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Abstract 
We propose a framework of optimal monetary policy where debt sustainability may, or may 
not, be a relevant constraint for the central bank. We show analytically that in each environment 
the optimal interest rate path consists of a Taylor rule augmented with forward guidance terms. 
These terms arise either i) from “twisting interest rates” when the central bank ensures debt 
sustainability, or ii) under no debt concerns, from committing to keep interest rates low at the 
exit of the liquidity trap. The optimal policy is isomorphic to Leeper’s (1991) “passive 
monetary/active fiscal policy” regime in the first instance, or “active monetary/passive fiscal 
policy” regime in the second. We insert our framework into a standard medium scale DSGE 
model calibrated to the US. Optimal passive monetary policy with debt concerns is ineffective 
in stabilizing inflation, whereas under no debt concerns, monetary policy is very effective in 
stabilizing the macroeconomy.  

Bank topics: Monetary policy; Monetary policy framework; Fiscal policy; Economic models 
JEL codes: E31, E52, E58, E62, C11 



1 Introduction

Since the 2008–9 recession governments in developed economies have accumulated large stocks of debt.

High debt levels require bold �scal adjustments to ensure the solvency of government budgets, but in many

countries it is questionable whether �scal authorities will be able to generate the large required surpluses to

�nance the debt. �is problem is likely to be exacerbated in the coming years; large (current and projected)

de�cits aimed at mitigating the e�ects of COVID-19 as well as anemic economic growth will likely worsen

the �scal situation in advanced economies.

At high debt levels, when �scal authorities have li�le margin to adjust taxes su�ciently, debt becomes

an important constraint for monetary policy. How should policy be designed under such circumstances? A

sizable literature adopting the Ramsey approach to optimal policy has relied on non-linear models to draw

conclusions about the processes of in�ation and interest rates when the “planner” takes into account debt

sustainability. Schmi�-Grohé and Uribe (2004), Faraglia et al. (2013), Lustig et al. (2008), Eggertsson and

Woodford (2006), Jung et al. (2005), Bha�arai et al. (2015) and Adam and Billi (2006, 2008) are well-known

examples of this work. Because these models are non-linear and characterize optimal policies through �rst

order conditions they are not easy to use to draw practical conclusions about the conduct of policy. It is, for

instance, not straightforward to use the optimality conditions from these models to arrive at explicit interest

rate rules that could guide policy responses to macroeconomic conditions or that can be made comparable to

actual policies identi�ed in (estimated) DSGE models.

On the DSGE literature side, a widely used framework suitable to analyze the interactions between mon-

etary and �scal policies is that of Leeper (1991). In this framework, monetary policy is summarized in simple

transparent interest rate rules (see also Bianchi and Ilut (2017), Bianchi and Melosi (2017, 2019) for recent ex-

tensions to medium scale DSGE models). However, the policy rules employed are ad hoc, so monetary policy

is not designed to be optimal.

In this paper we propose a tractable framework of Ramsey optimal monetary policy in the case where

debt sustainability may be a constraint for the central bank. �e model gives rise to interest rates rules in

closed form, which enables us to develop analytical insights and draw sharp conclusions about the conduct

of policy. Moreover, our theory can be easily embedded in a medium scale DSGE model and estimated with

data.

Our framework is developed in Section 2 and assumes that a Ramsey planner (the Fed) under commitment

sets allocations to minimize the deviations of in�ation, output and interest rates from their respective target

levels, subject to the standard set of dynamic equations that de�ne the competitive equilibrium. In the baseline

version of the Ramsey policy equilibrium, in which we assume that the Fed’s policies are also driven by

debt sustainability concerns, we assume that this set also includes the consolidated budget constraint, which

2



determines the value of net debt in the hands of the private sector. Taxes are distortionary and, moreover, tax

policy is assumed to be exogenous to the planner’s problem; it follows a simple rule that determines the tax

rate as a function of lagged debt, a standard assumption in the DSGE literature (e.g., Leeper (1991)).

Our �rst analytical result derives the interest rate rule that emerges from optimal policy in this model. We

show that interest rates follow a standard Taylor rule (respond to in�ation, output growth, etc.) but also the

central bank engages in “forward guidance”. In our model, forward guidance is expressed as the sum of two

components. �e �rst component represents commitment to keep interest rates low at the exit from a liquidity

trap (LT) episode (e.g., Eggertsson and Woodford (2003, 2006)) and is captured by the lags of the Lagrange

multiplier a�ached to the occasionally binding zero lower bound (ZLB) constraint. �e second component

measures the impact of past shocks to the consolidated budget constraint, capturing the planner’s commitment

to “twist interest rates” in order to satisfy the intertemporal budget (e.g., Lustig, Sleet and Yeltekin (2008),

Faraglia, Marcet, Oikonomou and Sco� (2016), henceforth FMOS). Since debt is distortionary, ours is a model

of optimal policy under incomplete markets (see e.g., Aiyagari et al. (2002), FMOS) and the Lagrange multiplier

on the consolidated budget constraint is a state variable. Interest rate twisting is captured by the lags of this

multiplier.

As an alternative to this benchmark model we consider a Ramsey policy where the consolidated budget

does not enter into the constraint set. In this case, forward guidance emerges only from the impact of the

occasionally binding ZLB and the model does not feature any interest rate twisting e�ects from shocks to

the intertemporal budget. By switching on and o� the consolidated budget from the Ramsey program in

this way, we are able to contrast the properties of equilibria where monetary policy is concerned with debt

sustainability with equilibria where monetary policy has no monetary policy concerns.

In Section 3 we study the properties of these two versions of our model in the neighborhood of the steady

state – that is, assuming that the zero lower bound is non-binding. We �rst focus on the monetary/�scal

interactions and establish a link with Leeper’s (1991) famous analysis. We show analytically that in the “debt

concerns” model the rational expectations equilibrium is (locally) unique if taxes do not respond strongly

to the deviations of government debt from its steady state level and debt becomes an explosive process. In

contrast, in the case of “no debt concerns”, when the consolidated budget does not enter in optimization,

taxes need to strongly adjust to the debt level and debt becomes a mean reverting process. In the widely used

terminology of Leeper (1991), determinacy under debt concerns requires an “active” �scal policy whereas

under no debt concerns �scal policy is “passive”.

Leeper’s classi�cation of monetary policy into active/passive hinges on the response of interest rates to

in�ation, so it is not always straightforward to map into our model, especially in the presence of interest rate

twists. However, using a mixture of analytical results and simulations, we show that the policy rule under
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debt concerns is equivalent to a standard “passive money” rule, exhibiting anemic responses of interest rates

to in�ation. �e “no debt concerns” policy is equivalent to an active monetary policy. �is �nding, which

shows that Leeper’s analysis can be made consistent with an optimal Ramsey policy framework, is to our

knowledge new to the literature.

More importantly, this �nding enables us to easily apprehend our optimal policy model’s properties. A

large body of work has been devoted to solving and estimating “passive money” models, and a standard

feature of these models is that they magnify the impact of shocks on interest rates, output and in�ation; the

macroeconomic volatility predicted by these models tends to be higher.1 �is is precisely what happens under

debt concerns: �e monetary authority (partially) gives up on the goal of stabilizing interest rates, output and

in�ation to satisfy the intertemporal budget; this leads to higher volatility. In contrast, volatility is much

lower under no debt concerns, where monetary policy focuses on stabilizing macroeconomic variables.

In Section 4 of our paper we turn to the properties of optimal policies in the liquidity trap. Our key �nding

is that, under debt concerns, monetary policy is ine�ective in stabilizing output and in�ation, and forward

guidance, promising to keep interest rates low for a long period, does not stabilize in�ation at the onset of

the episode, and may even lead to a sharp de�ation. In contrast, under no debt concerns monetary policy is

e�ective, and promising lower future rates increases in�ation.

What explains the ine�ectiveness of forward guidance under debt concerns? It is now well known that

under passive monetary policy an exogenous drop in interest rates (eventually) makes in�ation turn negative;

this is what Sims (2011) and Cochrane (2018) refer to as “stepping on a rake”. Our debt concerns model has

this property, and as we show, promising to lower the interest rate impinges a drop in the price level.

In Section 5 we embed our optimal policy framework into a medium scale DSGE model. We do so for

robustness, to show that our results carry through in a model that provides a more accurate image of the US

economy. Our quantitative model extends the baseline with preferences exhibiting habit formation, shocks to

TFP, markup shocks, government transfers, realistic �scal rules, etc. �e model has a rich enough structure

to match the US data; it is broadly similar to the models of Bianchi and Ilut (2017) and Bianchi and Melosi

(2017). We estimate the quantitative model with standard Bayesian techniques. Our key results continue to

hold: Debt concerns magnify marcoeconomic volatility, and when the economy experiences a large negative

demand shock that drives interest rates to the ZLB the model predicts a worse tradeo� than under no debt

concerns.

In Section 6 we present several extensions of our framework. In particular, we explore the robustness

of our �ndings towards introducing lump sum taxation and varying the maturity of debt and also compare

our results to the benchmark Ramsey equilibrium, which assumes coordinated monetary and �scal policies.
1See e.g., Bianchi and Melosi (2017) and Bianchi and Ilut (2017).
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More substantively, we show that our framework can be extended to allow for regime �uctuations, as recent

literature has assumed (e.g., Bianchi and Ilut (2017), Bianchi and Melosi (2017)). �e online appendix extends

this analysis further.

Finally, Section 7 concludes.

2 �eoretical Framework

We begin with a simple setup of the Ramsey policy equilibrium, which allows us to illuminate key forces

driving interest rates in our model. We consider two alternative speci�cations of the baseline model. In

the �rst version of Ramsey policy we let the planner choose interest rates, in�ation and output, subject to

the consolidated budget constraint (of the Fed and the government). We refer to this model as the “debt

concerns” (DC) model. �e aim is to capture a scenario under which the planner (Fed) takes into account

the sustainability of debt. We show analytically that in this case the optimal interest rate rule has three

components: First, a standard Taylor rule component, which links interest rates to realized in�ation, output

growth and lagged values of interest rates. Second, a component that represents commitment to keep interest

rates low at the exit from a liquidity trap episode (e.g., Eggertsson and Woodford (2003, 2006)). �ird, a

component which measures the impact of past promises made by the planner to alter interest rates in the face

of shocks to the consolidated intertermporal budget constraint. �e third component is an “interest twisting

e�ect” that emerges because debt is distortionary and long term as in FMOS.

In the second setup of policy, in which the planner has “no debt concerns” (NDC), she does not account

for the consolidated budget constraint in optimization. �e optimal policy rule in this case is identical to debt

concerns, in terms of the �rst two components, but features no interest rate twisting impacts.

�roughout this section we focus on monetary policy, assuming that �scal policy is a simple tax rule of

the form:

τ̂t = ρτ τ̂t−1 + (1− ρτ )φRτ,bb̂t−1,δ + ετ,t (2.1)

where τ̂t denotes the tax rate and b̂t−1,δ is debt (both in deviation from steady state values). ετ,t is a shock

to the tax rate. (2.1) is a standard rule linking taxes to lagged taxes and debt (e.g., Leeper (1991)). Coe�cient

φRτ,b measures the feedback e�ect of debt issued in t− 1 on the tax rate in t. Index R ∈ {DC,NDC} is used

to denote that taxes will follow a di�erent process under DC and NDC. We leave it to Section 3, where we

examine the interactions between monetary and �scal policies, to discuss what types of �scal policies justify

taking into account the consolidated budget in optimization and what types do not.
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2.1 �e Baseline Model

�e building blocks of our model are a standard NK Phillips curve; an IS (Euler) equation, which prices

a short nominal bond; and the consolidated budget constraint, which determines the value of (net) debt held

by the private sector. �e model is a simpli�ed version of the New-Keynesian (NK) model that we will later

employ in estimation and which we formally describe in Section 5. For brevity, we summarize here the

competitive equilibrium in the linearized version of the model. For detailed derivations we refer the reader to

the online appendix.

Let x̂ denote the log deviation of variable x from its steady state value, x. �e competitive equilibrium

equations are as follows:

π̂t = κ1Ŷt + κ2τ̂t − κ3Ĝt + βEtπ̂t+1, (2.2)

where κ1 ≡ − (1+η)Y
θ (γh + σ Y

C
) > 0, κ2 ≡ − (1+η)Y

θ
τ

(1−τ) > 0, κ3 ≡ − (1+η

θY
σG
C
> 0,

ît = Et

(
π̂t+1 − ξ̂t+1 + ξ̂t − σ

[
Y

C
(Ŷt − Ŷt+1)− G

C
(Ĝt − Ĝt+1)

])
(2.3)

ît ≥ −
1

β
+ 1 ≡ −i∗ (2.4)

βbδ
1− βδ

b̂t,δ + bδ

∞∑
j=1

βjδj−1

[
Et

(
−σ(

Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)]

+
τ(1 + η)Y

η

(
(γh + 1)Ŷt + ξ̂t +

τ̂t
1− τ

)
−G

(
Ĝt − σ

Y

C
Ŷt + σ

G

C
Ĝt + ξ̂t

)
+ bδσ

(
Y

C
Ŷt −

G

C
Ĝt

)
− bδ ξ̂t

=
bδ

1− βδ
(b̂t−1,δ − π̂t) + δbδ

∞∑
j=1

βjδj−1Et

(
−σ(

Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)
(2.5)

(2.2) is the Phillips curve at the heart of our model. Ŷt is the output gap, and τ̂ denotes a distortionary tax

levied on the labor income of households. Ĝt denotes government spending in t. Parameters η < 0 and

θ > 0 govern the elasticity of substitution across di�erentiated products and the degree of price stickiness,

respectively.2

(2.3) is the log-linear Euler equation, which prices a short-term nominal asset. ξ̂ is a standard preference

shock that a�ects the relative valuation of current vs. future utility by the household. A drop in ξ̂ makes the

household relatively patient, willing to substitute current for future consumption. (2.4) is the ZLB constraint

on the short-term nominal interest rate.

(2.5) is the consolidated budget constraint. We assume that debt is issued in a perpetuity bond with
2We assume price adjustment costs as in Rotemberg (1982). θ governs the magnitude of these costs. When θ equals zero, prices

are fully �exible.
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decaying coupons where δ denotes the decay factor. Short debt is in zero net supply. Finally, parameter σ

denotes the inverse of the intertemporal elasticity of substitution, and γh is the inverse of the Frisch elasticity

of labor supply. Taxes are set according to rule (2.1).

2.2 Ramsey Policy under Debt Concerns

�e Ramsey policy chooses in�ation, output and interest rate sequences to maximize the following objec-

tive:

− 1

2

∞∑
t=0

βtE0

{
π̂2
t + λY Ŷ

2
t + λiî

2
t

}
(2.6)

subject to equations (2.2) to (2.5). λY and λi govern the relative weights a�ached to output gap and interest

rate stabilization by the planner.

We further assume that tax policies cannot be controlled by the planner. �is essentially means that rule

(2.1) is taken as given, and therefore τ̂t is not a choice variable.3 As is standard, we solve for optimal policies

with a Lagrangian. Let ψπ,t be the multiplier a�ached to the Phillips curve constraint, and ψi,t, ψZLB,t

and ψgov,t the analogous multipliers a�ached to the Euler equation, the ZLB constraint and the consolidated

budget, respectively. �e Lagrangian can be wri�en as:

E0

∞∑
t=0

βt
[
−1

2

{
π̂2
t + λY Ŷ

2
t + λiî

2
t

}

+ψgov,t

(
βbδ

1− βδ
b̂t,δ + βbδ

∞∑
j=1

βj−1δj−1

[
Et

(
−σ(

Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)]
+ SŜt −

bδ
1− βδ

b̂t−1,δ

−bδ
∞∑
j=0

βjδjEt

[
−σ
(
Y

C
Ŷt+j −

G

C
Ĝt+j

)
−

j∑
l=0

π̂t+l + ξ̂t+j

])
+ ψπ,t

(
π̂t − κ1Ŷt − κ2τ̂t + κ3Ĝt − βEtπ̂t+1

)

+ψi,t

(
ît − Et

(
π̂t+1 − ξ̂t+1 + ξ̂t − σ

[
Y

C
(Ŷt − Ŷt+1)− G

C
(Ĝt − Ĝt+1)

]))
+ ψi,t

(
ît + i∗

)]
(2.7)

where SŜt ≡
[
−G
(
Ĝt(1 + σG

C
)− σ Y

C
Ŷt + ξ̂t

)
+ τY (1+η)

η

(
(1 + γh)Ŷt + τ̂t

1−τ + ξ̂t

)]
is the surplus of the

government multiplied by marginal utility.
3We will also not allow the planner to in�uence τ̂ through the choice of debt. �is is not a strict assumption as we will later show

that under DC it has to be that φDCτ,b is a small number and we will even set it to zero in simulations. To simplify, we rule it out from
the outset.
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�e �rst order conditions for the optimum are given by:

−π̂t + ∆ψπ,t −
ψi,t−1

β
+

bδ
1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (2.8)

−λY Ŷt − ψπ,tκ1 + σ
Y

C
(ψi,t −

ψi,t−1

β
) + σ

Y

C
bδ

∞∑
l=0

δl∆ψgov,t−l + ωY ψgov,t = 0 (2.9)

−λiît + ψi,t + ψZLB,t = 0 (2.10)

βbδ
1− βδ

(
ψgov,t − Etψgov,t+1

)
= 0 (2.11)

ψZLB,t ≥ 0 and (̂it + i∗)ψZLB,t = 0 (2.12)

where ωY ≡ Gσ YC + τ(1+η)
η Y (1 + γh). (2.8) is the FONC with respect to π̂t; (2.9), (2.10), (2.11) are �rst order

conditions with respect to Ŷt, ît and b̂t,δ , respectively. (2.12) is the complementary slackness condition for the

ZLB constraint.

2.2.1 Optimal Interest Rate Policy

Combining the �rst order conditions (2.8), (2.9) and (2.10) and following the argument of Giannoni and

Woodford (2003) we can derive analytically the optimal interest rate rule from the Ramsey program. �e

following proposition summarizes the result:

Proposition 1. Assume that the central bank has “debt concerns”. �e optimal interest rate rule is:

ît = max{Tt +Dt + Zt,−i∗} (2.13)

Tt ≡ φππ̂t + φY ∆Ŷt + φiît−1 +
1

β
∆ît−1

with φπ = κ1C
λiσY

, φi = (1 + κ1
βσ

C
Y

) and φY = λY C
σλiY

,

Dt = −C
Y

κ1

λiσ

bδ
1− βδ

∞∑
l=0

δl∆ψgov,t−l −
bδ
λi

∞∑
l=0

δl
(

∆ψgov,t−l −∆ψgov,t−l−1

)
− CωY

Y σλi
∆ψgov,t (2.14)

and

Zt = − 1

λi
(1 +

1

β
+
κ1

σβ

C

Y
)ψZLB,t−1 +

1

βλi
ψZLB,t−2. (2.15)

Proof See online appendix.
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As equation (2.13) shows, there are three distinct components in the interest rate rule. �e �rst, Tt, is a

standard Taylor rule component that links interest rates to in�ation, output growth and lagged values of the

interest rate. �e impact of these variables on the interest rate policy rule depends on the weights λi and

λY , which capture the output and interest rate stabilization objectives of the planner. It also depends on the

structural parameters σ, κ1 and β.

�e second component,Zt, is a pull factor that relates interest rates to the “bindness” of the ZLB constraint.

If for example ît−1 = i∗, then (from complementary slackness) we have ψZLB,t−1 > 0. In this case Zt

becomes negative and so the planner keeps the interest rate in t lower than the value implied by the Taylor

rule component (and partially reverses the e�ect in t+ 1). �e impact of this channel on the level of interest

rates depends on λi, with higher values of λi leading to a lower impact, since the planner’s objective to

minimize the deviation of the interest rate from its target becomes stronger.

Finally, the term Dt measures the impact of changes in the value of the multiplier ψgov,t on the optimal

interest rate path. To analyze this term, use equation (2.11). We have:

ψgov,t+1 = ψgov,t + εt+1,G (2.16)

In other words, the multiplier ψgov,t is a random walk, and εt+1,G denotes a mean zero, i.i.d shock to the value

of the multiplier. We can now write (2.14) as:

Dt = −C
Y

κ1

λiσ

bδ
1− βδ

∞∑
l=0

δlεt−l,G −
bδ
λi

∞∑
l=0

δl
(
εt−l,G − εt−l−1,G

)
− CωY

Y σλi
εt,G (2.17)

which relates Dt to current and past shocks to the value of the multiplier.

What do these shocks capture? Notice that since (real) debt can either be �nanced through distortionary

taxes or through distortionary in�ation, ours is a standard model of optimal policy under incomplete markets

(e.g., Aiyagari et al. (2002), Schmi�-Grohé and Uribe (2004), Lustig et al. (2008), Faraglia et al. (2013), FMOS

among others). As is well known, in these models shocks to the economy translate to changes in the excess

burden of distortions and the multiplier ψgov that measures the magnitude of these distortions behaves like a

random walk, since the planner wants to spread evenly the costs across periods. In the presence of long-term

debt (δ > 0), the sequence of shocks {εt−l,G}∞l=0 in�uences interest rates because all the lags of these variables

enter into the state vector, as the FONC reveal.

To clarify further the role played by the sequence {εt−l,G}∞l=0 we iterate forward on constraint (2.5) to

9



get:

Et

∞∑
j=0

βjSŜt+j =
bδ

1− βδ
b̂t−1,δ + bδ

∞∑
j=0

βjδjEt

[
−σ
(
Y

C
Ŷt+j −

G

C
Ĝt+j

)
−

j∑
l=0

π̂t+l + ξ̂t+j

]
(2.18)

(2.18) is the intertemporal consolidated budget constraint linking the present discounted value of the �scal

surplus to the real value of debt outstanding in t. Notice also that (2.18) is equivalent to (2.5) in terms of

the Ramsey policy.4 Consider the impact of a shock that lowers the LHS of (2.18) relative to the RHS. �is

may, for example, occur following a shock that lowers taxes. In response to this shock the constraint tightens

and the value of the multiplier ψgov increases. �erefore, εt,G > 0. To satisfy the constraint, the monetary

authority needs to engineer a drop in the real payout of debt (the RHS of (2.18)) either through increasing

future in�ation and/or increasing future output when σ > 0. Note that under commitment it is feasible to

make such promises about the future course of economic variables. �e terms that enter in Dt in equation

(2.17) are essentially the promises made by the planner to manipulate in�ation and output, and hence also

manipulate the interest rate, in response to shocks to the consolidated budget that have occurred in the past.

Following FMOS, we label this impact an “interest rate twisting” e�ect of optimal policy.

2.3 Assuming No Debt Concerns

We now consider an alternative setup in which the planner maximizes (2.6) subject to (2.2), (2.3) and (2.4)

and leaves the consolidated budget (2.5) outside the optimal policy program. (2.5) continues to hold, and as

we shall show later, it will be satis�ed in equilibrium given optimal policies and the tax rule (2.1) (more on this

below). In this version of the model the multiplier ψgov,t is obviously dropped from the list of model variables.

�e Lagrangian for this program is otherwise similar to (2.7), and for the sake of brevity we omit it.

Le�ing superscript NDC denote the equilibrium under “no debt concerns”, the �rst order conditions5

become:

−π̂t + ∆ψNDCπ,t −
ψNDCi,t−1

β
= 0

−λY Ŷt − ψNDCπ,t κ1 + σ
Y

C
(ψNDCi,t −

ψNDCi,t−1

β
) = 0

−λiît + ψNDCi,t + ψNDCZLB,t = 0

�e above equations give rise to the following interest rate rule:

Proposition 2. Assume that the planner does not account for the consolidated budget in optimization. �e
4See, for example, Aiyagari et al. (2002).
5See online appendix for a more detailed description of the planner’s program.
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optimal interest rate rule is given by

ît = max{T NDCt + ZNDCt ,−i∗} (2.19)

T NDCt ≡ φππ̂t + φY ∆Ŷt + φiît−1 +
1

β
∆ît−1

and

ZNDCt = − 1

λi
(1 +

1

β
+
κ1C

σβY
)ψNDCZLB,t−1 +

1

βλi
ψNDCZLB,t−2.

Proof. See online appendix.

Several comments are in order. First, notice that the expressions for components T NDCt and ZNDCt in

(2.19) are essentially the same as the expressions for Tt and Zt in the optimal policy (2.13) of the DC model.

�e di�erence between the two policies is that (2.19) omits the term Dt, which appears in the debt concerns

version of optimal policy. �is may seem to imply that the two policies are similar, at least in the case where

the shocks to the consolidated budget are not large, so that Dt is close to zero. In Section 3 we will show that

this is not the case. Even in the absence of (large) shocks, the monetary policy under DC has considerably

di�erent properties and e�ects than the policy under NDC.

Second, as we have seen, bothZt (ZNDCt ) andDt are functions of lagged state variables (ψZLB andψgov),

and these lagged variables summarize the e�ects of shocks that have occurred in the past. Since their values

have been revealed in past periods, and apply to policy in t, we interpret them as forward guidance in optimal

monetary policy.

A recent literature using DSGE models to analyze the behavior of macroeconomic variables in the Great

Recession has utilized monetary policy rules with forward guidance, similar to the rules in Propositions 1 and

2. In Laseen and Svensson (2011), Campbell et al. (2012), Campbell et al. (2016), Del Negro and Sims (2015),

De Graeve et al. (2016) and others, interest rate policy is modelled in the following form:

îDSGEt = max{T DSGEt +
M∑
l=0

εl,DSGEt−l ,−î∗} (2.20)

where M > 0. T DSGEt is a Taylor rule, a function of in�ation, output growth and lags of the interest rate.

ε0t is a standard monetary policy shock, and
(
ε1t−1, ..., ε

M
t−M

)
are “forward guidance shocks”. �e policy

rules in Propositions 1 and 2 are indeed similar to equation (2.20); the di�erence, however, is that the shocks(
ε1t−1, ..., ε

M
t−M

)
are exogenous, whereas the state variables that enter inZt (ZNDCt ) andDt are endogenous

functions of fundamental shocks to preferences, taxes, spending, etc. �ey are endogenous forward guidance.
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6

2.4 Discussion

�us far we have derived optimal interest rate rules in the two environments: Under debt concerns the

planner takes into account the consolidated budget constraint, whereas under no debt concerns she does not

have to satisfy the constraint. We now provide some more context behind our modelling assumptions.

First, the reader may be asking herself if in the NDC case the optimal program is not complete if the

full structure of the macroeconomy in not taken into account. As was discussed previously, coe�cient φRτ,b

in the �scal policy rule will be di�erent in the two scenarios; we will later show (in Section 3) that DC

corresponds to the case where �scal policy does not generate su�cient surpluses to �nance debt, and therefore

monetary policy has to satisfy the consolidated budget constraint, and NDC corresponds to the case where

�scal surpluses are su�cient to satisfy the intertemporal budget. �us, from the point of view of the planner,

under NDC the consolidated budget constraint is slack. It then holds that ψgov = 0.

Next, one may think that if a central bank is concerned with stabilizing debt, then the real value of debt

should appear in the objective of the planner rather than as part of the constraint set. We claim that these

alternatives yield similar policy outcomes: If the central bank’s loss function invoked a penalty in the case

where the RHS of (2.5) is not equal to the LHS (i.e., the real value of debt is not compensated by the surpluses),

then monetary policy will adjust in�ation and output to satisfy the intertemporal budget just like in our DC

program. �e reason that we do not pursue such modelling here is that adding the intertemporal budget

as a constraint seems to us a much more credible setup of policy. Cochrane (2001) solves a similar problem

assuming that a Ramsey planner that minimizes the volatility of in�ation has to satisfy the constraint. �us

our assumptions are in line with previous work in the literature. Moreover, we will later show that, in the

case where �scal policy does not generate surpluses to �nance debt and when the planner fails to take into

account the intertemporal budget, the rational expectations equilibrium is not unique and therefore solutions

that lead to explosive paths of in�ation or de�ation cannot be ruled out. �erefore, a planner that is concerned

about stabilizing in�ation and output should also be concerned about satisfying the constraint.

�e reader may also be asking whether objective (2.6) is meant to represent a second order approximation

to the household’s utility. �ough our analysis below will extend to various calibrations of parameters λY
6As discussed previously, several papers have studied optimal monetary policies using frameworks broadly similar to ours. See,

for example, Eggertsson and Woodford (2003, 2006), Lustig et al. (2008) and Faraglia et al. (2013) among others. �ese papers also
give rise to endogenous forward guidance. For example in Faraglia et al. (2013) and Lustig et al. (2008) the presence of long-term
debt implies that an element such as Dt is part of optimal policy. Moreover, optimal policy in models with occasionally binding zero
lower bound constraints should include a term of the form Zt.

However, the focus of these papers is mainly theoretical and, building on non-linear models, they do not derive simple interest rate
rules comparable to the recent DSGE literature, as we do here. Moreover, since many of these models bring together monetary and
�scal policies under one authority, “forward guidance” is not only promises made to manipulate future in�ation and interest rates,
but also promises to manipulate taxes. �is makes it di�cult to evaluate which of the recommendations of these models are relevant
for monetary policy and which are not.
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and λi (including λi = 0, which would result from a second order approximation in a cashless economy like

ours), we do not consider that the monetary authority’s objective has to be identical to the objective of the

household. If it were, then minimizing the volatility of distortionary taxes would also be part of the welfare

criterion and our policy problem would look like a joint optimal monetary and �scal policy problem (as, for

example, in Schmi�-Grohé and Uribe (2004) and Siu (2004) and numerous others). We thus assume that the

monetary authority has its own objective, which focuses on stabilizing in�ation, output and the interest rate,

and this loss function will not, in general, coincide with the loss function of the household. 7

3 Monetary and Fiscal Policy Interactions

In this section we study the properties of the models in the neighborhood of the steady state, when the

ZLB does not bind. We �rst ask, what types of �scal rules are compatible with an equilibrium where the

central bank has debt concerns, and what types of rules are compatible with no debt concerns? We establish a

link between the DC/NDC models and Leeper’s (1991) seminal analysis on monetary/�scal policy interactions.

Our key result is that in the case of debt concerns, monetary policy becomes subservient to �scal policy and

behaves similarly to the passive monetary policy model de�ned in Leeper’s work. Fiscal policy is “active” and

does not respond to government debt. �e opposite holds under no debt concerns.

We then study the e�ects of disturbances on macroeconomic variables. �e main �nding of this analysis

is that under debt concerns, macroeconomic volatility increases, and in�ation, output and interest rates are

more exposed to both demand and supply disturbances. �is property is a standard feature of “passive money

models”. In our optimal policy framework under debt concerns, it arises because the planner needs to par-

tially give up on the goal of stabilizing in�ation, output and interest rates to satisfy the consolidated budget

constraint.

3.1 Determinacy under Optimal Policies

3.1.1 Fiscal Policy

Consider the case where the ZLB constraint is non-binding. Since ours is a linear model approximated

around a non-stochastic steady state with a positive nominal interest rate, equilibria with a non-binding ZLB

constraint can occur if shocks are not too big to drive the economy far away from steady state. We have:

ît = Tt + Dt and îNDCt = T NDCt . To derive analytical results we �rst consider a simplistic setup le�ing

λY = σ = δ = ρτ = G = 0. We further assume that tax shocks are the only source of uncertainty in the
7Analogously, implicit in rule (2.1) is the assumption that the �scal authority aims to smooth taxes. �e objective of the �scal

authority is, however, not explicitly modelled here.
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economy.8 Under these assumptions and using equations (2.9) and (2.10) to substitute out ψπ,t and ψi,t in the

debt concerns model we get:

−π̂t −
λiît−1

β
+ bδη̃∆ψgov,t = 0 (3.1)

where η̃ =

(
1+ (1−β)(1+γh)

κ1

)
.9 ψgov,t is again a martingale and soEt∆ψgov,t+1 = 0. From the Euler equation

we have ît = Etπ̂t+1.

Using the Phillips curve to substitute Ŷt = π̂t−βEtπ̂t+1−κ2τ̂t
κ1

, the consolidated budget constraint can be

wri�en as follows:

βbδ b̂t,δ − βbδη̃Etπ̂t+1 + (1− β)bδ

(
1

1− τ
− κ2

κ1
(1 + γh)

)
τ̂t = bδ b̂t−1,δ − bδη̃π̂t (3.2)

Finally, using κ2
κ1

= τ
(1−τ)γh

and the tax rule (2.1) we have:

b̂t,δ − η̃Etπ̂t+1 =
1

β

[
1−

(1− β)φDCτ,b
(1− τ)γh

(
γh − τ(1 + γh)

)]
︸ ︷︷ ︸

ε̃DC

b̂t−1,δ −
η̃

β
π̂t −

1

β

(1− β)

(1− τ)γh

(
γh − τ(1 + γh)

)
︸ ︷︷ ︸

A

ετ,t

(3.3)

Coe�cient ε̃DC is a key object in determining the dynamics of government debt. In the case where ε̃DC > 1,

government debt becomes an explosive process, whereas if ε̃DC < 1, debt is a stationary process. Notice that

the magnitude of ε̃DC hinges on the size of the feedback e�ect of lagged debt on taxes, φDCτ,b , and also on the

steady state level of taxes and the Frisch elasticity 1
γh
, since these quantities in�uence the responsiveness of

aggregate hours and tax revenues to shocks when taxes are distortionary.

To identify which values of ε̃DC give rise to a unique rational expectations equilibrium, use the Euler

equation together with (3.1) to write

λiît
β

= −Etπ̂t+1 + bδη̃Et∆ψgov,t+1 = −ît, (3.4)

where the last equality makes use of the martingale property of ψgov,t+1. From (3.4) we get ît = 0 when

λi ≥ 0. �erefore, we have π̂t = bδη̃∆ψgov,t and with this we can write (3.3) as

b̂t,δ = ε̃DC b̂t−1,δ −
bδη̃

2

β
∆ψgov,t −Aετ,t (3.5)

8Our �ndings in this section do not hinge on the nature of shocks that hit the economy. We assume only tax shocks and setG = 0
to simplify the algebra; otherwise we could assume more than one disturbance in the model and all results described below would
carry through.

9Under σ = G = 0 we have ωY = τ(1+η)
η

Y (1 + γh). From the budget constraint we get τ(1+η)
η

Y = (1− β)bδ .
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Equation (3.5) together with the martingale property, Et∆ψgov,t+1 = 0, form the system of equations that

needs to be resolved to �nd the values of b̂t,δ and ∆ψgov,t.

It is now easy to show that the solution to this system is unique only when ε̃DC > 1. To see this, assume

that ε̃DC is less than one and solve equation (3.5) backwards to obtain:

b̂t,δ = −
∞∑
j=0

ε̃jDC

(
bδη̃

2

β
∆ψgov,t−j +Aετ,t−j

)
(3.6)

which determines the debt level at t as a function of the lagged shocks ∆ψgov,t−j and ετ,t−j . Notice that the

value of ∆ψgov,t−j is not pinned down in this model; the martingale propertyEt−j−1∆ψgov,t−j = 0 does not

determine a unique value for this object.

In the unique rational expectations equilibrium, ε̃DC > 1, and (3.5) is solved forward to give

b̂t−1,δ = Et

∞∑
j=0

1

ε̃j+1
DC

(
bδη̃

2

β
∆ψgov,t+j +Aετ,t+j

)
=

1

ε̃DC

(
bδη̃

2

β
∆ψgov,t +Aετ,t

)
(3.7)

From (3.7) the equilibrium satis�es ∆ψgov,t = − β

bδ η̃2
Aετ,t and therefore b̂t,δ = 0 for all t.10

Now consider the case of “no debt concerns”. We have ψgov,t = 0 for all t, and the consolidated budget

constraint can be wri�en as:

b̂NDCt,δ = ε̃NDC b̂
NDC
t−1,δ −Aετ,t (3.8)

(where ε̃NDC is essentially given by the same expression as ε̃DC , but φDCτ,b is replaced with φNDCτ,b ). A unique

equilibrium can be found when ε̃NDC < 1 so that (3.8) is solved backwards. We summarize the above �ndings

in the following proposition:

Proposition 3. Assume that parameters λY , G, δ and σ equal zero. De�ne

ε̃R ≡
1

β

[
1−

(1− β)φRτ,b
(1− τ)γh

(
γh − τ(1 + γh)

)]

for R ∈ {DC,NDC}. Assume that the planner takes into account the consolidated budget constraint. Deter-

minacy of the equilibrium requires ε̃DC > 1. In contrast, in the “no debt concerns” case determinacy requires

ε̃NDC < 1.

�e above condition extends the analysis of Leeper (1991) to the case of distortionary taxes and in a
10In other words, debt does not explode if it equals zero for all t.

Notice that if this fails we have: ∆ψgov,t = β

bδ η̃
2

(
ε̃DC b̂t−1,δ − Aετ,t

)
and therefore, Et−1∆ψgov,t = β

bδ η̃
2 ε̃DCb̂t−1,δ 6= 0.

�us b̂t,δ = 0 is the only path consistent with the random walk.
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model where monetary policy is optimal. When ε̃R < 1 (i.e. in the no debt concerns model), �scal policy

is su�ciently responsive to debt levels, so taxes adjust to guarantee the sustainability of debt. In the sense

of Leeper (1991), �scal policy is “passive”. In contrast, in the model with debt concerns, �scal policy needs

to be “active” for the rational expectations equilibrium to be unique or, to put it di�erently, taxes should not

respond aggressively to deviations of debt from its steady state value.

�e above �ndings – that determinacy requires an explosive debt process in the debt concerns model and

a mean reverting process under no debt concerns – do not hinge on the assumptions made in Proposition

3. �ey hold more generally for positive values of λY , σ, δ and G and, therefore, also hold when monetary

policy follows the rules derived in Propositions 1 and 2.

3.1.2 Monetary Policy: An Example A�rming Leeper

What do these optimal interest rate rules tell us about whether monetary policy is active/passive? Leeper’s

classi�cation hinges on the response of interest rates to in�ation. When interest rates respond strongly to

in�ation, monetary policy is active, and conversely when they do not respond strongly, it is passive. Ad-

mi�edly, Leeper’s analysis is not easy to map into our optimal policy framework: Even if we can show that

T NDC de�nes an active monetary policy, it is not obvious how we could then show that ît = T +D de�nes

a passive policy, especially when T NDC = T , as was previously illustrated. If anything, since D is a moving

average of mean zero innovations to the Lagrange multiplier it would seem that interest rates in the debt

concerns model will on average be equal to T and therefore also equal to T NDC .

�is is, however, not the case. �e innovations in D are not orthogonal to in�ation; they are functions of

the same fundamental shocks (in preferences, spending, taxes, etc.) that drive in�ation, so they are correlated

with in�ation (and with the remaining variables in T ). In principle we can expressD as a function of in�ation,

lagged values of interest rates, etc. We can thus map the optimal policy into Leeper’s analysis.

In the next subsection we will use the numerical solution of the model to approximate D as a function

of the variables in T . To derive an analytical solution we assume λY = σ as in the previous paragraph,

however now let δ ≥ 0 and λi = 0. Note that under these assumptions we cannot derive an optimal policy

rule directly from the �rst order conditions; however, we can �nd a Taylor rule that implements the allocation

under optimal policy.

Assume that the policy rule is of the form:

ît = φ̃ππ̂t (3.9)

Consider �rst the no debt concerns case; we can show that in the presence of only tax shocks in this model, we
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will have ît = π̂t = 0.11 Combining (3.9) with the Euler equation ît = Etπ̂t+1 we get the following di�erence

equation in in�ation:

π̂tφ̃π = Etπ̂t+1

Standard results yield that the equilibrium is unique if and only if φ̃π > 1.

Now consider the case of debt concerns. �e equilibrium under optimal policy satis�es:

π̂t =
ωY
κ1

∆ψgov,t +
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l ît =
bδδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l (3.10)

Assuming that parameter values are such that ωY
κ1
≈ 0 and considering a rule of the form (3.9) that can

implement (3.10) we have:

φ̃π
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l = δ
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l (3.11)

Hence φ̃π = δ < 1.

�is simple example shows that whereas the no debt concerns model requires a coe�cient φ̃π that ex-

ceeds unity (the standard condition for “active” monetary policy), the debt concerns model features “passive”

monetary policy under an interest rate rule of the form (3.9).

We summarize the above in the following proposition:

Proposition 4. Assume λY = σ = λi = 0. �e optimal policy is a rule of the form (3.9). In the case of no

debt concerns φ̃π > 1 and monetary policy is “active”. Under debt concerns, φ̃π = δ < 1 and monetary policy is

“passive”.

3.1.3 Monetary Policy: Numerical Examples

For more plausible calibrations of the model the above properties can be demonstrated using numerical

simulations. In Table 1 we show the coe�cients we obtain from Taylor rule approximations of optimal policy

in the debt concerns model under various model speci�cations.12 More precisely, we approximate the optimal

policies using rules of the form:

ît = φ̃ππ̂t + φ̃Y Ŷt + φ̃iît−1 + φ̃∆i∆ît−1 (3.12)

11See below in subsection 3.2 where we look at the e�ect of tax shocks.
12�e calibration of model parameters η, θ, ... follows Table 2 (see subsection 3.2). However, we consider here a wider range of

values for σ, λi, λY than what is reported in this table. �e values we consider are reported in the text.
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which do not include objectDt.13 �e coe�cients φ̃ are such that the model with rule (3.12) produces impulse

responses to shocks close to the analogous objects in the optimal policy model.14

In the top panel of Table 1 we assume λY = 0 and thus set φ̃Y = 0 to isolate our focus on coe�cient

φ̃π. Each of the columns of the table corresponds to a di�erent calibration of parameters λi and σ. Consider

the �rst of these columns, which sets λi = 0.5 and σ = 1. For each parameter (φ̃π, φ̃i, etc.) we report two

sets of numbers: �e top numbers correspond to the estimates of (3.12). �e bo�om numbers (reported in

parenthesis) correspond to the coe�cients in T derived in Proposition 1. Notice that the estimates of (3.12)

yield a much weaker response of interest rates to in�ation (φ̃π = 0.104 vs. 0.537 in the analytic solution)

and also the coe�cients on ît−1 and ∆ît−1 are much lower than their analytic solution counterparts. (3.12)

is basically a “passive money” rule.

�e same pa�ern emerges in the remaining model speci�cations. For each of the calibrations considered

in columns 2 to 4, the estimates of φ̃π, φ̃i and φ̃∆i are low. �e bo�om panel of the table considers the case

λY > 0 and thus also reports the estimates of coe�cient φ̃Y . �e response to in�ation in (3.12) continues to

be weaker than in the exact solution of the model. �e estimated output coe�cient φ̃Y is also weaker.

�e above pa�erns hold for many alternative calibrations of the model, which for brevity we leave outside

the table.

[ Table 1 About Here]

3.2 �e E�ects of Shocks

We have seen that in the debt concerns model �scal policy is “active” and debt becomes a non-stationary

process. Monetary policy is subservient to �scal policy and it can be represented (in reduced form) with

a Taylor rule that has the standard features of passive money models. �e opposite holds under no debt

concerns: �e policy mix becomes active monetary/passive �scal.

�ese �ndings are crucial to understand how the model works and the e�ects of economic shocks, which

we now study. A standard prediction of passive money models is that they magnify macroeconomic volatility.

Shocks that hit the economy lead to larger �uctuations in in�ation and output (see, for example, Bianchi and

Ilut (2017)). In our optimal policy model this will also be the case. When optimization is subject to the

consolidated budget, the planner needs to partially give up on the goal of stabilizing in�ation, output and

interest rates to satisfy the constraint.
13Equivalently we approximate Dt as a function of the RHS variables in (3.12).
14Computing coe�cients through OLS regressions (that is, ��ing (3.12) to simulated data from the debt concerns model) does

not (generally) provide a good �t. It may also give us coe�cients that are not consistent with a unique equilibrium. �is pa�ern is
consistent with the �ndings of Cochrane (2011) and Schmi�-Grohé and Uribe (2004).

Obviously, the impulse responses of the model under (3.12) do not perfectly match the responses under optimal policy. In the case
where δ > 0 we need several lags of interest rates (and also lags of in�ation and output) to produce a perfect �t. We minimize the
distance between the two models. We obtain a perfect �t only when we set δ = 0.
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To show this clearly, we �rst derive the impulse responses analytically in a simpli�ed setup assuming, as

previously, λY = λi = σ = 0 but now let G, ρτ > 0. We consider shocks at date 0, which change the values

of parameters {G0, ξ0, τ0} assuming that a�er t = 0 there are no further shocks to the economy. Under these

assumptions we derive in the online appendix the optimal paths of in�ation and interest rates and the path

of the multiplier ψgov,t.

�e online appendix arrives at the following expressions for π̂t and ît under DC:

π̂t =
ωY
κ1

∆ψgov,0It=0 +
bδδ

t

1− βδ
∆ψgov,0 (3.13)

ît = −ρtξ(ρξ − 1)ξ̂0 +
bδδ

t+1

1− βδ
∆ψgov,0 (3.14)

for t = 0, 1, 2... and where It=0 takes the value 1 at t = 0 and 0 otherwise. Moreover, ∆ψgov,0 is a linear

function of {Ĝ0, ξ̂0, τ̂0}. We have:

υgov∆ψgov,0 = υGĜ0 + υτ τ̂0 + υξ ξ̂0 (3.15)

where υgov, υG, υξ > 0 and υτ < 0 and therefore partial derivatives satisfy ∂∆ψgov,0

∂Ĝ0
> 0,

∂∆ψgov,0
∂τ̂0

< 0 and
∂∆ψgov,0

∂ξ̂0
> 0.

We also show in the online appendix that in the no debt concerns model ît = −ρtξ(ρξ − 1)ξ̂0 and π̂t = 0

for all t.

3.2.1 Preference Shocks

We consider �rst the impact of a preference shock, which lowers the value ξ̂0. �e previous derivations

show that in the no debt concerns equilibrium this shock has no e�ect on in�ation. �is result is standard:

Since the planner does not want to smooth the nominal interest rate, i.e., λi = 0, ît drops one for one with

the real rate, thus fully stabilizing in�ation.

Now consider the case of the “debt concerns” model. Since ∂∆ψgov,0

∂ξ̂0
> 0, a drop in ξ̂0 lowers ∆ψgov,0.

From (3.13) and (3.14) we see that in�ation turns negative a�er the shock and the nominal interest rate drops

below the real rate, −ρtξ(ρξ − 1)ξ̂0.

What is going on? Notice that a preference shock has two impacts on the consolidated budget: First, it

increases real bond prices and hence increases the real payout of government debt (the RHS of equation (2.18));

second, it increases the present value of surpluses (LHS of (2.18)) that �nance the debt. Since the planner has

to satisfy the intertemporal constraint she will either use in�ation or use de�ation to adjust the real payout

of debt so that the constraint is satis�ed with equality. If the �rst e�ect is stronger, and debt increases more

than the surpluses, then in�ation is optimal. In contrast, if the second e�ect dominates, then it is optimal to

19



make in�ation negative. In our analytic solution the second e�ect is stronger for all values 0 ≤ δ < 1, so

in�ation becomes negative in response to the preference shock.15

Figure 1 shows the above responses over 40 periods.16 �e le� column of the �gure shows the case of

the preference shock; the solid line represents the case of the debt concerns model and the dashed line shows

no debt concerns. �e top two panels show the responses of in�ation and interest rates, and the bo�om two

panels show output and the market value of debt.

[Figure 1 About Here]

Equilibrium output under debt concerns is given by:

Ŷt =
1

κ1

(
ωY
κ1

∆ψgov,0It=0 + bδδ
t∆ψgov,0 − κ2ρ

t
τ τ̂0

)

(see the online appendix). Output drops in response to the preference shock because ∆ψgov,0 turns negative.

Under no debt concerns, output remains roughly constant a�er the shock.17

3.2.2 Fiscal Shocks

�e middle and right columns of Figure 1 study the responses to a positive spending shock and a negative

tax shock, respectively. In both cases the consolidated budget constraint tightens because the present value

of the government’s surplus falls, so ∆ψgov,0 > 0. From (3.13) and (3.14), interest rates rise in response to the

shocks in the debt concerns model and in�ation rises above its steady state value. Positive in�ation ensures

the solvency of the consolidated budget. In contrast, under no debt concerns in�ation does not respond to

these shocks because debt rises and taxes eventually adjust to make the surplus positive.
15When δ = 1, long bonds are consols, and preference shocks have zero impact on the consolidated budget. To see this, simply

use (2.18) assuming that, in equilibrium, under the preference shock Ŷt = b̂t,δ = π̂t = Ĝt = τ̂t = 0 for all t. �en (2.18) becomes:

Et

∞∑
j=0

βj
(
τY (1 + η)

η
−G

)
ξ̂t+j = bδ

∞∑
j=0

βjδjEtξ̂t+j

Since τY (1+η)
η

−G = (1− β)bδ the above equation is satis�ed when δ = 1.
�is result, that preference shocks are neutral when long bonds are consols, is consistent with recent papers on optimal government

debt management (e.g., Debortoli et al. (2017) and Bhandari et al. (2017)). See Section 6 where we brie�y discuss optimal portfolios
in our setup.

16�e values we assign to the model’s parameters are presented in Table 2. �e top panel of the table reports values for parameters
that are common across the two versions of the model, and the bo�om panel reports the value that we assign to φτ,b in each version
separately. In the debt concerns model we set φτ,b = 0.0, and in the case where the Fed has no debt concerns we set φτ,b = 0.07.
φτ,b = 0.07 is chosen so that debt has a near unit root, consistent with the empirical evidence on US government debt presented in
Marcet and Sco� (2009). �e cuto� for determinacy is 0.065.

17In the NDC scenario output changes are driven by taxes. From the Phillips curve we get:

Ŷ NDCt = −κ2

κ1
τ̂NDCt (3.16)

where κ1 ≡ − (1+η)Y
θ

γh, κ2 ≡ − (1+η)Y
θ

τ
(1−τ) .

Under no debt concerns a negative shock in preferences makes taxes drop. Even though the market value to GDP initially increases
(due to the increase in bond prices), fewer bonds need to be issued and so b̂t,δ is lower along the optimal path.

In the debt concerns case, taxes do not adjust to debt, since we have assumed φτ,b = 0. �e real market value of debt increases
due to the negative in�ation.
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[ Table 2 About Here]

3.2.3 Responses under λi, λY , σ > 0

In Figure 2 we assume λi = λY = 0.5 and σ = 1. Now in�ation and output change in response to

the shocks in the no debt concerns model: Because the planner wants to smooth interest rates, following a

preference shock, ît does not drop one for one with the real rate to fully stabilize in�ation; moreover, since the

planner also wants to smooth output, she optimally adjusts in�ation in order to partially o�set �scal shocks.

Contrasting the responses of the two models, it is clear that the qualitative pa�erns outlined previously

remain. In the debt concerns model in�ation becomes negative in response to a preference shock, and positive

in response to spending and tax shocks. �e (numerical) partial derivatives ∂∆ψgov,0

∂Ĝ0
,
∂∆ψgov,0

∂τ̂0
,
∂∆ψgov,0

∂ξ̂0
have

the same sign as before. �is again implies that interest rates drop more in the debt concerns model following

a negative shock to preferences and they rise (relative to the no debt concerns model) in response to shocks

to the �scal variables.

[Figure 2 About Here]

�e responses shown in Figures 1 and 2 reveal that shocks have a larger impact on macroeconomic vari-

ables under debt concerns than in the case of no debt concerns. As discussed previously, higher volatility is a

standard prediction of models where monetary policy is passive. In our optimal policy model, higher volatility

derives from the fact that the planner needs to partially give up on the objective to stabilize macroeconomic

variables in order to satisfy the consolidated budget.

4 Optimal Policies at the ZLB

�e previous section investigated the properties of optimal policy in the case where interest rates are not

constrained by the ZLB. We now turn to the dynamics of the economy when interest rates hit the ZLB. As it

is common in the literature, we consider a shock that lowers the value of ξ̂0 su�ciently so that the ZLB binds.

Standard results imply that this shock puts downward pressure on prices and output, leading to de�ation and

to a recession during the LT. Monetary policy can then commit to keep interest rates low for a long period and

stabilize the macroeconomy (e.g., see Eggertsson and Woodford (2003)). We show in this section that in the

case of debt concerns, the above well-known result does not apply; forward guidance – commi�ing to keep

interest rates low – does not stabilize in�ation during the liquidity trap and may even lead to de�ation. We

explain that this model property is due to what Sims (2011) and Cochrane (2018) label “stepping on a rake”: In

an equilibrium with passive monetary policy, lowering the nominal interest rate leads (eventually) to a drop

in the price level.
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In order to demonstrate transparently the e�ects of forward guidance (FG), we �rst use a model where FG

is exogenous, as in the recent DSGE papers cited previously. �is allows us to demonstrate how FG shocks

impact in�ation and output under passive money and active money rules, keeping the timing and duration of

the shocks constant across the two regimes. We show that in the case of passive monetary policy, not only

can in�ation turn negative in response to a FG shock, but also FG is much less powerful than when policy is

active.

Under optimal policy the timing and the duration of FG are endogenous and generally are di�erent be-

tween the debt concerns and no debt concerns models. In the analytical example we construct, FG can last

for much longer in the case of debt concerns, and the duration of FG hinges on the magnitude of the e�ect of

the preference shock to the intertemporal budget. We show that in spite of keeping interest rates at zero for

a long time, when monetary policy becomes subservient to �scal policy, FG can lead to negative in�ation.

Lastly, we contrast the properties of optimal policy with commitment with models where the monetary

authority has no commitment. In the case of no commitment, passive monetary policy improves the tradeo�

of the planner in the LT.

4.1 FG under Passive and Active Monetary Policies

We �rst study the e�ect of FG under passive/active policies in a model where monetary policy is not

optimal. Consider an economy where the Phillips curve, the Euler equation and the budget constraint are

given by (2.2), (2.3) and (2.5) respectively and �scal policy follows (2.1). Also assume no preference shocks,

for the moment.

Monetary policy follows an interest rate rule of the form

ît = φ̃ππ̂t + Zt (4.1)

whereZt is a standard (exogenous) FG shock, as in the DGSE literature discussed previously, which is revealed

to private agents in period 0.

We study the impact of a shock in period t, Zt < 0, on equilibrium in�ation, output and interest rates in

the case where monetary policy is active (φ̃π > 1) and in the case where it is passive (φ̃π < 1).
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4.1.1 “Stepping on a Rake”: An Analytic Example

Consider �rst the case where φ̃π > 1 and assume further that σ = 0. Combining (4.1) with the Euler

equation and iterating forward on the resulting di�erence equation gives:

π̂t = −
∑
j≥0

(
1

φ̃π
)j+1 Zt+j . (4.2)

According to (4.2) a shockZt < 0 lowering the nominal interest rate increases the value of in�ation in periods

0, 1, ..., t. (�e e�ect is zero a�er period t.)

Consider now the case of passive policy, assuming wlog that φ̃π = δ < 1. Equilibrium in�ation satis�es:

π̂t =
t−1∑
j≥0

δjZt−j−1 + δtπ̂0. (4.3)

which implies that a shock Zt < 0 will lower the value of π̂t−1, π̂t, π̂t+1, .... Under passive policy, therefore,

the FG shock seems to have the opposite impact: Promising to lower the interest rate reduces in�ation, starting

one period before the shock arrives.

What is going on? �ough (4.2) fully characterizes the path of in�ation in response to an anticipated FG

shock in t (and this conforms with the common intuition that lower rates produce higher in�ation), under

passive policy (4.3) does not fully reveal how in�ation will behave, because we do not have the initial condition

π̂0. To fully characterize in�ation we need to make use of the intertemporal consolidated budget constraint

at t = 0.18 Under the assumptions made in this section we can show that government surpluses are constant

in the absence of shocks. �e date zero constraint is:

− bδ
1− βδ

∑
t≥0

(βδ)tπ̂t ≈ 0 (4.4)

which basically says that the drop in in�ation in t − 1 and onwards needs to be compensated by a rise in

in�ation between periods 0 and t − 2. When the monetary authority announces Zt < 0, π̂0 increases to

satisfy (4.4), and since î0 = δπ̂0, the nominal interest rate will also increase. �is will lead to a further

increase in prices in period 1 and positive interest rates subsequently, until in�ation switches sign in t− 1.

�is pa�ern is essentially the stepping on a rake of Sims (2011) and Cochrane (2018). When monetary pol-

icy is passive and debt is long term, a drop in the interest rate leads to a rise in in�ation �rst (the conventional

e�ect), only to reverse the sign of in�ation a�er a few periods.
18Since we assume perfect foresight, the date 0 constraint is su�cient. �e intertemporal constraints at t ≥ 1 will be satis�ed

since b̂t≥0 can be chosen as a residual (see FMOS).
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î

4.1.2 E�ects of FG under σ > 0

�e top graphs of panels a) and b) of Figure 3 demonstrate the responses of in�ation and interest rates in 

the case where σ = 1. �e solid lines correspond to the case where t = 4. �e dashed lines set t = 8. �e le� 

plots show the behavior of interest rates, and the right plots trace the responses of in�ation.

[Figure 3 About Here]

Notice that just like in our analytical example with σ = 0, in both models and under both timings of the 

shock in�ation rises on impact when the shock is announced and remains above steady state value until the 

shock occurs. However, a�er period t in�ation turns negative in the passive money model, whereas under 

active money, it returns to steady state.

We also see from the �gure that interest rates rise between the announcement of the shock and date t. 

Clearly, monetary policy a�empts to ward o� the in�ationary e�ects of the shock. Under passive policy, the 

rise in interest rates is somewhat weaker and, eventually, when in�ation turns negative, interest rates do so 

as well.

We now ask: What would be the impact of the shock if the planner were to eliminate the rise in interest 

rates between 0 and t − 1? In the bo�om graphs of panels a) and b) of Figure 3 the planner announces

0, î1, .., ît−1 = 0 along with Zt < 0. Notice that now in�ation rises considerably under active policy (bo�om 

right of panel a)). Moreover, note that the initial rise in in�ation is larger the higher t is. �is is the so called 

“FG puzzle” (see for example Del Negro et al. (2015) and McKay et al. (2015)).

In contrast, under passive policy the rise in in�ation is moderate, and when t = 8 in�ation rises (slightly) 

less initially than when t = 4. Moreover, since in�ation becomes negative a�er a few periods, the cumulative 

response of the price level to FG is weak. Overall, FG exerts a much weaker e�ect in the passive money 

model.19

To reiterate, we showed that FG in a passive money model has moderate e�ects. First, because of the 

stepping on a rake, in�ation at some point turns negative following a promise to lower interest rates. Second, 

because the power of FG is limited, a longer horizon t does not imply a larger initial impact on in�ation. �ese 

results are drawn from a model, where monetary policy is not optimal, which enabled us to vary exogenously 

the path of interest rates. We next study optimal policy where interest rates respond endogenously to a 

shock to preferences that drives the economy to a LT.

19A recent literature has explored alternative mechanisms to reduce the power of FG in New Keynesian models (see, for example, 
McKay et al. (2015) and references therein). Our result that the impact of FG under passive money is limited should be of interest.
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4.2 Optimal FG Policies

4.2.1 An Analytical Example

We now turn to optimal policy to determine the impact of forward guidance. Assume that the preference

shock occurs in period 0, lowering the value of ξ̂0. �e shock is i.i.d. and moreover, for simplicity, assume

that a�er period 0 there are no further shocks to the economy. We set ξ̂0 < −î∗. �e shock is large enough

for the ZLB to bind.

Consider �rst the case where σ = λY = λi = 0. Under these assumptions a rule of the form (4.1)

implements optimal policy (now the sequence Z is, however, endogenous). �e online appendix shows that

the optimal paths of in�ation and interest rates are given by:

π̂t =



bδ
1−βδ∆ψgov,0 t = 0

−î∗ − ξ̂0 t = 1

max{−î∗, bδδ
t

1−βδ∆ψgov,0} t ≥ 2

ît =


−î∗ t = 0

max{−î∗, bδδ
t+1

1−βδ ∆ψgov,0} t ≥ 1

(4.5)

in the case of the debt concerns model and

π̂NDCt =


0 t = 0 and t ≥ 2

−î∗ − ξ̂0 t = 1

îNDCt =


−î∗ t = 0

0 t ≥ 1

(4.6)

in the no debt concerns model. Notice that according to (4.5) and (4.6) the two models predict positive in�ation

t = 1 (both equal to −î∗ − ξ̂0, trivially, otherwise the ZLB would be violated) and di�erent in�ation levels

at t = 0 and t ≥ 2. In the case of no debt concerns, in�ation returns to its steady state value from period 2

onwards. Under debt concerns, in�ation and interest rates continue being di�erent from zero and the sign of

the responses hinges on the sign of the term ∆ψgov,0, which measures the impact of the liquidity trap shock

on the consolidated budget. In the case where ∆ψgov,0 < 0, following a negative shock to preferences, the

in�ation rate becomes negative. In contrast, if ∆ψgov,0 > 0, in�ation turns positive a�er the shock.

What does FG do in the optimal policy model? Using (4.6) and the rule (4.1) we can show that the optimal

path for ZNDC is:

ZNDC1 = φ̃π (̂i∗ + ξ̂0) < 0 and ZNDCt = 0, t 6= 1.

In other words, FG keeps the interest rate low in period 1, which enables in�ation to rise in that period. �is

is the standard result of Eggertsson and Woodford (2003).
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Now consider the case of DC. We can show that:

Zt =



max{−î∗, bδδ
t+1

1−βδ ∆ψgov,0}+ δ(ξ̂0 + î∗) < 0 t = 1

max{−î∗, bδδ
t+1

1−βδ ∆ψgov,0}+ δî∗ < 0 t > 1, it−1 = −î∗

0 othws

(4.7)

Let us consider ∆ψgov,0 < 0 as in the previous section. For the sake of the exposition let us also (momen-

tarily) assume bδδ
1−βδ∆ψgov,0 < −î∗ < bδδ

2

1−βδ∆ψgov,0. Under this condition the shock is large enough to make

the ZLB bind in period 0, but from period 1 onwards the interest rate is given by bδδ
t+1

1−βδ ∆ψgov,0.

From (4.7) it is clear thatZ1 is negative. Moreover, it holds thatZ≥2 = 0.�erefore, FG lowers the interest

rate in period 1 only. We can show that π̂t is given by:

π̂t = δt−1 (−î∗ − ξ̂0)︸ ︷︷ ︸
π̂1

+δt−2Z1, t = 2, 3, , ...

Since Z1 < 0, this equation suggests that the impact of Z1 is to lower in�ation a�er t = 1. �us, in this

example FG under debt concerns has exactly the opposite e�ect than under NDC: It reduces in�ation.

Finally, let us consider a su�ciently large shock in preferences so that ∆ψgov,0 becomes su�ciently neg-

ative to make the ZLB bind for several periods. From (4.5) and (4.7) it is evident that the longer the duration

of the trap, the more persistent de�ation is and the longer is the commitment to keep interest rates low. �us,

in the case of larger shocks the planner announces a path that keeps interest rates at the ZLB over a longer

horizon; however, this does not stabilize in�ation – it leads to a sharp drop in the price level.

Finally, note that according to (4.5), in the debt concerns model there is a tendency for interest rates to

be kept at the lower bound for longer, and consequently for in�ation to be negative over longer time periods,

since shocks exert an impact on the intertemporal constraint. In simulations (not shown) we also found that

the ZLB is hit more frequently in this model. �is adds another channel via which the DC model translates

to higher macroeconomic volatility.

4.2.2 A Numerical Example

�e example of subsection 4.2.1 is of course a very particular case. Assuming σ = 0 means that output

growth exerts no in�uence on the real rate. In�ation in t = 1 has to equal−(̂i∗+ ξ̂0) under both debt concerns

and no debt concerns, otherwise the ZLB is violated. In the case where σ > 0, we can have de�ation at the

onset of the liquidity trap: Since output drops, positive expected output growth will increase the real rate,

26



“allowing” in�ation to turn negative without violating the ZLB. It is thus important to contrast the properties

of the two models under more plausible calibrations, when σ, λY , λi > 0, to see whether the �ndings of the

previous paragraph generalize.

�is is done in Figure 4, which shows the responses of in�ation, output, interest rates and debt under the

two versions of the model assuming the parameter values of Table 2. �e solid (blue) line shows responses in

the debt concerns model. �e dashed line shows responses under no debt concerns.

�alitatively, the pa�ern of adjustment of in�ation and interest rates resembles the analytical paths de-

rived previously (liquidity traps last longer now in both models because we assume a persistent shock.) Under

no debt concerns in�ation turns positive during the period when the interest rate is at the ZLB and gradually

goes back to zero a�er the economy escapes from the liquidity trap, as interest rates also gradually return to

their steady state value.20 When the shock hits, aggregate output drops, and the planner promises to gradually

increase output and ultimately engineer a boom as the economy escapes from the liquidity trap. �ese are

standard properties of the New Keynesian model’s response to the liquidity trap shock (see Eggertsson and

Woodford (2003)).

[Figure 4 About Here]

In the case of debt concerns, we see that following the preference shock in period 0, in�ation drops sharply.

It turns positive for a few periods, but subsequently becomes negative again. As the bo�om le� panel shows,

interest rates remain at the ZLB for longer. �is leads to a drop in the in�ation rate below its steady state

value, rather than a rise, consistent with our results in the previous subsection.

4.3 Discussion

�e key result we obtain in this section is that when monetary policy is subservient to �scal policy, the

tradeo� facing the planner in a liquidity trap worsens. We now place this �nding within the literature on

optimal policy in a LT.

Several papers (see e.g., Eggertsson (2006), Bha�arai et al. (2015), Burgert and Schmidt (2014) amongst

numerous others) have considered models of jointly optimal monetary and �scal policies in a liquidity trap

assuming that the planner cannot commit to allocations. �e �ndings of these papers suggest that in response

to a liquidity trap shock, the planner will �nd it optimal to reduce taxes (or increase spending in the case where

it is not exogenous to the program) and increase government debt. Since debt is a state variable in these
20�e fact that the adjustment of in�ation is gradual is due to the persistent shock and also due to the assumption σ > 0, λY > 0.
In the analytical example of the previous subsection the planner lowered interest rates only in t = 1 in the no debt concerns model,

and this led to a rise in in�ation in that period. �is path was optimal, as opposed to extending lower rates beyond period 1, because
in�ation beyond period 1 is not useful to satisfy the ZLB. �e optimal path implies a sharp rise in Ŷ1 and then Ŷt≥2 = 0.

When the planner wants to smooth output she commits to keep interest rates at the ZLB for longer, generating high in�ation today
through expectations of high in�ation tomorrow. �is mitigates the output rise in period 1.
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models and higher debt levels lead to higher in�ation, this increases in�ation at the exit from the liquidity

trap episode. �rough the Phillips curve, higher future in�ation translates into higher in�ation in the LT. �us

in these models when monetary policy takes into account the consolidated budget constraint, the planner’s

tradeo� improves.

�ere are two main di�erences here. First, we assume that taxes (and spending) are exogenous to the

planner’s program, and second we assume commitment. Had we assumed that the planner can control the

tax rate, the optimal policy response would be to lower taxes temporarily, and this would tighten the in-

tertemporal budget. 21 Equation (4.5) then says that instead of de�ation a liquidity trap could lead to in�ation

when ∆ψgov,0 > 0.22 In our model where �scal variables are exogenous this could only happen by chance, if

a negative tax shock (equivalently a positive spending shock) hits the economy in period 0.

To show the e�ect of removing the full commitment assumption we now simulate the behavior of macro-

economic variables in a model where the central bank cannot commit to future allocations. �e optimal

program is similar to the one described in Section 2, however, we now let the planner reoptimize in every

period and set the lagged values of the multipliers in equations (2.8) to (2.11) equal to zero in every period

(see e.g., Debortoli and Nunes (2010)). �e optimal policy rule that emerges from this model is

înct = φππ̂
nc
t + φY Ŷ

nc
t︸ ︷︷ ︸

T nc

+ωgovψ
nc
gov,t (4.8)

where nc denotes “no commitment” and the last term in (4.8) is relevant only under debt concerns (ψncgov will

continue to follow a random walk). �ere is no forward guidance in this model.

[Figure 5 About Here]

In Figure 5 we plot the response of the economy to the liquidity trap shock under DC and NDC. Notice

that now in�ation drops more in the NDC scenario at the onset of the LT, whereas the drop is mild under

DC. Analogously, output losses are less in the DC model. �e planner’s tradeo� improves. We conclude

that absent commitment, our framework produces a similar result to the models of optimal monetary/�scal

policies cited previously.

5 A Medium Scale DSGE Model

In this section we show that our �ndings generalize to a medium scale DSGE model. We �t an augmented

version of the theoretical framework developed in the previous sections to US data. We augment the pre-
21Note that this would then be similar to the response of optimal policy in Eggertsson and Woodford (2006) who consider jointly

optimal policies under commitment.
22Note that in the case of the jointly optimal monetary/�scal program the equations we derived in this section remain. See Section

6 where we describe this model.
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vious setup with habit formation, a trend in TFP, and shocks to markups, TFP and the consolidated budget.

Moreover, we enrich the �scal block following recent DSGE modelling (e.g., Bianchi and Ilut (2017)); we as-

sume that besides spending, governments have to �nance transfers to the private sector, which we model as

a stochastic process with two components (a trend and a cyclical component). Also, we augment the tax rule

so that taxes now adjust to other macroeconomic variables, besides debt, in order to capture the endogenous

response of taxes to the cycle.

Demonstrating robustness of our �ndings towards introducing these additional model features is impor-

tant. �e previous sections highlighted that in the debt concerns model the response of the intertemporal

constraint of the government to shocks is key to understanding the behavior of monetary policy. Yet, our

model thus far has relied on simple �scal rules for tractability. Here we use the data to identify more realistic

�scal rules and study optimal policy in a model that provides a more accurate image of the US economy.

We �rst provide a brief overview of the model and describe our estimation approach and the output we

get from this exercise. We then use the estimated output to study the e�ects of shocks on macroeconomic

variables and optimal policy.

5.1 �e Model

5.1.1 Households

We assume that household preferences are of the following form:

E0

∞∑
t=0

βtξt

(
log(Ct − ΩCat−1)− χ h

1+γh
t

1 + γh

)

where Ct denotes the consumption of the household, ΩCat−1 is an external habit stock, where 0 < Ω < 1

and Cat−1 denotes the average level of consumption in t − 1. �e household derives disutility from exerting

labor e�ort ht. Parameters χ and γh govern the household’s preferences over leisure. As previously, ξt is a

preference shi�er that impacts the relative discounting of current and future utility �ows.

�e household maximizes utility subject to the �ow budget constraint:

PtCt + Pt,LBt,δ + Pt,SBt,S = (1− τt)Wtht + PtTrt +Bt−1,S + (1 + δPt,L)Bt,δ + PtDivt

Bt,δ is a long government bond. Pt,L is the price of the asset. Bt,S denotes the quantity of short-term (one-

period) debt, which is in zero net supply. Wt denotes the nominal wage, and Pt is the price level. Finally,Divt

is real dividends paid by monopolistically competitive �rms, and Trt denotes lump sum transfers given to the

household by the �scal authority. �e household maximizes utility subject to the �ow budget constraint. For

brevity the �rst order conditions are stated in the online appendix.
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5.1.2 Firms

We assume that output is produced by a continuum of monopolistically competitive �rms that operate

technologies with labor as the sole input. Aggregate output is produced by a representative, perfectly competi-

tive, �nal-good producer that aggregates the intermediate products of �rms according toYt =
( ∫ 1

0 Yt(j)
1+ηt
ηt dj

) ηt
1+ηt .

ηt is a (time varying) parameter that governs the elasticity of substitution across di�erentiated products.

Pro�t maximization for �nal-good producers gives the following demand of intermediate goods: Yt(j) =(
Pt(j)
Pt

)ηt
Yt.

�e production function of the generic intermediate-good �rm j is Yt(j) = Atht(j)
1−α, whereAt denotes

the level of TFP in the economy.

We further assume that intermediate goods �rms face price adjustment costs as in Rotemberg (1982). �e

cost function of �rm j is the following: ACt(j) = θ
2( Pt(j)
Pt−1(j) −π)2Yt. θ ≥ 0 again governs the degree of price

stickiness. π is the steady state level of gross in�ation.

Intermediate-good producers seek to maximize pro�ts subject to the constraints imposed by the above

equations. �e �rst order conditions (stated formally in the online appendix) give us the (non-linear) New-

Keynesian Phillips curve:

θ(πt − π)πt = (1 + ηt)(1−
MCt
Pt

) + βθEt
Ct − ΩCat−1

Ct+1 − ΩCat

Yt+1

Yt
(πt+1 − π)πt+1

where MCt denotes marginal costs of production.

Finally, we assume that the log growth rate of TFP evolves according to the following stochastic process:

ln
( At
At−1

)
≡ at = (1− ρa)γ + ρaat−1 + εa,t

�e parameter γ denotes the steady state growth rate of the economy.

5.1.3 Government

�e government levies distortionary taxes to �nance spending Gt and transfers Tt. Imposing that short

debt is in zero net supply we write the �ow budget constraint as:

Pt,LBt,δ = (1 + δPt,L)Bt−1,δ + Pt(Gt + Trt)− τtWtht + Λt

We augment the �ow budget with an exogenous shock variable Λt, capturing features that we have le� outside

the model. �ese could derive from changes in the maturity of debt or the term premium, but also (more

crucially) from variation in revenues and spending from sources that we do not model explicitly here (tax
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revenues from capital income or consumption taxation, public investment, etc.).

As in Section 2 we assume that taxes follow an exogenous rule that relates the current tax rate to the

lagged value of debt. In the next subsection we de�ne this rule in the log-linear version of the model.

5.1.4 Log-Linear Model

Since productivity grows over time in our model, we rescale model variables and linearize the model

equations around the deterministic steady state. For brevity we relegate all derivations and the description of

the log-linear equations characterizing the competitive equilibrium of the economy to the online appendix.

Here we describe the functional forms we adopt for the �scal policy variables (taxes and transfers) and the

stochastic processes for the exogenous shocks.

We assume the following feedback rule for taxes:

τ̂t = ρτ τ̂t−1 + (1− ρτ )
[
φτ,bb̂δ,t−1 + φτ,y(Ŷt − Ŷ n

t ) + φτ,g(g
−1ĝt + t̂r

∗
t )
]

+ ετ,t (5.1)

Notice that we now allow aggregate output (in deviation from its natural level Ŷ n
t )23 and the level of govern-

ment expenditures (composed of government spending and transfers) to impact directly the tax rate in period

t. �e variable t̂r∗t is de�ned as the long-term component in government transfers, and as in Bianchi and Ilut

(2017) evolves exogenously following an AR(1) process:

t̂r
∗
t = ρtr∗ t̂r

∗
t−1 + εtr∗,t (5.2)

�e deviation of transfers t̂rt from their long-run trend t̂r∗t responds to its �rst order lag and to the output

gap. We have:

t̂rt − t̂r
∗
t = ρtr(t̂rt−1 − t̂r

∗
t−1) + (1− ρtr)φtr,y(Ŷt − Ŷ n

t ) + εtr,t (5.3)

We assume that εtr,t and εtr∗,t are i.i.d. �e stochastic processes of the remaining exogenous variables are

assumed to follow:

x̂t = ρxx̂t−1 + εx,t

for x̂ ∈ {Ĝ, â, Λ̂, ξ̂, η̂} and where εx,t is an i.i.d shock to variable x. �us, exogenous shocks to spending, TFP,

Λ̂, markups, and preferences follow �rst order autoregressive processes.
23We de�ne the natural level of output as the �exible price level. When the planner chooses optimal policies we assume she does

not account for their impact on Ŷ nt . For brevity, we discuss the details in the online appendix.
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5.1.5 �e Planner’s Objective

We maintain in estimation the assumption that monetary policy is optimal; this allows us to recover

directly from the data parameters λi, λY along with other model parameters. Moreover, for the quantitative

model of this section, we adopt the following objective function:

−1

2
E0

∞∑
t=0

βt
[
π̂2
t + λY

(
Ŷt − Ŷ n

t

)2

+ λi

(
ît − ît−1

)2]
(5.4)

assuming that the planner seeks to minimize the deviation of in�ation in t from the steady state level π, the

deviation of output from its natural level Ŷ n
t , and the change in value of the nominal interest rate relative to

the value in the previous period. Note that (5.4) is commonly used in estimated DSGE models with optimal

monetary policy (see, for example, Debortoli and Lakdawala (2016) among others). We thus follow the recent

literature in our choice of the objective, however we note that our results below do not hinge crucially on this

choice (we get similar �ndings when we assume a loss function as in (2.6)). Under (5.4) the optimal policy

model continues to admit a closed form expression for the interest rate rule which, as in Section 2, features

components T , D and Z. For brevity we do not derive the interest rate rule here.

5.2 Estimation

We now turn to the estimation of the model. We �t the model to US observations using data from the

period 1980Q1–2008Q4. We stop before the �rst quarter of 2009 because, as is well known, the short-term

interest rate in that quarter was at the ZLB. Accounting for this in estimation implies that standard estimation

techniques (e.g., Smets and Wouters (2007)) do not apply.

�e macroeconomic aggregates that we employ in estimation are output, in�ation, the federal funds rate,

tax revenues, total government expenditures, government spending, and the market value of government

debt. We express the last four series as a fraction of GDP. �e details on the sources and construction of

these variables, together with the measurement equations we employ to link the series to model variables,

are spelled out in the online appendix.

Notice that the task of estimating the model is complicated because we have two model versions we can

choose from: the version where monetary policy takes into account the consolidated budget and the version

where monetary policy has no debt concerns. To choose which version we want to estimate we have to decide

whether assuming no debt concerns describes more accurately US monetary policy since the 1980s when our

sample begins, or if over this period monetary policy was subservient to �scal policy as in the DC model.

Bianchi and Ilut (2017) estimate a DSGE model allowing for the monetary/�scal policy mix to vary through

time. �ey �nd that from the 1980s until 2008 monetary policy was active and �scal policy passive. Since this
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corresponds to the no debt concerns model, we estimate our structural optimal policy framework assuming

that the Fed chooses allocations without taking into account the consolidated budget.

5.2.1 Priors and Posterior Distributions

As is typical, we proceed with estimation by �rst selecting prior distributions for the parameters we

wish to estimate and picking values for parameters that we want to �x in estimation. Table 3 summarizes

the calibrated values of the parameters that we �x, and the right side of Table 4 reports our choice of prior

distributions for the parameters we estimate with Bayesian techniques. �e priors are in line with previous

papers in the literature (see e.g., Bianchi and Ilut (2017)) and are relatively loose.

[ Tables 3 and 4 About Here]

We �x the values of the labor share, α, the elasticity of labor supply, 1
γh
, the demand elasticity parameter,

η, and the decay factor of the long-term bond, δ. We assume α = 0.66 and γh = 1. �e decay factor δ is set

to 0.95, which gives us an average maturity of 5 years, consistent with US data. �e steady state value of η is

such that markups are 15 percent. Finally, we normalize the steady state value of output to unity.

�e le� side of Table 4 reports the posterior estimates of the model parameter distributions. According to

the values reported in the table, the Phillips curve is relatively �at (the mean estimate of κ is 0.017) and the

distribution of the habit parameter Ω is centered at roughly 0.5. Moreover, the estimated response of taxes

to the lagged value of debt is low (φτ,b = 0.068 at the mean). �ese values are very close to the analogous

objects reported in Bianchi and Ilut (2017).

Finally, notice that the estimates of the coe�cients λi and λY are in range of recent estimates of optimal

Ramsey models with US data (see e.g., Debortoli and Lakdawala (2016) and references therein).

5.3 Optimal Policies in Response to Shocks

We now use the estimation output to investigate the impact of shocks on macroeconomic variables. We do

this, �rst, by assuming that the ZLB does not bind, then separately consider the case where the ZLB constraint

binds.

5.3.1 �e E�ects of Shocks away from the ZLB

Figures 6 and 7 show the responses of in�ation, interest rates, output and debt-to-GDP to each of the

shock processes considered in the model. We assume a one standard deviation innovation to each process,

based on the estimates reported in Table 4. Figure 6 considers the case of a preference shock (le� panel), a

spending shock (middle le� panel), a tax shock (middle right panel) and a markup shock (right panel). Figure

7 shows the responses to a shock to the government budget, a shock to TFP and shocks to the business cycle
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and long-term components of transfers (respectively, from le� to right). Notice that the impact e�ects of

each of the shocks on the model variables are now measured in percentage points. �erefore, 1 is a 1 percent

increase of a variable relative to the balanced growth path, 0.1 is a 0.1 percent increase, etc.

[Figures 6 and 7 About Here]

From the �gures we see that under no debt concerns, in�ation is basically una�ected by shocks to prefer-

ences, spending, taxes, transfers and shocks to the budget. Shocks to TFP exert a small in�uence on in�ation,

but mainly markup shocks are the key driving force behind in�ation variability. �is model property can be

explained as follows: First, preference and spending shocks exert only a minor in�uence because these shocks

are persistent and also because monetary policy is optimal. Due to high persistence, these shocks do not pro-

voke large movements to the real rate. Given welfare losses derive from the volatility of interest rate growth

in (5.4), the planner can adjust permanently the nominal interest rate by a few basis points in response to the

shocks, without impinging substantial welfare losses. Tax shocks on the other hand, under no debt concerns,

a�ect the in�ation output tradeo� through their in�uence on the Phillips curve, but the estimates in Table 4

suggest that this e�ect is not large. �is also applies to shocks to the consolidated budget, which can lead to

changes in taxes.

�e �nding that markup shocks are a key driving force behind in�ation dynamics is not out of line with

the rest of the literature. Several studies have reached a similar conclusion (e.g., Fra�o and Uhlig (2014),

Hall (2011), Michallat and Saez (2014)). Some authors have suggested that this property hints at a failure of

the NK model in (endogenously) explaining in�ation. Our optimal policy model o�ers a di�erent perspective:

In�ation is driven by shocks to markups only, because monetary policy is very e�ective in stabilizing in�ation

against other types of shocks.

In contrast, as can be seen from Figures 6 and 7, under debt concerns in�ation responds strongly to all

types of shocks, including shocks in �scal variables and also the e�ects of markup shocks, and TFP shocks are

now larger. �e reason is that now shocks exert an in�uence on the consolidated budget, and since the planner

has to satisfy the constraint, she will use in�ation (or de�ation) to adjust real debt accordingly. For example,

following a negative TFP shock, tax revenues will drop (since real wages decrease) and this will tighten the

intertemporal constraint. Analogously, a markup shock increases �rm pro�ts (not taxed) and lowers real

wages, thus reducing overall government revenues. �is induces the planner to engineer a larger rise in

in�ation to ensure debt sustainability. Finally, transfer shocks and the shock to Λ a�ect the consolidated

budget in the same manner as a shock to spending or taxes. Consistent with our previous �ndings, debt

concerns introduce a new channel (the consolidated budget) via which shocks can a�ect macroeconomic

variables and it magni�es macroeconomic volatility.
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5.3.2 Optimal Policies at the ZLB

We now turn to study optimal policies in response to a shock that drives the economy in a LT. Rather than

simply asking the model to draw a large enough preference shock from the posterior distribution, we ask the

model to recover the shocks that, in the �rst quarter of 2009, brought the US economy to the LT. �us we �rst

use the data to recover smoothed shocks so that our (NDC) model can �t the macroeconomic time series in

2009Q1, and then analyze the e�ect of the preference shock separately in the DC and NDC models.24

Figure 8 plots the paths of in�ation (top le�), interest rate (top right) and debt and output growth (bo�om

le� and right, respectively). Since the responses are generated using the preference shock we recovered from

the data, the horizonal axis is dated. �e solid lines show again the case of debt concerns, and the dashed

lines show the no debt concerns model. For comparison we also show in the do�ed (black) lines the (�ltered)

data observations.

[Figure 8 About Here]

Consider �rst the responses in the no debt concerns model. Notice that the model generates a positive

in�ation rate in response to the preference shock; the in�ation rate drops to around 1 percent in the beginning

of 2009 and very quickly reaches the steady state level (around 2 percent). �us in�ation is stable in the LT.

Second, the model predicts that interest rates remain at the ZLB for several quarters a�er 2009. In particular,

interest rates are at the ZLB until 2011Q1 and then gradually return to steady state. �ird, as can be seen from

the middle right panel, the model predicts that output growth recovers rapidly in 2009 and subsequently is

stabilized close to the steady state rate of TFP growth.

In contrast, the DC model predicts that in�ation turns negative in 2009 and continues being negative until

the �nal quarter of 2010. Interest rates remain at the ZLB until the end of 2013, and �nally, output growth is

more negative at the onset of the liquidity trap episode than in the NDC model.

�ese predictions are clearly in line with our previous �ndings: Promising to keep interest rates at the

ZLB for a long period when monetary policy is subservient to �scal policy does not improve the planner’s

tradeo�. FG under debt concerns leads to a sharp drop in the price level, and as we saw, output growth is less

stable than in the case of no debt concerns. Moreover, the duration of the liquidity trap is longer. We conclude

that the theoretical results in Section 4 hold also in the larger scale model we employ in this section.
24For brevity we describe in detail in the online appendix the procedure that we follow to recover the shocks. Basically we use a

standard Kalman �lter augmented to account for piecewise linear solutions, allowing us to deal with an occasionally binding ZLB
constraint.
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6 Robustness and Extensions

In this section we explore the robustness of our �ndings when we vary several model features. First, we

consider the case where taxes are lump sum. Second, we consider a jointly optimal monetary and �scal policy

program whereby we assume the planner can set the tax rate along with in�ation, output and the interest

rate. �ird, we investigate how varying the maturity of debt a�ects our �ndings. Lastly, we brie�y explore

an extension of our model that allows for regime �uctuations.

6.1 Lump Sum Taxes

Our analysis throughout Sections 2 to 5 assumes that the government levies distortionary taxes on labour

income. �is assumption is realistic and also standard in models of optimal policy under incomplete markets.

In numerous DGSE models, however, taxes are lump sum. We show that our �ndings are robust towards this

assumption.

Note that assuming lump sum taxes essentially amounts to se�ing κ2 = 0 in equation (2.2). Moreover, the

surplus becomes SŜt =

[
(τ −G)

(
ξ̂t− σ YC Ŷt + ξ̂t

)
+ τ τ̂t−GĜt

]
. Notice that these changes have basically

no impact on the monetary policies derived in Propositions 1 and 2. �us, the categorization of monetary

policy into passive/active is the same when we introduce lump sum taxation.

In contrast, the conditions under which �scal policy is active/passive do change. For instance when we

use the assumptions of subsection 3.1.1 and assume lump sum taxation we get:

Proposition 5. Determinacy under lump sum taxes Assume that taxes are lump sum and follow a rule

of the form (2.1). Also assume that parameters λY , G, δ, σ and ρτ have values as in subsection 3.1.1 (Proposition

3). �e equilibrium under DC (NDC) is uniquely determined if

1

β

[
1− (1− β)φRτ,b

]
> 1 (< 1)

Proof: See online appendix.

Clearly the regions in which �scal policy is active/passive de�ned in Proposition 5 di�er from the analo-

gous objects in Proposition 3. However, the principle that �scal policy is active when taxes strongly respond

to debt and passive otherwise continues to hold.

Given this �nding, it is possible to rederive all results of Section 3 with the assumption that taxes are

lump sum. Rather than showing additional derivations in the online appendix we resort to simulations to

study the responses to shocks and compare them with the case where taxes are distortionary. We �nd that

the responses are very similar in both the debt concerns and no debt concerns models. We thus conclude that

our �ndings continue to hold when we introduce lump sum taxation in our framework.
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6.2 Jointly Optimal Policies

We now extend our analysis to consider the case where the planner can set taxes along with in�ation,

interest rates and output. As discussed previously, many papers have studied jointly optimal monetary and

�scal policies using models that are broadly similar to ours but mainly resorting to global solution methods to

approximate equilibria numerically. We investigate whether in our linear model, an optimal allocation with

coordinated policies is close to the debt concerns equilibrium or to the no debt concerns outcome.

To allow taxes to be set optimally we abandon �scal rule (2.1). We further assume that distortionary

taxation enters into the loss function (2.6) so that the planner seeks to minimize tax volatility. We assign

a weight λτ ≥ 0 to this objective. �e optimal policy is otherwise similar to the debt concerns model; the

planner optimizes the loss function subject to constraints (2.2) to (2.5). It is easy to show that the �rst order

condition with respect to τ̂t gives

−λτ τ̂t + ψgov,t
(1 + η)τY

η(1− τ)
− ψπ,tκ2 = 0

�e remaining FONC (for π̂t, Ŷt, ...) for this program are unchanged relative to Section 2.

Consider the assumption σ = λY = 0. We can show (see the online appendix) that optimal taxes are

given by

τ̂t = ψgov,t
1

λτ

(1 + η)τY

η(1− τ)
[1− τγh

1 + γh
] (6.1)

Moreover, note that [1 − τγh
1+γh

] exceeds 0, otherwise the economy is on the wrong side of the La�er curve.

�us, from (6.1) taxes adjust upwards whenever the consolidated budget tightens and vice versa. According

to (2.11) taxes follow a random walk.

Is �scal/monetary policy active/passive? Optimal monetary policy follows a rule of the form:

ît = (1 + δ)π̂t −
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l (6.2)

�e impact of the last (interest rate twisting) term on the RHS is key. When this term is zero, then monetary

policy is active, otherwise it is passive. �erefore, ultimately, the behavior of policy depends on whether

shocks to the consolidated budget exert a signi�cant in�uence, so that the multiplier ψgov,t displays volatility.

In the case where λτ = 0 taxes will adjust to fully absorb shocks to the consolidated budget and we can show

that ψgov,t = 0 for all t. In this case �scal policy is passive and monetary policy is active. In contrast, when λτ

approaches in�nity, taxes are constant and equal to the steady state value. Under this scenario, �scal policy

is active and monetary policy is passive.
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Intermediate cases cannot be characterized analytically. It is evident that the model has both forces,

passive and active. Notice that this is consistent with previous �ndings in the literature (e.g., Leeper and Leith

(2016), Schmi�-Grohé and Uribe (2004)). To �nd out which of the two regimes is closer to equilibrium policies

in the coordinated policies outcome we need to resort to numerical simulations. In the online appendix, we

consider alternative values of λτ and study impulse responses to shocks. We �nd that even moderate values

for the weight λτ brings us close to the debt concerns outcome.

Lastly, consider the case where taxes are lump sum. Since in this case taxes are essentially a slack variable

in the government budget constraint we have ψgov,t = 0 at the optimum. �e optimal mix of monetary/�scal

policies is thus “active/passive”.

6.3 �e Role of Debt Maturity

We provided several analytical expressions in previous sections, showing how monetary and �scal policy

rules vary with parameter δ. �e maturity of debt is an important variable here since long-term bonds allow

the planner to spread in�ation over more periods. Hence, the policy responses to shocks depend on whether

the government issues short debt (δ = 0) or long-term bonds (δ > 0). �is property is well known (see, for

example, Lustig et al. (2008)) and for brevity we leave it to the online appendix to show impulse responses of

key model variables under alternative calibrations of δ. It is, however, important to highlight here that none of

our previous results regarding the characterization of monetary and �scal policies hinges on the exact value

of δ. �us, broadly speaking, our analysis is robust towards changing the value of this parameter.

�e assumption we made in this paper, that governments issue debt in the form of a single bond that pays

decaying coupons, is standard in DSGE models. A recent literature, however, studying optimal debt manage-

ment in macroeconomic models (see, for example, Angeletos (2002), Buera and Nicolini (2004), Debortoli et al.

(2017), Bhandari et al. (2017), Faraglia et al. (2018) among others) allows governments to issue multiple bonds

simultaneously and investigates how the maturity structure of debt can be targeted to make debt sustainable.

If we included in the model an optimizing debt management authority, as recent papers in debt management

do, would our conclusions be a�ected?

In subsection 3.2.1 (footnote 15) we gave an example where issuing a �at maturity structure (δ = 1)

completely eliminates the impact of preference shocks on the consolidated budget. We had ψgov = 0 and

therefore the debt concerns outcome became identical to the no debt concerns outcome. �is provided an

example where debt management overrides �scal/monetary policies and the distinction between active and

passive policies becomes less meaningful. Analogously, the work of Angeletos (2002) and Buera and Nicolini

(2004) showed that governments that want to hedge against spending shocks can issue long-term debt and

accumulate assets in short maturity. Presumably, if an optimizing debt management authority followed this
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strategy in our model, the impact of spending shocks to the consolidated budget would also be zero.

In both these cases debt management can “complete the market”, so that intertemporal consolidated bud-

gets become irrelevant to the planner’s program. Recent papers in the debt management literature have

argued, however, that such an outcome is practically una�ainable, since governments face frictions when

issuing debt. Lustig et al. (2009) �nd it is implausible to assume that governments invest in private assets,

Faraglia et al. (2018) argue that transaction costs associated with repurchasing long-term bonds limit the

scope of hedging against �scal shocks and �nally Bhandari et al. (2020) argue that debt management has too

few instruments to deal with a large numbers of shocks. In all of these papers markets are “incomplete” (as in

our model) and thus intertemporal budget constraints ma�er in equilibrium. Under incomplete markets, we

have ψgov 6= 0 and the results of this paper continue to hold.

Clearly, the interplay between debt management, �scal and monetary policies is interesting and worth-

while exploring in future research.

6.4 Switching across Regimes

In this �nal section of the paper we discuss an extension of our framework that allows for regime �uc-

tuations. A recent stream of papers (e.g., Davig and Leeper (2007), Bianchi and Ilut (2017), Bianchi and

Melosi (2017, 2019)) considers models where the policy mix can oscillate between “active/passive” and “pas-

sive/active”, randomly through time. To complete our analysis, we discuss here how to model shi�s across

the DC and NDC equilibria when monetary policy is optimal. Since a full theory of recurrent shi�s is beyond

the scope of this paper, we assume that they are one-o� events. �us we will consider the case where, starting

from the DC model, there is a sudden and unexpected shi� to the NDC equilibrium and vice versa. �is is

su�cient to demonstrate that our framework can encompass regime �uctuations, but also allows us to show

transparently key aspects of the transition between the two equilibria. In the online appendix we provide

a more complete treatment allowing for recurrent shi�s across DC and NDC equilibria and derive optimal

interest rate rules in this case.

As we have seen, the optimal rules in Propositions 1 and 2 di�er when Dt 6= 0. When the �scal authority

does not guarantee solvency of the intertemporal budget, the multiplierψgov di�ers from zero and, conversely,

when φRτ,b is su�ciently high, entailing a strong response of taxes to debt, then ψgov = 0 in the NDC regime.

�us, switching from the DC to the NDC equilibrium, requires changing the value ofφRτ,b, and se�ingψgov = 0

when the switch occurs.

An important aspect of this transition (from DC to NDC) has to do with the promises D that the planner

made in past periods. �ese interest rate twists are time inconsistent, in the sense that if the planner is allowed

to reoptimize when the switch occurs, she will set D = 0.
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Formally, suppose that in period t the feedback tax rule coe�cient changes from φDCτ,b to φNDCτ,b . Since

now �scal policy generates su�cient surpluses to �nance debt, the consolidated budget constraint is, from

the point of view of the planner, slack. �e continuation Ramsey program solves:

max−1

2

∞∑
t=0

βtEt

{
π̂2
t+t + λY Ŷ

2
t+t + λiî

2
t+t

}
(6.3)

subject to the Phillips curve and the Euler equation (assuming we are away from the ZLB). It can be easily

shown that the solution to this program is a policy rule of the form ît+t = T NDC
t+t

for t = 0, 1, 2.... �e

planner sets Dt = 0 when reoptimization occurs.

An alternative setup in which the planner “remembers” promises made in the past and in which the

solution to the continuation problem in t does not set Dt = 0 is the following: �e planner maximizes

−1

2

∞∑
t=0

βtEt

{
π̂2
t+t+λY Ŷ

2
t+t+λiî

2
t+t

}
+

(
−ψgov,t−1 +

∞∑
l=1

δl∆ψgov,t−l

) ∞∑
t=0

(δtβt)Et

(
bδ

1− βδ
π̂t+t + σ

Y

C
bδŶt+t

)
︸ ︷︷ ︸

P

subject to (2.2) and (2.3). Adding the second order term P in the continuation program forces the planner to

keep with past promises.25 It can be easily checked that the FONC with respect to Ŷt+t and π̂t+t are essentially

equations (2.8) and (2.9) when ψgov,t+t = 0, t > 0. �e solution to the above program is a policy rule of the

form:

ît+t = Tt+t −
C

Y

κ1

λiσ

bδ
1− βδ

(
−δtψgov,t−1 +

∞∑
l=1

δl+t∆ψgov,t−l

)

− bδ
λi

(
−δtψgov,t−1 +

∞∑
l=1

δl+t
(

∆ψgov,t−l −∆ψgov,t−l−1

))
+
CωY

Y σλi
ψgov,t−1It=0 (6.4)

which is basically the interest rate rule in Proposition 1, with multipliers ψgov,t = ψgov,t+1 set to zero. Since

the economy was in the DC regime before t, the multipliers ψgov,t−l, l > 0 will generally be di�erent from

zero.

Optimal policy under rule (6.4) and optimal policy when the planner “forgets” past promises will in gen-

eral have di�erent e�ects on the macroeconomy. First, obviously, because interest rate commitments made

between period 0 and t − 1 will have a bearing on the path of interest rates from date t onwards and thus

impact macroeconomic variables. Second, because of these extra terms that capture previous commitments,

monetary policy may “partially” be in the passive regime even a�er date t, for a while, until the in�uence of

these terms fades out.

To evaluate this we turn to a numerical example. We consider an “optimal disin�ation scenario”: We
25See, e.g., FMOS. Alternatively, we could assume optimal policy from a “timeless perspective” to force the planner to keep with

past promises.
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assume that at date 0 the planner inherits a high debt level, and for the �rst t − 1 periods the economy is in

the DC regime. Fiscal policy is active, unable to generate su�cient surpluses to ensure debt sustainability, and

in�ation rises to make debt sustainable. In period t, unexpectedly, �scal policy becomes passive, and monetary

policy switches to NDC. We consider the impact of the switch in policy on macroeconomic variables in the

case where the planner remembers past commitments and in the case where she reneges on them.

6.4.1 An Optimal Disin�ation

Consider for simplicity the calibration σ = λY = λi = 0. Under these assumptions, rule (6.4) becomes

ît+t = (1 + δ)π̂t+t −
bδ

1− βδ

(
−δtψgov,t−1 +

∞∑
l=1

δt+l∆ψgov,t−l

)
(6.5)

In the case where monetary policy abandons past promises at t, the interest rate rule becomes ît+t = (1 +

δ)π̂t+t. Between period 0 and t− 1, optimal policy is of the form ît = δπ̂t.

�e top panels of Figure 9 plot the responses of in�ation, output interest rates and debt when we assume

that initially debt is 30 percent above the steady state and set t = 10. Between periods 1 and 9 (in the

DC regime) in�ation turns positive; this reduces the real payout of debt and makes the intertemporal budget

solvent. Nominal interest rates rise, since in�ation and interest rates are positively correlated in the DC model.

�e dashed red line shows the case where the planner remembers past commitments in the NDC regime and

the solid (blue) line the case where she sets Dt = 0. To make the e�ects transparent, we show the behavior

of macroeconomic variables over 20 model periods.

[Figure 9 About Here]

Notice �rst that the two scenarios give the same outcome between 0 and t − 1. �is is so because the

switch in period t is fully unanticipated. A�er period t, the two models behave quite di�erently, with the

solid blue lines suggesting that debt, in�ation, output and interest rates are all stabilized when the planner

reneges on past commitments. In contrast, the dashed red lines show that in�ation turns negative, the real

value of debt grows and gradually reverts back to the pre-switch level and, �nally, interest rates drop below

their steady state value.

To understand these results, notice that when �scal policy becomes active, the government’s future sur-

pluses increase. Standard arguments imply that in�ation can turn negative in order to stabilize the intertem-

poral budget (so that debt does not continue decreasing rapidly). In the case where the policy rule is of the

form ît+t = (1 + δ)π̂t+t, the planner would lower interest rates aggressively in response to de�ation. �is

accomplishes stabilizing prices. Debt continues to be higher than its steady state level, since taxes remain

low, when ρτ > 0 as is assumed in the �gure.
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In contrast, if monetary policy is of the form (6.5) it resembles a passive money policy. �e term− bδ
1−βδ

(
−δtψgov,t−1+∑∞

l=1 δ
t+l∆ψgov,t−l

)
exceeds 0 and this makes interest rates less responsive to de�ation. In equilibrium,

prices drop and interest rates turn negative because the leading term (1 + δ)π̂t+t in (6.5) dominates.

�e bo�om panels of Figure 9 perform the above experiment under the calibration σ = λY = 1 and

λi = 0.5. �e results are essentially the same. �e above results suggest that in the case where regime-

switching is not accompanied by reoptimization, an optimal policy that aims at stabilizing in�ation has the

opposite impact and instead destabilizes in�ation.

Note that these �ndings are partly driven by the assumption that regime changes are unanticipated one-

o� events: If regime changes were recurrent events, then se�ing lagged multipliers to zero when there is a

switch towards NDC would introduce an element of lack of commitment that would possibly make policy

less e�ective in stabilizing debt during a DC regime, since the private sector would expect interest rate com-

mitments not to be kept. On the other hand, keeping with past commitments leads to de�ation in the NDC

regime. �is will also a�ect the planner’s ability to reduce debt. �e interplay between these forces is le� to

explore in future work.

In the online appendix we extend this analysis further. We �rst derive optimal interest rate rules in the

case of recurrent Markov switches across regimes. We then show how in this model, in which the history

of regimes needs to remembered by the planner, the state vector can be condensed so that standard solution

techniques are utilized.

7 Conclusion

A large literature on optimal monetary and �scal policies has relied on non-linear models to characterize

optimal policies. �ese models cannot be mapped to DSGE models on monetary/�scal interactions. We o�er

a novel framework that brings together these strands of literature and analyze optimal monetary policy with

and without debt.

In our framework a Ramsey planner (the central bank) sets allocations under commitment to minimize the

deviations of in�ation, output and interest rates from their respective target levels. When monetary policy

exhibits “debt concerns” then optimization is subject to the consolidated budget constraint; otherwise it is

not.

Our model is tractable and admits an analytical solution for interest rate rules. In the case where debt

is taken into account in optimization, monetary policy becomes subservient to �scal policy and resembles a

”passive money” policy. Fiscal policy is ”active” and taxes do not �nance debt. In contrast, under “no debt

concerns”, monetary policy is “active” and �scal policy is “passive” and ensures debt sustainability.
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We analyze the e�ectiveness of monetary policy in stabilizing the macroeconomy under each of the two

setups considered. We �nd that under debt concerns, policy is much less e�ective in dealing with shocks, and

macroeconomic volatility increases. During liquidity trap episodes, the tradeo� facing the planner worsens.

�ese �ndings continue to hold in a medium scale version of our model that we estimate with US data.
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Figure 1: Optimal Policies away from the ZLB: λY = λi = 0

Notes: �e �gure plots the response of model variables to a shock in preferences (le� panels), spending (middle panels)
and taxes (right panels). �e solid (blue) line represents the debt concerns model and the dashed (red) line the no debt
concerns model. We set λY = λi = 0 in the planner’s objective. See Section 3.2 for details.
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Figure 2: Optimal Policies away from the ZLB: λY = λi = 0.5, σ = 1

Notes: �e �gure plots the response of model variables to a shock in preferences (le� panels), spending (middle panels)
and taxes (right panels). �e solid (blue) line represents the debt concerns model and the dashed (red) line the no debt
concerns model. We set λY = λi = 0.5 in the planner’s objective. See Section 3.2 for details.
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Figure 3: Forward Guidance in the Model with Taylor Rules
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Notes: �e �gure plots the response of model variables to a FG shock. We assume that monetary policy follows rule
(4.1) and σ = 1. �e solid lines assume that the planner commits to lower interest rates in period t = 4. �e dashed
lines set t = 8. In the bo�om graphs of panels a) and b) of the �gure the planner announces that interest rates will be
kept at zero between periods 0 and t− 1 and also announces lower rates in period t.
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Figure 4: Optimal Policies at the ZLB

Notes: �e �gure plots the response of model variables to a preference shock that drives the economy to the LT. �e
solid (blue) line represents the debt concerns model and the dashed (red) line the no debt concerns model. We set
λY = λi = 0.5 in the planner’s objective.
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Figure 5: Optimal Policies at the ZLB under No Commitment

Notes: �e �gure plots the response of model variables to a preference shock that drives the economy to the LT. We
assume that the planner cannot commit to future allocations. �e solid (blue) line represents the debt concerns model
and the dashed (red) line the no debt concerns model.
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Figure 6: Responses to Shocks: �antitative Model

Notes: �e �gure plots the responses of model variables to economic shocks in the quantitative model of Section 5. To
construct the impulse response functions we apply the estimates of the model reported in that section. �e size of each
shock is 1 standard deviation from its posterior distribution estimate. �e le� panels show the responses to a preference
shock, the middle le� panels the responses to a spending shock, the middle right panels the responses to a tax shock
and the right panels the responses to a markup shock. �e solid (blue) line represents the debt concerns model and the
dashed (red) line the no debt concerns model.
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Figure 7: Responses to Shocks: �antitative Model

Notes: �e �gure plots the responses of model variables to economic shocks in the quantitative model of Section 5. �e
responses are constructed in the same fashion as those shown in Figure 6. �e le� panels show the responses to a shock
to the government budget constraint, the middle le� panels the responses to a TFP shock, the middle right panels the
responses to a transfer shock and the right panels the responses to the long-run components of transfers. �e solid
(blue) line represents the debt concerns model and the dashed (red) line the no debt concerns model.
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Figure 8: Optimal Policy in Response to a LT Shock

Notes: �e �gure plots forecasts of in�ation (top le�), market value of debt-to-GDP (top right), interest rates (middle
le�), output growth (middle right), tax revenues-to-GDP (bo�om le�) and the primary de�cit-to-GDP ratio (bo�om
right) in the models, in the counter-factual case where all �scal variables (government debt, government spending,
taxes and transfers) are set to their steady state value at the end of period 2009Q1. �e solid (blue) line represents the
debt concerns model. �e dashed (red) line is the no debt concerns model. �e data are the same as in Figure 7.
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Figure 9: Switching from DC to NDC

Notes: �e �gure plots the behavior of macroeconomic variables when there is an unanticipated change from DC to
NDC. �e top panels simulate the economy when σ = λY = 0. �e bo�om panels assume σ = λY = 1. �e solid lines
represent the case where the planner reneges on promisesD when the shi� to the NDC regime occurs. �e dashed lines
assume the planner “remembers” D a�er the switch.
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Table 1: Model Implied Taylor Rules

Parameter Coe�cients of Taylor Rule

σ = 1 σ = 2

λi = 0.5 λi = 1 λi = 0.5 λi = 1

φ̃π
0.104 0.070 0.080 0.055

(0.537) (0.268) (0.268) (0.134)

φ̃i
0.870 0.905 0.897 0.923

(1.270) (1.270) (1.135) (1.135)

φ̃∆i
0.509 0.528 0.585 0.599

(1.005) (1.005) (1.005) (1.005)

φ̃π
0.271 0.209 -0.039 -0.024

(0.537) (0.268) (0.268) (0.134)

φ̃Y
0.052 0.003 0.2305 0.156

(0.800) (0.800) (0.200) (0.200)

φ̃i
0.629 0.750 0.705 0.765

(1.270) (1.270) (1.135) (1.135)

φ̃∆i
0.0904 0.252 -0.272 -0.232

(1.005) (1.005) (1.005) (1.005)

Notes: �e table reports model implied Taylor rules ît = φ̃ππ̂t + φ̃Y ∆Ŷt + φ̃i∆ît−1 + φ̃∆i∆ît−1 under debt concerns
(see Section 3). �e top panel assumes λY = 0 and the bo�om panel sets λY = 0.5. Each of the columns reports the
values of parameters (φ̃π, φ̃Y , φ̃i, φ̃∆i) under alternative calibrations of λi and σ. �e numbers in parentheses report
the values we obtain from the analytical solution of the model (object T ).
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Table 2: Calibration

Parameters Common Across Models

Parameter Value Label

β 0.995 Discount factor
λY {0, 0.5} Loss function - weight on output
λi {0, 0.5} Loss function - weight on interest rate
θ 17.5 Price Stickiness
η -6.88 Elasticity of Demand
σ {0, 1} Inverse of IES
γh 1 Inverse of Frisch Elasticity
ρτ 0.9 Persistence of Taxes
ρξ 0.9 Persistence of ξ
ρG 0.9 Persistence of Spending
bδ 0.1321 Debt Level
τ 0.2545 Tax Rate
Y 1 Output
G 0.1 Spending

Parameters Not Common Across Models

Parameter Value Label

φτ,b
0.00 Tax rule coe�cients0.07

Notes: �e table reports the values of model parameters assumed in the numerical experiments in Section 3. β notes the
discount factor chosen to target a steady state real interest rate of 2 percent. λY and λi are the weights on output and
interest rates in the objective of the planner. Parameter η is calibrated to target markups of 17 percent in steady state. θ
is calibrated as in Schmi�-Grohé and Uribe (2004). Finally, the steady state level of debt is assumed equal to 60 percent
of GDP (at annual horizon), and the level of public spending is 10 percent of aggregate output, which is normalized to
unity in the steady state. �e bo�om panel of the table reports the value of the coe�cient φτ,b in the tax policy rule
(2.1). As discussed in the text, we set φτ,b = 0.07 in the no debt concerns model to have a determinate equilibrium. In
the debt concerns case we set φτ,b = 0.00 to �nd a unique equilibrium. See text for further details.

Table 3: Calibrated Parameters

Parameter Value

y steady state output (normalization) 1
1− α labor share 0.66
δ decaying rate of coupon bonds 0.95
η demand elasticity -7.66
γh inverse of Frisch elasticity 1

Notes: �e table reports model parameters whose values we �x in estimation. See the text
for details.
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Table 4: Estimated Parameters

Parameter Posterior Prior

mean 90 % interval distrib par A par B

�arterly trends
100γ growth rate 0.397 [0.318 ; 0.469] G 0.4 0.05
100(β−1 − 1) discount rate 0.226 [0.089 ; 0.363] G 0.25 0.1

Households and �rms
100 log π in�ation 0.586 [0.517 ; 0.656] G 0.5 0.05
g g-to-GDP 1.066 [1.055 ; 1.077] N 1.06 0.04
bL/4 debt-to-GDP 0.241 [0.177 ; 0.301] N 0.25 0.05
tax taxes-to-GDP 0.044 [0.042 ; 0.047] N 0.045 0.0025
Ω habits 0.456 [0.359 ; 0.554] B 0.7 0.1
κ slope NKPC 0.017 [0.003 ; 0.028] G 0.3 0.15

Central bank preferences
λi i.r smoothing 0.167 [0.08 ; 0.253] G 0.25 0.1
λY y smoothing 1.218 [0.875 ; 1.557] G 1 0.2

Fiscal rules
φτ,b τ response to b 0.068 [0.039 ; 0.097] G 0.07 0.02
φτ,y τ response to y 0.283 [-0.033 ; 0.622] N 0.4 0.2
φτ,g τ response to g 0.458 [0.037 ; 0.856] N 0.5 0.25
φtr,y tr response to y -0.141 [-0.356 ; 0.078] N -0.4 0.2

Shocks, persistence
ρξ preference 0.993 [0.989 ; 0.996] B 0.5 0.2
ρη markup 0.95 [0.902 ; 0.996] B 0.5 0.2
ρa tfp 0.477 [0.4 ; 0.552] B 0.5 0.2
ρg gov. spending 0.976 [0.96 ; 0.993] B 0.5 0.2
ρτ tax rate 0.948 [0.914 ; 0.983] B 0.5 0.2
ρtr transfers 0.224 [0.133 ; 0.311] B 0.2 0.05
ρtr∗ transfers trend 0.95 [0.912 ; 0.988] B 0.5 0.2
ρλ government b.c 0.247 [0.096 ; 0.389] B 0.5 0.2

Shocks, standard deviations
στ tax rate 9.365 [6.826 ; 11.963] IG 10 2
σg gov. spending 0.045 [0.031 ; 0.058] IG 0.1 2
ση markup 0.825 [0.703 ; 0.944] IG 1 1
σξ preference 0.036 [0.03 ; 0.041] IG 0.1 2
σa tfp 0.226 [0.202 ; 0.251] IG 1 1
σm int. rate, m.e 0.484 [0.429 ; 0.535] IG 2 2
σλ government b.c 0.367 [0.318 ; 0.413] IG 2 2
σtr transfers 0.303 [0.248 ; 0.356] IG 1 1
σtr∗ transfers trend 3.793 [3.328 ; 4.228] IG 1 1

Notes: �e table reports the prior and posterior distributions of the estimated parameters. �e �rst column reports the mean of
the posterior of each parameter, obtained from Monte-Carlo simulations of the posterior distribution using the MH algorithm. �e
second column reports the 90 percent HPD intervals obtained from the same draws. �e third column indicates the assumed prior
distribution (B: beta, G: gamma, IG: inverse gamma, N: normal). �e fourth and ��h columns report the �rst and second moments of
the priors.
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