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Summary

We develop tests for the null hypothesis that forecasts become uninformative

beyond some maximum forecast horizon h∗. The forecast may result from a

survey of forecasters or from an estimated parametric model. The first class of

tests compares the mean-squared prediction error of the forecast to the vari-

ance of the evaluation sample, whereas the second class of tests compares it

with the mean-squared prediction error of the recursive mean. We show that

the forecast comparison may easily be performed by adopting the

encompassing principle, which results in simple regression tests with standard

asymptotic inference. Our tests are applied to forecasts of macroeconomic key

variables from the survey of Consensus Economics. The results suggest that

these forecasts are barely informative beyond two to four quarters ahead.

1 | INTRODUCTION

The choice of the largest forecast horizon appears to be an important issue for decision makers. For example, in recent
years, several central banks, including the Federal Reserve, the Bank of England, and the European Central Bank
(ECB), decided to increase the time horizons of their macroeconomic forecasts or surveys they conduct among private
sector forecasters. For instance, since 2004, the Bank of England has published macroeconomic forecasts for up to
12 instead of eight quarters ahead. In the US Survey of Professional Forecasters (SPF), conducted by the Federal
Reserve Bank of Philadelphia, the largest horizon for forecasts of some annual variables like real GDP was extended
from 1 to 3 years in 2010. In 2013 and 2014, the largest horizon of several macroeconomic forecasts by the ECB and in
the ECB's SPF increased from 1 to 2 years.1 Yet, it is unclear whether forecasts for larger horizons actually provide valu-
able information in such cases, as forecast error variances approach the unconditional variance of the target variable.

For assessing the predictive content, Theil (1958) proposed (among other measures) the inequality coefficient that
compares the actual forecast to some “naive” guess. If the forecast is informative, the inequality coefficient should be
substantially smaller than unity; see, for example, Isiklar and Lahiri (2007) for an application to survey forecasts from
Consensus Economics.

Using the unconditional mean as the uninformative benchmark, the inequality coefficient is related to the R2 from
a regression of the actual observations on their forecasts (often referred to as Mincer-Zarnowitz regression; see Mincer &
Zarnowitz, 1969). This R2 was considered by Nelson (1976) and Diebold and Kilian (2001) as a measure for the predic-
tive content. Diebold and Kilian (2001) generalized this measure to accommodate nonstationary time series and

1See Knüppel (2018) for further details.
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arbitrary loss functions. Their measure compares the loss of the short-run forecast to the loss of the long-run prediction.
If the target variable is stationary, the loss function is quadratic, and the horizon of the long-run forecast tends to infin-
ity, then the Diebold–Kilian measure and Nelson's R2 coincide.

The empirical literature reports few and differing results concerning the largest informative forecast horizon. The
differences are at least partly due to different data transformations, as pointed out by Galbraith and Tkacz (2007). For
example, concerning quarterly GDP, they find that forecasts of quarter-on-quarter growth are barely informative
beyond a forecast horizon of one quarter. For year-on-year forecasts, this horizon increases to about four quarters,
which may not be surprising provided the overlap of the forecasts. Concerning annual GDP growth, Isiklar and
Lahiri (2007) find that forecasts are informative for horizons up to six quarters. Diebold and Kilian (2001) report even
larger horizons for HP-filtered or linearly detrended GDP.

The purpose of this paper is to provide statistical tests for assessing the predictive content of forecasts, thereby deter-
mining the largest informative forecast horizon. A natural way of testing is to compare the forecast to some uni-
nformative benchmark. To this end, traditional forecast evaluation tests, such as the Diebold and Mariano (1995) test
or forecast encompassing tests (e.g., Harvey et al., 1997) can be adopted.2 It is important to note that the uninformative
benchmark is typically nested within the forecast under scrutiny in the sense that under the null hypothesis the differ-
ence between the forecasts tends to zero in probability (Clark & McCracken, 2001). In this paper, we propose an alter-
native approach that sidesteps the problem of selecting a “naive benchmark” and directly compares the mean-squared
forecast error to the unconditional variance of the target variable.

We consider three different forecast scenarios. Whenever the forecasts are based on survey expectations (as in our
empirical application), it is natural to assume that the forecasts correspond to some conditional mean based on an asso-
ciate information set. We argue that it makes a crucial difference whether the forecasts are exactly identical to some
conditional mean function (Scenario 1) or whether the forecasts involve some additional noise (Scenario 2). For the lat-
ter scenario it is natural to test the hypothesis of uninformative forecasts by running a Mincer–Zarnowitz regression,
whereas under the first scenario, the Mincer–Zarnowitz regression is invalid due to the fact that under the null hypoth-
esis, the conditional mean is constant. Yet, it is possible to construct a Diebold–Mariano type test for Scenario 1 by tak-
ing into account the fact that the forecast comparison is nested. Scenario 3 assumes that the forecast is generated by an
estimated model. In many cases, the forecast results from a parametric specification of some conditional mean function,
where the parameters are estimated from past observations. This scenario is related to Scenario 2, where the noise cor-
responds to the estimation error. An important difference is, however, that the estimation error vanishes as the number
of observations tends to infinity.

We consider two testing strategies for assessing the predictive power of the forecasts. As our test procedures are
based on a comparison of the forecast and the unconditional mean as an uninformative benchmark, we require an esti-
mator for the unconditional mean. One approach is to employ the in-sample mean of the evaluation sample. Alterna-
tively, we may use some other uninformative benchmark such as the recursive mean computed from an expanding
sample. It turns out that the in-sample version of the test typically provides a simpler test with less assumptions and
choices to make. Moreover, the in-sample version of our tests tend to perform better in many situations.

The rest of this paper is organized as follows. In Section 2, we introduce our testing framework. Tests of the infor-
mation content of survey expectations are considered in Section 3, whereas Section 4 deals with forecasts based on para-
metric models. Section 5 investigates the small sample properties of the tests by means of Monte Carlo experiments,
and in Section 6, the proposed tests are applied to forecasts of key macroeconomic variables as reported by Consensus
Economics. Section 7 concludes. Additional results are provided in Appendix S1.

2 | TESTING FRAMEWORK

Assume that the target time series {Yt} is generated by a stationary and ergodic stochastic process. The h-step ahead
forecast of Yt+ h based on information up to time period t is denoted by Ŷ tþhjt. Under quadratic loss, the optimal forecast
equals the conditional expectation μh,t ¼EðYtþhjI tÞ, where I t represents the information set at time period t. For our
analysis, we distinguish two time spans. The evaluation period starts at t¼ 1þh and runs up to period t=n+ h. For
these time periods, we compare the forecasts Ŷ 1þhj1,…, Ŷ nþhjn to the actual values Y1+ h,… ,Yn+ h.

2See Elliott and Timmermann ((2016), chap. 17) and Cheng et al. (2020) for reviews of the recent literature.
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The following assumption characterizes the process generating the series to be forecasted by the information set I t:

Assumption 1. (i) For each h¼ 1,2,…, the time series is decomposed as

Ytþh ¼ μh,tþuh,t , ð1Þ

where μh,t ¼EðYtþhjI tÞ for h>0, I t denotes an increasing sigma-field, and uh,t ¼ϕhðLÞεh,t , where ϕhðLÞ¼ 1þϕh,1Lþ
ϕh,2L

2þ… is a lag polynomial with all roots outside the unit circle,
P∞

i¼1jϕh,ij<∞ and εh, t is an i.i.d. white noise pro-
cess with Eðεh,tÞ¼ 0 and Eðε2h,tÞ¼ σ2h. (ii) Ejuh,tj2þδ <C<∞ for some δ>0. (iii) E n�1Pn

t¼1μ
2
h,t

� �
<C<∞ for all n.

For some of our results, the assumptions of a linear process with constant variances are not necessary (see Remark
2 below) and may be relaxed at the cost of a more demanding notation and asymptotic analysis.

Let μ¼EðYtÞ denote the unconditional mean. We are interested in testing the null hypothesis

no information: EðYtþh� Ŷ tþhjtÞ2 ≥EðYtþh�μÞ2, for h> h ∗ and t� f1,…,ng, ð2Þ

which is tested against the alternative H1: EðYtþh� Ŷ tþhjtÞ2 <EðYtþh�μÞ2 . The null hypothesis (2) asserts that there
exists a maximum forecast horizon h∗ beyond which the process Yt is unpredictable with respect to the information set
I t. If the forecast for Yt+ h is identical to the conditional mean μh, t, then the hypothesis (2) is equivalent to the following
hypothesis:

constant mean: EðYtþhjI tÞ¼ μh,t ¼ μ, for h> h ∗ and t � f1,…,ng; ð3Þ

that is, the conditional expectation is constant within the evaluation sample.
In many practical situations, it is not reasonable to assume that the forecast is identical to some conditional

expectation. In Section 3, we assume that the conditional expectation may be contaminated by some noise ηt such that
Ŷ tþhjt ¼ μh,tþηt . Another possibility is that the conditional expectation is specified as a parametric function involving a
parameter vector θ, which needs to be estimated (see Section 4). In such cases, the null hypotheses (2) and (3) are not
equivalent as EðYtþh� Ŷ tþhjtÞ2 may be larger than EðYtþh�μÞ2 due to the variance of the noise or the estimation error.
Therefore, a test for a constant conditional mean may reject while a test of the hypothesis (2) is not able to reject the no
information hypothesis. In Section 3, we show that if the conditional mean is contaminated with noise, then the con-
stant meanhypothesis (3) implies that the slope coefficient of the Mincer–Zarnowitz regression is equal to zero, whereas
the no information hypothesis (2) refers to a slope not larger than 0.5. Whenever the forecast Ŷ tþhjt converges in proba-
bility to the conditional expectation μh, t (Scenario 3 for model-based predictions), then the no information hypothesis is
asymptotically equivalent to the constant mean hypothesis.

Another difficulty with hypothesis (2) is that μ is not observed and has to be replaced by some estimate. Our pre-
ferred approach is to insert the mean of the evaluation sample �Yh ¼ n�1Pn

t¼1Ytþh. Another possibility is to replace μ by
an uninformative benchmark Ŷ

∗
t known in period t, such as the recursive mean computed from observations prior to

t or the mean of a rolling window. The advantage of employing a recursive mean is that the estimation error of Ŷ
∗
t �μ

tends to become smaller as t increases. The mean of a rolling window is suitable for adopting the finite-sample frame-
work of Giacomini and White (2006); see Section 5.

Using the uninformative benchmark Ŷ
∗
t instead of the mean of the evaluation sample �Yh requires more informa-

tion (a longer history of the target variable), a stronger assumption (the null hypothesis applies to a longer time span
involving the risk of structural breaks), and additional choices (recursive vs. rolling mean, the choice of the estimation
window size) to perform the tests.3 Therefore, the tests based on �Yh are more versatile and can easily be employed, for
example, when analyzing survey forecasts or comparing different forecasts (for instance, survey vs. model and model
with larger estimation sample vs. model with shorter estimation sample). However, if a forecaster is interested in the

3Moreover, because the uninformative benchmark is typically nested within the (potentially) informative forecast, the “standard” Diebold and
Mariano (1995) or encompassing tests are invalid.
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largest informative horizon of her model only, Ŷ
∗
t and �Yh are both suitable choices, since the additional requirements

related to Ŷ
∗
t also apply to the model-based forecast anyway.4

The maximum forecast horizon h∗ can be identified by sequentially applying a consistent test for horizons h¼ 1,2,…
until it is not rejected for the first time. Then, h∗ is identified as the penultimate horizon tested. Provided that the tests
are consistent, h∗ is correctly identified with probability approaching 1� α as n!∞, where α denotes the significance
level of the test. Therefore, α must tend to zero to achieve a consistent selection rule for h∗ (see Remark 6 below). It
should be noted that the forecast error variances are monotonically increasing with respect to the forecast horizon (see,
for instance, Patton & Timmermann, 2012, Section 2.2). Thus, if a forecast is uninformative at some horizon h, it must
also be uninformative for any higher horizon. Therefore, we can stop the testing sequence as soon as the test does not
reject for the first time.

It is important to notice that there may not exist a finite maximum forecast horizon h∗. If, for example, Yt+ h is gen-
erated by an AR(1) process, then h∗ is infinity. In such cases, our tests address the question: “For how many time
periods ahead does the forecast significantly outperform the naive benchmark?” As for many other statistical tests, fail-
ing to reject the null hypothesis does not imply that it is true.

3 | SURVEY EXPECTATIONS

First, we focus on forecasts that are not based on an (estimated) statistical model but result from expectations of a sam-
ple of individuals. We consider two different scenarios: In Scenario 1, the expectation is identical to some conditional
mean, that is, Ŷ tþhjt ¼ μh,t ¼EðYtþhjI tÞ. For our test, it is not important to specify and know the information set I t . It is
only required that there exists some sequence of increasing information sets with I t � I tþ1.

In Scenario 2, the conditional expectation is observed with noise such that Ŷ tþhjt ¼ μh,tþηt . The error term ηt may
be due to reporting error or forecast disagreement, for instance.5

3.1 | Tests without expectation error

First, we analyze Scenario 1 where the survey expectations are identical to the conditional expectation based on some
information set I t . In this setup, the no information hypothesis (2) and the constant mean hypothesis (3) are
equivalent. To test the null hypothesis, the unknown unconditional mean μ may be replaced by the in-sample mean
�Yh ¼n�1Pn

t¼1Ytþh . Another alternative is to employ some uninformative benchmark such as the recursive mean based
on T+ t observations:

�Yt ¼ 1
Tþ t

Xt
s¼�Tþ1

Ys : ð4Þ

The test statistics are based on the mean-squared prediction error (MSPE) loss differentials:

δh0,t ¼u2h,t�ðYtþh� �YhÞ2, ð5Þ

δhT,t ¼u2h,t�ðYtþh� �YtÞ2 , ð6Þ

where uh,t ¼Ytþh� Ŷ tþhjt . Following Diebold and Mariano ((1995); henceforth DM), we construct two test statistics
based on δh0,t and δhT,t . Notice that the forecast comparison δhT,t is based on nested forecasts (see Clark &
McCracken, 2001) implying that under the null hypothesis δh0,t !

p
0 as n!∞ and δhT,t !

p
0 as T!∞.

4This case corresponds to Scenario 3 and can be addressed using existing tests like the one proposed in Clark and West (2007). Yet, to the best of our
knowledge, these tests have never been applied sequentially to find the largest informative horizon, as suggested in what follows.
5In the literature on survey expectations (e.g. Carlson & Parkin, 1975), it is often assumed that individual expectations are drawn from the distribution
Nðμh,t ,σ2hÞ. If mt is the number of survey participants in period t, the error of the survey mean is distributed as ηt �Nð0,σ2h=mtÞ.
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Theorem 1. The DM type test statistics are defined as

dm0,h ¼ 1
ω2
h

Xn
t¼1

δh0,t and dmT,h ¼ 1
ω2
h

Xn
t¼1

δhT,t, ð7Þ

where

ω2
h ¼ lim

n!∞
E 1ffiffiffi

n
p
Xn
t¼1

uh,t

 !2

: ð8Þ

Under the null hypothesis H0: μh,t ¼ μ for all t and h> h∗, Assumption 1, a recursive forecasting scheme
with T!∞, n!∞, and T/(T+n)! π � [0, 1), the test statistics are distributed as

dm0,h !d χ2, ð9Þ

dmT,h !d 2 ð

1

π

1
a
WðaÞdWðaÞ� ð

1

π

1
a2

WðaÞ2da, ð10Þ

where W(a) represents a standard Brownian motion defined on [0, 1].

Remark 1. The test statistics (7) reveal some interesting differences to the original DM statistic. First, the sum of the loss
differential is not divided by

ffiffiffi
n

p
. Second, the statistics involve the long-run variance of uh, t instead of the square

root of the long-run variance of the loss differentials. Third, the limiting distribution is different from a standard
normal distribution. This is due to the nested nature of the forecast comparison. It is important to notice that for
the test based on the recursive mean, dmT, h, the limiting distribution depends on the fraction π. Critical values
for selected values of π are presented in Appendix S1. In contrast, the limiting distribution of the in-sample statis-
tic dm0, h does not depend on π and is available from standard statistical tables and software. Note that the critical
values are obtained from the lower quantiles of the χ2 distribution. For example, the critical value for a signifi-
cance level of 0.05 is 0.0039.

Remark 2. Following Diebold and Mariano (1995), the long-run variance ω2
h can be estimated as

ω̂2
h ¼

1
n

Xn
t¼1

u2h,tþ
2
n

Xh�1

j¼1

Xn
t¼jþ1

uh,tuh,t�j:

It should be noted, however, that by applying a rectangular kernel, the estimated long-run variance may be negative. In
this case, some other kernel should be applied that ensures a positive estimator for the long-run variance
(e.g., Newey & West, 1987). Note also that the usual estimators for the long-run variance are robust to hetero-
skedasticity. Accordingly, Assumption 1 may be generalized to allow for heteroskedastic processes when the statistic
dm0, h is concerned. On the other hand, the limiting distribution of the test statistic dmT, h depends on functionals of
Brownian motions that are affected whenever uh, t is heteroskedastic.

Remark 3. The statistic dmT, h employs T additional observations prior to the evaluation sample, requiring the assump-
tion that the unconditional mean remains constant during the entire time span of T+n time periods. In contrast,
the statistic dm0, h is less vulnerable to structural instability. Surprisingly, using more information does not imply
that the statistic dmT, h is more powerful than dm0, h, as documented in Section 5.

3.2 | Tests with expectation error

Let us now move on to Scenario 2 where the forecast is contaminated with noise; that is, Ŷ tþhjt ¼EðYtþhjtjI tÞþηt and
ηt represents the noise. Our asymptotic analysis is based on the following assumption:
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Assumption 2. (i) The noise ηt is generated by a stationary process with EðηtÞ¼ 0 , Eðη2t Þ¼ σ2η , Eðη4t Þ<∞ and long-run
variance ω2

η ¼ limn!∞E n�1Pn
t¼1ηt

� �2
<∞ . (ii) Eðηtμh,tÞ¼ 0 for all t. (iii) Let ξt ¼ ηtuh,t . For h> h∗ and all t, we

assume that EðξtÞ¼ 0 , Eðξt�jξtÞ¼ 0 for jjj≥h, and Ejξtj2þδ <∞ for some δ>0.

Again, the assumption that the expectation error is homoskedastic is made to facilitate the proofs but is not neces-
sary as the test statistic employs heteroskedasticity- and autocorrelation-consistent (henceforth HAC) standard errors.
Assumptions 2 (ii) and (iii) ensure that the noise does not result in a systematic bias. The limitation to autocorrelation
up to h� 1 lags in (iii) is due to the fact that the HAC t statistic assumes an MA(h� 1) process for uh, t. We can easily
relax this assumption to allow for some higher order correlation of ξt by employing a larger truncation lag for the HAC
correction.

Our test of the no information hypothesis (2) relies on the following lemma:

Lemma 1. Let Ŷ tþhjt ¼ μh,tþηt . (i) The no information hypothesis (2) and Assumptions 1 and 2 imply βh ¼ 0:5 in the
regression:

Ytþh ¼ αhþβhŶ tþhjtþ vtþh : ð11Þ

To provide an intuitive explanation for this result, we note that regression (11) is asymptotically equivalent6 to run-
ning the forecast encompassing regression (cf. Elliott & Timmermann, 2016, pp. 393–397)

Ytþh ¼ ð1�βhÞ �YhþβhŶ tþhjtþ~vtþh

or Ytþh� �Yh ¼ βhðŶ tþhjt� �YhÞþ~vtþh :
ð12Þ

The representation (12) implies that for the hypothesis βh ¼ 0:5, the optimal forecast combination attaches equal
weights to both forecasts. In other words, none of these two forecasts is favored under the null hypothesis. The relevant
alternative assigns larger weight to the forecast Ŷ tþhjt than implied by the respective null hypothesis. Therefore, we con-
sider one-sided tests; that is, the null hypothesis βh ¼ 0:5 is tested against βh>0.5.

All tests of the parameters βh (and γh, see Remark 4) rely on the LM version of the (HAC) t statistic constructed as

τa ¼ 1
ω̂a

ffiffiffi
n

p
Xn
t¼1

at, ð13Þ

where ω̂2
a denotes some consistent estimator for the long-run variance of at. The specific form of the sequence at is given

in Theorem 2. The test statistic τa is asymptotically equivalent to the ordinary HAC t statistics of the coefficients βh in
regression (11). The only difference of the latter statistic is that for estimating the long-run variance of at, the hypothe-
sized coefficient βh ¼ 0:5 is replaced by the estimated coefficient β̂h. Because β̂h is a consistent estimator for βh, both ver-
sions of the tests are asymptotically equivalent under the null hypothesis.

It is interesting to consider the null hypothesis βh ¼ 0, which refers to the constant mean hypothesis (3). This null
hypothesis implies that the forecast Ŷ tþhjt and the actual value Yt+ h are uncorrelated. Because Assumption 2 supposes
that ηt and Yt+ h are uncorrelated, it follows from the null hypothesis that μh, t and Yt+ h are uncorrelated as well.
Because E½ðYtþh�μÞðμh,t�μÞ� ¼Eðμh,t�μÞ2, we conclude that βh ¼ 0 implies μh,t ¼ μ and, therefore, the test of βh ¼ 0 is
equivalent to testing the constant mean hypothesis (3). In other words, βh ¼ 0 makes a statement about the conditional
mean μh, t, whereas βh ¼ 0:5 tests the hypothesis that the MSPE of the forecast fails to be smaller than the unconditional
variance.

Another implication of the null hypothesis βh ¼ 0 is that there exists no linear transformation of the forecast Ŷ tþhjt
that results in a smaller MSPE than the unconditional variance. If 0 < βh<0.5, then the MSPE of the forecast Ŷ tþh,t is
larger than the unconditional variance of Yt+ h, but the linear transformation Ŷ

∗
tþ1jt ¼ αhþβhŶ tþ1jt is an informative

6The only difference is that in (11) the implicit centering of the regressor is around �̂Yh ¼n�1Pn
t¼1Ŷ tþhjt , whereas the regressor in (12) is centered

around �Yh. Assumptions 1 and 2 imply that �Yh !p μ and �̂Yh !p μ as n!∞.
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forecast. This is due to the fact that whenever the R2 of the regression (11) is larger than zero, then the residual variance
is smaller than the variance of Yt+ h. Note that the estimated linear transformation of Ŷ

∗
tþhjt can also be represented as a

linear combination of Ŷ tþhjt and the in-sample mean. Therefore, the test for βh ¼ 0 can be interpreted as a type of fore-
cast encompassing test.

The following theorem summarizes the asymptotic distributions of the HAC t statistics for the no information
hypothesis (2) and the constant mean hypothesis (3) based on the in-sample mean �Yh. The tests employing the recursive
mean �Yt are considered in Remark 4 and Appendix A1.

Theorem 2. (i) Under Assumptions 1 and 2, h> h∗, σ2η >0, and n!∞, the HAC t statistics constructed as in (13) with

at ¼ Ytþh� �Yh�0:5ðŶ tþhjt� �̂YhÞ
h i

ðŶ tþhjt� �̂YhÞ for H0 : βh ¼ 0:5

at ¼ Ytþh� �Yh
� �

ðŶ tþhjt� �̂YhÞ for H0 : βh ¼ 0

in the regression (11) possess a limiting standard normal distribution, with �̂Yh ¼ n�1Pn
t¼1Ŷ tþhjt.

The proof is relegated to Appendix B1.

Remark 4. In Appendix A1, we consider analogous tests based on the recursive mean as uninformative benchmark.
Essentially, this version of the test replaces the constant μ by the recursive mean �Yt and employs the HAC
t statistic for the hypothesis γh ¼ 0:5 or γh ¼ 0 in the regression

Ytþh� �Yt ¼ γh Ŷ tþhjt� �Yt
� �þνtþh: ð14Þ

It is interesting to note that this test is related to the adjusted MSPE statistic suggested by Clark and West (2007) for
nested forecast comparisons. Their statistic is given by

MSPE-adj¼ 2
n

Xn
t¼1

Ytþh� �Ytð Þ Ŷ tþhjt� �Yt
� �

, ð15Þ

which is essentially equal to the numerator of the OLS estimator of γh multiplied by the factor 2/n. As argued by Clark
and West (2007), the adjustment accounts “for the noise associated with the larger model's forecast,” whereas in our
framework, the adjusted MSPE statistic is equivalent to testing the hypothesis γh ¼ 0 instead of γh ¼ 0:5 . As argued
above, testing γh ¼ 0 corresponds to the hypothesis that there does not exist a linear transformation of the forecast
Ŷ tþhjt with an MSPE lower than the unconditional variance. Likewise, the linear transformation can be regarded as a
linear combination of Ŷ tþh,t and the recursive sample mean.

Remark 5. The tests considered in Theorem 2 have two important characteristics. First, they are valid even if the survey
expectations are biased such that EðŶ tþhjtÞ¼ μtþh,tþψ , where the bias ψ is constant over time. For instance, the
survey expectations may be biased due to an asymmetric loss function but nevertheless informative in the sense
that if the survey participants expect an increase, the actual value is likely to increase as well. The invariance to a
possible bias is due to the fact that the regression constant takes into account any deviation between the means of
the forecast and the target variable. This is an important difference to the test considered in Remark 4, where the
uninformative benchmark is the recursive mean and the resulting test statistic is not invariant to a forecast bias.
Second, the tests do not run into problems if the noise ηt is small, as the regressor is well behaved for all σ2η >0.
The reason is that the test statistic is invariant to the scaling of the regressor. Under the null hypothesis, the long-
run variance of the regressor Ŷ tþhjt may become arbitrarily small as long as it remains positive. In contrast, the
proof of Theorem A.1 reveals that the regression t statistic for γh ¼ 0:5 and γh ¼ 0 in Remark 4 involves an extra
term due to �Yt�μ that becomes relatively more important the smaller σ2η is. This additional term results in severe
size distortions whenever σ2η is small. In empirical practice, the long-run variance of ηt is unknown, and conse-
quently, the effect of the additional term on the asymptotic distribution is not clear.
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4 | MODEL PREDICTIONS

In Scenario 3, we consider model-based forecasts that are characterized by a conditional mean function EðYtþhjI tÞ¼
μh,tðθÞ, where the k� 1 vector θ represents the model parameters. To economize on notation, we do not make explicit
the dependence of the forecast model on additional variables. In practice, the unknown parameter vector θ is replaced
by consistent estimates θ̂t based on the recursive sampling scheme {�T+ 1,… , 0, 1,… , t}. Accordingly, the estimated
conditional mean is denoted by Ŷ tþhjt � μh,tðθ̂tÞ. To some extent, this framework is related to Scenario 2 where the sur-
vey expectations are contaminated by noise, a situation that was analyzed in the previous section. The crucial difference
is, however, that the estimation error tends to zero as T tends to infinity, whereas the variance of the expectation error
ηt is assumed to be constant. Specifically, we make the following assumptions on the estimated forecast function:

Assumption 3. (i) Under the null hypothesis, there exists some h∗ such that μh,tðθÞ¼ μ for all h> h∗. (ii) The parame-
ters are estimated consistently with

ðaÞ θ̂0�θ ¼ OpðT�1=2Þ

ðbÞ sup
t � f1,…,ng

jjθ̂t� θ̂0jj ¼ Op

ffiffiffi
n

p
T

	 

for t¼ 1,2,…,n

where θ̂0 denotes the estimator based on time periods {�T+ 1,… ,� 1, 0}.
(iii) Let Dh,tðθÞ¼ ∂μh,tðθÞ=∂θ and �DhðθÞ¼ n�1Pn

t¼1Dh,tðθÞ. For all θ ∗
i � ½θi�ϵ,θiþϵ� with ϵ>0 and θ ∗ ¼ðθ ∗

1 ,…,θ ∗
k Þ0,

it holds that

1
n

Xn
t¼1

jjDh,tðθ ∗ Þ� �Dhðθ ∗ Þjj !p D with 0<D<∞

EjjDh,tðθ ∗ Þuh,tjj2þδ <∞ for some δ>0 and all t:

Part (i) refers to the constant mean hypothesis (3). Because for all t� {1,… ,n} we have μtþhjtðθ̂tÞ�μtþhjtðθÞ!
p
0 as T

!∞, this null hypothesis is asymptotically equivalent to the no information hypothesis (2). Therefore, we focus on the
hypothesis βh ¼ 0, which results in more powerful tests than testing βh ¼ 0:5. Part (ii) (a) supposes the usual (paramet-
ric) convergence rate of the estimation error in the estimated parameter vector θ̂0 based on the pre-evaluation sample t
� {�T+ 1,… , 0}, whereas (ii) (b) limits the variation of estimators in the recursive estimation scheme within the evalua-
tion sample. Assumption 3 (iii) ensures the existence of a central limit theorem.

For illustration, consider the forecast based on a simple regression model with Ŷ tþhjt ¼ β̂tXt , where β̂t is the least
squares estimator based on the T+ t time periods {�T+ 1,… , t}. If Xt is stationary, then β̂0�β¼OpðT�1=2Þ and
Assumption 2 (ii) (a) is fulfilled. Furthermore, it is not difficult to show7 that β̂t� β̂0 ¼ Op

ffiffi
t

p
=T

� �
, and because t≤n,

Assumption 3 (ii) (b) is satisfied. Furthermore, Dh,tðθÞ¼Xt and, assuming stationary regressors with positive
variance, Assumption 3 (iii) is fulfilled as well. It should also be noted that this assumption rules out forecasts based on
nonparametric estimators that typically involve lower convergence rates. In such cases, T must grow faster to achieve a
similar accuracy of the asymptotic approximations.

In an earlier version of this paper (Breitung & Knüppel, 2018), we analyzed the asymptotic properties of a DM type
test dm0, h considered in Theorem 1 above. Specifically, we showed that the estimation error of such a test can be
ignored if T!∞, n!∞ and n/T! 0. Unfortunately, in typical sample sizes, the additional term due to the estimation
error remains large relative to the critical value, and therefore, the size distortions are substantial and disappear very
slowly with increasing T. We therefore do not consider the test statistics dm0, h or dmT, h in this section. Rather, we focus
on the regression variant by testing the hypothesis βh ¼ 0 in (11).

In our asymptotic analysis, we first focus on the case that n/T tends to zero. Although in empirical practice n/T is
often in the range 0.2� 0.5, say, the test performs nevertheless reasonably well, even for sizable values of n/T. Note that
the test statistic has a standard normal limiting distribution regardless of the fraction n/T, if the forecast were computed

7See the working paper version of this paper, Breitung and Knüppel (2018).
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from a fixed forecasting scheme, where the estimated parameter values from period t¼ 0 are used for estimating the
conditional mean function. Because the difference θ̂t� θ̂0 is typically small (see Assumption 3 (ii) (b)), the difference
between applying the recursive scheme involving θ̂t and the fixed scheme θ̂0 is typically small if T is reasonably large.
Denote the respective forecast based on the fixed forecasting scheme as Ŷ

0
tþhjt ¼ μh,tðθ̂0Þ, where θ̂0 denotes the estimate

of θ using information from t� {�T+ 1,… , 0}. Under the null hypothesis, Assumption 3 implies

E ðYtþh� �YhÞŶ 0
tþhjt

h i
¼E ðuh,t� �uhÞŶ 0

tþhjt
h i

¼ 0,

with �uh ¼ n�1Pn
t¼1uh,t , and it follows that the HAC t statistic of βh ¼ 0 in the regression (11) possesses a standard nor-

mal limiting distribution regardless of the estimation error in Ŷ
0
tþhjt . This is due to the fact that the estimation error

Ŷ
0
tþhjt�μh,tðθÞ and uh,t� �uh are uncorrelated. In a recursive forecasting scheme, the difference between Ŷ tþhjt and Ŷ

0
tþhjt

introduces a correlation with �uh , which is due to the overlap of information employed in Ŷ tþhjt and �Yh (resp. �uh). This
correlation gives rise to a negative bias that disappears as n/T! 0. In practice, this bias is relatively small and results in
a test that tends to be slightly conservative for sizable values of n/T.8 The details are provided in the proof of the follow-
ing theorem:

Theorem 3. Under Assumptions 1 and 3, a recursive forecasting scheme, h> h∗, T!∞, n!∞, and n/T! 0, the
HAC t statistic (13) for testing the hypothesis βh ¼ 0 with

at ¼ Ytþh� �Yh
� �

ðŶ tþhjt� �̂YhÞ

in the regression (11) possesses a standard normal limiting distribution, with �̂Yh ¼ n�1Pn
t¼1Ŷ tþhjt.

The proof is relegated to Appendix S1.

Remark 6. As mentioned in Section 2, a consistent selection rule for the maximum forecast horizon h∗ requires that the
size of the test tends to zero as n!∞. One possibility is to apply a critical value of the form κlogðnÞ with some
κ>0. This choice is motivated by the Bayesian information criterion. It is not difficult to see that under the
alternative τa¼Opðn1=2Þ such that for h≤ h∗, we obtain limn!∞Pðτa > κlogðnÞÞ¼ 1, whereas for h> h∗, we have
τa¼Opð1Þ and limn!∞Pðτa > κlogðnÞÞ¼ 0. Thus, the decision rule based on the last rejection in the sequence of
tests with h¼ 1,2,… is weakly consistent. For instance, letting n¼ 27, the critical value 1=2logð27Þ¼ 1:65 is similar
to the one-sided 0.05 critical value of a standard normal distribution. This suggests setting κ¼ 0:5 in order to
obtain a selection rule roughly equivalent to usual hypothesis testing when n is small. The same considerations
apply to the tests considered in Section 3.

5 | SMALL SAMPLE PROPERTIES

To compare the small sample properties of the proposed test statistics in alternative forecasting scenarios, we conduct a
number of Monte Carlo experiments. As the main conclusions are robust against variants of the forecasting model and
the forecast horizon, we focus on the data-generating process (DGP) given by Yt ¼ aþbXt�1þ εt , where εt and Xt are
independent standard normal random variables. For b¼ 0, the time series is unpredictable at all forecast horizons h,
whereas for b≠ 0, the forecast Ŷ tþ1jt ¼ aþbXt is informative. This forecast corresponds to Scenario 1 in
Section 3, where we assume that the forecast is identical to the conditional mean of the process given the information
I t ¼fXt,Xt�1,…g . In Scenario 2, we assume that the forecast from Scenario 1 is contaminated by the noise term ηt,
which is again an independently and normally distributed random variable with EðηtÞ¼ 0 and Eðη2t Þ¼ σ2η.

8Calhoun (2016) suggests a related approach for sidestepping the problems due to the overlap of the two forecasts. He considers the test statistic
proposed by Clark and West (2007), where the model forecast is computed following a rolling window forecasting scheme, whereas the benchmark is
computed recursively.
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Table 1 compares the actual sizes of the test procedures proposed in Theorems 1 and 2. The upper panel reports the
rejection rates for b¼ 0, according to the constant mean hypothesis (3) for Scenario 1, that is, in the case of no noise
(ση ¼ 0Þ. It turns out that the size of the tests considered in Theorem 1 is very accurate for all combinations of n and T.

TABLE 1 Actual size of tests of Theorems 1 (w/o noise) and 2 (w/ noise)

n 25 50 100 250 500 25 50 100 250 500 25 50 100 250 500

b¼ 0

ση ¼ 0

dm0

0.05 0.05 0.05 0.05 0.05

dmT

T¼ 50 0.06 0.05 0.05 0.05 0.05

T¼ 100 0.06 0.05 0.05 0.05 0.05

T¼ 250 0.06 0.05 0.05 0.05 0.05

T¼ 500 0.05 0.05 0.05 0.05 0.05

T¼ 1000 0.07 0.05 0.05 0.05 0.05

ση ¼ 0:001 ση ¼ 0:01 ση ¼ 0:1

dm0 dm0 dm0

0.05 0.05 0.05 0.06 0.07 0.10 0.12 0.13 0.16 0.18 0.22 0.22 0.20 0.15 0.10

dmT dmT dmT

T¼ 50 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.09 0.08 0.08 0.07 0.05

T¼ 100 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.11 0.10 0.09 0.08 0.05

T¼ 250 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.15 0.13 0.11 0.08 0.06

T¼ 500 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.19 0.17 0.14 0.10 0.06

T¼ 1000 0.06 0.05 0.05 0.05 0.05 0.07 0.05 0.06 0.06 0.05 0.26 0.21 0.17 0.12 0.07

β¼ 0 β¼ 0 β¼ 0

0.06 0.06 0.06 0.05 0.05 0.07 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05

γ¼ 0 γ¼ 0 γ¼ 0

T¼ 50 0.20 0.24 0.30 0.44 0.58 0.20 0.23 0.29 0.42 0.54 0.13 0.15 0.16 0.19 0.20

T¼ 100 0.17 0.19 0.23 0.34 0.44 0.15 0.18 0.22 0.30 0.39 0.10 0.11 0.12 0.15 0.15

T¼ 250 0.13 0.15 0.17 0.24 0.30 0.11 0.13 0.15 0.21 0.26 0.08 0.08 0.08 0.10 0.10

T¼ 500 0.11 0.12 0.14 0.19 0.23 0.10 0.10 0.11 0.15 0.19 0.07 0.07 0.07 0.08 0.09

T¼ 1000 0.10 0.10 0.12 0.15 0.18 0.08 0.08 0.09 0.12 0.15 0.06 0.06 0.06 0.07 0.07

b¼ ση

ση ¼ 0:001 ση ¼ 0:01 ση ¼ 0:1

β¼ 0:5 β¼ 0:5 β¼ 0:5

0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.05

γ¼ 0:5 γ¼ 0:5 γ¼ 0:5

T¼ 50 0.14 0.14 0.15 0.18 0.20 0.13 0.14 0.15 0.16 0.17 0.08 0.08 0.08 0.09 0.08

T¼ 100 0.12 0.13 0.14 0.16 0.18 0.11 0.11 0.13 0.14 0.15 0.07 0.07 0.08 0.08 0.08

T¼ 250 0.11 0.11 0.12 0.14 0.16 0.09 0.09 0.10 0.11 0.12 0.07 0.06 0.06 0.07 0.06

T¼ 500 0.09 0.10 0.11 0.12 0.14 0.08 0.08 0.08 0.10 0.10 0.06 0.06 0.06 0.06 0.06

T¼ 1000 0.09 0.09 0.10 0.11 0.13 0.08 0.07 0.07 0.08 0.09 0.06 0.06 0.06 0.06 0.05

Note: Test results for data-generating process Yt= bXt� 1+ ϵt with Xt, ϵt �iid Nð0,1Þ and 10,000 simulations. Forecasts are given by Ŷ tþ1jt ¼ bXt þηt with ηt �iid
Nð0,σ2ηÞ. dm0 and the tests for β are based on in-sample means of Yt. Benchmark forecasts for tests based on dmT and γ are estimation-sample means of Yt

using a recursive estimation scheme starting with T observations. Significance level is α¼ 0:05. Tests are based on OLS standard errors. All tests are one sided.

The subscript h is suppressed in dm0,h, dmT, h, βh, and γh, because h¼ 1 for all tests.
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The second panel depicts the actual sizes for the tests if the forecasts are contaminated by noise. The findings suggest
that the in-sample test dm0≡ dm0, 1 is quite sensitive to the noise whereas the test dmT≡ dmT, 1 based on the recursive
mean as the benchmark is more robust at least if the noise is as small as ση ¼ 0:01. In contrast, the tests that allow for
noise perform well if the noise is large, but the test for γ� γ1 ¼ 0 reveals severe size distortions in the case with very
small noise (ση ¼ 0:001). This is due to the fact that with small noise, the test statistic is dominated by a term with a
nonstandard distribution that is related to the recursive mean �Yt�μ . The test for β� β1 ¼ 0, however, performs well
even for very small noise. The same holds for the test for β¼ 0:5 in the situation where b¼ ση holds, such that the noisy
forecasts are as accurate as forecasts based on the unconditional mean and the no information hypothesis holds. The
test for γ¼ 0:5 again suffers from pronounced size distortions unless ση is large. Yet, these distortions are not as severe
as with the test for γ¼ 0 in the case with b¼ 0.

To study the relative power of the tests, we let b¼ 0:2. We only present results for the empirically relevant Scenario
2, that is, for forecasts with noise, and we only consider cases where the tests show reliable size properties in Table 1.
The results presented in the upper panel of Table 2 indicate that the in-sample version of the DM type test is more pow-
erful than the test with the recursive mean as a benchmark whenever the fraction n/T is larger than 0.1. If T gets very
large, however, the test dmT outperforms the in-sample version dm0. Compared with the tests of Theorem 2 (with
noise), it turns out that the robustness to noise comes at the expense of a slight loss of power. Note that the null hypoth-
esis of the tests of Theorem 1 implies μ1,t ¼ μ. This corresponds to the null hypothesis β¼ 0 in the tests of Theorem 2.
For large n, both tests have similar power, but for n as small as 25 or 50, the corresponding test in Theorem 2(β¼ 0) is
substantially less powerful.

Let us now turn to Scenario 3, that is, to the tests for model-based forecasts. In our example, the forecasts are
obtained as Ŷ tþ1jt ¼ âtþ b̂tXt , where ðât, b̂tÞ refers to the OLS estimates based on time periods {�T+ 1,… , t}. Our find-
ings are summarized in Table 3. The results presented in the upper panel report the actual sizes of the tests. It turns out

TABLE 2 Power of tests of Theorems 1 (w/o noise) and 2 (w/ noise) for noisy forecasts

n 25 50 100 250 500 25 50 100 250 500 25 50 100 250 500

b¼ 0:2

ση ¼ 0:001 ση ¼ 0:01 ση ¼ 0:1

dm0

0.52 0.63 0.77 0.91 0.98

dmT dmT

T¼ 50 0.37 0.47 0.63 0.86 0.97 0.34 0.51 0.74 0.97 1.00

T¼ 100 0.43 0.52 0.66 0.87 0.97 0.31 0.48 0.70 0.96 1.00

T¼ 250 0.51 0.59 0.71 0.88 0.97 0.29 0.45 0.67 0.95 1.00

T¼ 500 0.55 0.64 0.75 0.90 0.97 0.28 0.44 0.65 0.94 1.00

T¼ 1000 0.61 0.67 0.78 0.91 0.98 0.28 0.43 0.65 0.94 1.00

β¼ 0 β¼ 0 β¼ 0

0.28 0.41 0.64 0.93 1.00 0.28 0.42 0.64 0.93 1.00 0.25 0.36 0.56 0.88 0.99

β¼ 0:5 β¼ 0:5 β¼ 0:5

0.14 0.18 0.27 0.47 0.73 0.15 0.18 0.27 0.48 0.72 0.11 0.13 0.17 0.28 0.44

γ¼ 0:5

T¼ 50 0.13 0.15 0.21 0.34 0.50

T¼ 100 0.12 0.14 0.20 0.32 0.49

T¼ 250 0.11 0.14 0.18 0.31 0.47

T¼ 500 0.11 0.13 0.18 0.29 0.46

T¼ 1000 0.11 0.13 0.18 0.29 0.45

Note: Test results for data-generating process Yt= bXt� 1+ ϵt with Xt, ϵt �iid Nð0,1Þ and 10,000 simulations. Results are only displayed for tests with actual size
<0.10 for all n,T considered in Table 1. Forecasts are given by Ŷ tþ1jt ¼ bXt þηt with ηt �iid Nð0,σ2ηÞ. dm0 and β indicates tests based on in-sample means of Yt.
Benchmark forecasts for tests based on dmT and γ are sample means of Yt using a recursive estimation scheme starting with T observations. Significance level is

α¼ 0:05. Tests are based on OLS standard errors. All tests are one sided. The subscript h is suppressed in dm0, h, dmT, h, βh, and γh, because h¼ 1 for all tests.
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that the tests are conservative for all combinations of n and T. The size distortions appear to depend on the fraction
n/T. For n/T<1, as often encountered in practice, the size distortions tend to be rather small. For a nominal size of
0.05, the actual size is usually in the range 0.02–0.04.9 The power of the tests is presented in the lower half of Table 3.
Note that the test statistics for model-based forecasts are similar to the tests for survey forecasts with noise; the only dif-
ference is how the forecasts relate to the conditional expectation μh,t ¼EðYtþhjXt,Xt�1,…Þ . In Theorem 2, the noise is
assumed to be uncorrelated with μh, t and the variance does not depend on n or T. In contrast, the size of the “noise”
that is due to the estimation error is a function of n and T, and it is not uncorrelated with μh, t. To get an idea of the
size of the estimation error, we calculated the standard deviation of the estimated conditional mean function as 0.1 for
T¼ 100, which corresponds to the case with large noise in Table 1. The important difference is, however, that the esti-
mation error is not independent of the sample mean �Yh, which tends to result in moderate size distortions unless n/T is
very small.

We finally consider the test procedure of Giacomini and White (2006). This test involves a rolling window forecast-
ing scheme with fixed window size B for the forecast model and the benchmark, and it simply tests if their loss differen-
tial denoted by gdmB,1 equals zero.10 The left panel of Table 4 reports the actual sizes of this test for various window
sizes. As the test is based on the small sample comparison of the losses, the coefficient b is calibrated such that under
the null hypothesis the expected losses are identical. The corresponding values of b are presented in the second column
of Table 4, and the note contains details about their calibration. From the simulation results, it turns out that for small
evaluation samples (n¼ 25), the test is slightly oversized, whereas for n≥ 100, the test appears to be slightly conserva-
tive. This corresponds to the results of McCracken (2019), who found that the Giacomini–White test tends to be conser-
vative for large n. With respect to the power of the test, we observe that—as expected—the power of the test increases
gradually with B. Compared with the encompassing tests proposed in Theorem 3, we observe a severe loss of power.

9In simulations not reported here, we tried out values of n/T as large as 40, but the actual size never dropped below 0.01.
10This test is loosely related to Scenario 2, because the parameter estimation error resulting from the rolling window is stationary and can be regarded
as a form of autocorrelated noise. However, in contrast to all three scenarios considered, the uninformative benchmark is likewise contaminated by
autocorrelated noise even as n!∞.

TABLE 3 Actual size and power of

tests of Theorem 3 (model predictions)
n 25 50 100 250 500 25 50 100 250 500

b¼ 0

β¼ 0 γ¼ 0

T¼ 50 0.02 0.02 0.02 0.01 0.01 0.04 0.03 0.03 0.02 0.02

T¼ 100 0.03 0.02 0.02 0.01 0.01 0.04 0.03 0.03 0.03 0.02

T¼ 250 0.03 0.02 0.02 0.02 0.01 0.04 0.04 0.03 0.03 0.03

T¼ 500 0.04 0.03 0.02 0.02 0.01 0.04 0.04 0.03 0.03 0.03

T¼ 1000 0.04 0.03 0.03 0.02 0.02 0.05 0.04 0.04 0.03 0.03

b¼ 0:2

β¼ 0 γ¼ 0

T¼ 50 0.16 0.24 0.41 0.78 0.97 0.20 0.31 0.50 0.86 0.99

T¼ 100 0.20 0.30 0.48 0.83 0.98 0.23 0.35 0.56 0.89 0.99

T¼ 250 0.26 0.36 0.57 0.89 0.99 0.27 0.38 0.61 0.91 0.99

T¼ 500 0.27 0.39 0.60 0.91 1.00 0.27 0.40 0.62 0.92 1.00

T¼ 1000 0.28 0.41 0.62 0.93 1.00 0.28 0.42 0.63 0.93 1.00

Note: Test results for data-generating process Yt= bXt� 1+ ϵt with Xt, ϵt �iid Nð0,1Þ and 10,000 simulations.
Forecasts are given by Ŷ tþ1jt ¼ âþ b̂Xt with â, b̂ resulting from OLS regressions of Yt on a constant and Xt� 1.
Benchmark forecasts for tests based on γ are estimation-sample means of Yt. Both forecasts use a recursive
estimation scheme starting with T observations. Tests based on β are considered in Theorem 2. Significance

level is α¼ 0:05. Tests are based on OLS standard errors. All tests are one-sided. The subscript h is
suppressed in βh and γh, because h¼ 1 for all tests.

380 BREITUNG AND KNÜPPEL



For example, while the Giacomini–White test rejects in 23% of the cases if n¼ 100 and B¼ 250, the encompassing test
based on γ rejects in at least 60% of the cases if T≥ 250 and n¼ 100.

In Appendix S1, we present additional Monte Carlo experiments for multiple forecast horizons that by and large
corroborate our results for h¼ 1.

6 | EMPIRICAL RESULTS

For the empirical application of the tests, we employ quarterly survey forecasts collected by Consensus Economics. The
mean of the forecasts across all panelists is known to be a very accurate forecast, as documented, for example, by Ang
et al. (2007) for inflation forecasts. While survey forecasts are commonly evaluated ignoring the potential presence of
any type of noise (see Clements, 2019, Chapter 4.1), we are going to focus on the tests for Scenario 2, that is, on forecasts
with noise. Therefore, we employ the tests for βh ¼ 0 and γh ¼ 0, and for βh ¼ 0:5 and γh ¼ 0:5. We do so because dis-
agreement across forecasters combined with entry and exit of forecasters inevitably leads to some form of noise.11

We consider quarterly forecasts of quarter-on-quarter (q-o-q) rates of real GDP growth and year-on-year (y-o-y)
inflation rates of the consumer price index (CPI).12 The quarterly forecasts are usually gathered in the first half of the
last month of a quarter. Therefore, the forecasters can be expected to have information about the variable of interest in
the current quarter, that is, for the forecast (resp. nowcast) horizon h¼ 0. Given the y-o-y definition, and denoting the
forecast horizon for the current quarter, that is, for the nowcast with h¼ 0, we can expect that h∗ ≥ 2 for CPI inflation.
This is because knowledge about past values of the price index enables the forecasters to mechanically produce fore-
casts that have lower MSPEs than the unconditional mean up to h¼ 2 .13 The countries under study are the United
States, the euro area, Japan, Germany, the United Kingdom, Italy, Canada, and France. Because, in each quarter, Con-
sensus Economics also provides data for recent quarters, we can employ this real-time data for the evaluation of the
forecasts. We use second vintages for both variables.

11Results of the tests dm0, h, dmT, h, and the test of Giacomini and White (2006) for real GDP growth in the United States can be found in Appendix S1.
12For the United Kingdom, we use forecasts of the retail price index (RPI) because of their larger sample size.
13The year-on-year rate for h¼ 2 equals the sum of the quarter-on-quarter rates for h¼�1,0,1,2. Using the observed quarter-on-quarter rate for
h¼�1 and the unconditional mean as the forecast of the quarter-on-quarter rates for the latter three horizons yields an MSPE for the year-on-year
rate forecast for h¼ 2, which is lower than the variance of the year-on-year rates by construction. If information on the current quarter is available,
the maximum forecast horizon should thus be equal to or larger than 3.

TABLE 4 Giacomini–White tests for unconditional forecast comparisons

n 25 50 100 250 500 25 50 100 250 500

gdmB ¼ 0

b= bGW b¼ 0:2

bGW

B¼ 50 0.1458 0.08 0.04 0.02 0.02 0.02 0.11 0.08 0.06 0.08 0.14

B¼ 100 0.1012 0.07 0.05 0.03 0.02 0.02 0.14 0.14 0.14 0.21 0.39

B¼ 250 0.0655 0.08 0.06 0.04 0.02 0.02 0.17 0.18 0.23 0.36 0.63

B¼ 500 0.0458 0.08 0.06 0.05 0.03 0.02 0.19 0.20 0.26 0.44 0.70

B¼ 1000 0.0323 0.09 0.06 0.05 0.04 0.03 0.19 0.21 0.28 0.46 0.72

Note: Test results for data-generating process Yt= bXt� 1+ ϵt with Xt, ϵt �iid Nð0,1Þ and 10,000 simulations. Forecasts are given by Ŷ tþ1jt ¼ âþ b̂Xt resulting from
OLS regressions of Yt on a constant and Xt� 1. Benchmark forecasts are estimation-sample means of Yt. Both forecasts use a rolling estimation scheme with B

observations. Significance level is α¼ 0:05. Tests are based on Newey and West (1987) standard errors with truncation lags chosen according to Andrews (1991).
he values of bGW used for the size simulations are calibrated to yield identical mean-squared prediction errors (MSPE) of Ŷ tþ1jt and the rolling sample means.
The MSPEs are 1.0417 (B¼ 50), 1.0205 (B¼ 100), 1.0080 (B¼ 250), 1.0040 (B¼ 500), and 1.0020 (B¼ 1000), respectively. These values of the MSPEs are based
on 1 billion simulations and have standard errors of about 0.00005, respectively. The test is one sided. The subscript 1 is suppressed ingdmB,1.
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Considering forecasts for up to h¼ 6 quarters ahead, our evaluation sample mostly starts in the second quarter of
2001 and ends in the second quarter of 2018, yielding a sample size of n¼ 69. Only for the euro area, the sample starts
in the second quarter of 2004, leading to n¼ 57. For the recursive mean serving as a benchmark forecast, the estimation
begins with the T¼ 20 observations before the start of the evaluation sample.14

The empirical maximum forecast horizons ĥ
∗

determined by the tests are shown in Table 5. The sequential
p values of the tests giving rise to these values of ĥ

∗
are displayed in Figures 1–4. These figures also contain the ratios

of the survey forecasts' MSPEs to the MSPEs of the respective benchmark forecasts.
Notably, for GDP growth, ĥ

∗
is always smaller than the largest forecast horizon of h¼ 6. The tests for βh ¼ 0 and

γh ¼ 0 mostly yield results between ĥ
∗ ¼ 1 and ĥ

∗ ¼ 3 with a median result of about 2. For five out of eight countries,
both tests give identical results, whereas for the United States, the euro area, and Japan, ĥ

∗
is one or two quarters larger

when γh ¼ 0 is used instead of βh ¼ 0. The findings of Section 5 suggest that this may be due to size distortions of the test
for γh ¼ 0 in the scenario with small noise.

For many countries, the tests for βh ¼ 0:5 and γh ¼ 0:5 stop rejecting the null hypotheses about one to two quarters
before their respective counterparts, which test for equality to 0. ĥ

∗
mostly lies in the range 0–2. However, for Japan,

the null hypotheses cannot even be rejected for the nowcast. The results of both tests coincide for four out of eight
countries. For three countries, the test for γh ¼ 0:5 yields a value of ĥ

∗
, which exceeds the value obtained with the test

for βh ¼ 0:5 by one quarter, whereas for Italy, the opposite is observed.
To sum up, the survey forecasts for GDP often are not significantly more accurate than simple unconditional mean

forecasts except at very short horizons. To be more precise, using the no informationhypothesis, most real GDP growth
forecasts turn out not to be informative for more than one quarter ahead. Yet, also at larger horizons, a linear transfor-
mation of the survey forecasts would often yield lower MSPEs than the unconditional means. In the latter sense, that
is, based on the constant mean hypothesis, the survey forecasts for GDP growth are informative for two to three quar-
ters ahead in the majority of cases.

For CPI inflation, we find larger values of ĥ
∗
as expected due to the y-o-y definition. Concerning the tests for βh ¼ 0

and γh ¼ 0, ĥ
∗
equals 3 or 4 in most cases. However, for Japan and Italy, the tests even reject for the last horizon, imply-

ing that ĥ
∗
at least equals 6. This result might be related to large changes of the value-added tax rate (VAT), which are

14The recursive and the in-sample mean employ the same second-vintage realizations as used for the forecast evaluations.

TABLE 5 Empirical maximum

forecast horizons ĥ
∗
in quarters for

forecasts of growth and inflation

US EA JP DE UK IT CA FR Median

GDP q-o-q

βh ¼ 0 3 2 1 1 3 2 1 2 2

γh ¼ 0 5 3 3 1 3 2 1 2 2.5

βh ¼ 0:5 2 2 �1 0 2 1 0 0 0.5

γh ¼ 0:5 3 3 �1 1 2 0 0 0 0.5

CPI y-o-y

βh ¼ 0 3 4 6 3 3 6 3 3 3

γh ¼ 0 4 4 6 3 3 6 6 4 4

βh ¼ 0:5 2 3 4 2 2 6 3 3 3

γh ¼ 0:5 3 3 4 3 2 6 3 3 3

Note: “GDP q-o-q” denotes quarter-on-quarter growth rates of real GDP, “CPI y-o-y” year-on-year growth
rates of the consumer price index except for the United Kingdom, where the retail price index is employed.
The abbreviations used for the countries are “US” for the United States, “EA” for the euro area, “JP” for
Japan, “DE” for Germany, “UK” for the United Kingdom, “IT” for Italy, “CA” for Canada, and “FR” for
France. Forecast errors cover the sample 2004q2 to 2018q2 for the euro area and 2001q2 to 2018q2 for all
other countries. Forecasts and real-time observations (second vintage) are taken from Consensus
Economics. The benchmark mean forecasts for the tests of γ¼ 0 and γ¼ 0:5 are based on recursive
estimations starting with T¼ 20 observations. ĥ

∗
is set to �1 if the null hypothesis cannot be rejected for

the nowcast. A value of 6 implies that the maximum forecast horizon equals at least six quarters, because six
quarters is the largest forecast horizon under study.
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FIGURE 1 Test results for quarter-on-quarter growth rates of real GDP using the in-sample mean as the benchmark. The number on

the x-axis denotes the forecast horizon in quarters with 0 being the nowcast. The dotted line is at 0.05, corresponding to the significance level

of the tests. The dashed line is at 1. The solid line indicates the ratio of the Consensus forecasts' MSPE to the variance. All tests are one

sided. The respective values of ĥ
∗
are displayed in Table 5 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Test results for quarter-on-quarter growth rates of real GDP using the recursive mean with T¼ 20 initial observations as the

benchmark. The solid line indicates the ratio of the Consensus forecasts' MSPE to the MSPE of the recursive mean forecasts. For further

explanations, see Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Test results for year-on-year growth rates of the CPI (the RPI in the case of the United Kingdom) based on the in-sample

mean as the benchmark. For further explanations, see Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Test results for year-on-year growth rates of the CPI (the RPI in the case of the United Kingdom) using the recursive mean

with T¼ 20 initial observations as the benchmark. For further explanations, see Figures 1 and 2 [Colour figure can be viewed at

wileyonlinelibrary.com]
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commonly announced well in advance.15 For five out of eight countries, both tests again give identical results, whereas
the test for γh ¼ 0 yields larger values of ĥ

∗
for three countries. For the United States and France, ĥ

∗
equals 4 instead

of 3. For Canada, ĥ
∗

at least equals 6 if the test of γh ¼ 0 employed, which is considerably larger than ĥ
∗ ¼ 3 as

obtained with the test of βh ¼ 0. As Figures 3 and 4 show, Canada's ratios of the survey forecasts' MSPEs to the MSPEs
of the respective benchmark forecasts are essentially flat and very close to 1 for h≥ 4. This suggests that small differ-
ences in the testing approaches can lead to relatively large differences concerning ĥ

∗
.

When the tests for βh ¼ 0:5 and γh ¼ 0:5 are employed, we again find values of ĥ
∗
that are often one to two quarters

smaller than when using βh ¼ 0 and γh ¼ 0. While ĥ
∗
continues to equal 3 or 4 in the majority of cases, values as small

as 2 occur for the United States, Germany, and the United Kingdom, and ĥ
∗
≥ 6 is only observed for Italy. Both tests

give identical results for six out of eight countries, whereas for the United States and Germany, the test for γh ¼ 0:5
yields ĥ

∗ ¼ 3 instead of ĥ
∗ ¼ 2 with the test for βh ¼ 0:5.

Thus, the survey forecasts for CPI inflation mostly outperform unconditional mean forecasts only at horizons where
the y-o-y definition gives the survey forecasts an informational advantage. Only rarely do the tests find more accurate
survey forecasts for ĥ

∗
>3. For several countries, however, employing linear transformations of the survey forecasts

would again yield lower MSPEs than employing the unconditional means. Accordingly, based on the constant
meanhypothesis, the survey forecasts for CPI inflation are usually found to be informative for three to four quarters
ahead.

7 | CONCLUSIONS

This paper develops a forecast evaluation framework for testing the null hypothesis that the forecast at some
prespecified horizon h is uninformative. We consider three different scenarios: in the first scenario, the forecast is iden-
tical to some conditional mean, whereas in the second scenario, some noise is superimposed on the conditional mean.
The third scenario relates to model-based forecasts where the parameters of the model are estimated in a recursive
manner. For the first scenario, a Diebold–Mariano type test statistic is proposed that performs very well in our Monte
Carlo experiments. For the empirically more realistic second and third scenarios, we adopt the encompassing principle
that yields simple regression-based test statistics.

Although all regression-based tests work reasonably well in the majority of cases considered, the tests using the recur-
sive mean as a benchmark (tests based on γh) can suffer from nonnegligible size distortions in certain situations. They also
require more information than the tests based on the in-sample mean (tests based on βh). Furthermore, we think that test-
ing for a coefficient equal to zero is more appealing than testing for 0.5. First, the former test has more power, and second,
it is invariant to linear transformations of the forecast and therefore, for instance, robust to forecast bias.

In the empirical analysis, we apply our tests to macroeconomic forecasts from the survey of Consensus Economics.
Our results suggest that forecasts of macroeconomic key variables are hardly informative beyond two to four quarters
ahead. Our results confirm earlier findings from the macroeconomic forecasting literature that were based on less rigor-
ous approaches. The main contribution of our work is to provide statistical tests that allow the forecaster to assess the
maximum forecast horizon of the forecast of interest.

It is worth mentioning that our testing approach (as any other empirical methodology) has two major limitations.
First, the estimated maximum forecast horizon may be biased downwards whenever the power of the test is poor
(e.g., for a small number of forecasts in the evaluation sample). Second, the estimated maximum forecast horizon
depends on the approach that generates the forecasts. If the approach fails to exploit important information, it may pro-
duce uninformative forecasts, whereas a richer forecasting procedure may result in informative forecasts. Accordingly,
any qualification of the informative content is conditional on the forecasting approach.

OPEN RESEARCH BADGES

This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to
reproduce the reported results. The data is available at [http://qed.econ.queensu.ca/jae/datasets/breitung001/].

15For instance, the Japanese VAT rate increased from 5% to 8% in the second quarter of 2014. This preannounced increase equals about three times
the standard deviation of Japanese CPI inflation and, thus, leads to extremely large forecast errors of the benchmark forecasts but not of the survey
forecasts.
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APPENDIX A: TESTS AGAINST A NONINFORMATIVE BENCHMARK

In this appendix we analyze the tests invoking the recursive mean �Yt as uninformative benchmark. As noted in Remark
4, this hypothesis can be tested by running the regression
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Ytþh� �Yt ¼ γh Ŷ tþhjt� �Yt
� �þνtþh, ðA1Þ

where �Yt denotes the recursive mean of the expanding sample {Y�T+ 1,… ,Yt}. The LM version of the HAC test statistic
is constructed as in (13), where

at ¼ Ytþh� �Yt�0:5ðŶ tþhjt� �YtÞ
� �ðŶ tþhjt� �YtÞ for H0 : γh ¼ 0:5

at ¼ Ytþh� �Ytð ÞðŶ tþhjt� �YtÞ for H0 : γh ¼ 0:

The following theorem presents the limiting null distribution of this test.

Theorem A.1. Under Assumptions 1 and 2, h> h∗ and σ2η >0, the HAC t statistics constructed as in (13) possess a lim-
iting standard normal distribution as n!∞ and T!∞.

Proof. See Appendix S1.

Finally, we note that the test of hypothesis γh ¼ 0 in (A1) is equivalent to the adjusted MSPE test for nested forecast
comparisons proposed by Clark and West (2007). Clark and McCracken (2001) showed that under the conditions of
Theorem 3 (in particular n/T! 0), the HAC t statistic possesses a standard normal limiting null distribution, whereas
the test is slightly conservative whenever n/T is substantial.

APPENDIX B: PROOFS OF THE MAIN RESULTS

Proof of Theorem 1

(i) For the first statistic dm0, h, we have

δh0,t ¼ðYtþh�μÞ2�ðYtþh� �YhÞ2

¼ u2h,t�ðuh,t� �uhÞ2

¼ 2uh,t�uh� �u2hXn
t¼1

δh0,t ¼ n�u2h,

where �uh ¼ n�1Pn
t¼1uh,t. This in turn yields

1
ω2
h

Xn
t¼1

δh0,t !
d
χ2:

(ii) Under the null hypothesis, we have for the statistic dmT, h

1
ω2
h

Xn
t¼1

δhT,n ¼ 1
ω2
h

Xn
t¼1

ðYtþh�μÞ2� Ytþh�μ�ð �Yt�μÞ½ �2
n o

¼� 1
ω2
h

Xn
t¼1

ð �Yt�μÞ2þ 2
ω2
h

Xn
t¼1

ðYtþh�μÞð �Yt�μÞ

¼� 1
ω2
h

Xn
t¼1

ðTþnÞð �Yt�μÞ2 1
Tþn

þ 2
ω2
h

Xn
t¼1

ffiffiffiffiffiffiffiffiffiffiffi
Tþn

p ð �Yt�μÞ� � 1ffiffiffiffiffiffiffiffiffiffiffi
Tþn

p ðYtþh�μÞ
� �

)� Ð1π 1
a2

WðaÞ2daþ2 ð

1

π

1
a
WðaÞdWðaÞ,
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where ) denotes weak convergence with respect to the associated probability measure, π¼T=ðTþnÞ, and

ffiffiffiffiffiffiffiffiffiffiffi
Tþn

p ð �Yt�μÞ ¼Tþn
Tþ t

Xt�h

s¼�T�hþ1

uh,s

 !
ffiffiffiffiffiffiffiffiffiffiffi
Tþn

p

¼Tþn
Tþ t

Xt�1

s¼�Tþ1

uh,s

 !
ffiffiffiffiffiffiffiffiffiffiffi
Tþn

p þOp½ðTþnÞ�1=2�

)ωh

a
WðaÞ,

with a¼ðTþ tÞ=ðTþnÞ and W(a) is a standard Brownian motion.

Proof of Lemma 1

Under the null hypothesis and Assumptions 1 and 2, we have

Eð �̂YhÞ¼Eð �YhÞ�E n�1
Xn
t¼1

uh,t

 !
þE n�1

Xn
t¼1

ηt

 !
¼ μ,

and the least-squares estimator of βh in (11) is a consistent estimator of

βh ¼
lim
n!∞

1
n

Xn
t¼1

E Ŷ tþhjt�μ
� �

Ytþh�μð Þ� �
lim
n!∞

1
n

Xn
t¼1

E Ŷ tþhjt�μ
� �2 :

From Xn
t¼1

E ðYtþh� Ŷ tþhjtÞ2�ðYtþh�μÞ2
h i

¼
Xn
t¼1

E ðYtþh�μÞ�ðŶ tþhjt�μÞ� �2�ðYtþh�μÞ2
n o

¼
Xn
t¼1

E ðŶ tþhjt�μÞ2�2ðYtþh�μÞðŶ tþhjt�μÞ
h i

¼E
Xn
t¼1

ðŶ tþhjt�μÞ2
 !

1�2

E
Xn
t¼1

ðYtþh�μÞðŶ tþhjt�μÞ
 !

E
Xn
t¼1

ðŶ tþhjt�μÞ2
 !

266664
377775

¼ð1�2βhÞ
Xn
t¼1

E ðŶ tþhjt�μÞ2
h i

,

it follows that the null hypothesis (2) is equivalent to testing βh ¼ 0:5 in regression (11).
For testing the same hypothesis based on the recursive mean as the uninformative benchmark, we define
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γh ¼

Xn
t¼1

E ðYtþh� �YtÞðŶ tþhjt� �YtÞ
� �
Xn
t¼1

E ðŶ tþhjt� �YtÞ2
h i :

Using

Xn
t¼1

E ðYtþh� Ŷ tþhjtÞ2�ðYtþh� �YtÞ2
h i

¼
Xn
t¼1

E ðYtþh� �YtÞ�ðŶ tþhjt� �YtÞ
� �2�ðYtþh� �YtÞ2
n i

¼
Xn
t¼1

E ðŶ tþhjt� �YtÞ2�2ðYtþh� �YtÞðŶ tþhjt� �YtÞ
h i

¼ð1�2γhÞ
Xn
t¼1

E ðŶ tþhjt� �YtÞ2
h i

:

it follows that under Assumptions 1 and 2, the null hypothesis implies γh ¼ 0:5.

Proof of Theorem 2

Under the null hypothesis (2) and Assumptions 1 and 2, we have

1
n

Xn
t¼1

E ðYtþh� Ŷ tþhjtÞ2�ðYtþh�μÞ2
h i

¼ 1
n
E
Xn
t¼1

ðuh,t�ηtÞ2�ðμh,t�μþuh,tÞ2
" #

¼ σ2η�σ2μ,

where σ2η ¼E n�1Pn
i¼1η

2
t

� �
and σ2μ ¼E n�1Pn

i¼1ðμh,t�μÞ2� �
. It follows that the null hypothesis (2) implies σ2η ≥ σ2μ.

The test statistic for βh ¼ 0:5 is constructed by using

at ¼ðYtþh� �YhÞðŶ tþhjt� �̂YhÞ�1
2
ðŶ tþhjt� �̂YhÞ

2

¼ ~μh,tþ ~uh,t
� �

~ηtþ ~μh,t
� ��1

2
~ηtþ ~μh,t
� �2

¼ 1
2

~μ2h,t� ~η2t
� �þ ~uh,t ~ηtþ ~μh,t

� �
,

where a tilde above the symbol indicates a mean adjusted series, for example, ~μh,t ¼ μh,t�n�1Pn
s¼1μh,s . Under the

hypothesis σ2η ¼ σ2μ, we have

E 1ffiffiffi
n

p
Xn
t¼1

~μ2h,t� ~η2t
� � !

¼ 0:
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Assumptions 1 and 2 (ii) imply that uh, t is uncorrelated with μn, t and ηt. Thus,

E 1ffiffiffi
n

p
Xn
t¼1

~uh,t~μh,t

 !
¼E 1ffiffiffi

n
p
Xn
t¼1

uh,tμh,t

 !
þE

ffiffiffi
n

p
�uh�μhð Þ ¼ Opðn�1=2Þ,

E 1ffiffiffi
n

p
Xn
t¼1

~uh,t~ηt

 !
¼E 1ffiffiffi

n
p
Xn
t¼1

uh,tηt

 !
þE

ffiffiffi
n

p
�uhηð Þ ¼ Opðn�1=2Þ,

where �uh ¼ n�1Pn
t¼1uh,t ¼Opðn�1=2Þ, �μh ¼n�1Pn

t¼1ðμh,t�μÞ¼Opðn�1=2Þ, and η¼ n�1Pn
t¼1ηt ¼Opðn�1=2Þ.

It follows that

lim
n!∞

E 1ffiffiffi
n

p
Xn
t¼1

at

 !
¼ 0:

Assumptions 1 and 2 ensure that the sample covariance n�1Pn
t¼jþ1atat�j converges in probability to its expectation for

any finite j and provide the requirements for the Lindeberg–Feller central limit theorem. Therefore, the test statistic
constructed as in (13) possesses a standard normal limiting distribution.

For the null hypothesis βh ¼ 0 and Assumptions 1 and 2, we obtain

Xn
t¼1

at
1
n

Xn
t¼1

E Ŷ tþhjtðYtþh�μÞ� �
¼ 1
n

Xn
t¼1

E ðηtþμh,tÞðμh,t�μþuh,tÞ
� �

¼ 1
n

Xn
t¼1

E μh,tðμh,t�μÞ� �¼ 0,

which implies μh,t ¼ μ, that is, the constant mean hypothesis (3). Under the null hypothesis, we therefore have

Xn
t¼1

ðYtþh� �YhÞðŶ tþhjt� �̂YhÞ¼
Xn
t¼1

~uh,t~ηt:

Using previous results for the hypothesis βh ¼ 0:5, it follows immediately that

lim
n!∞

E 1ffiffiffi
n

p
Xn
t¼1

at

 !
¼ 0

and the sample covariances of at converge to their expectations. Accordingly, the test statistic has a standard normal
limiting distribution.
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