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P roduct proliferation and changes in demand require that retailers regularly determine how items should be allocated
to retail shelves. The existing shelf-space literature mainly deals with regular retail shelves onto which customers only

have a frontal perspective. This study provides a modeling and solution approach for two-dimensional shelves, e.g., for
meat, bread, fish, cheese, or clothes. These are categories that are kept on tilted shelves. Customers have a total perspec-
tive on these shelves and can observe units of one particular item horizontally and vertically instead of just seeing the
foremost unit of an item, as is the case of regular shelves. We develop a decision model that optimizes the two-dimen-
sional shelf-space assignment of items to a restricted, tilted shelf. We contribute to current literature by integrating the
assortment decision and accounting for stochastic demand, space elasticity and substitution effects in the setting of such
self types. To solve the model, we implement a specialized heuristic that is based on a genetic algorithm (GA). By com-
paring it to an exact approach and other benchmarks, we prove its efficiency and demonstrate that results are near-opti-
mal with an average solution quality of above 99% in terms of profit. Based on a numerical study with data from one of
Germany’s largest retailers, we were able to show within the scope of a case study that our approach can lead to an
increase in profits of up to 15%. We demonstrate with further simulated data that integration of stochastic demand, sub-
stitution, and space elasticity results in up to 80% higher profits.

Key words: shelf-space planning; substitution; space elasticity; stochastic demand; tilted shelf
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1. Introduction

This study considers the problem of selecting, allocat-
ing and arranging products on retail shelves. Shelf
space has been referred to as one of the retailer’s scar-
cest resources (cf. e.g., Brown and Tucker 1961, Geis-
mar et al. 2015, H€ubner et al. 2013a, K€ok et al. 2015,
Lim et al. 2004, Reiner et al. 2012). Up to 30% more
products compete for the limited space than was the
case ten years ago (EHI Retail Institute 2014, H€ubner
et al. 2016). The increasing number of items to allo-
cate, the shortage of shelf space, narrow margins in
retail and the intensity of competition have greatly
magnified the importance of retail assortment and

shelf-space planning (cf. H€ubner et al. 2013b). Fur-
thermore, customer satisfaction is mostly driven by
availability of the right products. In order to achieve
superior performance, retailers have to recognize cus-
tomers’ needs and identify these as key drivers (Eltze
et al. 2013, Nielsen 2004).
The selection of items and space allocation of the

items to the shelf are interdependent planning prob-
lems when shelf space is restricted. The space available
per product is less if broader assortments are offered
and vice versa. Consequently, planning retail shelves
involves the tasks of specifying the product assort-
ments as well determining the space and quantities for
selected items. These decisions are not only based on
the margins of the products but also on associated
demand and customer preferences. The more shelf
space is allocated to an item, the more it attracts cus-
tomers and the higher its demand. This is referred to
as “space-elastic demand.” This topic has gained a lot
of research attention over recent years (see e.g.,
Bianchi-Aguiar et al. 2019, H€ubner and Kuhn 2012,
K€ok et al. 2015). Common characteristics of these
models are that demand depends on the number of
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facings (= the foremost unit of an item in the front row
of the shelf), and that retail shelves are observed by
customers from a frontal direction. This firstly implies
that a customer can only see the facing, and secondly,
that two different products can only be positioned next
to but not behind one another. We refer to this shelf
type as a “regular shelf” herein. For example, candies,
coffee and tea, canned goods, cleaners, and personal
care products are presented on regular shelves.
Not all retail categories are kept on regular shelves.

Some products are presented on “tilted shelves” (like
counters, fridges or tables) onto which customers
have a total perspective. Examples of these shelf types
are to be found in Figure 1. These two-dimensional
shelves types are, for example, used for the presenta-
tion of fresh food like bakery products and sausages,
frozen products or in fashion retailing and consumer
electronics. Many other retail formats fit into these
settings, e.g., products and magazines in kiosks,
snacks or electronics in vending machines and dis-
play ads (see also Geismar et al. 2015). With these
shelves, items can be arranged more flexibly in the
two-dimensional space, whereas with regular shelves
the options are restricted by the shelf levels and their
height. For example, two different products can be
positioned next to and behind one another on two-
dimensional shelves.
There is already a rich literature on the planning of

regular shelves. Typically, these models determine the
shelf quantity and the number of facings for each shelf
level (e.g., third level of second shelf). The most com-
monly used approach is to model the total shelf space
via a one-dimensional shelf length (e.g., Bianchi-Aguiar
et al. 2016, Gilland and Heese 2013, Lim et al. 2004,
Mart�ınez-de Alb�eniz and Roels 2011). The models treat

each shelf level with a one-dimensional front row space
where only the front-row facings need to be deter-
mined as retailers usually fill up the entire shelf depth
with more units of the respective product. D€usterh€oft
et al. (2019) propose a model for regular shelves that
consider one-dimensional shelf levels of varying size in
height, depth and width. As these models assume one-
dimensional shelf space and defined shelf levels, they
cannot be applied to two-dimensional applications
where consumers have a different perspective. In one-
dimensional approaches, it is sufficient to determine
the number of facings, whereas in two-dimensional
problems the rectangular arrangement of the facings
also needs to be determined. Two-dimensional prob-
lems require to compute horizontal and vertical num-
ber of facings (e.g., product A with 293 facings), the
vertical and horizontal positioning of products within
the two-dimensional area (e.g., product A positioned at
certain x and y coordinates) and adjacent requirements
of items (e.g., products A and B next to each other and
C behind). Furthermore, vertical and horizontal sizes
of products and shelves must be considered. Two-
dimensional shelves face additional constraints, too,
e.g., facings of a product need to be arranged in a con-
tiguous rectangular shape, and not in other ways, such
as L-forms.
To summarize, there are two different shelf types

which each have their respective modeling require-
ments:

1. Regular shelves where items are allocated
along an one-dimensional shelf length.

2. Two-dimensional shelves where items are allo-
cated to a two-dimensional shelf space and items
need to follow particular arrangement constraints.

Figure 1 Examples of Categories Stored on Two-Dimensional Shelves [Color figure can be viewed at wileyonlinelibrary.com]
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One-dimensional solutions obtained for regular
shelves cannot easily be transferred to two-dimen-
sional selves as the arrangement of facings also needs
to be integrated into decision-making. Only Geismar
et al. (2015) have modeled a related two-dimensional
shelf-space problem. Their model can also be applied
to develop two-dimensional shelf plans. However,
they assumed a given assortment, given and known
demand and did not factor in substitutions for the
assortment decision space-elasticity for the space allo-
cation. We extend this approach by accounting for
assortment decisions, stochastic and space-elastic
demand as well as out-of-assortment and out-of-stock
substitution. We ultimately extend the two-dimen-
sional problem that was introduced by Geismar et al.
(2015) by using a more comprehensive demand func-
tion, a tailored solution procedure to the problem and
numerical analysis to derive managerial insights. As
such, the model of Geismar et al. (2015) represents a
special variant of our demand model.
The remainder of this study is organized as follows:

section 2 provides a detailed description of the setting
and planning problem and related literature. Section 3
formulates the optimization model as a constrained
multi-item newsvendor problem with substitutions.
We develop a specialized heuristic to solve the related
problem. This is represented in section 4. Numerical
results and a case study are presented in section 5,
while section 6 concludes.

2. Setting, Planning Problem, and
Related Literature

This section analyzes the scope (2.1), particularities of
planning with two-dimensional shelves (2.2) and
identifies the impact of these decisions on customer
demand (2.3). Together, these build the foundation
for the literature review and open research questions
(2.4).

2.1. Scope and Planning Approach
Shelf management comprises two hierarchical levels.
One is a store (macro) level, deciding the space for pro-
duct types (e.g., beverages, chocolate) and shelf types
on a strategic level. The other is on product category
(micro) level which allocates individual products
within each category on a tactical level. Our problem is
concerned with the micro level, and considers the tacti-
cal allocation of a category of products onto a set of
defined shelves. The shelf space available for a cate-
gory is limited and determined by preceding decisions
regarding store layout planning (cf. H€ubner et al.
2013a). The ultimate objective is to maximize retailers’
profit which depends on the customer demand real-
ized. This in turn depends on the positioning and space
allocated to the products on the shelf, the product

margins and operational costs. The traditional micro
space-planning instrument of retailers is a planogram,
representing an illustration of a shelf plan for a specific
category. A planogram gives detailed information
about the product’s vertical and horizontal shelf posi-
tion as well as the product’s shelf quantity.

2.2. Particularities of Two-Dimensional shelves
Distinctive requirements of two-dimensional shelves
need particular approaches. These are the (1) total
customer perspective and two-dimensional item
arrangement and (2) rectangular facing arrangements.
(1) Total customer perspective and two-dimensional item

arrangement. With the regular shelf on the left of Fig-
ure 2 customers only have a frontal perspective on the
items offered. The retailer only needs to determine
the number of facings, e.g., items A and B get one and
item C gets three facings. The right of Figure 2 illus-
trates a two-dimensional shelf where the customer
has a total perspective. The retailer must determine
the total shelf quantity by choosing the shelf represen-
tation of an item, that is, the number of vertical fac-
ings (width dimension) and horizontal facings (depth
dimension). For instance, item F gets a shelf represen-
tation of (192), item G (194) and item I (292). Two
products with different sizes can be positioned next
to (e.g., F and G) and above one another (e.g., F and I).
This means that item arrangements also need to
reflect a two-dimensional neighborhood. With regular
shelves, there is a horizontal division represented by
the shelf levels. The allocation of items to shelf levels
is therefore restricted by shelf height. For example, a
large family pack with a high box cannot be put at
low-rise shelf level where small single-unit items are
put. This is not the case for two-dimensional shelves
where items do not necessarily need to be positioned
along a dividing line or within a certain fixed com-
partment.
(2) Rectangular facing arrangements. On two-dimen-

sional shelves retailers usually arrange products in a
rectangular shape, see e.g., empirical research in Mar-
keting (Pieters et al. 2010) and Psychology (Berlyne
1958). Figure 3 shows two related arrangement exam-
ples for two-dimensional shelves. This arrangement
restriction implies that several facings of one item
must be positioned adjacently and in a rectangular
manner. For instance, if the retailer wants to place
four facings of one specific product, these can only be
positioned in three ways: (194), (292) and (491).
The rectangular requirement may result in “ar-

rangement” and “prime number” defects if one-
dimensional solutions (e.g., 5 facings) are transferred
to a two-dimensional shelf setting (e.g., 292 facings).
Arrangement defects occur if multiple rectangles (i.e.,
arrangements of different products) do not fit into
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one large rectangular arrangement (i.e., the shelf).
Example 1 in Figure 4 shows this issue where not all
facings of the optimal one-dimensional solution can
be placed on the shelf such as to maintain a rectangu-
lar shape. We use identically sized items to simplify
the illustration. The total shelf space is 9 for the one-
and two-dimensional shelf. The optimal number of
facings for the regular one-dimensional shelf is A = 4
facings, B = 1 facings and C = 4 facings. On one-
dimensional shelves, an item with 4 facings is placed
in one row (194), whereas on two-dimensional
shelves it can be placed in the form of 194, 491 or
292. Figure 4 shows that arranging both items A and

C with 4 facings in a rectangular arrangement is not
feasible as the total rectangular space is limited. The
number of facings of item A or C therefore need to be
reduced as only one item can have 4 facings. If, for
example, item C now only has 3 facings, this may
result in demand compensations by other items, and
it may be preferable to list another item that compen-
sates better the demand transfer between items.
Example 2 in Figure 4 presents the prime number

defect. Due to the rectangular requirement, quantities
with prime numbers (like 3,5,7,11,. . .) can only be
arranged in a row (e.g., 193, 391, 195, 591, 197,. . .).
However, if this row is larger than the total horizontal

Figure 2 Illustration of a Regular and a Two-Dimensional Shelf [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3 In-Store Arrangement Examples for Two-Dimensional shelves [Color figure can be viewed at wileyonlinelibrary.com]
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or vertical space, this is a non-viable solution. The
optimal number of facings of product A for a one-
dimensional shelf is 5 in Example 2. Since 5 is a prime
number and is greater than the length or depth of the
shelf, the item cannot be displayed in a rectangular
manner. The defects can be expressed formally as fol-
lows. Consider S as the total (X9Y)-dimensional
space and �S its subset which represents the space cur-
rently unoccupied. Further, define the following set
Rqi ¼ ðx� yÞ as the set of all possible rectangular
arrangements of the one-dimensional shelf quantity qi
of item i that needs to be assigned. The arrangement
defect for an item i occurs if �S \ Rqi ¼ ; and the prime
number defect for an item i occurs if jRqi j ¼ 0.
Summary. To create a planogram for two-dimen-

sional shelves, a shelf planner needs to make three
simultaneous decisions for each category:

• Item selection: This decision involves determining
the assortment of a category.

• Space assignment: This decision includes deter-
mining the number of horizontal facings, number
of vertical facings, quantity per facing, and ulti-
mately also the total shelf quantity for each
product. The facings of one product can be
arranged horizontally next to each other or
vertically above one another. The total number
of facings results from the multiplication of all
vertical and horizontal facings.

• Item arrangement: This determines which verti-
cal and horizontal coordinates are assigned an
item, that is, its exact location on the shelf. Fur-
thermore, this also includes how different items
are positioned next to each other (e.g., different
types of bread next to each other). Finally, these
all need to follow arrangement guidelines so
that a rectangular shape is obtained and adja-
cent requirements are adhered to.

Two-dimensional shelves are differentiated from
regular shelves in terms of the options for space
assignment and item arrangement. For regular
shelves, it is sufficient to use one-dimensional models

to determine the horizontal number of facings. Two-
dimensional shelves require a definition of horizontal
and vertical facings in a rectangular shape. These rect-
angular shapes however depend on the arrangement
of other items. An integrated approach is therefore
required that simultaneously solves the four subprob-
lems item selection, shelf quantity, space assignment
and item arrangement. Solutions obtained from famil-
iar one-dimensional models cannot be transferred
directly to two-dimensional settings for this purpose
as one-dimensional models lack the number of verti-
cal facings and the item arrangement.

2.3. Related Demand Effects
All aforementioned decisions, namely item selection,
space assignment and arrangement impact customer
demand in three ways (see also H€ubner and Schaal
2017a):
(1) Space-elastic demand. The more facings an item

are assigned, the higher its visibility on the shelf and
the greater its demand. This demand effect is called
space-elastic demand. Various empirical studies
include tests that quantify space-elasticity effects (cf.
Brown and Tucker 1961, Curhan 1972, Dr�eze et al.
1994, Eisend 2014, Frank and Massy 1970). Chandon
et al. (2009) show that the variation of facings is the
most significant in-store factor, even stronger than
pricing. Desmet and Renaudin (1998) reveal that
space elasticities increase with the impulse buying
rate. The magnitude of this demand increase depends
on the item’s space-elasticity factor, which indicates
the percentage increase in demand of an item every
time the number of facings goes up by a given
amount. Using a meta-analysis, Eisend (2014) identi-
fies an average demand increase by a factor of 17%.
Cross-space elasticity measures responsiveness in the
quantity demand of one item when the space allo-
cated for another item changes. Eisend (2014) calcu-
lates an average cross-space elasticity of �1.6%.
Schaal and H€ubner (2018) used numerical studies to
show that the low empirical cross-space elasticity val-
ues either do not have or have only very limited

Figure 4 Characteristics of an Arrangement Defect (example 1) and a Prime Number Defect (example 2) [Color figure can be viewed at wileyonline
library.com]
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impact on optimal shelf arrangements. We therefore
disregard cross-space elasticities in the following. The
demand impact of an item’s position can be neglected
for two-dimensional shelves. These positioning effects
are relevant to regular shelves where e.g., eye- vs.
knee-level positions have a different demand impact.
The same holds true for large categories where the
shopper’s walking path and positions at the begin-
ning, middle or end of an aisle matter. With two-
dimensional shelves, however, the basic idea is to
allow the customer to oversee the total assortment of
one (sub-)category at one glance.
(2) Out-of-assortment and (3) Out-of-stock substitution

demand. Customers can substitute for their choice if
items are unavailable. For example, Gruen et al.
(2002), K€ok and Fisher (2007), Aastrup and Kotzab
(2009) and Tan and Karabati (2013) show that
between 45% and 84% of the demand can be substi-
tuted. Unavailability of items can result from two
scenarios: either an item is delisted as a consequence
of the assortment decision (out-of-assortment, OOA),
or it is temporarily unavailable and currently not
available on the shelf (out-of-stock, OOS). In both sit-
uations, customers may replace the unavailable items
with other items which results in demand increases
for the respective substitutes.
Substitution rates can be obtained by direct con-

sumer surveys or by transactional data (e.g., K€ok and
Fisher 2007, Tan and Karabati 2013). A straightfor-
ward approach often applied to obtain substitution
rates is to base them on market shares (H€ubner and
Kuhn 2012). This means that if an item has an overall
demand share of 50%, the substitution rate from all
products to this particular product is 50%. Finally,
expert workshops can also be used to define substitu-
tion rates by selecting related items and rates.

2.4. Related Literature and Contribution
Current shelf planning literature focuses on regular
shelf types (see also the reviews of H€ubner and Kuhn
2012, K€ok et al. 2015). We will first analyze this
stream of literature and divide it into contributions
that assume a given assortment and into contributions
that integrate the assortment decision into shelf plan-
ning. This review is mainly used to gain insight into
the different approaches for modeling demand and
solution approaches. Secondly, we focus on particular
applications to two-dimensional shelf space prob-
lems. This review is used to define open research gaps
and specify our contribution.
(1) Applications for regular shelves. Most shelf-space

optimization models assume deterministic demand
and optimize the number of facings for items with
space-elastic demand to be assigned to limited shelf
space. Respective approaches help retailers solve the
trade-off between more shelf space (and thus demand

increases due to a higher number of facings) for cer-
tain items and less available space (and thus demand
decreases due to a lower number of facings) for other
items. One of the first models goes back to Hansen
and Heinsbroek (1979) who formulate a shelf-space
model that accounts for space elasticity and solve it
using a Lagrangian heuristic. Corstjens and Doyle
(1981) develop a shelf-space model that accounts for
space and cross-space elasticities which is solved via
geometrical programming. Zufryden (1986) presents
a dynamic programming approach with space-elasti-
city effects. Lim et al. (2004) present a model that con-
siders space and cross-space elasticities for which
they develop various extensions, e.g., for product
groupings. A specialized heuristic and the combina-
tion of a local search and a metaheuristic approach
are used to solve it. Hansen et al. (2010) develop a for-
mulation with space and cross-space elasticities for
which they compare the performance of various heuris-
tic and meta-heuristic algorithms. The model also dif-
ferentiates between horizontal and vertical shelf
positions. Bianchi-Aguiar et al. (2015) use a mixed-inte-
ger programming approach to formulate a determinis-
tic model that considers product-grouping and display-
direction constraints and incorporates merchandising
rules. H€ubner and Schaal (2017b) formulate the first
stochastic shelf-space model that is solved with special-
ized heuristics. They account for space and cross-space
elasticity as well as vertical positioning effects. The
model assumes a given assortment and does not incor-
porate substitution effects. In summary, the shelf-space
models mentioned assume a given assortment and
optimize the number of facings. They do not take into
account substitutions for unavailable items.
We further investigate contributions that integrate

assortment decisions into their models in the follow-
ing. H€ubner (2011) develops a mixed-integer model
for shelf-space planning that also takes assortment
decisions into account. OOA situations are consid-
ered, but because the model assumes deterministic
demand, OOS is ignored. Irion et al. (2012) use a
piecewise linearization technique to solve a deter-
ministic shelf-space model that accounts for space
and cross-space elasticities. Although the model
accounts for the assortment decision by setting fac-
ings to zero additional demand for OOA substitu-
tion is neglected. H€ubner and Schaal (2017a)
proposed the first integrated assortment and shelf-
space optimization model that accounts for stochas-
tic demand, substitution, and space elasticity. To the
best of our knowledge, they present the most com-
prehensive demand model. They showed that
assortment and shelf planning are interdependent
when shelf-space is limited. A heuristic was devel-
oped to address large-scale problems. The heuristic
approach was modeled as an iterative MIP
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algorithm that uses recalculated precalculations for
each step to circumvent the nonlinear problem. The
integrated approach outperforms alternative approaches,
e.g., a sequential planning approach that first picks
assortments and then assigns shelf space.
(2) Applications for two-dimensional shelves. Solutions

obtained from one-dimensional regular shelf settings,
such as the above, cannot be transferred to two-
dimensional shelves due to arrangement and prime
number defects. Only Geismar et al. (2015) have
developed a model and solution approach for two-
dimensional shelves. They assume multiple shelves
that are called cabinets. Each cabinet can have a dis-
tinct number of columns and rows. The capacity (or
number of slots) of a shelf can be calculated by multi-
plying the columns and rows. Each product must
have all of its units displayed within a single cabinet,
and those units have to be displayed in a contiguous
rectangle. All units need to have standardized unit
sizes. To formulate the model in a more realistic and
flexible manner, Geismar et al. (2015) did not divide
cabinets into subsections to reduce the solution space
or rather the complexity. Their formulation makes it
possible to apply all the different dimensions of the
product presentation within one cabinet according to
the restrictions mentioned. In contrast to the majority
of existing shelf-space models, the objective is to max-
imize revenues rather than profit. Moreover, demand
effects such as substitution or space elasticity were
neglected. Apart from that, the demand is assumed to
be deterministically known. However, the demand is
affected by the effectiveness of a row. Each row can
have a distinct effectiveness value. Due to the fact that
the MIP approach did not find a solution within a
two-week time limit, they broke the problem into two
subproblems. First, the products are assigned to the
cabinets. Secondly, the units are arranged within the
cabinets. The evaluation of observed data revealed an
average revenue improvement of 3.7%.
Summary. Table 1 gives an overview of the main

contributions. The demand models and solution
approaches for regular one-dimensional shelves have
gradually been refined. H€ubner and Schaal (2017a)
present the most comprehensive model by integrating
assortment and space allocation and taking relevant
demand effects into account, that is, space-elasticity,
OOA and OOS substitutions. Previous literature suf-
fers from one or more of the following drawbacks. First
of all, only isolated optimization of either assortments
or shelf-space, ignoring the interdependence of both
decisions. Secondly, limited consideration of relevant
demand effects. Thirdly, applicability in practice is
constrained by the limited assortment sizes that can be
solved. None of the one-dimensional shelf models inte-
grate the vertical and horizontal arrangement of items.
Geismar et al. (2015) presented the first extension for

two-dimensional problems and define the position of
products. However, they apply a very restricted
demand model and do not optimize assortments.
We will base our extensions on the contributions of

Geismar et al. (2015) and H€ubner and Schaal (2017a).
We contribute a new and more general approach by
integrating assortment, space allocation and item
arrangement decisions in a two-dimensional shelf-
space setting. We further extend the demand model via
space-elastic demand and substitutions. This also
includes the modeling of stochastic demand. Integrat-
ing demand volatility is relevant for retail settings (see
e.g., Agrawal and Smith 1996 or H€ubner et al. 2016),
particularly for categories with perishable products
(see e.g., K€ok and Fisher 2007). This becomes evenmore
important for two-dimensional shelves as the majority
of products kept on these shelves are perishable, e.g.,
fresh products like produce, products with limited
sales periods like fashion and electronics. Finally, we
relax the assumption of identical unit sizes as this does
not hold true in most practical applications.

3. Development of the Decision
Model

This section develops the Two-Dimensional Stochas-
tic Capacitated Assortment and Shelf-space Problem
(2DSCASP) in three steps: First, the decision model is
formulated in section 3.1 which is then supplemented
with the demand model in section 3.2. Finally, section
3.3 determines the arrangement and shelf space con-
straints. Table 2 shows the notation used.

3.1. Modeling the Decision Problem
The retailer must assign products of a particular cate-
gory to a two-dimensional shelf limited in size. That
means considering a set of items N with N ¼ jNj and
optimizing the profit by simultaneously deciding

• which products to list at all (item selection),
• how much shelf space to allocate to the items
listed (space assignment),

• how the total item quantity is presented
through horizontal and vertical facings in a rect-
angular shape, e.g., 491 or 292, and where the
product is positioned, that is, x- and y-coordi-
nates of the shelf space (item arrangement).

We introduce various decision and auxiliary vari-
ables to express these decisions. We allow the shelf
quantity qi to be zero (qi ¼ 0) to account for delisting
of items. The retailer must arrange the number of fac-
ings ki, i = 1,2,. . .,N for each item N in a contiguous
rectangular shape on the two-dimensional shelf. The
number of facings for the x-dimension is expressed
by the integer decision variable qxi and by q

y
i for the y-

dimension. The total number of facings ki is therefore

H€ubner, Sch€afer, and Schaal: Optimization for Two-Dimensional Shelves
Production and Operations Management 29(3), pp. 547–570, © 2019 The Authors. Production and Operations Management published by

Wiley Periodicals LLC on behalf of Production and Operations Management Society. 553



computed by ki ¼ qxi � qyi . Since it is possible to stack
each item, the entire shelf quantity qi is computed by
qi ¼ ki � qti where qti denotes the number of units of
item i that are stacked behind each facing ki, including
the facing itself. We assume that there is no backroom
storage which implies that all products listed have to
fit onto the available shelf space. The retailer objective
is to maximize total profit Π which is the sum of the
item profits pi of all items i 2 N:

maximize Pð�qÞ ¼
X
i2N

piðqiÞ ð1Þ

The item profit pi depends on the shelf quantity qi
for each item i 2 N that is available for demand fulfill-
ment. Items can be sold at the sales price pi and are
purchased for the unit costs ci which incorporate all
purchasing and processing costs (e.g., for replenish-
ment). If the expected demand Di for item i is greater
than the shelf quantity qi, the excess demand is lost
and the retailer suffers the shortage costs si. Con-
versely, if items remain in stock at the end of the
period, they need to be disposed of at a salvage value
vi and the retailer incurs a loss, because vi\ci.
The profit for each item is calculated as shown in

Equation (2) and consists of the following elements:
The first term represents the overall purchasing costs,
the second and fourth term calculate the expected rev-
enues, the third term represents the expected rev-
enues from leftover items sold for the salvage value,
and the fifth term calculates the penalty costs in the
event of stockouts. This generic form of the item profit
pi corresponds to the profit calculation in newsvendor
problems and can therefore also be found in many
other assortment related decision models (e.g.,
H€ubner et al. 2016, K€ok and Fisher 2007, Smith and

Agrawal 2000). The difference always stems from the
demand that is taken into account which is repre-
sented by the density function f�i . This probability
density function f�i in Equation (2) accounts for the
relevant total demand distribution which must be
quantified in accordance with the assumed customer
behavior. In our case, the density function must take
into account OOA and OOS substitution as well as
the space-elastic demand. We investigate the related
demand function in more detail below.

piðqijqi¼qxi �qyi �qti Þ¼�ci �qiþpi �
Z qi

0

yf�i dy

þvi �
Z qi

0

ðqi�yÞf�i dyþpi �
Z 1

qi

qif
�
i dy

�si �
Z 1

qi

ðy�qiÞf�i dy ð2Þ

The model does not force the user to completely fill
the available shelf space. It is permitted to leave free
spaces due to penalty costs for oversupply. In constel-
lations with large shelves, low demand and high
oversupply costs, for example, there could be situa-
tions where the full space is not used. However, this
is assumed to be rather a hypothetical situation due to
general space constraints in retail stores.

3.2. Modeling the Demand Function
The probability density function f�i of the standard
newsvendor formulation needs to be enriched in
order to consider different demand effects. Because
items can be delisted, we divide the set of all items N
into listed items (Nþ) and delisted items (N�) in the
following, such that Nþ;N� � N, Nþ [N� ¼ N and
Nþ \N� ¼ �. The total expected demand d̂i of an

Table 1 Related Literature on Assortment and Shelf-Space Optimization
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item i consists of three elements (see Equation (3)).
The first is space-elastic demand dspi which is driven
by the number of facings. Next is the OOA demand
dOOA
i which depends on whether the items j, for

which i is a substitute (j6¼i) are listed (qj [ 0) or not
(qj ¼ 0). The third is OOS demand dOOS

i which
depends on the available shelf quantity q of the other
items j (j 6¼i). We elaborate on the three demand com-
ponents below.

d̂i ¼ dspi þ dOOA
i þ dOOS

i i 2 N ð3Þ

Space-elastic demand. Customer demand for an item
grows with the number of facings assigned for this
item. The magnitude of the demand increase
depends on the space elasticity bi, the number of
facings ki and the minimum demand dmin

i . The
space-elastic demand is denoted by dspi ðkiÞ and cal-
culated corresponding to Equation (4). The corre-
sponding density is denoted by fdsp

i
.

dspi ðkijki¼qxi �qyi Þ ¼ dmin
i � kbii i 2 N ð4Þ

The space-elastic demand grows with a diminish-
ing rate with kbii for k > 1. The minimum demand dmin

i

is equal to the demand of an item if it were

represented with one facing (ki ¼ 1), that is,
dmin
i ¼ dspi ðki ¼ 1Þ (cf. Bianchi-Aguiar et al. 2015,

Corstjens and Doyle 1981, Hansen and Heinsbroek
1979, Hansen et al. 2010, Irion et al. 2012, Urban 1998,
or H€ubner and Schaal 2017a).
The space-elastic demand for an item i with ki ¼ 0

mathematically results in no demand as
dspi ðki ¼ 0Þ ¼ dmin

i � 0bi ¼ 0. This does not hold true
since some customers would still want to buy the item
even if it was not shown on the shelf anymore. To fac-
tor in this effect, we assume the identical minimum
demand for a product with no facings as if it had
exactly one facing. In other words, the demand with
one facing is described as the minimum demand even
if a product is delisted. In cases of ki ¼ 0, this means
we assign space-elastic demand by applying
dspi ðki ¼ 0Þ ¼ dmin

i . The corresponding density func-
tion for the minimum demand is denoted by fdmin

i
.

Out-of-assortment demand. OOA demand for a listed
item i (i 2 Nþ) occurs if another item j is delisted
(j 2 N�) and customers substitute this item j with
item i. We assume that if item j is delisted, customers
substitute a certain share cOOA

ji of the minimum
demand dmin

j of item j with item i, because some cus-
tomers will still want to buy item j, even if it is not
listed. The maximum quantity that can be

Table 2 Notation

Indices and sets
i,j Item indices
N Total set of items
Nþ (N�) Set of listed (delisted) items
R Total set of rectangles
Parameters
bi Space elasticity of item i
cOOAji (cOOSji ) Share of demand of item j that gets substituted by item i in the event that item j is out-of-assortment (out-of-stock)
d̂i Total expected demand of item i
dmin
i (fdmin

i
) Minimum demand of item i (corresponding density function)

dspi (fdsp
i
) Space-elastic demand of item i (corresponding density function)

dOOAi (dOOSi ) Out-of-assortment (out-of-stock) demand of item i
ci Unit cost of item i
di (wi ) Item depth (width) per unit of item i
f �i Demand density function for i, generic form
Ki Maximum number of facings of item i
nij Binary parameter indicating whether item i has to be a neighbor of item j (=1) or not (=0)
N Total number of items
pi Sales price for one unit of item i
si Penalty cost for one unit of item i
SwidthðSdepthÞ Total shelf width (depth) available
vi Salvage value for one unit of item i
Decision variables
qxi (qyi ) Integer number of facings of item i assigned in x-dimension (y-dimension)
qti Integer number of units of item i that are stacked behind one facing
coorxi (coor yi ) Integer location coordinate of item i in the x-dimension (y-dimension)
lij (bij Þ Binary variable denoting whether item i is arranged on the left of (below) item j (=1) or not (=0)
Auxiliary variables
ki Number of facings assigned to item i, with ki ¼ qxi � qyi
qi Shelf quantity assigned to item i, with qi ¼ qxi � qyi � qti
zi Binary variable indicating whether item i is selected in the assortment (=1) or not (=0)
Di (Wi ) Space of item i occupied in a depth (width) dimension
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substituted of item j cannot be higher than the mini-
mum demand of the item j. This is first due to the
aforementioned assumption that the space-elastic
demand in the event of k = 0 corresponds to the
minimum demand, and secondly because we follow
the usual assumption that substitution takes place
over one round only (cf. e.g., Gaur and Honhon
2006, H€ubner et al. 2016, K€ok and Fisher 2007,
Ryzin and Mahajan 1999, Smith and Agrawal 2000).
This simplification is common across most assort-
ment literature (cf. K€ok et al. 2015). If consumers
want to substitute their first choice by a product that
is not available, the demand is lost as a result. There
is no attempt to model individual consumer deci-
sions. Instead, an exogenous model is applied that is
capable of capturing aggregated consumer demand.
The resulting model is cruder than some other sub-
stitution models but has the advantage of being
much easier to analyze and requiring less data. That
also means that demand is uniform across time. To
summarize, this implies that demand is lost if a sub-
stitute is not available either. Therefore, if an OOA
item is a substitute for another non-available item,
the additional substitution demand for the OOA
item would only occur if it was available. The OOA
demand of an item i is calculated as follows:

dOOA
i ¼

X
j2N�;j 6¼i

dmin
j � cOOA

ji i 2 N ð5Þ

The density function for OOA demand for item i is
calculated by Equation (6). Since we assume that the
distributions of the minimum demand of two items i
and j, i 6¼j, are independent, the convolution – repre-
sented by the operator ~ – can be used to calculate
the distribution of the sum of the demand of the two
items (cf. H€ubner et al. 2016). Equation (6) convolutes
the (minimum) demand distribution functions of all
delisted items and therefore accounts for the fact that
the OOA substitution demand for item i depends on
all delisted items j 2 N�. To simplify, we have omit-
ted the cOOA

ji parameters in the equation.

~j2N� fdj ¼
Z
� � �

Z
R
þ;n
0

;j2N�
fdmin

j
ds. . .dt ð6Þ

Out-of-stock demand. OOS demand for a listed item i
(i 2 Nþ) occurs if another listed item j (j 2 Nþ) is
temporarily out-of-stock, that is, if demand for item
j exceeds the available shelf quantity of item j. In
this case, we assume that customers substitute a cer-
tain share of the shortage quantity of item j with
item i. The shortage quantity of item j is calculated
via (dj � qjjdj [ qj) and the substitution share
denoted by cOOS

ji . Equation (7) shows the OOS
demand calculation (also see e.g., H€ubner et al.
2016, K€ok and Fisher 2007, Rajaram and Tang 2001):

dOOS
i ¼

X
j2Nþ;j 6¼i

½ðdj � qjÞjdj [ qj� � cOOS
ji i 2 N ð7Þ

Equation (8) depicts the density function for OOS
demand for item i. As above, we use the convolution
to account for the fact that OOS demand for an item i
depends on the expected shortage of all temporarily
unavailable items other than item i.

~j2Nþ fdj ¼
Z
� � �

Z 1

qj;j2Nþ
fdj ds. . .dt ð8Þ

3.3. Modeling the Arrangement and Space
Constraints
Before we specify the constraints of our problem, we
give a broader context on the modeling of the
arrangement constraints which also impacts the solu-
tion approach later on.
General modeling approach. Our problem belongs to

the class of Two-Dimensional Knapsack Problems.
These problems deal with the selection and arrange-
ment of a set of rectangles r 2 R to a capacitated two-
dimensional rectangular container S with a certain
width (Swidth) and depth (Sdepth). In our case, the rect-
angle r represents not the item i itself but its facings ki
and the corresponding width dimension Wi, depth
dimension di, as well as its profit value pi. Selected
rectangles need to be orthogonally placed in the con-
tainer and are not allowed to overlap the container
limits (Bortfeldt and Winter 2009). Different con-
straints are applicable to this problem. First, with
regard to the number of reproductions of each rectan-
gle, our problem belongs to the Single-Constrained
Knapsack Problems (c.f. Beasley 2004, Bortfeldt and
Winter 2009). In our case, each rectangle represents a
certain facing number and its arrangement of a certain
item that needs to be allocated to a single container.
We need to apply an upper limit that restricts the
maximum size of a rectangle but the item selection
included ensures that no lower bound is set (as for
doubly constrained Knapsack problems). The second
constraint type is the orientation constraint that deter-
mines whether a rectangle can be rotated by 90
degrees to fit onto the container or not (c.f. Lodi et al.
1999). In our case, the dimension of a rectangle is dic-
tated exogenously because the rotation of the rectan-
gles is not allowed (e.g., because product labels need
to be legible and the display is defined). A final differ-
entiation is the guillotine cutting constraint that can
be applied to divide the total solution space into parts.
A container is divided into sections by using guil-
lotine cuts. Guillotine cuts can be made horizontally
or vertically and from one side to the opposite (“edge-
to-edge”) of the container, whereas one item can only
belong to one container (=subsection). Each resulting
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subsection is considered separately and may be cut
again. This procedure reduces the solution space as
less combinatorial options are possible. Figure 5
depicts a guillotine and non-guillotine approach
applied to a two-dimensional shelf. Our application
does not allow guillotine cuts as this would reduce
the degrees of freedom for how facing and arrange-
ment options can be chosen within the container. The
variable dimensions of the rectangle would also not
allow meaningful cuts. According to the typology of
W€ascher et al. (2007), the 2DSCASP is a Single Large
Object Placement Problem that is transformed by the
item consolidation to a Single Knapsack Problem.
Specification of arrangement and space constraints for

2DSCASP. We use the relative arrangement formula-
tion of Pisinger and Sigurd (2007) as it meets the
requirements of our application summarized above.
This ensures proper arrangement of the selected items
with their corresponding dimensions. We introduce
the auxiliary variable zi for the assortment decision

to simplify the notation with zi ¼ 1 for qi�1
0 else

8i 2N

�
.

The two boolean decision variables lij and

bijði 6¼ jÞ 2 f0;1g ∀i,j 2 N determine whether or not

item i is arranged to the left of item j (lij) and/or

below (bij) within the shelf space. Equation (9) ensures

that all selected items have a position relative (left or/
and below) to one another. The binary parameter nij
indicates whether or not item i has to be a neighbor of
item j. This allows the definition of joint positioning
for related products within a category (e.g., rye bread
belongs to the category bread). Equations (10)–(12)
define required neighborhood constraints accord-
ingly. Restriction (10) prevents diagonal neighbor-
hoods, whereas restrictions (11) and (12) ensure that
the borders of the item quantities qi and qj have adja-

cent edges for a certain stretch.
The two-dimensional shelf-space limits are repre-

sented by Swidth for the width (x-dimension) and
Sdepth for the depth (y-dimension). Due to the fact
that the dimensions of one item only represent the
space occupied by the rectangle (rectangularly
shaped quantity of one item) in the special case
qi ¼ 1, we introduce the auxiliary variables Wi and
Di in restriction (13) and (14) that represent the space
occupied. The parameters for width wi and depth di
represent the space occupied by all units of the item
i. The decision variables for the coordinates that indi-
cate the lower left position of the item’s display are
denoted by coorxi for the x- and coor

y
i for the y-coordi-

nate. Equations (15) and (16) ensure that the items N
do not overlap each other within the shelf space.
Restrictions (17) and (18) guarantee that no item i
crosses the border of the shelf space. In equation (19),

a maximum facing limit of item i is set. This gives
retailers the opportunity to ensure a variety of differ-
ent products on their shelves by setting the parame-
ter Ki. Equations (20) define the domain of the
variables.

lij þ lji þ bij þ bji� zi þ zj � 1 8i; jði 6¼ jÞ 2 N ð9Þ

lij þ lji þ bij þ bji	 3� nij � zi � nij � zj 8i; jði 6¼ jÞ 2 N

ð10Þ

coorxi þWi � coorxj 	 Swidthð1� lij � nijÞ 8i; jði 6¼ jÞ 2 N

ð11Þ

coor
y
i þDi � coor

y
j 	 Sdepthð1� bij � nijÞ 8i; jði 6¼ jÞ 2 N

ð12Þ

Wi ¼ wi � qxi 8i 2 N ð13Þ

Di ¼ di � qyi 8i 2 N ð14Þ

coorxi þWi	 coorxj þ Swidthð1� lijÞ 8i; jði 6¼ jÞ 2 N

ð15Þ

coor
y
i þDi	 coor

y
j þ Sdepthð1� bijÞ 8i; jði 6¼ jÞ 2 N

ð16Þ

0	 coorxi 	 Swidth �Wi 8i 2 N ð17Þ

0	 coor
y
i 	 Sdepth �Di 8i 2 N ð18Þ

Ki� ki 8i 2 N ð19Þ

lij; bij; zi 2 f0; 1g;
qxi ; q

y
i ; q

t
i ; qi; ki; coor

x
i ; coor

y
i 2 Zþ0 8i; jði 6¼ jÞ 2 N

ð20Þ
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4. Heuristic Approach

The 2DSCTSP is compounded by the NP-hard two-
dimensional Knapsack Problem (see Beasley 2004, Kel-
lerer et al. 2004, Pisinger 2005, Pisinger and Sigurd
2007) and the NP-hard assignment problem (see
H€ubner et al. 2016, K€ok and Fisher 2007). The combina-
torial complexity of the latter increases very rapidly
with the number of items being considered, N, and the
shelf-space size S. The total number of possible alloca-
tions (Y) to a one-dimensional container can be calculated

as expressed by YðN; SÞ ¼
�
N þ S� 1

S

�
¼ ðNþS�1Þ!

S!ðN�1Þ! .

For example, an instance of N = 5 and S = 10 results
in 1,001 and an instance of N = 50 and S = 100 in

6:7 � 1039 possible solutions. The two-dimensional
problem is even more complex. Here, one obtains up

to NS combinations without any arrangement rules
(rectangle, coherent). In the first example, the number
of combinations increases to 9,765,625 and in the sec-

ond example to 7:9 � 10169 combinations. Furthermore,
the demand characteristics result in a profit function
pi for each item i (Equation (2)), which is nonlinear
with respect to the decision variables. A metaheuristic
approach is therefore developed – a genetic algorithm
(GA) suitable for solving real world problems suffi-
ciently and efficiently. We propose a GA paired with
a one-dimensional start solution and a bottom-left fill
(BLF) heuristic.
Structure and notation. We will use the general algo-

rithmic-related terms “container” and “rectangle.” A
set of small rectangular pieces has to be allocated to a
larger rectangle, known as a container. In our applica-
tion, the container is equal to a shelf and a rectangle
represents certain facing and arrangement options of
a certain item. The algorithm is developed with
object-oriented programming standards to avoid a

complex de-/encoding of the solution of each indi-
vidual object. Instead of complex encryption to
represent the different rectangles with their corre-
sponding attributes, the references of the objects are
taken into account to execute genetic operations.
This ensures that no information is lost while per-
forming the operations and all attributes are accessi-
ble at any time. The decoding is implemented as an
object function that invokes the operation that
arranges the rectangles onto the container and calcu-
lates the fitness of the individual. Extensive en-/
decoding to or of a binary, a permutation or a value
notation are not necessary. We refer to Keijzer et al.
(2002), Krishnamoorthy et al. (2002) and Zhang and
Wong (2015) for similar implementations of object-
oriented evolutionary algorithms. The necessary
components for the implementation are detailed in
the Appendix with the help of Unified Modeling
Language (UML).
Pseudo Code. Algorithm 1 summarizes the sequen-

tial, procedural program flow. This is a specialized
heuristic tailored to our problem and based on a GA.
We apply different settings for the various steps of
the algorithm as summarized in Table 3.

Algorithm 1 Genetic algorithm for 2DSCTSP

Require: N, Swidth , Sdepth , termination criterion
Ensure: fittest individual over all generations
1: possibleArrangements  generateArrangements(N, Swidth , Sdepth)
2: population  generateStartPopulation(possibleArrangements)
3: allocateProducts(population)
4: formerFittestIndividual  calculateFitness(population)
5: While (termination criterion False) do
6: population  selectAndDuplicateFittest(population)
7: population  crossoverOperation(population)
8: population  mutationOperation(population)
9: allocateProducts(population)

Figure 5 Guillotine Cutting Patterns [Color figure can be viewed at wileyonlinelibrary.com]
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Algorithm 1 (Continued)

10: currentFittestIndividual  calculateFitness(population)
11 population  elitismOperation(currentFittestIndividual,

formerFittestIndividual)
12: formerFittestIndividual  saveFittestIndividual

(formerFittestIndividual, currentFittestIndividual)
13: end While
14: printFittest(formerFittestIndividual)

The algorithm starts with input of the set of items
N, shelf dimensions Swidth and Sdepth, and the termina-
tion criterion. The objective is to find the fittest indi-
vidual across all generations, which contains the
container with the most profitable rectangles.
Step 1 generates the set of possible rectangles for

each item, i 2 N. It takes into account the shelf dimen-
sions Swidth and Sdepth. The number of maximum fac-
ings Ki (i 2 N) is denoted by the shelf dimensions.
The possible arrangement options for each item are
generated as a result of the maximum quantity in each
visible shelf dimension (Swidth=wi� qxi , Sdepth=di� q

y
i )

and exclusion of arrangement options that result in
prime number defects.
Following Step 2 generates a start population. We

implemented two different options. In the simple
case, a random start solution (RSS) is applied. In the
advanced version, an adapted one-dimensional start
solution (ASS) is generated using the model and
solution approach of H€ubner and Schaal (2017b).
They develop an iterative heuristic that solves a MIP
for the assortment and space allocation problem in
the first step and, in the subsequent step, updates
the demand calculation according to the shelf config-
uration of the first step. This procedure is repeated
until a solution-quality-related termination criterion
is met. We extend this approach by using a con-
straint in the MIP to directly eliminate the prime
number facings that exceed one Swidth or Sdepth. The
arrangement issue that items cannot be allocated to
the shelf because of their particular dimensions can-
not be included in H€ubner and Schaal (2017b). The
computed one-dimensional quantities are subse-
quently transformed into two-dimensional feasible
arrangements.

Step 3 allocates the rectangles to containers. So far,
the algorithm is composed of a population of individ-
uals where each individual consists of a single con-
tainer that contains one or multiple rectangles and
where each rectangle has an item reference. We use
the BL-F pack heuristic to fill up the containers. Hop-
per and Turton (2001) identified the BL-F as an effi-
cient approach for the two-dimensional packing
problem. The BL-F is a modified version of the bot-
tom-left (BL) pack heuristics. The BL algorithm starts
with placing each rectangle in the top right corner of
the container. From there, the rectangle slides as far as
possible (without crossing another item) to the bottom
and then as far as possible to the left of the container.
This movement process is repeated until the rectangle
can no longer be moved, that is, the rectangle collides
with another rectangle or the frame of the container.
This makes full use of the rectangle. The disadvantage
of the BL algorithm is the empty space within the con-
tainer. In contrast to this, the BL-F algorithm seeks the
lowest left position in the container that the rectangle
can fit into. This approach makes it possible to occupy
what were previously empty spaces but also leads to
a higher runtime. Furthermore, Hopper and Turton
(2001) show computational benefits if the rectangles
are sorted and filled by size (Wi �Di) in descending
order. Note that the algorithm is not forced to com-
pletely fill up the shelf space. It may be better to leave
free spaces within the shelf due to penalty costs for
oversupply in the objective function.
After this, rectangles are allocated and the fitness of

each individual is evaluated in Step 4. The algorithm
is terminated based on maximum runtime, number of
populations or solution quality improvements. If the
termination criterion in Step 5 is met, the fittest indi-
vidual is displayed. Otherwise, the loop of Steps 6 to
11 is executed until the termination criterion is met.
Steps 6 to 8 describe the GA operator’s selection,

crossover, and mutation. The selection operation in
Step 6 intensifies the average fitness of a population
through duplication of the fittest and disposal of the
weakest individuals. We use different approaches. In
wheel selection (WS), the selection probability of an
individual is calculated by dividing the fitness of a
selected individual by the total cumulative fitness of
all individuals. This approach ensures that stronger
individuals are more likely to be included in the
adapted population than weaker ones. Tournament
selection (TS) is based on the comparison of two ran-
domly picked individuals of a population. The indi-
vidual with the higher fitness score is selected for the
adjusted population. All chosen or not chosen indi-
viduals remain in the basic population and can be
selected again. Rank selection (RS) reevaluates the fit-
ness of each individual depending on the fitness rank-
ing. The technique takes the rank of the fitness value

Table 3 Configuration Settings of the Genetic Algorithm

Step and method Possible settings

Step 2: Start solution Random, Adapted one-dimensional solution
Step 3: Rectangle
allocations

Bottom-left fill heuristic

Step 5: Termination
criterion

Runtime, Number of populations, Solution quality

Step 6: Selection Wheel, Tournament, Rank
Step 7: Crossover Fixed, Random
Step 8: Mutation Probability rate and variance configurable
Step 11: Elitism Injection rate of the previous fittest solution
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and not the nominal value into account. A common
approach is to rate the worst as fitness 1, the second
worst as fitness 2, and so on. The best is rated as N,
where N equals the number of individuals consid-
ered.
The crossover operation in Step 7 is a method for

interbreeding the individuals of the selected popula-
tion to form a new offspring population. Crossover is
performed with a specified probability rate. The
crossover operation can be executed with a fixed
number or randomly generated amount of crossover
points. The points are most evenly divided depending
on the quantity of items, that is, to build equal sized
crossover parts the length of the individual is divided
by the amount of crossover points, whereby the last
part contains the size of the modulo value. All items
between the crossover points alternately remain part
of the individuals or swap between the individuals.
In the mutation operation in Step 8, small segments of
the individuals of the new offspring are randomly
modified. The purpose of this is to preserve diversity
across generations. The mutation probability rate and
the variance of the modification can be chosen. Dur-
ing the execution, the new quantity of the item is also
randomly transferred to feasible two-dimensional
spaces.
In Steps 9 to 12, all rectangles within each individual

are allocated and evaluated. Crossover and mutation
operations modify individuals so much that there is a
high probability of losing the fittest individual across
the following generations. Hence, an elitism method
is applied to preserve the fittest individual across the
next generations. The overall fittest individual is
saved and injected into a population if the fittest indi-
vidual of this population is not at least as fit as the fit-
test overall. The fittest individual of this generation is
compared with the individual that is fittest overall to
determine the new individual that is fittest overall.
Then the algorithm returns to Step 5.

5. Numerical Results

In this section, we first describe the test setting before
then conducting various numerical analyses with sim-
ulated data and data from a case study and different
variants of the model. We gradually increase the com-
plexity to demonstrate the efficiency of the models
and solution approaches step by step. Section 5.2
investigates the error range if the solutions of a one-
dimensional model (1DSCASP) are transferred to a
two-dimensional problem (2DSCASP). The heuristic
approaches are analyzed and compared in terms of
runtime and solution quality in section 5.3. Section 5.4
assesses the impact of demand effects and correctly
accounts for stochastic demand, space elasticity, and
substitution on profit as well as facing changes.

Finally, we apply our model to a case study in section
5.5. Table 4 gives an overview.

5.1. Data Generation and Test Setting
To generalize our analysis, all input parameters are
randomly generated within sections 5.2–5.4. We gen-
erated parameter values within reasonable ranges
derived from literature or from the cooperation with a
retailer. There are either sources from empirical stud-
ies (e.g., Campo et al. 2004, Gruen et al. 2002 or Aas-
trup and Kotzab 2009 for the range of substitution
rates; Desmet and Renaudin 1998, Dr�eze et al. 1994 or
Eisend 2014 for space-elasticity effects) or from other
comparable modeling approaches (e.g., H€ubner et al.
2016, K€ok and Fisher 2007 for the ranges of profits
and over-/undersupply costs). In generating our data
sets, we thus used conventional practice and followed
the suggestions of previous literature. We made the
data available at GitHub (https://github.com/fabSc
haefer/2DSCTSP). These are equally distributed and
satisfy the following rules. Each item i 2 N has a posi-
tive profit ri [ ci, a positive salvage value vi and posi-
tive shortage costs si. The ratio pattern between the
parameters is defined as ri� ci� vi� si with
r 2 [20;25], c 2 [4;9], v 2 [4;9] and s 2 [1;3]. H€ubner
et al. (2016) reveal that continuous demand distribu-
tions serve as good approximations of discrete
demand distributions. It is assumed that demand is
normally distributed with an average minimum
demand of li 2 ½7; 25� and a corresponding coefficient
of variation CVi 2 ½1%; 40%�. Modeling demand
volatility with CVi ensures that negative demand can-
not occur. The space elasticity b is assumed to vary
between 0 ≤ b ≤ 0.40 (cf. Eisend 2014). According to
Campo et al. (2004) the OOA substitution rates are
suitable for providing approximations for OOS substi-
tution rates. Without compromising the general appli-
cability of our model, we assume that the substitution
rates for OOA and OOS are the same, that is,
cOOA
ji ¼ cOOS

ji , ∀i,j ; j6¼i. To simplify, we denote the
probability that an unavailable item i gets substituted
by the aggregated substitution rate �i and assume that
this rate is split equally among all other items such
that cOOA

ji ¼ cOOS
ji ¼ �i

N�1, ∀i,j ; j 6¼i. To focus on the
core demand effects, we assume that all items have a
uniform size with an identical depth and width of
di ¼ wi ¼ 1 and a shelf stock per facing of qti ¼ 1. If
not stated otherwise, we considered 100 randomly
generated instances for each problem setting. For all
instances of a problem setting the assortment size
N and shelf size Swidth � Sdepth are assumed to be
identical. All numerical tests were conducted on a
Windows Server 2012 R2 64-bit with two Intel Core
E5-2620 processors and 64-GB memory. The tests are
implemented in VB.net (Visual Studio 2019) and
GAMS 27.2.
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5.2. Transfer of One-Dimensional Solutions to
Two-Dimensional Problems
The one-dimensional solution is easier to obtain, but
it may not be a feasible solution due to arrangement
and prime number defects (also see section 2). This
analysis serves to assess the error impact of transfer-
ring solutions obtained by models that are based on
one-dimensional shelf space to settings with two-
dimensional shelf space. The best case would show
that one-dimensional solutions are a good approxima-
tion for the two-dimensional problems. We solve the
following three models exactly: 1DSCSP includes
prime numbers, 1DSCSPex�prim excludes prime num-
bers and 2DSCSP. Six test problem settings are
defined with a varying total number of items (N),
quadratic shelf sizes with Swidth ¼ Sdepth and an upper
limit on the facings (Ki ¼ Swidth � Sdepth). The ran-
domly generated demand of each item is set to [1;6]
for sets 1 to 4 and [1;9] for sets 5 to 6. These problem
sizes ensure computationally tractable runtimes. For
each problem 100 instances are randomly generated
by using the data ranges provided above.
Frequency of defects. Table 5 reveals the occurrence

of defects. The arrangement and prime number defect
of the one-dimensional solution appear in all settings.
Arrangement defects can be found in 14% and prime
number defects in 32% of the cases. In some cases
both defects exist. Consequently, one or both defects
occur in 41% of cases.
Profit impact of defects. Table 6 summarizes the profit

impact due to the required arrangements on a two-
dimensional shelf. It compares the exact solutions of
the 2DSCSP with the 1DSCSP. The latter do not con-
sider the rectangular arrangement and prime number
requirements, whereby 41% of 1DSCSP solutions are
non-viable solutions for the 2DSCSP. These additional
requirements in the two-dimensional problem lower
the profit by 0.8% on average. Hence, this expresses
the total profit impact caused by the rectangular

arrangement and prime number constraint. In other
words, theoretically the feasible solution yields 0.8%
lower profit compared to the non-viable solution
without prime number and arrangement constraints.
Arrangement and prime number defect. To quantify the

individual profit impact for each type of defect, we
compare the 1DSCSP and the 1DSCSPexprime where
prime numbers are excluded. The results in Table 7
depict that the prime number defect leads on average
to a 0.5% lower profit. Hence, imposing the arrange-
ment constraints results in 0.3% lower profits.
Summary. The one-dimensional solution is easier to

obtain, however, it is not a feasible solution due to
arrangement and prime number defects. These
requirements impact optimal allocation. The optimal
item quantities of the two-dimensional problem differ
from those of the one-dimensional problem. Due to
the additional constraints in the 2DSCSP, the total
profit will always be equal or below the 1DSCSP. The
corresponding one-dimensional solution approaches
are not readily appropriate methods for solving two-
dimensional problems. It has to be considered that in
cases where the one-dimensional solution does not fit
onto the two-dimensional shelf space, quantities of
items need to be adjusted. It is not obvious which item
quantities have to be increased or decreased to
achieve the best feasible solution (e.g., via simple
rounding or greedy heuristics). The decision process
becomes even harder when substitution effects in the
model are considered due to the demand interdepen-
dencies between the items. The consequence of this is
that the loss in solution quality would be significantly
higher if using the one-dimensional model.

5.3. Efficiency Analysis of Heuristics
5.3.1. Comparison of Heuristics with Space

Elasticity vs. Exact Approaches. This section exami-
nes the efficiency of the heuristic developed. To vali-
date the GA it is compared to a full enumeration (FE)

Table 4 Overview of Numerical Tests
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applied to smaller problem sizes. The GA is executed
as described in section 4 with a RSS and the selection
methods WS, TS, and RS. The random crossover oper-
ation and the elitism operation are applied. Mutation
operations are not reasonable and can be neglected
due to the small size of problem instances. Pretests
have shown that a termination criterion of 100
seconds is more than sufficient to return the best
solution.
Runtime. Table 8 summarizes the computation time.

For the FE, it shows that the median runtime increases
between four to ten times if the set is extended by
only one additional item. A similar magnitude is rec-
ognizable when the space is extended gradually. For
the different implementations of the GAs, the runtime
is significantly lower and the increases for extended
problem sizes are much lower. Furthermore, the run-
times of the WS and TS are below 4 seconds on aver-
age in all instances. The smallest median execution
time across all 600 problem instances was achieved
via the TS, and is over 120 times faster than the FE.
Solution quality. The solution quality of the GA

methods compared to the optimal solutions is shown
in Figure 6. The boxplots show that the median is
100% in all three variants. Additionally, the data eval-
uation reveals that the average solution quality
exceeds 99% in all cases. The first quantile is equal to
100% for the WS, and is greater than 97% for the TS as
well as the RS.
In reference to the solution quality, the WS is

slightly better than the TS and the TS is slightly better
than the RS. To figure out what selection method is
better suited for more extensive problem settings the

execution time as a ratio of the solution quality
achieved is examined more precisely. Problems five
and six of Table 8 are considered which together con-
sist of 200 problem instances. Figure 7 shows the med-
ian solution quality of the best individual solutions
achieved up until the time shown on the x-axis. The
curve of the RS obviously increases more slowly than
the curves of the other selection methods and the
solution quality of the TS increases slightly faster
compared to the WS. In conjunction with the results
of Table 8 that have been discussed RS does not
appear to be a suitable selection approach.
Summary. The results show that the median run-

time for the FE increases exponentially as the number
of items N and shelf space Swidth � Sdepth increase. In
comparison, the runtime of the GAs is lower and
increases only very moderately. Furthermore, they
achieved a close to optimal average solution quality
of at least 99.1% in all three cases. In terms of runtime
and solution quality, the TS is the most promising
approach for larger problem settings. This is due to
three facts. First, the runtime increase of the TS is
lower compared to the other selection operations. Sec-
ond, Table 8 shows that the TS has the shortest aver-
age computation times over all problem settings.
Third, the median of the solution quality of TS is
equal to WS, and the solution quality of TS compared
to WS increases slightly faster.

5.3.2. Efficiency Analysis of Heuristics with
Space Elasticity for Extensive Problem
Settings. Three more extensive problem settings of
practice-relevant size are tested. The number of

Table 5 Analysis of Arrangement Defects of 1D Solutions, Average of 100 Instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space (Swidth � Sdepth) 393 393 393 393 494 595

Arrangement defect [%] 15 9 14 2 18 24 14
Prime number defect [%] 27 29 23 26 56 33 32
Total cases with defect/s [%] 37 32 31 28 66 51 41

Table 6 Profit Comparison of 2DSCSP vs. 1DSCSP, 100 Instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space (Swidth � Sdepth) 393 393 393 393 494 595

Average profit1 0.991 0.989 0.992 0.994 0.992 0.997 0.992

1Calculation: 2DSCASP profit / 1DSCASP profit

Table 7 Profit Comparison of Exact Solutions: 1DSCSPex�prime vs. 1DSCSP, 100 Instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space (Swidth � Sdepth) 393 393 393 393 494 595

Average profit1 0.995 0.991 0.996 0.995 0.995 0.999 0.995

1Calculation: 1DSCSPex�prime profit / 1DSCASP profit
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products and shelf space are increased in steps and
the number of facings is increased to Ki ¼ 30. The
positive demand of an item has a uniform distribution
within [1;30]. All other parameters are applied as
above. The maximal runtime is bound to 500 seconds.
Here we use the RSS and adapted start solution (ASS)

which are described in section 4. The ASS uses the
one-dimensional solution of H€ubner and Schaal
(2017b).
Runtime. Table 9 once again shows that the TS is fas-

ter than the WS (GA WS vs. GA TS) for the smaller
instances with 20 items. If the median runtime is close

Table 8 Median Runtime of Different Approaches, in seconds, 100 Instances

Number of items N 4 5 6 7 6 6 Total
Total shelf space (Swidth � Sdepth) 393 393 393 393 494 595

FE Median 0.728 2.530 22.593 135.332 72.136 134.920 19.988
GA WS Median 0.171 0.327 0.547 1.028 2.106 3.117 0.788
GA TS Median 0.036 0.087 0.130 0.220 0.376 0.710 0.164
GA RS Median 1.362 2.661 4.049 6.506 13.919 36.471 5.425

Figure 6 Solution Quality of Different Selection Operations in Comparison to the Exact Solution [Color figure can be viewed at wileyonlinelibrary.
com]

Figure 7 Median Solution Quality Depending on Execution Time [Color figure can be viewed at wileyonlinelibrary.com]
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to the limit applied of 500 seconds, it means that in
many cases the best solution has not yet been found
due to the termination criteria. This means that the
GA would still improve the solution with longer
runtimes. This is the case for all GA WS applica-
tions and for the larger GA TS applications with 50
and 100 items. However, a significant runtime
improvement can be obtained by applying the ASS.
This makes it possible to obtain solutions within a
few seconds, even for larger problems. Where the
ASS TS has significantly shorter runtimes than the
ASS RS.
Solution quality. There is no exact solution available

that can be generated in reasonable computation time.
We therefore use a benchmark. We use the solutions
of the 1DSCASPex�prime problem which exclude non-
viable prime numbers but might be still an infeasible
approach in terms of the arrangement options. Our
calculations in Tables 6 and 7 allow the conclusion
that the 1DSCASPex�prime is a suitable upper bound.
For small instances, the gap compared to the 2DSCSP
is 0.3% on average. Figure 8 shows the efficiency of
the ASS methods. The ASS methods met the bench-
mark in almost all of the 300 test instances. The 300
test instances belong to the three test settings shown
in Table 9 in ascending order of the problem size and
are equally split (1–100, 101–200, and 201–300). The
ASS TS method only missed the optimal solution in
three cases. WS and TS with a RSS demonstrate much
lower performance for the larger test instances (201–
300), as here the solution quality suffers from a deficit
in runtime.
Summary. The FE only has acceptable runtimes for

very small problem sizes. This means it is not an
appropriate procedure for real-world problems. The
GA configured with the selection operation WS and
TS performs well for small and medium problem
sizes. For more extensive problem settings, the GA
with a RSS also leads to unsuitable runtimes. The
increasing number of products and larger shelf space
generate higher degrees of freedom. This results in
greater opportunities for allocating the optimal item
quantities onto the shelf space. As a result, the GA
mostly only faces the prime number defects in more
extensive problem settings, which makes the ASS an
appropriate approach for solving them.

5.3.3. Efficiency of Heuristics with Space
Elasticity and Substitutions. In this section, the
model is extended by the substitution effects. To
obtain a first indication that the GA is suitable to
account for substitution effects, GA TS and GA ASS
TS are compared to the heuristic approach AMIOAS
(Algorithm for Mixed-Integer Optimization of Assort-
ment- and Shelf-space problems) of H€ubner and
Schaal (2017a). Since this approach is only appropri-
ate for the 1DSCASP with substitution, the GA is also
applied to this setting with large problem settings. A
second comparison with the GA TS and the GA TS
ASS is applied to the two-dimensional problem.
Algorithm suitability test for substitution effects. Tables

10 and 11 summarize runtime and the solution quality
of the GA TS for the 1DSCASP. The model of H€ubner
and Schaal (2017a) is therefore a special case as it only
yields feasible one-dimensional solutions as it does
not take into account two-dimensional shelf space.
The median solution quality of GA TS compared to
AMIOAS is 99.2% and ranges between 97% to 99.9%.
Despite the higher runtime and slightly lower solu-
tion quality for most problem settings, the GA TS has
demonstrated appropriate performance for address-
ing substitution effects.
Algorithm with a refined start solution to meet substitu-

tion effects. Due to the fast convergence times of
H€ubner and Schaal (2017a)’s algorithm, we will use
an adjusted version of ASS in which the AMIOAS
results are used as a start solution. Table 12 pre-
sents the percentage variance of the solution qual-
ity between the GA TS ASS and the GA TS after
the limited runtime of 1,000 seconds. It shows that
the GA TS ASS has achieved a 15.7% higher med-
ian on average for the most extensive problem set-
ting. The difference between the two approaches is

Table 9 Median Runtime for Larger Problems, in seconds, 100
Instances, Rum Time Limit 500 seconds

Number of items N 20 50 100
TotalTotal shelf space (Swidth � Sdepth) 15915 20920 25925

GA WS Median 430 412 466 441
GA TS Median 117 480 482 466
GA ASS WS Median <1 2 5 2
GA ASS TS Median <1 1 3 1

Table 10 Runtime of GA TS for 1DSCASP, in seconds, 100 Instances

Number of items N 20 50 100
TotalTotal shelf space (Swidth � Sdepth) 22591 40091 62591

Average 535 1,208 2,153 1,301
Median 471 1,138 1,998 1,173
Min 120 441 1,773 119
Max 1,683 1,973 3,589 3,589

Table 11 Median Solution Quality GA TS vs. AMIOAS for 1DSCASP,
100 Instances

Number of items N 20 50 100
TotalTotal shelf space (Swidth � Sdepth) 22591 40091 62591

Average 1 0.997 0.992 0.969 0.986
Median 1 0.999 0.993 0.970 0.992
Min 1 0.984 0.978 0.942 0.942
Max 1 1.000 0.999 0.986 1.000

1 Calculation: GA TS profit / AMIOAS profit
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in evidence with a closer look at the time at which
the best solution was found. The average median
time of the smallest problem setting in Table 10 is
471 seconds for the GA TS, compared to 11 sec-
onds for the GA TS ASS.
Summary. The numerical results with the integra-

tion of substitution effects has shown that the heuris-
tic developed is suitable for addressing these effects.
The second analysis has shown that an intelligent
start solution is advisable with substitution effects,
too.

5.4. Effect of Combining Stochastic Demand,
Space Elasticity, and Substitution
Because this is the first integrated stochastic model for
two-dimensional shelf spaces that accounts for space
elasticity and substitution, this section illustrates the
difference vis-�a-vis the existing two-dimensional
model of Geismar et al. (2015) who do not account for
demand effects. Total profits and shelf quantity
assignments are compared. The parameters CV and b
cover the values 0 and 0.35 with an interval of 0.05.
The substitution rates considered range between 0
and 0.7 in 0.1 increments. All resulting combinations

of the three parameters are evaluated. To investigate
the impact of ignoring stochastic demand, space elas-
ticity and/or substitution, a retailer is considered
who makes assortment and facing decisions by
assuming CV = b = k = 0, while in reality there are
CV > 0, b > 0 and k > 0. To do so, we first run the
model with CV = b = k = 0 and evaluate ex post the
results with the actual demand effects with CV > 0,
b > 0 and k > 0. This result is compared with an opti-
mization run where the actual values of CV, b and k
are directly applied. This allows computing the
impact of incorrect demand assumptions on assort-
ment and facing decisions as well as the profit.
Figure 9 shows that the retailer gains up to 78%

more profit on average (i.e., when b = 0.35, k = 0.80
and CV = 0.35). Additionally, Figure 10 shows that
up to 100% of all items get different facing quantities
if stochastic demand, substitution, and space-elasti-
city effects are correctly taken into account. It becomes
clear that all three demand effects need to be consid-
ered jointly.

5.5. Case Study
After having shown that 2DSCASP can be efficiently
solved to near-optimal results within very short run-
times, it will be applied on a real data set in this sec-
tion. The daily sales data of an assortment of 21
varieties of bread roll were collected at one of Ger-
many’s largest retailers. Substitution rates between
the items were identified using customer surveys. We
interviewed n = 2,412 customers and asked them
which substitute they would purchase if their first
choice were unavailable. Asking customers whether
the product they bought was really their first choice

Table 12 Profit Difference between GA TS ASS and GA TS for
2DSCASP, in %, 100 Instances

Number of items 20 50 100
TotalTotal shelf space (Swidth � Sdepth) 15915 20920 25925

Average 0.3 1.9 15.6 5.9
Median 0.3 1.8 15.7 1.8
Min �1.2 �0.6 6.6 �1.2
Max 1.6 3.8 24.7 24.7

1 Calculation: (AMIOAS / GA TS profit profit �1) 9 100

Figure 8 Profit Levels of GA Variants, in % of Benchmark Approach, Across all 300 Extensive Problem Settings [Color figure can be viewed at wileyon
linelibrary.com]
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also captured substitute purchases for items that
are actually unavailable. The substitution rates
between two items i and j were then obtained by
No. of customers purchasing j as substitute for i

No. of customers choosing i as first choice
. We

had at least 30 interviewees for each item. Substitu-
tion rates per substitute amounted to up to 40%
(see also H€ubner and Schaal 2017a). The exact
parameters are subject to confidentiality obligations.

The minimum daily demand dmin
i varied between

1 and 25 units with a variation coefficient of
CVi ¼ ½40%; 152%�. Sales prices ri ranged between
€1:5 and €3:95 with unit costs of ci ¼ ½€0:32; €1:02�.
The penalty costs si are set at zero. Because the
items are perishable and our case study retailer has
no further use for the items after the stated expiry
date, the salvage value vi is assumed to be zero. The
retailer does not offer special discounts for items
close to the expiry date. This is due to the short
shelf life of bakery products (see also K€ok and
Fisher 2007 and H€ubner et al. 2016 who analyze set-
tings with no salvage values). Beyond the specific
setting in our case study, we use non-zero salvage
values in the numerical analysis above to generalize

our findings. To maintain a certain diversification
on the shelf, the number of facings ranges between

1 and 30, whereby the shelf depth Sdepth is 0.50m

and the shelf width Swidth is 1.20m. Currently, the
retailer assigns shelf space to the 21 products based
on sales proportions, that is, without explicit mar-
gins taken into account, demand volatility, space
elasticity or substitution. The space elasticity b
ranges in the sensitivity analysis between 0% and
30% in 5% increments. Additionally, 17% is added
which is the average demand increase driven by
space elasticity (Eisend 2014).
Table 13 shows the profit potential from applying

our model. The retailer can increase profits by up to
15% depending on the assumed space elasticity. Fur-
thermore, it can be seen that optimized assortments
contain up to 38% fewer items than the current assort-
ment. The increase in space elasticity leads to more
shelf space for the most profitable items. This results
in smaller assortments and an increasing number of
items with facing changes.
As a result of the remaining uncertainties of deter-

mining the parameters, we analyzed the profit
potential together with the retailer depending on

Figure 9 Profit Changes [Color figure can be viewed at wileyonlinelibrary.com]
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parameter robustness based on the average space
elasticity of Eisend (2014). Moreover, we investigated
the options for defining the appropriate shelf space
for the bread roll category. We applied a sensitivity
analysis for that purpose. To do this, the estimated
substitution effects k, variation coefficients CV and
shelf space S are individually adjusted pro rata
between 60% and 140% in 10% increments, whereas
the other parameters remained unaffected. To ensure

in-store practicability, 20% increments are used for
the shelf space. Table 14 shows that in a higher exist-
ing parameter ratio, substitution effects k and shelf
space S create more profit, whereby variation coeffi-
cients CV lead to decreasing profit. The following
profit-oriented managerial insights can be concluded
for the retailer:

(i) Inaccuracies in estimating the substitution
effects have a slight impact on profit.

Figure 10 Share of Facing Changes [Color figure can be viewed at wileyonlinelibrary.com]

Table 13 Results of Case Study

Space elasticity b

0% 5% 10% 15% 17% 20% 25% 30%

Profit potential1 5.3% 5.6% 7.3% 8.1% 12.5% 11.2% 12.9% 14.8%
Assortment size2 86% 86% 81% 76% 71% 62% 62% 62%
Facing changes3 62% 67% 76% 81% 81% 86% 95% 95%
SD facing changes4 0.70 1.35 1.72 1.96 2.03 2.18 2.05 2.28

1 Calculation: (2DSCASP profit / 2DSCASP� profit)-1
2 Optimized assortment size as a share of current assortment size
3 Share of items with facings different to current facings
4 Standard deviation of absolute facing quantity changes
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(ii) Slight deviations in determining the variation
coefficients significantly affect profit.

(iii) If there is additional shelf space available, the
retailer should enlarge the shelf space
size for the bread roll category to increase
profit.

6. Conclusion and Outlook

Conclusion Our model integrates assortment and
shelf-space optimization and takes into account
stochastic demand, substitution and space elasticity.
It supports retailers in creating a planogram for two-
dimensional shelves by determining optimal assort-
ments and shelf quantities as well as the adjacently
rectangular arrangement of each item’s facings. It is
an integrated approach that simultaneously solves
the four subproblems item selection, shelf quantity,
facing arrangement, and item arrangement. Previous
shelf planning literature focuses on regular shelf
types where customers just see the foremost unit of
an item. Solutions obtained for regular shelves cannot
easily be transferred to two-dimensional and tilted
shelves. The combinatorial complexity of the model
leads to a rapid increase in runtime with the number
of items and the shelf-space size. We developed a
problem-specific specialized heuristic that is based on
a GA. In the numerical results we have shown that

(i) one-dimensional solution approaches of cur-
rent literature are not readily appropriate
methods for solving the two-dimensional
problems,

(ii) our algorithm efficiently yields near-optimal
results as our specialized heuristic achieves
>99% of the exact approach on average for
small instances,

(iii) neglecting stochastic demand, substitution
and space elasticity leads to 78% lower prof-
its and changes in facings of up to 85%, and

(iv) in a numerical analysis with the scope of one
of Germany’s largest retailers, it may be pos-
sible to increase profits by up to 15%.

Future areas of research. Various opportunities exist
for further research. Our model is based on several
assumptions that could be relaxed in the future, e.g.,
we assumed that substitution takes place across one

round only. Future models could account for several
rounds of substitution, if substitutes are not available.
The extension of our model is linked to the further
development of solution approaches. Further heuris-
tics can be developed to approach the stochastic non-
linear problem. Another topic of research interest is
combination of the tactical problem described in this
study with operational topics, such as shelf refilling,
order management and inventory accuracy (cf. e.g.,
Curseu et al. 2009, DeHoratius and Raman 2008,
DeHoratius and Ton 2015, Donselaar et al. 2010,
Sharma et al. 2019, Xue et al. 2017). Further exten-
sions in this area would address additional opera-
tional restrictions in backroom inventory and delivery
frequency (cf. e.g., Eroglu et al. 2013, Holzapfel et al.
2016). Finally, the question of how a multi-store envi-
ronment can be taken into consideration requires
investigation. For example, Bianchi-Aguiar et al.
(2015) developed an approach to replicate a standard
planogram for several stores of a retail chain. A holis-
tic multi-store approach would also consider the
potential impact of store segmentation on the effi-
ciency of supply chain processes. The model and solu-
tion approach presented in this study has laid the
foundation for these research questions.
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