
Dahlhaus, Tatjana; Schaumburg, Julia; Sekhposyan, Tatevik

Working Paper

Networking the yield curve: Implications for monetary
policy

Bank of Canada Staff Working Paper, No. 2021-4

Provided in Cooperation with:
Bank of Canada, Ottawa

Suggested Citation: Dahlhaus, Tatjana; Schaumburg, Julia; Sekhposyan, Tatevik (2021) : Networking
the yield curve: Implications for monetary policy, Bank of Canada Staff Working Paper, No. 2021-4,
Bank of Canada, Ottawa,
https://doi.org/10.34989/swp-2021-4

This Version is available at:
https://hdl.handle.net/10419/241227

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.34989/swp-2021-4%0A
https://hdl.handle.net/10419/241227
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Bank of Canada staff working papers provide a forum for staff to publish work-in-progress research independently 
from the Bank’s Governing Council. This research may support or challenge prevailing policy orthodoxy. Therefore, the 
views expressed in this paper are solely those of the authors and may differ from official Bank of Canada views. No 
responsibility for them should be attributed to the Bank. 
 
ISSN 1701-9397 ©2021 Bank of Canada 

Staff Working Paper/Document de travail du personnel  — 
2021-4 

 

Last updated: January 21, 2021 

Networking the Yield 
Curve: Implications for 
Monetary Policy 
by Tatjana Dahlhaus,1 Julia Schaumburg2 and Tatevik Sekhposyan3 

1 Canadian Economic Analysis Department 
  Bank of Canada, Ottawa, Ontario, Canada K1A 0G9 
2 Department of Econometrics and Data Science 
  Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands 
3 Department of Economics 
  Texas A&M University, Texas 77843, USA 
3 Economic Research Department 
  Federal Reserve Bank of San Francisco, San Francisco, CA 94105, USA 

dahl@bankofcanada.ca, j.schaumburg@vu.nl, tsekhposyan@tamu.edu 

mailto:dahl@bankofcanada.ca
mailto:j.schaumburg@vu.nl
mailto:tsekhposyan@tamu.edu


i 

 

Acknowledgements 
We thank Ivan Petrella, Ray Walker, the participants of the 2020 EABCN Conference on 
Empirical Advances in Monetary Policy; 2020 Real-Time Data Analysis, Methods, and 
Applications Conference; 2020 Econometric Society World Congress; and 2019 Computational 
and Financial Econometrics conference, as well as the seminar participants at the Bank of 
Canada for comments. We thank Refet Gürkaynak for kindly sharing data relevant for 
constructing monetary policy factors. This paper has been prepared under the Lamfalussy 
Fellowship Program sponsored by the European Central Bank (ECB). All views are those of the 
authors and do not necessarily represent the views of the ECB, the Eurosystem, the Bank of 
Canada, the Federal Reserve Bank of San Francisco or the Board of Governors of the Federal 
Reserve System.   



ii 

 

Abstract 
We introduce a flexible, time-varying network model to trace the propagation of interest rate 
surprises across different maturities. First, we develop a novel econometric framework that 
allows for unknown, potentially asymmetric contemporaneous spillovers across panel units 
and establish the finite sample properties of the model via simulations. Second, we employ 
this innovative framework to jointly model the dynamics of interest rate surprises and to 
assess how various monetary policy actions—for example, short-term, long-term interest rate 
targeting and forward guidance—propagate across the yield curve. We find that the network 
of interest rate surprises is indeed asymmetric and defined by spillovers between adjacent 
maturities. Spillover intensity is high on average but shows strong time variation. Forward 
guidance is an important driver of the spillover intensity. Pass-through from short-term 
interest rate surprises to longer maturities is muted, yet there are stronger spillovers 
associated with surprises at medium- and long-term maturities. We illustrate how our 
proposed framework helps our understanding of the ways various dimensions of monetary 
policy propagate through the yield curve and interact with each other. 

Bank topics: Econometric and statistical methods; Monetary policy implementation; Interest 
rates 
JEL codes: C18, C21, C53, E43, E44, E52 



1 Introduction

In the past few decades, the nature of monetary policy-making has changed. In addition to

the traditional approach of using the short-term policy rate to stabilize the economy, central

banks across the globe have increasingly relied on unconventional policy tools — targeting

yields of different maturities has been at the forefront of policy-making. Following the

financial crisis, central banks affected longer-term interest rates through large-scale asset

purchases and forward guidance. Lately, yield curve control, i.e., direct targeting of yields

at different maturities, has gained traction as a policy tool amid COVID-19. For example,

the Reserve Bank of Australia adopted a form of yield curve control in March 2020 and

targets the three-year government bond yield at 0.25%.

Motivated by the changing policy landscape, we propose a novel framework that jointly

models the various dimensions of monetary policy. We consider three possible dimensions:

(i) conventional monetary policy operating through short-term interest rate targeting; (ii)

unconventional monetary policy operating through the slope of the yield curve, which could

be due to various forms of quantitative easing programs or direct yield curve control, and

(iii) forward guidance — communication from the Federal Reserve about the state of the

economy and likely path of monetary policy.

More specifically, we jointly model monthly interest rate surprises at various maturi-

ties (short, medium, and long ends of the yield curve) via a time-varying network, where

spillovers can happen contemporaneously. This approach enables us to simultaneously study

how monetary policy surprises (e.g., deviations from expectations in the three-months Trea-

sury bills but also in the 10-year or three-year Treasury bond yields) propagate across

different maturities. In addition, in our framework, forward guidance, as well as overall

market conditions, can determine the intensity/interconnectedness of the network. Thus,

the implied propagation of forward guidance and market conditions is time-varying.

Our model has two important features: the contemporaneous relationships between

surprises at various maturities are allowed to be asymmetric and time-varying. In par-

ticular, we introduce a dynamic spatial lag model, where the network structure capturing

the contemporaneous relationships between the variables can be characterized by an un-

known, potentially asymmetric “weights” matrix estimated from the data. The intensity

of the network, i.e., the strength of spillovers, is time-varying and may depend on covari-

ates. While in our empirical specification we focus on interest rate surprises, the proposed

empirical framework is general and can be used to study time-varying spillovers across any

panel data set with moderate cross-sectional dimension (subject to identification restric-

tions discussed further). It is especially well suited for macroeconomic time series where
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the time-varying degree of simultaneity is of particular interest.

The contribution of the paper is twofold. First, we contribute to the econometric liter-

ature by proposing an extension of the spatial lag model that allows for asymmetric and

unknown weights capturing contemporaneous correlations. This is in contrast to most of the

literature, where these weights are taken as given by, for example, economic or geographic

distances (see, e.g., Anselin 1988 for textbook treatment of the issue). Our approach is

more similar to Bhattacharjee and Jensen-Butler (2013), Bailey et al. (2016), Lam and

Souza (2016) and Lam and Souza (2020), who estimate the weights. Yet these papers

work under the assumption of sparseness of the weights matrix and do not consider time-

varying spillovers. On the other hand, for example, Blasques et al. (2016), Catania and

Billé (2017), and Wang et al. (2018) model time-varying networks in a generalized autore-

gressive score (GAS) framework, yet they assume the weights to be pre-determined. We

expand on these papers and extend the GAS model to allow for an endogenous, potentially

asymmetric weights matrix. Identification is achieved by including a set of unit-specific

regressors. Further, the dynamics of the intensity parameter can be informed by covariates

in addition to the score. This allows us to give economic interpretations to the observed

network dynamics.

Second, we contribute to the extensive literature on monetary policy pass-through to

interest rates of various maturities. For example, Kuttner (2001), Gürkaynak et al. (2005),

and Campbell et al. (2012) model the impact of the various dimensions of monetary policy,

such as short-term interest rate targeting, quantitative easing, as well as forward guidance,

on the interest rates in a univariate setup. We instead model the unexpected movements

in the interest rates (surprises) of various maturities jointly. Therefore, our paper is more

in the vein of Bu et al. (2019) and Inoue and Rossi (2019), who define monetary policy

more generally, bridging conventional and unconventional policies. Our approach differs

in the sense that we model spillovers across different monetary polices — an issue gone

unexplored so far. This allows us to provide novel and interesting insights about how the

different dimensions of monetary policy interplay and potentially amplify or dampen each

other.

To study the time-varying interest rate surprise spillovers at various maturities in the

US, we rely on the Blue Chip Financial Forecasts (BCFF) survey. In particular, we obtain

interest rate surprises as the forecast errors of interest rates for different maturities. The

BCFF are particularly useful for the aim of this paper since they provide forecasts for

maturities covering the whole yield curve.

We uncover an asymmetric network structure for the interest rate surprises, where direct

spillovers between immediate neighbors are sufficient to characterize the spillovers across
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the yield curve. The estimated structure of the network can help us understand how unex-

pected deviations from the target on, for example, the three-year yield spill over to other

maturities. Furthermore, the network displays considerable time variation, and forward

guidance appears to be an important determinant of this observed time variation. More

specifically, forward guidance, measured by the path factor extracted as in Gürkaynak et al.

(2005), moves the network intensity. News about future monetary policy easings increase

the strength of the network and intensify the contemporaneous correlations between the

interest rate surprises of various maturities.

Our results, overall, suggest that pass-through from short-term monetary policy sur-

prises to longer maturities is muted, while the pass-through associated with surprises at

medium- and long-term maturities is stronger. This suggests that targeting higher maturity

bond yields may be an useful approach to move all the yields in the same direction. Further,

we consider a few monetary policy experiments, where we show how the various dimensions

of monetary policy interact. More specifically, we consider idiosyncratic and simultaneous

interventions in different segments of the bond market, while varying the strength of the

forward guidance. We find that the overall effect on the yield curve depends on the size of

monetary policy shocks, the targeted maturities, as well as the strength of forward guid-

ance. Our study highlights the importance of the spillover structure for policy-making—

depending on policy objectives, it matters which maturities the central bank targets and

by how much. This further demonstrates that careful consideration of complementarities

of policy tools and their amplifications is important for policy design.

The paper proceeds as follows. Section 2 discusses the econometric framework. We

demonstrate the validity of our estimation method and identification using Monte Carlo

simulations in Section 3. In Section 4, we apply the newly proposed method to interest rate

surprises across the yield curve, discuss the evolving network structure, and link it to the

US business cycle and forward guidance. Moreover, in Section 5, we assess how different

dimensions of monetary policy propagate across maturities and how they interact with each

other, showing spatial responses. Section 6 concludes.

2 Dynamic Network Model with Unknown Weights

To analyze the time-varying network structure of forecast errors across different maturities,

we employ a dynamic version of the spatial lag model. We use a score-driven framework to

model the dynamics, and we allow for an unknown asymmetric weights matrix.
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2.1 The Dynamic Spatial Lag Model

Let yt denote an N -dimensional vector of dependent variable observations at time t, i.e.,

yt = (y1t, ..., yNt)
′. In our case yt contains interest rate surprises for various maturities. In

the spatial lag model, each entry yit may depend on a (K × 1) vector of pre-determined

variables xit, but also on the contemporaneous values of the other units yjt, for j 6= i. The

model is given by

yt = ρtWyt +Xtβ + et et ∼ N(0; Σ), (1)

where β is a (K × 1)-vector of common slope coefficients, and Xt is the (N ×K)-matrix of

regressors. ρt is the scalar time-varying spatial dependence (or network intensity) coefficient.

If ρt = 0, there is no spatial dependence across the different elements of yt. Further, W is

an unobserved, time-invariant, (N ×N)-network matrix of weights, wij , for i, j = 1, ..., N ,

with rows restricted to add up to one and with zeros on the main diagonal (wii = 0). The

distribution of the N -dimensional error term vector et is assumed to be normal with zero

mean and a diagonal covariance matrix Σ.1 2

Writing the model in its nonlinear reduced form

yt = ZtXtβ + Ztet, (2)

with Zt = (IN − ρtW )−1, which is assumed to exist, reveals that it can capture complex

dynamic dependencies between shocks to the disturbances et as well as the regressors Xt,

as Zt is in general a full matrix. Using a power series expansion, it becomes clear how the

model captures nonlinear feedback effects across units, i.e.,

yt = Xtβ + ρtWXtβ + ρ2tW
2Xtβ + ...+ et + ρtWet + ρ2tW

2et + .... (3)

Therefore, spillovers from unit i to other units j depend on the respective weight in W and

the network intensity ρt. Feedback effects to unit i itself occur if, for example, the weights

wij and wji are non zero. Based on this equation one can easily obtain spatial responses

reflecting the evolution of feedback in time t.

1Model (1) is an extension of the score-driven spatial model introduced by Blasques et al. (2016). In
their paper, spillovers between sovereign credit default swap spreads are modeled using an observed network
of spillovers between the financial sectors of eurozone countries, and the time-varying spatial dependence
parameter serves as a measure of systemic risk. Here, in contrast, we relax the assumption that W is
observable and allow for a more general structure of W (see Section 2.3).

2Note that it is straightforward to extend the model to non-Gaussian error terms. We work with the
normal distribution as it is an appropriate choice for our application.
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2.2 Dynamics of the Network Intensity

To model the dynamics of the network intensity, ρt, we use the following reparameterization:

ρt = h(ft), where ft is a time-varying parameter and h(ft) = γ tanh(ft) with 0 < γ < 1

to ensure numerical stability.3 We assume that ft follows an autoregressive score-driven

dynamic process, which can be extended with a (D × 1)-vector of exogenous regressors rt,

that is,

ft+1 = d+ ast + bft + r′tc, (4)

where a, b ∈ R and c ∈ RD are unknown coefficients. The intercept is restricted to d = 1− b
for identification purposes. st = St∇t denotes the scaled score function at time t, and St is a

scaling factor.4 The initial value f0 is treated as an unknown parameter, which is estimated

with our numerical optimization procedure. The score corresponds to the first derivative of

the log-likelihood function at time t with respect to ft, i.e., ∇t = ∂`t
∂ft

.

The advantage of specifying the score as innovation term in the dynamics of ft is that

the likelihood is available in closed form even for nonlinear models such as that in Equation

(1). Score-driven models provide a general framework for modeling time variation in the

parameters and were introduced in Creal et al. (2013) and Harvey (2013). It has been

shown in Koopman et al. (2016) that in a wide variety of settings (in particular, when there

are non-linearities and non-Gaussianity), these models perform as well as the more general

but computationally much more intensive nonlinear state space models.5

The likelihood at time t is given by

`t = log |(IN − h(ft)W )| − N

2
log(2π)− 1

2
log |Σ| − 1

2
e′tΣ
−1et. (5)

The implied scaled score based on normally distributed errors is given by st = St∇t

with

∇t =
(
y′tW

′Σ−1et − trace(ZtW )
)
ḣ(ft), (6)

where et = (yt − h(ft)Wyt −Xtβ), Zt = (IN − h(ft)W )−1 and ḣ(ft) = ∂h(ft)
∂ft

. As discussed

previously, we adopt unit scaling, i.e., St = 1.

To estimate the unknown static parameters that are summarized in the vector θ, we

3Note that γ is not estimated but fixed. It is part of the reparameterization of ft, in order to ensure
that ρt becomes numerically not too close to one during optimization (since tanh(ft) ≈ 1 for large ft). This
would lead to an error in the evaluated likelihood. In the simulations and empirics, we set γ = 0.99.

4We choose St = 1. In the literature, St is often chosen as the inverse of the Hessian. Since in our case
this would involve integrating out the data-generating process, we proceed with the parsimonious choice of
unity, similar to Blasques et al. (2016).

5For theory and empirics of different generalized autoregressive score (GAS) models, see also, e.g., Creal
et al. (2011), Harvey and Luati (2014), Creal et al. (2014).
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numerically maximize the joint likelihood function

L(θ) =
T∑
t=1

`t, (7)

where θ = (w′, a, b, c, f0, β
′, diag(Σ)′)′, with w being a vector containing all non-zero (off-

diagonal) elements of W and diag(.) creating a vector of the diagonal elements of Σ. There-

fore, the likelihood function is evaluated simultaneously for the parameters entering the

network intensity process as well as the network matrix.

2.3 Unknown Weights Matrix

Most of the literature assumes that the spatial weights matrix is pre-specified and symmet-

ric, i.e., wij = wji. For example, W could be defined by economic or geographic distances.6

However, defining the weights matrix exogenously comes with a few well-known drawbacks:

The choice of the weights can often seem arbitrary, there is substantial uncertainty regarding

the choice, and empirical results may hinge on a specific choice of spatial weights. Here we

deviate from the assumption of a pre-specified weights matrix and consider it as unknown.

In addition, we relax the assumption of symmetry, as spillovers from unit i to unit j are not

necessarily the same as from unit j to unit i. These features are particularly useful when

assessing the dependence between interest rate surprises across different maturities, since

an obvious proxy for the network is not available. Also, estimating the weights matrix can

provide insights into the drivers of economic interactions and general equilibrium effects in

a network.

We assume that W is a constant, asymmetric matrix of unknown parameters that de-

scribes the proximity of units yi and yj at each point in time t. W has zeros on the main

diagonal, and every other element is restricted to be non-negative. For interpretability, the

weights in W are assumed to lie between 0 and 1, and we employ the standard practice of

a row-normalized weights matrix, that is,
∑N

j=1wij = 1 for i = 1, ..., N where wij is the

(i, j)th element of W . Row-normalization also restricts the largest eigenvalue of W to equal

one, which reduces the problem of ensuring stability to restricting the network intensity

parameter to be smaller than one. In particular, we specify the elements of W , wij , using

a multinomial transform,

wij =
exp (−sij)

ΣN
k=1,k 6=iexp (−sik)

, i 6= j, and wii = 0, (8)

6For example, to model credit risk spillovers across international banks, banks’ cross-border exposure
based on debt data has been used as a proxy for the network structure. See, e.g., Blasques et al. (2016) and
Tonzer (2015).
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where sij are freely estimated economic distances between units.

2.4 Identification

It is essential to note that identification in our context is achieved by including unit-specific

regressors xit; see Equation (1). It has been formally shown by Bhattacharjee and Jensen-

Butler (2013) that in a spatial lag model without regressors, a static, unknown spatial

weights matrix W is only identified for up to N(N−1)/2 elements.7 To see that the remain-

ing elements are identified in the presence of at least one unit-specific regressor, consider

the reduced-form equation of the model without dynamic spatial dependence parameter

and without normalization of W , i.e.,

yt = (IN −W )−1Xtβ + (IN −W )−1et. (9)

For simplicity, suppose K = 1, so β is a scalar common slope parameter. In the equation

for unit i, denoting the ij-th element of matrix Z = (IN −W )−1 by zij , we have

yit = β

N∑
j=1

zijxjt +

N∑
j=1

zijejt. (10)

Since β is pooled across the different regressor observations (and panel units), it is identified

together with the (N − 1) coefficients zij , using the restrictions from the covariance matrix.

The mapping from Z to W is unique, ensuring identification of the non-zero elements of W

as well. In general, pooling across the unit-specific regressors and panel units generates an

additional N2K restrictions, which can be used for identification in conjunction with the

N(N − 1)/2 restrictions in the covariance matrix.

Finally, in the presence of a dynamic spatial dependence parameter, the coefficients

(a, b, c, f0) are identified off the Equation (4), provided the spatial weights matrix is nor-

malized to have maximum eigenvalue one.

3 Monte Carlo Study

We assess the performance of the dynamic network model with an unknown asymmetric

weights matrix in two settings. First, we investigate the performance of the model in filtering

out different patterns of the network intensity parameter ρt. Second, we simulate from the

true model to assess whether our model consistently estimates the unknown parameters

7A symmetric W is fully identified in their setting. In our context, however, we want to allow for potential
asymmetry as well.
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and, in particular, the elements of W .

In the first simulation experiment, the spatial dependence parameter ρt is generated

according to three deterministic patterns: a sine pattern,

ρt = 0.5 + 0.3 cos(2π · t/200), (11)

a step pattern with a break after half the sample size

ρt = 0.9− 0.5(t > T/2), (12)

and a constant, i.e., ρ = 0.9.

The data-generating process is

yt = (IN − ρtW )−1(Xtβ + et) et ∼ N(0, σ2IN ). (13)

We use one unit-specific regressor Xt ∼ N(0, 0.5 · IN ). The parameter values are β = 0.2

and σ2 = 0.1. Considered sample sizes are T = 300, 600 and N = 4, 7. The spatial weights

matrix W is generated in two stages: first, random draws from a normal distribution with

mean 0.5 and standard deviation 1 are used for the off-diagonal elements and wii = 0.

Then, the matrix is standardized using a multinomial transform as in Equation (8), so that

all elements are non-negative and the rows sum up to one.

We generate 250 samples using each combination of deterministic pattern, T , and N and

estimate our model. Table 1 reports results on mean absolute error for the filtered spatial

dependence parameter ρ̂t, its empirical 5%-95% quantile range, as well as mean squared

errors for the average parameter estimates ŵij , i, j = 1, ..., N , β̂ and σ̂2. We observe that

as we increase T , the tracking errors and range become smaller in all cases except for the

step pattern and N = 4. Generally, the static parameters are estimated more accurately

for larger T and N .

Figure 1, on the other hand, shows the true patterns of ρt for N = 7 and T = 300, 600,

together with the filtered median paths and the corresponding 5% and 95% empirical quan-

tiles across simulations.8 In case of the sine pattern, upward trends are captured more

accurately than downward trends, but the true time-varying parameter always lies between

the 5% and 95% quantiles. In case of the abrupt level decrease of ρt, it takes some observa-

tions for the filtered parameter to adapt. The empirical quantile range becomes larger after

the downshift, possibly because the signal in the data has become weaker with the decreased

spatial correlation. All in all, we conclude that the tracking performance is satisfactory.

8The plots for N = 4 are extremely similar to the ones for N = 7. They are available upon request.

8



In the second experiment, we simulate from the true data-generating process to see how

accurately the unknown parameters are estimated in case of practically relevant sample

sizes. The model is

yt = (IN − h(ft)W )−1(Xtβ + et) et ∼ N(0, σ2IN ), (14)

ft+1 = d+ ast + bft, (15)

where st = St∇t with St = 1 and ∇t is defined in Equation (6). We set d = 1 − b

for identification purposes and, as before, xt ∼ N(0, 0.5IN ). The parameter values are

a = 0.04, b = 0.9, f0 = 1 (set to its unconditional mean), β = 0.5, and σ2 = 0.1, and W

is constructed as in the previous simulation experiment. 250 samples of yt are simulated

for N = 4, 7, 10 cross-sections and T = 300, 600, 1000 time points, respectively. Kernel

densities for the case N = 4 are shown in Figure 2, suggesting that all parameters are

estimated consistently. Likewise, Table 2 documents that estimation accuracy, measured

by mean squared error and mean absolute error, increases as sample sizes become larger,

both in the cross-sectional and time dimension.9

From our simulations, we conclude that the new dynamic network model can be es-

timated reliably for sample sizes that are similar to those in our empirical application.

Furthermore, all elements of the asymmetric spatial weights matrix W are identified in the

presence of unit-specific regressors.

4 Networking the Yield Curve

We now apply the proposed framework to model the time-varying contemporaneous spillovers

of interest rate surprises across the yield curve. First, we discuss the data we use to measure

interest rate surprises. We then present the estimated network structure and discuss the

drivers of its time variation.

4.1 Data

We think of interest rate surprises as unexpected deviations from observed interest rates.

In particular, to measure interest rate surprises of various maturities, we use forecast errors

obtained from the BCFF survey. This survey is well suited for our purposes since it provides

monthly forecasts of the whole yield curve. In particular, we use the forecasts of the three-

month Treasury bills (T-bills), six-month T-bills, and one-year, two-year, five-year, 10-year,

9We are not reporting the results for f0, as it is a nuisance parameter. The results in Figure 1 indicate
that f0 is estimated correctly.
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and 30-year (long-run) Treasury notes to obtain forecast errors.10 Forecasts of these interest

rates are consistently available from February 1988.11

The BCFF survey is conducted monthly, covering approximately 50 analysts ranging

from broker-dealers to economic consulting firms. The BCFF is published on the first

day of each month and presents forecasts from a survey conducted during two consecutive

business days one to two weeks earlier. The precise dates of the survey vary and are not

generally noted in the publication. Each month the BCFF provides the forecasts of the

average interest rate over a particular quarter, beginning with the current quarter and up

to four or five quarters into the future. For example, in January, the forecast of the current

quarter captures the average expected interest rate over January, February, and March, and

the one-quarter-ahead forecast pertains to the average expected outcome of April, May, and

June.

Therefore, the monthly BCFF forecasts are fixed-event forecasts of interest rates over the

quarter, implying that their forecast horizon changes with each month in the quarter. We

construct fixed-horizon forecasts by weighting the two given fixed-event forecasts following

Chun (2011) (or see Dovern et al., 2012, for an application to survey forecasts of GDP and

prices). In order to obtain, for instance, a six-months-ahead (fixed-horizon) forecast, we

look at one-quarter- and two-quarters-ahead (fixed-event) forecasts. In the first month of

the quarter, the six-months-ahead forecast is simply the forecast of the one-quarter-ahead

forecast. In the second month of the quarter, the six-months-ahead forecast is obtained by

taking the average of the one-quarter- and two-quarters-ahead forecasts with weights equal

to 2/3 and 1/3, respectively. The six-months-ahead forecast for the final month of the

quarter is the weighted average of the one-quarter- and two-quarters-ahead forecasts, with

weights equal to 1/3 and 2/3. Nine-months-ahead forecasts are calculated as the weighted

average of the two-quarters- and three-quarters-ahead forecasts given by the survey, with

weights similar to the ones discussed above.12

10The US Treasury discontinued the 30-year Treasury constant maturity series in February 2002 and
reintroduced it in February 2006. Over this period the BCFF provides forecasts for the long-term average
(“LT>25”) note from March 2002 to June 2004, and for the 20-year Treasury note from July 2004 to April
2006. We use these forecasts to fill in the period when the 30-year Treasury note was not available.

11For instance, the US Survey of Professional Forecasters (SPF) contains only forecasts for the three-
month Treasury bill and 10-year Treasury bond yields, starting from 1984:Q3 and 1992:Q1, respectively.
Alternatively, one could use futures of US interest rates to proxy expectations. However, data coverage
can be limited as some futures, such as Treasury-bill futures, are thinly traded. Further, futures data may
include counterparty or liquidity risks.

12Alternatively, a researcher can use the methodologies proposed in Knüppel and Vladu (2016), where the
fixed-event point forecasts are combined to yield the “best” fixed-horizon point forecasts in a mean squared
forecast error sense. However, in our context, it is not obvious that the fixed-horizon forecasts should adhere
to any optimality criterium. Moreover, Ganics et al. (2019) show that ad hoc weights are not noticeably
inferior to the optimized weights, at least when looking at fixed-horizon density forecasts of GDP growth
and inflation obtained from pooling the fixed-event ones.

10



In our analysis, we use forecast errors at the six-months-ahead horizon.13 Finally, we

obtain forecast errors by subtracting the consensus forecasts (mean across the 50 analysts)

from the monthly realizations (calculated as average of daily figures) that are available

from the Federal Reserve Board’s H.15 website. The forecast errors for the interest rates

at different maturities are plotted in Figure 3. We also use the lagged values of the first

difference of the monthly realizations of the three- and six-month T-bills, one-, two-, five-,

and 10-year Treasury notes, and 30-year (long-run) Treasury notes as exogenous regressors

in our model (see Figure 4).14 Finally, our sample period covers March 1988 until April

2016.

4.2 Network of Interest Rate Surprises

Using data of the interest rate surprises (forecast errors) at different maturities, we estimate

the dynamic network model described in Section 3. To start with, we abstract from exoge-

nous regressors in the dynamics of the spatial intensity parameter (Equation 4). First, we

discuss the estimated weights matrix, followed by a discussion of the time-varying network

intensity.

Figure 5 shows the estimated weights matrix (Panel a) and the corresponding network

graph (Panel b) for the interest rate surprises at the seven different maturities. In the

network graph, bigger and darker-colored nodes represent nodes with a larger number of

connections. For instance, the one-year bond surprise is in a darker blue because it has five

connections relative to the surprises in either the two-year, five-year, or 10-year maturities,

where each has four connections. Edges have the same color as the node of origin. We can

make two interesting observations.

First, Panel (a) shows that the estimated weights matrix and thus interconnectedness

is asymmetric. This implies that, for example, the connectivity from six-month to one-year

interest rate surprises differs from the connectivity of one-year to six-month surprises, and

the latter is stronger. Moreover, the medium- to long-term surprises are more strongly

connected relative to the surprises on the short end of the yield curve. Second, the table

suggests that the estimated weights matrix is sparse — it mostly contains zeros below and

above the main diagonal. Note that the only imposed zeros are on the main diagonal of the

matrix; the rest are estimation outcomes. Looking at the network graph in Panel (b), we

13Also, the forecast errors are demeaned before entering the network model, i.e., Equation 1. In principle,
one could think of using our empirical framework to model the interest rate surprises of a particular maturity
across various forecast horizons or to model various maturities and forecast horizons jointly. We do not
consider these scenarios here due to dimensionality concerns.

14For the period when the 30-year Treasury was not available, the US Treasury published a factor for
adjusting the daily nominal 20-year constant maturity in order to estimate a 30-year nominal rate.
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can clearly see that the estimated network is defined by connectivity between immediate

neighbors. That is, the surprises of three-month T-bill are connected to the surprises of

six-month T-bill, while six-month T-bill surprises are connected to one-year surprises, one-

year surprises are connected to two-year surprises, and so on. Therefore, we do not find

any evidence that short- and long-term interest rates surprises are directly connected.

We now turn to the time-varying network intensity. Figure 6 plots the spillover param-

eter, ρt, over time. Gray bars depict the NBER recession dates. Network intensity is high,

on average, but shows strong time variation. The strength of spillovers seems to peak be-

fore recessions and remains high during these periods. Further, while the network intensity

still exhibits strong time variation, it seems to decrease over the period when the federal

funds rate reached zero lower bound (starting in December 2008). This is not surprising, as

shorter-term surprises are relatively flat over that period, thus, potentially weakening the

spatial correlations.

4.3 Fundamentals as Drivers of Network Dynamics

A natural question that follows is what drives the observed dynamics of the network intensity

of yield curve surprises. In this section, we assume that the dynamics of the spillover

intensity, ρt, may be affected by exogeneous regressors (rt in Equation 4). Our maintained

hypothesis is that forward guidance can affect the network dynamics — communicating

the future path of interest rates has the potential to affect the correlation across various

maturities simultaneously. Therefore, we model forward guidance to affect the intensity of

spillovers. We also consider the business cycle and market uncertainty as additional drivers.

To proxy forward guidance, i.e., communication about the future path of the policy

rate, we follow Gürkaynak et al. (2005) and use their “path” factor.15 To assess the role

of business cycle conditions, we use a monthly measure of economic growth, i.e., industrial

production growth. Finally, we also include the VIX, the implied volatility measure from

the S&P 500 index options, as a determinant of the spillover intensity in our network model.

The drivers are plotted in Figure 7.

In Table 3, we present results for several specifications concerning the dynamics of the

network intensity.16 Model 1 refers to the case where the network intensity is driven by the

score only. Model 2 refers to the specification where we also include the path factor as a

potential driver. In Model 3, we add market uncertainty and, lastly, Model 4 includes all 3

regressors, that is, the path factor, the VIX, and IP growth. The table shows the estimated

15As an alternative, we could also use a text-based measure, similar to the one proposed in Gardner et al.
(2020) to capture the forward guidance effects.

16Note that, in these cases, our sample starts in January 1990 due to data availability of the VIX.
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coefficients, i.e., vector c from Equation (4) as well as a and b (for completeness). We also

provide the Akaike information criteria (AIC) to compare the different model specifications.

Model 2, where the network intensity is driven by the path factor as well as the score, is

the preferred model according to the AIC. Adding the VIX or economic growth as regressors

does not improve the model. In turn, the estimated coefficients show that the path factor is

negatively related to spillover intensity across all model specifications, implying that future

lower interest rates are associated with a higher spillover intensity. This suggests that

signaling future monetary easing increases the intensity of the network. Also, increasing

market uncertainty and decreasing economic growth increase the spillover intensity. The

estimated coefficients seem to provide one consistent story — network intensity increases

due to higher uncertainty, which is generally associated with negative growth and future

monetary policy expansions (to stimulate the economy).

To provide insights on the potential contributions of the three drivers, Figure 8 provides

plots of the different spillover intensities associated with the four models we just described.

First, the dynamics of the intensity is, in general, similar in the models with and without

regressors. We can see that the inclusion of regressors seems to dampen fluctuations in the

intensity of the network, on average. That is, when intensity is decreasing, the inclusion of

the path factor (black line), for example, decreases the magnitude of the decline. In sum,

forward guidance and, to a lesser extent, market uncertainty seem to be relevant drivers of

the spillover strength in our network of yield curve surprises.

5 Monetary Policy and the Yield Curve

To demonstrate the usefulness of our network approach in understanding how different

dimensions of monetary policy propagate across maturities and how they interact with

each other, we calculate spatial responses. Since we model the contemporaneous relations

between interest rates surprises at a monthly frequency, spatial responses in our setup can

be thought of as the evolution of spillovers along the rounds or loops of feedback in a given

month. We can then look at how, for example, short-term, medium-term, and long-run

surprises or combinations thereof propagate across maturities. In particular, one can think

of surprises in the three-month T-bill rate as conventional monetary policy, while surprises

in the medium- and long-term bond yields may reflect policies such as quantitative easing

or direct interest rate targeting.
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5.1 Monetary Policy Spillovers

We start by looking at how various monetary policies, expressed by interest rate surprises

at various maturities, propagate through the yield curve. Arguably, this may help our

understanding of the effectiveness of a given monetary policy tool for interest rates of

particular maturity relevant to the economy at a given point in time.

Since our proposed model is nonlinear, the shape of spatial responses varies with the

network intensity as well as with the size of the initial shock. To showcase this, we construct

a few examples, where we obtain the spatial responses of interest rate surprises by keeping

the size of the shock fixed and varying the network intensity/spatial dependence (ρt). We,

then, assess the role of the magnitude of the initial surprise (shock) for the spillovers.

Specifically, we assess how a 100 basis points (bps) monetary policy shock, i.e., a 100bps

change in an interest rate surprise for each maturity, spills over to the surprises of other

maturities. Since the network intensity is time-varying, in principle, we could calculate

spatial responses for each month in our sample. For simplicity, we consider spatial responses

based on the average, maximum, and minimum network intensity over our sample. This

facilitates our discussion on how the network intensity influences the spillovers.

Figure 9 plots the spatial responses based on the average network intensity (0.87). Each

panel corresponds to a different shock origin. For example, the first panel, titled “3m Ori-

gin,” plots the spatial responses to a 100bps increase in the three-month T-bill surprise, i.e.,

an unexpected increase in the three-month T-bill rate. Green dashed and solid lines repre-

sent the responses of surprises in the three-month and six-month T-bill rate, respectively.

Blue lines correspond to the responses of the surprises in the one-year (dashed), two-year

(solid), and five-year (dotted) government bond yields, respectively. The responses of sur-

prises in the 10-year and long-run yields are shown as red dashed and solid lines, respectively.

A few patterns emerge: First, it takes about 20 rounds of feedback before the network

converges. Second, there are limited spillovers from the three-month T-bill surprises to

medium- or longer-term maturities. A 100bps unexpected increase in the three-month T-

bill rate yields a surprise in the six-month T-bill rate of about 40bps. Spillovers beyond

the six-month maturity become increasingly smaller with increasing maturity. Very small

spillovers occur at the long end of the yield curve. Third, spillovers from the medium-term

surprises are generally stronger for both the short- and longer-term maturities. For example,

a 100bps surprise in the two-year yield is associated with increases of around 100bps for

the short-term maturities and around 75bps for the long-term maturities. Also, because

the connectedness of the two-year yield surprises is strong, the initial surprise of 100bps

is amplified to about 200bps. Finally, spillovers arising from surprises in the 10-year yield
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are strong for the neighboring maturities (five-year and long-run) but more muted for the

short-term maturities.

To understand the role of the network intensity, Figure 10 repeats the same exercise

but with a smaller network intensity, i.e., we use the sample minimum of 0.59. Two things

stand out: First, the network converges faster since it takes less than ten rounds to reach

the maximum spillover effect; second, the size of spillovers is smaller but not proportionally

so. For example, a 100bps surprise in the two-year yield induces a surprise of about 20 and

10bps for the six-month and three-month rates, respectively. At the same time, the relative

order of which maturities are affected the most changes: While with average intensity, a

change to the two-year yield surprise affected the three-month T-bill surprise more than the

10-year one; with the minimum intensity, the opposite is true.

Moreover, Figure 11 plots the same spatial responses associated with the maximum

network intensity of about 0.96. In this case, the network converges a lot more slowly

and the size of spillovers is large. These simple exercises of varying the network intensity

highlight how the network intensity can actually affect the whole network structure. This

implies that drivers of the network intensity, such as forward guidance, may influence not

only the magnitude but also the relative order of spillovers.

Now, we discuss how the spatial responses vary with the size of the initial shock. Figure

12 shows the responses associated with a 25bps shock and the average network intensity. A

smaller-sized shock does not seem to affect the convergence speed of the network much. As

is the case for a 100bps shock, it takes about 20 feedback loops to reach maximum spillover

effects. Further, a change of 25bps in interest rate surprises is generally associated with

smaller spillovers across maturities. Finally, the size of the intial shock also seems to matter

for the relative order of spillover magnitudes. For example, the 10-year bond surprise is

affected most by a surprise in the five-year rate, while, in the case of a 100bps shock, the

effect on the five-year maturity dominated the one on the 10-year maturity. This highlights

how nonlinear the network is: not only in terms of the network intensity but also in the

size of the initial monetary policy shock.

5.2 Spillovers of Monetary Policies’ Interactions

Having seen how surprises at various maturities spill over across the yield curve, we now

present a few exercises which demonstrate how our framework can be used to understand the

interactions of the various dimensions of monetary policies. Our experiments are motivated

by the Federal Reserve’s Operation Twist, implemented in 2011-2012. Operation Twist is

based on the idea that by purchasing longer-term bonds, the Federal Reserve can help drive

longer-term yields down, while selling shorter-term bonds at the same time should increase
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the interest rates on the shorter end of the yield curve. In combination, these two actions

would “twist” the (typically upward sloping) shape of the yield curve.

For our first exercise, we choose a network intensity of 0.95, corresponding to the value

on September 2011 (start of Operation Twist). We consider two types of shocks at the same

time: a positive shock to the three-month T-bill rate of 1bps and a negative shock to the

10-year bond yield of 5bps. These shocks are calibrated to match the observed daily changes

in corresponding bond markets around the Operation Twist announcement on September

21, 2011.

The first panel of Figure 13 plots the spatial responses resulting from a combination

of these two shocks. We observe the following: First, given the high network intensity,

it takes about 60 iterations for the network to converge, and the size of the spillovers is

generally large. Second, and most interestingly, we observe how the two different monetary

interventions interplay across the network. That is, initially, the positive three-month T-

bill surprise translates into positive surprises for the six-month and one-year yields. At

the same time, the negative surprise at the 10-year maturity leads to negative spillovers

across the long-run, five-year, and two-year maturities. However, after a few rounds of

feedback, the responses at the shorter end of the yield curve begin to turn negative, first

for the surprises at the one-year maturity and then for the surprises at the six-month and

three-month maturities. Hence, the initially negative shocks at the longer-term maturities

eventually dominate the positive shocks at the shorter-term maturities.

To see how the network intensity may influence these combined responses, we reproduce

the same exercise but with a lower intensity of 0.87 (sample average). This is an interesting

exercise since the central bank may influence the intensity by changing its forward guidance.

The second panel of Figure 13 shows that responses to the Operation Twist shocks are

generally weaker in the case of lower intensity. In contrast to the case of a higher network

intensity, the resulting positive surprises for the short-term maturities do not turn negative.

Nevertheless, they are still offset since the spatial responses for the short-term maturities

eventually become zero.

Next, we assess how spatial responses to Operation Twist change when we consider a

differently sized shock (keeping the network intensity at 0.95; see Panel 3 of Figure 13). In

particular, we are interested in how big the change in the three-month T-bill surprise needs

to be to maintain a positive response at the short maturities. It would need a 125bps increase

in the three-month T-bill surprise to keep its response positive. Nevertheless, the negative

spillovers from the long-term maturities (due to the 10-year bond surprise of -5bps) still

dampen the initial shock of 125bps to about 25bps, and spillovers to the six-month T-bill

surprise turn negative after about 10 feedback rounds.
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The former exercises demonstrate that pass-through from the three-month surprises to

medium- or long-term maturities is rather weak. This leads to negative surprises in the 10-

year bond yields offsetting or dominating the positive effects at the short-end of the yield

curve. As a final exercise, we show how spillovers evolve when there is 1bps shock to the

six-month T-bill or the two-year yields instead. Panel 4 of Figure 13 shows that a positive

surprise in the six-month T-bill has positive spillover effects for the three-month and one-

year maturities. The two-year maturity is barely affected, as positive and negative spillovers

from the short and long end of the yield curve eventually cancel each other. Moreover, the

negative surprise in the 10-year yields leads to negative responses for the long-run and

five-year maturities. If we consider a positive surprise in the two-year government bond

yield instead, we see positive spillovers to maturities of two years and under. Interestingly,

spillovers to the three-month T-bill surprise are smaller than in the case of a positive surprise

to the six-month T-bill rate.

These exercises are just a few illustrative and hypothetical scenarios of how the proposed

framework can help our understanding of the interactions between different dimensions of

monetary policy. A few key implications for monetary policy emerge: First, pass-through

from the short-term maturities to medium- and long-term maturities is muted. If the only

intention of the central bank were to affect the short-term interest rates, yet keep the yields

along the rest of yield curve mostly unaffected, short-term interest rate targeting would

support that objective. However, since surprises at the medium-term maturities are well

connected to both the short and long end of the yield curve, targeting medium-term bond

yields may be the most effective way to move all the yields in the same direction. Second,

if the intention of a central bank is to (un)flatten the yield curve or affect a particular

segment of the yield curve more relative to others, then there a few alternative ways that

the central bank may achieve this — the outcome depends on the targeted maturity as

well as the size of the shock (amount of bonds sold/bought). Understanding the spillover

structure can help the central bank achieve its objectives more efficiently by changing the

relevant interest rates with smaller interventions in the bond market (“more bang for its

buck”). Third, supplementing the interest rate targeting policies with adequate forward

guidance can make the central bank even more efficient.

6 Conclusion

We propose a dynamic spatial lag model with an unobserved, potentially asymmetric weight

matrix and a time-varying, data-driven intensity parameter. We employ the proposed

framework to assess spillovers of interest rate surprises across the yield curve over time.
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We find that the network is sparse and that only adjacent maturities are connected

directly to each other. Furthermore, we document strong time variation in the intensity

parameter, mainly driven by forward guidance. Our results suggest significant and non-

trivial complementaries between the various dimensions of monetary policy. We illustrate

how understanding the spillover structure can be useful for monetary policy makers.

Though arguably, our paper addresses the first link in the transmission of monetary

policy, i.e., the spillovers of the surprises across the yield curve, one could certainly nest our

setup into more traditional empirical monetary models to assess the effects of the various

dimensions of monetary policy on the economy at large. This could be done with further

methodological extensions to allow for shrinkage in order to deal with the increase in the

parameter space effectively.
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Knüppel, M. and Vladu, A. (2016). Approximating fixed-horizon forecasts using fixed-event

forecasts. Deutsche Bundesbank Discussion Paper, 28.

Koopman, S. J., Lucas, A., and Scharth, M. (2016). Predicting time-varying parame-

ters with parameter-driven and observation-driven models. Review of Economics and

Statistics, 98(1):97–110.

Kuttner, K. N. (2001). Monetary policy surprises and interest rates: Evidence from the Fed

Funds futures market. Journal of Monetary Economics, 47(3):523–44.

Lam, C. and Souza, P. C. (2016). Detection and estimation of block structure in spatial

weight matrix. Econometric Reviews, 35(8-10):1347–1376.

Lam, C. and Souza, P. C. (2020). Estimation and selection of spatial weight matrix in a

spatial lag model. Journal of Business & Economic Statistics, 38(3):693–710.

Tonzer, L. (2015). Cross-border interbank networks, banking risk and contagion. Journal

of Financial Stability, 18:19–32.

Wang, D., van Lelyveld, I., and Schaumburg, J. (2018). Do information contagion and

business model similarities explain bank credit risk commonalities? DNB Working

Papers 619, Netherlands Central Bank, Research Department.

20



Tables and Figures

21



T
a
b
le

1
:

S
im

u
la

ti
o
n

R
es

u
lt

s:
M

is
sp

ec
ifi

ed
M

od
el

T
N

M
A
E

(ρ̂
t)

ra
n

ge
(ρ̂

t)
M
S
E

(ŵ
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Table 3: Drivers of Network Dynamics: Estimated Model Specifications

Model 1 Model 2 Model 3 Model 4

a 0.10 0.07 0.08 0.07
b 0.90 0.94 0.87 0.92

Path -0.50 -0.39 -0.49
VIX 0.02 0.01
IP -1.47

AIC -916.31 -919.81 -918.27 -915.71
Note: The table shows parameter estimates associated with the law of motion for the network dynamics,
i.e., ft+1 in Equation (4).
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Figure 1: Tracking the Spatial Dependence Parameter (ρt)

(a) Tracking performance, T = 300, N = 7.
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(b) Tracking performance, T = 600, N = 7.
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Notes: The spatial dependence parameter ρt is generated according to three deterministic patterns: a sine
pattern (first column), a step pattern (second column), and a constant (third column). The estimated
model and parameters correspond to those in Equations (1) and (4).
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Figure 2: Kernel Densities of Estimated Parameters, T = 300, 600, 1000, N = 4.
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Notes: The data-generating process as well as the estimated model and parameters correspond to those
in Equations (1) and (4). The distributions are smoothed with a Gaussian kernel estimation.
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Figure 3: Data: Interest Rate Surprises across Various Maturities
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Notes: Surprises are calculated as the differences between the realization of the US government bond
yields and expectations from the BCFF at h = 6 forecast horizon for seven maturities (indicated on the
y-axis). The sample ranges from March 1988 until April 2016.

Figure 4: Data: Changes in Government Bond Yields across Various Maturities.
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Notes: Changes in government bond yields are used as control variables, in our context yielding identi-
fication. The sample ranges from March 1988 until April 2016.
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Figure 5: Dynamic Network of Yield Curve Surprises

(a) Estimated Weights Matrix, W

3m 6m 1y 2y 5y 10y LR
3m 0 1.00 0 0 0 0 0
6m 0.20 0 0.80 0 0 0 0
1y 0.10 0.34 0 0.56 0 0 0
2y 0 0 0.58 0 0.42 0 0
5y 0 0 0 0.43 0 0.57 0
10y 0 0 0 0 0.63 0 0.37
LR 0 0 0 0 0 1.00 0

(b) Network Graph
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Notes: Panel (a) shows the estimated values of weights matrix, W . Panel (b) visualizes the static
network. The bigger and darker-colored nodes represent nodes with a larger number of connections. For
instance, the one-year surprise is in a darker blue because it has five connections relative to the surprises
in either the two-year, five-year, or 10-year maturities, where each has four connections. Edges have
the same color as the node of origin.
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Figure 6: Time-varying Network Intensity
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Note: The figure documents the path of network intensity, ρt, in the presence of no exogenous drivers,
i.e., when c = 0.

Figure 7: Data: Drivers of Network Dynamics
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Notes: The figure shows the time series of the path factor extracted from high-frequency interest rate
futures, as well as the implied volatility index (VIX) and the industrial production index (IP). The
sample ranges from January 1990 until April 2016.
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Figure 8: Time-varying Network Intensity with Covariates
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Notes: The figure documents the path of network intensity, ρt, in the presence of various exogenous
drivers. In addition, it reports the case with no exogeneous drivers, i.e., when c = 0, for comparison.

Figure 9: Spatial Responses to 100bps Monetary Policy Shocks: Average Intensity
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Notes: The estimated model and parameters correspond to those in Equations (1) and (4), where network
intensity is driven by the score and the “path” factor. We present the feedback effects based on Equation
(3) and the sample average of the network intensity parameter ρt.
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Figure 10: Spatial Responses to 100bps Monetary Policy Shocks: Minimum Intensity
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Notes: The estimated model and parameters correspond to those in Equations (1) and (4), where network
intensity is driven by the score and the “path” factor. We present the feedback effects based on Equation
(3) and the minimum value of the sample network intensity parameter ρt.

Figure 11: Spatial Responses to 100bps Monetary Policy Shocks: Maximum Intensity
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Notes: The estimated model and parameters correspond to those in Equations (1) and (4), where network
intensity is driven by the score and the “path” factor. We present the feedback effects based on Equation
(3) and the maximum value of the sample network intensity parameter ρt.
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Figure 12: Spatial Responses to 25bps Monetary Policy Shocks
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Notes: The estimated model and parameters correspond to those in Equations (1) and (4), where network
intensity is driven by the score and the “path” factor. We present the feedback effects based on Equation
(3) and the mean value of the sample network intensity parameter ρt.

Figure 13: Spatial Responses to Monetary Policies’ Interactions
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Notes: The estimated model and parameters correspond to those in Equations (1) and (4), where network
intensity is driven by the score and the “path” factor. We present the feedback effects based on Equation
(3) and the sample network intensity parameter ρt = 0.95 as during the Operation Twist episode.
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