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Abstract

This paper provides statistical learning techniques for determining the full own-price market

impact and the relevance and effect of cross-price and cross-asset spillover channels from intraday

transactions data. The novel tools allow extracting comprehensive information contained in

the limit order books (LOB) and quantify their impacts on the size and structure of price

interdependencies across stocks. For correct empirical network determination of such dynamic

liquidity price effects even in small portfolios, we require high-dimensional statistical learning

methods with an integrated general bootstrap procedure. We document the importance of LOB

liquidity network spillovers even for a small blue-chip NASDAQ portfolio.
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1 Introduction

Today increasing attention is directed from understanding the high frequency market microstructure

to measuring its effects on the overall market functioning (see e.g. O’Hara (2015), Obizhaeva and

Wang (2013), Securities et al. (2010), Fleming et al. (2017)). We contribute to this literature

by addressing three main research questions: 1. What is the full price market impact of a limit

order when taking into account that time-varying channels and total amounts of interlinkages

might exist among assets and that these spillovers might differ on different levels of the limit order

book (LOB)? Does such a LOB network analysis lead to a substantial difference in price impact

compared to cases ignoring cross-effects from the LOB? And is there a significant difference of

ask and bid sides on the price impact which can be exploited in trading and hedging strategies?

2. Economically, if we interpret LOB spillovers as liquidity cross-effects among assets, is there

additional linkage information in such networks contained beyond price and volatility spillovers?

3. For empirical answers to 1. and 2., how can we design adequate high-dimensional statistical

procedures for correct estimation and testing of dynamic LOB networks with multiple assets and

different LOB levels per asset? Standard time-series methods are intractable in these cases and

pure machine learning techniques do not yield interpretable network links and cannot assess the

significance of effects. Though the number of assets in our portfolio is not large, the network we

construct not only includes the asset prices, but also the order book information at several levels

of both bid and ask quotes per asset, and, consequently, the network becomes high dimensional

and requires novel techniques for estimation and inference. We therefore develop novel statistical

learning type procedures which are computationally efficient in order to handle the big data setting

of high-frequency observations and large amounts of features even in small portfolios.

Generally, in a high-frequency trading (HFT) world, it is well documented that fundamental mar-

ket concepts are affected by limit orders which contain additional information (see e.g. O’Hara

(2015)). Empirical studies such as Evans and Lyons (2002), Obizhaeva and Wang (2013) and

Hirschey (2020) have already shown that limit orders play an important role in determining price

dynamics by investigating the relation between order flows and price dynamics. Though, strategic

decisions inherent in LOB are naturally multi-asset based and thus lead to a closely interconnected
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complex market structure over time. If we focus on market making strategies of HFT (see Securities

et al. (2010)1), they provide a similar service to that of traditional market makers by engaging in

electronic liquidity provision (see e.g. Hendershott and Seasholes (2007), Hendershott et al. (2011),

Menkveld (2013), Brogaard et al. (2014), Budish et al. (2015)). High frequency market making,

however, places orders across different securities/markets while the classic approach generally fo-

cuses on profits from single asset bid-ask spreads. This causes securities/markets to become tightly

interconnected on all levels of the order book. Thus for assessing the size and channels of the impact

by an order placement, linkages between ask and bid quotes and several levels of depth across secu-

rities might play a crucial role. So far, such cross-asset effects have been neglected in the literature

as their empirical quantification requires innovative high-dimensional statistical techniques.

While LOBs have been analyzed in a variety of ways (see e.g. Parlour (1998), Engle (2000), Roşu

(2009), Handa et al. (2003), Bloomfield et al. (2005)), empirical evidence on the market impact

of limit orders is rare, see Hautsch and Huang (2012), Eisler et al. (2012), Cont et al. (2014) and

Fleming et al. (2017). Moreover, most existing literature focuses on the own-price market impact,

i.e. the price impact caused by a stock’s own order flow, at the level of individual stocks only

and restricted to problems of moderate dimension. Though in practice, when there is a portfolio

consisting of selected stocks from different sectors, each market participant may place market/limit

orders on one side of the book across multiple stocks according to their trading strategies such

as market making/statistical arbitrage, the local decisions and interactions between thousands of

market participants will result in a high dimensional dynamic and connected system. Of particular

interest is to measure the cross-price market impact, i.e., the impact of orders placed in stock A

on the price changes of stock B. Consider, for example, stock A and B coming from the same

sector and their prices are positive correlated, adding a buy limit order of stock A will therefore

induce extra upwards pressure on stock B. We study these impacts in a per stock aggregated

way in order to infer overall market consequences. Insights into the dynamics of the spillovers

within an LOB system are vital for the pricing of assets, but requires practically valid dimension

reduction techniques for already medium-sized portfolios and a valid generalized impulse response

analysis to quantify the impacts. There already exist some theoretical models on spillovers across

1The Securities and Exchange Commission (SEC) divides HFT strategies into market-making strategies, and
opportunistic trading such as arbitrage and directional (order anticipation and momentum ignition) trading.

3



assets via LOB-related liquidity channels such as Foucault et al. (2005). In particular, Cespa and

Foucault (2014) describe a similar mechanism to ours and show cross-asset learning as a source of

liquidity spillovers based on a two-period model with two assets. Our paper provides a novel way to

empirically determine the liquidity spillovers within and across asset classes. Up to our knowledge,

this paper is the first to focus empirically on the effect of trading activity on price dynamics in

a time-varying pattern. We not only provide a comprehensive and thus robust measure for the

market impact of order placements across different stocks, but also empirically examine the main

spillover channels in a LOB portfolio as liquidity cross-effects.

In this paper, we provide three main contributions solving the three key research questions from

above. First, this paper proposes a statistical learning methodology to fully quantify own-price and

cross-price market impacts given potential time-varying LOB network interlinkages. The structure

of this LOB network over time is completely derived from data - in particular without pre-specifying

a topological form or a parametric distribution. In this sense, we offer a novel comprehensive data

science approach to discern information (e.g., trading intensity) from trade data. As indicated in

Easley et al. (2016), “ Traders informed of good news profit by buying and traders informed of bad

news profit by selling, thus creating a trade imbalance. Trade imbalance between buys and sells

can also signal liquidity pressure in markets, leading to subsequent price movements.” A variety

of trade classification algorithms in the literature are devoted to discerning information from LOB

data, such as the bulk volume technique of Easley et al. (2011) and tick rules. Our methodology

departs from previous microstructure research in that we empirically quantify the liquidity pressure

by estimating the market impacts of buys and sells placed in the book for each single stock. To

achieve this, we model the prices and ask/bid market/limit orders for a portfolio in a large vector

autoregressive (VAR) process, and derive the market impact as well as the correlation pattern

among stock prices by a so-called generalized impulse response function (GI). For a shock to a

certain variable in the large VAR system, the GI measures how fast its effects on other variables

decay over time. We estimate the market impact as the dynamic impact from a current shock at

any level of a limit order book on the future price of a stock (best bid/ask price or mid-price) in

the system. Note that a comprehensive measure for the full market impact of each single stock

has widespread consequences for investment and hedging strategies. In particular, in the context
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of optimal order execution for minimizing total transaction costs, a single-stock model as e.g. in

Almgren and Chriss (2001) could be augmented by taking cross-stock interconnections into account.

Second, we are the first to examine potentially time-varying full system interdependencies across

stocks through prices and the information contained in the market/limit orders. By this, we

obtain a network of liquidity spillovers from high-frequency data over time. While there have

been a number of recent studies extracting network linkages from financial data at daily or lower

observation frequencies over time, such as e.g. Hautsch et al. (2014), Giglio et al. (2016), Acharya

et al. (2017) in the systemic risk context, networks at the high-frequency scale come with additional

challenges on the data level. Thus we tackle the non-synchronicity of trade occurrence in HFT by

proposing the so-called size intensity as a measure for trading activity of ask/bid quotes placed

“at market” or “at limit” over a moderate time interval. Furthermore we develop an algorithm

to achieve volume synchronization which also alleviates microstructure noise arising from market

frictions. It has been well documented that the financial market is connected to and shapes the

transmission of risk across sectors (e.g. Billio et al. (2012), Elliott et al. (2014), Di Maggio et al.

(2017)). Though, the time-varying risk transmission between components of different sectors and

within the same sector has been rarely investigated, leaving an important source of risk to be

further analyzed. We address this issue by evaluating the net spillover effects over a sample period

which covers the Brexit announcement. In this way, we can identify spillover channels across stocks

which we document to be important and significant in particular around unforeseen news events.

The identification of these network linkages then allows to correctly quantify the full market impact

of the LOB over time. This is key for investment and hedging decisions, while specific spillover

channels across limit order books are also of independent interest for supervisors and regulators.

Third, we contribute to the empirical network estimation literature by proposing a bootstrap-based

generalized impulse response analysis for a price impact network construction in a practically valid

high dimensional setting. In order to track system interdependencies over time, we must model

and estimate the time evolution of a large system containing not only prices of multiple stocks but

also the market/limit orders on both sides of book for each single stock. This high-dimensional

object enables us to distinguish market impacts on the granular level among each component but

also on an aggregated sector level, allowing us to assess all cross-effects between prices and LOB.
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However its high-dimensionality causes the model to become intractable with traditional statistical

methods such as OLS. We therefore require a penalized learning technique for our time series which

automatically shrinks irrelevant elements to zero and makes identification thus possible in a high-

dimensional setting. Although such regularized estimators are standard for cross-sectional data, as

e.g. the least absolute selection and shrinkage operator (Lasso) Tibshirani (1996), SCAD Fan and

Li (2001), adaptive Lasso Zou (2006), elastic net Zou and Hastie (2005), Dantzig selector Candes

and Tao (2007), it is only recently that such shrinkage techniques became available for time series

data (e.g., see Negahban and Wainwright (2011), Kock and Callot (2015), Basu et al. (2015), Wu

and Wu (2016), Belloni et al. (2012) and Belloni et al. (2013)). We contribute to this literature, by

proposing a bootstrap technique which preserves the sparsity structure from estimation of a vector

autoregressive model (VAR) in its impulse responses. Thus the relevant elements for the dynamics

and for the market impact coincide. In this way, we improve on the classical Diebold and Yılmaz

network approach (Diebold and Yılmaz (2014)) which builds on symmetric generalized forecast

error variance decomposition (GFEVD) after fitting a VAR. In particular, our bootstrap technique

produces directed effects under mild assumptions no longer requiring linearity in the time series

or normally distributed error terms such as in Lanne and Nyberg (2016). Thus we are able to

determine directed market impacts from a high dimensional network of dynamic linkages between

ask and bid quotes and several levels of depth across multiple stocks. But the suggested technical

procedure might also be of independent interest in other network scenarios.

In our empirical results, we show that nine NASDAQ blue chip stocks across three different indus-

tries are sufficient to determine a significant effect of the LOB in market impact. In particular,

we use HFT data of NASDAQ’s historical TotalView-ITCH of the largest companies in capital-

ization for the sectors finance, health care and technology from 06/2016 to 07/2016 covering the

time around the Brexit vote. From the underlying time-varying granular LOB-network we con-

struct three types of networks on different aggregation levels for distilling key points of the market

evolution addressing our three main research questions in a tailored way: By investigating the

relation between order flows and price dynamics, we quantify the effects of order placements and

provide empirical evidence of own-price and cross-price market impacts. We document that overall,

cross-asset effects on prices amount to 30 up to more than 45% on average and document that a
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substantial share of these occur in the quotes. In the 9 stock system, LOB-effects already com-

prise around 21% to 26% of all price impacts which a price-only system would ignore. Moreover,

this share substantially impacts the role of different stocks within the system as net price impact

transmitters or receivers which is key for investment and hedging strategies. We also document

how these proportions vary over time in particular around the Brexit date. In particular, we find

that the financial sector dominates the market in the sense that it has the strongest influence on

the others. Generally, financial stocks are dominated by LOB and cross-asset price effects. For

most Healthcare and technology stocks cross-asset and cross-sector effects are more important. We

show that the impacts caused by ask and bid orders are substantial but also asymmetric, where the

NASDAQ market is quite sensitive to the market sell pressure. Moreover, we compare the impacts

caused by market order and limit orders, and discuss how the depth of the book at which ask/bid

orders are submitted is driving the price. Moreover, we are able to statistically assess not only

the size and structure of effects but also test for their significance level and difference thus identify

meaningful transmission channels.

The rest of the paper is organized as follows. Section 2 introduces the NASDAQ LOB market

and presents the respective data preprocessing technique to tackle the non-synchronicity and mi-

crostructure noise of the LOB data with a volume-synchronization algorithm and pre-averaging.

In Section 3 we outline the methodology. In particular, we show how to efficiently identify the

underlying dynamic high-dimensional VAR structure of the system and how to obtain valid esti-

mates of market impact via a bootstrap procedure. Moreover we characterize different aggregation

levels of networks employed. The empirical results of the impact of LOB networks are shown in

Section 4. In Section 5 we employ the network results to derive the total price dynamics over time

of an uncertainty shock. Section 6 concludes. Generally, all technical details can be found in the

Appendix.
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2 HF LOB-Data and Data Preprocessing

2.1 Data Description

We use high-frequency limit order book data from NASDAQ’s historical TotalView-ITCH. Our

sample portfolio covers three main economic sectors financials, technology and health care which

together comprise around two thirds in capitalization of all NASDAQ traded firms.2 For each

sector, it consists of the three largest blue-chip stocks by market capitalization. Thus we work

with market prices and ask/bid side quotes up to level 3 for nine highly liquid stocks. Table 1

presents an overview of the covered stocks for each industry sector. The sample period comprises

two months from 1st, June 2016 to 31st, July of 2016 containing the date of the Brexit vote which

we take as an event of a mostly unanticipated shock. The data comprises both, visible and hidden

orders for all normal trading days running from 9:30h to 16:00h ET. To avoid erratic effects during

the market opening and closure, we discard the first and the last 15 minutes of each trading day.

The summary statistics for the considered quantities of all stocks are reported in Table 2.

Industry Stock Company MktCap (billion $)
Technology IBM International Business Machines Corp. 171.72

MSFT Microsoft Corporation 499.35
T AT&T Inc. 257.53

Healthcare JNJ Johnson & Johnson 328.91
PFE Pfizer Inc. 206.69
MRK Merck & Co. Inc. 181.56

Finance JPM JP Morgan Chase & Co. 326.04
WFC Wells Fargo & Company 293.39

C Citigroup Inc. 168.06

Table 1: Overview of the stocks in the considered portfolio. MktCap denotes the market capital-
ization by Feb 25th, 2017.

We work with the LOBSTER reconstruction of the LOB based from the NASDAQ TotalView-ITCH

Data.3 In particular, the LOBSTER pre-processing steps match a trade with a corresponding LOB

by a transparent algorithm yielding ready-to-use time series of LOBs with the structure as shown

in Figure 1. The algorithm identifies buy and sell quotes but also detects sub-trades arising from

2The industry breakdown of the NASDAQ market is: technology 45.38%, Health Care 11.43% and Financials
8.42% (as of 23.02.2018.)

3See https://lobsterdata.com1
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NumObs AvgTrd AvgAP1 AvgBP1 AvgAS1
(∗103) (∗103) (in $) (in $) (100 shrs)

IBM 118.25 5.82 153.07 153.04 1.92
MSFT 584.55 25.91 52.28 52.26 24.19

T 223.45 6.67 38.75 38.74 36.36
JNJ 172.77 8.17 113.99 113.98 4.11
PFE 427.51 12.49 34.83 34.82 41.96
MRK 188.84 5.82 56.70 56.68 7.43
JPM 414.35 11.49 65.48 65.46 9.47
WFC 275.29 10.91 50.90 50.89 18.02

C 472.90 12.19 46.82 46.81 14.19

AvgBS1 AvgAS2 AvgBS2 AvgAS3 AvgBS3
(100 shrs) (100 shrs) (100 shrs) (100 shrs) (100 shrs)

IBM 2.17 1.95 2.26 2.09 2.26
MSFT 24.53 28.12 31.06 33.90 35.37

T 33.76 43.63 41.96 55.53 63.67
JNJ 3.62 5.86 4.44 7.74 4.90
PFE 42.29 48.07 48.09 50.94 55.68
MRK 7.36 14.34 11.30 24.20 13.87
JPM 9.45 13.10 11.82 17.41 15.09
WFC 17.01 20.68 17.72 23.58 19.05

C 12.97 18.58 16.48 22.23 19.60

Table 2: Summary statistics for all stocks in the sample. We report respective average values over
the sample period. NumObs denotes the average daily number of observations for each stock.
AvgTrd is the average daily number of trade executions. AvgAP1 (AvgBP1) is the average best
ask (bid) price, AvgAS1 (AvgBS1) is the average volume of the market ask (bid) orders (1st level
of LOB). AvgAS2 and AvgBS2 are the average volumes of best ask and bid limit orders (2nd level
of LOB), and AvgAS3 and AvgBS3 are the volumes of orders placed at 3rd level of LOB.

the execution of a big market order against several (smaller) limit orders if they occur within less

than one second after the previous trade and have the same initiation type. All such sub-trades

are consolidated into a single trade. All orders and trades are time stamped up to the nanosecond

and signed by a ”Direction” and an ”Event Type” ticker in the message file (see Figure 1). Each

such quote is then associated with the corresponding trade and limit order book information. In

particular, the k-th row in the ”message” file (upper panel of Figure 1) describes the limit order

event causing the change in the limit order book from line k − 1 to line k in the ”orderbook” file

(lower panel of Figure 1).

For our study, we consider the mid price and the corresponding bid and ask sizes on the first three

levels of LOB for each stock, i.e. we use the market order, best limit order and 2nd best limit

order. As the LOBSTER reconstruction of the LOB mitigates large unilateral shifts in the LOB by
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“message” file

“order book” file

Figure 1: Structure of the LOBSTER data. In the message file, the ”Direction” ticker indicates
whether a trade is initiated by a buyer or seller with ‘-1’ for sell and ‘1’ for a buy trade. The ”Event
Type” ticker marks the trading type: 1: Submission of a new order, 2: Cancellation (partial deletion
of a order order), 3: Deletion (total deletion of a market/limit order), 4: Execution of a visible
limit order, 5: Execution of a hidden limit order etc.

iceberg type trading effects, the focus on the mid-price appears justified for highly liquid stocks (see

Table 2). As for liquid stocks, tick levels close to the best quotes are mostly filled, all limit prices

can be determined with known constant distance from the best prices. Therefore we conclude that

in our case, they do not contain any additional information but would only increase the dimension

of the system.4 Moreover, our own pre-studies and previous univariate studies abstracting from

cross-effects between different assets (see e.g. Hautsch and Huang (2012)) have both shown that

aggressive limit orders placed close to the best ask and bid have the highest market impact, with

substantially lower price effects from increased distance from the spread. Accordingly, we focus

only on the best three price levels in the book.

2.2 Volume Synchronization Algorithm

This section is devoted to the necessary data preparation steps addressing challenges of multivariate

high-frequency data such as non-synchronicity and microstructure noise. In particular, we propose a

4For less liquid stocks, however, the limit prices might contain valuable information and should be included such
as deeper levels of the book. It is possible to handle these larger scale situations with the presented methods but at
the expense of precision of estimates with increasing dimensions in the system.
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volume synchronization algorithm for our high-dimensional system of price and volumes at different

levels across assets mitigating both problems.

For HFT price data at very high sampling frequencies, it is well documented that microstructure

noise arising e.g. from market frictions contaminates the observed prices. While such noise-induced

bias can of course be decreased with less frequent sampling at the cost of less precise estimates,

generally an optimal sampling frequency attempts to balance the bias-variance tradeoff (see, e.g.

Bandi and Russell (2006), Aı̈t-Sahalia et al. (2005), Bandi and Russell (2008)). When working with

the LOB, however, there are not only prices but also volumes at different levels of the LOB which

must be aligned in time. Therefore we propose the size intensity S̃tj as a trading activity measure,

S̃tj = Stj (tj+1 − tj) (1)

where tj denotes the time stamp of jth LOB, Stj is the corresponding volume at tj . While a

sufficiently large time interval for prices helps to reduce microstructure noise, the time interval for

trading volumes should be small enough to detect effects specific large orders in the book. In order

to match price and volume frequencies extracting the maximum possible amount of information,

we aggregate size intensities over the same moderate size time interval which is required for the

pre-averaging of returns to eliminate microstructure noise.

Thus we suggest a pre-averaging approach in returns and volumes to achieve synchronization and

elimination of microstructure noise. In the following we illustrate the key steps for preparing the

raw HFT data. All technical details can be found in Appendix A. For ease of illustration, the

volume synchronization algorithm can be divided into four steps,

Step 1: Set equally-spaced k time intervals starting at time T0

T0 + k∆T, k = 0, 1, 2, . . . ,K
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Step 2: Define the price P̃ and size S̃ at time T0 + k∆T as

P̃T0+k∆T = Ptm , tm = max{tj ; tj ≤ T0 + k∆T}

S̃T0+k∆T =
∑

T0+(k−1)∆T≤tj≤T0+k∆T

Stj (tj+1 − tj)

where S̃T0+k∆T are the size intensities defined in (1).

Step 3: Compute the changes of the log values to mitigate the impact of outliers and measure

relative changes

∆pT0+k∆T = log P̃T0+k∆T − log P̃T0+(k−1)∆T

∆sT0+k∆T = log S̃T0+k∆T − log S̃T0+(k−1)∆T

Step 4: Pre-average both ∆pT0+k∆T and ∆sT0+k∆T for removing microstructure noise

∆p̃T0+k∆T =

J∑
j=0

gj∆pT0+j∆T , ∆s̃T0+k∆T =

J∑
j=0

gj∆sT0+j∆T

where gj ≥ 0 and
∑J

j=0 gj = 1, the details are in Appendix A.

Preparing data in this way alleviates microstructure noise, matches the price to the size in a

moderate interval and solves the problem of non-synchronicity. We use volumes in log-scale to

mitigate the effect of outliers as is standard in the empirical literature.

We divide the trading period into 1-minute intervals and pre-average both ∆p̃
(n)
t , ∆s̃

br(n)
t and

∆s̃
ar(n)
t to reduce microstructure noise over 15-min, yielding 375 observations per day. With this

we do not only mitigate microstructure noise but also ensure that the considered data is only

mildly dependent over time which is crucial for the subsequent estimators of the large-dimensional

system over time to yield consistent results. We explicitly checked that both final price and volume

components are stationary due to the first differencing in the algorithm with respective univariate

KPSS and ADF tests.5

5Results are omitted here for the sake of brevity but are available upon request.
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3 Statistical Learning Techniques

Our goal is to extract the time-evolution of the LOB system across multiple assets over time in

order to quantify the full market impact of a limit order. For each stock, we consider the mid-price

on the first level and the corresponding bid and ask sizes on the first three levels jointly in the

stock-specific variable ynt ∈ R7×1 defined as

y
(n)>
t = [p(n), as

(n)
1 , as

(n)
2 , as

(n)
3 , bs

(n)
1 , bs

(n)
2 , bs

(n)
3 ] (2)

where p(n) = ∆p̃
(n)
t is the pre-averaged price factor for stock n, as

(n)
r = ∆s̃

ar(n)
t stands for the

corresponding rth level of ask size factor, whereas bs
(n)
r = ∆s̃

br(n)
t stands for the rth level of bid

size factor for stock n. As our sample only consists of highly liquid stocks we do not include quote

levels associated with as
(n)
r and bs

(n)
r in y

(n)
t . For such highly liquid stocks the spread is only

narrow and the tick levels close to the best quotes are generally all filled such that limit prices

occur on a fixed grid with constant distance to the corresponding best quotes. So in these cases,

there is no gain in information from including the additional price data.6 Though, for less liquid

stocks, our model and the empirical strategy below can be readily extended to include these limit

prices in y
(n)
t as well.7 This comes, however, at the expense of a much higher dimensionality of the

empirical problem which then requires more observations and computational power to reach the

same precision in estimation.

By stacking the LOB-vector y
(n)>
t for different N stocks together, we obtain the full system vector

Yt ∈ R7N×1 with LOB components as

Y >t = [y
(1)>
t , y

(2)>
t , . . . , y

(N)>
t ]; (3)

By studying the time evolution of the large-dimensional Yt in the following, we can characterize

the market impact of a limit order and resulting network cross-effects over time.

6 See also Hautsch and Huang (2011) who show that for liquid stocks trades absorbing more than one price level
in the limit order book occur extremely rarely.

7The data input into the model can also be transformed to directly capture the dynamics relative spread changes
or (ask-bid) depth imbalances.
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3.1 A High-dimensional VAR as Statistical Learning Tools for Quotes and

Depths

From our volume synchronization algorithm, all components in the LOB-vector y
(n)
t are stationary

and only weakly dependent. Therefore we can model the full system vector Yt of quotes and depths

of all considered assets from equation (3) with a VAR(p) model

Yt = A1Yt−1 +A2Yt−2 + · · ·+ApYt−p + ut (4)

where Yt ∈ RK with K = 7N for N stocks in the portfolio for t = 1, . . . , T . Ai are fixed but

unknown (K × K) coefficient matrices8 for i = 1, . . . , p and p is the unknown lag order allowing

for influences of observations further in the past. By ut = (u1t, u2t, . . . , uKt)
> ∈ RK we denote

the iid unobserved innovations with variance Σu. Please note that we do not require a Gaussian

distribution of ut for the subsequent procedure which would be hard to justify for our LOB-vector

Yt, but we only need that each element in ut has bounded (4 + δ)th moment with δ > 0. This

implies a non-trivial but crucial generalization of standard VAR estimation techniques in a set-up

of large dimensions K as e.g. in Kock and Callot (2015).9

For estimating the unknown coefficients A1, . . . , Ap we use the following matrix form of equation (4)

Y = AZ + U (5)

with Y = (Y1, Y2, . . . , YT ), A = (A1, A2, . . . , Ap), Z = (Z1, . . . , ZT ), U = (u1, . . . , uT ) and Zt =

(Yt−1, . . . , . . . , Yt−p)
>. We can re-write this in an OLS-vectorized version as follows

vec(Y ) = (Z> ⊗ IK)vec(A) + vec(U) (6)

y = xβ + u (7)

with y = vec(Y ) ∈ RKT×1,u = vec(U) ∈ RKT×1, and β = vec(A) ∈ RK2p×1 . Hence, the number

8Stationary of the VAR(p) in (4) ensured by standard conditions on Ai requiring the roots of |IK−
∑p

j=1Ajz
j | = 0

to lie outside unit circle.
9This is direct consequence of now available oracle results for dependent innovations from the statistical literature,

see e.g. Wu and Wu (2016).
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of parameters in β to be estimated is pK2 from a total number KT of observations. Thus the ratio

h of estimated elements relative to the number of observations is h = Kp
T = 7Np

T for N assets in

the portfolio. In our empirical analysis later on, we re-estimate the VAR on a daily basis from 375

pre-averaged observations for 9 stocks in the portfolio in order to allow for potential time-variation

in the VAR coefficients. Note that even for this moderate size portfolio we have h > 0.5 if only

p = 3 lags enter the model, and h > 1 when p ≥ 6 lags. This makes the model high-dimensional

requiring techniques different from traditional OLS (see e.g. Lütkepohl (2005) for standard VAR

estimation) in order to identify components in (7) from estimation. Note that for larger portfolios

with higher N and more lags p even cases of h > 1 can easily occur, where there are more unknown

parameters than observations.

A way to identify parameters in such cases is by imposing so-called sparsity, which implies that

of the K2p many elements in fact only a small number is effectively non-zero while the influence

of the remaining parameters is negligible. This means that we just need to identify the active

set from the data which contains all non-zero parameters, and then in this lower-dimensional set,

identification and estimation are possible. For our LOB-system, sparsity appears as a plausible

assumption as in fact we expect only a few components of the LOB to exert relevant effects at

each point in time. In particular, we assume that the unknown components in (4) satisfy ‖Σu‖2 <

∞ and ‖(A1, A2, . . . , Ap)‖2 < ∞.10 Note that formally this technical Assumption implies a

bound for column- and row-wise sums of elements of Σu and A in this large and fixed dimensional

case.11 If in each column or row the number of non-zero elements is small, i.e. when the matrices

are sparse and only a limited amount of potential components of the full system LOB vector are

relevant, these bounds are generally fulfilled.

For identification of the active set and estimation of the relevant variables in one step, we employ

the following elastic net approach. We estimate β̂ by minimizing the objective function Q(β)

Q(β) = ‖y− xβ‖22 + α1,T ‖β‖1 + α2,T ‖β‖22 (8)

10Note that norms here are matrix norms where ||A||2 denotes the maximum eigenvalue of A>A.
11Generally, in a statistical high-dimensional set-up, one considers also cases where the dimension K(T ) increases

with sample size T . For our case here, the dimension is large but fix in T. Therefore the stated assumptions are
sufficient for sparsity. Also a the usual βmin-condition for the determination of the active set (see Kock and Callot
(2015)) is trivially fulfilled for fixed K.
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which is equivalent to minimizing Q(A1, A2, . . . , Ap) in components of A12

Q(A) =
T∑
t=1

‖Yt −
p∑
j=1

AjYt−j‖22 + α1,T

p∑
j=1

‖vec(Aj)‖1 + α2,T

p∑
j=1

‖vec(Aj)‖22 . (9)

Both versions of the criterion function employ two penalty terms which shrink the set of elements

to the active set in the usual OLS squared loss function. While other penalized techniques such

as e.g. the Lasso would also impose this necessary shrinkage, we prefer the elastic net to rem-

edy the potentially strong correlation among regressors with the additional second penalty term

in (8). Under sparsity, the estimator β̂ of (8) is consistent in identifying the active set as those

components which are estimated as different from zero. Moreover it contains mean squared error

optimal estimates of all non-zero components for appropriate penalties α1,T and α2,T .13 Though, as

estimates of relevant variables from penalized procedures are generally biased in finite samples, we

re-estimate the model for the relevant variables only with OLS after model selection of the active

set with the penalized approach (8) or (9) in the first step. This generally reduces shrinkage bias

and ensures better model performance.

For deriving an estimate β̂ from (8) or (9), a data-driven choice of tuning parameters α1,T and α2,T

is crucial in order to control the imposed regularization. If regularization parameters are too large

only a small amount of relevant variables will be admitted, missing out on potentially influential

ones, i.e. throwing away useful information. In contrast, we lose identification and estimation

precision if α is too small and the active set is too large. To balance sparsity and estimation

accuracy, we choose moderately small tuning parameters using the Bayesian information criterion

(BIC).14 The model selection consistency results are available in Appendix C.

12Here, for vectors v ∈ Rd we use the usual norms ||v||1 =
∑d

i=1 |vi| and ||v||22 =
∑d

i=1 |vi|
2.

13Estimates in the active set are also consistent for suitably vanishing penalties α1,T and α2,T . Details are a direct
consequence of results in Kock and Callot (2015).

14see e.g.Liang and Schienle (2018) for simulation evidence that BIC works well for penalty choices in time series
settings.
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3.2 Estimating the Market Impact for a Large System

We quantify the market impact of a shock in limit orders as its implied expected influence on the

ask and bid over time after its occurrence. In order to capture this effect, we use the generalized

impulse response function GI (see Lanne and Nyberg (2016))

GI(l, δjt,Ft−1) = E(Yt+l | ujt = δjt,Ft−1)− E(Yt+l | Ft−1) (10)

with the information set Ft−1 consisting of all information entering (4) up to time point t− 1 and

a “shock” δjt in the j-th component of the system Yt in (4). Generally, we use an impulse response

type analysis in order to study the impact of a shock over time.

For a realistic empirical market impact analysis, we note that “shocks” in our LOB system might

in practice well be endogenous, depending on the common history in all components and might

also occur simultaneously in different components. Thus as a reference point, for the size of the

“shock” we take the underlying dynamic VAR specification of the system up to t and measure

typical simultaneous deviations across all j components at t. In particular, we focus on the case

with

δjt = û?jt (11)

where û?jt marks the j-th component in û?t which is a random independent draw for time point t

when sampling with replacement from the set of model-implied residuals {ût}Tt=1 of (4) to get a

“typical” deviation. Thus resampling from the distribution of those residuals, gives a realistic size

of “shock” to be checked for the respective component given the dynamic specification. In this

way, the considered shocks for the market impact of limit orders are endogenous and can occur

simultaneously in several components leading to results which are fairly robust to the effective

choice of underlying time series specification of the system. This is in contrast to a technical

pseudo experimental set-up of a separate idiosyncratic unit shock from component j, i.e. taking

δjt = 1 with δkt = 0 for k 6= j which we use in Section 5 to derive the direction of price effects.

Moreover, in order to measure the propagation effect of a shock δt = (δ1t,...,δKt)) at t on the system

Yt+k with k > 0, the basic object in (10) is the conditional expectation. However the penalized
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elastic net estimation of a high-dimensional VAR is nonlinear, thus the GI of (10) cannot be

expressed as a closed form function over the forecast horizon l in contrast to standard impulse

response functions for low-dimensional VARs. Therefore, we must use bootstrap resampling to

compute GI for different l. We provide the detailed procedure in Appendix B.

For a fixed l or when taking a (weighted) average over different forecast horizons, studying the m-th

component of GI(δjt) shows the directed impact of a shock in j on m. Moving along all different

component pairs we can use this to build a network of LOB-impact discussed in the following

subsection.

3.3 Network Construction & Evaluation

We work with a standardized version of GI from (10) normed to [0, 1] for easier interpretability of

values across stocks. We thus define

λij,Ft−1(h) =

∑h
l=0GIi(l, δjt,Ft−1)2∑K

j=1

∑h
l=0GIi(l, δjt,Ft−1)2

, i, j = 1, . . . ,K (12)

where h is the maximal considered forecast horizon in the average and GIi is the i-th component

of GI. Obviously, λij,Ft−1(h) ∈ [0, 1] measures the relative impact of a shock δjt of size (11) in the

j-th component on element i of Yt, relative to the total impact on i from shocks δ = (δ1t, . . . , δKt)

according to (11) in all K components of Yt at t after h periods.

The standardized GI links our estimated high-frequency market impact effects to the network

literature on connectedness (see e.g. Diebold and Yılmaz (2014)). In particular, this literature

generally characterizes systemic risk spillover effects as connectedness obtained from a generalized

forecast error variance decomposition (GFEVD) of an underlying VAR (see Diebold and Yılmaz

(2014) and Demirer et al. (2017)). It can be shown that directed spill-overs from GFEVD are

scaled versions of our standardized generalized impulse response function λij,Ft−1(h) (Lanne and

Nyberg (2016)). In this sense, our bootstrap technique described below also opens up a way for

this systemic risk literature to move from so far low-dimensional systems to estimation of large-

dimensional directed networks.
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For estimation of the standardized GI λij,Ft−1 and its respective confidence intervals in our high-

dimensional set-up, we propose a bootstrap procedure. For the details of the computational steps of

the resampling we refer to Appendix B. Note that with the bootstrap estimate λbij,Ft−1
we preserve

the sparsity imposed on the high-dimensional VAR estimation of (8) or (9) in order to focus on

relevant network spill-over effects. This is a necessary key difference for high-dimensional systems to

the standard estimation approach for impulse response functions in small fixed dimensions which

relies on a moving average (MA) transformation of (9). In this way, however, it fails to keep

the sparsity structure and hence encounters numerical accuracy or even feasibility problems in

high dimensions. Moreover, the presented bootstrap technique also works for underlying nonlinear

models and is not specific to a linear dynamic structure of the system as the MA-transformation.

In particular, the numerical techniques for conditional mean forecast from nonlinear models for

more than one period ahead are implemented in this paper for bootstrapping λij,Ft−1(h) (see more

details in Teräsvirta et al. (2010)).

For any forecast horizon h, the bootstrapped estimate λbij,Ft−1
(h) of λij,Ft−1(h) marks the directed

impact of a shock in j on i in percentages and can be displayed as the directed effect of the node j

on i in a network at time t. We collect all possible directed cross-effects in a corresponding Table

3 where the entries correspond to the network adjacency matrix. We refer to this table also as a

connectedness table linking it to the network literature outlined above.

x1 x2 . . . xK From others

x1 λb11(h) λb12(h) . . . λb1K(h)
∑K

j=1 λ
b
1j(h), j 6= 1

x2 λb21(h) λb22(h) . . . λb2K(h)
∑K

j=1 λ
b
2j(h), j 6= 2

...
...

...
...

...

xK λbK1(h) λbK2(h) . . . λbKK(h)
∑K

j=1 λ
b
Kj(h), j 6= K

To
∑K

i=1 λ
b
i1(h)

∑K
i=1 λ

b
i2(h) . . .

∑K
i=1 λ

b
iK(h)

1

K

∑K
i=1,j=1 λ

b
ij(h)

others i 6= 1 i 6= 2 i 6= K i 6= j

Table 3: Connectedness table of interest, estimated by bootstrap-based methods.

Accordingly, for each node i in the network we work with the following quantities. We denote the

pairwise directional connectedness Ci←j from j to i by

Ci←j = λbij(h) (13)
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Moreover, aggregating all effects of component i on other elements in the system, we call the total

directional connectedness “to” Ci←• (others to i) given by Ci←• = Cto,i =
∑K

j=1 λ
b
ij(h), for i 6= j.

Note that by definition (12) we have Ci←• = 1. Analogously, the total directional connectedness

“from” C•←i (from i to others) is defined as C•←i = Cfrom,i =
∑K

l=1 λ
b
li(h), for l 6= i and the

corresponding net total directional connectedness Ci measures the direction and magnitude of the

net spillover impacts of node i in the system as Ci = Cfrom,i − Cto,i = C•←i − Ci←• = C•←i − 1.

Note that for any specified h, the estimated networks in Table 3 are time-varying as they are re-

estimated in each rolling window where a new dynamic VAR specification is admitted (see above

equation (7)). Thus for an overview over an investment period, we report the mean µ, median m

and quantile Q(α) for levels 0 < α < 1 of all node impact measures aggregated over time for a

specified h. 15 In the following we generally work with h = 30 which yields aggregated effects on

a forecast horizon of 7.5 hours for observations at the 15-minute scale thus comprising around one

business day.

3.4 Network Aggregation Types and Characteristics

We work with spillover networks as constructed in Table 3 on different aggregation levels. In

our high-dimensional set-up, this allows to focus and structure results according to our research

questions. We therefore distinguish three different types of aggregated networks where each network

is a graph G = (V, E) consisting of two core items: nodes (or vertices) V and edges E . Nodes are

the entities we are evaluating and edges are the connections between them.

Thus for the full LOB-network, the ordered nodes V are the elements of Y in (3), we write V = Y ,

comprising prices and quotes of all assets n = 1, . . . , N . The corresponding edges consist of all

spillovers between these elements E = {Ci←j = Ci←j(Y )|i, j = 1, . . . , 7N}. Note that in particular,

the full LOB-network contains 7 nodes per asset (1 price and 3 levels of ask-side and bid-side

quotes) and spillover effects between assets can occur on all levels of the LOB. Thus, we study

effects on prices of an aggregated ask and bid side where aggregation is either by levels of the LOB

or by stocks per level of the LOB in a sparser network in order to distill the different channels of

15In particular, µ = µ(C) and Q(α) = Q(C)(α) = F−1(α) = inf{C : F (C) ≥ α} where F is the empirical
distribution of C ∈ {Ci, Ci←j , Ci←•, C•←i, degi, outdegi, indegi, Closi, Beti} over time.
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the LOB market impact.

Case 1: Own-price/Cross-price market impact For the own-price market impact, we study

the effects of quotes on prices only within the LOB of each asset. Thus we work with the nodes of

the full LOB-network V = Y but focus only on a selected subset of the edges in E . Hence we have

Eo =
{
Co
p(k+1)←as(k+1)

r
, Co

p(k+1)←bs(k+1)
r

, for k = 0, . . . , N − 1, r = 1, . . . 3
}

(14)

Hence the network Gown = (V, Eo) displays the effects of different levels of quotes on the stock price

within the LOB of each stock. In particular, Co
p(k+1)←as(k+1)

r

contains the effect of the ask-side level

r on the own price of the stock k + 1. For details how these edges and all other edge sets in the

following are are calculated from E see Appendix D.

For the effects on prices across stocks, we reduce the complexity of the network by aggregating

spillover effects of each ask and bid side per stock. For studying this cross-price market impact, we

thus work with Gcross = (V1, Ec,1), where the ask-side (bid-side) of each stock is represented by a

single node as(n)(bs(n)). Hence we define V1 =
(
(p(1), as(1), bs(1)), . . . , (p(N), as(N), bs(N))

)>
and

Ec,1 =
{
C1
p(k+1)←as(z+1) , C

1
p(k+1)←bs(z+1) , for k 6= z = 0, . . . , N − 1

}
Eo,1 =

{
C1
p(k+1)←as(k+1) , C

1
p(k+1)←bs(k+1) , for k = 0, . . . , N − 1

}
(15)

Note that V1 only consists of 3N nodes, where C1
p(k+1)←as(z+1) marks the aggregated spillover effect

of the ask-side of stock z+1 on the price of stock k+1 in the reduced network V1 with only 3 nodes

per stock. For comparison, we also define own-price market effects in this aggregated network in

(15) studying (V1, Eo,1), Eo,1 is the special case of Ec,1 when k = z.

Case 2: Trade imbalance between bids and asks To measure potential asymmetry of

bid and ask side effects on different stock prices, spillovers are aggregated across stocks in each

quote level to determine the respective overall impact. We thus work with a network with graph

Gs = (V2, Es,2) where each level r of the ask (bid) side is represented by asr (bsr). It is V2 =
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(
(p(1), . . . , p(N)), (as1, as2, as3), (bs1, bs2, bs3)

)>
Es,2 =

{
C2
p(k+1)←asr , C

2
p(k+1)←bsr , for k = 0, . . . , N − 1, r = 1, 2, 3

}
(16)

The number of nodes in V2 is only N + 6 in this case, where C2
p(k+1)←asr

marks the aggregated

spillover effects of the ask-side level r from all stocks on the price of stock k + 1 in the reduced

network V2. Note that in V2 we distinguish between different effects on the prices of different

stocks. For an overview, however, we also look at asymmetric effects aggregated in the price effects

across stocks. Hence we work with Gsp = (V3, Es,3) where the price is denoted as p. We set

V3 = (p, (as1, as2, as3), (bs1, bs2, bs3))> and

Es,3 =
{
C3
p←asr , C

3
p←bsr , for r = 1, 2, 3

}
(17)

In this network Gsp, all effects are aggregated across stocks. The number of nodes is thus only 7

comprising aggregate price and ask and bid side effects on all three levels.

Case 3: Price-only effects and the fully LOB-aggregated network per stock For study-

ing only price effects within the LOB-network, we reduce the number of nodes to prices only and

select out E the appropriate edges between prices only. Thus we consider a network with graph

Gp = (V4, Ep,4), where V4 = Yp =
(
p(1), . . . , p(N)

)
and we denote the selected edges as Ep,4 =

{
Cp,4i←j

}
.

The price-only case is compared to the case where we aggregate all pairwise LOB-network spillover

effects between two stocks. Thus we work with the network Gg = (V5, Eg,5) where each stock is

represented by a node g(n). We have V5 = (g(1), g(2), . . . , g(N))> and we denote the aggregated

edges as Eg,5 =
{
Cg,5i←j

}
.

4 Empirical Results

In this section, we focus on the key features of the full LOB-network over time. In particular, we

determine the overall importance of cross-effects in the system by deriving own- and cross-price

market impacts for our relatively small portfolio setup of 9 representative stocks (case 1). If derived
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effects already matter in this setting, their effect in larger portfolios and systems will scale up with

the dimension. We also investigate if and where differences in the ask and bid-side impact occur and

are statistically significant such that they could be employed for investment and hedging decisions

(case 2). Moreover, we highlight the importance of limit order book information in quantifying

the full market price effects (case 3). Thus we generally report summarized mean and quantile

network impact measures over the considered time horizon of two months, but also study different

subperiods around the Brexit vote separately. For the net effects, we also report the full time

evolution in the last subsection.

Figure 2: LOB-network averaged over the whole sample period. The figure visualizes the
mean of the pairwise directional connectedness over the selected two month investment period.
Specifically, the price factor and size factors that belong to the same stock appear in the same
color. The network impacts are drawn as directed lines connecting two nodes, and quantified by
the width of edges between two nodes.

Generally, we calculate the bootstrapped normalized market impact λbij,Ft−1
(h) and the resulting

full LOB-network spillover matrix C (see Table 3) at horizon h = 30 comprising about one business

day for every trading day from the respective estimates of the sparse high-dimensional VAR model

(9). Thus, for each trading day, we obtain a corresponding full LOB impact network G = (V, E).

The averaged value of G over the selected two month investment period is depicted in Figure 2.

However, it is not easy to decipher useful information based on all pairwise connectedness. We take
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that as a start, but in order to address the key points above, we work with tailored aggregated

versions.

4.1 Market Impact: Overall Size and Spillover Channels

In this subsection, we investigate the mean size and distribution of the LOB market price impact

over the two months sample 06/01/2016 to 07/31/2016. Thus by determining time average spillover

effects and their interquartile range to assess associated risk and deviations, we study key structural

features of the market as a base for LOB-based investment strategies.

4.1.1 The Importance of Cross-asset and Cross-price Market Impacts

With our approach for each stock, we can quantify the share of own-price market impact originating

from different sides of the stock’s own LOB with values in Eo,1 of (15) versus the cross-price effects

of Ec,1 from the level-aggregated network Gcross = (V1, E1) for each trading day. Separating the

quote effects by stock allows for detailed insights into spillovers between stocks originating from

different sides of the book. In this way, we detect liquidity cross-effects among stocks as captured

by the LOB.

Stressing the importance of cross-asset versus own-asset effects aggregating all own-price LOB

components, we also calculate the cross-asset impact as the aggregated cross-price effects of prices

and quotes from all other assets on each stock. In general, all different cross-asset price effects

among the considered 9 stocks account for at least 30 % of total effects on prices and can amount

to up to 45% in the case of the impact of Citigroup’s stock price. This follows from Tables 4, 5,

and 6, where row-wise all impacts from both sides of the LOB and the prices sum to 1 by definition

(12) such that any element in a specific row in each of the three tables denotes the percentage of

received overall price impact of the respective company in this row of the first column from the

specific source displayed in the table. Among these cross-asset effects, generally quote effects from

the LOB dominate price only effects comprising 20 to 26 percentage points of the above shares.

For all stocks, ask-side impacts exceed bid-side ones within the LOB-effects by up to 60% (JPM),

see Tables 4 and 5) indicating market asymmetries.
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On a more detailed level, Table 4 provides the time average of the ask side effects which we

complement and contrast with the corresponding bid-side effects in Table 5. Generally we group

all stocks in industry blocks and find substantial cross-price effects on the off-diagonal of each table

between stocks and sectors which are not symmetric as expected. With a detailed analysis of E1 we

can compare the effects of trades on stock prices. The cross-price market impacts Ec,1 are reported

as off-diagonal elements, while own-price effects Eo,1 are displayed on the diagonal for the ask-side

in Table 4 and the bid-side in Table 5 .

m \ l MSFT T IBM JNJ PFE MRK JPM WFC C
∑

MSFT 3.38 0.68 1.82 0.65 1.76 0.73 5.46 0.54 3.66 18.68
T 3.08 1.47 1.00 0.62 1.86 2.58 1.08 1.29 2.38 15.37

IBM 1.52 0.38 3.06 1.33 0.91 1.57 1.41 3.58 2.05 15.80

JNJ 1.69 0.62 1.04 0.45 1.47 1.05 1.37 0.31 3.49 11.47
PFE 1.07 0.96 0.44 0.13 2.06 4.83 1.86 2.89 2.12 16.37
MRK 3.18 1.17 0.43 0.83 2.44 5.27 4.15 2.25 2.57 22.28

JPM 2.09 1.10 1.81 0.72 2.68 1.13 9.22 1.34 2.16 22.24
WFC 1.22 2.38 1.70 0.55 1.93 1.22 0.79 5.37 0.60 15.77

C 2.55 1.11 2.37 0.84 2.57 1.33 4.51 1.23 2.01 18.51

Table 4: Ask-side: Each element of the inner table contains the aggregated market impact
µ(C1

p(m)←as(l)) of the ask trades of stock l on the price of stock m as defined in (15) displayed

as mean µ over the entire sample period 06/2016-07/2016. The last column aggregates all ask-side
effects on the price of stock m as µ(

∑N
l=1C

1
p(m)←as(l)). All numbers are in percentages. Own-price

effects are on the diagonal, while cross-price effects are off-diagonal. Bold numbers highlight the 9
largest relative effects.

On both sides of the book separately, cross-price effects exceed own price effects at least by a

factor of 3 and up to 10 on the bid side and up to 22 on the ask side. Individually between firms,

cross-effects from financial companies are the largest within the system both, to companies in the

tech and the health sector and from both sides of the LOB. Often these impacts from financial

firms even exceed the own-price impact of specific firms, see e.g. the spillover of JP Morgan (JPM)

on Merck (MRK) and Microsoft (MSFT) on the ask side where the latter is larger than all other

own-price and cross-price effects from the ask quotes but also JPM on IBM and Wells Fargo (WFC)

on Johnson & Johnson (JNJ) on the bid-side. Within-sector price effects from the LOB are most

relevant for the financial companies where own-price effects dominate in particular on the ask-

side. This is in contrast to price-only effects where impacts from the LOB are ignored. These are
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m \ l MSFT T IBM JNJ PFE MRK JPM WFC C
∑

MSFT 4.02 2.26 0.62 0.53 0.59 1.67 0.41 0.89 1.61 12.58
T 1.36 0.84 0.22 1.04 1.41 3.67 0.92 1.10 1.03 11.60

IBM 0.79 1.29 0.66 0.13 0.58 0.97 3.47 1.85 1.15 10.89

JNJ 0.63 0.85 0.30 1.30 0.86 0.99 0.50 1.90 2.59 9.93
PFE 2.12 0.36 1.10 0.19 1.13 0.37 1.43 4.08 1.23 12.00
MRK 0.72 0.49 0.25 0.25 1.35 3.37 1.59 0.84 1.27 10.12

JPM 1.66 0.47 1.25 0.97 1.39 0.59 3.32 1.87 2.16 13.68
WFC 1.99 1.29 0.30 0.73 1.37 0.83 1.75 5.50 1.67 15.45

C 1.02 1.80 0.42 1.24 0.84 1.08 1.41 1.12 2.54 11.48

Table 5: Bid-side: Each element of the table contains the aggregated market impact µ(C1
p(m)←bs(l))

of the bid trades of stock l on the price of stock m as defined in (15) displayed as mean µ over the
entire sample period 06/2016-07/2016. The last column aggregates all bid-side effects on the price
of stock m as µ(

∑N
l=1C

1
p(m)←bs(l)). All numbers are in percentages. Own-price effects are on the

diagonal, while cross-price effects are off-diagonal. Bold numbers highlight the 9 largest relative
effects.

depicted in Gp = (V4, Ep,4) with estimated average impact values in Table 6 as defined in Case 3.

Here own-price effects on the diagonal largely dominate the picture and cross-price effects appear

negligible. Moreover there is no visible dominance of the financial sector in cross-asset spillovers.

MSFT T IBM JNJ PFE MRK JPM WFC C
∑

MSFT 47.96 1.99 2.72 8.55 2.18 0.02 2.73 1.35 1.25 68.74
T 0.75 64.56 0.40 2.37 1.02 1.49 0.90 0.86 0.68 73.03

IBM 0.23 2.00 59.22 3.46 2.82 0.14 5.07 0.21 0.16 73.31
JNJ 6.24 1.36 2.84 57.33 1.32 0.16 0.70 2.23 6.41 78.60
PFE 0.31 0.94 5.01 1.27 61.76 0.04 1.72 0.13 0.44 71.63

MRK 2.16 1.92 1.78 2.68 0.84 54.34 2.85 0.47 0.55 67.60
JPM 1.32 1.03 2.43 1.36 2.52 0.25 53.94 1.11 0.11 64.07
WFC 0.25 1.28 4.26 0.71 1.56 0.31 1.57 58.76 0.08 68.78

C 4.15 2.47 2.72 6.30 2.78 0.40 0.87 0.77 49.54 70.00∑
63.38 77.56 81.39 84.03 76.79 57.16 70.37 65.89 59.22 635.78

Table 6: Price-only effects: Each element of the table measures the pairwise connectedness µEp,4
of the price of stock l on the price of stock m as defined in Case 3 displayed as mean µ over the
entire sample period 06/2016-07/2016. All numbers are in percentages.

If consider the structure of the quote effects from different levels of the book, we find that all levels

contribute and there is no dominant first level effect. For ease of exposition, we report the level

structure of own-price effects on the diagonal of Tables 4 and 5, but the picture of the cross-price
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effects is similar.16 Thus we work with the own-price parts of (V2, E2) and obtain the estimated

average granular structure of the own-price market impacts in Table 7 where we mark the maximum

effect per stock in bold. Respective maxima appear on all levels often with substantial effects on

the third level. As limit orders are stored in the LOB and executed according to price priority,

large trading quantities may cause a price drop or rise. In particular, if there is an arrival of a

market order that is sufficiently large to match all of the best bids, then the limit order will be

updated with a lower best bid price. It follows that the depth of the book at which limit orders

are submitted is driving the price.

quote level r\ stock m MSFT T IBM JNJ PFE MRK JPM WFC C

ask level 1 0.47 0.90 1.28 0.06 0.31 2.95 3.58 2.47 0.26
ask level 2 0.34 0.31 0.47 0.13 0.07 1.42 0.38 2.17 1.43
ask level 3 2.57 0.26 1.30 0.25 1.69 0.90 5.26 0.74 0.32

ask all 3.38 1.47 3.05 0.44 2.07 5.27 9.22 5.38 2.01

bid level 1 0.09 0.59 0.14 0.05 0.60 1.14 1.12 2.47 0.70
bid level 2 1.35 0.18 0.29 0.05 0.43 0.08 0.83 0.89 0.42
bid level 3 2.58 0.07 0.23 1.20 0.11 2.16 1.37 2.14 1.42

bid all 4.02 0.84 0.66 1.30 1.14 3.38 3.32 5.50 2.54

Table 7: Details of own-price effects in different quotes: Each element in the white cells of
the table contains the aggregated own-price market impact µ(Co

p(m)←as(m)
r

) for stock m by ask quote

level r in the upper part and µ(Co
p(m)←bs(m)

r

) for stock m by bid quote level r as defined in (14)

displayed as mean µ over the entire sample period 06/2016-07/2016. The grey cells aggregate the
effects on each side per stock. A bold number highlights the largest relative effect in each column,
i.e. per stock.

4.1.2 Trade Imbalance between Bid and Ask Side

For larger orders, the depth of the LOB impacts the price with aggregated level effects, and asym-

metries between the two sides of the book reflect market instabilities and investment opportunities.

In particular, Tables 4 and 5 suggest a strong asymmetry in the LOB with generally larger ask-side

effects than bid-side ones.

In this section, we show that these effects are systematic by formally testing for asymmetry. For

ease of exposition, we just report results for aggregated ask/bid size and price factors over all

16These results are available on request.
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stocks as in Gsp = (V3, Es,3) (see (17)). In this network Gsp, the price and each of the three ask and

bid levels correspond to one node comprising respective cumulative effects across all stocks quote

effects on all three levels. Table 8 reports the distribution of aggregated different quote levels on

the price in quantiles and detects overall asymmetry in the mean and even more strongly in the

median for each quote level despite the slightly skewed distribution. Note that this aggregated

overall result of stronger impacts on prices caused by market sell pressure is consistent with stock

specific results (See Table 10 below and the corresponding median version in Table 12). We then

quote level QEs,3(0.25) QEs,3(0.50) QEs,3(0.75) µEs,3
as1 0.12 0.27 0.67 0.50
as2 0.19 0.30 0.55 0.47
as3 0.17 0.35 0.83 0.59

bs1 0.09 0.18 0.39 0.36
bs2 0.08 0.16 0.41 0.30
bs3 0.13 0.29 0.63 0.42

Table 8: Trade imbalance between bids and asks: The table displays aggregated effects
Es,3 = Cs,3i←j of different quote levels on prices by adding up the impacts across all stocks. Cs,3p←asr or

Cs,3p←bsr correspond to the aggregated impacts of asks and bids on prices respectively. The columns
contain different quantile levels QEs,3(α) and the mean µEs,3 of these elements over the entire sample
period 06/2016-07/2016. The largest two values are marked in bold.

test for a significant overall asymmetry of bid and ask trades in Es,3 and confirm the significance

of the effect. More precisely, we take µ1 = 1
3

∑3
r=1 µ(C3

p←asr) as the mean of the overall impact

from selling orders and µ2 = 1
3

∑3
r=1 µC3

p←bsr
as the mean of the overall impact from buying orders

over the sample period. Hence we test H0 : µ1 − µ2 = 0 against the alternative Ha : µ1 − µ2 > 0.17

Formally, we employ a pooled t-test which rejects the H0 below the 1%-level (p-value 0.003144).

This result is also confirmed by a Welsh-test where we obtain the p-value 0.003168. This can also

be executed on a more granular per stock level with similar results.

17Note that in our data generally deviations of H0 only occur from larger overall ask side then bid side effects. Thus
this one sided alternative is empirically valid and produces better power of the test than a more general two-sided
alternative.
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4.1.3 Systematic Differences in Topologies of Directed Price Impact Networks: Price-

only versus the Fully LOB-aggregated Effects

To understand how the impact of a shock originating in one stock can be transmitted and amplified

to the other stocks, almost all existing literature focus on network linkages stock prices only. In the

following we make use of the information contained in the LOB to examine the impact of full system

interdependencies across stocks by constructing the fully LOB-aggregated network per stock. We

find systematic differences in the structure of the classic but only partial price-only network Gp to

the complete LOB-aggregated network Gg, which affect the construction of potential investment or

hedging strategies.

As price-only effects account for up to 50-65% of all impacts according to Table 6, the individual

stock network Gp = (V4, Ep,4) in Case 3 with price factors only might contain the basic structure

of price-impact interconnection channels. In the corresponding panel A of Table 9, however, the

reported total directional connectedness “from” Cfrom and “to” Cto suggest that the stock price

of Johnson&Johnson has the strongest influence on the other stock prices and is also a large

scale receiver of cross-effects, as suggested by its high connectedness values of both inbound and

outbound effects. The role of the financial sector companies only appears minor both as transmitters

or receivers displaying even negative net effects. Though if we compare the price-only impact

network to the aggregated nine stock network Gg = (V5, Eg,5) where we cumulate all price and LOB

volume effects for each single stock as in Case 3, the structure fundamentally changes leading to

substantial differences in the roles of net transmitters and receivers in the network. By including

the size factors in Gg, we are able to investigate how the network is affected by the presence of

LOB liquidity effects which not only produce relevant cross-asset price impact effects (Tables 4,

5) but also change the overall network topology systematically. In panel B of Table 9 we observe

higher “from”-connectedness values for all financial stocks, suggesting that the finance sector has

the strongest influence on the other stocks in the portfolio. Meanwhile, the “to”-connectedness of all

financial stocks is the lowest leading to the largest positive net influence in the system. Generally,

technology stocks receive the highest inbound effects from the system. On the stock level, we find

that JP Morgan is the stock with the highest “net”-connectedness to others exhibiting the highest
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Panel A: Price-only network effects

MSFT T IBM JNJ PFE MRK JPM WFC C
µCfrom

(Ep,4) 0.15 0.13 0.22 0.27 0.15 0.03 0.16 0.07 0.10
µCto

(Ep,4) 0.21 0.08 0.14 0.21 0.10 0.13 0.10 0.10 0.20
µCnet

(Ep,4) 0.05 0.05 0.08 0.05 0.05 -0.10 0.06 -0.03 -0.11

Panel B: Effects from the fully aggregated LOB

MSFT T IBM JNJ PFE MRK JPM WFC C
µCfrom

(Eg,5) 3.09 2.30 2.10 2.23 2.67 2.34 3.47 3.12 3.17
µCto

(Eg,5) 2.80 3.05 2.98 2.83 2.65 2.69 2.47 2.51 2.53
µCnet(Eg,5) 0.17 -0.70 -0.91 -0.50 0.14 -0.71 0.97 0.34 0.35

Table 9: Identification of transmitters and receivers of price impacts: In Panel A, based on
the price-only network Gp = (V4, Ep,4), we compute the “to”-connectedness Cto as weighted number
of effects that the stock n directs to (prices of) other stocks, the “from”-connectedness Cfrom as
weighted number of outbound links to the price factor p(n) of stock n, and “net”-connectedness Cnet
as the difference Cfrom − Cto. µ· is the mean over the given sample period 06/2016-07/2016 and
the maximum value per measure is marked in bold. In panel B, we report the respective measures
for the fully LOB-aggregated network Gg = (V5, Eg,5).

influence on the considered system, while the technology company like IBM is a main impact

receiver in the aggregated system. Overall, financial companies appear as dominant stocks driving

the price-impact network over time. This key role is only detectable from the aggregated individual

stock network which considers the information contained in the LOB.

We graphically display the structure for the fully LOB-aggregated price impact network Gg for the

first trading day after the Brexit announcement as an example. In accordance with the discussion

in section 3.3, we depict the estimated full sample directional connectedness Table 3 in left panel of

Figure 3. The size of the directed connectedness between two nodes is marked by the thickness of the

arrow connecting them. The price factor and size factors that belong to the same company appear in

the same color, the width of edges between two nodes represents the connectedness. The full sample

network plot illustrates that the LOB factors of all stocks are largely interconnected with other

stocks’ prices, thus being very informative about the total aggregated directional connectedness

Gg. However, it is not easy to decipher all pairwise connectedness effects from the granular factor

network on the left of Figure 3. Thus on the right panel, all connectedness effects are aggregated

per stock. Hence for each stock there is only a single node in the network and links between

nodes represent the overall “from”’ and “to” impacts on the system, i.e., aggregating the directed
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connectedness of both price and size factors for each stock. The respective links of Citigroup

and JP Morgan and Wells Fargo reveal that they are the stocks that generated the highest “to”-

connectedness, whereas the other six stocks mainly act as price impact receivers as in the time

means Table 9, panel B.

Figure 3: Left panel: the LOB-network plot : We visualize the full LOB-network
matrix as defined in Table 3, on 24.06.2016. For each stock n, it contains 7 nodes

(p(n), as
(n)
1 , as

(n)
2 , as

(n)
3 , bs

(n)
1 , bs

(n)
2 , bs

(n)
3 ) and we place them in the clockwise order within each

small ring using the same color. Hence we have in total 63 nodes for the selected nine stock port-
folio. The relationships between any two nodes are associated with the sign and magnitude of the
corresponding connectedness measure.
Right panel: Fully LOB-aggregated network per stock: We plot the aggre-
gated network Gg = (V5, Eg,5) on 24.06.2016. For stock n, we merge the nodes

(p(n), as
(n)
1 , as

(n)
2 , as

(n)
3 , bs

(n)
1 , bs

(n)
2 , bs

(n)
3 ) into another node defined as g(n) in V5. The resulting

aggregated network contains 9 nodes.

4.2 LOB Market Impact over Time

Macroeconomic announcements and news are often accompanied by price moves, while the impacts

on how prices respond to ask and bid limit orders are not symmetric. With the United Kingdom

European Union membership referendum at 23.06.2016 voting for leave (Brexit) during our sample

period, we investigate if and how this largely unexpected event affects the market. Empirically

31



it has been documented that within 24 hours of the Brexit vote, the British pound plunged by

almost 10 per cent to a three-decade low, share prices sank and gilt yields slid. Trading volume

declined during the event, but rebounded to record highs after. We examine first in subperiods

around the Brexit vote, if and how the event affected price impacts yielding potential changes in

the cross-asset or cross-price LOB structure in the system. Then we take a glance at the network

spillover structure directly at the days before, at and after the Brexit voting date to study immediate

short-term effects.

4.2.1 Effects in Subperiods

We explore potential time-variation in the cross-asset and cross-price market impacts in different

subperiods around the Brexit vote. In particular, we separately study the subperiods period I:

01.06.2016-21.06.2016 before the Brexit vote, period II: 22.06.2016-11.07.2016 during which the

Brexit decision was announced and period III: 12.07.2016-31.07.2016 for the medium range impact

of the vote. Note that all three subperiods are approximately of equal length and partition the

original full sample of the previous subsection.

Figure 4 provides an overview of the results by comparing different sources of price impact shares

over the three periods. Overall, we see that there is some time-variation in the decomposition of

price impact proportions but the relatively small size and the shape of these variations are such

that the full sample time averages of the last subsection remain informative. Over time, the LOB

quote effects on prices (all blue parts together) are always well above 20% amounting to up to 50%

with the largest effects in the Brexit vote period 2. Its largest part consistently originates from

cross-asset effects (dark blue) which exceeds the own-price LOB effects mostly by a factor larger

than 2. Over all periods, all cross-asset effects (from prices and LOB together) marked in light blue

and green are above 30% up to more than 50% where the major part comes from the LOB (light

blue). Generally the largest single share of the price impact is the own-price effect from the stock’s

own past price (complement of the color bars to 1), which is smallest during the second period with

the Brexit announcement and larger but similar in size in the pre- and post-Brexit subperiods.

For each subperiod, we also look deeper into the LOB structure of price impacts examining the
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Figure 4: Price impacts in subperiods: For three exemplary stocks from each sector, this figure
graphically depicts the composition of received price impacts from different sources as percentage
aggregates over time in the three subperiods 1: 01.06.2016-21.06.2016; 2: 22.06.2016-11.07.2016
including the Brexit vote, and 3: 12.07.2016-31.07.2016. The green bars denote the cross-asset
relative impact share received from the other stock prices. In light blue we mark the percent of
cross-price market impact from the LOB. The dark navy blue bar displays the percentage of own-
price market impact from the LOB on the specific stock price. In each period, the remaining share
to the 100% is the own-price impact from the (lagged) stock’s price. The results for the other six
stocks are shown in Appendix, see Figure 8 and 9.33



asymmetry in bid and ask side effects and the time-variation of effects across different quote levels

in the comprehensive network graph Gs = (V2, Es,2) in (16). Thus Table 10 provides the estimated

average effects in Es,2, i.e. aggregated bid and ask effects across stocks in each quote level but also

detailed results for each quote level for all stocks over the three periods. On all quote levels, we see

time-variation of effects which for some stocks is more pronounced in the deeper levels of the book

(e.g. T, ask side; IBM bid side). Overall a relatively large proportion of effects originates from the

deeper levels of the book. In particular the relative peak of cross-asset LOB effects in period II in

Figure 4 stems for all three stocks from different levels in the book.

In general, we observe that over all sub-periods the ask-side effects dominate the bid side effects

cumulated over all levels, but also mostly separately per level and even mostly per cell in Table 10

on each level and in each period. As aggregated price impacts of ask quotes capture the selling

pressure, larger values of ask trades indicate that selling trades have a stronger price impact than

buying trades. These patterns are confirmed by estimated time medians of links in Es,2 as reported

in Table 12, Appendix E.

4.2.2 Immediate Effects around the Brexit Vote

Figure 5 graphically displays the LOB networks Gs = (V2, Es,2) at the day before, at and after the

Brexit vote consisting of price factors (in grey), ask size factors (in blue) and bid size factors (in red)

at different levels, thus 7 nodes per stock (one grey plus 3 red and 3 blue). Non-zero connectedness

Ci←j between any two nodes is marked by an arrow in the color of the source factor j.

When investigating not only price impacts, but all spillover effects, the relative importance of price

nodes at the boundary of the upper left Figure 5 is small relative to LOB factors which are more

central to the system on 22.06.2016, the day before the Brexit vote. This plot is representative

for many days before the Brexit. The importance of within-LOB effects is displayed in the lower

part of the figure. For the three days around the Brexit vote, we separate price and ask-side effects

from price and bid-side effects in different network parts. The graphs indicate that the Brexit

announcement, induced substantial changes in the network structure with different effects on ask

and bid sides. The price&bid size factor network is less connected at the day of the vote (23.06.2016)
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quote level period MSFT T IBM JNJ PFE MRK JPM WFC C

as1

I 0.40 0.45 0.53 0.60 0.41 0.34 0.52 0.73 1.18
II 0.34 0.42 0.53 0.16 0.53 0.53 0.91 0.49 0.26
III 0.57 0.43 0.27 0.24 0.41 1.17 1.13 0.39 1.05
full 0.44 0.43 0.45 0.34 0.45 0.68 0.86 0.53 0.83

as2

I 0.86 0.56 1.25 0.82 0.50 0.66 0.42 0.27 0.78
II 0.56 0.27 0.16 0.45 1.24 0.86 0.44 0.29 0.78
III 0.16 0.40 0.36 0.17 0.06 0.43 0.14 0.95 0.34
full 0.53 0.41 0.59 0.48 0.60 0.65 0.33 0.50 0.64

as3

I 0.77 0.93 0.30 0.25 0.63 0.73 1.49 0.43 0.12
II 1.80 0.64 0.46 0.35 0.80 1.04 1.23 0.69 0.66
III 0.14 0.50 0.86 0.38 0.31 0.92 0.38 0.49 0.38
full 0.90 0.69 0.54 0.33 0.58 0.89 1.03 0.54 0.39

bs1

I 0.07 0.33 0.46 0.33 0.25 0.03 0.19 0.16 0.18
II 0.18 0.71 0.49 0.73 0.25 0.71 0.68 1.21 0.45
III 0.12 0.29 0.46 0.15 0.45 0.49 0.50 0.46 0.57
full 0.12 0.44 0.47 0.40 0.32 0.41 0.46 0.61 0.40

bs2

I 0.19 0.32 0.47 0.16 0.43 0.07 0.34 0.17 0.11
II 0.23 0.36 0.17 0.11 0.35 0.34 0.55 0.28 0.43
III 1.10 0.37 0.50 0.33 0.33 0.26 0.57 0.15 0.29
full 0.50 0.35 0.38 0.20 0.37 0.22 0.48 0.20 0.28

bs3

I 0.94 0.29 0.17 0.29 0.17 0.75 0.27 0.92 0.32
II 0.72 0.40 0.38 0.39 1.08 0.30 0.65 0.64 0.61
III 0.24 0.40 0.17 0.49 0.29 0.10 0.37 0.64 0.47
full 0.63 0.37 0.24 0.39 0.51 0.38 0.43 0.73 0.47

Table 10: Quote level effects: Each element of the upper half of the table contains the aggregated
market impact µ(Cs,2

p(m)←asr
) of the ask side level r across all stocks on the price of stock m as defined

in (16) displayed as mean µ over different parts of the full sample period 01.06/2016-31.07/2016.
The three subperiods are of approximately equal length with period I: 01.06.2016-21.06.2016; period
II: 22.06.2016-11.07.2016 during which the Brexit decision was announced; period III: 12.07.2016-
31.07.2016. In the lower half of the table corresponding bid-side effects µ(Cs,2

p(m)←bsr
) are reported.

All numbers are multiplied by 10. Bold (grey) numbers highlight the largest (smallest) relative
effects for each quote level over the full sample period.

while the level of interconnections from this side only increases on the next day. This is different

for the price&ask size factor network which starts of at a lower level of interconnectedness which

directly increases at the day of the announcement exceeding the current level of interconnectedness

from the bid and price part but only then. Thus at the day of the vote in moment of political

uncertainty, the buying pressure is much weaker and selling pressure slightly stronger.
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Figure 5: LOB-network around the Brexit announcement 22.06.2016-24.06.2016 at dif-
ferent aggregation levels. The upper left part of the figure depicts the full LOB-network on
22.06.2016. Generally, ask (bid) side nodes are marked in blue (red) and prices in grey. An arrow
links two nodes i and j in the color of node j if Ci←j significantly differs from zero. The layout
of the graph is data-driven allocating more connected nodes to the center using a version of the
Fruchterman-Reingold-algorithm which minimizes the length of all paths. In the figure below for
the same day, we display only interactions between quotes. On the right, we use a circular layout
and separate price and ask side effects (on the right) from price and bid side effects (on the left)
across three consecutive days from top to bottom. Deg(V) counts the plain number of links in the
network above.

5 Extension: Price Direction under an Exogenous Unit Shock

So far, we have analyzed the time-varying market impacts within and across asset classes studying

induced “endogenous shocks”. In the LOB market, however, huge sell/buy volumes queued on the

ask/bid side could induce strong sell/buy pressure on the market which could therefore change the

price rather as an idiosyncratic exogenous shock. This is consistent with our empirical findings

that both ask and bid trades placed in the LOB may directly affect the price dynamics of one
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asset. Though, when a large buy or sell market order arrives, the market order will automatically

execute which causes a temporary own-price market impact. Even though a large market order

immediately affects the price direction, in this case, the size of bid/ask trading volumes alone does

not provide enough information on the price direction. In market microstructure analysis, it is

of interest to detect important transmission channels where trading activities on the LOB have

significant influence on the asset price, which can be derived from the price impact of the arrival

of large ask/bid market and limit orders.

We empirically address this with the high-dimensional tools proposed in Section 3.2 by measuring

size and persistence of the effect on the asset price by a shock on the quote factors. In particular,

for each quote level and each asset separately, we investigate the impact over time on the asset price

in response to an idiosyncratic unit shock. This analysis helps to uncover the mechanism of price

formation and could be exploited for arbitrage opportunities. For measuring the size of the impact

of exogenous shocks in market/limit orders and for determining their temporary or robust impact

shape over time, we resort to the generalized impulse response function GI defined componentwise

in (10). Now, however, we analyze the case of a unit shock δt = (δ1t, δ2t, . . . , δKt)
> ∼ ej on Yt

instead of (11), where ej is a unit vector marking the idiosyncratic unit“shock” in component j.

For comparability of impacts across factors and assets, we use exogenous unit shocks. We study the

case where a unit shock can occur anywhere in the LOB, i.e. in (as
(n)
1 , as

(n)
2 , as

(n)
3 , bs

(n)
1 , bs

(n)
2 , bs

(n)
3 )

for a stock n and focus in our results on own-price effects for ease of exposition. With this, we can

not only detect the evolution of a unit shock from different quote levels over time but also test for

a statistically significant impact. We set the forecast horizon of the GI to l = 30 minutes and use

the bootstrap approach (see Appendix B) to obtain generalized impulse response curves for each

trading day over two month investment period.

In the exemplary case of Wells Fargo on 25.07.2016, we observe a positive price impact from a

shock in the bid market order and a negative effect from the first level on the bid-side as depicted

in the left part of Figure 6. In particular the magnitudes of effects on the own price in response to

bid and ask side shocks are strongly negatively correlated. Both impacts last for almost 10 minutes

before the price shifts back, which yields sufficient time for high-frequency investors to make profit

from arbitrage strategies. The presented results are representative for all other days, where unit
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shocks on the first ask and bid level induce significant price effects. As generally investors will start

marking down (up) their bid (ask) price when there is a wave of sell (buy) orders coming into the

order book, the empirical findings that the price factor tends to decrease (increase) significantly

after the arrival of a large ask (bid) market order are in line with theory.

WFC_bid1

Horizon

W
F

C
_p

0 3 6 9 13 17 21 25 29

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

WFC_ask1

Horizon

W
F

C
_p

0 3 6 9 13 17 21 25 29

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 6: Exogenous unit shock price impact for Wells Fargo: This figures depicts the price
impacts over time in response to a unit shock in the bid market order (left side) or in the ask
market order (right side) of the same stock on 25.07.2016.

Figure 7 shows the shape of market impacts of orders posted deeper in the book for Citigroup

(C). This suggests a positive pile-on of effects where a larger ask order may cumulate effects from

different levels of the LOB. The estimated market impact lasts for almost 20 minutes, the price goes

up after 10 minutes because the market investors may buy trades picking up the posted volume or

by cancellations on the ask side.18

Table 11 summarizes days of significant price impacts from exogenous unit shocks in different levels

of the LOB. For each trading day, we use 	 and ⊕ to mark a 5% significant negative and positive

response of the price to the arrival of market/limit orders. In general, financial theory suggest

that responses are positive to buying (bid trades) and negative to selling (ask trades). Our results

suggest that overall on all levels, the group of financial stocks empirically shows this reaction, see

e.g. Citigroup. This may be explained by the fact that the financial sector is leading the market as

18Complete results for all other stocks are available on request.
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Figure 7: Exogenous unit shock price impact for Citigroup: This figures depicts the price
impacts over time in response to a unit shock in different levels of the LOB of the same stock on
01.06.2016.

net price impact transmitters (see Table 9). This is also in line with other empirical findings which

indicate that for financial stocks, the response in prices to changes in trading volumes is relatively

stable and thus robust to statistical arbitrage, see e.g. Hautsch and Huang (2012). Interestingly, the

healthcare and technology stocks sometimes show opposite results where their prices are positively

linked to ask order flows in some cases. This might be as they are mostly net price-impact receiving

stocks (see Table 9) with large shares of cross-asset effects. This result is consistent with our main

findings in subsection 4.1.2 and 4.1.3. Overall, our findings could be key for algorithm traders for

profitable strategies.

MSFT T IBM JNJ PFE MRK JPM WFC C
as1 					 ⊕⊕⊕ ⊕	 			 			 	
as2 			 ⊕ ⊕⊕ ⊕ 		 						
as3 ⊕⊕ ⊕ ⊕ ⊕ ⊕⊕⊕ 	 ⊕⊕ 	
bs1 ⊕		 ⊕			 ⊕ ⊕ ⊕⊕ ⊕⊕⊕	 ⊕⊕ ⊕
bs2 	 	 ⊕	 ⊕ ⊕ ⊕
bs3 	 		 		 	 		 	

Table 11: Summary of own-price market impacts. Symbols mark each trading day with a
significant positive ⊕ and significant negative 	 market impact in response to an exogenous unit
shock at the respective quote level.
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6 Conclusion

In this paper, we suggest a statistical learning methodology in order to empirically quantify the

general own- and cross-asset as well as the own- and cross-price impact of the LOB over time and

identify relevant network spillover channels. Our empirical strategy focuses on real price effects

from observable LOB movements which might happen simultaneously and cannot be treated in

isolation while their occurrence and size often depend endogeneously on the state of the system

in previous time periods. We find strong network interaction effects within the entire limit order

book with a substantial impact on prices even in an only moderate dimensional portfolio. We

document and quantify how these liquidity interlinkages from the LOB incorporate information

beyond standard price channels and change price impact receiver or transmitter roles of stocks

within the system. Moreover, we show substantial variations of effects over time by studying the

period around the Brexit vote in different time granularity. For the case of a “large” volume shock

in isolation, we also analyze the quasi-experimental scenario of an impact of an idiosyncratic unit

shock in different components over time.

Technically, already small portfolios require statistical tools for large dimensional LOB systems for

accurate quantification and identification of effects. Though, the analysis of such large dimensional

LOB systems needs novel statistical techniques for data synchronization, estimation, forecasting

and impulse response analysis with endogenous shocks in order to identify market impacts. These

are of independent interest and also work for very general large-dimensional financial systems with

complex interlinkages. In particular, we provide a bootstrap technology for generalized types of

impulse responses as economically interpretable links, since standard tools as MA transformations

are infeasible in our scenario and even more so for much larger portfolios. These also offer a link to

the existing network connectedness literature which is prevalent for systemic risk analysis which has

generally been technically restricted to smaller low-dimensional systems only potentially missing

out on important cross-effects.
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A Pre-averaging estimation

Suppose that we observe non-synchronous noisy data Yt following,

Yt = Xt + εt, t ≥ 0 (18)

with efficient log price Xt is latent. The error term εt represents microstructure noise and is assumed

to be independent and identically distributed with

E(εt) = 0, E
(
ε2
t

)
= ψ (19)

The price process Xt follows a semi-martingale form, Delbaen and Schachermayer (1994),

Xt = X0 +

∫ t

0
asds+

∫ t

0
σsdWs (20)

where (as)s≥0 is a càdlàg drift process, (σs)s≥0 is an adapted càdlàg volatility process, (Ws)s≥0 is

a Brownian motion. In addition, we assume Xt and εt are independent, i.e.

E(εt | X) = 0 (21)

If one can only observe Y n
i at discrete times t, i indexes the time points with interval length ∆n,

the returns ∆n
i Y is thus defined as,

Y n
i = Yi∆n , ∆n

i Y = Y n
i − Y n

i−1, i = 1, . . . , n (22)

A pre-averaging is conducted to alleviate microstructure noise and solve non-synchronicity, we

follow the notations originally used by Jacod et al. (2009). The basic idea is to construct smoothing

functions to diminish the impact of the noise induced by εt. Specifically, there is a sequence of

integers denoted as kn which satisfies,

∃θ > 0, kn
√

∆n = θ + O

(
∆

1
4
n

)
(23)

46



and a continuous weight function g : [0, 1] 7→ R. g is piecewise C1 with a piecewise derivative g
′
,

g(0) = g(1) = 0, and
∫ 1

0 g
2(s)ds > 0. Furthermore, the following real-valued numbers and functions

are associated with function g on R+,

ψ1 =

∫ 1

0
{g′(u)}2du, ψ2 =

∫ 1

0
{g(u)}2du

Φ1(s) =

∫ 1

s
g
′
(u)g

′
(u− s)du, Φ2(s) =

∫ 1

s
g(u)g(u− s)du

Φij =

∫ 1

0
Φi(s)Φj(s)du, i, j = 1, 2, u ∈ [0, 1] (24)

Here we choose g(x) = x ∧ (1 − x), as in Podolskij et al. (2009), Christensen et al. (2010) and

Hautsch and Podolskij (2013). Therefore we have

ψ1 = 1, ψ2 =
1

12
, Φ11 =

1

6

Φ12 =
1

96
, Φ22 =

151

80640
(25)

The pre-averaged returns Y
n
i associated with the weight function g are given as,

Y
n
i =

kn−1∑
j=1

g

(
j

kn

)
∆n
i+jY

= −
kn−1∑
j=0

{
g

(
j + 1

kn

)
− g

(
j

kn

)}
Y n
i+j , i = 0, . . . , n− kn + 1 (26)

The window size kn defined in equation (23) is chosen of O
(√

1
∆n

)
, balance the noise εni =

Op
(√

1
kn

)
and the efficient price X

n
i = Op

(√
kn∆n

)
.

B Bootstrap-based multistep forecast methods

Here we describe the computational steps to obtain the E(Yt+1|ujt = δjt,Ft−1), GI, GFEVD via

Bootstrap method, more details can be found in Koop et al. (1996), Lanne and Nyberg (2016),

Teräsvirta et al. (2010).

1. Denote Ft−1 as all the information prior to Yt, and select a forecast horizon h.
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2. Randomly sample NB vectors of shocks (δ1t, δ2t, . . . , δKt)
> from the residuals of estimated

model,

δjt : (δ1t, δ2t, . . . , δKt)
> ∼ û?jtej (27)

û?jt = Yt −
(
Â1, Â2, . . . , Âp

)(
Y >t−1, Y

>
t−2, . . . , Y

>
t−p

)>
= Yt − g(Yt−1) (28)

3. Compute conditional multistep forecast E(yt+l|Ft−1),

ft,0 = g(Yt−1) (29)

ft,1 = E[Yt+1 | Ft−1] = E[g(ft,0 + v̂?t ) | Ft−1]

ft,2 = E[Yt+2 | Ft−1] = E[g(ft,1 + v̂?t+1) | Ft−1]

. . .

with v̂?t+l, l = 1, . . . , h are bootstrap samples from the set of residuals {v̂t+l}Tt=1.

4. Repeat steps 3 for all NB vectors of estimated innovations with bootstrap methods, iterating

on the estimated model,

fbt,1 =
1

NB

NB∑
i=1

g(ft,0 + v̂
?(i)
t ) (30)

fbt,2 =
1

NB

NB∑
i=1

g(g(ft,0 + v̂
?(i)
t ) + v̂

?(i)
t+1)

. . .

5. By the same logic, we compute E(yt+l | δjt = ujt,Ft−1) when the shock is given as δjt = û?jtej ,

f̃t,0 = g(Yt−1) (31)

f̃t,1 = E[Yt+1 | Ft−1] = E[g(f̃t,0 + δjt) | Ft−1]

f̃t,2 = E[Yt+2 | Ft−1] = E[g(f̃t,1 + v̂?t+1) | Ft−1]

. . .
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6. Repeat steps 5 for all NB vectors of estimated innovations with bootstrap methods, iterating

on the estimated model,

fbt,1 =
1

NB

NB∑
i=1

g(ft,0 + û
?(i)
jt ej) (32)

fbt,2 =
1

NB

NB∑
i=1

g(g(ft,0 + û
?(i)
jt ej) + û

?(i)
j,t+1ej)

. . .

7. Plug in the GI function

GI(l, δjt,Ft−1) = E(yt+l | ujt = δjt,Ft−1)− E(yt+l | Ft−1) (33)

to obtain the relative contribution of a shock δjt to the i-th variable with horitzon h at time

t,

λij,Ft−1(h) =

∑h
l=0GI(l, δjt,Ft−1)2

i∑K
j=1

∑h
l=0GI(l, δjt,Ft−1)2

i

, i, j = 1, . . . ,K (34)

8. Repeat steps 2-6 for all histories.

9. Construct table 3 using averaged λij,Ft−1(h) generated from step 7.

If there is a unit shock,

δjt : (δ1t, δ2t, . . . , δKt)
> ∼ ej (35)

then we can simiply replace û?jtej of (27) with ej of (35), and repeat the steps from 1 to 6 stated

above, the generalized impulse response can be calculated based on (33), i.e.

GI(l, δjt,Ft−1) = E(yt+l | ujt = δjt,Ft−1)− E(yt+l | Ft−1) (36)

We should note that if K is extremely large in empirical study, the denominator of equation (34)

might be unnecessarily large due to accumulated noise caused by the large amount of irrelevant
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variables. Therefore one more step of prescreening is preferred to filter out less relevant variables.

C Model Selection Consistency

Proof of Theorem C.1

In this section we show the model selection consistency according to (9). The following theorem

C.1 derives the statistical properties of the estimate using elastic net. Additionally, the second part

of the theorem gives the asymptotic distribution of the estimate.

Theorem C.1. Suppose that α1,T /
√
T → 0 and α2,T /

√
T → 0. Then the objective function (9)

yields the following:

1. limT→∞ P(A∗T = A) = 1;

where A is the set of indices for the non-zero elements of vec(A), A∗T is the set of indices for

the non-zero elements of vec(Â) in (9)

2.
√
Tvec(Â′T −A′)→d N (0,Σu ⊗ Γ−1)

where 1
T ZZ

′ →p Γ.

The model selection is consistent, i.e. the true lags are selected with probability one.

Let vec(Â) = vec(A) + vec( 1√
T
eA), where eA is an K ×K matrix, define

ΨT (eA) =

∥∥∥∥∥vec(Y )− (Z ′ ⊗ IK)vec(A+
1√
T
eA)

∥∥∥∥∥
2

2

+ α1

∥∥∥∥∥vec(A+
1√
T
eA)

∥∥∥∥∥
1

+ α2

∥∥∥∥∥vec(A+
1√
T
eA)

∥∥∥∥∥
2

2

where eA = [eA,1, . . . , eA,P ]. Each eA,p, p = 1, . . . , P is a K ×K matrix.
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In order to find eA so as to minimize ΨT (eA). This is equivalent to minimize

ΨT (eA)−ΨT (0) = vec(
1√
T
eA)′(ZZ ′ ⊗ IK)vec(

1√
T
eA)

− 2vec(U)′(Z ′ ⊗ IK)vec(
1√
T
eA)

+ α1

P∑
p=1

K∑
i,j=1

(
|Ap(i, j) +

1√
T
eA,p(i, j)| − |Ap(i, j)|

)
+ α2

P∑
p=1

K∑
i,j=1

( 1

T
e2
A,p(i, j) +

2√
T
Ap(i, j)e

2
A,p(i, j)

)

For the third term in the above equation, we have
√
T
(
|A(i, j)+ 1√

T
eA(i, j)|−|A(i, j)|

)
→ sign(A(i, j))|eA(i, j)|

for A(i, j) 6= 0. By Slutsky’s theorem, α1

(
|A(i, j) + 1√

T
eA(i, j)| − |A(i, j)|

)
→p 0 when

α1√
T
→ 0.

For the last term, since
α2√
T
→ 0 we have α2

(
1
T e

2
A(i, j) + 2√

T
A(i, j)e2

A(i, j)
)
→ 0.

In addition, by minimizing ΨT (eA)−ΨT (0), we have

√
Tvec(ÂT −A) = vec(êA)

=
√
T (ZZ ′ ⊗ I−1

K )(Z ⊗ IK)vec(U)

=
√
T
(
(ZZ ′)−1Z ⊗ IK

)
vec(U)

Because 1
T ZZ

′ →p Γ and 1√
T
vec(UZ ′) →d N(0,Γ ⊗ Σu) with Σu = E(uu′) hold, the asymptotic

distribution of
√
Tvec(ÂT −A) is normal and the covariance matrix is

(Γ−1 ⊗ IK)(Γ⊗ Σu)(Γ−1 ⊗ IK)

Thus,
√
Tvec(Â′T −A′)→d N (0,Σu ⊗ Γ−1)
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D Network Aggregation Details

Case 1: Own-price/Cross-price market impact We have

V = Y (37)

Eo =


Coi←j =


Co
p(k+1)←as(k+1)

r

= C7k+1←7k+1+r for i = j − r = 7k + 1

Co
p(k+1)←bs(k+1)

r

= C7k+1←7k+4+r for i = j − 4− r = 7k + 1

k = 0, . . . , N − 1, r = 1, . . . 3


Hence the network Gown = (V, Eo) displays the effects of different levels of quotes on the stock price

within the LOB of each stock.

For studying this cross-price market impact, we thus work with Gcross = (V1, Ec,1), where the

ask-side (bid-side) of each stock is represented by a single node as(n)(bs(n)):

V1 =
(

(p(1), as(1), bs(1)), . . . , (p(N), as(N), bs(N))
)>

(38)

Ec,1 =


C1
i←j =

 C1
p(k+1)←as(z+1) =

∑3
r=1C7k+1←7z+1+r for i = 3k + 1, j = 3z + 2

C1
p(k+1)←bs(z+1) =

∑3
r=1C7k+1←7z+4+r for i = 3k + 1, j = 3z + 3

k 6= z = 0, . . . , N − 1



Eo,1 =


C1
i←j =

 C1
p(k+1)←as(k+1) =

∑3
r=1C7k+1←7k+1+r for i = j − 1 = 3k + 1

C1
p(k+1)←bs(k+1) =

∑3
r=1C7k+1←7k+4+r for i = j − 2 = 3k + 1

k = 0, . . . , N − 1


Case 2: Trade imbalance between bids and asks To measure potential asymmetry of bid and

ask side effects on different stock prices, spillovers are aggregated across stocks in each quote level

to determine the respective overall impact. We thus work with a network with graph Gs = (V2, Es,2)
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where each level r of the ask (bid) side is represented by asr (bsr)

V2 =
(

(p(1), . . . , p(N)), (as1, as2, as3), (bs1, bs2, bs3)
)>

(39)

Es,2 =


Cs,2i←j =

 C2
p(k+1)←asr

=
∑N−1

l=0 C7k+1←7l+1+r for i = k + 1, j = N + r

C2
p(k+1)←bsr

=
∑N−1

l=0 C7k+1←7l+4+r for i = k + 1, j = N + r + 3

k = 0, . . . , N − 1 r = 1, 2, 3


For an overview, we work with Gsp = (V3, Es,3) where the price is denoted as p

V3 = (p, (as1, as2, as3), (bs1, bs2, bs3))> (40)

Es,3 =


Cs,3i←j =

 C3
p←asr =

∑N−1
k=0

∑N−1
l=0 C7k+1←7l+1+r for i = 1, j = 1 + r

C3
p←bsr =

∑N−1
k=0

∑N−1
l=0 C7k+1←7l+4+r for i = 1, j = 4 + r

r = 1, 2, 3


In this network Gsp, all effects are aggregated across stocks.

Case 3: Price-only effects and the fully LOB-aggregated network per stock For study-

ing only price effects within the LOB-network, we consider a network with graph Gp = (V4, Ep,4)

V4 = Yp =
(
p(1), . . . , p(N)

)>
(41)

Ep,4 =
{
Cp,4i←j = C7(i−1)+1←7(j−1)+1for i 6= j = 1, . . . , 7

}

The price-only case is compared to the case where we aggregate all pairwise LOB-network spillover

effects between two stocks. Thus we work with the network Gg = (V5, Eg,5) where each stock is

represented by a node g(n).

V5 = (g(1), g(2), . . . , g(N))> (42)

Eg,5 =

Cg,5i←j =

7i+7∑
m=7i+1

7j+7∑
l=7j+1

Cm←l for i 6= j = 1, . . . , N
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E Tables and figures

MSFT T IBM JNJ PFE MRK JPM WFC C

m(Cs,2
p(n)←as1

)
period I 1.29 0.69 0.75 1.76 0.31 0.98 0.35 0.70 1.89
period II 0.34 1.79 0.74 0.33 0.26 0.88 4.42 2.10 0.55
period III 0.27 0.64 0.81 0.09 1.11 1.56 0.68 1.45 1.84
full period 0.39 0.96 0.75 0.42 0.48 1.25 0.97 0.99 1.41

m(Cs,2
p(n)←as2

)
period I 0.99 0.50 4.38 0.53 0.42 1.33 0.50 0.82 0.85
period II 3.77 1.82 0.21 1.81 3.26 4.15 2.60 0.52 0.91
period III 0.37 0.31 0.69 0.13 0.54 0.88 0.32 0.75 0.74
full period 0.96 1.51 0.80 0.83 0.75 1.41 0.52 0.69 0.79

m(Cs,2
p(n)←as3

)
period I 0.97 0.42 1.91 0.24 0.37 0.36 6.20 0.26 0.33
period II 9.82 2.20 0.39 1.11 2.43 2.11 1.26 2.10 2.68
period III 0.73 1.53 1.31 2.07 0.34 0.75 1.26 0.95 0.96
full period 1.33 1.24 0.85 0.81 0.44 0.69 1.53 0.53 0.65

m(Cs,2
p(n)←bs1

)
period I 0.36 0.48 0.80 1.14 0.30 0.10 0.17 0.15 0.68
period II 0.77 1.79 0.39 0.48 1.66 1.58 1.17 1.94 1.34
period III 0.74 0.64 0.44 0.39 0.62 1.89 1.33 1.69 0.81
full period 0.56 0.80 0.53 0.62 0.82 0.36 0.65 0.52 0.90

m(Cs,2
p(n)←bs2

)
period I 1.30 0.37 1.94 0.26 0.57 0.10 0.19 0.78 0.62
period II 0.34 1.75 0.30 0.16 0.62 0.74 0.94 0.61 1.00
period III 1.35 0.77 0.14 0.89 1.09 0.41 0.64 0.46 0.65
full period 0.78 0.83 0.64 0.30 0.77 0.32 0.33 0.54 0.81

m(Cs,2
p(n)←bs3

)
period I 0.88 0.52 0.50 0.31 0.31 0.88 0.57 1.26 0.82
period II 0.96 2.54 0.20 0.99 0.56 1.14 1.27 3.16 3.78
period III 0.66 0.66 0.38 0.09 0.55 0.27 0.38 2.69 1.06
full period 0.76 1.21 0.31 0.60 0.41 0.83 0.59 1.82 1.14

Table 12: Quote level effects: Each element of the upper half of the table contains the aggregated
market impact m(Cs,2

p(l)←asr
) of the ask side level r across all stocks on the price of stock l as defined

in (16) displayed as median m over different parts of the full sample period. In the lower half of
the table corresponding bid-side effects m(Cs,2

p(l)←bsr
) are reported.All other specifications are as in

Table 10.
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Figure 8: Price impacts in subperiods: This figure this graphically depicts the composition
of received price impacts from different sources as percentage aggregates over time in the three
subperiods for AT&T, IBM and Johnsons&Johnson. All colors and specifications are as in Figure
4.
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Figure 9: Price impacts in subperiods: This figure this graphically depicts the composition
of received price impacts from different sources as percentage aggregates over time in the three
subperiods for Pfizer, Wells Fargo and Citigroup. All colors and specifications are as in Figure 4.
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Wolfgang Karl Härdle, April 2021.
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