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Abstract: In this paper, we describe a new trend analysis and forecasting method (Deflexor), which is
intended to help inform decisions in almost any field of human social activity, including, for example,
business, art and design. As a result of the combination of conceptual analysis, fuzzy mathematics
and some new reinforcing learning methods, we propose an automatic procedure based on Big Data
that provides an assessment of the evolution of design trends. The resulting tool can be used to study
general trends in any field—depending on the data sets used—while allowing the evaluation of the
future acceptance of a particular design product, becoming in this way, a new instrument for Open
Innovation. The mathematical characterization of what is a semantic projection, together with the
use of the theory of Lipschitz functions in metric spaces, provides a broad-spectrum predictive tool.
Although the results depend on the data sets used, the periods of updating and the sources of general
information, our model allows for the creation of specific tools for trend analysis in particular fields
that are adaptable to different environments.

Keywords: fuzzy set; Lipschitz function; trend; forecasting; reinforcement learning

1. Introduction

Trend analysis and forecasting is an indispensable task in the preparation of projects
in almost any field of business activity. For example, it is essential in the planning of
new commercial products and in industrial or artistic design. These issues have often
been resolved in specific contexts through the expertise of professionals, sometimes using
some technical tools that are now well established (GoogleTrends, Facebook Analytics, . . . ).
However, there seems to be a certain lack of theoretical frameworks that can facilitate the
development of these tasks. It is clear that this is a crucial point for the success of any
design project, so any tool that could improve the efficiency of the process would help all
the agents involved.

Based on a mathematical structure built on metric spaces of fuzzy sets, and in our
practical knowledge—the result of our experience in the field of design and education—we
present in this document an attempt to obtain an easy-to-use tool supported by two legs,
trying to mix them in a common framework that could be handled by the analyst interested
in improving her/his results through a reliable tool. The idea is to produce a new Open
Innovation tool, which is proposed as a way to create a common framework for collab-
oration between design experts in a given industry, and data scientists, mathematicians
and linguists, with the aim of developing an Internet-based technology for the analysis of
design trends. The result of the collaboration of these professionals would be the creation
of a specific forecasting tool in an innovative context.
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Let us briefly present the two columns that support our ideas. The first of these is
conceptual analysis, which becomes a practical tool in the development of the knowledge
structures that are called ontologies—with a standard formal meaning in the context of
Artificial Intelligence—by setting categories of concepts and relationships between them.
In the words of Fallis [1] (Section 2), “the goal of the method of conceptual analysis is to
find a list of necessary and jointly sufficient conditions that correctly classify things as
falling under a given concept or not” ([2] (Section 2.1) and [3]).

Having roots in Analytical Philosophy, and Phenomenology in the tradition of Brentano
and Husserl, the idea is to organize under a logical scheme a knowledge that can be used
to guide inductive arguments in the concrete context for which it is created. Although the
main technical developments in this direction were made already in this century, the origin
and basis of conceptual analysis was clearly explained by Guarino and other authors in the
1990s. In this sense, in this work, we follow the conceptual framework presented by the
author in [4].

A formal environment defined in this way is the starting point of our method. Based
on our experience, we defined a general conceptual structure of categories and relations,
setting the main axes and subordinate conceptual fields that organize the main design
trends today, with the aim of helping designers and professionals in general. Therefore, we
have firstly built a conceptual scheme—called Deflexor—that could guide people interested
in arguing about the future success of the products in which they want to invest, time,
work, effort or also money. All information about can be found in [5].

The second source from which we have drawn our tools are some recent developments
in artificial intelligence. Based on the fundamental ideas behind some formal semantic
structures known today (ontologies, vocabularies, general tools for the representation
of knowledge and engineering), we developed a technical tool that is presented in this
paper. We used the central notion of semantic projection on a conceptual universe, which is
explained in this document both from an abstract and a practical point of view. Although
we intend to define it as a purely abstract notion, the origin of this idea can be found in
almost all classical approaches to automatic semantic analysis, being close, for example,
to the notion of semantic embedding and representation based on vector space, on which
current tools such as Google’s Bert are based.

As we will see, the notion of semantic projection allows us to isolate the way in which a
concrete projection is calculated and how a particular universe is defined, from the general
theoretical structure of the model. The main idea is that it is possible to generate a series of
combined universe+projection structures, which, optimized through the use of reinforcing
learning techniques, allow us to obtain a useful model to make prospective about design
trends. As we demonstrate in this paper, this provides a second-level support platform
by aggregating some Internet tools that have already proved successful; for example,
Google products such as Scholar, Trends and Analytics, Facebook Analytics as well as some
indicators that we have created based on some instruments for internet analysis that we
have experienced in recent years [6–8]. Together with the conceptual model explained in
the previous paragraph, this completes a trend analysis tool for designers and professionals,
as a technological element to facilitate Open Innovation.

In this article, we aimed to facilitate access to understanding of the technical part of
the process, motivated by the fact that the blind use of an electronic platform is generally
not a good way to use such a sophisticated tool. Therefore, in the first part of the paper we
go deeper into the fundamentals of our model, to complete it in the second part with easy
examples, in order to illustrate how it works. Some advanced mathematical concepts and
results are needed, which are explained after this introductory section. Indeed, motivated
by concrete examples but trying to find a useful abstract definition of what a trend is, we
characterize such an entity as a fuzzy set of concepts/words/labels, which becomes an
element of a space in which we define a metric using a specific rule. Thus, the general
model is motivated by examples taken from various applied contexts and some classical
tools coming from the topology of metric spaces. The indexes are then real functions that
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act in these metric spaces respecting some compatibility with the metric, which are called
Lipschitz functions. For this reason, we adapt some well-known extension results for
real-value Lipschitz functions to metric spaces in which the elements are defined as fuzzy
sets, preserving the Lipschitz constant for the extended function (see [9,10]). Although the
extension theorem that we use is a classical result of the theory of real functions on metric
spaces, this is still an active research topic: related results that have been developed in
recent years can be found in [11–14].

The paper is organized into six sections. After this Introduction, we present in
Section 2 some mathematical tools which are needed. In Section 3, we explain the con-
struction of our main reference space, the space of trends and innovative ideas, together
with a metric. The elements of such space are fuzzy subsets of a given universe U of
concepts/words/tags that define semantic structure. The canonical example of a universe
is a technical ontology. In Section 4, we show how the similarity relation between trends
and ideas can be formally fixed by means of the definition of a (quasi-)metric. Indices,
which allow us to measure how relevant a trend is—in terms for example of number of
tweets in twitter—, are then formalized in this section as Lipschitz functions on metric
spaces of fuzzy subsets of U. Section 5 shows a simple and complete example of a universe
consisting of a few concepts, together with a presentation of an App that has been prepared
using our methodology. Finally, we provide some conclusions in Section 6.

2. Some Conceptual and Mathematical Tools

We use the general framework of the (finite dimensional) normed spaces and Eu-
clidean spaces. If E is a linear space of dimension n, we use the symbol ‖x‖, x ∈ E, to
denote a norm on it. We use the symbol 〈x, y〉 to denote the canonical scalar product of
the vectors x, y ∈ E, i.e., if x and y are represented by its coordinates with respect to the
canonical basis x = (x1, . . . , xn) and y = (y1, . . . , yn), we have that

〈x, y〉 =
n

∑
i=1

xi · yi.

We write `p(U, W), 1 ≤ p ≤ ∞, for the Banach space of weighted p-summable
sequences—with the weights of W and with coefficients that are indexed by the set U—,
endowed with the standard weighted p-norm. If no weight is considered we simply
write `p(U).

2.1. Topological Generalities

We use standard set theory notation. If A and B are subsets of U, we write A ∩ B and
A ∪ B for the intersection and the union of these sets, respectively, Ac for the complement
of A in U (Ac = {x ∈ U : x /∈ A), and A \ B for the set difference among these sets
(A \ B := {x ∈ U : x ∈ A, x /∈ B}). We write |A| for the cardinal—the number of
elements—of A.

Let us start by introducing some notions from the fuzzy set theory. The fuzzy extension
of the notion of set will be needed: a fuzzy set is defined as a pair (A, µA), where A is a
set and µA : A→ [0, 1] is a membership function that represents the grade of membership
µA(x) of an element x ∈ A. It can be understood as a probability of belonging to the set,
but this interpretation is not necessary to use this notion.

All the classical concepts and relations among sets can be extended to the notion
of fuzzy set: union, intersection, empty set, . . . For using them another tool—a so-called
t-norm—is needed. A t-norm is a commutative function T : [0, 1]× [0, 1] → [0, 1] that is
monotone with respect to both variables (that is, T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d),
associative and satisfies that T(a, 1) = a for every a ∈ [0, 1]. Classical examples are
(a, b) 7→ min{a, b} and (a, b) 7→ a · b.
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We will need the notion of difference of fuzzy sets. When the t-norm is fixed to the
one provided by the minimum, given two fuzzy sets A and B the fuzzy set difference A\B
is defined by

µA\B(x) = min{µA(x), 1− µB(x)}.

For a finite fuzzy set A, its cardinality is obviously defined as the sum of all the
probabilities of its members, i.e.,

|A| = ∑
x∈A

µA(x).

Let us introduce now some concepts of the theory of metric spaces and Lipschitz
functions ([9,15–17]). We write R+ for the set of positive real numbers as usual. If D is a
nonempty set, a function q : D× D → R+ ∪ {0} such that for every a, b, c ∈ D,

1. q(a, b) = 0 and q(b, a) = 0 if and only if a = b, and
2. q(a, b) ≤ q(a, c) + q(c, b),

is called a quasi-metric on D. Moreover, if it happens that q(a, b) = q(b, a) for every a, b ∈ D,
then q is called a metric. The conjugate function qs is defined by qs(a, b) := q(b, a), a, b ∈ D,
and it is also a quasi-metric. If q is a quasi-metric, the function

d(a, b) := q(a, b) + qs(a, b) = q(a, b) + q(b, a), a, b ∈ D,

is always a metric, called the associated metric. The canonical formula for defining such an
associated metric is usually given by d(a, b) = max{q(a, b), qs(a, b)}, a, b ∈ D, but we use
the previous definition by technical reasons.

If ε > 0 and a ∈ D, the ball of radius ε > 0 and center in a is

Bε(a) := {b ∈ D : q(a, b) < ε}.

The open balls {Bε(a) : a ∈ D, ε > 0} associated to a quasi-metric, considered as a
basis of neighborhoods, allow us to define a topology τq on D that has a countable basis.

We need the following special class of functions for the construction of the model. Take
a metric d on D. A real valued Lipschitz function is a function f : D → R that satisfies that∣∣ f (a)− f (b)

∣∣ ≤ K′d(a, b), a, b ∈ D,

for a certain constant K′. The Lipschitz constant K of f is infimum of all the constants as
K′ above.

The McShane–Whitney Theorem was published almost simultaneously by Edward
J. McShane [18] and H. Whitney [19] in 1934, and states that for a subspace S of a metric
space (D, d) and a Lipschitz function f : S→ R with Lipschitz constant K, there exists an
extension of f to D which is Lipschitz preserving the same constant K.

The most common formulas for computing such extension are

f M(b) := sup
a∈S
{ f (a)− K d(b, a)}, b ∈ D,

that is the so-called McShane extension of f , and

f W(b) := inf
a∈S
{ f (a) + K d(b, a)}, b ∈ D,

that is the Whitney formula.

2.2. Specific Metric Tools

For the case we are considering, we need the following framework. Consider a finite
class D := {A, B, C, . . .} of fuzzy subsets of a finite set U. There are at least two ways of
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defining a metric on the set D that is used in our model. Let us explain them now; some
more advanced metrics notions will be needed later on.

(1) Write n for |U| (the cardinal of U) and consider the n−dimensional classical normed
space `

p
n for some 1 ≤ p ≤ ∞ and a weights sequence W = (wk)

n
k=1. Recall that the

norm in such space is given by

‖(x1, . . . , xn)‖p,W =
(

∑
1≤k≤n

|xk|pwk

)1/p
, (x1, . . . , xn) ∈ `

p
n.

As usual, if all the weights are equal to 1 we write ‖ · ‖p for the corresponding p−norm;
‖ · ‖2 is the Euclidean norm. We can identify each element of the class D with a vector
of `p

n as A 7→ (µA(x))x∈U , and so we can define a distance on D as

dp
(

A, B
)
=
∥∥∥(µA(x)− µB(x)

)
x∈U

∥∥∥
p,W

=
(

∑
x∈U

∣∣µA(x)− µB(x)
∣∣pwx

)1/p
, A, B ∈ D.

If no reference to the weights sequence W is made, it is supposed to be wx = 1 for all
x ∈ U. The set D endowed with the distance dp gives a metric space (D, dp).

(2) Let us now define a metric in a different way, using the fuzzy version of a quasi-metric
that can be defined in a canonical way using standard set theory operations. Let us
motivate it in a non-fuzzy context. Given a class D of subsets of a given set U, take
A, B, C ∈ D. Then we have that

A \ C =
[
(A \ B) \ C

]
∪
[
(A ∩ B) \ C

]
⊂ (A \ B) ∪ (B \ C),

and so |A \ C| ≤ |A \ B|+ |B \ C|. Therefore, the formula q(A, B) = |A \ B| provides
a quasi-metric on D, since

q(A, C) ≤ q(A, B) + q(B, C)

and q(A, B) = q(B, A) = 0 implies A = B. As we explained before, the expression
d(A, B) := q(A, B) + q(B, A) provides a metric.

We use the fuzzy version of this notion, in which the quasi-metric is given by using
the corresponding membership functions to define

r(A, B) := ∑
x∈U

µA\B(x) = ∑
x∈U

min{µA(x), 1− µB(x)}, A, B ∈ D.

Let us show that for every x ∈ U we have that

r(A, B) + r(B, C) = µA\B(x) + µB\C(x) ≥ µA\C(x) = r(A, C).

Indeed, note that

µA(x) + µB(x) ≥ µA(x) ≥ min{µA(x), 1− µC(x)} = µA\C(x),

µA(x) + (1− µC(x)) ≥ min{µA(x), 1− µC(x)} = µA\C(x),

1− µB(x) + µB(x) = 1 ≥ min{µA(x), 1− µC(x)} = µA\C(x),

1− µB(x) + (1− µC(x)) ≥ 1− µC(x) ≥ µA\C(x).
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Consequently, the triangle inequality holds. The symmetry of the formula is also clear.
This could be a good candidate for being a quasi-metric, but note that r(A, A) is not always
equal to 0. For example, if U = {x, y, z} and

µA(x) = 0.5, µA(y) = 1, µA(z) = 0,

we have that r(A, A) = 0.5 + 0 + 0 = 0.5 > 0. In fact, by the definition, it is clear that
r(A, B) = 0 if and only if A ⊆ comp(B), where the complete part of B is defined as
comp(B) = {x ∈ B : µB(x) = 1}.

This fact—that r(A, A) could be bigger than 0—forces us to give a specific definition
for an associated quasi-metric: we define q as

q(A, B) := 0 if A = B,

—that is, if µA(x) = µB(x) for all x ∈ U—, and

q(A, B) := r(A, B) otherwise.

Lemma 1. The function q is a quasi-metric.

Proof. The triangular inequality of q is preserved from the one of r since we are only
changing the definition for the case r(A, A). Thus, it only rests to prove that A = B if
q(A, B) = q(B, A) = 0.

(i) Let us show first that q(A, B) = q(B, A) = 0 ⇒ A = B. Fix A and B and suppose
that q(A, B) = q(B, A) = 0. If A = B then there is nothing to prove. Assume that A and B
are different subsets. Then, we have that if

0 = q(A, B) + q(B, A) = r(A, B) + r(B, A) = ∑
x∈U

µA\B(x) + ∑
x∈U

µB\A(x)

we get µA\B(x) + µB\A(x) = 0 for every x ∈ U. Thus, either µA(x) = 0 (and this happens
if and only if µB(x) = 0), or µB(x) = 1 (and this happens if and only if µA(x) = 1), for
all x ∈ U. Therefore, r(A, B) + r(B, A) = 0 if and only if A = B and A is a complete part
(all the elements x in them satisfy µA(x) = 1, that is comp(A) = A). Thus, in particular
A = B and we get a contradiction and so q(A, B) + q(B, A) > 0. Therefore the implication
q(A, B) = q(B, A) = 0 ⇒ A = B holds.

(ii) Conversely, if A = B then by definition we have that q(A, B) = q(A, A) = 0 = q(B, A),
and the converse implication holds.

Note that, in the case that all the subsets in D are complete parts (that is, comp(A) = A
for all A ∈ D), we get that r is the quasi-norm explained at the beginning of this point for
non-fuzzy subsets.

As a consequence of Lemma 1, we can define a metric in the standard way by

d(A, B) = q(A, B) + q(B, A), A, B ∈ D.

Both the methods explained above can be used to define a metric space of fuzzy sets,
which is the main mathematical structure that supports the model.

3. Trends as Fuzzy Sets of Concepts/Words/Tags

In this section, we show how to represent a given “abstract concept” A by means of a
prefixed set of information items. The main idea is that some of the characteristics of A
can be “projected” over each information item, in a way that the corresponding numerical
coefficient—in [0, 1]—can be understood as the value of the membership function of the
item in A, when A is considered as a fuzzy set. It should be noted that the particular
definition of a projection in a given context does not affect the overall structure of the
model. That is, let us suppose that we are working with a projection that is not giving
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good results, for example because it only makes sense in a restricted framework that is
not the one we are considering. Then the results could be bad, in the sense that the fuzzy
sets obtained do not adequately represent the concepts in the model: for example, if we
introduce the words “pumpkin”, “onion” and “potato” into a universe that pretends to
analyze the behavior of wild animals. However, the formal structure of the model remains
valid in the sense that, even with a poor or erroneous representation, the mathematical
construction still preserves the internal properties, giving no contradictions. This is why we
have clearly separated the definition of the projections—which depends on the way they
are calculated, the source, the universe and even in technical matters—from the definition
of the general model. As we have explained in the introduction, the ontological part of
Deflexor is defined as a universe of terms and relationships based on the experience of
professionals, and is not presented here. In general, this is the way the abstract knowledge
structure provided by the application of the conceptual analysis becomes a practical tool.
The experts are the ones who have to provide the terms which allows for the description of
given field of knowledge. The main idea is that “the analysis of a concept is successful to
the extent that the proposed definition matches people’s intuitions about particular cases”,
as can be read in [2] (Section 5), what justifies the expert criterion used in the construction
of Deflexor (see also [20] (p. 84, Box 1) and [21]). Throughout the paper, we appeal to the
“expert opinion” to justify the choice of the set of terms used in each case, highlighting the
relational value of the terms proposed to satisfy the need to represent a concept in a given
field of knowledge.

Thus, the projections on the universe can be computed using an aggregation of a large
number of different approaches, which is optimized by use. The choice of the projection
used changes, of course, the results, but it does not change the model, in which the technical
use of the projection plays a concrete role and can be easily substituted.

Recall that, given a countable index set U, we define the space `∞(U) as the vector
space of sequences (αu)u∈U of real numbers endowed with the supremum norm

‖(αu)u∈U‖∞ := sup
u∈U
|αu|.

3.1. Projection of Abstract Concepts on a Universe of Information Items

Fix a finite set U of information items—concept/word/tag or any other information
atom—with at least a minimum of information content. This will be our universe, which
could be changed depending on the context of the model. Since the canonical examples of
these sets will be structured datasets, as for instance ontologies of certain fields, we assume
that U can have some internal structure. We want to emphasize that we are deliberately
using the neutral term “universe” to denote a structured set of words, since, as far as we
know, this term has no technical meaning. This is not the case with the terms “ontology”
and “vocabulary”, for example. We want to indicate with this that it can be any set with any
structure. The definition of the projection will have to be adapted to the concrete nature
of the universe in each case. For example, the elements of a universe could be ordered
hierarchically, or there could be some directional links or subordinations between their
terms. As we explain in the next subsection, such a set can have its own rich internal
structure, as in the case when it is defined as an ontology on a given field. By now, this is
just a set.

Consider a class of entitiesA that we identify with an “abstract concept” A. A represen-
tation of A on the space of information items can be defined as a projection PU : A → `∞(U)
on U satisfying that

PU(A) = (αu(A))u∈U ∈ `∞(U), 0 ≤ αu(A) ≤ 1, A ∈ A, u ∈ U.

That is, the model represents every abstract concept belonging to A with a sequence
of coefficients αu(A) that represent the “degree of agreement” of u with A.
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This definition is a technical version of a well-known concept from formal linguistics
and computational semantics, which is called the semantic projection of a given
idea/argument/concept on a given set of formal elements that have been conceptual-
ized before. The reader can find up-to-date information on this notion in various scientific
contexts in [22–24] and in the references therein. However, note that the set of disciplines
to which this notion concerns is really wide, and therefore these definitions could change
depending on the area.

Given a set of information items U and a class of abstract concepts A, the projection
PU(A) of an element A ∈ A can be identified with fuzzy subset A of U by means of
the identification

PU(A) = (αu(A))u∈U → (A, µA), where µA(u) = αu(A).

Therefore, we identify the class A of abstract concepts with a class of fuzzy subsets
of U. The estimate of the membership function µA : U → [0, 1] will be given by the way
the model feeds their contents, using machine learning based on datasets, internet search
or expert evaluation. This is discussed later on, by now let us assume that all of them
are defined.

The use of well-established taxonomies, ontologies and relational schemes supported
by a database could provide other sources to define a universe U in which a given “abstract
concept” can be represented. An ontology in a given field is a formal description of
knowledge as a set of concepts, including the relationships between them. This is a current
source of conceptual spaces in which representations of ideas can be supported. For
example, the use of clustering techniques for definition and improvement of ontologies
based on metric spaces of concepts and terms is a well-known technique (see [25,26]).
Given a set of concepts extracted from a text corpus, ontology learning is the process
of organizing them into the correct hierarchy for knowledge representation. Ontologies
are often structured as graphs, which is one of the main ideas that we use to enrich the
original set of concepts with more internal relations, which often can be formalized using
quasi-metrics (see [27]; for more information about different strategies on the definition of
ontologies and structured conceptual data see the articles in [28]). Also, often the problem
is how to construct an ontology by means of automatic methods.

3.2. What the Universe of Information Items U Is? Taxonomies, Ontologies and Machine
Learning Tools

In the previous section, the universe U appears in the model, which is just a set in
which the trends find a representation by means of the projection PU . We understand that it
is a set with a given (rich) structure of relations—maybe endowed with a distance—and we
could identify it as an ontology. One of the main challenges of the present work is to show
that to find a “good” set U is crucial to get a good forecasting tool, but the model explained
here—based on the computation of actual semantic projections—is independent of the
“quality” of U. Several methods can be proposed. Essentially, the field is open and we have
to find a way to learn how to build the right set U. We could use a mixed procedure based
on both expert advice and automatic tools given by artificial intelligence methods, along
the lines, for example, of [29].

The mathematical formalization of what an ontology is, is one of the main problems
for the development of the semantic environments in internet (semantic web, automatic
ontology learning, structured databases, graph of knowledge). Several definitions can be
found in the literature. For example, in [26] (Definition 1) we find that an ontology is a data
model T that represents a set of concepts {c1, c2, . . . , cn} within a domain D and a set of
relationships R between those concepts, T = (C, R|D). In [26] (Sections 3.1 and 3.2), the
construction of a graph-metric model for the analysis of ontologies can be found, which
allows us to introduce optimization methods for improving the database structure. In our
case, the ontology for trends forecasting is given by Deflexor. How it has been constructed
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is not explained here: we center the attention on how to compute the semantic projection
and how to introduce it in the prediction tool.

General machine learning and deep learning techniques have been also applied to
improve ontologies, enriching the structure and the conceptual basis (see [30,31]). Matching
ontology methods are being developed and used recently, with the aim of improving the
existing semantic tools in view of the broad class of possible applications (see [32–36] and
the references therein for ontology matching, ref. [37] for the use of random forest for
ontology alignment, ref. [38] for a general overview).

Although we are open to use any of these techniques for finding adequate universes
U, a concrete method is proposed in later sections. On the basis of the ontology/universe
provided by the Deflexor framework, we apply our mathematical processing to get the
desired projections. Figure 1 shows the general scheme of the semantic universe provided
by Deflexor, which is not explained here. For the aim of the present paper, it is enough
to report that it is a conceptual model that provides the necessary words and relations
to complete our trend analysis tool; the restricted universe in the example developed in
Section 5 is extracted from this general scheme.

Figure 1. General scheme of the universe created for Deflexor. Although the words written in the
nodes cannot be read, the picture gives an idea of the complexity of categories (big fields), concepts
(words) and relations (arrows) of the model. More information can be found in [5].

3.3. Trends as Fuzzy Sets

Fuzzy sets and distances have been used for the representation of ontologies from
different points of view, and are well established techniques for the modeling of specific
semantic frameworks ([39–43]). Let us explain how these ideas fit into our context. Fix
a given trend, which can be defined by means of a set of terms or keywords as simple
as possible. Of course, the definition of a trend as an abstract concept has to be given
using a systematic procedure. A given rule—a matching procedure, a machine learning
algorithm, a neural network, a coincidence search of the internet using some semantic web
tool—provides the projection numbers of the “abstract entity” over the elements of the
universe U. Then, the original trend becomes a fuzzy set. The class of all such fuzzy sets
that represent trends becomes the basis for the metric space that will be used in the next
step of the application of the model.
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The metric could be given using different procedures. For example, measuring the
distance by means of a p-norm on the vector space `p(U). A weight can be considered for
each coordinate—representing its relevance in the model—if needed, defining the sequence
of weights W for the computation of the norm in an `p(U, W) space.

4. Similarities between Trends as Distances between Fuzzy Sets: How the
Algorithm Works

Once the trends have been identified as fuzzy subsets of the universe U, we consider
the definition of a distance on the space of subsets in order to define a fuzzy hypertopology.
Take the set D as the range of the projection PU of all the entities belonging to the class A.
That is,

D = PU(A) =
{

PU(A) : A ∈ A
}

.

To simplify the notation, and once the universe U is fixed, we identify the element A
with its projection PU(A).

4.1. Quasi-Metric for Fuzzy Sets

In order to measure the similarity among these fuzzy sets, we follow the method of
providing a (quasi-)metric on D. Two ways of doing this have been explained in Section 2.2.
However, these procedures—even if weights are considered—are not enough to model
all the aspects of the properties that we want to take into account in the definition of the
similarity relations among the fuzzy sets that represent the abstract ideas/concepts/trends.

So, in general, the formula for the metric could be a positive linear combination of the
measure d—belonging to one of the two cases presented in Section 2.2—and a quasi-metric
qU that takes into account the internal structure of the universe U. The quasi-metric qU
could help to measure non-symmetric relationships between elements, since qU(A, B) is
not necessarily equal to qU(b, a). That is, a suitable quasi-metric q for the model could be
given by an expression as

q(A, B) = α d(A, B) + β qU(A, B), A, B ∈ PU(A),

for certain constants 0 < α < ∞ and 0 ≤ β < ∞.

4.2. Fitting Innovation Ideas and Trends

The method that we propose follows the next scheme.

(1) We formulate an innovation “idea” on any topic for which the trend system has
been created, and relate to it a set of terms A in which the fundamental information
is contained.

(2) We compute the projection PU(A), that is a fuzzy set of elements of the universe U.
The subspace of all fuzzy subsets of U containing the relevant subsets have been
fixed before.

(3) We measure the (quasi-)distance q(A, B) from PU(A) (we write A), and any fuzzy
subset B that represents a trend.

(4) q(A, B) represents a measure of how close is our original ideal to the trend B. Com-
puting the distances with respect to any trend, we can measure “how far our idea is”
from this trend.

Note that the “distance” q could be non-symmetric, indicating with this fact that
a trend has in a sense a better position than an idea with respect to the hierarchical
organization of knowledge. For example, if A is an idea and B is a trend, we can establish
that q(A, B) < q(B, A) indicates that A participates of the trend B, but the trend B has
many more components, so A is “less relevant as a component” of B than B as the trend is
“as a component” of A.
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4.3. Indices as Lipschitz Functions on Metric Spaces of Trends

Once we have defined the elements of our (quasi-)metric space of fuzzy sets (D, q),
we have to evaluate the elements that belong to such space. The main idea is to define
an index—or several indices—that could measure how “trendy” an innovative idea is. It
has to be a positive real number. There are several procedures that can be used for this
aim, and all of them involve the extension of scalar functions defined on metric spaces. We
center our attention on two of them, which seem to be the simplest. In both cases it will be
convenient that the corresponding index I to be defined on D is normalized at least in a
controlled subset D0 of D, that is supA∈D0

I(A) = 1.

• Indices defined by expert supervision: we fix a set D0 of trends that belong to D for which
we have an evaluation given by a group of experts in the field. That is, we know the
values of the index I : D0 → R+, that are assumed to be right.

• Automatic computation of indices for selected items: we have an automatic procedure to
estimate the index for a certain subset of trends D0 using information coming from
some internet-related source. For example, number of tweets detected that could be
associated with hashtags that define a given trend.

Both methods need to extend I—that is defined on D0, I : D0 → R+—to the whole
metric space of fuzzy sets D, I : D → R+. In order to do this, we use an extension formula.
There are several of them that are well-known and have been reported in the literature.
We propose a convex combination of the McShane and Whitney formulas explained in
Section 2.1,

I(A) := αIM(A) + (1− α)IW(A)

= α sup
B∈D0

{I(B)− K d(A, B)}+ (1− α) inf
B∈D0
{I(B) + K d(A, B)}, A ∈ D,

for a certain constant 0 < α < 1.
In order to use it for the analysis of the new ideas, we can compute several magnitudes

associated to meaningful aspects of the model. For example, computing the value of the
index we can get how our idea fits the main trends, or to compare with any other idea just
by comparing the associated indices. The way all the elements of the model are defined
also open the door for a implementation of reinforcement learning algorithm of artificial
intelligence for improving the output.

5. A Basic Example: A System for Evaluating Innovative Ideas Based on Google Search

Fix U and a finite set of trends D0 = {B1, . . . , Bn}—fuzzy subsets of U—for which we
know the values of the trending index I. Let A be an “innovative idea” defined by a word
and let Bi be a trend in D0 (i = 1, . . . , n). For the aim of simplicity of the example, assume
that the trend is given by a unique word. We compute the projection index of A on B ∈ D0 as

p(A)|B =
number of documents containing A and B together

number of documents containing A
.

In what follows, we present how to do this when both innovative ideas and trends
are defined by several words, which outline the main axes of their meaning. In this simple
example, the semantic field of concepts is represented only by a set of words and some
coefficients that represent what percentage—normalized to 1—of relationship the concrete
word has with the example. In the case we consider a complete ontology as universe U,
the relations that would be established between the words would appear as elements in
the definition of the metric, to correctly model the relation of similarity between words.

5.1. Ideas and Trends Defined by Several Words

The same definition can be extended to the case when A is a fuzzy set—and not a
single word—and also all the trends Bi are fuzzy sets. In order to do it, we compute the
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similarity of each word uj of the universe U on every other word uk, s(uj, uk). This can be
done in several ways; let us explain two of them.

(1) We can follow the same rule given for every couple of words as above, that is

s(uj, uk) := p(uj)|uk = p(uk)|uj , uj, uk ∈ U.

(2) We can impose an orthogonality criterium, inspired by the definition of orthogonal
basis for a finite dimensional vector space. The words in U are considered as indepen-
dent, each capturing a completely different aspect of the semantic field defined by U.
In this case,

s(uj, uk) := 0 if j 6= k, and s(uj, uj) := 1, uj, uk ∈ U.

We follow the second option—orthogonality of the words in U— in the rest of this section.
We consider in this case the distances in the metric space of the fuzzy sets of U

defined by the Euclidean norm, that is, for sequences a and b indexed by U, we put
d2(a, b) := ‖a− b‖2. Therefore, normalization of vectors have to be given by dividing them
by their 2-norm.

Let the “idea” A be defined by the words W1(A), . . . , Wn(A), n ∈ N. To code it with a
correct quantification, we assume that A is composed of this sequence of words, each of
them Wi having a weight wi(A) > 0 in its definition, in such a way that

n

∑
i=1

wi(A)2 = 1.

In case no quantitative information is known, we can simply define wi = 1/n for all
i = 1, . . . , n.

Consider the projections of every such a word on the term u of the universe U,

p(Wi(A))|u =
number of documents containing Wi(A) and u together

number of documents containing Wi(A)
.

Then we represent A on U as the sequence of the weighted sum of all the projections
of all the words Wi(A) defining the idea A,

PU(A) =
n

∑
i=1

wi PU(Wi(A)) =
n

∑
i=1

wi(p(Wi(A))|u)u∈U =
( n

∑
i=1

wi p(Wi(A))|u
)

u∈U .

Consider the representation of the trend B,

PU(B) = (αu(B))u∈U ,

where the coordinates αu(B) are fixed either using the same rule than for A or, due to its
special role in the model as reference entities, by other methods, as direct expert-based
assignation. Let us assume that they are also normalized, that is,

‖(αu(B))u∈U‖2 = ∑
u∈U

αu(B)2 = 1.

Then we define the projection as

p(A)|B :=
〈

PU(A), PU(B)
〉
=
〈( n

∑
i=1

wi p(Wi(A))|u
)

u∈U , (αu(B))u∈U
〉
.
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That is, the projection of A on B we want to compute is given by

p(A)|B = ∑
u∈U

αu(B)
n

∑
i=1

wi · p(Wi(A))|u.

In case we do not assume orthogonality of the elements of U, we have to change
the scalar product 〈(·), (·)〉 above by including the matrix SU =

(
s(ui, uj)

)n
i,j=1, that is,

〈(·), S(·)〉.

5.2. A Basic Example: A Specific Universe Formed by Current Trends for the Analysis of
Innovative Ideas in Sustainable Economy

Let us show a concrete elementary example using the method explained above.

(1) We define the universe U by six (sets of) terms/expressions:
u1 = environment, u2 = clean energy, u3 = low carbon footprint, u4 = recycling,
u5 = low levels of chemical waste, u6 = renewable raw materials.

(2) We propose an innovative idea: the creation of a specific factory to replace plastic bags
with paper bags in a big vegetable distribution company. The experts in the conceptual
analysis based on Deflexor code this idea by means of the items
W1 = “paper bags”, W2 = “removal of plastic bags”, W3 = “vegetable distribution”.
As a part of the process of fixing this set of terms, these experts estimate the participa-
tion of the innovative idea of each one of these words with the weights

(w1, w2, w3) = (0.4, 0.2, 0.4).

(3) For this simple example, we use to measure the relevance of trends and innovative ideas
the number of documents that one can find in internet using Google Search. The idea is that
we can measure in a rudimentary way how the terms u1, . . . , u6 of U are involved in
the semantics of the words W1, W2 and W3 using the projection formula given by
the ratio

p(Wi)|uj =
“words defining a fixed element uj of U”AND “words defining Wi”

“words defining Wi”
,

i = 1, 2, 3, j = 1, . . . , 6. The results can be found in Table 1 and are represented in
Figure 2. Note that for the computations below we search for exact coincidences in
Google, so if the explanation of the item is too complicated we could get the empty
set, as happens with u5. We get

(4) In order to quantify how “trendy” the innovative project is that we are using as an example,
we decided to use three well-known trends in the field of the environment and green
economy. In particular, we used the mechanism to measure if the idea is “main stream”
how the innovative idea fits the trends given in Table 2.

(5) As we are using the universe U = {u1, u2, u3, u4, u5, u6}, as a reference system, we
have to also compute how the trends considered are projected on the items of U, that is, we
have to calculate the coefficients

p(Trend i)|uj =
“words defining a fixed element uj of U”AND “words defining Trend i”

“words defining Trend i”
,

i = 1, 2, 3, j = 1, . . . , 6. The results are given in Table 3, and their representations can
be seen in Figure 3.
So, the (normalized) representations of these three trends on the universe U are

PU(Trend1) = (0.806174, 0.080617, 0.010396, 0.586068, 0.000000, 0.000496),

PU(Trend2) = (0.902528, 0.414839, 0.000203, 0.115548, 0.000000, 0.000203),
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and

PU(Trend3) = (0.706233, 0.042898, 0.024926, 0.706233, 0.000000, 0.002908).

(6) In the next step, we compute the projections of A on the three trends. The representation
of A on the universe U, taking into account the values presented in Table 1 and making
the convex combination with coefficients w1 = 0.4, w2 = 0.2 and w3 = 0.4, is

PU(A) = (0.939903, 0.071555, 0.113830, 0.145120, 0, 0.001318),

where the ith-coordinate corresponds to the item ui, i = 1, . . . , 6. Then, using this
expression and the formula proposed for the projection of A on each trend, we get

p(A)|Trend1 :=
〈

PU(A), PU(Trend1)
〉
= 0.849728,

p(A)|Trend2 :=
〈

PU(A), PU(Trend2)
〉
= 0.894764,

p(A)|Trend3 :=
〈

PU(A), PU(Trend3)
〉
= 0.772190.

(7) Now, we make a change in the Euclidean space of reference. Since we assume that
Trend 1, Trend 2 and Trend 3 are the independent components of the system, and
taking into account that they are linearly independent, we can define the metric
as the distance from the vector represented as the projections of A on each trend
to each of these trends, which are considered to be the vectors Trend 1 = (1, 0, 0),
Trend 2 = (0, 1, 0) and Trend 3 = (0, 0, 1). That is, if x = (x1, x2, x3) and y = (y1, y2, y3)
are generic vectors represented by their coordinates with respect to the basis T =
{Trend1, Trend2, Trend3}, we define the distance by

d(x, y) =
(
(x1 − y1)

2 + (x2 − y2)
2 + (x3 − y3)

2)1/2.

After normalization with respect to this distance, we get the desired representation of
A over T ,

p(A)|T = (0.583745, 0.614684, 0.530477).

Remark 1. The proposed change of the Euclidean space is not mandatory. An alternate
method can also be used, which would provide slightly different results. Since we have all the
vectors already represented in the 6−dimensional space provided by the use of the universe U,
we can use this representation and the Euclidean norm in this space to estimate the Lipschitz
extension that is explained in Step (8). In this case, we consider a metric space of 3 vectors—the
three trends represented as vectors of R6—, and the vector of 6 coordinates that represents A.
We measure the distances among them as the Euclidean norm ‖ · ‖2 of the difference of the
corresponding 6-coordinates vectors.

(8) Now we compute the Lipschitz extension of the Trend Index = TI. A direct computation
using the distances among the three trends given by the metric matrix

d =

 0
√

2
√

2√
2 0

√
2√

2
√

2 0

,

gives the Lipschitz constant of the Trend Index, Lip = 210,712,192. The values of the
Trend Index for the three trends are

TI(Trend1) = 298.000.000, TI(Trend2) = 7.960, TI(Trend3) = 7.820.000.

The distances from A to each of the trends are

d(A, Trend1) = 0.912420, d(A, Trend2) = 0.877857, d(A, Trend3) = 0.969043.
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Thus, we can estimate the Trend Index for the innovation idea A using the mean of
the McShane and Whitney extension, obtaining

TIM(A) = 105,741,949, TIW(A) = 184,983,129.

Thus, taking as extension the mean of these values (interpolation for α = 1/2), we get
the final result

TrendIndex(A) = TI(A) = 145,362,539.

If we normalize to the maximum value of TI for all the trends, (max = 298,000,000,)
we get (approximately) the value 0.4878, that is, the “Relative Trend Index” is

48.78% trend of the innovative idea A

in relation to the trends set in the model.

(a) Projection of Word W1 on the universe U.

(b) Projection of Word W2 on the universe U.

(c) Projection of Word W3 on the universe U.

Figure 2. Semantic projections of the words that define A on the universe U.
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(a) Projection of Trend 1 on the universe U.

(b) Projection of Trend 2 on the universe U.

(c) Projection of Trend 3 on the universe U.

Figure 3. Semantic projections of the three selected trends on the universe U.

Table 1. Elements of the Universe vs. Words of Innovative Ideas.

u1 u2 u3 u4 u5 u6

W1 0.212143 0.016 0.00135 0.000003 0 0.000693

W2 0.887805 0.08 0.629268 0.531707 0 0.000010

W3 0.737101 0.052826 0.014201 0.107371 0 0.000025

Table 2. Trends considered in the analysis.

Trend 1 Trend 2 Trend 3

Definition: “sustainability” “proximity trade” “circular economy”

Items in Google: 298.000.000 7.960 7.820.000
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Table 3. Elements of the Universe vs Trends.

u1 u2 u3 u4 u5 u6

Trend 1 1 0.1 0.012895 0.726974 0 0.000615

Trend 2 0.560302 0.257538 0.000126 0.071734 0 0.000126

Trend 3 1 0.060742 0.035294 1 0 0.004118

5.3. A Shiny App for Trend Analysis Based on Deflexor

Using this procedure, we built a multi-source platform based on the terminology
provided by Deflexor. For each analysis, it is necessary to define a restricted universe, on
which the term to be studied is projected. Thus, it is necessary to first fix a specific aspect
of the trends that can be studied using the Deflexor conceptual map. That aspect defines
the universe in each case.

Figure 4 shows a simulation of how the device works. The selected universe is pre-
sented at the top of the page. Just below, on the left side, you can type the term you want
to project and also the search engine you want to use: we chose Google Scholar in this case,
but several options are offered. The calculations to obtain the individual projections were
done as explained earlier in this section, but using Google Scholar instead of Google Search.
Therefore, it provides information about the link between the search term and each of the
elements of the universe when the search is focused on academic journals and general
academic material. The graph on the left shows the values of the projection on each term
of the universe (indexed by the order number), and the one on the right gives the relative
weight of each of them. The table shows the numerical values of these weights. The last
value (IICom) corresponds to the aggregate index that provides the overall value of the
projection of the item “wood house” on the universe. Both the individual projections and
the relative weights are used to obtain the convex combination that gives the index IICom.

Figure 4. Representation of the projection of the object “wood house” on a restricted universe based
on Deflexor.

6. An Advanced Example

In this section, we explain how the proposed tool can be applied to help in a given
trend analysis. In this case, we use the Google Trends App. By means of this tool it is
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possible to download massive data on the (relative) number of searches for terms on
the Internet, and this is the starting point of our analysis. As a general question, we are
interested in the analysis of how some general issues related to the protection of the natural
world can influence the acceptance of a certain furniture design.

6.1. The General Setting

Let us follow the outline provided in Sections 4.2 and 4.3. We start by defining a
universe of words extracted from the Deflexor model related to innovation and the environ-
ment, associated with general keywords that users identify with environmental care (such
as “sustainable”), natural materials (such as “wood”) and also negative words (such as
“waste”) that may appear in the search as opposing terms. We include the word “furniture”
to also give a reference term in the field, which allows us to relate the search to the class we
are interested in analyzing. For simplicity, we set for this example the following small set
of words

U = {“sustainable”, “environment”, “wood”, “waste”, “furniture” }.

The size of the universe for a trend analysis will depend on the problem; as a general
reference, a set from 5 to 30 words is expected. It is assumed that this set is chosen on
the advice of experts; of course, the help of other analytical tools to determine the best
set of n terms would improve the results. The data provided by the Google Trends App,
which we used over a time interval of three months, gives the vector of the relative
number of occurrences of the word per day over the whole period. We used the R package
“gtrendsR” for the calculations. Note that Google Trends does not give the actual value of
searches per day, but the comparison between the occurrence of a list of terms, giving to
the maximum of all of them the value 1. Therefore, each word B in U is represented by
a vector of 3× 30-coordinates containing the relative appearance in searches per day of
the word (each day at each coordinate) and are normalized by the maximum value of all
coordinates, to which the value 1 is given. Thus, any term A that we want to investigate is
represented in our algorithm by a vector of 90-coordinates; we identify the word A with its
corresponding vector.

Once we have accepted the universe of words, we will need to define a trend success
index for the five words in U, which will provide the general reference for the evaluation
of the success of any other term. The first step is to consider a projection PB(A) defined for
each B ∈ U for every term A. In this case, we use the formula

PB(A) := max
(

1− α(A, B)
π/4

, 0
)1/2

·
(

1− ‖A− B‖1

max(‖A‖1, ‖B‖1)

)1/2

where α(A, B) is the so called geodesic distance—the angle defined by the words/vectors
A and B—that is

α(A, B) = arccos
( 〈A, B〉
‖A‖2 · ‖B‖2

)
.

The meaning and relevance of this projection is deeply related to the nature of the
problem. As we have said, the vector giving the number of searches per day is extracted
from Google Trends. This tool uses Big Data techniques to manage the information of all
searches performed by all Google Search users worldwide. The vectors obtained provide
not only information on the comparative number of searches for the different terms, but
also the extent to which these searches are correlated (i.e., the extent to which the search
for a given word is proportional to the search for another word every day). Note that the
first factor in the formula tends to equal one when the pattern of searches for A and B
is similar, but (eventually) of a different scale: B might have 100 times as many searches
as A, but this factor will equal one if they follow the same pattern. Indeed, alpha gives
information similar to that provided by the well-known cosine similarity. We divide α by
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π/4 to include a security criterion, making the projection equal to 0 in case the pattern of A
and B are so different that no correlation can be accepted. The second factor measures the
proximity in norm of A and B, giving information about the comparison of their sizes, and
is equal to one if the vectors coincide. Both aspects are fundamental to define the projection
of one word onto the other, as we want to know if they are equally relevant in the volume
of user searches, but also if they have the same trend pattern. Note that the meaning of
this projection is not the same as that of the metric used in the Section 5. Each projection
provides a different type of analysis, which means that our technique can generate many
complementary tools.

We define the projection vector PU(A) as the 5-coordinates vector of the projections
on each term of U, that is

PU(A) :=
(

PB1(A), PB2(A), PB3(A), PB4(A), PB5(A)
)
,

where

{B1, B2, B3, B4, B5} = {“sustainable”, “environment”, “wood”, “waste”, “furniture”}.

Another element needed to construct the index extension method for all terms of D is
the metric q. We take the distance q in the set D of all possible projections of terms onto the
universe U as the Euclidean norm,

q(A, B) = ‖PU(A)− PU(B)‖2, A ∈ D, B ∈ U.

The Euclidean norms of the vectors associated with all the terms in U allow us to
compare their sizes. This information can be used to estimate the relevance of the words in
U; after normalization, we obtain the corresponding relative weights.

W = (0.06678745, 0.11303280, 0.56267951, 0.09079195, 0.16670828).

As the norm gives a direct measure of the term’s appearance in Google searches, it
represents the importance of each word in U for the trend analysis. This will be used for
the definition of the final index. Let us follow the steps of our proposed procedure.

(1) We fix the proposed “idea” with a set of terms as simple as possible. An example
would be A = {“plastic”, “chair”} in case we want to analyze the trends about the
acceptance of a plastic chair with respect to the trends of the universe U.

(2) We compute the projection PU(A), that gives for the term “plastic”

PU(A1) = (0.2205327, 0.2407994, 0.4085899, 0.3055694, 0.4510627),

(Figure 5a), and for the word “chair”

PU(A2) = (0.1722883, 0.2825582, 0.2441297, 0.2628509, 0.4357773),

(Figure 5b).
(3) We measure the (quasi-)distance q(A, B) from PU(A) and any fuzzy subset B that

represents a trend.
(4) q(A, B) represents a measure of how close is our original idea to the trend B. Com-

puting the distances with respect to any trend, we can measure “how far our idea is”
from this trend.
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(a) (b)
Figure 5. (a) Representation of the projection of the object “plastic” on the universe U. (b) Represen-
tation of the projection of the object “chair” on the universe U.

6.2. How to Choose the Best Design Project According to Our Trend Analysis

Let us define now the index that could be applied to measure the success of a certain
type of furniture with respect to the trends that are represented by the universe U. Using it
and the extension algorithm for the index explained in Section 4.3 we complete the picture
of our analytic tool. After an analysis of a list of different classes of furniture extracted
from the list given in [44], our group of experts decides that the following index IF gives a
reasonable measure of the fitting of the elements of the subset

D0 := {“chair”, “table”, “mirror”, “bed”, “sofa”}

with the current trends in furniture design in the universe U. Indeed, the index IF given by

IF(A) =
〈(

min
( ‖A‖1

‖B1‖1
, 1
)
, · · · , min

( ‖A‖1

‖B5‖1
, 1
))

, W
〉

will provide the desired tool. The set D0 is chosen following the advice of the expert by
means of the conceptual analysis based on the Deflexor framework. The central idea is that
the behavior of these pieces of furniture with regard to Google searches—analyzed using
the Google Trends App—provides an overview of current trends in furniture design.

At this point, the analytic system is prepared to be used. The universe that define
the main terms in which we want to center our analysis has been defined by an expert
selection based on the Deflexor general diagram. The objects that we intend to define as
main references for comparing with other furniture items are the ones presented in D0. We
use the McShane–Whitney extension method for Lipschitz regression, which is provided
by the formulas

Ext(C) =
1
2

IF
M(C) +

1
2

IF
W(C)

=
1
2

max
A∈D0
{IF(A)− Lip qU(A, C)}+ 1

2
min
A∈D0
{IF(A) + Lip qU(A, C)}, C ∈ D.

The value of the Lipschitz constant needed to apply our algorithm of Lipschitz re-
gression is Lip = 0.89863. The values of the projections of the elements of the set D0
on the universe U can be seen in Table 4 below. These terms have been checked by the
experts, who agree in their central role for following the trends of the furniture market,
and the rest of the items have to be referred to this set. To show the result, we present
in the final lines of Table 4 and in Figures 6–8 the projections PU(C) on U of the terms
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C = “desk”, “cabinet”, “carpet” together with the value of the extended index Ext com-
puted for these items.

Table 4. Projections for the terms considered, together with the corresponding values of the (extended)
index IF/Ext.

Terms Sustain. Environ. Wood Waste Furniture IF /Ext

chair 0.1722 0.2825 0.2441 0.2628 0.4357 0.4867
table 0.1562 0.1762 0.4399 0.1623 0.25 0.7421

mirror 0.1645 0.2096 0.4170 0.1805 0.3017 0.7069
bed 0.1807 0.2511 0.3723 0.2779 0.3748 0.5948
sofa 0.0799 0.1069 0.312 0.1004 0.1544 0.7416

desk 0.1317 0.2356 0.1891 0.2417 0.1756 0.632
cabinet 0 0 0.0693 0 0.163 0.721
carpet 0 0.1337 0 0 0.2168 0.6743

Figure 6. Representation of the projection of the object “desk” on the universe U = {“sustainable”,
“environment”, “wood”, “waste”, “furniture” }.

Figure 7. Representation of the projection of the object “cabinet” on the universe U = {“sustainable”,
“environment”, “wood”, “waste”, “furniture” }.

It can be seen that the projection values for the term “desk” are better than for the
other items, as there are no zeros in their projections and overall the values are higher.
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However, the values of the index Ext suggest the choice of the other options, “cabinet” and
“carpet”—0.721 and 0.6743 versus 0.632—even though the latter is not properly a piece of
furniture like the others. The reason is that, summing up the effect of all the coordinates,
the vector representing “cabinet” and “carpet” are more similar to that of “sofa” than in the
case of “desk”. As “sofa” has one of the highest values of IF, this could justify the values of
the extended index Ext. Therefore, the system proposes “cabinet”—or even “carpet”—as a
better choice than “desk” to start with a new design product.

Figure 8. Representation of the projection of the object “carpet” on the universe U = {“sustainable”,
“environment”, “wood”, “waste”, “furniture”}.

We have shown a simple—but realistic—use of our tool for trend analysis. The reader
can see that the expert criteria for the definition of the relevant term sets has to be combined
with the use of the tool, and the results largely depend on this preliminary work. The final
product is then a versatile platform, which should be used by the analyst as a framework to
integrate both data retrieved automatically from the Internet and term/conceptual analysis
in a common environment. The result is intended to be a holistic tool for analysis and
prospects of design trends. The continuous feeding of data used for the calculation of the
indices, as well as the incorporation of new terms already tested, would provide the basis
for a continuous updating of the platform. This could take the form of a reinforcement
learning system of artificial intelligence, which would selectively incorporate new data
based on the observed results, following the time axis.

7. Discussion: Using Deflexor to Motivate Open Innovation

The analytical tool explained in this paper is intended to be a new instrument for
Open Innovation engineering [45]. As a result of the collaboration of experts in a given
design field and technicians, the model provides an analytical platform to be used in the
elaboration of preliminary studies on how new products can enter the market, allowing
managers to get an idea of how a new design object can be accepted at a given point in
time. Once the general methodology is fixed, it needs to be adjusted to create a specific
platform for each field of application. This is the point at which the professionals of a given
company have to work together with the designers of the system to adapt the general trend
analysis to the specific field of design in which the company is interested. These experts
not only have to provide the general ideas about the field, but they have to help to prepare
the universe of terms needed for the analysis, and even the relationships between them in
order to build—together with the data scientists and linguists—a language structure as
developed as possible. The aim is to foster a dynamic point of view in the design world,
implementing new technologies for the continuous search for market trends in the context
of open innovation. Any new product must be checked in advance by means of the most
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specialized multi-source information technology, which provides accurate pictures of the
current state-of-the-art.

Trend analysis guided by expert teams has to grow together with current develop-
ments in software technology. Finding the right context for cooperation could result in
the implementation of Open Innovation procedures in design companies, which have to
understand that innovation, Big Data and information technology are fundamental for
the success of their projects. In certain fields, innovation has traditionally had a relevant
internal motivation, as is the case in software engineering. This approach is increasingly
complemented by an Open Innovation approach in which external motivation plays an
increasingly important role [46,47]. In this key technology field, it is also observed that
start-ups and small companies are more inclined to introduce innovation schemes than
larger ones, which in a way confirms the idea that small structures allow for faster adaptive
changes [48].

In general, open innovation in a given field can be understood as a dynamic process
that starts with a social trend, often carried out by entrepreneurs who facilitate new
combinations between market and technology. Then, large companies—following market
pressure—start to act using various channels, resulting in the mechanism of economic
growth. The elements that make up the ecosystem necessary for this process to take place
are represented in the so-called quadruple helix model: industry, society, academia—as
a necessary source of scientific and technological knowledge—and government, which
increasingly plays a facilitating role, rather than the classic regulatory role [48]. Recently,
many specific studies have been carried out focusing on some fields where Open Innovation
is changing the way things are done [49]. But each specific environment needs special ways
of implementing this working philosophy (see for example [50] for innovation in the field
of food). In all of them, however, new design strategies have to incorporate both external
innovation technology and the expertise of internal professionals.

8. Conclusions

We have developed a methodology to quantify the degree of innovation of projects
and ideas according to current trends. The measurement system is based on the prior
determination of a certain number of recognized trends in a given field, that have to be
structured as a “universe”, that is a set of terms and relations among them. Innovative
ideas are understood as general concepts, proposals for action, ways of doing things,
widely accepted products or any other semantic element that can be codified by some
short linguistic expression, preferably words and relations between words. Our aim was to
provide a general method for the automation of trend analysis, which necessarily has to be
based on the determination of the framework by the analyst.

To do this, we first set a universe U of words/concepts/notions that are understood
to be significant in the given field of analysis. The canonical example of such a universe
U is a specialized ontology of a certain technical field. We then introduce our innovative
idea and determine the set of trends that we consider to be related to it, in order to contrast
both elements through the framework that defines the universe U. We need a method
of quantification, and we define it through the notion of projection, which consists of a
particular way of calculating the “semantic component” of a term “A” of the term “B” with
respect to a predefined projection tool. We have used as an example of such a tool the
rate of documents in which “A” appears along with “B”, with respect to the total number
of documents in which “B” appears in a Google search. The idea is to aggregate several
of these simple projections to obtain a characteristic composite projection that meets the
requirements of the users in each particular design environment.

From the mathematical point of view, the model consists of a (quasi-)metric space
of fuzzy subsets of U. Several metrics are proposed, using as supporting formalism the
representation as vectors of linear spaces, what facilitates the use of norms, although this is
not the only option provided. We then introduce a method for measuring the relevance
of a trend, and use the theory of Lipschitz functions to extend the obtained values to all
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the elements of the (quasi-)metric space. This gives an evaluation of the innovative idea,
and would allow the use of a reinforcement learning method as the one given in [51,52]
for continuously improve the result by introducing at any moment updated information,
allowing also the direct action of experts to correct dysfunctional outcomes if needed
(supervised learning). An App based on our ideas which uses multi-source projections has
been already designed, and has been presented here too.

The last section presents an example of trend analysis using our procedure: a case
is presented in which a group of designers has to choose between three furniture-related
items in view of their potential market acceptance. A precise explanation of how to do this
using our tool is given, together with a description of the mathematical elements used for
this purpose.
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