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Abstract: Did the diesel scandal of 2015 affect the market for cars? We consider this question in relation
to Germany, Austria, and Switzerland. Starting with historical registration data of cars with different
drivetrain technologies, we considered each technology in isolation and fitted a five-parameter
Bertalanffy–Pütter (BP) growth model to the stocks of cars. We used this model as it generalizes
several well-known three-parameter models, which are distinguished by their exponent pair, e.g.,
Brody model BP (0, 1), West model BP (0.75, 1), and logistic growth BP (1, 2). We then used these
models to derive a Lotka–Volterra (LV) model for the co-evolution of the (annual) market shares
of the different drivetrain technologies. We augmented this model by a consideration of model
uncertainty and found that initially all technologies were in a state of competition, except for Austria,
which changed in 2015 to a predator–prey situation with diesel as the sole prey. This analysis of
model uncertainty compared the best-fitting growth curve with the growth trajectories of other likely
(Akaike weight 5% or higher) models of BP type. We conclude with remarks about open innovation.

Keywords: Akaike information criterion (AIC); Bertalanffy–Pütter (BP) differential equation; dynamic
competition; growth model; Lotka–Volterra (LV) differential equation; simulated annealing

1. Introduction

1.1. Background

The use of conventional cars in cities has been criticized for hazardous emissions of nitrogen
oxide (NOx) and particulate matter [1]. These emissions are known to trigger asthma, bronchitis, and
other respiratory and cardiovascular diseases [2,3]. In response, authorities worldwide have made
emission standards more stringent in order to pressure the automotive industry towards developing
more environmentally friendly cars.

This legislation raised interest in environmentally friendly alternatives, such as hybrid cars,
fuel-cell cars, and battery-driven electric cars [4]. For instance, China has formulated a strategic
plan to promote market penetration of battery-powered electric vehicles, aiming at resolving the
massive pollution (haze) of its mega-cities as well as reducing dependence on imported oil [5]. In
Europe, the green cars initiative developed a roadmap toward electrification, pointing out that the
major differences between conventional and green technologies would be the aspects of energy and
resource security, climate change, public health, freedom of mobility, and economic growth [6]. The
European Commission, too, noted that transport sector electrification would be essential “for meeting
the European Union goals of decarbonization and energy security, as it accounts for 25% of all CO2

emissions in Europe” [7].
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1.2. The Diesel Scandal and the Problem of the Paper

In the view of consumers, the turbocharged diesel engine possesses the same power and capacity as
the gasoline engine, and it has advantages in terms of torque and fuel economy if used on highways [8].
By promoting diesel cars for these reasons, VW (Volkswagen) became a substantial seller in the USA
car market [9]. However, for diesel cars, the strict regulations resulted in the opposite of the expected
outcome [10]. During the scandal over VW in 2015, VW was accused of having installed defeat devices
in its diesel cars that allowed them to produce more pollution on the road than during laboratory
tests. While gasoline cars were made cleaner by three-way catalytic converters [11], VW used nitrogen
oxide storage catalytic converters for diesel cars. However, these were of low durability and the defeat
device “fixed” this problem [12]. Other car makers soon faced similar charges (BMW, Fiat Chrysler,
Ford, General Motors, Mercedes).

In this paper, we ask the following question: Did these events have long-term effects on consumer
purchasing behavior? Some authors denied that, in the long run, the diesel scandal would have affected
the market standing of diesel cars [13], as “VW recorded strong sales in the years immediately following
the scandal” [14]. Furthermore, all means of private transportation may have a negative impact on
the environment, including air pollution of traditional fuel driven cars [15], ground-level ozone (O3)
impact from electric cars [16], nuclear disasters from atomic power plants that provide the energy
needed for electric cars [17], as well as global warming caused by methane (CH4), if animal-pulled
carriages would replace conventional vehicles. Perhaps consumers might be overtasked if they were
asked to consider all these environmental concerns in their decision-making. Indeed, consumers may
have purchased diesel cars because they deemed them to be more environmentally friendly than their
gasoline counterparts. This was the case when, two decades ago, greenhouse gas emerged as a global
policy issue (1997 Kyoto Protocol): diesel vehicles were promoted because they had lower carbon
dioxide (CO2) emissions per kilometer [18,19].

We analyze the long-term dynamics of the car market of three countries in more detail, namely
Germany, Austria, and Switzerland. Germany is renowned for its automotive industry, which employs
about 0.8 M people (data for 2012: [20]). In Austria and Switzerland, each with around a tenth of the
German population, the automotive industries employ around 32,000 and 34,000 people, respectively.
We selected these countries because VW is a German-based company. Furthermore, other than in the
USA, where VW offered adequate compensation [21], consumers of the three countries had to sue VW
for compensation. Only recently did the Federal Supreme Court of Germany (25 May 2020, case VI ZR
252/19) rule that VW must recall its cars.

2. Methods

2.1. Outline of the Approach

The progress in the analytic methods for market diffusion is illustrated by the proliferation of
models, but there is no consensus on the best of these approaches [22]. In this paper, we aim at
modeling the growth of the stock of cars with different drivetrain technologies (Table 1). For this type
of problem, trend models, such as logistic growth, are common [5,23]. We improve this by using the
Bertalanffy–Pütter (BP) growth model, which generalizes the common trend models and therefore
achieves a better fit. In the initial step, we model the growth curves of each drivetrain technology
independently of the other technologies by using the BP model to describe its stock (y) of cars over
time (t). The growth functions y(t) of the BP model are solutions of the differential Equation (1) of
Pütter [24]. The parameters of the model are determined from fitting the growth curve to data (details
below and in Table 2):

y′(t) = p·y (t )a
− q·y (t )b (1)

We then ask if perhaps a simpler model might suffice, using three instead of five parameters;
examples are the logistic and the Gompertz growth models.
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Trend models have the disadvantage that they investigate single products in isolation. We
therefore continue with a system dynamic approach [28] that uses a generalized Lotka–Volterra (LV)
system of differential Equation (2) to model the dynamics of the market shares of the competing
drivetrain technologies. We use this model to unveil otherwise hidden changes in the characteristics of
the market dynamics of the three countries. Thereby, one of the technologies (index i = 0) is the outside,
which supposedly does not affect the market dynamics. For the other technologies, the market shares
zi(t) interact as in Equation (2). We will use the BP model to find suitable coefficients gi(t) for the LV
equations (details below).

z′i (t)

zi(t)
= gi(t) −

∑
j≥1

g j(t)·z j(t) for i ≥ 1 (2)

Finally, to justify our conclusions about the changes in the character of the market dynamics, we
analyze model uncertainty and proceed with simulations of the car market (Table 3) using certain
three-parameter models with a nearly best fit. We thereby define “nearly best fit” using the Akaike [29]
information criterion (roughly, it identifies the likely models and, for the model curves, there is barely
a visible difference to the data.) We think that the conclusions drawn from model uncertainty are
more reliable when compared to conclusions drawn from a parameter variation with randomly varied
parameters, since we use only models with the best fit to given data.

Table 1. Annual car registrations.

Year Hybrid Electric Liquid Gas Natural Gas Petrol Diesel

Austria

2011 1310 631 - 262 159,027 194,721
2012 2171 427 - 274 143,325 189,622
2013 2573 654 - 455 134,276 180,901
2014 1823 1281 - 279 126,503 172,381
2015 2241 1677 - 167 122,832 179,822
2016 3324 3826 - 119 131,756 188,820
2017 6483 5433 - 114 163,701 175,458
2018 7473 6757 - 110 184,150 140,111
2019 14,304 9242 - 421 176,706 126,311

Germany

2012 21,438 2956 11,465 5215 1,555,241 1,486,119
2013 24,963 6051 6255 7835 1,502,784 1,403,113
2014 22,908 8522 6234 8194 1,533,726 1,452,565
2015 22,529 12,363 4716 5285 1,611,389 1,538,451
2016 47,996 11,410 2990 3240 1,746,308 1,539,596
2017 55,239 25,056 4400 3723 1,986,488 1,336,776
2018 98,816 36,062 4663 10,804 2,142,700 1,111,130
2019 175,969 63,281 7256 7623 2,136,891 1,152,733

Switzerland

2005 - 13 - 442 185,120 74,114
2006 1272 9 - 1064 185,807 80,857
2007 3220 19 - 1653 185,055 92,333
2008 3092 24 - 1136 189,151 93,366
2009 3900 57 - 1063 182,174 78,755
2010 4250 201 - 721 200,576 90,547
2011 5462 452 - 651 211,540 109,324
2012 6708 924 - 519 200,576 124,911
2013 7158 1392 - 791 185,070 115,656
2014 6893 1948 - 1041 180,875 113,304
2015 8785 3882 - 1080 185,469 127,899
2016 10,587 3525 - 944 178,666 125,595
2017 11,846 4929 - 769 183,637 113,848
2018 15,432 5411 - 805 188,847 90,360
2019 26,376 13,197 - 1252 192,430 79,618

Sources: Compiled by the authors using internet resources [25–27].
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Table 2. Parameters for Equation (1) with best fit to the stock of cars (computed from Table 1).

Country Typeof
Car

Best-Fit Parameter of the BP Model Goodness of Fit Data Characteristics

a b c p q SSE R2 (%)
NRMSE

(%) Count n Grid Size Mean

A
us

tr
ia

A
T

Petrol 0.27 0.60 1.83 × 105 3.90 × 103 3.21 × 10−1 2.22 × 109 99.82 2.19 9 3.94 × 104 7.17 × 105

Diesel 0.11 3.02 2.01 × 105 4.41 × 104 1.79 × 10−14 4.62 × 108 99.97 0.79 9 3.94 × 104 9.06 × 105

Electric 1.25 1.37 6.04 × 102 2.27 × 10−1 5.89 × 10−2 2.60 × 105 99.97 1.82 9 3.99 × 104 9.34 × 103

Nat. Gas 0.00 0.23 2.50 × 102 9.73 × 102 1.45 × 102 7.15 × 104 97.63 6.85 9 3.94 × 104 1.30 × 103

Hybrid 1.12 1.13 2.85 × 103 1.70 × 10−1 5.47 × 10−2 5.01 × 106 99.63 5.11 9 3.96 × 104 1.46 × 104

Sw
it

ze
rl

an
d

C
H

Petrol 0.19 0.76 1.87 × 105 1.86 × 104 1.70 × 100 1.09 × 109 99.99 0.56 15 3.94 × 104 1.51 × 106

Diesel 0.35 3.30 9.15 × 104 1.09 × 103 2.78 × 10−16 1.63 × 109 99.95 1.35 15 4.46 × 104 7.70 × 105

Electric 0.88 0.89 2.23 × 101 2.10 × 100 8.11 × 10−1 7.04 × 106 99.56 9.45 15 3.92 × 104 7.25 × 103

Nat. Gas 0.00 0.17 6.63 × 102 1.84 × 103 2.08 × 102 1.36 × 106 99.41 4.05 15 3.94 × 104 7.45 × 103

Hybrid 0.80 0.81 4.47 × 103 3.12 × 100 1.14 × 100 6.94 × 107 99.55 5.61 14 3.94 × 104 3.97 × 104

G
er

m
an

y

G
E

Petrol 0.24 0.27 1.58 × 106 4.15 × 104 1.50 × 10−1 3.91 × 1010 99.97 0.94 8 3.86 × 104 7.45 × 106

Diesel 0.64 0.95 1.51 × 106 2.57 × 102 1.48 × 100 1.10 × 1010 99.99 0.57 8 3.94 × 104 6.46 × 106

Electric 1.00 1.01 6.56 × 103 7.08 × 10−1 2.23 × 10−1 3.36 × 107 99.84 3.77 8 3.94 × 104 5.44 × 104

Nat. Gas 0.10 0.36 6.78 × 103 2.64 × 103 2.75 × 101 3.24 × 107 98.05 7.14 8 3.94 × 104 2.82 × 104

Liq. Gas 0.00 0.60 1.23 × 104 5.97 × 103 2.28 × 100 9.27 × 106 99.08 3.61 8 3.96 × 104 2.98 × 104

Hybrid 1.14 1.15 3.29 × 104 7.44 × 10−2 4.57 × 10−4 2.56 × 108 99.84 3.41 8 3.94 × 104 1.66 × 105
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Table 3. Percent (and percent of total weight) of simulations resulting in certain scenarios.

Scenario 2013 2014 2015 2017 2019 2021

Pairwise competition
AT t = 2:1 70% (88%) t = 3.5: 100% (100%) t = 4.5: 99% (100%) t = 6.5: 98% (97%) t = 8: 97% (92%) t = 10: 45% (45%)
CH t = 8: 98% (99%) t = 9.5: 76% (78%) t = 10.5: 12% (7%) t = 12.5: − t = 14: − t = 16: −
DE t = 1: 75% (86%) t = 1.5: 58% (74%) t = 2.5: 30% (41%) t = 4.5: 4% (2%) t = 7: 35% (18%) t = 9: 18% (15%)

Diesel as the sole prey
AT t = 2: 6% (2%) t = 3.5: − t = 4.5: 1% (0%) t = 6.5: 2% (3%) t = 8: 3% (8%) t = 10: 2% (4%)
CH t = 8: − t = 9.5: 21% (20%) t = 10.5: 84% (90%) t = 12.5: 93% (91%) t = 14: 88% (84%) t = 16: 46% (50%)
DE t = 1: 12% (4%) t = 1.5: 24% (12%) t = 2.5: 54% (49%) t = 4.5: 94% (97%) t = 7: 62% (80%) t = 9: 14% (31%)

Diesel and petrol as the
sole prey

AT t = 2: 24% (10%) t = 3.5: − t = 4.5: − t = 6.5: − t = 8: − t = 10: −
CH t = 8: − t = 9.5: 3% (2%) t = 10.5: 4% (3%) t = 12.5: 7% (9%) t = 14: 12% (16%) t = 16: 10% (18%)
DE t = 1: 8% (5%) t = 1.5: 17% (12%) t = 2.5: 16% (10%) t = 4.5: 2% (1%) t = 7: 3% (2%) t = 9: 1% (0%)

Notes for both tables: accuracy to the last decimal displayed; grid size is the number of grid points (yellow dots in Figure 1) used; 1: time t of the model (for different data the same year
corresponds to different t), followed by the percent of simulations, with the indicated result and (in brackets) of the total weight, or by “−“ if the scenario is rare.
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2.2. Data

For Table 1, we retrieved the annual registrations (sales figures of new cars) from publicly available
online resources. We distinguished gasoline-powered cars, diesel cars, electric cars, hybrid cars, and
cars powered by natural gas or liquid gas (liquified petroleum gas). To make the data comparable,
we combined certain data (e.g., hybrid cars using gasoline or using diesel) and we ignored rare
technologies (e.g., Switzerland counted vehicles without a motor). Note that, for Switzerland, the data
for hybrid cars were not available for the first year.

As growth models in general are not suitable in situations where growth and decay both occur,
we modeled the stock of cars. We therefore used Table 1 to compute the accumulated registration data
for the mentioned technologies. If x1, x2, x3, . . . are the registrations from successive years t1, t2, t3, . . .
(Table 1), then the stock is y1 = x1, y2 = y1 + x2, . . . , yk = yk−1 + xk (sum of new sales from the first year
until present). We thereby also achieve a smoothening of the data. For the modeling, we represent the
years by t1 = 0, t2 = 1, t3 = 2, . . . (except for hybrid CH: t1 = 1, as the other CH time series started one
year earlier).

2.3. BP Model

We use the BP growth model, differential Equation (1), to describe the stock y(t) of cars over time.
Equation (1) can be solved analytically, though, in general, not by means of elementary functions [30].
The parameters of the model (Table 1) are the exponent pair a < b, non-negative constants p and q, and
the initial value y(0) = c > 0, where, for each country, t = 0 is the first year of its data (t = 1 for Swiss
hybrid cars). They are determined from fitting the growth curve to data; see Table 2. As we optimize
also for the initial values c, the best-fit values for c in Table 2 will slightly differ from the observed
initial registration data in Table 1.

2.4. Other Growth Models

In the literature, there are several other five-parameter growth models, such as the model of
Bass [31] for market diffusion, which has also been used to model the diffusion of electric cars [32]. We
decided to use the BP model as it is known to be flexible [33] and as it includes as special cases several
simple three-parameter models which have been used previously in the analysis and forecasting of
technology diffusion and business trends [34,35]. Specifically, the modeling of the automotive market
has often used logistic growth [5,23] or the Gompertz model [36–38].

Certain named three-parameter models are defined from (1) by specifying certain exponent pairs
(Figure 1: blue dots). Each pair (a, b) defines a unique BP model BP(a, b) with three free parameters,
such as the logistic growth model BP(1, 2) of Verhulst [39], the Brody [40] monomolecular model BP(0,
1) of bounded exponential growth, the von Bertalanffy [41,42] model BP(1, 2/3), or the more recent
West [43] model BP(1, 3/4). The Richards [44] model and the generalized Bertalanffy model are classes
of BP models (a = 1, b > 1 and b = 1, a < 1, respectively).

The Gompertz [45] model is the limit case BP(1, 1) with a different differential equation, where b
converges to a = 1 from above [46]. When we compare the Gompertz model with other BP models, we
use BP(1, 1.01) as a proxy for the Gompertz model.
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2.5. Sales and Market Shares

Starting with the BP model curve yi(t) fitted to the stock of cars using a certain drivetrain technology
(i), we use the derivative yi

′ as the model curve for the current annual sales xk+1 (at time tk+1 = k, k = 1,
2, . . . ), because xk+1 = yk+1 – yk ≈ yi(tk+1) − yi(tk) = yi(k) – yi(k − 1) = yi

′(k − ζ) for some ζ (intermediate
value theorem). For simplicity, we replace ζ by a fixed time shift 0 ≤ tsi ≤ 1 for all k ≥ 1; i.e., we model
sales xk+1 by the function yi

′ (k − tsi).
To obtain the time shift tsi, we use the method of least squares, minimizing the sum of squared

errors between xk+1 and yi
′ (k − tsi), where yi is the best-fit BP growth function; see Table 4. The market

share si(t) at time t is then given by Equation (3), where the total current sales are the market volume
m(t):

si(t) =
y′i (t−tsi)

m(t) and m(t) =
∑

i∈technologies
y′i (t− tsi) (3)

Table 4. Time shifts to relate market shares and the derivatives of the BP growth functions.

Ctry. ts0 ts1 ts2 ts3 ts4

Gas Hybrid Electric Petrol Diesel

AT 0.39 0.42 0.50 0 0.33
CH 1 0.09 0.34 1 0.22
DE 0 0.44 0.45 0.40 0.50

The computations related to the market shares for Germany use the combined data for natural
and liquid gas cars. This ensures that the market dynamics of different countries are compared using
the same number of comparable technologies

2.6. LV Model

Lotka [47] and Volterra [48] introduced a system of differential equations to model the dynamics
of competing species. Despite its simplicity, this model displays a multitude of possible patterns
of co-existence [49] that made it an attractive model of economic competition [50,51]. Here, we use
the Lotka–Volterra (LV) system (2) with variable coefficients, as, for this system, there is an explicit



J. Open Innov. Technol. Mark. Complex. 2020, 6, 67 8 of 19

solution [52,53]. Variable coefficients are used as they represent situations where companies may
actively influence the competitive roles of their products (e.g., PR and marketing, technological
advances).

One of the technologies (index i = 0) is selected as the outside. Generally, this is the technology
with the lowest market share. For the other technologies, we use the market shares si(t) from above to
define certain functions fi and gi; see Equation (4). For i ≥ 1, the market shares are then solutions si(t) =

zi(t) of the LV system (2) with these coefficients gi. The market share z0(t) is the difference to 100% of
the sum of the zi(t), i ≥ 1 (remainder of the market); z0 = s0.

fi(t) = ln(si(t)) − ln(s0(t)) and gi(t) = f ′i (t) for i ≥ 1 (4)

This model has an economic meaning [54]: fi are the (assumed) utilities of consumers for different
drive technologies (the utility of the outside good i = 0 is 0) and, if consumers maximize their utility,
then Equation (2) describes the market shares. Amongst economic applications are, e.g., studies of the
competition between tourism destinations [55] or between ports [56,57].

We use this model to identify the competitive market characteristics [52]. If the two coefficients
gi(t) and gj(t) are positive, then, at time t, the two technologies (i, j) are in a state of competition. If all
coefficients gi(t) of Equation (2) are positive, this is a state of pairwise competition. This means that (at
time t) more sales of cars using any other technology reduce the growth of the own market share. In
the absence of other technologies, the own market share would grow. If one of the two coefficients gi(t)
or gj(t) is positive and the other is negative, then the two technologies are in a predator-prey situation.
The technology with the negative coefficient is the prey, the other one the predator, whereby more
prey enhances the growth of the predator and more predators inhibit the growth of prey. (Other than
in the classical ecological predator–prey model, in this model, the market shares of predators/prey
would grow/decrease also in the absence of prey/predators, whence the process is not circular.) If
both coefficients gi(t) and gj(t) are negative, then the two technologies are in a situation of mutualism
(symbiosis), where the presence of the other technology enhances the own growth. The exceptional
cases, where one or both coefficients vanish, are characterized as commensalism, amensalism, and
neutralism. These cases were observed for LV models of innovation diffusion [58].

2.7. Calibration

We use various measures for the goodness of fit. They are all related to the sum SSE of squared
errors: when fitting the BP growth function to the stock of cars, we seek parameters that minimize SSE.
Thereby, if y(t) is a solution of Equation (1), using certain exponents a < b and parameters p, q, c, if yk
are the stock data at time tk, and if n is the number of data, then SSE is defined by Equation (5).

SSE =
n∑

k=1
(yk − y(tk))

2 (5)

In Equation (6), RMSE is the root-mean-squared-error and NRMSE is the normalized RMSE (as
percent of the mean). R-squared (R2) of Equation (7) is the coefficient of determination that compares
the model fit with the fit by the trivial constant model.

RMSE =
√

SSE/n and NRMSE = RMSE
mean(y1,y2,...yn)

(6)

R2 = 1− SSE∑n
k=1(yk−mean(y1,y2,...yn))

2 (7)

2.8. Data Fitting

Standard optimization tools (e.g., NonlinearModelFit of Mathematica) may not always find best-fit
parameters for model (1). The literature has reported problems already for the simpler Richards
model [59]. This paper uses a grid-search strategy for data fitting. It identifies the best-fit parameters
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for 4 × 104 three-parameter models BP (a, b) using exponent pairs (a, b) on a certain grid, the yellow
area in Figure 1. Figure 2 plots these growth curves (they cover the yellow area) together with the
best-fit curve corresponding to the best-fit exponent pair (black).J. Open Innov. Technol. Mark. Complex. 2020, 6, x FOR PEER REVIEW 9 of 19 
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Figure 2. Stock of electric cars in Austria during 2011–2019. Note: stock data (blue dots), best-fit growth
curve (black) with the best-fit exponents of Table 2, band of growth curves with an Akaike weight of 5%
or higher (red), and band of the best-fit growth curves using any exponent pair from the search grid
(yellow); plot using Mathematica 12.1.

The search starts with a grid (step size 0.01 in both directions) of exponent pairs (Figure 1). For
each grid point (a, b), we seek the best-fit parameters (p, q, c) for the three-parameter model BP (a,
b); the so minimized sum of squared errors is SSEopt (a, b). This optimization uses a custom-made
variant of the method of simulated annealing [60,61]. The outcome of optimization is exported into a
spreadsheet (its columns list a, b, c, p, q, and SSE). The best-fit parameters (amin, bmin, cmin, pmin, qmin) of
the grid are identified from the row with the lowest value of SSE. This defines the overall lowest SSE
of (1) as SSEmin = SSEopt (amin, bmin). If the best-fit exponent pair is on the upper or left boundary of the
grid, then we enlarge the grid near this boundary and repeat the search, until an optimal inner point is
found. This optimizes the exponents amin, bmin with an accuracy value of 0.01 (for the other parameters,
we use a higher accuracy value.)

2.9. Model Uncertainty

For each type of technology and each country, there is a different best-fit model for the growth of
the stock of cars. We now ask if a simpler modeling approach is feasible: is there one exponent pair (a,
b), so that BP (a, b) has a good fit to all growth data? For instance, can all growth curves be modeled
by the often-used logistic model? We use two approaches to address this question. One measures
goodness of fit in terms of R2, the coefficient of determination. It asks which R2 values were obtained
for the data using a specific model.

The second approach focuses on the models that are likely to be true. In Equation (8), AIC is the
Akaike [29] information criterion; it penalizes models that use more parameters (overfitting), whereby
the number p of parameters also counts SSE (e.g., p = 4 for the logistic model). Given a finite set of
models, the Akaike weight prob compares a given model with the overall best-fit model (it has the
lowest AIC: AICmin). Assuming that either the best-fit model or the given model is true, then prob is the
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probability (maximum: 50%) that the given model is true despite its poorer fit [62]. As in Figure 1 (red
area), we then identify all models with an Akaike weight of 5% or higher.

AIC = n· ln
(

SSE
n

)
+ 2·p and prob =

exp
(
−

AIC−AICmin
2

)
1+exp

(
−

AIC−AICmin
2

) (8)

2.10. Simulation

Finally, we explore the extent to which the growth trajectories depend on the choice of growth
model (model uncertainty). To this end, we use a Monte Carlo simulation to identify the growth
patterns of the likely growth curves (red area in Figure 2). To avoid a “junk in–junk out” situation from
a simulation with generally false models, we exclude models from the simulation that are unlikely to
be true. Thus, we select at random 5000 exponent pairs (a, b) of the grid (red area in Figure 1) so that
the model BP(a, b) has an Akaike weight (probability to be true) of prob > 5% when compared to the
best-fit model BP(amin, bmin). We therefore do not penalize the best-fit model for the optimization of the
two exponents, as the optimization was merely a comparison of a given finite set of three-parameter
models defined by a search grid. (Thus, in formula (8), we use p = 4 to count the parameters c, p, q,
and SSE; n is the number of time-points.) The upper and the lower function values of the 5000 best-fit
growth curves then define the band of the growth scenarios that can be obtained from the likely models
(Figures 2 and 3, red area).
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Figure 3. Annual registrations of electric cars in Austria from 2012 to 2019. Note: blue dots are the
registrations (sales) xt, the black line is the derivative y′(t–ts) of the best-fit curve from Figure 2, using a
time shift ts = 0.5, and the red band restricts the range of the derivatives of growth curves with red
exponent pairs (Figure 1); plot using Mathematica 12.1.

We apply the simulation approach to identify the most likely scenarios for the competition
between the different technologies. To this end, for each technology, we select at random a growth
curve with Akaike weight of at least 5% and we combine these growth curves to define the market
shares and the corresponding LV equations. We then classify for each simulated dynamic model its
pattern of competition (scenario) at a given moment in time. The outcome indicates the percentage of
the 5000 simulations for which a certain scenario is observed. We are particularly interested in three
scenarios: pair-wise competition of all technologies (meaning business as usual), diesel as the sole
prey (perhaps a consequence of the diesel scandal), and diesel together with petrol as the sole prey (a
preference of consumers for green technologies). In addition, we inform about the relative weights
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of the scenarios. Therefore, the weight of a simulation is the product of the Akaike weights of the
selected growth functions for the different technologies. The total weight is the sum of the weights of
all 5000 simulations.

3. Results

3.1. Graphical Review of Methodology

Figures 1–5 explain our methodological approach for a concrete example, the electric car data
from Austria (Table 1). The grid search has reduced optimization to the search for the best-fitting
model amongst those with exponent pairs in the search grid (yellow area in Figure 1). The blue dots in
Figure 1 are the exponent pairs of certain named three-parameter growth models. The black dot is the
exponent pair (amin, bmin) of the best-fit model. None of the exponent pairs of the named models have
been close to this optimal exponent pair. The red area of Figure 1 collects 22,442 exponent pairs of
BP models with an Akaike weight of 5% or higher when compared to the best-fit model. The frayed
appearance of the red area reflects the random character of simulated annealing; it leads to slight
fluctuations of the accuracy for different grid points.
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Figure 4. Market shares of electric cars in Austria from 2012 to 2019. Note: blue dots are market share
data, the blue line is estimate from Equation (2), using the curve from Figure 3, and the red band
restricts the range of the derivatives of the growth curves red exponent pairs (Figure 1); plot using
Mathematica 12.1.

Figure 2 plots the stock (accumulated registration data) of electric cars (AT) during the years
2011–2019 (blue) and the best-fit BP growth curve to these data (black). It corresponds to the black
exponent pair and uses the best-fit exponents from Table 2. The yellow and red bands in Figure 2
summarize the outcomes of Monte Carlo simulations: it displays, for discrete points in time (t = 0, 1,
. . . , 10), the minimum and maximum of the function values of the 5000 randomly selected growth
functions whose exponent pairs come from the yellow and red areas of Figure 1, respectively. The
figure connects these points by lines and the intermediate area is shaded accordingly. The yellow area
is relatively broad, as it includes also poorly fitting models. However, as each of the randomly selected
model curves is a best-fit curve subject to the choice of the exponent pair, the yellow area is not too
remote from the data-points. The red band (growth curves of other likely models) is close to the data.
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Figure 5. Utility for electric cars in Austria from 2012 to 2019. Note: utility function computed from
the best-fit BP model (blue line) and red band describing the range of the utilities derived from other
growth curves with an Akaike weight of 5% or higher; plot using Mathematica 12.1.

Figure 3 compares the data of Table 1 for electric cars (AT) with the derivatives of the best-fit curve
and the curves from the random sample with red exponent points (Figure 1). Table 4 lists the used
time shifts. For the simulations, we used the same time shift ts as for the best-fit model. For the annual
sales data (x2, x3, . . . , x10 of Table 1), the fluctuations around the model curve y′(t–ts) are much higher
than the fluctuations of the accumulated data yn around the BP growth curve y(t). However, as the red
band (sales data from other likely models) is wide, high fluctuations are to be expected.

Figure 4 compares the market shares for electric cars (AT) with Formula (2), the estimate for the
market shares using the best-fit model. As the market share cannot be computed in isolation, this
computation uses the best-fitting growth curves for all technologies. The computation of the red band
of the most likely market shares uses 5000 simulations, where, for each technology, one best-fitting
BP-growth curve is selected at random. More specifically, for each technology, one exponent pair (a, b)
in the red region (of the analogue to Figure 1) is selected at random and the growth curve from the
model BP(a, b) with the best fit to the data of the technology is used.

Figure 5 plots the consumers’ utility for electric cars (AT) based on the best-fit models for the
market shares with gas cars as the outside goods. It compares this curve to the range of the other
likely utilities. A common observation for all best-fit utility functions for all countries was their
approximately parabolic shape.

3.2. Best-Fit Exponent Pairs

Several authors have modeled the growth of the car market by the logistic model [5,23]. This
model achieved an acceptable fit for all 16 data (R2 > 95.21%). The BP models of Table 2 improved
the fit significantly. None of the exponent pairs of a named model were close to a best-fit exponent of
Table 2; an exception was the Gompertz model (close to electric car GE).

From Table 2, the following pattern emerged that seems to relate the technology of a car to the
location of the exponent pair of the best-fitting BP model. The first exponent a was small for gas cars
and the difference b–a was low for electric and hybrid cars. Indeed, for three gas car data (natural gas
in AT and CH, liquid gas in GE), the first exponent was a = 0 (the growth curve was not sigmoidal).
For the fourth gas car data (natural gas in GE), the first exponent was a = 0.01. For the three hybrid car
data and for two electric car data, the best-fit exponents were close to the diagonal (b–a = 0.01). For the
third electric car data (AT), the difference between the exponents was 0.12. Furthermore, b–a was high
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for diesel cars; the maximal differences of the exponents (b–a > 2.9) were realized for two diesel data
(AT, CH).

The original motivation for the BP model was biological [63]: the exponent pairs characterize
certain biophysical situations about the growth of animals [42,43]. While this suggests that the
hypothesis that animals of the same species have similar best-fit exponent pairs to describe their
growth, in our previous work, we did not find evidence to support this hypothesis. We therefore were
surprised by the result of this paper that the best-fit exponents for modeling the growth of the stock of
cars from different countries allowed us to distinguish certain drivetrain technologies: gas cars from
all three countries were characterized by a small first exponent. Green cars (electric or hybrid) were
characterized by a small difference between the exponents.

3.3. Exponent Pairs Leading to Reasonable Fits

Seeking one BP model with a reasonable fit to all data in terms of R-squared, the best choice was
BP(0.7, 0.88), with R2 > 96.93% for all 16 data; this was a slight improvement over the logistic model.
Much better fits were achieved (Table 5) if, for each drivetrain technology, a common model was sought.
The reason was antagonism between gas-powered cars and electric or hybrid cars. (To achieve a better
fit, for the latter, exponent pairs close to the line a = 0 were needed, while, for the former, the exponent
pairs with a better fit were more remote from this line. We observed this antagonism for each country.)
The exponent pairs of these models display a similar pattern with respect to the drivetrain technology,
as we observed previously for the best-fit exponent pairs. Furthermore, while for nine of the 16 data,
an excellent fit of R2 > 99.8% could be achieved (Table 2), no single three-parameter BP model achieved
this good fit for all nine data. The best outcome was achieved by BP(1.19, 1.2), with R2 > 99.8% for
seven data.

Table 5. Models with good fits to all data for certain technologies.

Technology Good-Fit Model Comparison of R2 (%) Alternative
a b Good Fit Best Fit Logistic Alternative Model

Diesel 0.43 2.07 99.93 99.94 99.58 99.91
WestPetrol 0.36 0.72 99.81 99.82 99.35 99.70

Electric 0.88 0.89 99.56 99.56 99.44 99.53 Gompertz
Hybrid 0.99 1.03 99.50 99.54 99.25 99.47

Gas 0.00 0.58 97.57 97.63 95.12 97.45 Brody

Note: For each technology, the table displays the exponent pair of a good-fit model, so that for each of the
data, the minimum of the R2 of the good-fit model attains the maximal value shown. This is compared to the
minimum of the R2 values of the different best-fit models, of the logistic growth model and of an alternative named
model, respectively.

Furthermore, for different technologies, certain named trend models provided fits that were close
to the best achievable fits (Table 5): the Brody model was suitable for gas cars, the Gompertz model
(logistic growth was suitable, too) for electric and hybrid cars (this confirms the finding of [36]), and the
West model (the Bertalanffy model and logistic growth were suitable, too) for conventional cars (diesel,
gasoline). For these models, R-squared was close to the largest R-squared that could be achieved by a
single model for all datasets of these classes.

This observation was corroborated by a consideration of the red region in Figure 1 (recomputed
for each of the 16 data), indicating likely models. The exponent pair of the Brody model was in the
red region for all four gas car data. For the Gompertz model, it was close to the red regions of all
six electric and hybrid car data and in addition of three gas car data (from AT and DE). For the West
model (and the Bertalanffy model), it was in the red region of two conventional car data (gasoline-AT,
diesel-DE) and three gas car data (from AT and DE). For logistic growth, it was in the red region of all
electric and hybrid cars (except hybrid-DE).
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3.4. Market Dynamics

We applied the BP models to explore the evolution of the market characteristics. We first obtained
the best-fit BP models and then we used them to derive the LV Equation (2) for the market evolution.
We selected gas cars as the outside goods as, for all countries, this was a rather marginalized drive
technology. (For GE, we combined liquid and natural gas cars.) In Austria and Germany, the diesel
market shares (computed from the best-fit growth model) decreased during the considered years
2011–2019 and 2012–2019. In Switzerland, diesel shares increased from 2005 to 2013 and decreased
from 2013 to 2019. However, the loss of market shares did not necessarily mean a weaker position
of diesel cars in terms of the market dynamics. This is because (disregarding the outside good), at
the beginning, all technologies in all countries were in a state of competition, i.e., in Equation (2),
all coefficients gi were positive. However, later, a predator–prey dynamic emerged, with diesel cars
as the sole prey (gdiesel < 0): this occurred in Germany and Switzerland in 2014 (t = 2.7 and t = 9.8,
respectively) and in Austria in 2017 (t = 6.6). Another change occurred in 2018 (t = 13.2) in Switzerland,
when gasoline cars became prey, too.

3.5. Did the Diesel Scandal Change the Market Dynamics?

We utilized model uncertainty to arrive at a more differentiated picture of market dynamics in
terms of simulations, which augmented the outcomes for the best-fit models with information about
other possible scenarios and their likelihood. As follows from our simulations (Table 3), in 2015 (year
of the diesel scandal), the market position of diesel cars worsened in Germany and Switzerland. The
role of diesel changed from competitor in 2013 and 2014 to (the sole) prey in 2015 and the following
years. However, in Austria, other than as suggested by the best-fit models, the market standing of
diesel most likely did not worsen, not even in the wake of the diesel scandal.

Table 3 informs about the outcome of the simulations for the years 2013–2021 in more detail:
for all countries, the scenario of pair-wise competition was most likely in 2013 and 2014, and the
scenario of diesel as the sole prey was most likely for 2015–2019, except for Austria, where pair-wise
competition remained the most likely scenario. Thus, for Germany and Switzerland, the simulations
suggest that the best-fit model provided a premature date for the change in the role of diesel. However,
in view of the high number of simulations with diesel as prey in 2013 (Germany) and 2014 (Germany
and Switzerland), it was plausible that, in addition to the diesel scandal, another driver may have
supported the change in 2015. Furthermore, other than for the best-fit model, the simulations suggested
no change in the competitive pattern for Austria and no additional change after 2015 for Switzerland.
Thus, also in this respect, the simulations corrected the best-fit model. This emphasizes the need for an
analysis of model uncertainty to supplement the conclusions drawn from best-fit models.

We conclude that the worsening in Germany and Switzerland may not have been caused by the
2015 diesel scandal alone, as, for the simulations, already prior to the scandal, the standing of diesel
cars deteriorated. We speculate that also government policies to support environmentally friendly
cars by subsidies and privileges (e.g., free parking in cities) may have mattered. Such incentive-based
policies [64] have been common for many years in several countries (e.g., Norway, The Netherlands,
Sweden) and they were implemented also in Germany [65,66]. However, the VW scandal in turn
may have influenced such policy responses, as, e.g., in Germany, it spurred a public debate about
the prohibition of conventional cars, which has been recognized in other German-speaking countries
as well [67]. Thus, the scandal may have eased the consensus finding in municipal councils for the
introduction of disincentives directed specifically against diesel cars. For example, since 2018, the city
of Stuttgart, Germany, has enforced a driving ban on old diesel vehicles to reduce air pollution [66].
Similar proposals were considered in Austria and Switzerland.
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3.6. Forecasts

From the simulations for 2021, we note that the multi-model approach confirmed that modeling
may not be the mathematical equivalent of the “crystal ball”. For all countries, the attempt of a forecast
for 2021 remained inconclusive. The simulations resulted in a proliferation of diverse scenarios and, at
most, 50% of the simulations resulted in one of the three above-mentioned scenarios (which, in most
previous years, accounted for 100%).

The reason is the broadening of the red bands for the extrapolation of the growth functions to the
years 2020 and 2021 (as in Figures 2 and 4 for t = 9 and 10). Thus, for the present data, even forecasts
for the near future that use likely models only carry significant model uncertainty. For this reason, in
this paper, we do not consider forecasting. Furthermore, using trend analysis for this purpose assumes
that the past trends will extend into the near future, while unexpected events (e.g., 2020 Covid-19
pandemic) may result in the falsification of such a prognosis.

3.7. Alternative Methodological Approaches

A simple alternative to our approach uses spline interpolation functions si(t) of the market shares
instead of the BP models. To define the LV model, it uses these splines in Equation (4) to define the
coefficients of the LV Equation (2). While this approach reconstructs the market shares without errors,
the splines result in complicated utility functions and consequently too many and rather questionable
scenarios for the market dynamics (e.g., periods with all market goods in a state of symbiosis, the
electric car as the sole predator, the hybrid car as the sole prey). By contrast, the trend analysis of this
paper assumes more stability for the consumer preferences.

Our approach resulted in a surprisingly simple shape of the consumer utility functions (fi of
Equation (4); c.f. Figure 5. This leads to the question of whether our modeling approach was overly
complex. Why not start with the assumption that utility functions are parabolic in time? One study [68]
has proposed this assumption, which leads to a simple alternative route to a LV model for the market
shares, explained in Equation (9).

fi(t) = ai + bi·t + ci·t2 and zi(t) =
exp( fi(t))

1+
∑

k≥1 exp( fk(t))
for i ≥ 1 (9)

Thereby, z0 is the remainder of the other zi to 100%. The starting point is the assumption that
the utilities of the market goods are quadratic polynomials. The coefficients (ai, bi, ci) of Equation (9)
can be obtained by fitting the polynomial fi(t) to the observed utilities (they are computed from the
observed market shares using formula (3)). Using Equation (9), the solutions zi of the LV Equation (2)
are computed from the utilities [52,53]. Using this approach leads to similar results for the present
data. The weaknesses of both approaches are similar, too: as has been illustrated [68] for different data,
there may be large fluctuations in the observed market shares around the curves zi.

An advantage of the present method over the latter approach is the additional information
(red band) that can be obtained from the multi-model approach. It allowed us to complement the
conclusions from the best-fit model with simulations using models with a nearly best fit. We thereby
could refine the market analysis from the best-fit model.

4. Discussion: Outlook on the Open Innovation in the Automotive Industry

The diesel scandal is a case study for the missed chances that arise if industry avoids open
innovation. When VW and other companies realized that they could not fulfill the high environmental
standards by conventional means (nitrogen oxide storage catalytic converters), they resorted to cheating,
thereby exemplifying secrecy mentality at its worst. VW could have avoided this scandal if it had
been more open to existing research on innovative technical solutions. For instance, new fuel injection
technologies might resolve the pollution problems of diesel engines [69]. Fuel quality might be an
issue, too [70]. Samsung is another example of a large corporation whose closed innovation strategy
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failed [71]: it had to withdraw its “Galaxy Note 7 smartphone” soon after the launch in 2016 (explosion
of devices due to deficient batteries).

The resistance to open innovation in large corporations may be due to incompatible management
structures [72]. However, there is pressure for a transformation of the traditional automotive industry
(see below). As the example of Korean automakers shows, such a transformation of the automotive
industry is already under way. They used open innovation in the form of “crowd innovation”, which
increased their performance, but at the cost of more patent disputes [73].

For a successful change, first, organizational, cultural, and sometimes also legal barriers need to
be removed [74]. Amongst the cultural traits of firms that promote open innovation are a culture of
failure acceptance, intra-venturing attitudes and intra-entrepreneurship, and a “transcendental-live
firm culture” [75]. Such a culture is generally associated with companies from the information
technology sector, e.g., Google or Apple. These are becoming new players in the automotive market,
as software-related issues, such as autonomous driving or connected cars, are becoming ever more
important [76,77]. Electric vehicles are contributing to this transformation, too. While the production of
traditional cars requires high expertise in mechanics, electric cars can be produced by entrepreneurs, e.g.,
Tesla cars. Still, another pressure for the transformation of automotive industry comes from demands
for a circular economy. For example, in 2015, the European Commission set up the action plan “Closing
the Loop” [78]. Remanufacturing conventional cars from end-of-life parts saves energy, materials, and
costs [79]. In developing countries, several companies specialize in this type of production.

5. Conclusions

We have studied the market diffusion of green cars in three countries. We started with the
hypothesis that the diesel scandal might have led to increased sales of electric or hybrid cars. However,
our paper has shown that, in the long run, the consumer behavior was surprisingly stable: the diesel
scandal alone did not change the market characteristics. In Austria, diesel remained competitive and,
in Germany and Switzerland, additional policy measures (prohibitions) were needed to change the
consumer behavior, changing diesel from competitor to prey. However, as the car industry is currently
undergoing a transformation towards more open innovation, we expect (from analogy to information
technology) that the resulting changes from the supply side might create more demand for green cars.
However, more research is needed to support this speculation.
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