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Abstract: In order to improve innovation performance, it is necessary to analyze a series of processes
that are connected to innovation performance, as well as R&D input. Since industrial characteristics
affect innovation performance, the differences between corporate R&D capabilities in the industrial
sector should also be considered. This study verified the effect of R&D capabilities and absorptive
capacities on innovation using a structural equation model for Korean manufacturing companies,
and analyzed in-depth the relationship between capability and performance of high- and low-tech
sectors through multi-group analysis. The results show that internal and external R&D capabilities
had a positive effect on absorptive capacities, and potential absorptive capability had a positive
effect on realized absorptive capacity. In addition, internal R&D capability and realized absorptive
capacity had a positive effect on innovation, and the mediating effect of absorption capacities could be
identified. As a result of industry sector-specific analysis, the latent mean of internal R&D capability
and innovation of the high-tech sector were higher, and the path coefficient of the high-tech sector
from the internal R&D capability to potential absorptive capacity and innovation performance was
more strongly identified than those of the low-tech sector. Based on the results of this study, we would
like to present policies for the development of firm’s R&D capabilities by the industry sector.

Keywords: R&D capability; absorptive capacity; innovation; industry sector; multi-group analysis

1. Introduction

This study seeks to examine the impact of corporate R&D capabilities on innovation. In particular,
it aims to confirm that R&D capabilities can have different effects on innovation due to different
R&D intensity and innovation patterns of industrial sectors using theoretical consideration and
empirical analysis.

R&D is considered a key activity of a firm and is an important source of innovation. For firms to
gain a long-term competitive advantage, they need to innovate through continuous R&D activities.
In recent years, many researchers have conducted studies to identify the characteristics of firms
that affect innovation. This research has focused on empirical analysis of specific functions and
activities, such as external resource utilization and innovation, enterprise scale and innovation, market
concentration and innovation, R&D intensity, and innovation [1–4]. However, to improve innovation
performance, it is necessary to not only increase R&D activity, but also to analyze a series of processes
that are connected to innovation performance, as well as the basic capabilities related to R&D input.

Another focus of this study is examination of the differences between corporate R&D capabilities by
the industrial sector from the perspective that industrial characteristics affect innovation performance.
Korea’s major industrial policies have been developed around high value-added and high-tech
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industries in the process of being implemented as a technology-intensive structure. In particular,
because the main focus of technology-oriented R&D support is the promotion of industries, industrial
policies that take into account the entire ecosystem of the industry have not been implemented because
areas with low technology intensity have often been excluded. In the past, when the industrial base
was vulnerable, Korea adopted a method of localizing advanced technologies that had already been
developed and verified in advanced countries to promote industries. This method of securing growth
engines based on technology development was an effective “catch-up growth” strategy. However, as
the domestic technology level improves and economic output increases, a paradigm shift to a “leading
growth” strategy is required, suggesting that the entire industry needs to become a growth engine [5].
To promote an industry in such an environment of heightened uncertainty, it is necessary to draw
potential from various industries by securing various seeds. This approach is also suitable for mid-
and low-tech industries. Mid- and low-tech industries are labor-intensive industries that led to Korea’s
early industrialization. Although Korean industries have advanced significantly, mid- and low-tech
industries continue to make a substantial contribution to domestic value-added production and
employment. However, because domestic industrial policies are concentrated in high-tech industries
and new technology development-oriented industrial policies, the mid- and low-tech industrial base is
also the most vulnerable. Therefore, it is necessary to enhance Korea’s industrial stability to ensure that
companies continue to contribute to domestic economic growth and that a natural process of industrial
development, evolution, and self-sufficiency can be achieved by identifying the R&D capabilities
of companies in the mid- and low-tech industry group. Most of the prior research related to R&D
capability and innovation has been conducted on all or specific industries. However, there has not been
sufficient empirical analysis and comparison at the industry group level, as undertaken in this study.

In conclusion, the main purpose of this study is to analyze the relationship between R&D
capabilities and the firm’s innovation performance, and to identify the structural relationship between
R&D capability components by dividing them into input–process–output. In particular, we would
like to apply absorptive capacity to more specific analysis of the process from R&D capability to
innovation performance. We also aim to analyze whether a difference exists in the structure of R&D
capabilities between manufacturing industries of high and low technology groups, and whether there
is a distinction between R&D capabilities and their relationship to innovation.

2. Literature Review and Research Framework

2.1. R&D Capability and Absorptive Capacity: Process-Based

A firm’s R&D can be seen as a series of organic systems to which input–process–output is
connected [6]. When R&D resources are used as an input it results in improved performance through
the process of transformation. Therefore, although it is important to invest in R&D to maximize R&D
performance, it is also highly important to utilize input components through effective and efficient
R&D processes. That is, the firm’s overall R&D capabilities must be sufficiently secured to link its R&D
investment to performance.

A firm’s R&D capability can be defined as the firm’s ability to integrate R&D strategy, project
execution, project portfolio management, R&D expenditure, etc. [7]. Specifically, R&D capabilities
can be largely divided into internal and external capabilities. Internal R&D capabilities means the
resources of the firm are established to develop R&D internally. This can be evaluated in terms of
R&D intensity, human resources, etc. [8]. It has been found that direct investment, such as R&D
spending on sales and the number of R&D workers among total employees, has a positive impact on
innovation performance [9]. However, it is not possible for a company to perform all of the theoretical
and technical demands required for innovation with its own internal capabilities, and external partners
must be identified and specifically accessed to allow innovation [10]. Thus, external R&D capability
can be defined as the formalized structure of linkage with the external environment for undertaking
R&D, such as human and material networks for research and development, strategic alliances, etc. [6].
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From the perspective of transaction cost theory, the network is considered important in that it is
constitutes a strategy to reduce the firm’s costs, and from the perspective of strategic management
theory, it is desirable to focus resources on specific sectors to enhance the firm’s competitiveness [11,12].
In other words, a firm’s R&D capabilities can be enhanced by combining its internal capabilities with
external knowledge resources.

In addition to the above conceptual definition, Dutta et al. [13] argues that R&D capabilities in
the new technology market are an essential component of a firm’s optimal performance, and that
R&D capabilities can be understood as the dynamic means of enhancing a firm’s capabilities through
knowledge creation and utilization, thereby maintaining or gaining a competitive advantage [14].
In this study, we identify R&D activities as a process of knowledge creation and introduce the concept
of absorptive capacity based on dynamic capability theory.

Cohen and Levinthal [15], who first applied the concept of absorptive capacity at the firm level,
argued that the most important capability for an entity to maximize its R&D effects is its absorptive
capacity. In addition, the methods of obtaining technical knowledge were divided into methods of
obtaining from the enterprise’s own R&D, acquiring knowledge generated from competing enterprises,
or acquiring technologies developed outside of industry, such as government-funded institutions and
universities. Furthermore, if a firm performs its own R&D, it can achieve more effective results by
utilizing useful external information [16]. However, it is not easy to measure the concept of absorptive
capacity empirically. In particular, Duchek [17] argued that different definitions of absorption capacity
also result in different studies, which makes it impossible to present standard measurement methods,
and that currently available measurement methods are diverse, but not clear and somewhat ambiguous.
We analyzed the prior empirical studies based on quantitative analysis using the absorptive capacity
concept by classifying them into input/output approaches and process approaches as shown in
Table 1. We would like to analyze the process approach in-depth to examine the process of knowledge
integration according to the purpose of this study.

Table 1. Measurement approach of absorptive capacity.

Category Measurement Research

Input/Output approach

Input

R&D Investment

R&D expenditure(Rocha [18])
R&D Intensity (Cohen and Levinthal [15];
Mowery et al. [19]; Stock et al. [20])
Own R&D department (Veugelers [21];
Becker and Peters [22])

R&D Human Capital

R&D personnel with a doctorate degree
(Veugelers [21])
R&D employee divided by total employee
(Keller [23]; Gao et al. [24])

Output Patent, Publication

Total publications (Cockburn and
Henderson [25])
Patents (George et al. [26])
Cross-citation rate (Mowery et al. [19])

Process approach

Unidime-nsional Operating Level

External knowledge to innovation
outcomes (Fosfuri and Tribo [27])
Lacks absorptive capacity to internal
stickiness (Szulanski [28])

Multidim-ensional Multidimensional
Measurement

Exploration and exploitation of knowledge
(Zahra and George [14]; Liao et al. [29],
Jansen et al. [30])
Based on scientific /Market information
(Murovec and Prodan [31])

Researchers who have studied the process approach, such as Zahra and George [14], measured
absorptive capacity through cognitive processes to survey methodology. These researchers developed
and measured a single question or a series of questionnaires that reflected absorptive capacity at
the process level. The measurement of absorptive capacity by cognitive questionnaire is a useful
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measurement method in the sense that it demonstrates the complex concept of absorptive capacity.
In addition, these survey measurements provide useful information about the degree of absorptive
capacity by allowing them to be well aware of the entire process of knowledge acquisition, with no
restrictions on input or output variables, contrary to proxy indicator [17].

Zahra and George [14] presented measurement items by classifying them as potential and realized
absorptive capabilities, while Liao et al. [29] presented measurement items by classifying them as
external knowledge acquisition and intrafirm knowledge dissemination similar to those of Zahra and
George [14]. We will focus Zahra and George’s research [14] in detail in the next paragraph. Murovec
and Prodan [31] divided absorptive capacity into “science-push absorptive capacity,” related to the
acquisition of R&D knowledge, and “demand-pull absorptive capacity,” related to the acquisition of
market knowledge. The study revealed that the two different absorptive capacities have a positive
effect on product innovation and process innovation performance, respectively.

In this study, we believe that Zahra and George’s absorptive capacity model [14] is a useful
theoretical framework because absorptive capacity acts as a process. Zahra and George [14] defined
“potential absorptive capacity” as a process of exploration related to the acquisition and assimilation
of knowledge and “realized absorptive capacity” as a learning process related to the transformation
and exploitation of knowledge. The former was defined as a process of obtaining, analyzing, and
understanding new technical knowledge from the outside and exploring the potential applicability of
that knowledge, while the latter was defined as a utilization process of integrating knowledge acquired
from the outside with internal existing knowledge and applying it to new product development [32].
Ref. [14] argued that the success of new product development, which is the result of absorption capacity,
is determined by the efficiency (ratio) in which potential absorption capacity is converted to realized
absorption capacity. That is, the process of absorptive capacity allows a firm to dynamically adjust
and utilize its capabilities by obtaining, assimilating, and transforming external knowledge based on
internal capabilities.

Based on this prior research, we hypothesized that R&D capabilities are determined by the internal
capabilities built inside the firm and the external capabilities built by network activities, and that there
will be a transition between the absorptive capacities produced within the entity.

Hypothesis 1. The corporate R&D capabilities will have a positive effect on the absorptive capacities.

Hypothesis 1.1. Internal R&D capability will have a positive effect on the potential absorptive capacity.

Hypothesis 1.2. External R&D capability will have a positive effect on the potential absorptive capacity.

Hypothesis 1.3. External R&D capability will have a positive effect on the realized absorptive capacity.

Hypothesis 2. The potential absorptive capacity will have a positive effect on the realized absorptive capacity.

2.2. The Impact of R&D Capability and Absorptive Capacity on Innovation Performance: the Structural Model

Innovation refers to the implementation of new or significantly improved goods or services,
production or delivery methods, new marketing methods, or new organizational methods in the
course of business practices, workplace organization, or external relations [33]. According to previous
research [34], innovation can be defined as a series of activities that creatively destroy existing methods,
and produces, markets, and sells new products or services through new combinations of means of
production, such as processes, markets, materials, and organizations.

Manufacturing industry-oriented technological innovation refers to the new invention or
development of the process of introducing new products into the market, including new processes and
services. The types of innovation are divided into product innovation and process innovation. Product
innovation is the creation of new products and services to meet the needs of customers and markets.
Process innovation refers to the production and service operation of an organization which, in the
process of production, represents a change in equipment or work procedures to increase the level or
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efficiency of production [35]. Thus, product innovation creates revenue and margin by developing
new products that are differentiated from original products [36], and process innovation is common in
mass production because products are stabilized or standardized [37].

Innovation by enhancing the R&D capability enables the development of new products and the
utilization of new processes, thus providing product differentiation and cost advantages, and providing
a major source of competitive advantage for companies [38]. Reviewing the determinant factors of
innovation performance, Souitariis [39] demonstrated that R&D intensity and R&D human resources
are highly important factors in innovation activities in the Greek manufacturing industry. In addition,
the resource-based view suggests that it is not only a firm’s own R&D that stimulates its innovation
capabilities, but also the introduction or joint development of R&D from the external environment [40].

These previous studies were primarily aimed at identifying the quantity of resources a firm would
devote to R&D and the quantity required to have a positive impact on its performance. However,
new product development activities or acquisition of new technologies alone does not guarantee
performance. Zahra and George [14] and Murobec and Prodan [31] identified absorptive capacity
as a dynamic process of generating innovation and sought to identify the difference between the
components and the causal relationship of the absorptive capacities, rather than R&D investment.
In addition, empirical studies [41–43] argue that absorptive capacity can contribute not only to new
product development but also to the quality improvement of existing products.

Based on this previous research, we presented a conceptual model as shown in Figure 1 and
hypothesized that the R&D capabilities and absorptive capabilities possessed by a firm would affect
technological innovation performance such as process innovation and product innovation as follows:

Hypothesis 3. The corporate R&D capabilities will have a positive effect on technological innovation.

Hypothesis 3.1. Internal R&D capability will have a positive effect on technological innovation.

Hypothesis 3.2. External R&D capability will have a positive effect on technological innovation.

Hypothesis 4. The absorptive capacities will have a positive effect on technological innovation.

Hypothesis 4.1. The potential absorptive capacity will have a positive effect on technological innovation.

Hypothesis 4.2. The realized absorptive capacity will have a positive effect on technological innovation.
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2.3. Necessity of Research by Industrial Sector

A firm’s innovation activities emphasize cooperation and interaction between innovation actors
in addition to research and development, and the process of path dependency between technology
and knowledge represents the industry sectoral specificity to which the firm belongs and creates an
industry-specific technical paradigm [44]. Since paradigm shift occurs due to the development of very
radical technology development, firms need to absorb and innovate new technologies to cope with
these changes.
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A typical study of the technical characteristics of an industry can be cited as sectoral patterns of
technological innovation in the industry. Malerba and Orsenigo [45] expanded on previous research of
industry-specific innovation patterns to include the concept of a technological regime based on the
empirical study of sectoral innovation patterns by Pavitt [46]. Since most previous studies of Korean
industries are based on Pavitt’s industrial classification [46], a lack of research on sectoral technological
innovation exists. The innovation pattern generally refers to the way in which innovation progresses
in a particular industry and is determined by the technological opportunity, appropriability regime,
and demand [47].

The technical characteristics of an industry are represented by the degree of technological
opportunity presented by the firm dynamics. The degree of technological opportunity can be seen as a
firm’s R&D efforts for innovation and technological progress that affect the performance of innovation.
However, the factors mentioned previously that reflect the demand and technological characteristics
of the industry are difficult to measure as theoretical concepts [48]. Therefore, this study used the
“classification of industrial sectors” approach to apply the concept of industrial characteristics to the
subsequent empirical analysis process, and “industrial sectors” were classified using R&D intensity.

To reflect “industrial sector” in the concept of “industrial characteristics”, we present theoretical
evidence and empirical analysis cases that demonstrate the association between R&D intensity and
industrial characteristics. The relevance of the connection between technological opportunity and
an industry’s R&D intensity as an industrial characteristic is confirmed in prior studies on the
concept of technological opportunity. Prior studies have defined technological opportunities as
strengthening R&D investment activities for firms in the industry and sequentially improving the
performance of technological innovation. Scherer [49] argued that differences in inter-industry R&D
intensity reflect technical opportunities. Scherer [50] and Scott [51] demonstrated gaps between
industries, such as R&D for innovation, through industry classifications that reflect technological
opportunities. These studies classified petrochemical, electrical, and electronic industries as those with
high technological opportunities. Mukhopadhyay [52] classified industry types using the concentration
ratio of the industry’s R&D intensity. Hatzichronoglou [53] classified the manufacturing industry as
high technology, medium and high technology, and medium and low technology according to R&D
intensity, which is currently applied as the most general classification method. Whereas the chemical,
electronics and telecommunications, automobile, medical, and semiconductor industries are generally
classified as high-tech industries, the furniture, textile products, food, paper, printing, wood, metal
casting, and plastic products industries are classified as medium and low-tech industries.

The high-tech category, also known as the cutting-edge, refers to very advanced and elaborate
technology. New products and new processes generated by R&D conducted in high-tech industries
have a spillover effect on other industries, which can help new products and productivity, expand
business, and create high-wage jobs, enabling other commercial sectors to benefit [53,54]. Based on
these prior studies, we hypothesized that the technical characteristics of the industry are related to
corporate R&D activities and innovation performance, therefore, there will be gaps between industries.

Hypothesis 5. Manufacturing firms in the high-tech sector will show higher R&D capabilities, absorptive
capacities, and technological innovation than those in the low-tech sector.

Hypothesis 6. The structural coefficient between R&D capabilities, absorptive capacities, and technological
innovation will vary across firms in the high-tech sector and firms in the low-tech sector.

We presented a research model that reflects all hypotheses as shown in Figure 2.
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3. Method

Based on the measurement and structural model analysis, latent mean analysis, and multi-group
analysis, this study analyzed the structural relationship between R&D capabilities, absorptive capacities,
and technological innovation in manufacturing firms, and verified the difference in the latent mean
and the path coefficient of the structural model according to the industrial sector by technology level.
For this analysis, the seventh survey (2017) of the Human Capital Corporate Panel (HCCP) Survey
was used.

3.1. Sample Characteristics

In this study, the data used for the hypothesis verification was the Human Capital Corporate Panel
(HCCP). HCCP is the only mid and long-term corporate panel survey in Korea that has been tracking
and investigating companies every other year since 2005, and has the characteristic of extracting
some employees (team leaders, team members, etc.) of the corporates in question in addition to the
corporates in a multi-dimensional format. The HCCP corporate survey classifies overall industry
into manufacturing, financial, and service industries, and covers the management, human resources
status, human resource development, R&D, human resource management, etc., thereby reflecting the
characteristics of each industry. We conducted data control with the aim of ensuring consistency of data
and clearly distinguishing between the characteristics of the target corporates, and the firm-level and
individual-level survey results. Although HCCP provides data on manufacturing, financial, and service
industries, it was only used to examine the target of manufacturing in this study. The sampling
population was comprised of corporates with at least 100 employees and a capital of 300,000 USD or
more, and was extracted by size, industry, and type of corporate.

It was important for this study to classify industries so that different mechanisms could be
explained by industry characteristics, which presupposes that R&D capabilities and innovation
activities vary by industry characteristics. First of all, to group manufacturing industries according to
R&D intensity, the first classification was applied to the OECD’s Industrial Classification [53], and a
total of 348 firms were classified into 68 firms in three high-tech industries, 137 firms in five middle
and low-tech industries, 80 firms in five low and middle-tech industries, and 63 firms in 10 low-tech
industries. Additionally, based on sectoral innovation patterns studies—Pavitt [46], and Malerba
and Orsenigo [45]—we added science-based industries and Schumpeter Mark II industries to the
high-tech industry sector, highlighting the companies’ own R&D capabilities and the accumulation that
companies were assumed to have in this study. In accordance with these two criteria, the automobile
industry was added to the high-tech industry sector. The automobile industry is Korea’s main
manufacturing industry, and is characterized by strong competition due to brisk exports and imports.
In addition to the technology level, innovation activities in the automobile industry are active due to
the large impact of the automobile industry on upstream and downstream industries [55]. Furthermore,
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in the Korean automobile industry, open innovation had a significant impact on the enhancement of
the technical values of patents [56]. Although Hatzichronoglou [53] classified the automotive industry
as a medium and high-tech industry, and Pavitt [46] also classified it as a production-intensive industry,
the environment of the automotive industry has subsequently changed significantly. This process
was summarized in Figure 3. And we classified the Korean manufacturing industry according to the
previous description as shown in Table 2.
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Table 2. Classification of manufacturing industry in Korea.

Category Industry Sector (KSIC* 9th Code)

High-tech Industry
chemicals and chemicals (20), medical materials and medicines (21), electronic
components, computers, images, acoustics and telecommunications equipment (26),
medical, precision, optical instruments and watches (27), automobiles and trailers (30).

Low-tech Industry

grocery (10), beverage (11), tobacco (12), textile products: garment products (13),
clothing, clothing accessories and fur products (14), leather, bag and shoe (15) wood and
wood products: furniture manufacturing (16) pulp, paper and paper (17), printing and
recording media reproduction (18) coke, briquettes and non-oil products (29) Rubber and
plastic product (22), non-metallic mineral product (23), primary non-ferrous metal (24),
metal processing: machinery and furniture exclusion (25), electrical equipment (28),
other mechanical equipment (29), transportation equipment (31), furniture (32),
other product (33)

* KSIC: Korea Standard Industry Code.

3.2. Measures

3.2.1. Internal R&D Capability

To measure the internal R&D capability level of the corporates, 6 items were selected based on the
questions on the HCCP 7th survey and the associated financial and patent data. Using exploratory
factor analysis, three items were used: R&D intensity, job proficiency level of researcher, and ratio of
full-time researcher (excluding the number of patent applications, per capita education and training
expenses, and ratio of master’s degree). The Cronbach’s alpha for checking internal consistency
between questions was 0.635.

3.2.2. External R&D Capability

To measure the external R&D capability level of the corporates, 4 questions in the HCCP 7th
survey were chosen to measure whether an external network was used. These excluded whether to
inspect technical guidance from outside companies and whether to cooperate with suppliers through
exploratory factor analysis. The question of whether to promote strategic alliances or to introduce
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relationships with external organizations was chosen. The Cronbach’s alpha for checking internal
consistency between questions was 0.612.

3.2.3. Potential Absorptive Capacity

Potential absorption capacity is the ability to quickly understand, interpret, and explore the
external environment and changes by acquiring diverse external information, knowledge, etc. [14,57].
To measure this, we used the HCCP 7th employee survey, expanded to organizational levels.
The measurement questions included immediate response and understanding of customer demands,
sufficient education and training, and management’s leadership in responding to changes in relation
to knowledge acquisition and exploration.

Subsequently, to use individual level data as the organization level data, it was important to
secure statistical validity. Verification is essential in determining whether the measurements presented
by the combination of individual scores adequately reflect the characteristics of the organization.
To sum up the individual-level data to determine whether it was suitable to be used as a higher-level
organizational concept, the Interclass Correlation Coefficient was calculated and its values were
reviewed. ICC (1) and ICC (2) are the most frequently used methods for verifying reliability in
multi-level organizational studies [58], and the reliability described here is the assessment of the degree
of consistency in responses [59]. ICC (1) indicates the extent to which an individual in a group can
represent the group, and the larger the ICC (1), the more similar the individuals in the group [58].
ICC (2) represents the reliability of the group mean, which is usually interpreted to have an acceptable
level of 0.5 or higher [59].

The ICC (1) value of this study variable was found to be 0.052, and the ICC (2) value of this study
was found to be 0.618, thus exceeding the acceptance criteria. Therefore, it was found that it was
reasonable to use data at the individual level to represent the organizational level.

3.2.4. Realized Absorptive Capacity

Realized absorptive capacity was measured based on the HCCP firm survey, unlike the
potential absorptive capacity. In contrast to the potential absorption capacity at the individual
level, the transformation and exploitation of knowledge are achieved through integration and
institutionalization at the organizational level [57,60]. Four questions in the HCCP 7th survey were
chosen to measure internalization, reconstruction, improvement, and transformation of acquired
resources. The exploratory factor analysis excluded the implementation of learning organizations
and used changes in organizational structure, knowledge management, and quality control methods.
The Cronbach’s alpha for checking internal consistency between questions was 0.684.

3.2.5. Technological Innovation

To identify the level of technological innovation, 3 questions in the HCCP 7th survey related to
manufacturing innovation were chosen. From a prior study [35,36] it was confirmed that product
innovation and process innovation could be used as performance indicators, and the degree of
technological changes, changes in lines or facilities at the workplace, and the degree of development
and introduction of new products were used as measurement tools. The Cronbach’s alpha for checking
internal consistency between questions was 0.711.

We presented variables and items for this study as shown in Table 3.
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Table 3. Variables and items.

Latent Variable Measurement Variable Items

Internal R&D Capability
IRC(1) R&D intensity
IRC(2) Job proficiency level of researcher
IRC(3) Ratio of full-time researcher

External R&D Capability ERC(1) Promote strategic alliances
ERC(2) Introduce relationships with external organizations

Potential Absorptive Capacity

PAC(1) Immediate response and understanding of customer demands
PAC(2) Sufficient education and training

PAC(3) Management’s leadership in responding to changes in relation
to knowledge exploration

Realized Absorptive Capacity
RAC(1) Implement in organizational structure,
RAC(2) Use in knowledge management
RAC(3) Change in quality control methods

Technological Innovation
INNO(1) Degree of technological changes,
INNO(2) Changes in lines or facilities at the workplace
INNO(3) Degree of development and introduction of new products

3.3. Analysis

The methodology we used is a structural estimation modelling-based multi-group analysis.
The general structural equation model (SEM) is intended to verify causality embodied in the theoretical
model and is appropriate for identifying causality that cannot be demonstrated through regression
analysis. However, rather than simply verifying the validity and fit of the theoretical model and
generalizing it in the population, this study focused on identifying how the same model appears
among different populations and verifying significant differences between high and low-tech sectors.
The analysis method for comparing and analyzing multiple groups to verify statistically whether the
theoretically established structural equation model exhibits significant differences between groups is
called multi-group analysis [61]. These multi-group analyses were carried out in the following order.

First, the structural equation model analysis to verify Hypotheses 1–4 used the 2-step method of
interpreting the validity of the structural model and path coefficients after verifying the validity of the
measurement model. Second, latent mean analysis for verifying Hypothesis 5 was conducted in the
order of configural invariance, metric invariance, scalar invariance, and factor variance invariance.
Third, the verification of the differences in the multi-group path coefficients for verifying Hypothesis
6 was carried out in the order of configural invariance, metric invariance, and structural invariance.
Fourth, structural model analysis, latent mean analysis, and verification of the differences in the
multi-group path coefficients were all used for maximum likelihood (ML) estimation, and the fit of the
model was determined by Chi-square(χ2), Non-Normed Fit Index(NNFI), Comparative Fit Index(CFI),
and Root Mean Square Error of Approximation(RMSEA). In addition, the χ2 difference test, NNFI, CFI,
and RMSEA difference verification were used together to verify differences between models. In this
study, firms with a large number of missing values were excluded from the list, and the analysis was
performed by SPSS 25.0 and AMOS 21.0.

4. Results

4.1. General Characteristics of Firms

The following characteristics were identified in the firms in this study: In 23 manufacturing
sectors, 348 firms were targeted, of which 138 (39.7%) were high-tech firms and 210 (60.3%) were
low-tech firms. The size and age of the firms showed similar distributions in two industry sectors,
with those with less than 300 employees and those with more than 30 years of age accounting for the
largest distribution. We presented general characteristics of firms as shown in Table 4.
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Table 4. General characteristics of firms (n = 348).

Category Sum (n, %)
Scale (n, %) Age (n, %)

~299 300~999 1000~1999 2000~ ~10 Yrs 11~20 Yrs 20~30 Yrs 30 Yrs~

High-Tech 138
(39.7)

70
(50.7)

56
(40.6)

9
(6.5)

3
(2.2)

1
(0.7)

24
(17.4)

35
(25.4)

86
(62.3)

Low-Tech 210
(60.3)

106
(50.5)

76
(36.2)

13
(6.2)

15
(7.1)

1
(0.5)

27
(12.9)

32
(15.2)

157
(74.8)

4.2. Descriptive Statistics and Correlation Verification

As a result of checking whether the measurement variables injected into the model meet the
normality assumption for structural model analysis, latent mean analysis, and verification of the
differences in the multi-group path coefficients, it was determined that the normality assumption
was established because the total measurement variable did not exceed a skewness value of 3 and
kurtosis value of 10. Analysis of the correlation patterns between the measurement variables of
Table 5 found that there were generally positive correlation patterns between R&D capabilities and
absorptive capacities, R&D capabilities and technological innovation, and absorptive capacities and
technological innovation.

Table 5. Mean, standard deviation, and correlation matrix (n = 348).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1
2 0.300 ** 1
3 0.217 ** 0.434 ** 1
4 −0.016 0.001 0.050 1
5 0.101 0.018 −0.017 0.246 ** 1
6 0.045 * 0.039 0.071 0.146 ** 0.058 1
7 0.025 * 0.021 0.104 0.073 −0.017 0.409 ** 1
8 0.031 * 0.037 0.155 ** 0.089 −0.002 0.309 ** 0.321 ** 1
9 0.033 * 0.010 0.041 0.159 ** 0.085 0.234 ** 0.172 ** 0.140 ** 1

10 0.024 0.011 0.148 ** 0.190 ** 0.121 * 0.126* 0.087 0.194 ** 0.310 ** 1
11 0.015 0.014 0.119 * 0.126* 0.139 ** 0.041 * 0.089 * 0.055 * 0.222 ** 0.166 ** 1
12 0.117 * 0.174 ** 0.179 ** 0.087 0.025 0.176 ** 0.213 ** 0.267 ** 0.201 ** 0.214 ** 0.122 * 1
13 0.106 * 0.192 ** 0.165 ** 0.194 ** 0.124* 0.178 ** 0.122 * 0.202 ** 0.183 ** 0.149 ** 0.084 0.628 ** 1
14 0.036 0.143 ** 0.131 * 0.112 * 0.031 0.052 0.105 0.162** 0.206 ** 0.189 ** 0.056 0.468 ** 0.300 ** 1
M 1.29 2.96 0.08 0.28 0.08 3.65 3.13 3.61 0.33 0.11 0.52 2.27 2.03 2.28
SD 1.48 0.58 0.09 0.45 0.27 0.51 0.53 0.53 0.47 0.31 0.50 0.75 0.88 0.90
SK −1.68 −0.09 1.92 0.96 3.17 −0.14 −0.12 −0.05 0.72 2.57 −0.08 −0.07 0.22 0.13
KU 3.72 1.53 3.93 −1.09 8.11 0.33 0.75 0.20 −1.48 4.61 −2.00 −0.56 −1.08 −0.81

* p < 0.05, ** p < 0.01, *** p < 0.001. 1: Internal R&D Capability(1), 2: Internal R&D Capability(2), 3: Internal R&D
Capability(3), 4: External R&D Capability(1), 5: External R&D Capability(2), 6: Potential Absorptive Capacity(1),
7: Potential Absorptive Capacity(2), 8: Potential Absorptive Capacity(3), 9: Realized Absorptive Capacity(1),
10: Realized Absorptive Capacity(2), 11: Realized Absorptive Capacity(3), 12: Technological Innovation(1),
13: Technological Innovation(2), 14: Technological Innovation(3).

4.3. Measurement Model Verification

As a result of conducting confirmatory factor analysis to verify the validity of the measurement
model, χ2 (df = 67, n = 348) = 97.851, p < 0.01, NNFI = 0.929, CFI = 0.948, RMSEA = 0.036 (0.019~0.051,
90% confidence interval), it was determined that the measurement model fitted. Based on the results
of the confirmatory factor analysis (in Table 6), the convergent validity and discriminant validity were
determined to be acceptable for AVE (Average Variance Extracted) and above 0.5 and CR (Composite
Reliability) above 0.7.
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Table 6. Results of measurement model testing.

Latent Variable Measurement Variable b S.E C.R. β AVE CR

Internal R&D
Capability

IRC(1) 1.00 0.40
0.53 0.76IRC(2) 0.51 * 0.02 4.831 0.74

IRC(3) 0.35 * 0.01 5.217 0.59

External R&D
Capability

ERC(1) 1 0.66
0.67 0.79ERC(2) 0.34 * 0.13 2.530 0.38

Potential
Absorptive

Capacity

PAC(1) 1 0.62
0.67 0.86PAC(2) 0.96 *** 0.15 6.493 0.62

PAC(3) 0.86 *** 0.14 6.283 0.54

Realized
Absorptive

Capacity

RAC(1) 1 0.59
0.60 0.81RAC(2) 0.79 *** 0.15 5.279 0.53

RAC(3) 0.55 ** 0.13 4.228 0.34

Technological
Innovation

INNO(1) 1 0.91
0.59 0.80INNO(2) 0.89 *** 0.09 10.108 0.69

INNO(3) 0.67 *** 0.08 8.213 0.51

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.4. Structural Model Verification

The structural relationships between R&D capabilities, absorption capacities, and technological
innovation were analyzed based on Figure 4 As a result of verifying the measurement model, χ2 = 97.774,
p < 0.05, df = 69, NNFI = 0.939, CFI = 0.954, RMSEA = 0.035 (0.017~0.050, 90% confidence interval),
it was determined that the fit of the structural model was good. Based on the path coefficient estimates
in Table 7, first, internal R&D capability was identified as having a direct positive effect on potential
absorptive capacity (β = 0.410) and technological innovation (β = 0.613). Second, external R&D
capability was found to have no direct effect on technological innovation, while direct effects on the
potential (β = 0.209) and realized (β = 0.389) absorptive capacity were identified. Third, potential
absorptive capacity was found to affect realized (β = 0.386) absorptive capacity. Fourth, it was found
that realized absorptive capacity of the absorptive capacities had a direct effect on technological
innovation (β = 0.255), whereas the potential absorptive capacity did not have a direct effect on
technological innovation. Therefore Hypotheses 1 and 2 were accepted, and Hypotheses 3 and 4 were
partially accepted.
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Table 7. Direct effects in the model.

Paths b β SE CR

IRD→PAC 4.847 * 0.410 2.126 2.281
IRD→INNO 15.052 * 0.613 6.024 2.498
ERD→PAC 0.220 * 0.209 0.133 2.052
ERD→RAC 0.375 * 0.389 0.175 2.146

ERD→INNO 0.122 0.056 0.259 0.471
PAC→RAC 0.354 *** 0.386 0.102 3.473

PAC→INNO 0.031 0.015 0.306 0.103
RAC→INNO 0.578 * 0.255 0.273 2.114

* p < 0.05, ** p < 0.01, *** p < 0.001.

As a result of conducting 5000 bootstraps to verify the indirect effects (in Table 8), the indirect
path through which internal R&D capabilities affect realized absorptive capacity (β = 0.158) and the
indirect path through which potential absorptive capacity affect technological innovation (β = 0.098)
were found to be statistically significant.

Table 8. Indirect effects in the model.

Paths b β

IRD→INNO 1.143 0.047
IRD→RAC 1.716 * 0.158

ERD→INNO 0.268 0.123
ERD→RAC 0.078 0.081

PAC→INNO 0.204 * 0.098

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.5. Latent Mean Analysis

Latent mean analysis was conducted to identify the mean difference between corporate R&D
capabilities, absorptive capacities, and technological innovation, depending on the industry sector.
Latent mean analysis is a statistical method for comparing means using controlled latent variables for
measurement errors to more accurately verify differences between groups than in traditional statistical
techniques such as the t-test or MANOVA [61]. Latent mean analysis should satisfy valid configural
invariance, metric invariance, and scalar invariance [61].

First, configural invariance verification was conducted. Configural invariance verification was
measured to determine whether the factor structures of the group to be compared were the same,
and the fit of the models for each high- and low-tech groups was checked. The high-tech industrial
sector showed a reasonable fit of χ2(df = 67, n = 138) = 70.258, p < 0.05, NNFI = 0.981, CFI = 0.986,
RMSEA = 0.019 (0.002~0.050, 90% confidence interval), and the low-tech industrial sector showed a
reasonable fit of χ2 (df = 67, n = 210) = 92.826, p < 0.05, NNFI = 0.920, CFI = 0.941, RMSEA = 0.043
(0.018~0.063, 90% confidence interval). In addition, the results of verifying the high-tech and the
low-tech sector firms together in one model also showed that χ2(df = 134, n = 438) =163.099, p < 0.05,
NNFI = 0.941, CFI = 0.956, RMSEA = 0.025 (0.004~0.038, 90% confidence interval) was valid, which
can be seen as configural invariance (baseline model, a in Table 9).

Second, to verify metric invariance, the factor pattern coefficients were constrained to be equal.
These constraints increased the χ2 value from 163.099 to 175.863, gaining nine degrees of freedom.
Since the metric invariance model (b in Table 9) is nested within the baseline model (a in Table 9),
an χ2 difference test was performed. Since the χ2 difference was not statistically significant at
p = 0.05 (∆χ2 (9) = 12.764), metric invariance was supported. In this study, NNFI (∆NNFI = 0.004),
CFI (∆CFI = 0.005), and RMSEA (∆RMSEA = 0.001) were also considered in addition to the χ2 difference
test. Having considered the above evidence, metric invariance is supported for verifying high-tech
and the low-tech sector firms.
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Table 9. Fit indices for invariance verification.

Model χ2 df χ2/df NNFI CFI RMSEA (90% CI)
Diff. Test

∆χ2 p-Value

Configural
invariance (a) 163.099 * 134 1.217 0.941 0.956 0.025

(0.004~0.038)

Full Metric
invariance (b) 175.863 * 143 1.230 0.937 0.951 0.026

(0.008~0.038)
12.764
(b − a) 0.174

Full Metric and
Scalar invariance (c) 217.134 ** 157 1.383 0.895 0.910 0.033

(0.022~0.044)
41.271
(c − b) 0.004

Full Metric and
Partial Scalar
invariance (d)

192.266 * 153 1.257 0.930 0.941 0.027
(0.012~0.039)

16.403
(d − b) 0.089

Full Metric, Partial
Scalar and Full
Factor Variance
invariance (e)

209.638 * 168 1.248 0.932 0.937 0.027
(0.012~0.038)

17.372
(e − d) 0.297

* p < 0.05, ** p < 0.01, *** p < 0.001.

Third, with the support of the metric invariance model (b in Table 9), scalar invariance was verified
by constraining the intercepts so that they were same across the two sectors. An χ2 difference test
was performed comparing the scalar invariance model (c in Table 9) and the metric invariance model
(b in Table 9). Since the χ2 difference was statistically significant at p = 0.05 (∆χ2(14) = 41.271), scalar
invariance was not supported. By constraining the intercepts to be equal, the NNFI, CFI, and RMSEA
also deteriorated. Therefore, partial metric invariance verification was attempted using the modification
indices. The logic of partial metric invariance is: “There may or may not support a constraint for several
measurement variables across the population. In this case, releasing the constraint on invariance in
variables where there are no constraints on invariance is partially a method to consider the partial
measurement variance.” [62]. Since not all parameters should be equal in comparing a measurement
structure between groups [63], partial invariance verification can be performed in multi-group analysis
studies by releasing constraints on non-equal parameters. As a result of this prior study, the model
(partial scalar invariance model, d in Table 9) with the unconstrained intercepts of ERC(1), ERC(2),
and RAC(2) with large modification indices was evaluated against the metric invariance model (b in
Table 9) using the χ2 difference test. Since the χ2 difference was not statistically significant at p = 0.05
(∆χ2 (10) = 16.430), partial scalar invariance was supported. Furthermore, partial scalar invariance also
yielded a substantial improvement in RMSEA and NNFI compared to the full scalar invariance model,
based on previous research [62,63] that recommends that full metric/scalar invariance is not necessary
for further tests of invariance and substantive analysis (such as comparisons of latent means).

Fourth, with the partial scalar invariance model (d in Table 9), the factor variance invariance was
verified in the potential mean analysis to yield the effect size. A χ2 difference test was performed
comparing the factor variance invariance model (e in Table 9) and the partial scalar invariance model
(d in Table 9). Since the χ2 difference was not statistically significant at p = 0.05 (∆χ2 (15) = 17.372),
the factor variance invariance was supported. As a result of comparing the latent means by setting
the high-tech sector as the reference group (the mean levels of five factors were fixed at zero), it was
found that there were differences in latent means between sectors in internal R&D capability and
technological innovation. Specifically, the firms in the high-tech industry sector have a higher level
of internal R&D capability and technological innovation than those in the low-tech industry sector.
Analysis of effect sizes in accordance with the criteria of Cohen [64] showed that the effect size was
large, with the value of Cohen’s d all greater than 0.2, as shown in Table 10. Therefore, Hypothesis 5
was accepted.
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Table 10. Difference analysis of latent mean variables.

Latent Variable
High-Tech Low-Tech

Effect Size(d) Total M
Latent M M Latent M M

IRD 0 1.55 −0.186 * 1.29 −0.939 1.39
ERD 0 0.16 0.021 0.19 0.226 0.18
PAC 0 3.45 0.014 3.47 0.122 3.46
RAC 0 0.31 0.047 0.33 0.588 0.32

INNO 0 2.22 −0.217 * 2.16 −0.493 2.19

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.6. Verification of Diffrence in the Multi-Group Path Coefficients

We conducted validation of configural, metric, and structural invariance to determine if there
were differences in the path coefficients of the structural relationship between the corporate R&D
capabilities, absorptive capacities, and technological innovation according to industrial sector. First,
configural invariance verification results showed χ2(df = 154, n = 438) = 190.077, p < 0.05, NNFI = 0.912,
CFI = 0.956, RMSEA = 0.026 (0.010~0.038, 90% confidence interval) and supported configural invariance.
Next, with the support of configural invariance model (a in Table 11), metric invariance was verified.
A χ2 difference test was performed comparing the metric invariance model (b in Table 11) and the
configural invariance model (a in Table 11). Since the χ2 difference was not statistically significant
at p = 0.05 (∆χ2(9) = 17.044), the metric invariance was supported. Finally, with the support of the
metric invariance model (b in Table 11), structural invariance was verified by constraining the path
coefficients to be the same across the two sectors. A χ2 difference test was performed comparing the
structural invariance model (c in Table 11) and the metric invariance model (b in Table 11). Since the
χ2 difference was statistically significant at p = 0.05 (∆χ2(4) = 11.059), structural invariance was not
supported. These results indicate that differences exist between two sectors in this model and means
there are differences in the path between two sectors. The difference in path coefficients for high and
low-tech sectors estimated through structural invariance verification is shown in Table 11.

Table 11. Fit indices for invariance verification.

Model χ2 df χ2/df NNFI CFI RMSEA (90% CI)
Diff. Test

∆χ2 p-Value

Configural
invariance (a) 190.077 ** 154 1.234 0.912 0.923 0.026

(0.010~0.038)

Full metric
invariance (b) 207.121 ** 163 1.271 0.909 0.920 0.030

(0.016~0.040) 17.044 0.071

Structural
invariance (c) 218.181 ** 167 1.306 0.906 0.913 0.030

(0.018~0.040) 11.059 0.019

* p < 0.05, ** p < 0.01, *** p < 0.001.

Additionally, to determine which paths differ between two sectors, the model that constrains
each path coefficient was compared with the baseline model (b in Table 11). The least difference in
path coefficients was verified sequentially. Table 12 shows an analysis result based on a cross-group
equality constraint, indicating the difference in χ2 after the equality constraint was imposed on each
path. Verification showed that the effect of internal R&D capability on potential absorptive capacity
and technological innovation has a stronger positive effect on the high-tech sector than on the low-tech
sector. The other paths were found to have no significant differences between the two sectors. Therefore
Hypothesis 6 was accepted and the paths of the final model according to the industry sector are shown
in Figure 5.
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Table 12. Result of multi-group comparison.

Paths
High-Tech Low-Tech

∆χ2 ∆df
b β b β

IRD→INNO 12.125 * 0.854 3.288 * 0.233 4.108 * 1
PAC→RAC 0.341 ** 0.434 0.433 ** 0.426 0.227 1

PAC→INNO 0.023 0.013 0.451 * 0.207 0.260 1
ERD→PAC 0.133 0.099 0.283 * 0.338 1.175 1
IRD→PAC 3.351 * 0.418 0.063 * 0.010 4.833 * 1

ERD→INNO 0.088 0.037 −0.051 −0.028 0.020 1
RAC→INNO 0.279 * 0.123 0.779 * 0.364 0.207 1
ERD→RAC 0.733 * 0.698 0.178 * 0.209 1.229 1
All strains 12.059 8

* p < 0.05, ** p < 0.01, *** p < 0.001.
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5. Discussion, Implications and Limitations

Based on the theory of dynamic capability [14,65], this study verified the process of R&D
capabilities generating innovation using a structural equation model, and also conducted a multi-group
analysis to verify differences according to technology level in the proven structural model.

First, the analysis of the structural model confirmed that the corporate R&D capability had a
positive effect on the absorptive capacity. The internal use of a firm’s resources for R&D input and a
formalized linkage structure with the external environment to secure deficient technology enhanced
the potential absorptive capacity via acquisition and assimilation of knowledge. Thus, our results
support previous research [41] that describes learning and utilization. Furthermore, because external
technological knowledge is secured to save time and money, it is available immediately, meaning that
it is used to transform and exploit knowledge as realized absorptive capacity. In addition, the indirect
effect of an entity’s internal R&D capacity on its realized absorptive capacity, by mediating potential
absorptive capacity, was also identified. Potential absorptive capacity was identified as having a
positive effect on realized absorptive capacity, consistent with previous research [32] that found that
internal R&D resources and the knowledge obtained by the external R&D linkage structure is a process
of creating value that leads to R&D growth, including product development.

As a result of verifying the effect of R&D capabilities and absorptive capacities on firm’s
technological innovation, the internal R&D capability and realized absorptive capacity were found to
have a direct effect on technological innovation. In contrast, the external R&D capability and potential
absorptive capacity were not found to have a direct effect on technological innovation. However,
the indirect effect of potential absorptive capacity as a mediating role for the realized absorptive capacity
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was confirmed. This supports the results of studies in which R&D resources accumulated by the firm
were found to be an important factor in innovation [39] and the realized absorptive capacity affected
by the potential absorptive capacity was found to generate a firm’s performance [32]. Thus, this study
suggests that R&D capabilities and absorptive capacities are significant factors in a firm’s innovation
performance, especially when the internal R&D capability and the realized absorptive capacity are
increased. In addition, from an open innovation perspective, the current results are consistent with
a previous study [66] that found that external resources, knowledge, and technology do not directly
affect innovation performance, but lead to performance through appropriate internal utilization.

Second, the latent mean analysis found that there was mean difference between industrial sectors
in internal R&D capability and technological innovation. Specifically, both internal R&D capability and
technological innovation are high in the high-tech sector. This supports the results of prior research that
show that the high-tech industry has high R&D intensity [53] and innovative activities are undertaken
in the science-based industry [46].

Third, verification of the difference of the multi-group path coefficient confirmed that there were
differences in the path coefficients between sectors in the path in which the effect on the potential
absorptive capacity and technological innovation of internal R&D capability was dependent on
the technology level. Specifically, the internal R&D capability of the high-tech sector has a greater
effect on potential absorptive capacity and technological innovation than that of the low-tech sector.
This suggests that variation in the structure of the effect of R&D capabilities and absorptive capacities
on firm’s innovation is dependent on the technology level.

Based on these results, this study is meaningful due to its implications for firms to enhance their
R&D capabilities and support policies. First, because internal R&D capability was identified as a
significant variable in the structural model for absorptive capacity and innovation, R&D capability
development policies should be implemented in consideration of industry characteristics. This is
particularly the case in the low-tech sector, in which support policies should aim at accumulating
R&D resources, such as R&D human resources development and R&D funding. Second, firms in the
low-tech sector are required to support policies related to learning and management of knowledge
based on their own R&D capabilities, and to solve problems and provide institutional support for R&D
implementation for product development and process innovation. In addition, from the corporate
perspective, the difference of R&D capabilities and innovation pathways by the industrial sector is
significant. Due to this difference, open innovation should consider the industrial characteristics
and innovation systems, rather than being indiscriminate, thus helping enhance the usefulness of
open innovation.

The limitations of this study and suggestions for future studies are as follows. First, the use of
secondary data requires that careful attention is paid to the interpretation of research results based on
conceptual and operational definitions of variables. Since the HCCP Survey is not an investigation
aimed at measuring R&D activity, it is necessary to collect more variables for R&D capabilities. Second,
various theories related to capability modeling in industry exist. Thus, comprehensive consideration
of individual-level and organizational-level capabilities is required. A multi-level analysis must
therefore be performed so that the individual’s job and basic capabilities associated with R&D can be
linked to organizational capabilities. Third, this study attempted a cross-sectional approach; thus, it is
necessary to examine using a longitudinal approach how R&D capabilities and absorptive capacities
change and which variables affect that change process. Since the HCCP Survey used in this study
comprises panel data, we would like to conduct further study using a research model design that
reflects dynamic changes.
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