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Abstract 
This paper measures valuation and strategic uncertainty in an over-the-counter market. The 
analysis uses a novel data set of price estimates that major financial institutions provide to a 
consensus pricing service. We model these institutions as Bayesian agents that learn from 
consensus prices about market conditions. Our uncertainty measures are derived from their 
beliefs through a structural estimation. The main contribution of the consensus pricing service 
is to reduce strategic uncertainty in the most opaque market segments. This stresses the 
importance of public data, such as financial benchmarks, for a shared understanding of market 
conditions in markets with limited price transparency. 
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1 Introduction

Prices serve a dual purpose. They aggregate dispersed information about gains
from trade. At the same time, they help to coordinate actions among market
participants. Empirical work on the informational value of prices typically focuses
on the former. However, the ability of prices to reduce uncertainty about market
participants’ actions and beliefs, that is, strategic uncertainty, can be of equal
importance. This is especially true in markets with strong coordination motives
(Angeletos and Pavan (2007); Morris and Shin (2002)). Intermediated markets
are an important example. Intermediaries not only have to form beliefs about the
gain from trades that they intermediate, but also have to take into account the
behaviour of other intermediaries. The aggregate level of intermediation activity
influences the number of trading parties that can be linked. It also determines
the ability to share the risk that comes with the holding of inventory during the
intermediation process. Therefore, an intermediary needs to form beliefs about
both valuations and other intermediaries’ behavior.

Public price data can help to coordinate these beliefs by establishing important
reference points for trading and managing risk. A lack of price transparency, a
common problem in intermediated markets, threatens the common understanding
of market conditions and can lead to costly coordination failures (Morris and Shin
2012). Episodes of financial market freezes provide ample evidence for this fact.1

In response to the temporary or permanent shortage of trading-based price data,
so-called consensus pricing services have emerged. These services collect price es-
timates from market participants and aggregate the estimates into a consensus
price. A consensus price is supposed to give the current market value of a specific
asset, for example, a 2015 Honda Civic LX with 50,000 km mileage in the used car
market or the interest rate for an unsecured 6-month US dollar loan in the London
inter-bank market at 11 a.m. London time. A major advantage of consensus prices
is that they can be generated irrespective of whether the asset has been recently
traded. As the last example shows, consensus prices are an important mechanism
in financial markets to calculate benchmark prices. It is thus crucially important to
understand whether, and how, the consensus pricing mechanism works in practice.

In this paper, we study the informational value of the consensus pricing mech-
anism for market participants. To tackle this question, this paper develops and
structurally estimates a model of learning from prices. The empirical analysis

1Lowenstein (2000) (p. 159), for example, gives a vivid account of the bond market at the
height of the LTCM crisis on August 31, 1998: “It was as if a bomb had hit; traders looked at
their screens, and the screens stared blankly back. [...] So few issues traded, you had to guess
where they were.”
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is based on a new data set of price submissions that large dealer banks, highly
sophisticated market participants, make to the main consensus pricing service in
the over-the-counter (OTC) options market. We use the structural estimation to
obtain empirical measures of uncertainty that are based on their model-implied be-
liefs. We also measure how efficient the consensus price is in aggregating dispersed
information. In the model, dealer banks learn about a latent and time-varying op-
tion value from two types of signals: a noisy private signal and a consensus price.
This consensus price is modelled as a noisy endogenous signal of dealer banks’
average expectation about the option value. Each dealer bank is uncertain about
the current value and other dealers’ expectations thereof. We use the variance of
a dealer bank’s posterior beliefs about option value and competing dealers’ aver-
age expectations to measure these two dimensions of uncertainty. Having access
to a panel of individual dealer banks’ price submissions allows us to identify the
structural parameters that determine dealers’ beliefs. To gauge the informational
value of consensus prices, we perform counterfactual experiments on the option
market’s information structure.

We find that dealer banks’ uncertainty about option values and strategic uncer-
tainty varies substantially across the different segments of the options market. We
find higher uncertainty for option contracts that are not listed on centralized ex-
changes but are exclusively traded over the counter. Dealer banks do not appear
to rely heavily on the consensus price feedback to reduce their uncertainty about
option values. This reduction in valuation uncertainty is at most 4.6 percent in
the most opaque market segment. We find that the information the consensus
price contains is most important for reducing strategic uncertainty, i.e., their un-
certainty about competitors’ valuation. This effect is strongest, up to 37.8 percent,
in the most opaque segments of the options market and reflects the scarcity of pub-
lic valuation information in these market segments. It stresses the importance of
publicly observed market data, such as financial benchmarks, to establish a shared
understanding of market conditions in markets with limited price transparency.

The estimation framework developed in this paper makes a methodological contri-
bution by showing how to structurally identify the informativeness and informa-
tional efficiency of prices. The modern theoretical framework for these questions
dates back to the early 1980s, with seminal contributions by Grossman and Stiglitz
(1980), Hellwig (1980) and Diamond and Verrecchia (1981).2 For example, Vives
(1997) highlights the importance of the mix between public and private infor-

2The modern literature on information aggregation is too large to do justice to here. Impor-
tant contributions have focused on auctions (Pesendorfer and Swinkels (1997); Kremer (2002)),
decentralized trading (Gale (1986), Golosov et al. (2014)), asset design (Ostrovsky (2012)) or
the trade-off between market size and information heterogeneity (Rostek and Weretka (2012)).
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mation for the speed of information aggregation. However, as pointed out by
Townsend (1983), determining the informational content of the price process in
a dynamic equilibrium context poses significant technical challenges. Most struc-
tural empirical analyses of price formation assume that the asset value becomes
at some point common knowledge (e.g., following Easley et al. (1996) information
structure). This prevents long-lasting belief heterogeneity. The evolving source of
uncertainty, paired with privately informed market participants, is a key source
of belief heterogeneity and, hence, strategic uncertainty in our model. To solve
the dynamic signal extraction problem and structurally estimate the model, we
adopt an iterative algorithm previously used in Nimark (2014) and Barillas and
Nimark (2017). We show that observing belief updating dynamics at the level of
the individual institution is key for identifying the structural parameters of the
model. Modelling the consensus price as an endogenous public signal allows us
to conduct counterfactual experiments on the market’s information structure to
evaluate the strength of informational externalities caused by public information
(Amador and Weill (2012)).

There is a sizeable literature that uses the cross-sectional dispersion among pro-
fessional forecasters to study informational frictions (Coibion and Gorodnichenko
(2012), Andrade et al. (2016)). However, the focus of these papers is on under-
standing the expectation formation process. The insights gained are then used to
discriminate between alternative models, extrapolate to a wider group of market
participants than just professional forecasters, and study macroeconomic conse-
quences. In this paper we have a different objective, namely to measure uncer-
tainty among market participants in an opaque market structure. For this, we
assume that our units of observation, highly sophisticated financial market partic-
ipants, are fully rational Bayesian agents. We then use this structural assumption
to derive measurement devices for uncertainty based on their model-implied be-
liefs. An additional novel aspect of our empirical approach is the focus on strategic
uncertainty. Here, the structural approach is particularly useful as data on market
participants’ higher-order beliefs are typically not available. Hortaçsu and Kastl
(2012) and Hortaçsu et al. (2018), for example, use model-implied beliefs derived
from a structural estimation to gauge the strategic value dealers derive from being
able to observe client demand in Treasury auctions. Similarly, Boyarchenko et al.
(2019) use a calibrated model to perform counterfactual informational experiments
in the US Treasury market to evaluate the welfare implications of different order
flow information-sharing arrangements among dealers and clients. However, the
source of strategic information in these models is order flow information rather
than price data. More generally, we see the counterfactual experiments we per-
form on the market’s information structure as an illustration of the usefulness of

3



a structural approach for empirical work on information design (Bergemann and
Morris (2019)).

This paper contributes towards understanding the role of benchmarks in the well
functioning of markets. Duffie et al. (2017) show how benchmarks can reduce in-
formational asymmetries in search markets and thereby increase the participation
of less-informed agents. Our approach differs, in that we focus on the informa-
tional properties of the benchmark itself. Furthermore, we model the benchmark
as the outcome of an equilibrium process among symmetrically informed agents.
This also contributes more widely to understanding of the informational value of
non–transaction based price information. Previous work in this area has focused
on different information aggregation mechanisms, in particular pre-opening prices
(Biais et al. (1999), Cao et al. (2000)) and opening auctions (Madhavan and Pan-
chapagesan (2000)) in stock markets. This paper is, to our knowledge, the first
to provide an empirical evaluation of the informational properties of a consensus
pricing mechanism.3 While the importance of benchmarks for financial markets
is widely appreciated, the attempted manipulation of major interest rate bench-
marks has led to a regulatory push to base benchmarks on transaction prices or firm
quotes rather than expert judgment (IOSCO (2013)). However, in illiquid markets
and during crisis times, this might not always be possible. During the COVID-19
turmoil in March 2020, for example, three out of four candidate forward-looking
term rate benchmark providers were unable to publish benchmarks during a three-
day period due to the lack of transactions data (Risk.net).

The plan of the paper is as follows. Section 2 provides a brief explanation of the
option market structure and the Totem consensus pricing service and presents the
data. Section 3 develops the structural model of learning from consensus prices
from which our empirical uncertainty measures are derived. Section 4 presents
the structural estimation of the model and discusses identification and robustness.
Section 5 illustrates our approach to measuring valuation and strategic uncertainty
and presents results. Section 6 concludes.

3Many important financial benchmarks are consensus prices. It is also employed by infor-
mation providers, such as Bloomberg, to calculate “generic prices” for a wide range of financial
products.
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2 Market structure and data

2.1 Options market structure

Options on the S&P 500 index are arguably the central derivatives contracts for
the stock market. Their prices contain rich information on market participants’
beliefs about future US stock market movements and risk premia. The VIX in-
dex, a popular measure of risk perception in financial markets, is based on S&P
500 option prices. The dominant market structure for options trading depends on
the terms of the contract. Option contracts with times-to-expiration of less than
6 months and strike prices close to the current index value (moneyness close to
100) are typically traded on options exchanges, such as the Chicago Board Op-
tions Exchange (CBOE), via limit order books.4 Price quotes, transaction prices
and volumes are fully transparent and available to all market participants. For
options with more extreme contract terms, the dominant market structure is OTC
trading. Figure 1 displays the average on-exchange trading activity for S&P 500
index option over the period 2002 to 2015 for contract terms covered in this paper.
On-exchange trading activity is decreasing with the time-to-expiration and the
extremeness of the strike price of an option. For option contracts with times-to-
expiration of more than 3 years, trading is almost exclusively OTC.5

The OTC segment of the options market is centred on a network of dealers. These
are typically large investment banks that act as market-makers and trade with
each other and with so-called clients: hedge funds, asset managers, insurance
companies, and pension funds that want to manage portfolio risk or establish
speculative positions. In terms of clientele, the market segment with times-to-
expiration below one year is typically dominated by hedge funds trading short-
term stock market volatility. The one- to three-year segment tends to be the
domain of “real money,” asset managers such as BlackRock that use options in
their portfolio insurance strategies. Client demand in the market segment with
times-to-expiration beyond 3 years tends to come from pension funds and life
insurance companies that have long-term commitments linked to the evolution of
the stock market. In the OTC market, trades are negotiated bilaterally, often over

4An option contract on an asset gives the owner the right (but not the obligation) to buy
(call option) or sell (put option) the asset. The time-to-expiration of (European style) contracts
specifies the date at which the option can be exercised; the strike price specifies the price at
which the asset can be bought or sold. The strike price is often expressed as a ratio to the
current price of the asset times 100. This is also called the moneyness of the option.

5Clearing house data (see, e.g., OOC) shows that in overlapping regions, traders often choose
an OTC over an on-exchange trade. This can be because of greater flexibility in contract terms,
lower trading fees, or market impact considerations. Large trades can be difficult to hedge if the
trade is publicized. Here the transparency that comes with on-exchange trading is undesirable.
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Figure 1: On-exchange option trading activity

This figure displays the trading activity on exchanges for the different put and call option con-
tracts on the S&P500. We use daily aggregated data, provided by OptionMetrics, to display
the percentage of days a particular contract is traded. We count the number of days with a
contract-specific total trading volume of 10 or more. Due to the coarse grid of the options re-
ported to the Totem service, exchange-traded contracts in the proximity of a Totem contract are
aggregated to a single moneyness and maturity combination. Moneyness of the contracts are
(60, 80, 90, 95, 100, 105, 110, 120, 150, 200) and times-to-expiration are (6, 12, 24, 36, 48, 60,
72, 84). Here, proximity is defined as less than half the distance to the next Totem contract in
terms of moneyness and time-to-expiration. We use the trading volume for both call and put
options between 2002 to 2015.

the phone or by email or instant messaging. Both transaction price and volume
remain proprietary information of the two parties involved in the trade.6 Rather
than having to rely on pricing models to hedge option exposures, dealer banks
typically prefer to conduct offsetting trades with each other in the inter-dealer
segment of the options market. Hence, when trading with clients, a dealer bank

6Some dealers run proprietary electronic trading platforms on which they post price quotes.
In 2010, various electronic trading platforms introduced request-for-quote systems to further in-
crease pre-trade price transparency. The regulatory reforms after the financial crisis have also
introduced mandatory post-trade reporting to trade repositories for all OTC derivatives trans-
actions. But these are regulatory data and not available to market participants. Another source
for price and volume information in OTC markets is central counterparties (CCPs). However,
unlike for interest rate and credit derivatives, OTC equity derivatives trades are currently not
subject to a central clearing mandate. The current proportion of OTC equity derivatives trades
that is centrally cleared is negligible (see Financial Stability Board (2018)).
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not only has to form a view on the fundamental drivers of option values. It also
has to consider the valuations of other dealer banks with whom it can enter into
offsetting trades. Appendix 7.3 develops a stylized model of this market structure
to illustrate the value of information for dealer banks.

2.2 Consensus Price Data

The empirical analysis is based on data from the main consensus pricing service
for the OTC derivatives market, IHS Markit’s Totem service. The service started
in February 1997 with 6 major OTC derivatives dealers. Since then, Totem has
become the leading platform for OTC consensus price data, with around 120 partic-
ipants and a coverage of all major asset classes and types of derivatives contracts.
In this paper, we focus on the consensus prices for call and put options on the
S&P 500 index. We have access to the full history of Totem contributors’ price
submissions. The individual institutions are anonymized, but we can track each
institution’s submissions over time and across contracts. We restrict our sample to
the period December 2002 to February 2015 to achieve a consistent set of option
contracts and a stable group of submitting institutions. Table 1 reports the set
of option contracts we consider (by time-to-expiration and moneyness) as well as
the average number of institutions submitting price estimates for a given contract
over our sample period.7 Note that some participating institutions do not submit
to the more extreme contracts.

The consensus pricing process

The Totem pricing service typically operates at a monthly frequency. At the end
of a month, all submitters are asked to provide their best estimate of the mid-
quotes (at a specific time on the so-called valuation day) for the set of derivatives
contracts to which they contribute estimates. In addition to their estimate of the
contract price itself, it includes other data used in the pricing of the contract, such
as discount factors, dividend yields, and the price of the underlying asset.

Manipulation incentives for consensus prices of OTC derivatives are generally
weaker than for benchmark interest rates, such as LIBOR, that are compiled us-
ing a similar method. Unlike in the benchmark interest rate case, no financial
products in the OTC derivatives markets are indexed to consensus prices. Hence,
changes in consensus prices do not immediately impact an institution’s profits and

7For contracts with time-to-expiration of 6 and 12 months, we exclude the contracts with
a moneyness of 200. For these contracts, prices are close to zero and crucially depend on the
numerical precision used by Totem submitters when reporting prices. Additionally, the inversion
of the prices to Black-Scholes implied volatilities can become numerically unstable.
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Table 1: Average number of submitters

moneyness
term 60 80 90 95 100 105 110 120 130 150 200
6 27 31 31 31 31 31 31 31 29 27 ·
9 26 29 29 29 29 29 29 29 29 26 ·
12 27 30 30 30 30 30 30 30 28 27 19
24 27 30 30 30 30 30 30 30 28 26 19
36 26 29 29 29 29 29 29 29 27 26 18
48 26 29 29 29 29 29 29 29 26 25 18
60 25 28 28 28 28 28 28 28 26 25 18
84 24 25 25 25 25 25 25 25 24 23 17

This table provides the average number of submitters for the specific options on the S&P 500
Index. These are the accepted prices per contract for the dates that the contract is polled. In
our analysis we ignore submissions with a price of 0. The data sample is from December 2002
to February 2015.

losses. Furthermore, the Totem consensus pricing service has significantly more
submitters than interest rate benchmarks, on average 30 per contract, which makes
strategic manipulation of the consensus price more difficult. Nevertheless, Totem
uses a range of formal and informal procedures to discourage price manipulation
and incentivize high-quality price submissions. For the S&P 500 option service,
each submitter is obligated to contribute to the contracts with time-to-expiration
of 6 months and moneyness, expressed as the ratio of the option’s strike price to
the current index level, between 80 and 120. ‘No-arbitrage” arguments between
contracts allow for consistency checks between contracts. Comparison between
submitters forms the basis for additional quality audits. In case of doubt, addi-
tional private conversation between submitters and IHS Markit employees (often
ex-market participants) can take place to gather additional information on indi-
vidual prices and market conditions. Price submissions that are deemed of low
quality do not enter the consensus price calculation, and the submitting institu-
tion does not receive the consensus price for the submission period. This serves as
a formal punishment mechanism for low-quality submissions.

Accepted price submissions are then used to calculate consensus prices, one for each
derivatives contract. The highest and lowest accepted price are dropped from the
sample before the mean is calculated. Totem provides contributors with the new
consensus prices within 5 hours of their initial price submissions. The consensus
price for a given options contract is the arithmetic mean of the accepted price
estimates. For a detailed description of the submission process and the quantities
submitted, see Appendix 7.4.
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Valuation differences among dealers

To provide a sense of the cross-sectional dispersion in Totem submitters’ option
valuations, the left panel of Figure 2 depicts the cross-sectional standard devi-
ation of price submissions, expressed in terms of implied volatility’s,8 averaged
over the sample period. There is considerable variation in the dispersion in sub-
mitters’ prices across the contract space. It is highest for short-dated options
with extreme strike prices. For a given time-to-expiration, the dispersion is low-
est for strike prices close to the current index level, that is a moneyness of 100.
The price dispersion across submitters tends to decrease with time-to-expiration.
These cross-sectional differences are economically meaningful; they are of similar
magnitude to bid-ask spreads observed on option exchanges in regions where OTC
and on-exchange trading overlaps, but they display a low level of correlation with
these bid-ask spreads over time, as can be seen in Figure 6 of the Appendix.

(a) Cross-sectional dispersion (b) Half-lifes

Figure 2: The left figure displays the time-series average of the cross-sectional standard
deviation of submitters’ implied volatility estimates to a particular contract. The right figure
present half-lives estimates of the individual deviations from the contemporaneous consensus
price. The half-lives in months are transformations from an AR(1) regression. The estimates
are from a pooled ordinary least squares regression. The y-axis of each figures gives the time-
to-expiration and the x-axis the moneyness of the options contract under consideration. The
sample period of the data is December 2002 to February 2015 for the option contracts on the
S&P 500 index.

8Throughout the paper, we express option prices in terms of Black-Scholes implied volatilities
(IVs). This is the market convention for quoting option prices. It facilitates the comparison of
option prices across times-to-expiration and strike prices.
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The right panel of Figure 2 shows the persistence of individual submitters’ devia-
tions from the consensus price. For each option contract, we estimate the following
AR(1) regressions to quantify this persistence:

pci,t − pct = βc
(
pci,t−1 − pct−1

)
+ εci,t.

Here pci,t is institution i’s price submission for contract c in period t and pct is the
corresponding consensus price. The right panel of Figure 2 reports the estimated β
coefficients expressed as half-lives, i.e., the number of months it takes to close half
of the gap between an individual dealer’s price estimate and the consensus price.
Dealers’ deviations from consensus are persistent for all contracts. The U-shaped
persistence pattern in moneyness partially mirrors the cross-sectional dispersion
in the left panel of Figure 2.
From these results, we draw some preliminary observations that guide our struc-
tural modelling. First, all submitters are asked to provide their best estimate for
the mid-quote of a given contract, i.e. a market-wide price. If all dealers had
access to the same information and used the same models, they should all provide
the same price estimate. In this paper we abstract from model disagreement or
model uncertainty and assume that submitters form expectations by updating be-
liefs using a model that itself is common knowledge. Under this interpretation of
the data, the observed cross-sectional dispersion necessarily reveals informational
frictions in the OTC market. Furthermore, these frictions vary across market seg-
ments.

Second, these informational frictions have to derive from dealer banks’ private in-
formation. Imperfect information that is observed by all dealer banks does not
induce cross-sectional dispersion. However, the cross-sectional dispersion alone
cannot identify the precision of private valuation information, as both very precise
and very imprecise private information imply low cross-sectional dispersion. This
illustrates the conceptual problem of using the cross-sectional dispersion of the
raw data for the measurement of informational frictions.

Last, if the consensus price perfectly aggregated dispersed information, all bank
dealers should have the same expectation about the current mid-quote after ob-
serving the current consensus price. Any deviation from the consensus price has
to be driven by new private information. If not, deviations from consensus could
not be persistent; a dealer’s past relative position to the consensus price would
have no predictive power for its future relative position. This is clearly rejected
by the data. The positive persistence points to imperfect information aggregation
and, consequently, long-lived private information at the level of individual dealers.

10



3 A Model of Consensus Pricing

To model the key feature of the consensus pricing process, we set up the model
as a social learning problem. The submission process and therefore the consensus
price’s informational content is an equilibrium outcome of the model.

3.1 The model

A large number of dealers, modelled as a continuum indexed by i ∈ (0, 1), par-
ticipate in a consensus pricing service. At discrete submission dates, indexed by
t = {...,−1, 0, 1, ...}, a dealer i submits its best estimate for the current value of
an option, which we denote by θt, to the service. θt is latent and follows an AR(1)
process,

θt = ρ θt−1 + σu ut with ut ∼ N (0, 1) , (1)

and −1 < ρ < 1.9

At each submission date t, dealers observe two signals. Each dealer receives a
noisy private signal si,t about θt,

si,t = θt + ση ηi,t with ηi,t ∼ N (0, 1) , (2)

where 1/σ2
η measures the precision of the private signal. All dealers receive signals

of equal quality.

Additionally, each institution observes last period’s consensus price pt−1. This
timing is a key difference to standard rational expectations equilibrium (REE)
models. This feature allows us to avoid certain technical difficulties that arise in
the REE literature. Given that it is a signal of the past state of the market, it
can never fully reveal the current state. The consensus price pt is a noisy average
of submitters’ best estimates of θt. Submitter i’s information set at the time of
period t’s price submission consists of the (infinite) history of previous consensus
prices and the private signals that i has observed up to period t, that is,

Ωi,t = {si,t, pt−1,Ωi,t−1}.

All dealers submit their best estimate of θt. For each dealer, we take this to mean
its conditional expectation of θt given Ωi,t. We denote this conditional expectation

9We do not explicitly model the economic forces responsible for the variation in fundamental
values. A possible interpretation is based on demand-based option pricing models (see, e.g.,
Gârleanu et al. (2009)). Changes in fundamental values derive from time-varying client demand
that is satisfied by risk-averse broker-dealers. Under this interpretation, ut is an aggregate
demand shock for options with a specific strike price and maturity combination.
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by
θi,t = E (θt|Ωi,t) ,

and the corresponding cross-sectional average across submitters by

θ̄t =

∫ 1

0

θi,t di.

We do not specify submitters’ preferences, which would determine why they value
the consensus price information. Certain preference specifications could create
an incentive to strategically manipulate the consensus price, for example in order
to experiment or to gain a competitive advantage (see Brancaccio et al. (2017)
for experimentation motives in OTC markets). However, given the assumption
of a continuum of submitters (and mild technical restrictions on admissible sub-
missions), no single submitter can influence the consensus price. Hence, asking
submitters to submit their best estimate of θt is compatible with their incentives.10

The consensus price itself is a noisy signal of the average expectation across sub-
mitting dealers, that is,

pt = θ̄t + σε εt with εt ∼ N (0, 1) . (3)

Modelling the consensus price as a noisy public signal of average expectations is
motivated by two considerations. First, as previously discussed, Totem eliminates
the lowest, the highest, and problematic price submissions from the consensus price
calculations. Hence, the consensus price itself does not exactly correspond to the
average submission. Second, while we assume that there is a continuum of sub-
mitters, we want to allow for the possibility that the consensus price does not fully
reveal the average expectation and, consequently, last period’s fundamental value.
Knowing past period’s fundamental value rules out long-lived private information.
But such long-lived private information is needed to capture the persistence of the
deviations of individual price submissions from the consensus price, a feature we
observe in the data.

3.2 Learning from consensus prices

In order to characterize dealer i’s submission to the consensus pricing service, we
need to calculate the dealer’s conditional expectation E (θt|Ωi,t). Its information

10Raith (1996) gives a theoretical analysis of the incentives for competitive firms to participate
in (truthful) information-sharing arrangements. Appendix 7.3 provides a stylized model that
shows how to approach such questions relating to the value of information in the context of
consensus pricing.
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set Ωi,t depends on all other dealers’ submissions via the consensus price process
pt. This information set is endogenous, as pt is both an input and an output of the
joint learning process of the consensus pricing participants. As first pointed out
by Townsend (1983), signal extraction problems in which signals are equilibrium
variables, such as prices, typically do not admit representations in which a finite
number of variables can summarizes the current state of the system. For very re-
strictive settings, frequency domain techniques have been successfully employed to
obtain exact finite state space representations, e.g. Kasa (2000). However, a pop-
ular direction of attack is truncation, i.e. to show that the original problem is well
approximated by a finite state space even if the actual solution requires an infinite
number of states (e.g. Sargent (1991), Lorenzoni (2009), Huo and Pedroni (2020)).

This is the approach taken here. We adopt an iterative algorithm previously used
in Nimark (2014) and Barillas and Nimark (2017) to solve our filtering problem.
The algorithm works as follows:

1. Start with any covariance-stationary process (p0
t ) that lies in the space spanned

by linear combinations of current and past aggregate shocks (ut) and (εt).

2. This consensus price process (p0
t ) yields information sets for all i and t defined

recursively by Ω0
i,t = {si,t, p0

t−1,Ω
0
i,t−1}.

3. Given information set Ω0
i,t, dealer i can compute the conditional expectation

E(θt|Ω0
i,t) for period t under the assumed stochastic process for (p0

t ).

4. Averaging the expectations across submitters yields a new consensus price
process

p1
t =

∫ 1

0

E(θt|Ω0
i,t) di+ σε εt for all t.

5. If the distance (in m.s.e.) between (p0
t ) and (p1

t ) is smaller than some pre-
specified stopping criterion, stop. Otherwise, go to step 2 with (p1

t ) as the
new consensus price process and so on.

For any initial choice of (p0
t ), the sequence of price processes {(pnt )}n converges (in

m.s.e.) to a unique limit process (pt), the solution of the original filtering problem,
when the integral in step 4 is a contraction on the space of covariance-stationary
price processes. Starting with the initial guess p0

t = θt + σε εt allows the problem
to be solved by a sequential application of the Kalman filter. It also provides an
upper bound on the approximation error if the algorithm is stopped after a finite
number of steps.
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After n steps, the equilibrium learning dynamics are approximated by a linear
state-space system with an n + 1 dimensional state vector xt. The first and sec-
ond element of xt are the fundamental value θt and the cross-sectional average
expectation θ̄t, respectively.11 The state evolves according to

xt = Mxt−1 +Nvt with vt = (ut, εt−1)T, vt ∼ N(0, I2).

The matrices M and N are known functions of the model parameters, namely
{ρ, σu, σε, ση}. A dealer’s signals in period t can be expressed as noisy observations
of the state,12

si,t = eT1 xt + ση ηi,t = θt + ση ηi,t,

pt−1 = eT2 xt−1 + σε εt−1 = θ̄t−1 + σε εt−1.

The two signals can be written in vector form as

yi,t = D1 xt +D2 xt−1 +B εi,t,

with yi,t = (si,t, pt−1)T and εi,t = (vTt , ηi,t)
T.

We can now use the Kalman filter to obtain dealer i’s beliefs about θt and θ̄t, the
first two elements of xt, given the information in Ωi,t. The linear-normal structure
of the state-space system implies that dealer i’s beliefs are normally distributed,

xt | Ωi,t ∼ N (xi,t,Σ
p) ,

where the conditional expectations about the state evolve according to

xi,t = Mxi,t−1 +K (yi,t − (D1M +D2)xi,t−1) , (4)

and K is a (n+1)×2 dimensional matrix of Kalman gains. Here K and the covari-
ance matrix of dealers’ beliefs Σp are known functions of the model parameters.13

11The kth element of xt is the cross-sectional average of submitters’ kth-order expectation of
θt given their information in period t. Appendix 7.5 provides a definition of these higher-order
expectations and a detailed description of the solution algorithm.

12Here, eTn is a vector with 1 in the nth position, 0 otherwise.
13Given the infinite history of past signals, the covariance matrix Σp and the matrix of Kalman

gains K are not time dependent. Also, Σp and K are not dealer-specific as dealers are symmet-
rically informed. They all receive signals of the same quality. Superscripts, here p, are used
to index information structures. In the counterfactual experiments we modify the information
structure.
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4 Estimation

To estimate the model parameters, namely φ = {ρ, σu, σε, ση}, for each contract
we opt to estimate the parameters for each contract separately. In an alterna-
tive approach one could jointly estimate the contracts and impose a correlation
structure on fundamental shocks ut across contracts. This approach would also
require a change in the signal structure that allows dealers to learn from options
in close proximity. We have opted for the more parsimonious approach. First,
we can prove that the structural parameters of the simpler model are identified.
Second, not all participating dealer bank submit to all contracts. To allow for
this compositional effect in a joint framework would further complicate the model
structure and its estimation. Last, contract-by-contract estimation allows for the
examination of the stability of the coefficients estimates between contracts and
thereby provides a check of our estimation results.

For a given contract our data consists of the panel of Totem price submissions
of individual dealers and the corresponding consensus price. We denote by ιt ⊂
{1, 2, .., S} the set of dealers active in t where S is the total number of distinct deal-
ers that have submitted to Totem over the course of our sample period. The time
series of submissions is given by (pt)

T
t=1, where pt = (pj,t)j∈ιt is a |ιt|-dimensional

vector consisting of the individual period t consensus price submissions. Our
data set for a given contract, (y)Tt=1, then consists of the time series of deal-
ers’ price submissions for this contract and the corresponding consensus price, i.e.
yt = (pt ,pt)

T.14

4.1 Likelihood function and estimation

To estimate the model for a given contract, we cast it into state-space form. The
panel of individual price submissions and the time series of consensus prices con-
stitute the available observations of the system.

Based on Section 3, the latent state space has the following dynamics:

xt = M(φ)xt−1 +N(φ) vt , vt ∼ N(0, I2),

where vt = (ut εt)
T. M(φ) and N(φ) are obtained employing the previously ex-

plained solution algorithm for a given parameter vector φ. We assume that dealer
i’s price submission for period t is its conditional expectation of θt, i.e. pi,t = θi,t.

14To be precise, pj,t and pt are the time t submitter j’s and by IHSMarkit calculated consensus
implied volatility, respectively. These series are demeaned by the time-series average of pt.
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Dealer i’s conditional expectations of the current state xt are updated follows,

xi,t = M(φ)xi,t−1 +K(φ)

[(
si,t
pt−1

)
− (D1M(φ) +D2)xi,t−1

]
. (5)

Dealer i’s private signal si,t, given in (2), is treated as a latent variable in the
estimation. It is observed by the dealer but not by the econometrician. The noise
in the private signal is assumed to be uncorrelated across submitting dealers and
time. The consensus price, pt in (3), is observed by both the dealers and the
econometrician. The econometrician only observes the first element of dealer i’s
conditional expectations xi,t, namely θi,t, which is a dealer first-order expectation
of the current state. We assume that the dealer submits this expectation to the
Totem service. Equation (5) provides us with a disciplined way of modelling the
belief updating dynamics at the level of the individual dealer. This illustrates both
the necessity of the structural model and the importance of observing a time series
of price submissions at the level of individual dealers to estimate dynamic social
learning models. More naive approaches that estimate belief-updating equations
using only first-order expectations without taking into account the importance of
higher-order expectations in the filtering problem will suffer from omitted variable
biases.

Given the linearity of the above system and the joint normality of all shocks, the
likelihood function for the observed data (y)Tt=1 can be derived using the Kalman
filter. We obtain maximum-likelihood estimates for the parameter vector φ using
MCMC methods with diffuse priors. Appendix 7.6 provides a detailed derivation of
the filter for the above model and discusses the estimation technique.15 Appendix
7.1 reports parameter estimates and standard errors for ρ, σu, σε, and ση for all
contracts.

4.2 Identification

Appendix 7.7 provides a formal proof of identification for the model. Here, we give
a short summary of which moments of the data help us to identify the structural
parameters of the model. The time-series variance of the differences between pt
and cross-sectional average of submission identifies σε. The speed at which indi-
vidual deviations from the average submission mean-revert determines the weight
submitters put on their prior expectations (as opposed to weight put on news in
the current signal and consensus price). Knowing this weight allows us to iso-
late changes in price submissions that are due to new information a submitter

15We constrain σu, σε, and ση to be positive and 0 < ρ < 1. For each contract we run chains
of length 100.000 with the Metropolis-Hastings algorithm and disregard the first 10.000 draws.
We subsequently pick every 10th draw to construct the posterior distribution of the parameters.
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received in a given period. As these news are linked to the current fundamen-
tal, the autocorrelation of these expectation updates that have been “cleaned” of
prior expectations allow us to identify ρ, the persistence in the fundamental value
process. The weight submitters put on their prior depends on how persistent the
fundamental is and how high the quality of their new information is, i.e. the
signal-to-noise ratio of their signals. Having identified ρ, we can now identify this
signal-to-noise ratio from the weight submitters put on their prior expectations.
The signal-to-noise ratio depends on the variance of the fundamental shocks, σ2

u,
and the precision of private signals and the consensus price as determined by ση
and σε. We have already identified σε. The relative weight submitters put on
the consensus price as opposed to the private signal depends on the relative pre-
cision of these two signals. This allows us to identify ση and, finally, σu from the
signal-to-noise ratio.

4.3 Model fit and robustness checks

To judge how well the model fits the data, we compare the model-implied cross-
sectional dispersion of price submissions and the time-series volatility of the consen-
sus price to their empirical analogues. The upper panel in Table 3 in the Appendix
displays the ratio of the model-implied cross-sectional standard deviation and the
empirical cross-sectional standard deviation. This ratio for the different contracts
is between 0.909 and 1.125, which implies that the model is able to reproduce the
size of the cross-sectional dispersion for the different contracts. We can neither
reject that the model-implied and empirical consensus price volatility differ from
one another.

Furthermore, the sample period covers two peculiar time periods: the low volatil-
ity period from 2002 to 2006 and the Great Recession from 2007 to 2010. The
estimated values may be driven solely by the dynamics in one of these periods.
We find that our results do not change if we consider these two subsample peri-
ods separately. Another potential split is that of submitters that participate for
a limited time frame and routine submitters. We therefore re-estimate the model
excluding submitters who have submitted less than 40% of the total sample period.
The parameter estimates are comparable to the whole sample period. Including
only the ‘routine’ submitters makes the contrast between the at-the-money (ATM)
and the out-of-the-money (OTM) options slightly larger. The estimation results
for these three additional data treatments are reported in the online appendix.
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5 Results

The contract-by-contract estimation of the structural parameters allows us to de-
termine how the relative weight dealers put on private and consensus price infor-
mation varies across segments of the options market. Of particular interest is the
contrast between market segments that overlap with exchange-based trading and
those that are fully OTC. In these segments, we extract how informative and how
efficient the consensus price is.

5.1 Valuation and strategic uncertainty

Our uncertainty measures are based on the covariance matrix of bank dealers’
beliefs, Σp. In particular, we focus on a dealer’s beliefs about the current funda-
mental value of a contract, θt, and the cross-sectional average expectation of this
value, θ̄t, (

θt
θ̄t

)
| Ωi,t ∼ N

((
θi,t
θ̄i,t

)
,

(
σp11 σp12

σp12 σp22

))
, (6)

where dealer i’s conditional expectations about θt and θ̄t are updated according to

θi,t = ρ θi,t−1 + ks (si,t − ρ θi,t−1) + kp
(
pt−1 − θ̄i,t−1

)
, (7)

θ̄i,t = m2 · xi,t−1 + k̄s (si,t − ρ θi,t−1) + k̄p
(
pt−1 − θ̄i,t−1

)
. (8)

The above covariance matrix of beliefs corresponds to the top left 2×2 sub-matrix
of Σp given in (3.2). The parameters ks and kp are the Kalman gains for private
signal and the consensus price, respectively. The Kalman gains give the weight
a dealer puts on the “news” contained in the signals when updating expectations
about the fundamental value θt. They correspond to the first row of K in (4).
Similarly, k̄s and k̄p are the Kalman gains for the private signal and consensus
price, respectively, for the average expectation θ̄t. They correspond to the second
row of K.

Our measures of valuation and strategic uncertainty are based on the variances
of posterior beliefs about θt and θ̄t as given by σp11 and σp22. They are also the
variance of a dealer’s forecast errors, θi,t − θt and θ̄i,t − θ̄t, at the time of its
consensus price submission. The correlation between these two forecast errors,
ρ12 = σp12/

√
σp11σ

p
22, is a natural measure for the commonality of information (An-

geletos and Pavan (2007)); higher correlations imply that different consensus price
submitters interpret new valuation information in a similar way.

To develop an intuition for the relationship between valuation uncertainty, strate-
gic and informational commonality, it is best to split up the expectation updating
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for θt into two steps: (i) First, the dealer updates its expectations about θt−1 after
observing the consensus price pt−1. Call this updated expectation θ+

i,t−1.(ii) Next,
after having observed private information si,t in period t, the dealer submits its
updated expectation about θt to the consensus pricing service. We have

θi,t = (1− ks)ρ
[
θi,t−1 +

kp
ρ(1− ks)

(pt−1 − θ̄i,t−1)

]
︸ ︷︷ ︸

θ+i,t−1

+ks si,t ,

where the term in the square brackets gives the first updating step. The average
expectation can then be expressed as

θ̄t = (1− ks)ρ θ̄+
t−1 + ks θt.

This allows us to link the forecast errors for θt and θ̄t as follows:

θ̄i,t − θ̄t = (1− ks)
[
E(ρ θ̄+

t−1|Ωi,t)− ρ θ̄+
t−1

]
+ ks (θi,t − θt) .

The forecast error for θ̄t is a weighted sum of the forecast error for θt and the fore-
cast error for the average prior expectation about θt before observing the private
signal in period t. Submitter i’s forecast errors for θ̄t and θt are perfectly correlated
if the submitter knows the average expectation θ̄+

t−1. In our model, where the only
exogenous source of information is the private signals, this can only happen if the
consensus price perfectly aggregates all dispersed information. In that case, all
submitters have a common posterior expectation θ̄+

t−1 = pt−1 and the average ex-
pectation is given by θ̄t = (1−ks)ρ pt−1 +ks θt. As a result, they are less uncertain
about θ̄t than about θt, i.e. σp22 = k2

s σ
p
11.

If submitters are uncertain about the average expectation θ̄+
t−1, this simple rela-

tionship no longer holds. For a submitter whose prior expectations for fundamental
and average valuation are equal, we can rewrite (7) into

θi,t = (1− k)ρ θi,t−1 + ks si,t + kp pt−1 + kp
(
θi,t−1 − θ̄i,t−1

)
, (9)

where k = ks + kp/ρ. If submitters put (1− k) weight on their prior expectations,
individual perceptions are partially dependent on the individual history of private
signals. Hence, submitters do not return to a common market perception after
observing the consensus price. The lack of a common perspective on past market
conditions partially feeds into current uncertainty about θ̄t.

16

16See Sethi and Yildiz (2016) for a related discussion on well-informed and well-understood
information sources and the implications for information segregation in markets.
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5.1.1 Price versus private information

A key structural parameter for understanding the variation in the Kalman gains,
stated in (7) and (8), across market segments is 1/ση, the precision of the pri-
vate signal. The estimates for ση, given in the fourth row of Table 2, show that
dealers receive very precise private signals for contracts that overlap with active
exchange-based trading activity.17 Consequently, the implied Kalman gains for
these contracts in Figure 3 show that submitters put essentially full weight on
their private signal and largely ignore the information contained in the consen-
sus price when updating expectations about θt. For option contracts with low
exchange-based trading activity, the private signals are estimated to be noisier.
Therefore, increasingly more weight is given to the consensus price. When up-
dating expectations about θ̄t, the consensus price receives relatively higher weight
for all contracts. This highlights the scarcity of information in these market seg-
ments, but it also illustrates the strategic value of the consensus price as a focal
public signal. The estimates with 1− k > 0, reported in row five of Table 2, show
that dealers do not put all weight on new information for exclusively OTC-traded
contracts. Furthermore, the ρ12 < 1 estimates for these contracts convey that deal-
ers’ forecast errors are not perfectly correlated. As explained in Section 5.1, this
leads to long-lived private information and, consequently, dispersed priors among
submitters.

5.1.2 The uncertainty “smile”

The previous discussion on the parameter estimates and model-implied objects
derived from these estimates sheds light on the nature and size of valuation and
strategic uncertainty in the options market. As dealers’ beliefs are normal distri-
butions, we can display these uncertainties in the form of 95% posterior intervals
centered around the time-series average of the consensus price. The two top panels
in Figure 4 show the well-known “smile” of the implied volatility curve. OTM put
options (moneyness below 100) tend to be relatively more expensive than ATM put
options or OTM call options reflecting market participants’ demand for insurance
against drops in the S&P 500 index. The width of the posterior intervals shows that
for options with more extreme strike prices (further away from moneyness 100),
valuation and strategic uncertainty are higher. These areas correspond to market
segments in which trading is predominantly or exclusively OTC, as was previously
shown in Figure 1. For options with moneyness 150 and time-to-expiration of 12
months, for example, the posterior intervals are on the order of 8 volatility points.

17Table 2 provides the parameter estimates for the contracts with time-to-expiration of 12
months. In the Appendix we provide the estimates for the complete contract space. Table 4
provides estimates for ρ and σu; Table 5 for σε and ση, and Table 6 for k and ρ12.
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Table 2: Sample parameter estimates and implied quantities

60 80 90 95 100 105 110 120 150

ρ 0.967 0.930 0.939 0.949 0.941 0.930 0.949 0.967 0.969
(0.015) (0.024) (0.027) (0.028) (0.022) (0.025) (0.022) (0.013) (0.017)

σu 0.047 0.076 0.082 0.086 0.091 0.095 0.095 0.073 0.135
(0.001) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.003)

σε 0.055 0.004 0.006 0.007 0.009 0.011 0.014 0.036 0.262
(0.004) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.003) (0.016)

ση 0.041 0.014 0.010 0.010 0.010 0.011 0.015 0.036 0.281
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011)

k 0.733 0.998 0.996 0.996 0.995 0.993 0.989 0.901 0.490
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.010) (0.014)

ρ12 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

This table presents the mean and standard deviation of the model parameter estimates and
implied quantities for the contracts with 12 months’ time-to-expiration. The first and second
rows contain the estimate of the persistence of the process for the fundamental, ρ, and the
variance of the shock to the fundamental, σu. The third and fourth rows contain the estimate
of the noise of the public signal, σε, and the noise of the private signal submitter i receives,
ση. The fifth and sixth rows contain the weight submitter put on new information, kalman gain
k, and the correlation between the forecast error for asset value and average valuations, ρ12.
The header for each column denotes the moneyness of the contract under consideration. The
structural model is estimated with Bayesian analysis through MCMC methods. The standard
deviation of the posterior distribution of the parameter is given in parentheses below its mean
(0.000 signifies standard deviations below 0.0005). The sample period of the data is December
2002 to February 2015 for the option contracts on the S&P 500 index.

This is substantial given that the time-series average and standard deviation of the
consensus price for this contract are 13 and 3.8 volatility points, respectively. It
reflects the low precision of the private signal for this contract and, consequently, a
higher weight put on prior expectations. This, in turn, is the source of ”long-lived”
private information and sizable strategic uncertainty. It contrasts with posterior
intervals well below one volatility point for options in market segments which likely
see more trading activity. Here, private signals are estimated to be precise, which
implies lower values of σp11. As all submitters are symmetrically informed and
receive private signals from the same distribution, strategic uncertainty is small
as well. This difference in results illustrates that for the exclusively OTC-traded
areas of the option market, dealers are not only relatively uncertain about the
correctness of their own option valuations, but also face substantial uncertainty
about the relative position of their valuation to the average market valuation.
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Figure 3: These figures present the Kalman gains with respect to their private signals and
consensus feedback for their first- and second-order posterior believes. The horizontal axis de-
notes the moneyness of the option contracts. The black dots in the figures represent the Kalman
gain extracted from the K matrix in Equation (6). The top figures depict the ks and kp ele-
ments. From left to right, these are the weights put on the private signal and public signal in
updating the posterior believe about the fundamental. The bottom figures depict the k̄s and k̄p
elements. From left to right, these are the weights put on the private signal and public signal
in updating the posterior believe about the average believe. The 95% centred interval of the
posterior distribution of Kalman gain estimates are given by the dotted lines surrounding the
dots. The Kalman gains are for the option contracts with a time-to-expiration of 12 months.
The sample period is December 2002 to February 2015 for the option contracts on the S&P 500
index.
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Figure 4: These figures present the variance of submitters’ posterior beliefs expressed in terms
of posterior intervals centred on the sample mean of the corresponding consensus price. The left
figures depict the 95% posterior intervals for first-order beliefs, [p̄ ± 1.96 · σ11], as given in (6).
The figures on the right display the posterior intervals for second-order beliefs, [p̄ ± 1.96 · σ22].
The two top panels depict the variances along the different levels of moneyness for the option
contracts with a time-to-expiration of 12 months and 60 months. The two bottom panels
show the term structure of the uncertainties for ATM options with moneyness 100 and OTM
options with moneyness of 60. The sample period is December 2002 to February 2015 for the
option contracts on the S&P 500 index.

5.2 The informational properties of consensus prices

We now consider two counterfactual information structures for the options markets
and study how these alternative informational settings would influence uncertainty
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among dealer banks. We assume that the structural parameters of our model are
invariant to these informational experiments. In particular, we assume that dealer
banks do not adjust their information acquisition strategy, which would likely in-
fluence the precision of the private signal.

To study the informativeness of the consensus price for dealer banks, we consider
an information structure under which dealers only have access to their private
signals. Denote by Σs the covariance matrix of dealer i’s posterior beliefs under
this counterfactual information set, namely Ωs

i,t = {si,t,Ωs
i,t−1}. This covariance

matrix can be obtained by solving a standard single-agent learning problem using
parameter estimates for {ρ, σu, ση}.18 We use the percentage reduction in uncer-
tainty that results from having access to the consensus price as a measure of price
informativeness,

∆p
i =

(σsii − σ
p
ii)

σsii
,

where i = 1 corresponds to valuation uncertainty and i = 2 to strategic uncertainty.

To elicit the efficiency of the consensus price mechanism in aggregating dispersed
information, we introduce a counterfactual setting with a fully efficient price that
perfectly reveals last period’s fundamental value, i.e. θt−1. As the price reveals
θt−1, it provides submitters with a common prior before receiving new private
signals. In addition to providing a benchmark for efficiency, this counterfactual
also helps us understand how big an impediment the lack of a common prior is
for creating a common understanding of market conditions. Denote by Σθ the
counterfactual covariance matrix of posterior beliefs for a dealer who receives a
fully efficient consensus price in the above sense. We measure the inefficiency of
the consensus price by the increase in posterior variance in moving from a fully
efficient price to the current consensus price expressed as a ratio to the posterior
variance without consensus price,

∆θ
i =

(
σpii − σθii

)
σsii

.

We use this somewhat unnatural seeming definition of inefficiency to obtain the
following decomposition,

1 =
(σsii − σ

p
ii)

σsii︸ ︷︷ ︸
∆p
i

Price informativeness

+

(
σpii − σθii

)
σsii︸ ︷︷ ︸
∆θ
i

Price inefficiency

+
σθii
σsii︸︷︷︸
∆R
i

Residual informational
friction

(10)

18Appendix 7.8 derives the stationary posterior covariance matrices for first- and second-order
beliefs for all counterfactual informational scenarios.
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Given the lagged nature of the consensus price, even a fully efficient price does not
eliminate all uncertainty about asset values. We quantify the potential for further
uncertainty reduction outside the scope of this consensus price mechanism, i.e.
residual informational friction. The potential uncertainty reduction for a market
structure without an information aggregation mechanism can thus be decomposed
into price informativeness, price inefficiency, and residual informational frictions.

The influence of information structure on uncertainty

Figure 5 displays the percentage reductions in uncertainty under the different in-
formational settings for contracts with a fixed time-to-expiration of 12 months.
The dark gray region, i.e. ∆p

1, displays the informativeness of the price for the dif-
ferent contracts. The lack of uncertainty reduction in the moneyness range from
80 to 110 is to be expected as submitters solely rely on their precise private sig-
nal, as previously revealed by the estimates of the Kalman gain ks. In the more
opaque market segments, the consensus price is more informative about θt; its
Kalman gain kp is higher. Table 7 in the Appendix shows similar patterns for
other times-to-expiration. For all the contracts under consideration, the reduction
in valuation uncertainty is between 0% for the ATM contracts to 4.6% for the more
extreme contracts. The comparison between the upper and lower panel in Figure
5 shows that the consensus price signal is much more informative about θ̄t. The
reduction in strategic uncertainty ranges from 0.02% to 37.75% (see Table 7). The
relative larger decrease in strategic uncertainty in comparison to valuation uncer-
tainty points to the importance of the consensus price for learning about strategic
aspects of the market. This is also echoed in the difference between kp and k̄p.
Given the scarcity of shared trade data in market segments that are dominated
by OTC trading, the ability of the consensus price to significantly reduce strategic
uncertainty is both intuitive and important.

The light gray area in Figure 5 corresponds to ∆θ
1, the additional reduction in

uncertainty that could be achieved by a price that perfectly reveals θt−1. Know-
ing previous period’s option value eliminates two sources of uncertainty. First, it
eliminates the uncertainty that originates from the noise in the consensus price.
Second, it gets rid of the uncertainty that emanates from the dispersion in dealers’
prior expectations. In the top and bottom panel of Figure 5, the lack of uncertainty
reduction in the moneyness range from 80 to 110 is mainly due to the precision
of private information. The signal-to-noise ratio σu/ση puts an upper bound on the
weight the consensus price can receive when updating expectations. The consensus
price can at most reveal the past value, while the private signal is a signal about
the current value. This limits the potential impact of a fully efficient price on valu-
ation uncertainty. For contracts with intermediate moneyness, little weight is put

25



on prior expectations, thus limiting the potential of a fully efficient price to reduce
uncertainty by providing a common prior. For contracts with extreme moneyness,
the relative imprecision of the private signal shifts weight towards the consensus
price and the prior. This explains the up to 33.46% drop in valuation uncertainty
and 62.10% drop in strategic uncertainty for the deep OTM call options, as seen
in Table 8 in the Appendix. Sethi and Yildiz (2016) highlight that dispersion in
priors can lead market participants to search out other participants with similar
priors, leading to informational segmentation of markets. A focal point, such as a
consensus price, helps to reduce dispersion in priors, reduces strategic uncertainty
and creates a common understanding of market conditions.

The white area in the figures marks ∆R
i , the potential uncertainty reduction out-

side of the scope of this consensus pricing mechanism. The reduced size of this
area for more extreme contracts illustrates the importance of public information
in opaque parts of the market, especially in providing information about other
dealers’ valuations. For contracts with moneyness between 80 and 110, informa-
tional frictions that could not be remedied by a perfectly efficient consensus pricing
mechanism dominate. Reducing the remaining uncertainty would require changing
the design parameters of the consensus pricing service. Increasing the frequency
of the consensus service, for example, can be thought of as lowering the variance
of the fundamental shocks, σ2

u, in our model. However, given the labour-intensive
nature of the consensus pricing process, running a more frequent service is costly.
It appears that the marginal cost of increasing the frequency of the service exceeds
the dealers’ willingness to pay for a marginal reduction in uncertainty.
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Figure 5: These two figures present the percentage reductions in valuation and strategic un-
certainty under different informational settings. The top figure presents the results for the per-
centage reduction in valuation uncertainty and the bottom figure presents the reductions in
strategic uncertainty. The figures depict the percentage uncertainty reductions (y-axis) along
the different levels of moneyness (x-axis) for the option contracts with a time-to-expiration
of 12 months. In the base case setting, submitters only observes their private signal. This is
indicated by the lower horizontal axis. The dark grey area is the percentage reduction in uncer-
tainty due to observing the consensus price, i.e., ∆p in (10). The light grey area indicates the
further reduction in uncertainty due to observing the past state, i.e., ∆θ. The white area is the
further reduction in uncertainty that can be achieved from an information structure that elim-
inates informational frictions, i.e., ∆R. The sample period is from December 2002 to February
2015.
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6 Conclusion

In this paper we provide empirical evidence on the ability of consensus prices to
reduce valuation uncertainty among major dealer banks in the over-the-counter
market for S&P 500 index options. This evidence is based on a structural model
of learning from prices. The estimation is based on a proprietary panel of price
estimates that large broker-dealers have provided to a consensus pricing service
for OTC derivatives. The structural model allows us to address three questions.
First, how large is the valuation uncertainty of dealer banks participating in the
OTC market for S&P 500 index options? Here we consider two dimensions of un-
certainty: a dealer bank’s uncertainty about fundamental values and uncertainty
about its valuations in relation to other market participants’ valuations. Second,
does the consensus price feedback help to reduce market participants’ valuation
uncertainty? Last, how well does the consensus pricing mechanism aggregate dis-
persed information?

Both valuation and strategic valuation uncertainty vary substantially across the
different market segments. We find higher uncertainty for option contracts with
strike prices that correspond to more extreme index moves; these contracts are typ-
ically traded in the OTC segment of the market. Dealer banks do not appear to
rely heavily on the consensus price feedback to reduce valuation uncertainty. The
consensus price feedback is found to be most important for reducing strategic un-
certainty, and particularly so for extreme option contracts. This result is consistent
with the scarcity of shared valuation information for such extreme contracts. It
stresses the importance of publicly observable valuation data, such as benchmarks,
to establish a shared understanding of market conditions in OTC markets. Such a
shared understanding can be particularly valuable during episodes of market stress
where high levels of strategic uncertainty might cause derivatives markets to freeze
up.
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7 Appendix

7.1 Tables

Table 3: Matching cross-sectional dispersion and consensus price volatility

60 80 90 95 100 105 110 120 150 200

6 1.021 1.043 1.045 1.050 1.052 1.058 1.115 1.125 0.961 ·
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.014) ·

12 1.026 1.050 1.039 1.047 1.056 1.049 1.058 1.103 0.988 ·
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.013) ·

24 1.079 1.052 1.047 1.053 1.064 1.063 1.164 1.082 0.999 0.909
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.011) (0.012) (0.016)

36 1.058 1.040 1.043 1.048 1.052 1.059 1.060 1.061 1.013 0.928
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.014)

48 1.036 1.033 1.038 1.038 1.033 1.034 1.035 1.041 1.019 0.960
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.014)

60 0.992 1.028 1.041 1.039 1.038 1.037 1.040 1.043 1.014 1.003
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.015)

84 0.986 1.026 1.021 1.019 1.015 1.012 1.015 1.023 1.005 0.913
(0.012) (0.012) (0.012) (0.012) (0.012) (0.021) (0.012) (0.012) (0.012) (0.014)

(a) Matching cross-sectional dispersion

60 80 90 95 100 105 110 120 150 200

6 1.437 1.058 1.138 1.053 1.045 1.401 1.155 1.242 2.595 ·
(0.271) (0.243) (0.294) (0.224) (0.277) (0.780) (0.315) (0.213) (0.629) ·

12 1.110 1.028 1.117 1.320 1.104 0.990 1.120 1.014 2.573 ·
(0.264) (0.201) (0.313) (0.553) (0.252) (0.219) (0.263) (0.228) (0.755) ·

24 1.086 1.030 1.050 1.413 1.213 1.033 1.095 1.183 1.483 3.635
(0.286) (0.203) (0.214) (0.733) (0.484) (0.290) (0.324) (0.394) (0.476) (2.366)

36 1.019 1.158 1.049 2.062 1.199 0.931 1.383 1.017 1.061 1.761
(0.214) (0.593) (0.336) (1.594) (0.365) (0.158) (0.644) (0.254) (0.347) (0.379)

48 0.987 1.203 1.090 0.985 1.086 1.027 1.346 1.011 0.968 1.490
(0.203) (0.561) (0.327) (0.203) (0.339) (0.229) (0.838) (0.244) (0.246) (0.420)

60 1.296 1.373 1.157 1.009 1.106 1.043 1.070 1.300 0.980 1.324
(0.418) (0.642) (0.409) (0.247) (0.338) (0.299) (0.306) (0.579) (0.254) (0.433)

84 0.942 1.149 1.142 1.098 0.968 1.029 0.989 1.054 1.045 1.055
(0.179) (0.526) (0.379) (0.341) (0.181) (0.222) (0.209) (0.265) (0.265) (0.234)

(b) Matching volatility consensus price
These two tables present the mean and standard deviation of the ratio of the raw moments of the
data versus the model implied moments for each contract. The upper table displays the ratio of
the model-implied cross-sectional dispersion versus the average cross-sectional standard deviation
in the data. The lower table displays the ratio of the model-implied volatility of the consensus
price to the empirical counterpart from the data. The model-implied volatility is given by the
unconditional volatility of the average first-order belief plus σε. The unconditional variance of θ̄t
is the solution to a Lyapunov equation that defines the unconditional variance of the state. The
first row and first column of each table denote the moneyness and time-to-expiration, respectively,
of the options under consideration. The standard deviation of the posterior distribution of the
ratios is given in parentheses below its mean (0.000 signifies standard deviations below 0.0005).
The sample period of the data is January 2002 to December 2015.
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Table 4: Model parameter estimates ρ and σu

60 80 90 95 100 105 110 120 150 200

6 0.950 0.911 0.930 0.923 0.920 0.945 0.949 0.956 0.950 ·
(0.019) (0.031) (0.028) (0.026) (0.028) (0.030) (0.022) (0.015) (0.021) ·

12 0.967 0.930 0.939 0.949 0.941 0.930 0.949 0.967 0.969 ·
(0.015) (0.024) (0.027) (0.028) (0.022) (0.025) (0.022) (0.013) (0.017) ·

24 0.935 0.940 0.943 0.956 0.947 0.938 0.945 0.962 0.970 0.971
(0.025) (0.021) (0.020) (0.026) (0.028) (0.024) (0.023) (0.020) (0.015) (0.017)

36 0.939 0.943 0.941 0.969 0.952 0.932 0.958 0.948 0.963 0.946
(0.022) (0.026) (0.023) (0.026) (0.023) (0.021) (0.025) (0.021) (0.017) (0.021)

48 0.935 0.949 0.947 0.938 0.944 0.942 0.953 0.945 0.959 0.943
(0.022) (0.025) (0.022) (0.021) (0.024) (0.022) (0.026) (0.020) (0.017) (0.022)

60 0.982 0.956 0.951 0.941 0.948 0.941 0.945 0.956 0.963 0.937
(0.012) (0.028) (0.022) (0.021) (0.021) (0.025) (0.024) (0.027) (0.016) (0.026)

84 0.968 0.947 0.949 0.947 0.939 0.945 0.940 0.945 0.941 0.954
(0.011) (0.025) (0.026) (0.023) (0.019) (0.019) (0.022) (0.024) (0.023) (0.017)

(a) Mean and standard deviation ρ

60 80 90 95 100 105 110 120 150 200

6 0.079 0.092 0.099 0.106 0.116 0.120 0.115 0.111 0.166 ·
(0.001) (0.005) (0.005) (0.006) (0.006) (0.007) (0.006) (0.002) (0.005) ·

12 0.047 0.076 0.082 0.086 0.091 0.095 0.095 0.073 0.135 ·
(0.001) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.003) ·

24 0.064 0.065 0.070 0.072 0.075 0.078 0.080 0.073 0.078 0.135
(0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.001) (0.005)

36 0.056 0.059 0.063 0.065 0.067 0.069 0.070 0.068 0.061 0.110
(0.002) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.001) (0.003)

48 0.054 0.056 0.059 0.061 0.062 0.064 0.065 0.065 0.057 0.097
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.002) (0.002)

60 0.033 0.055 0.055 0.057 0.058 0.059 0.060 0.061 0.051 0.089
(0.001) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

84 0.033 0.050 0.051 0.052 0.053 0.054 0.055 0.056 0.062 0.058
(0.001) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.001)

(b) Mean and standard deviation σu

These two tables present the mean and standard deviation of the estimate of the persistence
of the process for the fundamental, ρ, and the variance of the shock to the fundamental, σu.
The structural model is estimated with Bayesian analysis through MCMC methods. The first
row and first column of each table denote the moneyness and time-to-expiration, respectively,
of the options under consideration. The standard deviation of the posterior distribution of
the parameter is given in parenthesis below its mean (0.000 signifies standard deviations below
0.0005). The sample period of the data is December 2002 to February 2015 for the option
contracts on the S&P 500 index.
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Table 5: Model parameter estimates σε and ση

60 80 90 95 100 105 110 120 150 200

6 0.121 0.004 0.007 0.009 0.011 0.016 0.021 0.151 0.328 ·
(0.008) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.010) (0.013) ·

12 0.055 0.004 0.006 0.007 0.009 0.011 0.014 0.036 0.262 ·
(0.004) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.003) (0.016) ·

24 0.002 0.004 0.006 0.007 0.008 0.009 0.010 0.015 0.114 0.270
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.008) (0.016)

36 0.003 0.004 0.005 0.006 0.007 0.008 0.008 0.011 0.054 0.183
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.004) (0.012)

48 0.003 0.004 0.005 0.006 0.006 0.007 0.007 0.009 0.034 0.121
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) (0.009)

60 0.032 0.002 0.004 0.005 0.005 0.006 0.006 0.007 0.024 0.083
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.006)

84 0.034 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.069
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.005)

(a) Mean and standard deviation σε

60 80 90 95 100 105 110 120 150 200

6 0.096 0.022 0.015 0.013 0.013 0.018 0.030 0.131 0.380 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.020) ·

12 0.041 0.014 0.010 0.010 0.010 0.011 0.015 0.036 0.281 ·
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011) ·

24 0.024 0.012 0.009 0.008 0.008 0.009 0.013 0.018 0.093 0.395
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.023)

36 0.021 0.011 0.009 0.008 0.008 0.009 0.010 0.015 0.049 0.231
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011)

48 0.022 0.012 0.010 0.009 0.009 0.009 0.011 0.014 0.035 0.155
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.006)

60 0.025 0.012 0.010 0.009 0.009 0.010 0.011 0.014 0.027 0.116
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.004)

84 0.029 0.014 0.011 0.011 0.011 0.011 0.012 0.014 0.023 0.069
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002)

(b) Mean and standard deviation ση
These tables presents the mean and standard deviation of the estimate of the noise of the public
signal, σε, and the noise of the private signal submitter i receives, ση. The structural model
is estimated with Bayesian analysis through MCMC methods. The first row and first column
of each table denote the moneyness and time-to-expiration, respectively, of the options under
consideration. The standard deviation of the posterior distribution of the parameter is given
in parenthesis below its mean (0.000 signifies standard deviations below 0.0005). The sample
period of the data is December 2002 to February 2015 for the option contracts on the S&P 500
index.
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Table 6: Weight on new information estimates and belief correlation

60 80 90 95 100 105 110 120 150 200

6 0.625 0.998 0.996 0.995 0.995 0.990 0.978 0.649 0.465 ·
(0.012) (0.000) (0.001) (0.001) (0.001) (0.001) (0.003) (0.013) (0.012) ·

12 0.733 0.998 0.996 0.996 0.995 0.993 0.989 0.901 0.490 ·
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.010) (0.014) ·

24 0.999 0.997 0.995 0.995 0.995 0.993 0.990 0.976 0.639 0.440
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.013) (0.017)

36 0.997 0.995 0.995 0.995 0.994 0.993 0.991 0.984 0.781 0.513
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.012) (0.017)

48 0.996 0.995 0.994 0.994 0.993 0.993 0.991 0.986 0.860 0.613
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.013) (0.019)

60 0.778 0.999 0.994 0.994 0.994 0.993 0.992 0.989 0.900 0.703
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.015) (0.018)

84 0.747 0.997 0.996 0.996 0.995 0.995 0.994 0.993 0.994 0.671
(0.012) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.016)

(a) k

60 80 90 95 100 105 110 120 150 200

6 0.954 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.915 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.003) ·

12 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) ·

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.956 0.909
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.004)

36 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.925
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.004)

48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.947
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

60 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.964
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

84 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.962
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003)

(b) ρ12

This table presents the mean and standard errors of the Kalman gain, k, and the correlation
between the beliefs about θt and θ̄t. The Kalman gain gives the weight submitters put on
new information and 1 − k shows how much weight is put on the prior. ρ12 is the correlation
between the forecast error for asset value and average valuations. The first row and first column
of each table denote the moneyness and time-to-expiration, respectively, of the options under
consideration. The sample period of the data is December 2002 to February 2015 for the option
contracts on the S&P 500 index.
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Table 7: Counterfactual experiment – No consensus price

60 80 90 95 100 105 110 120 150 200

6 1.38 0.12 0.02 0.01 0.00∗ 0.01 0.11 1.58 2.91 ·
(0.17) (0.03) (0.00) (0.00) (0.00) (0.00) (0.02) (0.18) (0.29) ·

12 0.93 0.05 0.01 0.00∗ 0.00∗ 0.00∗ 0.01 0.50 2.85 ·
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.32) ·

24 0.62 0.04 0.01 0.01 0.00∗ 0.00∗ 0.02 0.07 1.52 4.36
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.18) (0.50)

36 0.59 0.04 0.01 0.01 0.01 0.01 0.01 0.06 1.14 3.20
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.14) (0.38)

48 0.76 0.07 0.02 0.01 0.01 0.01 0.02 0.06 0.92 3.06
(0.15) (0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.12) (0.36)

60 0.93 0.09 0.04 0.02 0.02 0.02 0.03 0.09 0.76 3.06
(0.12) (0.02) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02) (0.10) (0.34)

84 1.21 0.20 0.09 0.07 0.06 0.07 0.08 0.14 0.53 1.90
(0.15) (0.04) (0.02) (0.02) (0.01) (0.10) (0.02) (0.03) (0.11) (0.24)

(a) Decrease in valuation uncertainty : ∆p
1

60 80 90 95 100 105 110 120 150 200

6 9.65 0.70 0.12 0.05 0.03 0.09 0.77 10.82 19.17 ·
(1.02) (0.16) (0.03) (0.01) (0.01) (0.02) (0.16) (1.08) (1.40) ·

12 6.70 0.28 0.06 0.03 0.02 0.04 0.10 3.63 18.27 ·
(0.75) (0.06) (0.01) (0.01) (0.01) (0.01) (0.02) (0.42) (1.66) ·

24 3.48 0.26 0.06 0.04 0.03 0.03 0.12 0.54 10.37 27.33
(0.66) (0.06) (0.01) (0.01) (0.01) (0.01) (0.03) (0.11) (1.09) (2.33)

36 3.33 0.28 0.08 0.05 0.04 0.05 0.09 0.40 7.98 20.69
(0.63) (0.06) (0.02) (0.01) (0.01) (0.01) (0.02) (0.09) (0.83) (1.93)

48 4.25 0.44 0.15 0.10 0.08 0.10 0.15 0.44 6.50 19.34
(0.79) (0.10) (0.03) (0.02) (0.02) (0.02) (0.03) (0.10) (0.73) (1.84)

60 6.63 0.53 0.25 0.16 0.14 0.15 0.22 0.56 5.29 19.08
(0.75) (0.12) (0.06) (0.04) (0.03) (0.03) (0.05) (0.12) (0.61) (1.70)

84 8.45 1.18 0.53 0.43 0.39 0.44 0.49 0.87 3.08 12.67
(0.93) (0.26) (0.12) (0.10) (0.09) (0.52) (0.11) (0.19) (0.60) (1.35)

(b) Decrease in strategic uncertainty : ∆p
2

These two tables present the counterfactual results of the percentage decrease in valuation and
strategic uncertainty when moving from a setting without consensus price to a setting with
consensus price feedback. The upper table presents the results for the percentage decrease in
valuation uncertainty, ∆p

1 in (10). The lower table presents the results for the percentage
increase in strategic uncertainty, ∆p

2. The first row and first column of each table denote
the moneyness and time-to-expiration, respectively, of the options under consideration. The
standard deviation of the posterior distribution of the parameter is given in parenthesis below
its mean (0.00 signifies standard deviations below 0.005). The sample period is from December
2002 to February 2015.
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Table 8: Counterfactual experiment – Perfect Consensus price

60 80 90 95 100 105 110 120 150 200

6 12.02 0.01 0.00∗ 0.00∗ 0.00∗ 0.01 0.07 11.35 27.01 ·
(0.52) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.52) (1.03) ·

12 6.15 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.01 1.02 25.45 ·
(0.35) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.16) (0.84) ·

24 0.01 0.01 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.01 0.07 11.99 33.46
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.52) (1.21)

36 0.02 0.01 0.00∗ 0.00∗ 0.00∗ 0.01 0.01 0.03 4.71 24.14
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.34) (1.00)

48 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.03 2.19 16.80
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.27) (0.82)

60 4.60 0.00∗ 0.01 0.01 0.01 0.01 0.01 0.03 1.24 11.55
(0.33) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.24) (0.74)

84 6.13 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 10.88
(0.39) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.63)

(a) Reduction in valuation Uncertainty : ∆θ
1

60 80 90 95 100 105 110 120 150 200

6 41.31 0.02 0.01 0.01 0.01 0.04 0.27 38.80 62.69 ·
(1.43) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (1.49) (1.09) ·

12 24.49 0.01 0.01 0.01 0.01 0.02 0.05 4.35 61.23 ·
(1.28) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.74) (1.52) ·

24 0.03 0.02 0.01 0.01 0.01 0.02 0.05 0.27 40.68 62.10
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (1.48) (1.95)

36 0.07 0.03 0.02 0.02 0.02 0.02 0.04 0.13 18.68 57.87
(0.02) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.04) (1.31) (1.75)

48 0.09 0.03 0.03 0.02 0.02 0.03 0.04 0.12 8.94 46.67
(0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (1.16) (1.89)

60 18.72 0.01 0.03 0.02 0.02 0.03 0.04 0.10 5.06 35.14
(1.29) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (1.05) (1.94)

84 23.65 0.04 0.03 0.03 0.03 0.03 0.04 0.07 0.13 36.56
(1.41) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.04) (1.82)

(b) Reduction in Strategic Uncertainty : ∆θ
2

These two tables present the counterfactual results of the percentage reduction in valuation
and strategic uncertainty when moving from the current information structure to an informa-
tion structure where the consensus price perfectly reveals last period’s state (0.00∗ means below
0.005). The upper table presents the results for the percentage reduction in valuation un-
certainty, ∆θ

1 in (10). The lower table presents the results for the percentage reduction in
strategic uncertainty, ∆θ

2. The first row and first column of each table denote the moneyness
and time-to-expiration, respectively, of the options under consideration. The standard deviation
of the posterior distribution of the parameter is given in parenthesis below its mean (0.00 signifies
standard deviations below 0.005). The sample period is from December 2002 to February 2015.
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7.2 Additional figures

Figure 6: Bid-Ask spread vs Submission Range IV (S&P 500)
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The figure above displays the range of the price submissions to the IHS Markit’s Totem service
and bid-ask spread on traded options from OptionMetrics. This is for a contract with time-to-
expiration of 6 months and moneyness 100. The bid-ask spread is given by the difference between
the best closing bid price and best closing ask price across all US option exchanges. The options
in the Totem service are matched to the traded options in the OptionMetrics database. On a
given Totem valuation date we match OptionMetrics option contracts that are a close proxy for
the totem option contracts. We search for contracts with a ± 10 days-to-maturity and a ±1
moneyness value. When multiple options match the criteria an average is taken of their bid-ask
spread.
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7.3 The value of information in the OTC options market

This is a simple one-period model to illustrate the value of the consensus price
information for dealers in the OTC options market. It shows that dealers that use
an interdealer market to share risk are naturally concerned about both fundamental
asset values and other dealers’ valuation. A dealer is willing to pay for information
that reduces its uncertainty in any of these two dimensions.

7.3.1 The model

Before entering the market, every dealer i ∈ [0, 1] observes a private signal about
the fundamental value of an option, given by the random variable θ. She can also
pay to receive a public signal about that value. For now, the exact form of these
signals is not important. The game proceeds in three steps:

1. Dealer i ∈ [0, 1] decides whether to buy the public signal at cost f .

2. After observing signal(s), the dealer enters the market and is matched with
a client. A client is a buyer or seller of one option contract with equal
probability. The dealer can credibly communicate her valuation of the option
to the client. The client is willing to pay (receive) at most ∆ in excess of
(below) the dealer’s valuation.

3. After buying or selling the option from the client, dealer i enters the inter-
dealer market. She is matched with a dealer with opposite option inventory
with probability 0 ≤ γ ≤ 1. If matched, dealers trade at the average expec-
tation of fundamental values among active dealers denoted by θ̄.

4. If a dealer has not been matched in the interdealer market (probability 1−γ)
she hedges the option herself. At expiry, she receives the fundamental value
θ but hedging physically creates a cost of c > 0.

7.3.2 Pricing after entry

Suppose dealer i is matched with a client that wants to buy. The dealer charges a
price ai to the client. If the dealer is matched in the interdealer market, her profit
is ai − θ̄. Otherwise her profit is ai − θ − c. We assume that the dealer minimizes
a loss function that is quadratic in losses.19 The pricing problem is then

Lsi = min
a

Ei
{
γ(a− θ̄ − π)2 + (1− γ)(a− θ − c− π)2

}
,

19This captures the idea that dealers’ institutions prefer smooth profits with target level π.
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where the expectation is taken over dealer i’s information set when she is inter-
acting with the client, that is after entry and having observed signals, but before
entering the interdealer market. The first-order condition for a yields the optimal
price,

a∗i = π + γ Ei θ̄ + (1− γ)Ei (θ + c).

We assume that dealer i can credibly communicate the “fair value” of the option,
namely γ Ei θ̄ + (1 − γ)Ei (θ + c), to her client. For the client to buy, we further
assume that the markup in the optimal price is smaller than the client’s maximal
willingness to pay, that is π ≤ ∆.

Substituting a∗i back into the loss function we find

Lsi = γ Ei
(
θ̄ − θ̄i

)2
+ (1− γ)Ei (θ − θi)2 + γ(1− γ)(δi + c)2,

where δi = θi − θ̄i.

The case for a dealer buying from a client at price b is symmetric with loss function

Lbi = min
b

Ei
{
γ(θ̄ − b− π)2 + (1− γ)(θ − b− c− π)2

}
.

It yields a nearly identical loss function to the case of buying from a client, namely,

Lbi = γ Ei
(
θ̄ − θ̄i

)2
+ (1− γ)Ei (θ − θi)2 + γ(1− γ)(δi − c)2.

7.3.3 Participation decision

The ex-ante expected loss of dealer i with signals si is

− E
(

1

2
Lsi +

1

2
Lbi | si

)
= −γ Var(θ̄ | si)− (1− γ)Var(θ | si)

− γ(1− γ)E( δ2
i | si)− γ(1− γ) c2.

The dealer buys the public signal if the reduction in expected loss exceeds the
price of the signal, which is f .

The public signal is valued as it allows for better pricing decisions. Its ability to
reduce strategic uncertainty is valued as it helps to predict prices in the interdealer
market.
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7.4 IHS Markit’s Totem submission process
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Figure 7: Diagram – Submission process

Figure 7 depicts a diagram of the submission process to IHS Markit’s Totem ser-
vice for plain vanilla index options.20 Totem issues on the last trading day of each
month a spreadsheet to NK,T submitters. Here K is the moneyness of the contract
defined as the strike price divided by the spot price multiplied by 100, and T is the
time-to-expiration of the contract in months. Participating submitters are required
to submit their mid-price estimate for a range of put options with a moneyness
between 80 and 100 and a range of call option with a moneyness ranging from 100
to 120 with a time-to-expiration of 6 months. Submitters which want to submit
to any other contracts with a different maturity or/and different moneyness are

20Data provided by IHS MarkitTM - Nothing in this publication is sponsored, endorsed, sold
or promoted by IHS Markit or its affiliates. Neither IHS Markit nor its affiliates make any
representations or warranties, express or implied, to you or any other person regarding the
advisability of investing in the financial products described in this report or as to the results
obtained from the use of the IHS Markit Data. Neither IHS Markit nor any of its affiliates have
any obligation or liability in connection with the operation, marketing, trading or sale of any
financial product described in this report or use of the IHS Markit Data. IHS Markit and its
affiliates shall not be liable (whether in negligence or otherwise) to any person for any error in
the IHS Markit Data and shall not be under any obligation to advise any person of any error
therein.
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required to submit to all the available strike price and time-to-expiration combina-
tions which lie in between the required contracts and the additionally demanded
contracts.

Submitter i submits its mid-price estimate for different out of the money put
and call options, P i

t (p,K, T ) and P i
t (c,K, T ), respectively. The inputs which are

required in addition to the mid-price estimates are

• Their discount factor βit (T )
• Reference level Ri

t(T ) (This is the price of a futures contract with maturity
date closest to the valuation date, i.e t.)
• Implied spot level Sit (K,T ) (Implied level of the underlying index of the

futures contract)

There are strict instructions on the timing of the valuation of the contract and the
reference level used. To address any issues which might still arise with respect to
valuation timing and the effect it could have on the comparability of the prices,
the various prices are aligned according to the following mechanism.

1. Basisi = Ri
t(T = 6)− Sit (K = 100, T = 6)

2. Si∗t (K,T ) = mode
i

[Ri
t(T )]− Basisi

3. Remove from Si∗t (K,T ) the lowest, highest, and erroneous adjusted spot
levels.

4. S̄t (K,T ) = mode
i

[Ri
t(T )]− 1

N∗(K,T )

∑N∗(K,T )
i=1 Sit (K,T )

This consensus-implied spot from the at-the-money 6-month option is used for all
other combinations of K and T . The submitted prices are restated in terms of
S̄t (K,T ), giving: p̂it ({c, p}, K, T ) = P it ({c,p},K,T )/S̄t(K,T ).

Given the submitted quantities, a security analyst calculates various implied quan-
tities to validate the individual submissions. The security analyst utilizes put-call
parity on ATM options to retrieve the relative forward, i.e.,

f it (K,T ) =
p̂it (c,K, T )− p̂it (p,K, T )

βit (T )
+ 1

The above inputs are then used in the Black-Scholes model,

p̂it (c,K, T ) = βit (T )
[
f it (K,T )N (d1,i)−KN (d2,i)

]
d1 =

ln
(
f
K

)
+
(
σ2

2

)
∆Tt

σ
√

∆Tt
,where ∆Tt =

days(T)

365.25

42



d2 = d1 − σ
√

∆Tt

to back-out the σi, i.e. the implied volatility σi(K,T ).

When reviewing submissions, security analysts compare the implied volatilities
against other submitted prices and market conditions by taking the following
points into consideration:

• The number of contributors
• Market activity & news
• Frequency of change of variables
• Market conventions
• In a “one way market,” is the concept of a mid-market price clearly under-

stood?
• The distribution and spread of contributed data.

In addition to these criteria, security analysts also visually inspect the ATM im-
plied volatility term structure and the implied volatility along the moneyness for
a given term, also referred to as the skew or smile. After the vetting process, the
security analyst proceeds to the aggregation of the individual submissions into the
consensus data.

Given the Black-Scholes model, they back out σi(K,T ) and aggregate it into the
consensus-implied volatility.

σ̄ (K,T ) =
1

n(K,T ) − nr

nK,T−nr∑
i=1

σi (K,T )

Here nr are the number of excluded prices. The exclusions consist of the low-
est, highest, and rejected prices. The highest and lowest acceptable σi (K,T ) are
consistent and reasonable IVs, but are excluded to safeguard the stability of the
consensus IV.21 The same process takes place for the submitted prices.

The submitters of which the pricing information is not rejected receive from the
security analyst the consensus information. The security analysis of Totem aims
to return the consensus price to the eligible contributers within 5 hours of the sub-
mission deadline. The consensus data includes the average, standard deviation,
skewness, and kurtosis of the distribution of accepted prices and implied volatil-
ities. They also include the number of submitters to the consensus data. In our
setup, the contributors are only uncertain about the mean of the cross-sectional
distribution.

21If the number of acceptable prices is 6 or below the highest and lowest submissions are
included in the consensus price calculations.
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7.5 Solution algorithm

Here we show how to solve the consensus pricing problem of Section 3. We adopt
the following standard notation for higher-order beliefs, defining recursively

θ
(0)
t = θt,

θ
(k+1)
i,t = E

(
θ

(k)
t |Ωi,t

)
and θ

(k+1)
t =

∫ 1

0

θ
(k+1)
i,t di for all k ≥ 0.

We denote institution i ’s hierarchy of beliefs up to order k by

θ
(1:k)
i,t =

(
θ

(1)
i,t , ..., θ

(k)
i,t

)T
and for the hierarchy of average beliefs up to order k, including the fundamental
value θ

(0)
t as first element,

θ
(0:k)
t =

(
θ

(0)
t , θ

(1)
t , ..., θ

(k)
t

)T
.

The solution procedure proceeds recursively. It starts with a fixed order of beliefs
k ≥ 0 and postulates that the dynamics of average beliefs θ

(0:k)
t are given by the

VAR(1)

θ
(0:k)
t = Mk θ

(0:k)
t−1 +Nk wt, (11)

with wt = (ut, εt)
T and θ

(n)
t = θ

(k)
t for all n ≥ k.

Institution i’s signal can be expressed in terms of current and past average be-
liefs, θ

(0:k)
t and θ

(0:k)
t−1 , and the period t shocks wt and ni,t. The private signal can

be written as
si,t = eT1 θ

(0:k)
t + ση ηi,t,

where ej denotes a column vector of conformable length with a 1 in position j, all
other elements being 0. Similarly, we can express the consensus price pt as

pt = θ
(1)
t−1 + σε εt = eT2 θ

(0:k)
t−1 + σε εt.

Denote the vector of signals by yi,t = (si,t, pt)
T. We can now express the signals in

terms of current average beliefs and shocks,

yi,t = Dk,1 θ
(0:k)
t +Dk,2 θ

(0:k)
t−1 +Rw wt +Rη ηi,t, (12)

where

Dk,1 =

[
eT1

0T
k+1

]
, Dk,2 =

[
0T
k+1

eT2

]
, Rη =

[
ση
0

]
and Rw =

[
0 0
0 σε

]
.
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We thus obtain a state space representation of the system from the perspective
of institution i. Equation (11) describes the dynamics of the latent state variable

θ
(0:k)
t ; Equation (12) is the observation equation that provides the link between the

current state and i’s signals. Using a Kalman filter that allows for lagged state
variables (see Nimark (2015)) allows us to express institution i’s beliefs conditional
on the information contained in Ωi,t as

θ
(1:k+1)
i,t = Mk θ

(1:k+1)
i,t−1 +Kk

[
yi,t −D1,kMk θ

(1:k+1)
i,t−1 −D2,k θ

(1:k+1)
i,t−1

]
, (13)

where Kk is the (stationary) Kalman gain. Substituting out the signal vector in
terms of current state and shocks, this can equivalently be written as

θ
(1:k+1)
i,t = [Mk −Kk(D1,kMk +D2,k)] θ

(1:k+1)
i,t−1

+Kk(D1,kMk +D2,k)θ
(0:k)
t−1 +Kk(D1,kNk +Rw)wt +KkRη ηi,t.

Averaging this expression across all submitters, assuming that by a law of large
numbers

∫ 1

0
ηi,t di = 0, average beliefs are then given by

θ
(1:k+1)
t = [Mk −Kk(D1,kMk +D2,k)] θ

(1:k+1)
t−1

+Kk(D1,kMk +D2,k)θ
(0:k)
t−1 +Kk(D1,kNk +Rw)wt.

Combined with the fact that θ
(0)
t = ρ θ

(0)
t−1 + σu ut, we now obtain a new law of

motion for the state,

θ
(0:k+1)
t = Mk+1 θ

(0:k+1)
t−1 +Nk+1wt,

with

Mk+1 =

[
ρ eT1 0

Kk(D1,kMk +D2,k) 0k×1

]
+

[
0 01×k

0k×1 Mk −Kk(D1,kMk +D2,k)

]
(14)

and

Nk+1 =

[
σu e

T
1

Kk(D1,kNk +Rw)

]
. (15)

Note, however, that now the state space has increased by one dimension from k+1
to k + 2. This is a consequence of the well-known infinite regress problem when
filtering endogenous signals. When filtering average beliefs of order k, institutions
have to form beliefs about average beliefs of order k. But this implies that equi-
librium dynamics are influenced by average beliefs of order k+ 1, and so on for all
orders k ≥ 0.
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In practice, the solution algorithm works as follows. We initialize the iteration
at k = 0 with M0 = ρ and N0 = σu, which implies that θ

(1)
t = θ

(0)
t for all t.

Consequently, the consensus price of the first iteration is given by22

p
[1]
t = θ

(0)
t−1 + σε εt.

This yields a Kalman gain K0 (here a two-dimensional vector) which can then be
used to obtain M1 and N1 via equations (14) and (15) and so on until convergence

of the process p
[n]
t has been achieved according to a prespecified convergence criteria

after n steps. The highest-order belief that is not trivially defined by lower-order
beliefs is then of order n.

7.6 Kalman Filter for Estimation

For a given contract, that is, a given time-to-expiration, moneyness, and option
type (put or call), our data consists of two time series. Let S be the total number of
institutions that have submitted to Totem over the course of our sample and let ιt ⊂
{1, 2, .., S} be the set of institutions active in t.23 Our sample of submissions is then
given by (mt)

T
t=1, where mt = (mj,t)j∈ιt is a |ιt|-dimensional vector consisting of the

individual period t consensus price submissions. We assume that consensus price
submissions are institution i’s best estimate of θt plus uncorrelated measurement
error24

mi,t = θ
(1)
i,t + σψ ψi,t with ψi,t ∼ N(0, 1). (16)

Following our model, we assume that the consensus price of period t − 1, which
we call pt, equals the average first-order belief of period t− 1 plus aggregate noise,
that is,

pt = θ
(1)
t−1 + σε εt.

Our data set for a given contract, (y)Tt=1, then consists of the time-series of insti-
tutions’ price submissions for this contract and the corresponding consensus price,
i.e. yt = (pt ,mt)

T.25

To estimate the model, we fix the maximum order of beliefs at k̄ = 4 and as-
sume that the system has reached its stationary limit.26 Average beliefs then

22Superscripts in square brackets denote iterations of the algorithm.
23If an institution does not submit a price in t, we treat this as a missing value. However, it

is assumed that this institution received both the consensus price and the private signal about
the fundamental in that period.

24In our main specification we assume that there is not measurement error, i.e. σψ = 0.
25To be precise, mj,t is the (demeaned) natural logarithm of the Black-Scholes implied volatil-

ity of submitter j’s time t price submission, and pt is the (demeaned) natural logarithm of the
consensus Black-Scholes implied volatility calculated by Totem for the corresponding contract.

26Allowing k̄ greater than 4 does not change the estimates noticeably.
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evolve according to (11), namely,

θ
(0:k̄)
t = Mk̄ θ

(0:k̄)
t−1 +Nk̄ wt,

whereMk̄ andNk̄ are functions of the parameters φ defined recursively by equations
(14) and (15) and wt = (ut , εt)

T ∼ N(02, I2).27 The dynamics of institution

i’s conditional beliefs θ
(1:k̄)
i,t can be expressed in terms of deviations from average

beliefs, θ̂
(1:k̄)
i,t ≡ θ

(1:k̄)
i,t − θ

(1:k̄)
t , as

θ̂
(1:k̄)
i,t = Qk̄ θ̂

(1:k̄)
i,t−1 + Vk̄ ηi,t,

where
Qk̄ =

[
Mk̄ −Kk̄(D1,k̄Mk̄ +D2,k̄)

]
and Vk̄ = Kk̄ Rη.

Given the linearity of the above system and the assumed normality of shocks, the
likelihood function for the observed data (y)Tt=1 with yt = (pt ,mt)

T can be derived

using the Kalman filter. We define αt = (θ
(0:k̄)
t , θ̂

(1:k̄)
1,t , ..., θ̂

(1:k̄)
S,t , εt)

T to be the state
of the system in t.

The transition equation of the system in state space form is then given by

αt = Tαt−1 +R εt,

where

T =

 Mk̄ , 0k̄+1×Sk̄+1

0S k̄×k̄+1 , IS ⊗Qk̄ , 0S k̄×1

02×k̄+1+Sk̄+1

 , R =

 Nk̄ , 0k̄+1×S
0Sk̄×2 , IS ⊗ ση Vk̄

I2 , 02×S


and εt = (ut , εt , η1,t , ..., ηS,t)

T ∼ N (02+S, I2+S).

We now derive the observation equation for the system given by

yt = Z1,t αt + Z2,t αt−1 + φt.

First note that the consensus price pt can be expressed in terms of the past state
vector αt as

pt = eT2 θ
(1)
t−1 + σε εt.

Next, note that we can write institution i’s submission mi,t as

mi,t = θ
(1)
i,t + σψ ψi,t = θ

(1)
t + x

(1)
i,t + σψ ψi,t.

27We use 0n×m to denote a n×m matrix of zeros, 1n is a (column) vector containing n ones,
and In is an n-dimensional identity matrix.
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The above derivations allow us to write ct, Z1,t, and Z2,t in terms of the param-
eters of the model. We start by defining an auxiliary matrix Jt that allows us
to deal with missing submissions by some institutions in period t. Recall that
ιt ⊂ {1, 2, .., S} is the set of institutions submitting in t. Let ιk,t designate the
k-th element of the index ιt. Jt is a (|ιt| × S) matrix whose k-th row has a 1 in
position ιk,t and zeros otherwise.

We thus have

φt =

(
0

σψ Jt (ψ1,t, ..., ψN,t)
T

)
with Γt = E

(
φt φ

T
t

)
=

(
0 0T

|ιt|
0|ιt| σ2

ψ I|ιt|

)
.

Furthermore, we have Z1,t = Jt Z1 and Z2,t = Jt Z2, where

Z1 =


01×1+k̄+Sk̄ , σε

0 , 1 , eT1
0 , 1 , eT

k̄+1
...

0 , 1 , eT
(S−1)k̄+1

 , and Z2 =


0, 1, 01×(k̄−2)+Sk̄+1

01×1+k̄+Sk̄+1
...

01×1+k̄+Sk̄+1

 .

Given a prior for the state of the system at t = 1, α1 ∼ N(a1, P1), we can now
apply the usual Kalman filter recursion to derive the likelihood function for our
data (yt)

T
t=1 given the parameter vector φ denoted L

(
(yt)

T
t=1 | φ

)
.
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7.7 Proof of identification

Strategy of proof The proof of identification proceeds in two steps. First,
we establish identification for the model under the assumption that submitting
institutions take the consensus price to be an exogenous signal of the past state,
i.e. pt = θt−1 + εt. This is the model of the first step in Nimark (2014)’s solution
algorithm. Second, once we have established identification of the first-step model,
we proceed by induction. In particular, we argue that if the model is identified at
step n of the algorithm, it is also identified at step n + 1. This then establishes
identification of the model at all steps of the algorithm.

A. Identification with exogenous consensus price signal

If submitters assume that the consensus price is an exogenous signal of the (past)
state, then individual submitters’ first-order beliefs are updated according to

θi,t = ρ θi,t−1 + (k11 k12)

(
θt + ηi,t − ρ θi,t−1

θt−1 + εt − θi,t−1

)
.

We can write this as

θi,t = (1− k)ρ θi,t−1 + k ρ θt−1 + k11 ut + k12 εt + k11 ηi,t, (17)

where the Kalman gains k11 and k12 are given by

k11 =
ζ + ρ2 k

ζ + ρ2 + ψ/(1− ψ)
and k12 = ρ(k − k11) with

k =
1

2
+

1

2ρ2

{[
(1− ρ)2 + ξ

] 1
2
[
(1 + ρ)2 + ξ

] 1
2 − (1 + ξ)

}
,

ξ =
ζ

ψ
, ψ =

σ2
η

σ2
ε + σ2

η

and ζ =
σ2
u

σ2
ε

.

The average first-order belief is then

θ̄t = (1− k)ρ θ̄t−1 + k ρ θt−1 + k11 ut + k12 εt,

with corresponding (step 2) consensus price process

pt = θ̄t−1 + εt.

This implies the following dynamics for the consensus price,

pt = (1− k)ρ pt−1 + k ρ θt−2 + k11 ut−1 + (k12 − (1− k)ρ)εt−1 + εt. (18)
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Observed data We assume that our observed data consists of a panel of indi-
vidual first-order beliefs for N submitting institutions {{θi,t}Ni=1}Tt=1 that evolve
according to (17), and the corresponding time-series of consensus prices {pt}Tt=1

generated by the process specified in (18).

We now show how the distribution of the above data identifies the model param-
eters of interest, namely {ρ, σ2

ε , σ
2
η, σ

2
u}.

1. Deviations of the consensus price from average expectations identify σ2
ε .

We obtain estimates for the error εt from the difference between the current con-
sensus price and the past mean submission as

εt = pt − θ̄t−1.

We can thus identify σ2
ε from the time-series variance of the estimated errors.

2. Individual deviations from average expectations identify (1− k)ρ.
Individual deviations from the consensus, θ̂i,t = θi,t − θ̄t are given by

θ̂i,t = (1− k)ρ θ̂i,t−1 + k11 ηi,t.

Individual deviations follow an AR(1) process. Deviations from consensus mean-
revert more quickly if submitters put less weight on past information (higher k),
or if the fundamental value process is less persistent (low ρ). We can therefore
identify (1− k)ρ from the auto-covariances of individual deviations from the cur-
rent mean submission.

3. Persistence in consensus price updates identify ρ and hence k via (1− k)ρ.
Having identified (1 − k)ρ we can obtain ωt = pt − (1 − k)ρ pt−1 from our data,
where

ωt = k11 ut−1 + k ρ

(
ut−2

1− ρL

)
+ (k12 − (1− k)ρ)εt−1 + εt.

ωt is a noisy measure of the fundamental news submitters receive in period t. By
subtracting (1− k)ρ pt−1 from pt it “cleans out” their prior beliefs. For sufficiently
long lags, ωt’s auto-correlation exclusively comes from its dependence on the fun-
damental process and not the aggregate noise, εt. Its auto-covariances thus allow
us to identify the persistence in the process of θt. In particular, we can see that
the auto-covariances of ωt have to satisfy

Cov(ωt, ωt−3) = ρCov(ωt, ωt−2).

The ratio of these auto-covariances thus identify ρ,

ρ = Cov(ωt, ωt−3)/Cov(ωt, ωt−2),
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which together with (1 − k)ρ then allow us to identify 1 − k, i.e. the persistence
in individual expectations due to informational frictions.

4. The weight submitters put on the consensus price when updating expectations
identifies σ2

η and hence σ2
u via k.

k determines how much weight submitters put on new information as opposed to
their priors. It is given by

k =
1

2
+

1

2ρ2

{[
(1− ρ)2 + ξ

] 1
2
[
(1 + ρ)2 + ξ

] 1
2 − (1 + ξ)

}
,

where ξ =
ζ

ψ
with ψ =

σ2
η

σ2
ε + σ2

η

and ζ =
σ2
u

σ2
ε

.

It is a function of ξ, which is a ratio of the variance of the shocks to the fundamen-
tal value to the variance of the signal noises and can thus be seen as a measure of
the signal to noise ratio. k is monotonically increasing in ξ; a higher signal to noise
ratio implies a higher weight on current signals. Hence, having already identified
k, we can also identify ξ.

In turn, the weights submitters put on the private signal and the consensus price
can be expressed in terms of k, ξ, and ψ, namely

k11 =
ξ ψ + ρ2 k

ξ ψ + ρ2 + ψ/(1− ψ)
and k12 = ρ(k − k11).

It can be shown that, for a given k, the weight on the private signal, k11, is mono-
tonically decreasing and the weight on the consensus price, k12, monotonically
increasing in ψ for ψ ∈ (0, 1); a relatively more noisy private signal will lead sub-
mitters to shift weight from the private signal to the consensus price (given k). As
we have already identify k and ξ, knowing either k11 or k12 will allow us to identify
ψ. Given ψ we can then back out σ2

η and ζ, which yields σ2
u.

We now proceed to show identification of k12, which by the previous argument
establishes identification of the model. To do so, we return to the individual
expectation updating equation,

θi,t = (1− k)ρ θi,t−1 + k11 ρ θt−1 + k12 pt + k11 ηi,t + k11 ut.

We also have

θi,t−1 = (1− k)ρ θi,t−2 + k11 θt−1 + k12 pt−1 + k11 ηi,t−1.
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Multiplying the latter expression by ρ and subtracting from the former eliminates
the unobservable θt−1. We obtain an expression in terms of observables and shocks,

θi,t−ρ θi,t−1 = (1−k)ρ(θi,t−1−ρ θi,t−2)+k12 (pt−ρ pt−1)+k11(ηi,t−ρ ηi,t−1)+k11 ut.

Note that we have already identified (1− k)ρ. Define

yi,t = θi,t − ρ θi,t−1 − (1− k)ρ(θi,t−1 − ρ θi,t−2).

We can then identify the coefficient k12 from the covariance of yi,t and pt − ρ pt−1

noting that

yi,t = k12 (pt − ρ pt−1) + k11(ηi,t − ρ ηi,t−1) + k11 ut.

This is possible as pt is a signal based on information available in t− 1 plus εt. It
is not correlated with the shock ut. Furthermore, the idiosyncratic noise terms ηi,t
and ηi,t−1 are uncorrelated with the consensus price process by construction.

B. Establishing identification by induction

Suppose we have established identification of the model parameters by our observed
data for step n of the algorithm. That is, any two distinct sets of parameters φ1

and φ2 imply distinct distributions of the observable data. In particular, the step n
consensus price process that submitters will assume in step n+ 1 differs across the
two parameter sets. This necessarily implies that the distribution of individual
expectations will differ across the two parameter sets in step n + 1. This then
establishes identification of the model at step n+ 1 of the algorithm. �

7.8 Covariance Matrices for Counterfactual Scenarios

7.8.1 Consensus price perfectly reveals past state

If the consensus price perfectly aggregates dispersed information, we have

pt = θt−1.

In this case all submitters start period t with a common prior about θt, namely
ρ θt−1, and there is no higher-order uncertainty before receiving new signals. This
is because every submitter knows that every submitter knows (and so on ...) that
the average expected value of θt before receiving period t signals is ρ θt−1.

Submitter i’s expectations about the fundamental given signal si,t = θt + ηi,t can
be obtained by the standard updating formula as state θt and signal si,t given θt−1

are jointly normally distributed:

Ei,t (θt) = θi,t = ρ θt−1 + k1 (si,t − ρ θt−1) = ρ θt−1 + k1(ut + ηi,t) ,
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where k1 is the Kalman gain

k1 =
σ2
u

σ2
u + σ2

η

.

It follows that the average expectation is

θ̄t = ρ θt−1 + k1 ut.

Now define the random vector

Xt =
[
θt − ρ θt−1 , θ̄t − ρ θt−1

]
= [ut , k1 ut]

and
yi,t = si,t − ρ θt−1 = ut + ηi,t.

Xt and yi,t are jointly normally distributed. Thus, the covariance of Xt given yi,t
is

V ar (Xt|yi,t) = Σxx − Σxy

(
σ2
y

)−1
ΣT
xy,

where Σxx is the variance of Xt and Σxy is the covariance of Xt and yi,t, namely,

Σxx =

[
σ2
u k1σ

2
u

k1σ
2
u k2

1 σ
2
u,

]
, Σxy =

[
σ2
u , k1 σ

2
u

]T
.

As ρ θt−1 is known in t, V ar((θt, θ̄t)
T|Ωi,t) = V ar((θt, θ̄t)

T|θt−1, yi,t) = V ar (Xt|yi,t).
It follows that

V ar((θt, θ̄t)
T|Ωi,t) =

 σ2
u σ

2
η

σ2
u+σ2

η

σ4
uσ

2
η

(σ2
u+σ2

η)2

σ4
uσ

2
η

(σ2
u+σ2

η)2
σ6
uσ

2
η

(σ2
u+σ2

η)3

 .
7.8.2 No consensus price feedback

Without consensus price feedback, the stationary expectation dynamics of submit-
ter i are given by

θi,t = ρ θi,t−1 + k1 (si,t − ρ θi,t−1) ,

where k1 is the stationary Kalman gain. k1 is the solution to the system of two
equations in two unknowns, k1 and σ2,

k1 =
σ2

σ2 + σ2
η

, σ2 = ρ2(1− k1)σ2 + σ2
u.

The average stationary expectation then evolves according to

θ̄t = (1− k1)ρ θ̄t−1 + k1ρ θt−1 + k1 ut.
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We can now write the dynamics for (θt, θ̄t)
T in state space form, with transition

equation (
θt
θ̄t

)
=

[
ρ 0
k1ρ (1− k1)ρ

](
θt−1

θ̄t−1

)
+

[
1
k1

]
ut

and measurement equation

yi,t = (1 , 0)

(
θt
θ̄t

)
+ ηi,t.

The stationary covariance matrix for the state given the history of signals up to t,
V ar((θt, θ̄t)

T|{si,t−j}∞j=0) can now be derived with a standard Kalman filter.
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