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Non-Technical Summary 
 
 
Production processes can be considered as transforming inputs into 
outputs. In economic modelling it is usually assumed that this 
happens instantaneously. However, a "real world" production 
process takes time, meaning that the outputs are available with a 
certain time lag after assigning the inputs. The time lag may be 
substantial in the production of capital goods such as plants, 
buildings or larger network infrastructure. 
 
We analyze the question how this time-lag influences the optimal 
investment over time at hand of an optimal control capital 
accumulation model. As known from the time-to-build literature, 
time-lagged optimal control problems may exhibit a qualitatively 
different system dynamics as compared to instantaneous capital 
accumulation models, namely cyclical and exponentially damped 
oscillating optimal investment paths. We confirm this system 
dynamics for the case of Leontief-type production functions and 
show under which conditions the optimal path is dominated by one 
major cycle. 
 
As time-lagged optimal control problems are not analytically 
soluble, even in the linear approximation around the stationary 
state, state-of-the-art numerical optimization methods are used 
for the second major contribution of the analysis: the 
illustration of the transition from instantaneous to time-lagged 
production. We show the formation of the major cycle and 
illustrate that while for small time lags instantaneous production 
neoclassical economic theory is a good approximation, the validity 
of this approximation is challenged for large time lags. 
Calculating the major cycle already gives a good impression 
of what to expect from the optimal paths of investment. 
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1 IntrodutionAll prodution takes time. That is, the transformation of inputs into outputs does notour instantaneously. This ubiquitous experiene has in�uened eonomi theory invarious ways and at di�erent times. In his formulation of Austrian apital theory, vonBöhm-Bawerk ([1889℄1921) applied the average investment period, i. e. the average timespan between the assignment of the non-produed inputs and the �nished onsumptiongoods in the prodution proess, to avoid the problem of the ambiguity of an aggre-gate measure of apital. This time aspet of prodution was revived in the 1970s by theneo-Austrian apital theories (e. g. von Weizsäker 1971, Hiks 1973 and Faber 1979).El-Hodiri et al. (1972) derived a generalized maximum priniple for a growth model withheterogenous apital goods and exogenously given and onstant time-lags between on-trol and state variables. Benhabib and Rustihini (1991) interpreted the time strutureof prodution as a speial ase of vintage-apital models, whih they alled gestationlags. The time aspet of prodution has also been disussed in the maroeonomi realbusiness yle theory. Following an idea �rst posed in Kaleki (1935), Kydland andPresott (1982) empirially analyzed how far time onsuming investment, whih theyalled time-to-build, ould explain real business yles. While Kydland and Presott(1982) argued that the time-to-build feature is essential to ylial �utuations in theirmodel, this was doubted by Ioannides and Taub (1992). Rustihini (1989) and Aseaand Zak (1999) showed in simple optimal ontrol models with one apital good (but adi�erent lag struture) that the time-to-build feature is the driving fore for the ylialsystem dynamis.In ontrast to the authors mentioned above, we expliitly analyze the qualitative andquantitative properties of the optimal paths in their dependene on the time-lag σ.Therefore, we formulate an optimal ontrol apital aumulation model with a onstantand exogenously given time-lag between investment and the aumulation of apital. Forreasons of analytial tratability, we restrit our attention to a Leontief-type produtionfuntion. Although the dynamis of our apital aumulation model is governed by a sys-tem of funtional di�erential equations, whih is not analytially soluble, we derive somequalitative properties of the optimal solution. As expeted from the works of Rustihini(1989) and Asea and Zak (1999), the optimal investment paths for a �nite investmentperiod are shown to be ylial, as opposed to the monotoni paths for instantaneousapital aumulation.We present a systemati analysis of the impat of the length of the time-lag σ. Weshow analytially that there is a ontinuous transition from instantaneous to time-laggedapital aumulation, in the sense that the ylial behavior beomes more pronounedwith inreasing time-lag σ. For time-lagged optimal ontrol problems even the linearapproximation around the stationary state is not analytially soluble, so numerial op-timization is a relevant issue in order to analyze and understand the system dynamisof time-lagged problems. Using a method desribed in Winkler et al. (2004), we solvethe time-lagged optimization problem numerially and disuss the results.The paper is organized as follows. In setion 2 we introdue the optimization model.Although the optimal ontrol problem is not analytially soluble, we derive some ana-1



lytial properties of the solution in setion 3. In setion 4 we apply advaned numerialoptimization methods and disuss the optimal paths for an example. Setion 5 onludes.2 The ModelWe analyze an optimal ontrol apital aumulation model with an exogenously giventime-lag between investment and apital aumulation. In general, time-lagged aumu-lation problems exhibit severe analytial di�ulties, as even linear funtional di�erentialequations are in general not soluble. Therefore, we restrit our attention to a Leontief-type prodution funtion.1 This speialization allows us to derive analytial propertiesof the optimal paths.Suppose the following intertemporal welfare funtion W is to be maximized
W{c(t)} =

∫ ∞

0

V (c(t)) exp[−ρt] dt , (1)where ρ denotes the positive and onstant disount rate and V the twie di�erentiable,monotonially inreasing (V ′ > 0) and stritly onave (V ′′ < 0) instantaneous welfarefuntion.The only non-produible input fator, e. g. labor, is given in onstant amount l̄, whih isdistributed to three linear-limitational prodution proesses. Without loss of generality,we assume that the �rst proess produes one unit of the onsumption good with oneunit of labor. The seond proess ombines λ units of labor together with κ units ofapital to produe one unit of the onsumption good. The third proess reates one unitof investment from one unit of labor. Thus, we derive
c1(t) = l1(t) , (2)
c2(t) = min

[

l2(t)

λ
,
k(t)

κ

]

, (3)
i(t) = l3(t) , (4)where li denote the amount of labor employed in proess i (i = 1, 2, 3). Assuming e�ientprodution, i. e. l2(t)/λ = k(t)/κ, and that the labor restrition holds with equality, i. e.

∑

i li(t) = l̄ ∀ t, total prodution P (t) = c1(t) + c2(t) + i(t) reads:2
P (k(t)) = l̄ +

1 − λ

κ
k(t) . (5)Note that we an write total onsumption c(t) = c1(t) + c2(t) as total prodution minusinvestment:

c(t) = P (k(t)) − i(t) . (6)1 The model introdued in the following is a slightly adapted ontinuous time version of the 3-proessmodel disussed in Faber and Proops (1991).2 Although onsumption goods and investment goods are di�erent ommodities, they an be summedup beause they are all measured in units of labor.2



Hene, the formal struture of our model is similar to the neolassial growth modelsintrodued by Cass (1965) and Koopmans (1965). The main di�erene is that we analyzea linear prodution funtion whih does not satisfy the Inada onditions (limk→0 P ′ =
∞, limk→∞ P ′ = 0).To model the time struture of prodution we assume that apital aumulation istime onsuming: investment at time t inreases the apital stok k delayed until time
t+σ, where σ denotes the positive and onstant time-lag between investment and apitalaumulation. Furthermore, we assume that the apital stok deteriorates at the positiveand onstant rate γ:

k̇(t) = i(t−σ) − γk(t) . (7)In addition, we assume that the apital stok k annot be onsumed, i. e. i(t) ≥ 0. Hene,the optimal ontrol problem reads:
max
i(t)

∫ ∞

0

V (c(t)) exp[−ρt] dt (8a)subjet to
c(t) = l̄ +

1 − λ

κ
k(t) − i(t) , (8b)

k̇(t) = i(t−σ) − γk(t) , (8)
i(t) ≥ 0 , (8d)
l̄ −

λ

κ
k(t) − i(t) = c(t) −

1

κ
k(t) ≥ 0 , (8e)

i(t) = ξ(t) = 0 , t ∈ [−σ, 0) , (8f)
k(0) = 0 . (8g)The restrition (8e) assures that c1 ≥ 0.3 When it is binding, then all labor is usedto employ and maintain the apital stok. This implies that the onsumption good isexlusively produed by the apital intensive proess (3). The equation of motion forthe apital stok (8) is the main di�erene from instantaneous apital aumulationmodels. Beause of the positive time-lag σ, the ordinary di�erential equation beomesa retarded di�erential-di�erene equation, i.e. the variation in the apital stok dependsnot only on parameters evaluated at time t but also on parameters evaluated at theearlier time t−σ. Thus, the spei�ation of an initial value for the apital stok k isno longer su�ient for a unique solution. In addition, we have to speify an initial path

ξ for the investment i in the time interval [−σ, 0). Hene, unlike the ase of ordinarydi�erential equations, the past does not ondense into a single parameter � the initialvalue � but the time path has a ruial impat on the future dynamis. As a onsequene,the omplexity of the system dynamis inreases greatly. For the sake of simpliity weassume that the initial path ξ is onstant at 0.3 Note that restrition (8d) together with the initial ondition (8g) assure that c2 ≥ 0.3



3 Analysis of the Optimal SolutionAlthough the optimal ontrol problem (8) is not analytially soluble, we an state somequalitative properties of the solution. We shall see that the optimal solution falls intoone of two di�erent lasses. First, in the trivial ase the aumulation of apital isnot optimal. Then the optimal investment path is i(t) = 0 for all times t and therestrition (8d) is binding, while the restrition (8e) is not binding. The system will stayin the trivial stationary state (i⋆ = 0, k⋆ = 0) forever. Seond, in the non-trivial aseinvestment is optimal and thus i(t) > 0 for all times t. As a onsequene restrition(8d) is never binding. For small times t also the restrition (8e) is not binding. First,for times t ∈ [0, σ) the apital stok is idential to 0 due to the initial path ξ (8f). Afterthe time-lag σ investment turns into apital, and the apital stok inreases. At sometime t′ the apital stok is big enough so that all available labor l̄ is used to employand maintain the apital stok. Hene the restrition (8e) is binding. The system willthen onverge to a stationary state, whih is determined by the restrition (8e) and thetime-lagged equation of motion (8).3.1 Neessary and Su�ient ConditionsWe start the disussion of the properties of the optimal path by deduing the neessaryand su�ient onditions. In ontrast to Asea and Zak (1999), the lag struture appliedin maximization problem (8) is not supported by the Maximum Priniple of Pontrjaginet al. (1962). To determine the neessary onditions for an optimal solution we applythe generalized Maximum Priniple derived in El-Hodiri et al. (1972). We obtain thefollowing present-value Hamiltonian H

H = V (c(t)) exp[−ρt] + pc(t)

[

l̄ +
1 − λ

κ
k(t) − i(t) − c(t)

]

+ pk(t+σ)i(t)

−pk(t)γk(t) + pi(t)i(t) + pl(t)

[

l̄ −
λ

κ
k(t) − i(t)

]

,where pc, pi and pl denote the Kuhn-Tuker parameters of the orresponding restritionsand pk the ostate variable of the apital stok k, i.e. they are the shadow pries ofthe orresponding restritions. The di�erene to instantaneous apital aumulation isovered by the term pk(t+σ)i(t). Although it might look odd at �rst sight to have
pk evaluated at a future time, while we have a retarded equation of motion (8), theexplanation is quite intuitive: pk measures the net present value of all future welfaregains of one additional unit of apital. As investment takes the time period σ to turninto produtive apital, the investment i(t) gives rise to additional apital at t+σ, ofwhih the net present value is given by pk(t+σ).Assuming that H is ontinuously di�erentiable with respet to i, the neessary ondi-

4



tions for an optimal solution read:
∂H

∂i(t)
= −pc(t) + pk(t+σ) + pi(t) − pl(t) = 0 , (9a)

∂H

∂c(t)
= V ′(c(t)) exp[−ρt] − pc(t) = 0 , (9b)

∂H

∂k(t)
= pc(t)

1 − λ

κ
− pk(t)γ − pl(t)

λ

κ
= −ṗk(t) , (9)

pi(t) ≥ 0 , pi(t)i(t) = 0 , (9d)
pl(t) ≥ 0 , pl(t)

[

l̄ −
λ

κ
k(t) − i(t)

]

= 0 . (9e)As the HamiltonianH is onave in k and i due to the assumed urvature properties of V ,these neessary onditions are also su�ient if, in addition, the following transversalityondition is satis�ed:
lim
t→∞

[pk(t)k(t)] = 0 . (9f)The eonomi interpretation of the neessary and su�ient onditions is straightforward.Equation (9b) states that along the optimal path the shadow prie of the onsumptiongood equals the net present value of marginal utility. Equation (9) represents a linear�rst order di�erential equation for the shadow prie of apital, whih an be unambigu-ously solved together with the transversality ondition (9f). As usual, the shadow prieof apital pk(t) gives the present value gain in welfare of a marginal inrease of apitalat time t. Now we an interpret equation (9a). It says that along the optimal path andas long as investment is positive, i. e. pi(t) = 0, and restrition (8e) is not binding, i. e.
pl(t) = 0, the present value of the osts for an investment in the apital good in termsof lost welfare has to equal the shadow prie of apital pk at time t+σ. As investment attime t aumulates the apital stok at time t+σ, the present value of the future welfaregains are aptured by the future shadow prie of apital pk(t+σ).3.2 Stationary StateIn the following we dedue a ondition for the exogenous parameters to distinguishthe trivial from the non-trivial ase. Furthermore, we alulate the orresponding �xedpoints (i⋆, k⋆), whih are given by the onditions i̇(t) = k̇(t) = 0.Proposition 1 (Stationary State)The unique �xed point (i⋆, k⋆) of the optimal ontrol problem (8) is given by:

• (i⋆ = 0, k⋆ = 0), if 1 − λ

κ
≤ (γ + ρ) exp[ρσ], and

•

(

i⋆ =
γκl̄

λ + γκ
, k⋆ =

κl̄

λ + γκ

), if 1 − λ

κ
> (γ + ρ) exp[ρσ].

5



The orresponding stationary state onsumption levels are c⋆ = l̄ for (i⋆ = 0, k⋆ = 0),and c⋆ = l̄
λ+γκ

for (

i⋆ = γκl̄

λ+γκ
, k⋆ = κl̄

λ+γκ

).Proof: Suppose investment in apital is not optimal. Then i(t) = 0, pi(t) ≥ 0 and
pl(t) = 0 ∀ t. Hene, (9a) redues to:

pc(t) ≥ pk(t+σ) . (10)Furthermore, if i(t) = 0, then also k(t) = 0 and c(t) = l̄ ∀ t. Thus, we derive from (9b):
pc(t) = V ′

(

l̄
)

exp[−ρt]. (11)The di�erential equation for the shadow prie pk an be solved together with the transver-sality ondition (9f) to yield:
pk(t) =

1 − λ

(γ + ρ)κ
V ′

(

l̄
)

exp[−ρt] . (12)Inserting (11) and (12) in (10) and simplifying yields the following inequality:
1 − λ

κ
≤ (γ + ρ) exp[ρσ] . (13)Thus, investment is optimal if this inequality does not hold. In this ase investmentis positive and apital is aumulated until all labor is used to employ and maintainthe apital stok, i. e. the restrition (8e) is binding. Hene, c⋆ = k⋆/κ and i⋆ = γk⋆.Inserting into (8b) yields the stated result for i⋆, k⋆and c⋆. �In the following we shall onentrate our attention to the non-trivial ase of positiveinvestment, where 1−λ

κ
> (γ +ρ) exp[ρσ] holds. Then the stationary state is independentof the time-lag σ as long as this inequality holds. As already mentioned, the system dy-namis of the non-trivial ase splits into three phases. In the �rst phase, in the followingalled the initial phase, investment is positive but the apital stok is still 0 due to theinitial path ξ = 0 (8f) and thus, the onsumption good is solely produed by produtionproess (2). During the seond phase, in the following alled the growth phase, the ap-ital stok is aumulated while the onsumption good is produed by both produtionproesses (2) and (3). Hene, the restrition (8e) is not binding. In the third phase, in thefollowing alled the onsolidation phase, onsumption is solely produed by the apitalintensive prodution proess (3), i. e. the restrition (8e) is binding.3.3 Initial Phase and Growth PhaseDuring the initial phase and the growth phase the dynamis of the optimal solution isgoverned by the following system of di�erential equations, whih an be derived by the
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neessary and su�ient onditions (setting pi(t) = pl(t) = 0) and the equation of motion(8):4
ċ(t) =

V ′(c(t))

V ′′(c(t))
(γ + ρ) −

V ′(c(t+σ))

V ′′(c(t))

1 − λ

κ
exp[−ρσ] , (14a)

k̇(t) = l̄ +
1 − λ

κ
k(t−σ) − c(t−σ) − γk(t) . (14b)Note that ċ also depends on advaned (at a later time) and k̇ on retarded (at an earliertime) variables. Hene, (14) forms a system of funtional di�erential equations.5 Theusual proedure, to linearize the system of di�erential equations around some point ofinterest and disuss the resulting system of linear di�erential equations, is not appliablehere, beause during the growth phase there is no point of attration like the stationarystate. On the ontrary, during the growth phase we expet the system to hange rapidly.Furthermore, in general even the linearized system is not analytially soluble. As aonsequene, little more an be said about the optimal paths than that the systemdynamis is in general ylial (Winkler 2004).Nevertheless, it is worth noting that if σ = 0 both c(t) and k(t) inrease monotoniallywhile for σ > 0 ylial paths are also feasible. Furthermore, the dynamis of the apitalstok during the initial phase, ranging from t = 0 to t = σ, is ompletely determined bythe initial investment path ξ, the initial apital stok k(0) and the equation of motion(8). Thus, the time-lagged aumulation of apital introdues an additional moment ofinertia to the system dynamis.3.4 Consolidation PhaseThe situation hanges as soon as restrition (8e) is binding and the system dynamisenters the onsolidation phase. Here we expet the system to onverge towards thestationary state. Inserting restrition (8e) into equation (8b) we derive:

k(t) =
κ

λ
(l̄ − i(t)) . (15)Di�erentiating with respet to time yields:

k̇(t) = −
κ

λ
i̇(t) . (16)Hene, the �rst result for the system dynamis during the onsolidation phase is thatapital and investment develop in opposite diretions as k̇ and i̇ are of opposite sign.Inserting this equation into the equation of motion for the apital stok (8) yields thefollowing inhomogeneous retarded linear di�erential equation:

i̇(t) + γi(t) +
λ

κ
i(t−σ) = γl̄ . (17)4 Here we present the di�erential equations for c(t) and k(t) instead of i(t) and k(t). Note that onethe paths for c(t) an k(t) are known, the path for i(t) an easily be alulated using (8b).5 For an introdution to retarded funtional di�erential equations see Asea and Zak (1999: setion 2)and Gandolfo (1996: hapter 27). A detailed exposition for linear funtional di�erential equations(di�erential-di�erene equations) is given in Bellman and Cooke (1963), and Hale (1977).7



As for ordinary linear di�erential equations, the solution is the superposition of a partiu-lar solution of the inhomogeneous equation plus the general solution for the homogeneousequation. It an easily be veri�ed that the stationary state investment i⋆ = γκl̄

λ+γκ
solves(17). Hene, we an restrit our attention to the solution of the homogeneous equation.Similar to the ase of ordinary linear �rst-order di�erential equations, the elementarysolutions în for î(t) = i(t) − i⋆ are exponential funtions (e.g. Gandolfo 1996: 550�551).Hene, we an write the general solution as an (in�nite) series of elementary solutions:

î(t) =
∑

n

in exp[xnt] , (18)where in denote onstants, whih an (at least in priniple) be unambiguously determinedby the set of initial onditions and the transversality ondition (9f), and the xn are theroots of the harateristi equation:
x + γ +

λ

γ
exp[−σx] = 0 . (19)Let us denote the real harateristi roots by xr and the omplex roots by xj = aj ± ibjwith aj, bj ∈ R (we shall see that all omplex roots appear in onjugate pairs). For σ = 0the harateristi equation (19) has a unique negative real root xr = −(γ + λ/γ). For

σ > 0 the equation exhibits 0, 1 or 2 negative real roots xr and in addition an in�nitenumber of omplex roots xj as the following proposition states.Proposition 2 (Roots of the harateristi polynomial)Given positive onstants λ and γ, the harateristi equation (19) has
• one unique negative real root xr = −(γ + λ

γ
), if σ = 0, and

• 0, 1 or 2 negative real roots with xr < −(γ + λ
γ
) and an in�nite number of omplexroots xj, of whih only a �nite number has positive or vanishing real part, if σ > 0.Proof: 1. The ase σ = 0 is obvious from equation (19).2. Real solutions for σ > 0: Set F (x) = x and G(x) = −(γ + λ

κ
exp[−σx]). Thenthe real roots are given by F (x) = G(x) for x ∈ R. There are no positive rootsbeause of G(0) = −(γ + λ

κ
) and limx→∞ G(x) = −γ. As limx→−∞ G(x) = −∞,

G′(x) = σλ
κ

exp[−σx] > 0 and G′′(x) = −σ2λ
κ

exp[−σx] < 0, G(x) may not interset
F (x), touh F (x) for one multiple root or interset F (x) twie in the negative half-plane. As G(0) = −(γ + λ

κ
) and due to the urvature properties of G(x) all rootsare smaller than −(γ + λ

γ
).3. Complex solutions for σ > 0: Set x = a + ib with a, b ∈ R. Inserting into (19) andseparating real and imaginary parts yields the following equations, whih have tohold for the harateristi roots:

a + γ +
λ

κ
exp[−σa] cos[σb] = 0 , (20a)

b −
λ

κ
exp[−σa] sin[σb] = 0 . (20b)8



Unfortunately, this system of equations is not analytially soluble. Nevertheless,we an state some general properties of the solution. First, note that if a+ ib solves(20) then a − ib also does. Hene, omplex harateristi roots always appear inonjugate pairs and therefore we restrit the further analysis to positive b. Seond,due to equation (20b), sin(σb) has to be positive. Hene, the imaginary parts b arerestrited to the following intervals:
2jπ

σ
< bj <

2(j + 1)π

σ
, j ∈ N0 . (21)For further investigations we rearrange the equations (20)

a =
1

σ
ln

[

λσ

κ

sin β

β

]

, (22a)
ln

[ κ

λσ

]

− γ = ln

[

sin β

β

]

+
β

tan β
, (22b)where β = σb. Note that the right-hand-side (RHS) of equation (22b) is indepen-dent of the exogenous parameters. Thus, we an determine the imaginary parts bby the intersetion of the onstant of the left-hand-side (LHS), whih depends onthe exogenous parameters, with the graph of the right-hand-side of equation (22b).Due to the strit monotoniity of ln and tan, there is one unique intersetion ineah interval desribed by (21) for n > 0 and in addition an intersetion for n = 0if the LHS of (22b) < 1 (�gure 1). Hene, the harateristi equation (19) has anin�nite number of omplex solutions.The last thing to show is that there is only a �nite number of omplex roots with

aj ≥ 0. From equation (22a) we know that aj < 0 if λσ
κ

sin β

β
< 1. As sin[σbj ]

σbj
→ 0 for

n → ∞, there is one j′ for any given set of exogenous parameters so that aj < 0 if
j > j′. �The spae of solutions deomposes into a stable manifold spanned by the eigenve-tors orresponding to the eigenvalues with negative real part and an unstable manifoldspanned by the eigenvetors orresponding to the eigenvalues with positive real part.6Note that due to the transversality ondition (9f), the optimal solution is restrited tothe stable hyperplane. Conluding, the optimal solutions for investment i(t) and apitalstok k(t) in the onsolidation phase an be written as:
i(t) = i⋆ +

∑

r

ir exp[xrt] +
∑

j

ij exp[ajt] sin[φj + bjt] , (23a)
k(t) = k⋆ −

∑

r

κ

λ
ir exp[xrt] −

∑

j

κ

λ
ij exp[ajt] sin[φj + bjt] , (23b)6 Depending on the exogenously given parameters the harateristi polynomial may have one har-ateristi roots with vanishing real part(aj′ = 0). If suh a solely omplex root exists, the systemdynamis may exhibit a so alled limit-yle, i. e. the system osillates around the stationary statewithout onverging towards or diverging from it (Asea and Zak 1999). From the proof of proposition2 it is lear that this an only happen aidentally for speial sets of exogenous parameters.9
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Figure 1: The imaginary parts of the harateristi roots are given by the intersetionof the graph of the RHS of equation (22b) with the onstant A = ln
[

κ
λσ

]

− γ, whih isthe LHS of equation (22b).where ir, ij and φj are onstants whih have to be determined by the set of initialonditions and the transversality ondition. Furthermore, if aj > 0 then ij = 0. Notethat the optimal solution deomposes in a monotoni part (the �rst sum overing thereal roots) and a ylial part (the seond sum overing the omplex roots). The ylialpart itself is a omposition of individual yles, where the imaginary part bj determinesthe period-length, the real part aj the damping and the onstant ij the amplitude of theorresponding yle.3.5 Transition from Instantaneous to Time-Lagged Capital AumulationFrom our analysis so far it is obvious that the system dynamis exhibits a qualitativehange for a transition from σ = 0 to σ > 0. The optimal paths for investment andapital onverge towards the stationary state stritly monotonially and exponentiallyin the �rst ase, and ylially and exponentially damped in the latter ase. However,so far it is not lear how this transition takes plae quantitatively. Do the optimal pathsexhibit more and more pronouned ylial behavior with inreasing time-lag σ, or dothey experiene a sharp hange at the transition from σ = 0 to any σ > 0? Obviously,intuition would suggest a smooth and ontinuous transition. In fat, this time intuitionholds (at least during the onsolidation phase) as we shall show in the following analysis.Therefore, we �rst take a loser look at the frequenies, determined by xj, and the10



amplitudes, determined by ij, of the optimal solution. The following proposition statesthe result.Proposition 3 (Properties of the optimal path)Given the optimal ontrol problem (8) together with the binding restrition (8e), theoptimal paths for investment i(t) and apital stok k(t) exhibit the following properties:
• There exists at most one major yle with period-length T0 > 2σ orresponding tothe harateristi root xj with j = 0.
• There exists an in�nite number of minor yles with period-length Tj < σ/j or-responding to the harateristi root xj with j ∈ N.
• The upper bound for the amplitude of the yle orresponding to the harateristiroot xj is smaller the higher is j ∈ N0.
• The upper bound for the damping of the yle orresponding to the harateristiroot xj is more negative the higher is j ∈ N0.Proof: 1. Period-lengths Tj: From (21) we know that there is a omplex root withimaginary part bj within eah interval (2jπ/σ; 2(j +1)π/σ) for eah j ∈ N and oneomplex root with imaginary part b0 in the interval (0; π/σ) if the LHS of equation(22b) is smaller than 1. Thus, the orresponding period lengths Tj = 2π/bj of theyles are:

T0 > 2σ , j = 0 , (24a)
Tj <

σ

j
, j ∈ N . (24b)2. Upper bound for the amplitudes: Aording to (23a), the absolute di�erene be-tween the maximum and the minimum value of the investment path within oneperiod-length is smaller than |2ij| as the yles are also exponentially damped. Asinvestment is non-negative aording to restrition (8d), apital an derease atmost at the rate of deterioration γ. As the maximal possible amount for the apitalstok k(t) is given by k̄ = κl̄, the maximal derease in apital within the time span

Tj must not exeed γκl̄Tj. Hene, the following relations for the onstants ij hold:
∣

∣

∣
2
κ

λ
ij

∣

∣

∣
< κγl̄Tj =

2πκγl̄

bj

<
κγl̄σ

j + 1
, j ∈ N0 . (25)Thus, an upper bound īj for the onstant ij is given by:

|̄ij| =
κγλl̄σ

j + 1
, j ∈ N0 . (26)

11



3. Upper bounds for real parts aj (damping): Aording to (22a) the real parts aj aregiven by:
aj =

1

σ
ln

[

λσ

κ

sin βj

βj

]

, j ∈ N0 . (27)Aording to (21), 2πj is a lower bound for βj. Setting 1 as an upper bound for
sin βj, we derive as an upper bound āj for the real part aj:

āj =
1

σ
ln

[

λσ

2πκj

]

, j ∈ N0 . (28)Hene, for given exogenous parameters λ, κ and σ the upper bound āj is smallerthe higher is j. �From proposition 3 we expet that the optimal paths exhibit a dominant yle, whihorresponds to the harateristi root xj with the smallest j that satis�es aj < 0. Ifthe smallest j = 0, then we observe a major yle with a period-length bigger that 2σ.Otherwise we observe a minor yle with period-length smaller than σ/j. In general, weobserve a damped ylial onvergene towards the stationary state, but limit-yles arepossible for ertain sets of exogenous parameters. In addition, we expet to observe theontributions of the minor yles orresponding to the harateristi roots with higher
j. Note that the higher is j, the smaller is the period-length Tj, the smaller is theupper bound for |ij| and thus the amplitude, and the higher is the damping due tothe inreasingly more negative real parts aj. Hene, we expet the ontribution of theharateristi root xj to be smaller the higher is j.Let us now take a loser look at the transition from σ = 0 to σ > 0. Therefore,we assume that all exogenous parameters are �xed exept for σ, whih we shall treatas a variable. Then we an analyze how the optimal paths hange if we hange σ. Inpartiular, we are interested in the transition σ → 0. The result is stated in the followingproposition.Proposition 4 (Continuous transition theorem)Given the optimal ontrol problem (8) together with the binding restrition (8e), theoptimal paths for investment i(t) and apital stok k(t) exhibit eteris paribus a ontin-uous transition from monotoni to ylial behavior for a transition from instantaneous(σ = 0) to time-lagged (σ > 0) apital aumulation in the following sense:

• The period-lengths Tj of the yles onverge to 0 for σ → 0.
• The upper bounds īj, and thus the amplitudes of the yles, onverge to 0 for σ → 0.Proof: 1. Period-lengths Tj: Aording to (24b), it is obvious that the minor yles(j > 0) have shorter period-lengths the smaller the time-lag σ. The situation isslightly more ompliated for the major yles (j = 0). Note that for j = 0 theLHS of equation (22b) tends to +∞ for σ → 0. Thus, there exists a σ′ so that theLHS of equation (22b) equals one. As a onsequene, there exists no major ylefor σ < σ′. 12



2. Upper bounds |̄ij|: From (26) follows diretly that limσ→0 |ij| = 0. �Aording to proposition 4 we expet that the optimal paths exhibit inreasingly morepronouned ylial behavior if we inrease the time-lag σ. However, note that for in-reasing σ, eventually the inequality (13) holds and the system dynamis will be of thetrivial-solution-type.Although the analysis arried out in this setion ontributed greatly to our under-standing of the system dynamis of the linear-limitational optimal ontrol problem (8),there are still unanswered questions. First, we an say hardly anything about the opti-mal paths during the growth phase. Seond, although we were able to estimate upperbounds for the amplitudes of the yles during the onsolidation phase, we annot tell ifyles play a signi�ant role at all, as the amplitudes may be very small or even vanish.For general prodution funtions the situation is even worse. In general, time-laggedaumulation problems exhibit severe analytial di�ulties, as even linear funtional dif-ferential equations are in general not soluble. Hene, in general the standard method inoptimal ontrol theory to linearize the resulting system of di�erential equations aroundthe stationary state does not lead lead to analytial solutions. As a onsequene, nu-merial optimization methods play an important role to analyze and understand thebehavior of time-lagged optimal ontrol problems. In the following setion we disuss anumerial example to illustrate our analytial results.4 A Numerial ExampleIn this setion we disuss an example of optimization problem (8) for a speial set ofexogenous parameters.7 To analyze the transition from instantaneous to time-laggedapital aumulation we vary σ between 0 and 0.5. Table 1 shows numerially alulatedvalues for the real harateristi roots xr and the �rst three omplex harateristi roots
xj together with their orresponding period-length Tj and upper bounds |̄ij| for seletedvalues of σ.Note that there are real harateristi roots only for σ = 0 and σ = 0.1. Furthermore,for σ = 0.1 there exists no major yle. As the �rst two minor yles have very smallperiod-lengths Tj and are strongly damped, due to highly negative real parts aj, weexpet the optimal paths to exhibit only slightly ylial behavior. For σ ≥ 0.2 there areno real harateristi roots. As a onsequene, the optimal paths have to be ylial. Towhat extent the major and minor yles play a role in the system dynamis is impossibleto say as we only know the period-lengths and upper bounds for their amplitudes.Nevertheless, we expet the major yles with period-lengths Tj ranging from 1.27 to
2.01 to dominate the ylial behavior as their upper bounds are muh higher than theupper bounds for the minor yles.To test our expetations we solve the optimal ontrol problem (8) numerially withthe advaned optimal ontrol software pakage MUSCOD-II developed by the Simulation7 The following funtions and onstants have been hosen for ease of graphial presenting of the results:

V (c(t)) = ln c(t), l̄ = 26 2

3
, λ = 0.8, κ = 0.3, γ = 0.15, ρ = 0.1, k0 = 0 and ξ(t) = 0.13



σ 0 0.1 0.2 0.3 0.4 0.5

xr=1 −2.82 −4.21 � � � �
xr=2 � −20.15 � � � �
β0 � � 0.99 (0.32π) 1.29 (0.41π) 1.46 (0.46π) 1.56 (0.5π)

a0 � � −3.99 −1.73 −0.79 −0.32

b0 � � 4.96 4.31 3.63 3.13

T0 � � 1.27 (6.33σ) 1.46 (4.86σ) 1.73 (4.32σ) 2.01 (4.02σ)

ī0 � � 2.03 (10.14σ) 2.33 (7.78σ) 2.76 (6.9σ) 3.21 (6.43σ)

β1 � 7.44 (2.37π) 7.53 (2.4π) 7.58 (2.41π) 7.62 (2.42π) 7.66 (2.43π)

a1 � −34.17 −13.51 −7.62 −4.99 −3.54

b1 � 74.4 37.64 25.26 19.04 15.29

T1 � 0.08 (0.84σ) 0.17 (0.83σ) 0.25 (0.83σ) 0.33 (0.82σ) 0.41 (0.82σ)

ī1 � 0.14 (1.35σ) 0.27 (1.34σ) 0.4 (1.33σ) 0.53 (1.32σ) 0.66 (1.31σ)

β2 � 13.87 (4.41π) 13.92 (4.43π) 13.94 (4.44π) 13.96 (4.45π) 13.98 (4.45π)

a2 � −39.88 −16.43 −9.59 −6.47 −4.72

b2 � 138.67 69.58 46.48 34.91 27.96

T2 � 0.05 (0.45σ) 0.09 (0.45σ) 0.14 (0.45σ) 0.18 (0.45σ) 0.22 (0.45σ)

ī2 � 0.07 (.72σ) 0.14 (0.72σ) 0.22 (0.72σ) 0.29 (0.72σ) 0.36 (0.72σ)Table 1: Numeri estimates for the real harateristi roots and the �rst three omplexhararteristi roots together with their orresponding period-lengths and upper boundfor the onstant ij in absolute numbers and in units of π or σ respetively (terms inbrakets).and Optimization Group of the Interdisiplinary Center for Sienti� Computing at theUniversity of Heidelberg. For details about the numerial simulation see Winkler et al.(2004). As it is not possible to optimize numerially over an in�nite time horizon τ , thetime horizon has been set su�iently high to ensure a lose neighborhood of the optimalpaths to the long-run stationary state (τ ≈ 60). For a more onvenient exposition, the�gures show the time paths up to t = 15 (�gure 2) and t = 8 (�gure 3) only.Figure 2 shows numerial optimized paths of the time-lagged apital aumulationproblem (8) for time-lags σ ranging from 0 to 0.5. As already mentioned, the optimalpaths split into three phases: the initial phase, the growth phase and the onsolidationphase. As the marginal produtivity of apital hanges disontinuous at the transitionfrom one phase to another, the optimal paths are not neessarily di�erentiable at thephase borders. In fat, for σ > 0 we observe kinks in the optimal investment paths whihorrespond to these phase transitions (indiated by blak triangles in �gure 2). Consistentwith proposition 2, the optimal paths onverge monotonially towards the stationarystate for instantaneous apital aumulation (σ = 0). We also observe monotoni optimalpaths for σ > 0 during the initial phase and the growth phase, whih was not neessarilyexpeted from the system of funtional di�erential equations (14). Whether this is ageneral feature of this model, or just an artifat of our hoie of exogenous parameters,is impossible to say. In general, the system of funtional di�erential equations (14) allows
14



for ylial system dynamis.As expeted from propositions 3 and 4, the system dynamis exhibits inreasinglypronouned ylial behavior for inreasing time-lags σ. The fat that the optimal pathsfor σ = 0.1 show no visible non-monotoniity, suggests that the non-monotoniity is ofa magnitude whih annot be traed in our graphial representation or perhaps evenby the resolution of the numerial optimization proedure. This is not surprising as weknow from table 1 that there is no major yle for σ = 0.1 and the �rst minor ylehas a very small period-length and very high damping. For σ ≥ 0.2 the optimal pathsshow learly visible ylial behavior, whih beomes inreasingly more pronouned thebigger the time-lag σ. Nevertheless, all optimal paths onverge towards the stationarystate. This is not neessarily the ase as the system dynamis ould exhibit a limit-yle.For example, for our hoie of parameters the major yle turns into a limit-yle for
σ ≈ 0.65.Finally, we illustrate the ontinuous transition from instantaneous to time-lagged ap-ital aumulation as stated in proposition 4. Figure 3 shows a 3-dimensional plot of theoptimal paths, where the third axis denotes inreasing time-lags σ. The exogenous pa-rameters are idential to the alulations for �gure 2. Again the time-lag σ ∈ [0, 0.5],whih has been split into a grid of 500 equidistant points. For eah of these 500 σ theoptimal ontrol problem has been solved numerially and the resulting graphs have beenomposed to the 3-dimensional plots in �gure 3. They show how the optimal paths evolvefrom monotoni to ylial paths for inreasing time-lag σ.5 ConlusionAs known from the time-to-build literature, time-lagged optimal ontrol problems ex-hibit in general a qualitatively di�erent system dynamis ompared to instantaneousapital aumulation models. While the optimal paths of the latter onverge stritlymonotonially towards the stationary state, the �rst show ylial and exponentiallydamped optimal paths. In this paper we have drawn attention to the quantitative as-pets of the system dynamis by a transition from instantaneous to time-lagged apitalaumulation. To be able to derive analytial properties of the optimal solution, we haverestrited our attention to a Leontief-type prodution funtion.We have shown that there is a ontinuous transition from instantaneous to time-laggedapital aumulation in the sense that the greater is the time lag σ between investmentand apital aumulation, the more the optimal paths display ylial behavior and thus,the more they di�er from the optimal paths of the instantaneous problem. Moreover,although the optimal solution exhibits in general an in�nite number of yles with di�er-ent amplitudes, period-lengths and damping, the system dynamis is dominated by theontribution of the major yle (if existing and otherwise by the �rst existing minor y-le) as amplitudes derease and damping inreases rapidly for yles of higher order. Astime-lagged optimal ontrol problems are not analytially soluble, even in the linear ap-proximation around the stationary state, numerial optimization is espeially relevant toanalyze and understand the system dynamis of time-lagged optimal ontrol problems.

15



σ = 0

0

2

4

6

8

10

0 2 4 6 8 10 12 14

investmentcapital
t

σ = 0.1

0

2

4

6

8

10

0 2 4 6 8 10 12 14

investmentcapital
t

σ = 0.2

0

2

4

6

8

10

0 2 4 6 8 10 12 14

investmentcapital
t

σ = 0.3

0

2

4

6

8

10

0 2 4 6 8 10 12 14

investmentcapital
t

σ = 0.4

0

2

4

6

8

10

0 2 4 6 8 10 12 14

investmentcapital
t

σ = 0.5

0

2

4

6

8

10

0 2 4 6 8 10 12 14

investmentcapital
tFigure 2: Optimal paths for apital and investment for time-lags σ ∈ [0, 0.5] betweeninvestment and apital aumulation.

16



0
1

2
3

4
5

6
7

8 0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

8

10

0

2

4

6

8

0

0.1

0.2

0.3

0.4

0.5
−2

0

2

4

6

8

10

σ t

t σ

k

i

Figure 3: Optimal investment (top) and apital (bottom) paths for time-lags σ ∈ [0, 0.5]between investment and apital aumulation. The third axis denotes inreasing time-lags σ. 17



Thus, we have illustrated our analytial results by an example using state-of-the-artnumerial optimization methods.Our result is of diret interest to eonomi theory. It suggests that the standardassumption of instantaneous apital aumulation in neolassial eonomi theory an bejusti�ed as a good approximation for small time-lags σ. However, for large time-lags, e. g.in plant onstrution or the pharmaeutial industry, the validity of this approximationis endangered. A priori it seems di�ult to determine if a given time-lag should beonsidered to be small or large, as this depends on the whole set of exogenous parametersand the error one is willing to tolerate. However, as the optimal paths are dominated bythe ontribution of the �rst few yles, the alulation of the period-length of the majoryle (or if non-existing the �rst existing minor yle) and the orresponding real partand upper bound for its amplitude give a good impression of what to expet from theoptimal paths.So far we have solely analyzed a entralized eonomy. A priori it is not lear if thewell known result of instantaneous apital aumulation that (under ertain additionalassumptions) a deentralized market solution is Pareto-optimal turns out to be true inthe ase of time-lagged apital aumulation. Intuition suggests that the households'knowledge about the time-lag might be ruial. To answer this question further investi-gations on this topi have to be arried out. Another promising area of researh is theombination of growth models with time-lagged apital aumulation. This ould givenew insights for the analysis of real business yles.ReferenesAsea, P.K. and P. J. Zak (1999): `Time-to-build and yles', Journal of EonomiDynamis and Control, 23: 1155�75.Bellman, R. and K.L. Cooke (1963): Di�erential-Di�erene Equations. AademiPress, New York.Benhabib, J. and A. Rustihini (1991): `Vintage apital, investment, and growth',Journal of Eonomi Theory, 55: 323�39.von Böhm-Bawerk, E. ([1889℄1921): Kapital und Kapitalzins. Positive Theorie desKapitals (Capital and Interest. The Positive Theory of Capital). First published in1889. Forth edition. Mamillan, London.Cass, D. (1965): `Optimum growth in an aggregative model of apital aumulation',Review of Eonomi Studies, 32: 233�40.El-Hodiri, M.A., Loehman, E. and A. Whinston (1972): `An optimal growthmodel with time lags', Eonometria, 40: 1137�46.Faber, M. (1979): Introdution to Modern Austrian Capital Theory. Springer, Heidel-berg. 18
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