝐵2 + 𝛽Δ𝑆2(𝜔3)𝜈2 +
𝛾Δ𝑆2(𝜔5) ≤ 0. Hence ℑ(�̃�) ∩ ℝ4>0 = ∅. It remains to prove that Γ1 < Γ2 and that there is no sta-
tistical arbitrage for 𝜈2 = Γ2, which is verified analogously. □

Proof of Proposition 4.1. “⇒” If det(𝐴) ≠ 0 we choose for example 𝜉 ∶= 𝐴−11 and have found an
arbitrage opportunity.
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“⇐” On the other hand, if det(𝐴) = 0 there still might be an arbitrage opportunity if the image
of 𝐴 intersects with the positive subspace of ℝ3, i.e. if ℑ(𝐴) ∩ ℝ3>0 ≠ ∅. To show that this is not
the case we change the basis for the mapping𝐴 and substitute the vector in the first column. This
leads to a matrix �̃�,

�̃� =
⎛⎜⎜⎝
0 Δ𝑆2(𝜔1) 0

0 0 Δ𝑆2(𝜔4)

𝐵 Δ𝑆2(𝜔2)𝑞 Δ𝑆2(𝜔3)

⎞⎟⎟⎠ ,
where

𝐵 = 𝑞

(
Δ𝑆1(𝜔1) −

Δ𝑆1(𝜔1)

Δ𝑆2(𝜔1)
Δ𝑆2(𝜔2)

)
+ Δ𝑆1(𝜔3) −

Δ𝑆1(𝜔3)

Δ𝑆2(𝜔4)
Δ𝑆2(𝜔3).

Hence, 0 = det(𝐴) = 𝐵Δ𝑆2(𝜔1)Δ𝑆2(𝜔4) leading to 𝐵 = 0. In this case the linear subspace spanned
by �̃� is given by

𝛼
⎛⎜⎜⎝
Δ𝑆2(𝜔1)

0

𝑞Δ𝑆2(𝜔2)

⎞⎟⎟⎠ + 𝛽
⎛⎜⎜⎝

0

Δ𝑆2(𝜔4)

Δ𝑆2(𝜔3)

⎞⎟⎟⎠ , (A3)

with 𝛼, 𝛽 ∈ ℝ. Because Δ𝑆2(𝜔1) > 0 we need 𝛼 ≥ 0 to have arbitrage opportunities. Similar we
need to have 𝛽 ≤ 0 because of Δ𝑆2(𝜔4) < 0 by assumption. But, as Δ𝑆2(𝜔2) < 0 and Δ𝑆2(𝜔3) >
0, we obtain for the third coordinate that 𝛼𝑞Δ𝑆2(𝜔2) + 𝛽Δ𝑆2(𝜔3) ≤ 0 and hence ℑ(𝐴) ∩ ℝ3>0 =
∅, which proves the first part. For the second part, we simply compute det(𝐴) from Equation
(13). □

Proof of Proposition 5.1. Following Definition 2.1 the strategy 𝝍 is a statistical �̃�-arbitrage strategy
if the following holds

𝜓1Δ𝑆1(𝜔1) + 𝜓
+
2 Δ𝑆2(𝜔1) + 𝜓

++
3 Δ𝑆3(𝜔1) ≥ 0

𝜓1Δ𝑆1(𝜔4) + 𝜓
−
2 Δ𝑆2(𝜔4) ≥ 0

𝜓1Δ𝑆1(𝜔2)𝑃(𝜔2) + 𝜓
+
2 Δ𝑆2(𝜔2)𝑃(𝜔2) + 𝜓1Δ𝑆1(𝜔3)𝑃(𝜔3) + 𝜓

−
2 Δ𝑆2(𝜔3)𝑃(𝜔3) ≥ 0,

𝜓1Δ𝑆1(𝜔5) + 𝜓
+
2 Δ𝑆2(𝜔5) + 𝜓

++
3 Δ𝑆3(𝜔5) ≥ 0

(A4)

and, in addition, at least one of the inequalities is strict. We extend the setting from Lemma 4.2.
First, we let

�̃� =

⎛⎜⎜⎜⎜⎝
Δ𝑆1(𝜔1) Δ𝑆2(𝜔1) 0 Δ𝑆3(𝜔1)

Δ𝑆1(𝜔4) 0 Δ𝑆2(𝜔4) 0

𝑞Δ𝑆1(𝜔2) + Δ𝑆1(𝜔3) 𝑞Δ𝑆2(𝜔2) Δ𝑆2(𝜔3) 0

Δ𝑆1(𝜔5) Δ𝑆2(𝜔5) 0 Δ𝑆3(𝜔5)

⎞⎟⎟⎟⎟⎠
.
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Then Equations (A4) are equivalent to �̃�𝝍 ≥ 0. Note that 𝑆𝑖(𝜔1) = 𝑆𝑖(𝜔5) for 𝑖 = 1, 2 such that
�̃�𝝍 = �̃� with �̃� = (𝑥1, … , 𝑥4)

⊤ reveals

𝜓++3 =
𝑥1 − 𝑥4

Δ𝑆3(𝜔1) − Δ𝑆3(𝜔5)
.

As for Lemma 4.2, we will consider the case where �̃� is invertible. Note that the three times
three submatrix (upper left) of �̃� equals the matrix 𝐴 from Equation (13). Then, denoting 𝐱 =
(𝑥1, 𝑥2, 𝑥3)

⊤,

⎛⎜⎜⎝
𝜓1
𝜓+2
𝜓−2

⎞⎟⎟⎠ = 𝐴−1𝐱 − 𝐴−1
⎛⎜⎜⎝
Δ𝑆3(𝜔1)𝜓

++
3

0

0

⎞⎟⎟⎠ = 𝐴−1𝐱 − Δ𝑆3(𝜔1)𝜓++3 𝜸

with vector 𝜸 from Equation (26). Up to now we where free to choose any �̃� ∈ ℝ4>0. If we choose
𝐱 = 𝟙3, then 𝝓 = 𝐴−1𝟙3 is the strategy computed in Lemma 4.2 and the result follows. □

APPENDIX B: COMPUTATION OF A SPECIFIC EXAMPLE OF EQUATION (31)
Consider a random variable 𝜉 ∼ (𝜇, 𝜎2), such that 𝜉 = 𝜇 + 𝜎𝜂 with standard normal 𝜂. Then it
is easy to verify that

𝐸[𝜉𝟙{𝜉>𝛼}] = 𝐸[𝜇𝟙{𝜂>𝑐𝛼}] + 𝜎𝐸[𝜂𝟙{𝜂>𝑐𝛼}] = 𝜇(1 − Φ(𝑐𝛼)) +
𝜎√
2𝜋
𝑒
−
1

2
𝑐2𝛼 ,

𝐸[𝜉2𝟙{𝜉>𝛼}] = (𝜇
2 + 𝜎2)(1 − Φ(𝑐𝛼)) +

1√
2𝜋
(2𝜇𝜎 + 𝜎2𝑐𝛼)𝑒

−
1

2
𝑐2𝛼 ,

𝐸[𝜉𝟙{𝜉<𝛽}] = 𝜇Φ(𝑐𝛽) −
𝜎√
2𝜋
𝑒
−
1

2
𝑐2
𝛽 ,

𝐸[𝜉2𝟙{𝜉<𝛽}] = (𝜇
2 + 𝜎2)Φ(𝑐𝛽) −

1√
2𝜋
(2𝜇𝜎 + 𝜎2𝑐𝛽)𝑒

−
1

2
𝑐2
𝛽 .

Now, we obtain 𝐸[𝜙2(𝜉1)(𝑆2 − 𝜉1)|𝑆2 = 𝑠] = 𝐸[𝜙2(𝜉)(𝑠 − 𝜉)], where 𝜇 = 𝜇(𝑠) = 𝜌(𝑠 − 𝜇2) and 𝜉 ∼ (𝜇, 𝜎2). Using the specific form of 𝜙2 and the above computations gives the result.
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