
Boire, François-Michel; Duprey, Thibaut; Ueberfeldt, Alexander

Working Paper

Shaping the future: Policy shocks and the GDP growth
distribution

Bank of Canada Staff Working Paper, No. 2021-24

Provided in Cooperation with:
Bank of Canada, Ottawa

Suggested Citation: Boire, François-Michel; Duprey, Thibaut; Ueberfeldt, Alexander (2021) : Shaping
the future: Policy shocks and the GDP growth distribution, Bank of Canada Staff Working Paper, No.
2021-24, Bank of Canada, Ottawa,
https://doi.org/10.34989/swp-2021-24

This Version is available at:
https://hdl.handle.net/10419/241247

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.34989/swp-2021-24%0A
https://hdl.handle.net/10419/241247
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Bank of Canada staff working papers provide a forum for staff to publish work-in-progress research independently 
from the Bank’s Governing Council. This research may support or challenge prevailing policy orthodoxy. Therefore, the 
views expressed in this paper are solely those of the authors and may differ from official Bank of Canada views. No 
responsibility for them should be attributed to the Bank. 
ISSN 1701-9397 ©2021 Bank of Canada 

Staff Working Paper/Document de travail du personnel  — 2021-24 

 

Last updated: May 25, 2021 

Shaping the Future: 
Policy Shocks and the 
GDP Growth Distribution 
by François-Michel Boire,1 Thibaut Duprey2 and Alexander 
Ueberfeldt2 

1 Western University 
London, Ontario, Canada N6A 3K7 
2 Financial Stability Department 
Bank of Canada, Ottawa, Ontario, Canada K1A 0G9 

fboire2@uwo.ca; tduprey@bank-banque-canada.ca; aueberfeldt@bank-banque-
canada.ca  

 

 

mailto:fboire2@uwo.ca
mailto:tduprey@bank-banque-canada.ca
mailto:aueberfeldt@bank-banque-canada.ca
mailto:aueberfeldt@bank-banque-canada.ca


ii 

Acknowledgements 
The views expressed in this paper are those of the authors and do not necessarily reflect those 
of the Bank of Canada. We thank Paul Beaudry, Gabriel Bruneau, Heng Chen, Bruno Feunou, 
Sermin Gungor, Kerem Tuzcuoglu, and seminar participants at the Bank of Canada, Queens 
University, and the Winter 2019 Midwest Macro Meetings for their suggestions and comments, 
as well as Nicolas Whitman and Vatya Kishore for excellent research assistance. 

  



iii 

Abstract 
We incorporate quantile regressions into a structural vector autoregression model to 
empirically assess how monetary and fiscal policy influence risks around future GDP growth. 
Using a panel of six developed countries, we find that both policy instruments affect the 
location of the distribution of future GDP growth, whereas fiscal shocks also impact the shape 
of the distribution. Fiscal stimulus generates upside risk, paving the path to a faster recovery, 
especially when the policy rate is constrained by the zero lower bound (ZLB). Unconventional 
monetary policy during ZLB episodes has a comparable effect on future GDP growth as 
conventional monetary policy. 

Topics: Central bank research, Econometric and statistical methods, Financial stability, Fiscal 
policy, Monetary policy 
JEL codes: C32, C53, E52, E62 

 



1 Introduction

When central banks lower interest rates or central governments boost spending during downturns,

they aim to improve the economic outlook and avert the worst possible outcomes. As such, central

banks usually report a main scenario and provide a risk assessment around that outlook. Counter-

factual analyses based on econometric models can then help policy-makers form expectations about

the outcomes of policy interventions. However, traditional vector autoregression (VAR) models are

mean-focused and rely on a normality assumption, and are thus not suited to the task of detecting

the impact of policy interventions on complex dynamics of the distribution like asymmetries and

fat tails.

We incorporate a conditional quantile representation into a vector autoregression to investigate

the dynamics of the entire distribution of GDP growth following policy shocks. On one hand, the

VAR structure allows us to characterize economic dynamics over time and give a structural meaning

to the monetary and fiscal shocks. On the other hand, we model the distribution of GDP growth,

our variable of interest, through quantile regressions (QR) to allow for more flexible distributions.

Thus, we can capture heteroskedasticity, skewness and even multi-modality of GDP growth as the

quantile estimators are distribution-free. The distribution-free quantiles of the distribution of GDP

growth are recursively projected one step ahead and smoothed with a kernel to simulate the entire

distribution of GDP growth. Thus, we can investigate how policy shocks shape the future GDP

growth distribution. In Monte Carlo simulations, we find that whenever the variable of interest is

governed by a skewed distribution, choosing our QR-VAR over a VAR dramatically reduces the

bias and RMSE for the one-step-ahead conditional skewness. This only comes at the cost of a small

positive bias in the one-step-ahead conditional variance.

In this paper, we apply our new quantile regression–vector autoregression hybrid model (QR-

VAR) to assess how monetary and fiscal policies impact risks around future GDP growth. Our

results thus provide an answer to the important question: How do fiscal and monetary policies

change the odds of a good or bad realization of GDP growth?

We estimate our QR-VAR on a panel of six countries from 1964Q1 to 2019Q4 at the quarterly

frequency: Australia, Canada, Finland, Japan, the United Kingdom and the United States. We use

a panel estimation to ensure that a wide range of crises and a policy actions are represented in the

data. Specifically, we focus on the impact of quantitative easing when policy rates are at the zero

lower bound (ZLB). We find that by allowing for heterogeneous quantile effects with the QR-VAR

we obtain a better root mean squared error (RMSE) than with a VAR model. This improvement

is mostly due to crises episodes, while a regular VAR would perform better in normal times.

We are the first to track the impact of monetary and fiscal policy shocks on each quantile of

the density forecast of GDP growth. Our setup allows for the identification of policy shocks as part

of the same quantile framework, with traditional sign or zero restrictions. This is in contrast to

Montes-Rojas (2019) and Duprey and Ueberfeldt (2020), who require structural shocks from a VAR

computed outside their quantile model, and Chavleishvili and Manganelli (2019), who produce only

reduced form shocks. We find that monetary policy shocks mostly shift the distribution of future
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GDP growth up or down, without significantly changing the shape of the distribution. Conversely,

fiscal policy shocks change the shape of the distribution of future GDP growth. A positive fiscal

shock can improve the lower tail of the distribution of GDP growth, but the improvement is stronger

for the upper tail. Our model therefore suggests that a fiscal expansion both mitigates the likelihood

of severe downturns and increases the likelihood of a swift recovery. Because of the asymmetric

effect of fiscal policy shocks, a VAR that does not account for the heterogeneity in the quantile

response to fiscal shocks would overestimate the mean response.

We further explore the state dependence of quantile responses by accounting for ZLB events. In

non-ZLB periods, the distribution of GDP growth is not significantly responsive to policy shocks.

During ZLB events, however, we observe two effects. First, the lower tail of GDP growth is more

responsive to fiscal shocks during ZLB than non-ZLB times. Second, the upper tail of GDP growth

significantly increases in response to expansionary fiscal shocks, suggesting that fiscal policy is

especially useful to speed up the recovery during ZLB events. In addition, we show that the

type of government spending can influence the shape of the distribution of GDP growth. Central

government spending creates more asymmetry than local government spending.

We contribute to two strands of the literature. First, our hybrid QR-VAR contributes to recent

efforts to capture the asymmetry and skewness of certain macroeconomic variables (credit growth:

Ranciere et al., 2008; GDP growth: Adrian et al., 2019 and International Monetary Fund, 2017) in

autoregressive macroeconomic models. Some existing methods already rely on quantile regressions

in a VAR framework. The conditional autoregressive value at risk (CAViaR) model of Engle and

Manganelli (2004), extended to the multivariate case by White et al. (2015), makes the assumption

that the underlying distribution is governed by scale effects. Chavleishvili and Manganelli (2019)

further cast this approach in a VAR framework where the entire system is modelled in terms of

quantiles, at the cost of using reduced-form quantile shocks that cannot be interpreted as policy

shocks. Conversely, we approximate the distribution of one variable with QR, thereby preserving

the interpretability of structural shocks for policy purposes. Schüler (2014) identifies reduced-form

quantile shocks from the quantile covariance matrix. Linnemann and Winkler (2016) estimate a

VAR with QR to track the quantiles but do not generate the whole conditional distribution of GDP

growth to draw simulations from it. Duprey and Ueberfeldt (2020) combine VAR and QR in two

separate steps, such that it does not allow for the projected quantiles to feed back into the VAR

projection. Han et al. (2019) and Loria et al. (2019) use instead the local projection (Jordà, 2005)

with QR to compute the quantiles of GDP growth at each point in time, but this does not allow one

to compute the full density distribution of GDP growth and simulate the dynamics of the variables

over time. We contribute to this growing literature by allowing structural shocks to modify the

shape of the distribution of one variable by recovering its full conditional distribution, at the cost

of retaining the standard VAR structure for all other variables. Alternative methods relying on the

VAR framework move away from QR and relax other assumptions. Some approaches add stochastic

volatility to the Bayesian VAR (BVAR) (Cogley et al., 2005; Primiceri, 2005) and highlight that

negative skewness can be generated by a symmetric conditional model if there are simultaneous
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negative shifts in conditional means and positive shifts in conditional variances (Carriero et al.,

2020). Other work deviates from the normality of the shocks, e.g. BVAR with non-Gaussian

disturbances (Chiu et al., 2017) or Copula-VAR with skew-t marginals (Smith and Vahey, 2016).

Eventually, asymmetries can be introduced with regime-specific dynamics that depend on latent

(Markov-switching VAR; Hubrich and Tetlow, 2015) or observable regime switches (threshold VAR;

Balke, 2000). We propose a flexible yet tractable approach to determine a representation of the

possibly non-normal, asymmetric and multi-modal true data-generating process.

Second, our empirical application contributes to the literature on the state dependence of the

impact of policy shocks. Only Linnemann and Winkler (2016), Duprey and Ueberfeldt (2020)

and Loria et al. (2019) partly explore the quantile response to some policy shocks. Linnemann

and Winkler (2016) find that fiscal policy improves lower tail GDP risk in the United States.

Duprey and Ueberfeldt (2020) find that, for Canada, monetary policy does not change the lower

tail of GDP growth more than the median, while macroprudential policy does. Loria et al. (2019)

find that contractionary monetary policy shocks disproportionately increase downside risk in the

United States. Although the literature on quantile responses to policy shocks is scarce, some of

our results are consistent with existing work. In line with Sims and Wu (2020), our results suggest

that conventional monetary policy and quantitative easing—identified with the shadow rate à la

Wu and Xia (2016)—have a comparable impact. Our results on fiscal policy are consistent with

the empirical work of Ramey and Zubairy (2018) and the modelling of Christiano et al. (2011),

who show that fiscal spending has a larger impact on GDP growth during ZLB episodes. Our

empirical results imply that fiscal multipliers are likely larger during ZLB episodes.1 In the spirit

of Auerbach and Gorodnichenko (2012a), we also find that fiscal policy leads to a strong reaction

in the lower tail of the GDP growth distribution, which corresponds to recession states. Since ZLB

events and the lower tail of GDP growth correspond to crises, our results are in line with Canova

and Pappa (2011), who argue that fiscal policy has the largest impact on GDP growth when acting

in a counter-cyclical manner.

The remainder of the paper is organized as follows. Section 2 describes a bivariate version of our

hybrid QR-VAR to highlight the mechanics. Section 3 applies the QR-VAR to a panel of countries

to investigate the quantile responses to monetary and fiscal shocks. Section 4 further investigates

the state dependence of the quantile response during ZLB events. Section 5 concludes.

2 The model

For expositional purposes, we introduce our hybrid quantile VAR in the context of a simple bivariate

process with one lag. In the empirical analysis of the paper, we estimate a multivariate version

1Most studies find that the fiscal multiplier is below one, with limited benefits from a fiscal expansion (Blanchard
and Perotti, 2002; (Perotti, 2005); Gaĺı et al., 2007; Ramey, 2011), with a multiplier closer to zero for open economies
with flexible exchange rates (Ilzetzki et al., 2013). However, as pointed out by Ramey and Zubairy (2018), the
precise computation of fiscal multipliers in a VAR framework relies on many ad hoc assumptions, especially for cross-
country VAR setups estimated on time series in growth rate form. Thus, we refrain from emphasizing a specific fiscal
multiplier value and instead make a relative statement about fiscal multipliers during ZLB episodes.
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with several lags, possibly with interaction terms, but the same principles apply.

2.1 A hybrid of QR and structural VAR

Consider a bivariate vector stochastic process for variables Y1 and Y2 that evolves as follows, where

upper cases represent random variables and lower cases the realizations:2

y1,t = Γ1,1y1,t−1 + Γ1,2y2,t−1 + ε1,t

y2,t = Γ2,1y1,t−1 + Γ2,2y2,t−1 + ε2,t (1)

In the standard VAR, the error term εt = (ε1,t, ε2,t)
′ is such that E(εt) = 0 and E(ε′tiεtj ) = Σε1i=j ,

where Σε is a positive definite variance-covariance matrix.

Assuming Y1 is governed by a conditional density distribution f , we replace the first equation

of the VAR in Equation (1) to obtain our hybrid system of equations:

y1,t = E(f(y1,t−1, y2,t−1)) + ε1,t,

y2,t = Γ2,1y1,t−1 + Γ2,2y2,t−1 + ε2,t. (2)

The residual of the first equation is no longer a classical regression residual and is obtained as ε1,t ∼
f̂(yt−1) − E[f̂(yt−1)], where yt−1={y1,t−1, y2,t−1}. By computing a function f that moves away

from a linear relationship, we expect to be able to analyze the potential for nonlinear amplification

arising from a non-standard distribution of variable Y1. One advantage of our modelling strategy

is the flexibility with which we characterize distributions in a multivariate setup. We focus on the

evolution of the distribution of one variable only, while other variables are modelled with linear

regressions as in a standard VAR to reduce the complexity of the estimation.

We now turn to the estimation of the function f by relying on quantile regressions and kernel

density distributions.

2.2 Conditional density distribution

The conditional quantiles of the density distribution f of variable Y1 can be explicitly modelled with

quantile regressions that map Yt−1={Y1,t−1, Y2,t−1} to the conditional quantiles of Y1,t. Quantile

processes capture heteroskedasticity and skewness, which go beyond parametric forms of asymmetry

(e.g. asymmetric GARCH). However, quantile regressions do not directly produce the conditional

distribution so another step is needed to recover the conditional density out of the fitted quantiles.

2For simplicity, we omit the constant term throughout the paper unless otherwise specified.
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2.2.1 Conditional quantile estimation

We rely on Koenker and Bassett Jr (1978) and estimate linear conditional QR of Y1 to estimate

the quantiles of order τ ∈ T , where τ is a probability associated with a quantile:

y1,t = βτyt−1 + ντ,t. (3)

The quantile-specific coefficients are denoted by a τ subscript. Now consider Qτ (·) the quantile

operator of order τ . The quantile-specific residuals ντ are such that Qτ (ντ ) = 0, which means that

the only constraint of the QR model is that the quantile of order τ of the error term should be

zero, and thus ντ is otherwise distribution-free. We then obtain the conditional quantile model:

Qτ (Y1,t|yt−1) = βτyt−1. (4)

The quantile-specific coefficients βτ can be interpreted as the marginal rate of change ofQτ (Y1,t|Yt−1)

with respect to Yt−1. The quantile regression allows the response of the quantiles to differ in differ-

ent regions of the distribution, which we will hereafter refer to as heterogeneous effects. To estimate

the parameters βτ of Equation (4), we solve the following linear programming problem:

β̂τ = argmin
β

T∑
t=1

ρτ (y1,t − βyt−1), (5)

where ρτ (u) = u ·(τ−1u<0) is the objective function based on quantile-weighted absolute residuals.

The solution to the first order conditions yields Pr(Y1,t ≤ β̂τyt−1) = τ and we indeed obtain the

τth fitted quantile of Y1.

To move closer to recovering the whole distribution of Y1, we fit multiple quantile regres-

sions of orders T = {0.10, 0.11, ..., 0.90} to obtain a set of conditional quantile predictions QT =

{Q0.10, Q0.11, . . . , Q0.90}. We truncate the top and bottom deciles of the probability grid because

the estimation of extreme quantiles can be imprecise.

2.2.2 Recover the distribution from the quantiles

The resulting set of conditional quantile predictions Q̂T can be interpolated to obtain a smooth

density distribution to be substituted back into Equation (2):

f̂(y1,t|Q̂T (Y1,t|yt−1)).

A challenge of time-varying quantiles is the possibility that quantile predictions may cross, which

directly contradicts the monotonicity of quantiles with respect to τ .3 Following Chernozhukov

et al. (2010), we circumvent the issue of quantile crossings by sorting conditional quantile predic-

3This is a well-known consequence of the linear form of the conditional quantiles in Koenker’s estimator. Quantiles
are more likely to intersect in the periphery of the data’s centre and, as a result, crossings are potentially more frequent
for rare events like systemic crises.
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tions. Although the model parameters remain unchanged, this method efficiently solves the crossing

problem and preserves desirable asymptotic properties of the quantile estimator.4

Given the sorted conditional quantiles Q̂T (Y1,t|yt−1), we estimate the density f̂(y1,t|Q̂T (Y1,t|yt−1))
using kernel density estimation (KDE), following Gaglianone and Lima (2012), Davino et al. (2013),

and Korobilis (2017). Our conditional density estimate takes the form:

f̂(y1,t|Q̂T (Y1,t|yt−1)) =
1

n

∑
τ∈T

1

Hλτ
K

(
y1,t − Q̂τ (Y1,t|yt−1)

Hλτ

)
, (6)

where the kernel K(·) is a well-defined distribution function, and H > 0 is the bandwidth. We use

the adaptive kernel of Koenker and Portnoy (1987) with λτ a local bandwidth factor defined as:

λτ =

(
g(Q̂τ (Y1,t|yt−1))
f̃(Q̂τ (Y1,t|yt−1))

)α
,

where f̃(·) is a pilot density estimate à la Silverman (2018), α ∈ (0, 1) is a sensitivity parameter

that we set to 0.5 as suggested by Davino et al. (2013), and g(·) = f ′(·). Kernel density estimates

are highly flexible and allow for the possibility of multi-modal distributions.5 But the selection of

kernel families and bandwidths requires empirically guided choices, such that practitioners often

rely on rules of thumb.

For a quantile-based density estimation, Gaglianone and Lima (2012) use Epanechnikov kernels,

and Korobilis (2017) use Gaussian kernels.

Since we apply our framework to macroeconomic data in growth rate space, a desirable property

of the KDE is that the support of the response is unbounded. That is, we want a non-zero density

estimate for all possible outcomes in R, and thus we favour the Gaussian kernel.

Now we can compute the conditional mean of Y1 via numerical integration of the KDE. Given a

density estimate f̂(y1,t|Q̂T (Y1,t|yt−1)) with support R, the point forecast is computed via numerical

integration:

Êt−1(Y1,t) ≡ E[Y1,t|f̂(y1,t|Q̂T (Y1,t|yt−1))] =

∫
R
y1,tf̂(y1,t|Q̂T (Y1,t|yt−1))dy1,t. (7)

Altogether, we obtain an algorithm to produce conditional distribution forecasts of variable Y1.

The Monte Carlo exercise shows that, whenever the variable of interest is governed by a skewed

distribution, the bias for the one-step-ahead conditional skewness is reduced by a factor of ten

4Several other solutions to the crossing problem have been proposed, usually more data-intensive, namely by He
(1997) and Bondell et al. (2010), who impose a set of restrictions on the quantile process to preserve monotonicity,
and Schmidt and Zhu (2016), who model the spacings between adjacent quantiles as positive functions.

5Another way to construct smooth density estimates from quantiles consists of interpolating the quantiles of
a skew-t distribution, as seen in Adrian et al. (2019) and Ghysels et al. (2018). The skew-t distribution family
encompasses a wide range of unimodal, asymmetric, and fat-tailed distributions. The present empirical application
is robust to this alternative density estimation approach. QR-based density estimation has also been addressed by
Koenker (2005), who suggests a piecewise linear interpolation of the density function, and Schmidt and Zhu (2016),
who consider a simple interpolation of the quantiles to recover a smooth density.
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for the QR-VAR compared to the VAR, and the RMSE is reduced by a factor of almost three

(see Appendix A). This only comes at the cost of a small positive bias in the one-step-ahead

conditional variance, and a one percent increase in the RMSE of the one-step-ahead conditional

variance. The QR-VAR is therefore particularly useful when the variable of interest modelled by

the quantile regressions is heteroskedastic and skewed. When the data-generating process does not

exhibit skewness, then the VAR is unsurprisingly better, since it assumes zero conditional skewness

already.

2.3 Shock identification

To achieve structural identification in the context of Equation (2), we assume that there is no

contemporaneous correlation between the quantiles of Y1,t and the rest of the variables in the system.

This is equivalent to saying that, on impact, a shock shifts the entire conditional distribution of

Y1 homogeneously.6 After the initial impact, the realizations of variable Y1 are drawn from the

conditional density distribution with heterogeneous quantile effects.

With this ad-hoc approach, we can still perform the standard structural decomposition of the

residuals of our hybrid, by combining the prediction error ε1,t and the linear regression residual

ε2,t. We impose a set of restrictions to identify a matrix C such that εt = Cut, Σε = CΣuC
′

and Σu is diagonal. This yields a structural VAR representation where the elements of innovations

ut = {u1,t, u2,t} are orthogonal. Structural identification approaches like Cholesky decomposition,

sign restrictions or zero restrictions can be used.

2.4 Bootstrapped confidence intervals

We bootstrap the residuals to obtain confidence for our hybrid approach. Since we use a non-

parametric specification of the distribution of variable Y1, confidence bands should be distribution-

free as well. In addition, usual methods to compute confidence intervals differ for OLS and quantile

regressions, which warrants a unified bootstrap approach to obtain confidence bands.

From Equation (2), we resample the same number of residuals ε̃ = {ε̃1, ε̃2} as in the initial dataset

by blocks of size S. The block resampling procedure aims to preserve any residual autocorrelation

in the residuals, for instance, around a financial crisis, which is likely to affect the tail of the

distribution relatively more so than the mean. If the model is estimated for a panel of countries,

we cluster the resampling within each country. We then recursively construct the new variables

Ỹ = {Ỹ1, Ỹ2}, given the initial estimates Γ̂ and β̂τ with the recursion initialized by ỹ0 = y0, where:

ỹ1,t = E
(
f̂(y1,t|Q̂T (Ỹ1,t|ỹt−1; β̂T ))

)
+ ε̃1,t

ỹ2,t = Γ̂2,1ỹ1,t−1 + Γ̂2,2ỹ2,t−1 + ε̃2,t. (8)

6Strictly speaking, a shock is an unexpected surprise to a realization of a variable. It is unclear how one can
generalize the concept of shock to be the unexpected surprise to the unobserved quantile of a variable, so we leave
this issue to future research.
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We re-estimate the model for Ỹ and collect the new estimates Γ̃, β̃τ and C̃, allowing us to compute

confidence bands around the expectation of Y and the quantiles of Y1.

Note that this makes our work more challenging than one might expect. Confidence bands

usually provide the uncertainty around the expected mean. But quantile estimates provide the

uncertainty regarding the whole distribution of the variable Y1, not only its mean. In addition,

by bootstrapping the quantile estimates themselves, we can compute the uncertainty of the whole

distribution of Y1. Essentially, we can compute the uncertainty around the confidence bands of the

variable Y1, implying larger bands compared with a standard VAR analysis.

2.5 Impulse response

Our QR-VAR hybrid allows for the computation of quantile impulse responses of one variable of

interest. But unlike in a regular structural VAR, the impulse response functions (IRFs) of the QR-

VAR are not linear7 and hence not analytically tractable. The one-period-ahead forecast Êt(Y1,t+1)

in Equation (7) requires an intermediary step that involves the computation of a conditional density.

As a result, it is not feasible to compute the n-steps-ahead forecast with the recursive approach

where we replace the conditioning variables by the one-period-ahead forecast as one would do in a

linear structural VAR.

Hence, we resort to Monte Carlo simulations to compute the n-steps-ahead forecast. Although

this approach can be computationally taxing for long-term forecasts, it is straightforward to imple-

ment controlled experiments by drawing from the estimated density distribution and conditioning

on a user-chosen policy shock.

The steps to compute the generalized impulse response function (GIRF) and the quantile im-

pulse response functions (QIRF) are described by the algorithm in Appendix E. For each boot-

strapped dataset, we re-estimate the model and compute the impulse response function. We then

take the median and upper 5th and lower 5th percentiles to compute the generalized impulse re-

sponse and its confidence bands. When re-estimating the model, we also obtain the change in the

percentiles of the distribution of GDP growth following a shock. For each percentile, the quantile

impulse response is the mean change of the percentile of the GDP growth distribution across all

bootstrapped samples.

3 Impact of monetary and fiscal shocks on the GDP growth out-

look

We now apply our hybrid QR-VAR to analyze the nonlinear dynamic response of the density

forecast of GDP growth following monetary and fiscal policy shocks. We assess if those policy

7For nonlinear VAR, as in our case, the impulse response function depends on initial conditions, is asymmetric
with respect to the sign of the impulse, and does not scale to the magnitude of the impulse. See Koop et al. (1996),
Gallant et al. (1993), and Potter (2000) for a comprehensive discussion on impulse response functions in nonlinear
settings.
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shocks can modify the shape of the future distribution of GDP growth via their differential impacts

on quantiles. A particular question of interest is: Can policies change the odds of a good or bad

realization of GDP growth?

If policy shocks impact all quantiles of the future GDP growth distribution homogeneously, then

only the location of the density forecast changes and a mean model with a symmetry assumption

is well suited.

3.1 Model estimation setup

We estimate a multivariate version of the hybrid QR-VAR model of Equation (2) with five vari-

ables and L = 3 lags.8 We use data from 1964Q1 to 2019Q4, listed in Table 6. The quarterly

annualized log-growth of real GDP per capita (∆y) is modelled by quantile regressions, so that

we can focus on the nonlinear density forecast of GDP growth. Four other variables are modelled

using linear relationships: quarterly annualized log-growth of public sector expenditures (∆g), the

short-term nominal shadow rates are transformed to year-over-year changes to ensure stationarity

(∆r),9 quarterly annualized log-growth of the consumer price index (π) and the log of the CLIFS

financial stress indices from Duprey et al. (2017) (ϕ). The stress index has important implications

for the left tail of GDP growth, as pointed out by Adrian et al. (2019). All series are seasonally

adjusted.

We use a panel dataset that includes six developed countries: Australia, Canada, Finland,

Japan, the United Kingdom and the United States. The use of panel data allows for a better

estimation of tail dynamics during crisis episodes and thus provide a better assessment of the

potentially heterogeneous effects of monetary policy around 2008. Adding Finland supplements

the data with a severe financial crisis period in the early 1990s. Similarly, adding Japan allows

for a wider heterogeneity in monetary policy in the context of sustained low rates accompanied by

public spending expansions. Adding Canada brings an episode of low rates without quantitative

easing while the United States, the United Kingdom, Japan and Finland all experienced quantitative

easing. Adding Australia also brings episodes of quantitative easing around 2008, though without

reaching the zero lower bound. See Appendix D for further details about the data.

8See lag specification tests in Appendix B and location-scale specification tests in Appendix C. We also conducted
a number of robustness checks, including a version of the model with the short-term rate in levels. See Appendix F
for more details.

9When bootstrapping, we require that the new sample have a similar frequency of positive and negative policy
rate changes of plus or minus 10 percent as the initial sample. We do this because the higher frequency of negative
changes, due to a decreasing trend, is associated with the great moderation and a change in the frequency of extreme
values in GDP growth, which would likely affect our ability to correctly bootstrap the tails of the GDP growth
distribution.
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∆yt = f(∆yt−1,∆gt−1,∆rt−1, πt−1, ϕt−1, αc;βτ (L)) + ε1,t (9)

∆gt = Γ2,0αc +

L∑
l=1

[
Γ2,1,l∆yt−l + Γ2,2,l∆gt−l + Γ2,3,l∆rt−l + Γ2,4,lπt−l + Γ2,5,lϕt−l

]
+ ε2,t

∆rt = Γ3,0αc +
L∑
l=1

[
Γ3,1,l∆yt−l + Γ3,2,l∆gt−l + Γ3,3,l∆rt−l + Γ3,4,lπt−l + Γ3,5,lϕt−l

]
+ ε3,t

πt = Γ4,0αc +
L∑
l=1

[
Γ4,1,l∆yt−l + Γ4,2,l∆gt−l + Γ4,3,l∆rt−l + Γ4,4,lπt−l + Γ4,5,lϕt−l

]
+ ε4,t

ϕt = Γ5,0αc +

L∑
l=1

[
Γ5,1,l∆yt−l + Γ5,2,l∆gt−l + Γ5,3,l∆rt−l + Γ5,4,lπt−l + Γ5,5,lϕt−l

]
+ ε5,t

We introduce a dummy variable for each of our six countries, represented by αc, as in Kato et al.

(2012) for the quantile regression.10 The function f(∆yt−1,∆gt−1,∆rt−1, πt−1, ϕt−1, αc;βτ (L)),

where βτ (L) is a lagged polynomial of order L, is the kernel density estimate of GDP growth

recovered from the conditional quantiles, where each quantile associated with probability τ ∈ T is

estimated as:

Qτ (∆yt) = βτ,0ατ,c +
L∑
l=1

[
βτ,1,l∆yt−l + βτ,2,l∆gt−l + βτ,3,l∆rt−l + βτ,4,lπt−l + βτ,5,lϕt−l

]
. (10)

3.1.1 Fiscal and monetary policy shock identification

The five series of residuals εt are decomposed into structural shocks by combining sign restrictions

and zero restrictions in Table 1. We identify monetary policy shocks by assuming that they are

negatively associated with GDP growth and inflation (see e.g. Uhlig, 2005).11 We identify gov-

ernment spending shocks by using the Blanchard and Perotti (2002) identification scheme with

zero restrictions, which assumes that government spending does not respond contemporaneously to

shocks as it usually takes time for spending changes to materialize.12 Demand and supply shocks

are also identified to net out their contribution from other shocks. Note that if government spend-

ing is ordered first, we can simply take the Cholesky decomposition to obtain the zero restrictions

and look for 1,000 random ortho-normal rotations of the subset to ensure other signs restrictions

are met.

10Other methods than Koenker and Bassett Jr (1978) could be used for the panel quantile regression, like Canay
(2011), that requires the assumption that the country fixed effect is the same across quantiles; Koenker (2004), with
regularization methods especially useful for the case of a large number of fixed effects; or Machado and Santos Silva
(2019). We have only a limited cross-section of six countries, for 224 quarters.

11This is a widely used type of identification scheme for monetary policy. Alternatively, one can use the narrative
approach of monetary policy news shocks by Romer and Romer (2010).

12This is the most common type of identification scheme for government spending shocks. A popular alternative
relies on the narrative identification of military spending news shocks by Ramey and Zubairy (2018), or sign restriction
specifications (Mountford and Uhlig, 2009).

10



Table 1: Sign and zero restrictions for a structural identification scheme

Spending Supply Monetary Financial Demand

shock shock shock shock shock

∆g + 0 0 0 0

Contemporaneous π + - +

response of ∆r + + +

variable... ϕ +

∆y - - +

3.2 Monetary policy shocks and the risk to GDP growth outlook

To understand the implications of monetary policy shocks for the anticipated GDP growth distri-

bution, we analyze the implications of a one-period unanticipated decrease of 50 basis points in the

short-term nominal rate (or the shadow rate, when applicable).

First, we focus on the impulse responses of different quantiles of the GDP growth distribution;

see Figure 1, left column. Monetary policy easing increases all quantiles of GDP growth by a

homogeneous amount and the difference across quantiles is not statistically significant. The response

of the quantiles (plain line) is very similar to the response of the VAR model (star dotted line).

This means that monetary policy incurs a homogeneous shift of the distribution of output growth

forecasts but does not alter the shape in a meaningful way. The resulting effect can therefore be

summarized as a change in the mean, with little to no change in variance or skewness. Recall

that conditional quantiles do not respond to the impulse at the moment of impact (i.e. at period

zero). Rather, the one-step-ahead forecasts of conditional quantiles will respond to the impulse.

Indeed, a shock on output growth is defined as a term that is added to a random draw from

the estimated density distribution, but the distribution from which we draw does not depend on

current information. After impact, the density forecast of GDP can change as the initial shock

starts propagating through the quantile-based kernel density approximation mechanism.

Next, we focus on the difference between the IRFs of our hybrid QR-VAR and that of a stan-

dard VAR. To obtain this comparison, we turn off the possibility of heterogeneous quantile effects

following monetary policy shocks. As seen in the left column of Figure 2, the mean impulse re-

sponse is similar in both cases, suggesting that a mean model reasonably approximates the impact

of monetary policy on the distribution of GDP growth.

3.3 Fiscal policy shocks and the GDP growth outlook risk

To understand the implications of a fiscal shock, we consider a punctual 5 percent increase in the

central government’s current expenditures, unless stated otherwise. In the middle column of Figure

1, we see that fiscal stimulus significantly increases the top quantiles of GDP growth, whereas the

rest of the distribution does not respond significantly. This asymmetric response suggests that

fiscal policy changes the shape of the outlook distribution by making positive surprises more likely.

11



In other words, an expansionary fiscal policy increases the skewness coefficient of the distribution

of GDP growth.

The low benefit of fiscal stimulus for the quantiles other than the top ones could result from the

lack of coordination between monetary and fiscal policies. Empirically, if fiscal stimulus increases

output, it leads to an endogenous monetary tightening, partly undoing the stimulus benefit of fiscal

policy. To obtain the pure effect of fiscal spending, we keep the nominal rates constant at their

initial position when performing fiscal shock simulations; see Figure 1, right column. Differences

are small for our benchmark specification. So for the remainder of the paper, we continue to

assume that fiscal and monetary policy are coordinated, i.e. the effect of a fiscal stimulus is not

counteracted by monetary policy.

Next, we compare the hybrid QR-VAR with a standard VAR that abstracts from heterogeneous

quantile effects. In the right column of Figure 2, the mean impulse response is lower when we

allow for heterogeneous quantile effects (plain line) than the VAR (starred line). Indeed, the top

quantiles respond more positively. A model that does not account for asymmetric effect is then

likely to predict a mean response that is biased upward.

Note that in the United States, the ratio of central government current expenditures to GDP

(excluding social-security-related spending and interest payments) is around 5 percent for the most

recent periods.13 Therefore, a 5 percent shock to central government spending is roughly equivalent

to one-quarter of one percent of GDP. Such a shock would generate a peak increase in annualized

GDP growth of 0.06 percentage points (with an upper bound of the confidence band of the mean

response at 0.18 percentage points). This implies a mean fiscal multiplier of GDP of 0.25 (with

the upper bound of the confidence band of the mean multiplier at 0.72). In a survey of 41 studies

using both VAR and dynamic stochastic general equilibrium (DSGE), Mineshima et al. (2014) find

that a plausible range for the fiscal multiplier is 0.5 to 0.9, with multipliers being possibly as low

as 0. The mean fiscal multiplier from our QR-VAR thus belongs to the lower end of the multiplier

estimates in the literature. With a standard VAR specification, the fiscal multiplier we obtain is

0.32. However, it is not too surprising that we find a lower mean fiscal multiplier, because we

model upper and lower quantiles of GDP separately and our distribution of GDP growth may not

be symmetric. Indeed, if we compute the fiscal multiplier for the 90th percentile of GDP growth,

where the elasticity to fiscal shocks is largest, then the upper tail fiscal multiplier is now 0.5, with

a confidence band of 0.12 to 0.88, much more in line with existing estimates.14 With a fourth lag,

the mean fiscal multiplier is 0.38 (QR-VAR) and 0.44 (VAR); see robustness in Appendix F.

Last, we conduct a series of robustness checks to account for the fact that government spending

comes in different forms. Initially, we probe how important the type of government spending is in

13Data accessed from DLX Haver, in the category Major Economic and Financial Indicators.
14As pointed out by Ramey and Zubairy (2018), the precise estimation of fiscal multipliers hinges on details. Similar

to our work, most of the literature estimates models in growth rates. But fiscal multipliers are obtained as the ratio
between the change in the level of GDP and the change in the level of spending. Thus, models based on growth rates
need to be scaled by some average ratio of GDP to government spending, potentially introducing a bias, especially
when the ratio of government spending is heterogeneous across countries and steadily increases over time. With this
in mind, we refrain from tackling the problem of computing fiscal multipliers.
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our model. Figure 10 shows results for different definitions of government spending. For example,

we can focus our attention on central government spending on its own, or we may also include local

government spending. Moreover, we can focus on current expenses or on investment spending. If

we consider current expenditures by either the central government (our benchmark; sub-figure a)

or the broader government (federal and local; sub-figure b), we observe the same pattern: the 90th

percentile (dashed line) responds more than the 10th percentile (dotted line). Furthermore, in both

cases the peak impact for the 90th percentile is larger when looking at investment spending by the

central government, although the responses of most other quantiles tend to be indistinguishable from

zero. This corroborates the findings of Boehm (2020), according to which government investment

multipliers are close to zero and government consumption multipliers are above zero.
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Figure 1: Quantile impulse response to monetary and fiscal shocks
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Notes: The response of different percentiles of the distribution of future GDP growth following, respectively, a

50-basis-point monetary policy easing (left), a 5 percent central government expenditure increase (middle), and

a 5 percent central government expenditure increase while keeping the response of monetary policy fixed (right).

The model is estimated with three lags; shaded areas are the 90 percent confidence intervals computed with block

bootstrap. The starred black line is the mean response of the linear VAR.
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Figure 2: Mean impulse response to monetary and fiscal shocks
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Notes: The response of the mean of the distribution of future GDP growth (plain line) following a 50-basis-point

monetary policy easing (left), a 5 percent central government expenditure increase (middle), and a 5 percent central

government expenditure increase while keeping the response of monetary policy fixed (right). The model is estimated

with three lags; shaded areas represent the 90 percent confidence interval computed with block bootstrap. The starred

black line is the mean impulse response from a comparable structural VAR that does not allow for heterogeneous

effects of the response of GDP growth across quantiles. The difference between the plain line and the starred line is

the mean bias introduced by shutting down the heterogeneous effect across quantiles.

Figure 3: Quantile response of GDP growth after different types of government spending shocks
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(b) Expenditures, central and local
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(c) Investment, central
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Notes: The response of the 90th (dashed lines), the 50th (plain line) and the 10th percentiles (dotted line) of future

GDP growth (up to a 12-quarter horizon) to a 5 percent central government spending shock, a 5 percent central and

local government spending shock and a 5 percent investment shock from the central government. Spending shocks

are identified by zero restrictions assuming no contemporaneous response of government spending to other macro

shocks. Model estimated with three lags. The starred black line is the mean response from of the linear VAR.
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4 Policy shocks with the policy rate at the ZLB

We now focus our attention on the state dependence of the effects of fiscal and monetary policy

tools on the distribution of GDP growth. In particular, we draw a contrast between the impacts

of policy shocks when the ZLB is binding as opposed to normal times.

4.1 Model estimation setup

Because the ZLB is essentially a level concept, we now use a model with the level of the nominal

policy rate r instead of the differenced value, at the cost of not ensuring stationarity, and therefore

not enforcing a stability condition for the VAR. We define the ZLB state st(ZLB) as a period when

the short-term rate is at or below 1 percentage point:15

st(ZLB) =

{
1 if rt ≤ 1%

0 otherwise.
(11)

The rest of the model specification is similar to that in Equation (14).

Thinking more broadly about our modelling approach in the context of the ZLB episodes,

we wish to emphasize a number of points. First, we assess the forecasting benefits of following

a quantile approach compared with a simple OLS approach and report the RMSE of the one-

step-ahead forecasts in Table 8 in Appendix F. Not surprisingly, the RMSE gains of the quantile

regressions combined with a kernel estimation are largest for ZLB episodes, while OLS estimates

generate a better forecasting performance in normal times and in-sample.

Next, we wish to clarify the need for a cross-country model and thus a larger set of data. Any

single country experienced a unique ZLB episode only in the post-world-war period, with Japan

experiencing the longest episode going back to the 1990s. The multi-country approach broadens

our sample size of ZLB episodes, as well as their timing and circumstances.

Third, we use the shadow short-term rate. This allows us to capture the effect of quantitative

easing, albeit in a simplified way. When the nominal rate hits the ZLB, conventional monetary

policy becomes inactive and can be replaced by quantitative easing (QE), one of the unconventional

monetary policy tools. This is where our cross-country strategy provides additional benefits, since

our sample covers the main countries that implemented QE and for which we used the estimated

shadow rate instead of the nominal short-term rate: the United States, Japan, the United Kingdom

and Finland (as part of the EuroZone).16

15Given that the short-term rate is slightly above the policy rate, choosing a threshold of 1 percent is equivalent
to a policy rate below 1 percent. This has an impact only for Canada around the oil crisis of 2015, where the policy
rate was down to 0.5 percent, which was considered the effective lower bound at the time and the short-term rate
fluctuated slightly above. Similar results are obtained with a cutoff of 0.5 percent or 0.25 percent, which would
exclude only the Canadian episode.

16An alternative strategy to using the shadow rate could be to use a long-term rate that is unaffected by the ZLB,
but would capture many QE benefits. We did not implement this approach, since the ZLB regime identification still
relies on the short-term rate. Impulse responses are constructed from simulations, and we split those simulations
between cases where the short-term rate remains above or falls below a ZLB threshold.
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On a technical note, when we do the bootstrap, we ensure that the resampled dataset does not

over- or under-represent ZLB events that could have an impact on the bootstrapped tail estimates

of the GDP growth distribution and our ability to estimate the state-dependent parameters.

4.2 Monetary policy shock during ZLB episodes

As before, we consider the impact of stimulative monetary policy. However, it is important to

note that the monetary shock in normal times corresponds to a conventional monetary policy

shock, while the monetary shock during ZLB events corresponds to the implications from QE of

an equivalent magnitude. The output growth responses for different quantiles are displayed in

Figure 4, left column. The results in normal times are in plain blue and those for ZLB episodes in

dashed red.

The response of the different quantiles of the GDP density forecast are similar between con-

ventional and unconventional monetary policy, with only marginally lower point estimates for un-

conventional monetary policy. Note that the large confidence bands around the ZLB responses are

pointing towards limited test power, given the relatively small number of ZLB observations, and

do not necessarily indicate a weaker effect of QE. Our results suggest that both conventional and

unconventional monetary policies shift the distribution of GDP growth homogeneously. However,

the shape and scale of its distribution do not change.

Next, we focus on the mean impulse responses of GDP growth to monetary stimulus. In the left

column of Figure 5, the mean impact of conventional and unconventional monetary policy cannot

be distinguished across the two regimes, as we expected from the similar effects on the quantiles

discussed above.

Our findings thus have two implications. First, unconventional monetary policy is effective at

stimulating GDP even during ZLB episodes. Second, the approach of the standard New Keynesian

DSGE literature focusing on the central moments of GDP is reasonable when conducting monetary

policy experiments.
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Figure 4: Quantile impulse response to monetary and fiscal shocks: normal times and ZLB episodes
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Notes: The figure shows the response of the 10th, 25th, 50th, 75th and 90th percentiles of the distribution of future

GDP growth following a 50-basis-point monetary policy easing (left) and a 5 percent central government expenditure

increase while keeping the response of monetary policy fixed (right). The plain blue lines correspond to the response

in normal times, the dashed red lines the response during episodes of ZLB. The model is estimated with three lags

using the shadow rate during ZLB episodes. The shaded areas represent the 90 percent confidence interval computed

with block bootstrap. 18



Figure 5: Mean impulse response to monetary and fiscal shocks: normal times and ZLB episodes
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Notes: The figure shows the response of the mean of the distribution of future GDP growth in normal times (plain

blue line) and during ZLB episodes (dashed red line) following a 50-basis-point (conventional or unconventional)

monetary policy easing (left) and a 5 percent central government expenditure increase while keeping the response of

monetary policy fixed (right). The model is estimated with three lags. The shaded areas represent the 90 percent

confidence interval computed with block bootstrap.

4.3 Fiscal policy shocks during ZLB episodes

With the theoretical work by Christiano et al. (2011), we know that fiscal policy is more impactful

during ZLB episodes. Now, we revisit the issue by asking whether it is purely a mean impact

phenomenon or whether there is a distributional aspect to this insight. To do this, we look at the

impulse responses of GDP growth for different quantiles following a central government expenditure

increase; see Figure 4, right column. We differentiate between a shock during a ZLB episode (dashed

red lines) and all other times (plain blue lines). Figure 4, right column, shows the mean response.

In the absence of a binding ZLB, the response to the government spending stimulus is negative

for most quantiles and positive at the 90th quantile. However, none is significant. The point

estimates are consistent with the view that fiscal policy can create a misallocation of resources and

crowd out private consumption expenditures, thereby potentially creating downside risks to future

GDP growth, while still increasing upside risks to future GDP. These differential responses in the

tails are averaged out when looking at the mean response of GDP growth, such that fiscal policy

does not effectively boost GDP growth in normal times.

When the policy rate is at the ZLB, the mean response to a fiscal shock is positive and significant.

Since the ZLB is normally attained during severe economic downturns, this positive impulse arrives

precisely when it is needed the most. This finding corroborates those of Ramey and Zubairy (2018)

and Christiano et al. (2011), among others, who provide, respectively, empirical and theoretical

evidence in favour of higher effectiveness of fiscal policy during ZLB episodes.

The quantile breakdown of the mean response reveals a significant positive response of the upper

quantiles of the GDP growth outlook distribution. For the lower quantiles, the point estimate is
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now also positive, though this effect is initially not statistically significant. This suggests that an

expansionary fiscal policy during ZLB episodes can successfully reduce the downside risk to GDP

growth and increase the upside risk, thereby speeding up the recovery following the severe recession

that triggered the ZLB episode.

5 Conclusion

To better understand the ability of fiscal and monetary policy to shape the future GDP growth

distribution, we build a hybrid model that integrates the distributional insights from quantile

regressions into a structural VAR framework that allows the identification of shocks.

Our hybrid model is a targeted approach to combine a structurally autoregressive vector with

the explicit modelling of a nonparametric distribution via conditional quantiles. The method allows

for only one variable to be modelled in a flexible distribution-free manner. Other variables that are

less likely to exhibit non-normality are modelled using a standard linear model and estimated via

OLS. In Monte Carlo simulations, we find that whenever the variable of interest is governed by a

skewed distribution, choosing our QR-VAR over a VAR dramatically reduces the bias and RMSE

for the one-step-ahead conditional skewness. This only comes at the cost of a small positive bias

in the one-step-ahead conditional variance.

We are the first to analyze the quantile response of the probability density of future GDP growth

to monetary and fiscal policy shocks where the shock identification is consistent with our quantile

setup. We find that monetary policy shocks change the location of the distribution of GDP growth,

while fiscal policy shocks also change the shape of the distribution. This impact of fiscal policy on

the distribution of future GDP growth is more pronounced for central government spending and

during ZLB episodes. Under these circumstances, fiscal stimulus generates upside risk, paving the

path to a faster recovery.

Our results suggest that fiscal policy is well suited to hasten the recovery phase of the COVID-

19 pandemic. As the economy gets past the initial shutdown, the recovery will increasingly rely on

central government spending to speed up the recovery, while policy rates will likely remain low for

a long time.
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A Monte Carlo study

In this appendix, we present the results from our comparative study of the traditional VAR and the
QR-VAR hybrid models in the context of three autoregressive processes that can be represented as
follows:

Xt = θXt−1 + εt

εt = σtZt

σ2t = ω + α(εt−1)
2,

(12)

where Xt = [X1,t, X2,t]
′, εt = [ε1,t, ε2,t]

′, σt = I2×2[σ1,t, σ2,t]
′, and θ and α are 2-by-2 coefficient

matrices consistent with stationarity restrictions. The constant ω is fixed at ω =

[
0.5 0
0 0.5

]
. In all

cases, we keep the autoregressive structure identical, i.e θ =

[
0.5 0
0.5 0.5

]
.

1. AR(1) with Gaussian innovations (Bivariate AR(1)):

α = 0 and εt
i.i.d∼ N(0, 1)

2. ARCH(1,1) with Gaussian innovations (Bivariate ARCH(1,1)):

α =

[
0.25 0.25
0.25 0.25

]
and εt

i.i.d∼ N(0, 1)

3. ARCH(1,1) with skewed Student-distributed innovations (Bivariate Skewed ARCH(1,1)):

α =

[
0.25 0.25
0.25 0.25

]
; ε1,t ∼ ST (λ=0.25)17 and ε2,t ∼ N(0, 1)

Table 2 produces the RMSE of the one-step-ahead forecasts of the conditional mean, variance
and skewness of variable X1 for both the VAR and the QR-VAR hybrid. We use 1,000 Monte Carlo
simulations of a sample with 200, 500 or 1,000 observations. In the absence of skewness, there
is no significant difference in the RMSE of the conditional mean forecast between the QR-VAR
and the VAR. There is a small increase in the RMSE of the conditional variance for the QR-VAR
compared to the VAR, mostly in the absence of heteroskedasticity. This is not surprising, since the
VAR model is perfectly specified for this case. This is partly because the VAR correctly assumes
zero skewness. In the presence of skewness, there is no significant difference in the RMSE of the
conditional mean or variance, but a very large reduction in the RMSE of the conditional skewness
for the QR-VAR compared to the VAR, by a factor of about three.

Table 3 produces the associated bias of the one-step-ahead forecasts of the conditional mean,
variance and skewness of variable X1. In the absence of skewness, there is no bias of the conditional
mean and a small positive bias of the conditional variance when choosing the QR-VAR over the
VAR. Interestingly, using a QR-VAR in the absence of skewness does not create a significant bias in
the estimated conditional skewness. In the presence of skewness, choosing a QR-VAR over a VAR
dramatically reduces the bias of the conditional skewness by a factor of ten, without a significant
bias of the conditional mean and only a marginal positive bias of the conditional variance.

Figures 6 and 7 focus on the Bivariate Skewed ARCH(1,1) and evaluate the robustness of the
QR-VAR for varying degrees of skewness of the data-generating process. Figure 6 displays mean
RMSEs of the conditional mean, variance and skewness one-step-ahead forecasts across a range of

17λ is the slant parameter. See the R package sgt for more details. The use of the skewed-t is motivated by the
work of Adrian et al. (2019) that highlight its relevance for modelling GDP growth.
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slant parameter λ ∈ (−1, 1) for 200 replications. The QR-VAR is not statistically different from
the VAR with respect to the forecast errors of the mean (panel a) and variance (panel b) for the
most common range of non-zero skewness. This is reassuring, as the VAR model corresponds to
the best linear unbiased estimator of the conditional mean. However, the QR-VAR significantly
outperforms the VAR when it comes to detecting asymmetries (panel c). If there is no skewness
in the data-generating process with λ in the neighborhood of zero, then the VAR that assumes a
skewness of zero is unsurprisingly better since it is perfectly specified for this case.

Figure 7 displays the associated bias of the conditional mean, variance and skewness one-step-
ahead forecasts across a range of slant parameter λ ∈ (−1, 1). For the most common range of
non-zero skewness, there is a tradeoff when using the QR-VAR over the VAR. The small increase
in the bias for the conditional variance when using the QR-VAR rather than the VAR (panel b) is
largely compensated by the large decrease in the bias for the conditional skewness (panel c). For
the most extreme range of skewness, less common for economic variables, the tradeoff is between
a small increase in the bias on the conditional mean (panel a) against a large reduction in the bias
of the conditional skewness (panel c).

Table 2: RMSE of conditional mean, variance and skewness one-step-ahead forecasts

Bivariate Bivariate Bivariate Skewed
AR(1) ARCH(1,1) ARCH(1,1)

Sample size 200 500 1000 200 500 1000 200 500 1000

RMSE of the conditional mean
QR-VAR .079 .051 .036 .122 .077 .056 .120 .077 .057

(.033) (.022) (.015) (.052) (.032) (.022) (.051) (.031) (.023)
VAR .078 .051 .036 .124 .078 .057 .122 .077 .055

(.032) (.022) (.015) (.053) (.033) (.023) (.053) (.032) (.024)

RMSE of the conditional variance
QR-VAR .093 .064 .051 .519 .512 .509 .524 .513 .511

(.043) (.028) (.022) (.059) (.035) (.026) (.062) (.038) (.027)
VAR .040 .025 .018 .506 .503 .502 .514 .509 .508

(.030) (.019) (.013) (.050) (.031) (.024) (.056) (.035) (.025)

RMSE of the conditional skewness
QR-VAR .289 .190 .134 .304 .205 .147 .277 .189 .141

(.118) (.078) (.056) (.129) (.084) (.061) (.119) (.075) (.057)
VAR .000 .000 .000 .000 .000 .000 .374 .373 .383

(.000) (.000) (.000) (.000) (.000) (.000) (.169) (.109) (.076)

Notes: The table shows the mean RMSE for the fitted conditional mean, variance and skewness on variable X1 gov-
erned by the data-generating process (12) and modelled by the QR-VAR and the VAR. Standard error in parenthesis.
1,000 simulations of a sample with 200, 500 or 1,000 observations.

26



Table 3: Bias of conditional mean, variance and skewness one-step-ahead forecasts

Bivariate Bivariate Bivariate Skewed
AR(1) ARCH(1,1) ARCH(1,1)

Sample size 200 500 1000 200 500 1000 200 500 1000

Bias of the conditional mean
QR-VAR .000 .001 .000 .001 -.004 .000 -.008 -.009 -.009

(.048) (.033) (.023) (.067) (.043) (.031) (.067) (.044) (.031)
VAR .000 .001 .000 .001 -.004 .000 .000 -.002 -.002

(.048) (.033) (.023) (.069) (.044) (.031) (.069) (.045) (.032)

Bias of the conditional variance
QR-VAR .038 .035 .035 .033 .032 .031 .027 .026 .028

(.054) (.035) (.024) (.104) (.068) (.048) (.103) (.066) (.048)
VAR -.004 -.002 -.001 -.012 -.004 -.003 -.014 -.006 -.002

(.049) (.032) (.022) (.108) (.073) (.051) (.114) (.073) (.053)

Bias of the conditional skewness
QR-VAR -.006 .001 .000 -.007 -.002 -.002 -.036 -.038 -.035

(.182) (.122) (.083) (.206) (.132) (.096) (.152) (.093) (.071)
VAR .000 .000 .000 .000 .000 .000 -.373 -.373 -.383

(.000) (.000) (.000) (.000) (.000) (.000) (.171) (.109) (.076)

Notes: The table shows the mean bias for the fitted conditional mean, variance and skewness on variable X1 governed
by the data-generating process (12) and modelled by the QR-VAR and the VAR. Standard error in parenthesis. 1,000
simulations of a sample with 200, 500 or 1,000 observations.

Figure 6: RMSE on the conditional mean, variance and skewness one-step-ahead forecasts for
different slant parameter of the skew-t distribution

(a) Conditional mean (b) Conditional variance (c) Conditional skewness

Notes: Mean RMSE on the conditional mean, variance and skewness forecast for different slant parameters in the
bivariate skewed ARCH(1,1) data-generating process with 95% confidence intervals. Computed with 200 replications
for each slant parameter λ of the skew-t distribution, ranging from -.9 to .9 with a step of .1.
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Figure 7: Bias on the conditional mean, variance and skewness one-step-ahead forecasts for different
slant parameter of the skew-t distribution

(a) Conditional mean (b) Conditional variance (c) Conditional skewness

Notes: Mean bias on the conditional mean, variance and skewness forecast for different slant parameters in the
bivariate skewed ARCH(1,1) data-generating process with 95% confidence intervals. Computed with 200 replications
for each slant parameter λ of the skew-t distribution, ranging from -.9 to .9 with a step of .1.

Our key takeaway is this: whenever the variable of interest is governed by a skewed distribution,
then the QR-VAR generates a large reduction in both the RMSE and bias of the conditional
skewness. This comes only at the cost of a small increase in the bias of the conditional variance.
The QR-VAR is most valuable when the variable of interest modelled by the quantile regressions is
skewed, like for instance GDP growth (Adrian et al., 2019; Duprey and Ueberfeldt, 2020; Adrian
et al., 2021).
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B Lag order and model fit

We use three lags L = 3. This choice is informed by the out-of-sample mean squared error of the
model; see Table 4 in the Appendix. In-sample, the RMSE is smallest for four lags when computed
by OLS. If we instead assess the ability of the nonlinear models to fit the Great Recession out-of-
sample, the RMSE is lowest when using the kernel smoother of the quantile estimates with two lags.
This is in line with the idea that OLS performs well in normal times but nonlinear models that
rely on quantile regressions are better at capturing tail events. We also perform cross-validation
by removing one country at a time from the estimation sample and computing the RMSE for the
country not used for the estimation. For the test datasets, the RMSE is smallest for three lags
using a skew-t distribution or the kernel estimation.

When implementing block bootstrap, we pick S = 8 quarters in our estimation to balance the
accuracy of the confidence bands of the tail quantiles and the overall randomization.18

18The choice of S is not crucial for our empirical results. But a lower S makes it more likely that some tail quantiles
end up outside of their bootstrapped confidence bands, as the tail effect is weaker with smaller S.
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Table 4: RMSE of one-step-ahead forecasts of GDP growth across model specifications

Lag order In-sample until 2007 Out-of-sample from 2007 onwards
OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 4.006 4.023 4.068 4.060 3.710 3.629 3.555 3.454
Lag 2 3.878 3.892 3.913 3.926 3.633 3.567 3.496 3.390
Lag 3 3.766 3.778 3.823 3.831 3.622 3.558 3.471 3.408
Lag 4 3.702 3.721 3.767 3.776 3.801 3.719 3.666 3.582

In-sample until 2010 Out-of-sample from 2010 onwards
OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 3.975 3.993 4.020 4.019 3.635 3.600 3.495 3.418
Lag 2 3.906 3.922 3.947 3.951 3.271 3.279 3.186 3.055
Lag 3 3.929 3.937 3.972 3.979 2.568 2.523 2.512 2.425
Lag 4 3.875 3.880 3.929 3.931 2.817 2.765 2.779 2.644

Cross-validation: training Cross-validation: test
OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 3.805 3.816 3.835 3.822 4.214 4.279 4.184 4.247
Lag 2 3.696 3.711 3.738 3.725 4.058 4.049 4.069 4.076
Lag 3 3.623 3.631 3.666 3.661 4.043 4.009 4.045 4.025
Lag 4 3.611 3.621 3.660 3.657 4.080 4.036 4.151 4.073

Notes: The table shows the root mean squared error (RMSE) for one-step-ahead GDP growth modelled as the mean
fitted by OLS, the mean recovered from a skew-t distribution on a limited set of fitted quantiles, the median fitted by
a quantile or the mean recovered from a kernel smoothing of a large number of fitted quantiles, with one to four lags.
For the first two parts of the table, the RMSE is computed in-sample until 2007 or 2010 and on the corresponding
out-of-sample. For the third part of the table, the RMSE is computed with cross-validation: the training dataset
consists of all but one country, and the test dataset is the country not used for the estimation. We report the
RMSE averaged over all possible folds of the dataset. In bold are the models that provide the smallest RMSE. For
comparison, the mean of the annualized real GDP growth per capita is 1.89 and the unconditional standard deviation
is 3.99.
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C Slope heterogeneity and location-scale effects

QRs are very useful in cases where the distribution displays heterogeneous effects across quantiles,
but conventional methods will easily outperform QRs when that is not the case. Specifically, the
Wald test statistic described in Koenker and Bassett Jr (1982) tests the null hypothesis that the
slope coefficients of a collection of QR models are identical. We consider five QRs for GDP growth
of probability orders T = {0.10, 0.25, 0.50, 0.75, 0.90} to conduct these tests. First, we test the null
hypothesis that all slope coefficients are equal across all T , which is strongly rejected.

Second, we perform pairwise tests in order to reveal whether a specific region of the distribution
shows co-movements across quantiles. One can imagine a case where the centre of the distribution
is changing homogeneously, but not the tails. In such instances, a pairwise test between two central
quantiles would fail to reject the null hypothesis, whereas a pairwise test between a central quantile
and a tail quantile would reject it. Test results in Table 5 provide strong evidence that no two
quantiles are responding in same way.

Table 5: Pairwise Wald test p-values for slope homogeneity with Bonferroni correction

τ 0.10 0.25 0.50 0.75 0.90

0.10 1 0.00 0.00 0.00 0.00
0.25 1 0.01 0.00 0.00
0.50 1 0.00 0.00
0.75 1 0.00
0.90 1

Next, we use a Kolmogorov-type goodness-of-fit test proposed by Khmaladze (1982) to test
location and location-scale model specifications. A location model is a statistical model where the
distribution is solely characterized by a location parameter, whereas a location-scale model would
also include a scale (variance) parameter. For instance, simple linear regression models assume
a conditional distribution from the location family, and GARCH models from the location-scale
family. The CAViaR model of Engle and Manganelli (2004) would then be well specified in the
case of a location-scale family, for instance. Consistent with our findings in Table 5, the location
family specification is rejected at the 1 percent level. Evidence against the location-scale family
specification is weaker, but still significant at the 5 percent level.19 These results support the use
of a density estimation methodology that is not restricted to either specification.

19Wald and Khmaladze statistical hypothesis tests are computed in R with the quantreg package. Goodness-of-fit
test significance levels are computed with the function KhmaladzeFormat from the Qtools package.
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D Panel data

Table 6: Dataset from 1964Q1 to 2019Q4

Data Source Description

Real gross domestic
product

OECD Local currency

Consumer price index OECD

Real central govern-
ment total outlays

Haver Current Consumption, Transfer Pay-
ments, Subsidies, Capital Outlays. Local
currency. Nominal data deflated using the
GDP deflator from the OECD. Starts in
1970Q2 for Japan and 1973Q3 for Aus-
tralia

Real general govern-
ment final consumption
expenditure

OECD All levels of government (central, provin-
cial, local). Expenditures for collective
consumption (defence, justice, etc.) or
for individual consumption (health care,
housing, education, etc.). Does not in-
clude expenditures on assets nor transfer
payments. Local currency

Real general govern-
ment fixed capital
formation

OECD; Statistics
Canada; Cabinet Office
of Japan

All levels of government (central, provin-
cial, local). Expenditures on assets: build-
ings, machinery and equipment, roads,
bridges or expenditures on research and
development. Local currency. Starts in
1987Q1 for the United Kingdom, 1980Q1
for Japan and 1990Q1 for Finland

Shadow rate
Krippner (2013)

For the United States, Finland, Japan and
the United Kingdom

Short-term interest rate OECD Starts in 1968Q1 for Australia

Country level index of
financial stress Duprey et al. (2017)

Adjusted for cross-country comparability;
index covers the foreign exchange, the eq-
uity and the government bonds market,
and starting in the 1970s/80s the banking
and housing sectors

Population Haver
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Table 7: Summary statistics for the variables used in the benchmark model

Mean Variance Excess skewness Excess kurtosis
Annualized growth of GDP per capita ∆y
Japan 2.01 16.69 -0.87 4.26
United States 1.89 9.37 -0.27 2.68
United Kingdom 1.86 13.06 0.60 6.57
Canada 1.60 10.01 -0.36 1.13
Australia 1.66 11.26 0.40 2.53
Finland 2.21 33.61 -0.26 4.33
Annualized growth of central government expenditure per capita ∆g
Japan 2.77 825.59 0.20 0.87
United States 2.72 404.97 0.44 4.33
United Kingdom 2.25 65.31 1.11 7.31
Canada 1.01 124.81 0.77 9.40
Australia 2.03 421.74 0.41 3.58
Finland 2.39 256.68 0.04 12.10
Annualized growth of central and local government expenditure per capita ∆g
Japan 2.51 12.55 -0.50 16.90
United States 0.74 11.65 0.63 2.76
United Kingdom 1.38 22.79 0.75 4.10
Canada 1.27 17.19 0.46 0.92
Australia 0.56 9.44 -0.33 4.02
Finland 2.12 52.67 -1.04 13.91
Annualized growth of central government investment per capita ∆g
Japan -0.23 168.67 0.28 1.00
United States 3.32 90.41 0.52 1.53
United Kingdom 2.48 1386.22 0.47 3.16
Canada 1.60 69.47 0.22 0.34
Australia 2.15 1458.71 0.13 3.17
Finland 0.91 379.82 0.02 3.24
Annualized inflation rate π
Japan 2.33 20.30 3.16 16.24
United States 3.84 9.14 0.88 3.02
United Kingdom 5.12 25.37 2.18 5.92
Canada 3.82 10.41 0.86 0.44
Australia 4.74 17.90 1.32 1.98
Finland 4.38 19.13 1.23 1.04
Change in the short-term rate ∆r
Japan -0.30 2.16 1.05 2.11
United States -0.03 4.24 -0.05 0.76
United Kingdom -0.07 5.67 -0.05 0.92
Canada -0.04 4.43 0.01 2.42
Australia -0.21 5.43 -0.36 1.85
Finland -0.29 2.96 -0.52 2.31
Log of the country level index of financial stress ϕ
Japan -2.08 0.63 -0.25 -0.70
United States -2.27 0.83 -0.20 -0.69
United Kingdom -2.43 0.68 -0.05 -0.27
Canada -2.47 0.66 -0.07 -0.57
Australia -1.98 0.54 -0.21 -0.14
Finland -2.24 0.55 0.14 -0.43
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E Algorithm for impulse responses

Consider B the bootstrapped version of the initial dataset, such that we have B+1 dataset including
the initial dataset. The algorithm to compute the generalized impulse response function (GIRF)
and the quantile impulse response functions (QIRF) is as follows:

for each dataset b = 0 to B do

Estimate Γ̂(b), β̂τ (b) and Ĉ(b) on a dataset of size N

for each initial condition n = 1 to N do

Pick y(n) as initial condition, the nth observation of the dataset.

y(b, n, 0; δ) = y(n) + C(b)δ for an initial impulse δ = {0, 1} or {1, 0}
y(b, n, 0; 0) = y(n) for the control with no initial impulse

For Y1 with a conditional density, draw {ω(h)}Hh=1 from the uniform distribution U(0, 1)

For Y2 with the VAR structure, resample from the structural residuals {u2(h)}Hh=1

for each horizon h = 1 to H do

For Y1 with a conditional density:
y1(b, n, h; δ) is the percentile ω(h) of f̂(y1(b, n, h; δ)|Q̂T (Y1|y(b, n, h−1; δ);βτ (b)))
y1(b, n, h; 0) is the percentile ω(h) of f̂(y1(b, n, h; 0)|Q̂T (Y1|y(b, n, h−1; 0);βτ (b)))

For Y2 with the VAR structure:
y2(b, n, h; δ) = Γ̂(b)y(b, n, h−1; δ) + Ĉ(b)u2(h)
y2(b, n, h; 0) = Γ̂(b)y(b, n, h−1; 0) + Ĉ(b)u2(h)

end for
end for

end for

GIRFY(b=0, h; δ) = En(y(b=0, n, h; δ)− y(b=0, n, h; 0))
GIRF CIY(h; δ) = {Q.05(GIRFY(b, h; δ));Q.95(GIRFY(b, h; δ))}

QIRFY1,T (b=0, h; δ) = En(QT (Y1|y(b=0, n, h−1; δ))−QT (Y1|y(b=0, n, h−1; 0))))
QIRF CIY1,T (h; δ) = {Q.05(QIRFY1,T (b, h; δ)),Q.95(QIRFY1,T (b, h; δ))}

The generalized IRF (GIRF) for all variables Y and quantile IRF (QIRF) for variable Y1 for
percentiles T = {0.10, 0.25, 0.50, 0.75, 0.90} are computed on the initial dataset b = 0. En is the
mean over the initial conditions N. Q.05 and Q.95 are the percentiles across all resampled dataset
B. Note that QIRF is not defined at h=1: it would depend on the heterogeneity in the variables
at period 0, but, by construction, there is no difference before a shock occurs.
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F Additional robustness

Figures 8 and 10 show robustness results for different lag structures, from two to four lags. Figure
9 shows similar percentiles of the GDP density forecast when the model is estimated with the
short-term rate in level, even if the model is no longer stationary. Figure 11 shows the response to
various government spending shocks with four lags instead of the benchmark of three lags.

Figure 8: Quantile response of GDP growth after a monetary policy shock - robustness for different
lags

(a) Model with two lags
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(b) Model with three lags
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(c) Model with four lags
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Notes: This figure displays the response of the 90th percentile (dashed lines), the 50th percentile (plain line) and the
10th percentile (dotted line) of the probability density of future GDP growth, up to a 12-quarter horizon, following
a 50-basis-point easing of monetary policy for a model estimated with two, three or four lags. The starred black line
is the mean response from of the linear VAR.

Figure 9: Quantile response of GDP growth after a policy shock - robustness for policy rate in level

(a) Monetary policy shock
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(b) Government spending shock
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Notes: This figure displays the response of the 90th percentile (dashed lines), the 50th percentile (plain line) and
the 10th percentile (dotted line) of the probability density of future GDP growth, up to a 12-quarter horizon, to
a 50-basis-point easing of monetary policy (left) and a 5 percent spending shock to the expenditures of the central
government (right), for a model estimated with the short-term rate in level with three lags. The starred black line is
the mean response from of the linear VAR.
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Figure 10: Quantile response of GDP growth after a government spending shock - robustness for
different lags

(a) Model with two lags
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(b) Model with three lags
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(c) Model with four lags
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Notes: This figure displays the response of the 90th percentile (dashed lines), the 50th percentile (plain line) and the
10th percentile (dotted line) of the probability density of future GDP growth, up to a 12-quarter horizon, following
a 5 percent spending shock to the expenditures of the central government for a model estimated with two, three or
four lags. Spending shocks are identified by zero restrictions assuming no contemporaneous response of government
spending to other macro shocks. Monetary policy is kept fixed. The starred black line is the mean response from of
the linear VAR.
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Figure 11: Quantile response of GDP growth after different types of government spending shocks
- robustness different lags

(a) Expenditures, central, two lags
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(b) Expenditures, central and local,
two lags
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(c) Investment, central, two lags
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(d) Expenditures, central, three lags
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(e) Expenditures, central and local,
three lags
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(f) Investment, central, three lags
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(g) Expenditures, central, four lags
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(h) Expenditures, central and local,
four lags
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(i) Investment, central, four lags
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Notes: This figure displays the response of the 90th percentile (dashed lines), the 50th percentile (plain line) and the
10th percentile (dotted line) of the probability density of future GDP growth, up to a 12-quarter horizon, following
a 5 percent spending shock to the expenditures of the central government, the expenditures from both central and
local governments, and the investments of the central government. Spending shocks are identified by zero restrictions
assuming no contemporaneous response of government spending to other macro shocks. Model estimated with four
lags. Monetary policy is kept fixed. The starred black line is the mean response from of the linear VAR.
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Table 8: RMSE of one-step-ahead forecasts of GDP growth - ZLB episodes and other periods

Lag order In-sample until 2007 Out-of-sample from 2007 onwards
No ZLB OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 4.056 4.075 4.115 4.122 4.372 4.175 3.908 3.927
Lag 2 3.983 3.999 4.032 4.044 4.373 4.166 3.885 3.938
Lag 3 3.850 3.865 3.897 3.924 4.462 4.172 4.017 4.014
Lag 4 3.768 3.792 3.830 3.848 4.774 4.512 4.364 4.344

ZLB OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 2.236 2.215 2.251 2.200 3.173 3.151 3.153 3.104
Lag 2 2.202 2.167 2.201 2.188 3.142 3.078 3.069 3.057
Lag 3 2.260 2.281 2.318 2.209 3.209 3.067 3.117 3.040
Lag 4 2.201 2.180 2.237 2.159 3.252 3.144 3.128 3.084

Cross-validation: training Cross-validation: test
No ZLB OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 3.958 3.973 3.995 3.993 4.441 4.385 4.365 4.383
Lag 2 3.891 3.903 3.918 3.928 4.339 4.353 4.346 4.294
Lag 3 3.778 3.797 3.816 3.829 4.245 4.337 4.237 4.227
Lag 4 3.756 3.779 3.809 3.809 4.257 4.355 4.264 4.256

ZLB OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 2.758 2.745 2.784 2.735 2.766 2.571 2.598 2.562
Lag 2 2.705 2.705 2.724 2.702 2.641 2.658 2.518 2.565
Lag 3 2.758 2.730 2.762 2.718 2.598 2.551 2.507 2.514
Lag 4 2.657 2.633 2.675 2.632 2.513 2.478 2.513 2.469

Notes: The table shows the root mean squared error (RMSE) for one-step-ahead GDP growth modelled as the mean
fitted via ordinary least square (OLS), the mean recovered from a skew-t distribution on a limited set of fitted
quantiles, the median fitted by a quantile or the mean recovered from a kernel smoothing of a large number of fitted
quantiles, with one to four lags. The RMSE is computed during ZLB episodes and outside of these. For the first
part of the table, the RMSE is computed in-sample until 2007 and for subsequent out-of-sample periods. For the
second part of the table, the RMSE is computed with cross-validation: the training dataset consists of all but one
country, and the test dataset is the country not used for the estimation. We report the RMSE averaged over all
possible folds of the dataset that experienced ZLB episodes (United States, United Kingdom, Japan, Finland). We
bold the models that provide the smallest RMSE in the respective class. For comparison, the mean of the annualized
real GDP growth per capita is 1.89 and the unconditional standard deviation is 3.99.
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G Policy shocks during recessions

We now focus on the state dependence of the shock propagation to the distribution of GDP growth
during recessions.

G.1 Model estimation setup

The state st(REC) is a recession when real GDP growth is negative for two consecutive quarters:

st(REC) =

{
1 if ∆yt < 0 and ∆yt−1 < 0
0 otherwise.

(13)

We adjust the previous model of Equation (9) by adding the recession dummy st and an interaction
term with the monetary and fiscal policy variables (the parameters indexed by st). We do not
interact all variables with the recession dummy to keep the model parsimonious.20

∆yt = f(∆yt−1,∆gt−1,∆rt−1, πt−1, ϕt−1, αc, st;βτ (L)) + ε1,t (14)

∆gt = Γ2,0αc +
L∑
l=1

[
Γ2,1,l∆yt−l + Γst2,2,l∆gt−l + Γst2,3,l∆rt−l + Γ2,4,lπt−l + Γ2,5,lϕt−l

]
+ Γ2,6st + ε2,t

∆rt = Γ3,0αc +

L∑
l=1

[
Γ3,1,l∆yt−l + Γst3,2,l∆gt−l + Γst3,3,l∆rt−l + Γ3,4,lπt−l + Γ3,5,lϕt−l

]
+ Γ3,6st + ε3,t

πt = Γ4,0αc +
L∑
l=1

[
Γ4,1,l∆yt−l + Γst4,2,l∆gt−l + Γst4,3,l∆rt−l + Γ4,4,lπt−l + Γ4,5,lϕt−l

]
+ Γ4,6st + ε4,t

ϕt = Γ5,0αc +

L∑
l=1

[
Γ5,1,l∆yt−l + Γst5,2,l∆gt−l + Γst5,3,l∆rt−l + Γ5,4,lπt−l + Γ5,5,lϕt−l

]
+ Γ5,6st + ε5,t

The function f(∆yt−1,∆gt−1,∆rt−1, πt−1, ϕt−1, αc, st;βτ (L)) is the kernel density of GDP growth
recovered from the ordered quantiles T where each quantile τ ∈ T is estimated as:

Qτ (∆yt) = βτ,0ατ,c+
L∑
l=1

[
βτ,1,l∆yt−l+β

st
τ,2,l∆gt−l+β

st
τ,3,l∆rt−l+βτ,4,lπt−l+βτ,5,lϕt−l

]
+βτ,6st. (15)

When we do the bootstrap, we require that the number of recession episodes in the resampled
data be plus or minus 10 percent of the frequency of the actual dataset. Otherwise, an over-
representation of the recession events could have an impact on the bootstrapped tail estimates of
the GDP growth distribution. We further require that at least 5 percent of the resampled dataset fall
in the recession regime, to make sure that we have enough observations in the randomly resampled
dataset to estimate the state dependence parameters.

Table 9 shows the RMSE gain outside and during recession episodes. In the latter case, nonlinear
models tend to outperform OLS in out-of-sample one-step-ahead forecasts.

20Interacting all variables would yield qualitatively similar results, albeit at the cost of doubling the number of
parameters.
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Table 9: RMSE of one-step-ahead forecasts of GDP growth - recessions and normal times

Lag order In-sample until 2007 Out-of-sample from 2007 onwards
No recession OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 3.639 3.654 3.690 3.719 3.345 3.219 2.987 2.998
Lag 2 3.562 3.582 3.616 3.636 3.320 3.195 2.964 2.966
Lag 3 3.541 3.561 3.592 3.611 3.131 3.040 2.847 2.839
Lag 4 3.485 3.509 3.548 3.557 3.290 3.216 3.099 3.054

Recession OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 5.220 5.209 5.294 5.174 6.757 6.683 6.400 6.464
Lag 2 5.048 5.055 5.098 5.042 6.819 6.617 6.595 6.456
Lag 3 4.582 4.594 4.772 4.736 6.854 6.709 6.660 6.571
Lag 4 4.469 4.461 4.690 4.701 6.966 6.861 6.612 6.607

Cross-validation: training Cross-validation: test
No recession OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 3.419 3.437 3.470 3.482 3.522 3.495 3.528 3.547
Lag 2 3.356 3.378 3.411 3.419 3.451 3.431 3.499 3.447
Lag 3 3.318 3.333 3.371 3.378 3.410 3.395 3.415 3.395
Lag 4 3.315 3.333 3.377 3.379 3.487 3.458 3.558 3.438

Recession OLS Skew-t P50 Kernel OLS Skew-t P50 Kernel

Lag 1 5.586 5.547 5.546 5.483 5.616 5.681 5.671 5.580
Lag 2 5.454 5.489 5.452 5.399 5.682 5.773 5.783 5.550
Lag 3 5.265 5.298 5.346 5.301 5.706 5.753 5.661 5.483
Lag 4 5.194 5.222 5.327 5.319 5.936 6.030 6.033 5.809

Notes: The table shows the root mean squared error (RMSE) for one-step-ahead GDP growth modelled as the
mean fitted by ordinary least square (OLS), the mean recovered from a skew-t distribution on a limited set of fitted
quantiles, the median fitted by a quantile or the mean recovered from a kernel smoothing of a large number of fitted
quantiles, with one to four lags. The RMSE is computed on recession events or not. For the first part of the table,
the RMSE is computed in-sample until 2007 and on the corresponding out-of-sample. For the second part of the
table, the RMSE is computed with cross-validation: the training dataset consists of all but one country, and the
test dataset is the country not used for the estimation. We report the RMSE averaged over all possible folds of the
dataset. In bold are the models that provide the smallest RMSE. For comparison, the mean of the annualized real
GDP growth per capita is 1.89 and the unconditional standard deviation is 3.99.

40



G.2 Monetary policy shock during recessions

We now consider the impulse response function of the GDP growth outlook following a monetary
policy shock (Figure 12, left column). However, we distinguish between the response of an economy
in recession (dashed red lines) and normal times (plain blue lines). Figure 13, left column, shows
the mean impulse response.

Most quantile or mean responses to the monetary policy shock are very similar during recessions
and normal times: monetary policy stimulus significantly shifts the future GDP growth distribution
up in both normal and recession times. However, the upper quantiles during a recession initially
have a higher point estimate. Although the confidence bands of the recession times are too large
to yield a significant difference with normal times, the point estimate in recession times lies outside
the normal times confidence bands. This suggests that monetary policy helps to increase the upside
risk to GDP growth during recession events relatively more than in normal times. This marginally
increases the mean response of GDP growth to a monetary policy shock during a recession.

G.3 Fiscal policy shock during recessions

Turning to the consequences of a fiscal expansion during recession episodes, we discuss the impulse
responses of different quantiles of the GDP growth outlook (Figure 12, right column). Here we
consider a central government expenditure increase during a recession (dashed red lines) and in
normal times (plain blue lines). Figure 12, right column, shows the mean response.

The average response in recessions is similar to that in normal times. But there is some notice-
able difference across point estimates of quantiles; see Figure 14.

The response of the upper quantiles is larger and positive (significant for the 90th percentile for
a one-sided test) while the response of the lower quantiles is smaller, non-significant and possibly
negative. This suggests that government spending works mostly by increasing upside risks and
making a recovery faster. Our results complement Auerbach and Gorodnichenko (2012b), who find
that government spending was most effective during recessions.

The point forecast is lower during recessions for the lower tail. Because of large confidence
bands during recessionary episodes, the difference is not significant. However, the point forecast
of the lower tail of GDP growth is outside the confidence bands of the response in normal times,
suggesting a possible misallocation of resources that can further amplify tail risks during a recession.
The potential negative impact in the tail quantile responses is averaged out when looking at the
mean response, which is slightly less positive during a recession event than in normal times.
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Figure 12: Quantile impulse response to monetary and fiscal shocks: normal times and recessions
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Notes: The figure shows the response of the 10th, 25th, 50th, 75th and 90th percentiles of the distribution of future
GDP growth following a 50-basis-point monetary policy easing (left) and a 5 percent central government expenditure
increase, while keeping the response of monetary policy fixed (right). The plain blue lines correspond to the response
in normal times, the dashed red lines the response during recessions. The model is estimated with three lags. The
shaded areas represent the 90 percent confidence interval computed with block bootstrap.
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Figure 13: Mean impulse response to monetary and fiscal shocks: normal times and recessions

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0 4 8 12

G
D

P
 g

ro
w

th
, p

er
ce

nt

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0 4 8 12

G
D

P
 g

ro
w

th
, p

er
ce

nt

Notes: The figure shows the response of the mean of the distribution of future GDP growth in normal times
(plain blue line) and during recessions (dashed red line) following a 50-basis-point monetary policy easing
(left) and a 5 percent central government expenditure increase, while keeping the response of monetary policy
fixed (right). The model is estimated with three lags. The shaded areas represent the 90 percent confidence
interval computed with block bootstrap.
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Figure 14: Summary of the quantile response to monetary and fiscal shocks: normal times and
recessions

(a) Monetary shock, normal times
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(b) Spending shock, normal times
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(c) Monetary shock, recessions
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(d) Spending shock, recessions
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Notes: This figure displays the response of the 90th percentile (dashed lines), the 50th percentile (plain line) and the
10th percentile (dotted line) of the probability density of future GDP growth, up to a 12-quarter horizon, following a
50-basis-point monetary policy easing (left) and a 5 percent central government expenditure increase, while keeping
the response of monetary policy fixed (right). Spending shocks are identified by zero restrictions assuming no
contemporaneous response of government spending to other macro shocks. Model estimated with three lags.
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