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Abstract 
Constrained efficiency is characterized in an asset market, subject to search frictions, where 
sellers are privately informed about the type of their asset. The type determines the 
opportunity cost of the asset for sellers and the quality of the asset for buyers. The 
constrained efficient allocation can be implemented using a sales tax schedule. The role of 
these taxes is to redistribute resources between different types of sellers to relax incentive 
constraints. The optimal tax schedule strictly increases welfare compared with the laissez-
faire equilibrium, can sometimes lead to an allocation that Pareto dominates the  equilibrium, 
and can sometimes lead to the first-best allocation (i.e., taxation can correct all inefficiencies 
caused by adverse selection).  
 
The shape of the optimal tax schedule is also investigated. If the quality of assets for buyers 
is a monotonic function of the sellers' opportunity cost (e.g., more distressed sellers have 
lower-quality assets), the schedule requires that the trading of low-quality assets be 
subsidized and trading of high-quality assets be taxed, although the schedule is not 
necessarily monotone in the quality or price of the assets. Otherwise, trading of some low-
quality assets may be taxed and trading of some high-quality assets may be subsidized. 
 
Topics: Economic models; Financial markets; Financial system regulation and policies; Market 
structure and pricing 
JEL codes: D82, D83, E24, G10, J31, J64



1 Introduction

Adverse selection and search frictions are prevalent in the asset, insurance, labor and housing

markets. For example, consider markets for assets traded over the counter such as mortgage-

backed securities, collateralized debt obligations, structured credit products and corporate

bonds. Sellers in these markets may have private information about the value of their assets,

and they must incur search costs to find buyers for their assets. During the financial crisis,

activity in some of these markets declined to close to zero (Gorton and Metrick (2012)), and

the government/central bank undertook various policies to retrieve trading. Many policy

questions have arisen ever since, one of which is whether government interventions are a

good policy from a social point of view. Guerrieri and Shimer (2014a) study the effects of

asset purchase and asset subsidy programs by an entity with deep pockets and show that

these programs can increase the liquidity and price of assets, therefore saving the market

from a liquidity crisis. I contribute to this discussion by studying the optimal policy that

is budget balanced in a model of the asset market with adverse selection, which is a static

version of Chang’s (2018) model.1

The model economy is populated by a continuum of sellers of a fixed measure. Sellers

have private information about their type, which determines the opportunity cost of the

asset to them (their liquidity need) and the value of the asset to the buyer (the quality of

the asset). A large number of buyers, whose population is determined through free entry,

can enter the market and post prices to attract sellers. Sellers choose the price at which they

want to trade. Sellers and buyers who want to trade with a given price form a submarket

in which they match bilaterally, subject to a matching technology, and trade if matched

successfully.

In the laissez-faire economy, if the quality of assets for buyers is a monotonic function

of the sellers’ opportunity cost (e.g., more distressed sellers have lower-quality assets), then

there is a unique, separating equilibrium, where homogeneous buyers offer different prices to

attract different types of sellers.2 For example, for the case in which the quality of assets is

an increasing function, buyers offering higher prices attract sellers with a higher opportunity

cost. Those sellers are matched with a lower probability (i.e., sell more slowly) in the equi-

1The main ideas regarding equilibrium and constrained efficiency are captured in this static model.
2As a minor point, this result is an extension of Chang (2018) to the cases in which the quality of assets

can be either increasing or decreasing in the sellers’ opportunity cost. Chang’s results are only for the

increasing case.
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librium with adverse selection compared with the equilibrium with complete information. If

the quality of assets for buyers is not a monotonic function, then fully separating equilibrium

does not exist, because there is a tension between respecting the incentive compatibility con-

straint of sellers and the free-entry condition of buyers. For example, the buyers would offer

sellers with a higher opportunity cost a higher price, but the quality of those sellers’ assets

would not be high enough to compensate the buyers for their entry costs.

I study constrained efficiency in this environment. I characterize the problem of a planner

who maximizes welfare, the ex-ante payoff to all types, subject to the matching technology

and to the incentive compatibility constraints associated with the sellers’ private information

about their type. I find that the laissez-faire equilibrium is always constrained inefficient.

That is, the constrained efficient allocation achieves strictly higher welfare compared with

the equilibrium and can sometimes lead to allocations that Pareto dominate the equilibrium.

For example, for the case in which the quality of assets is an increasing function of the sellers’

opportunity cost, the probability of matching for sellers in the constrained-efficient allocation

is higher compared with the laissez-faire equilibrium; i.e., sellers can trade more and higher

surplus is created in the constrained efficient allocation.

The constrained inefficiency of the equilibrium can be explained in terms of externalities.

In the equilibrium, entry of one more buyer to a submarket changes the payoff to sellers in

that submarket and, through incentive compatibility constraints, changes the set of prices

that the buyers in other submarkets can offer, and eventually changes the payoff to sellers

in other submarkets. The planner takes this externality into account and is therefore able

to increase welfare.

The constrained efficient allocation can be implemented using a submarket-specific tax

schedule. The role of these taxes is to redistribute resources between different types of sellers

to relax incentive constraints. I derive conditions under which the optimal tax schedule

leads to the first-best allocation.3 That is, using an appropriate set of submarket-specific

taxes and subsidies can correct all inefficiencies caused by adverse selection. More generally,

I characterize the optimal taxation in this environment even if the first-best cannot be

achieved.

I study the shape of the optimal tax schedule. I explore trading of which assets should

be taxed and trading of which assets should be subsidized, and whether the optimal tax

3The first-best allocation is the welfare-maximizing allocation under complete information given the

matching technology.
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schedule should be monotonic in the price or quality of assets.4 First suppose the quality

of assets for buyers is a monotonic function of the sellers’ opportunity cost. The optimal

taxation requires the trading of sufficiently low-quality assets to be subsidized and trading of

other assets to be taxed. Interestingly, the optimal tax schedule is sometimes non-monotonic

in the quality or price of the assets, e.g., under certain conditions, trading of some assets with

a low quality is subject to a low subsidy, trading of some assets with an intermediate quality

is subject to a high subsidy and trading of some assets with a high quality is subject to a

positive tax.5 If the quality is not a monotonic function of the opportunity cost, the optimal

taxation sometimes requires trading of some low-quality assets to be taxed and trading of

some high-quality assets to be subsidized.6 These results are different from conventional

wisdom suggesting that the higher the quality of the asset, the higher the corrective taxes

should be.7 Intuitively, in the present paper, an increasing tax schedule cannot respect the

incentive constraints of sellers together with the free-entry condition of buyers.

Related Literature. From a theoretical point of view, this paper is closely related

to a companion paper, Davoodalhosseini (2019), in which I show that the equilibrium is

constrained inefficient in an environment with adverse selection and directed search using a

discrete-type space. That environment was first introduced by Guerrieri et al. (2010). There

are important differences between the present paper and Davoodalhosseini (2019). First,

the focus of this paper is on the implementation of the constrained efficient allocation and

the shape of the optimal tax schedule, while the focus of that paper is on the constrained

efficient allocation, not on the tax schedule that implements it. Second, in this paper I

extend the environment of that paper along two dimensions: (i) I extend the environment to

a continuous-type space, which is easier to work with compared with a discrete-type space

in Davoodalhosseini (2019). This is not a trivial extension, because several proofs must be

revisited. Specifically, the proof for the constrained inefficiency of equilibrium is different

4The implementation of a monotonic tax schedule is less sensitive to the planner’s knowledge of the

distribution of types and is easier in practice, because it can be approximated by a linear function (a lump-

sum transfer and a fixed marginal tax/subsidy).
5For the tax schedule to be monotonic, the quality of assets for buyers should be sufficiently increasing

or sufficiently decreasing in the sellers’ opportunity cost.
6I further show that if the planner can use entry tax in addition to sales tax, it is always possible to find

monotonic tax schedules in the price and quality of assets.
7The argument for that is based on a two-type example of Akerlof’s (1970) lemons market, which has

been studied since the early 1970s. A version of a two-type example of a market with adverse selection with

search frictions is studied in Section 4 of Davoodalhosseini (2019).
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from that paper and implies a different allocation and cross-subsidization scheme. In the

present paper, the planner uses taxation to increase liquidity for all assets in the market,

while in that paper, the planner changes the allocation only for lower types. (ii) I extend the

analysis to the cases in which the quality of assets for buyers can be not only monotonic but

also a non-monotonic function of the sellers’ opportunity cost. This important case is not

covered in Davoodalhosseini (2019) nor in Guerrieri et al. (2010), and has new implications.8

In those papers, it has been shown that when the equilibrium is separating, the equilibrium

is dominated by a pooling or semi-pooling allocation in terms of efficiency. I show in this

paper that, in the cases where the equilibrium is pooling—which is the case where the quality

of assets for buyers is a non-monotonic function of the sellers’ opportunity cost—the planner

can design an optimal tax schedule to achieve higher welfare via a separating allocation. In

other words, those papers show that sometimes the laissez-faire equilibrium is separating and

a pooling allocation can improve efficiency, and I show here that sometimes the laissez-faire

equilibrium is pooling and a separating allocation can improve efficiency.

From an applied point of view, this paper is related to Chang (2018) and Guerrieri

and Shimer (2014a), who use similar models. None of them study optimal taxation with

a balanced budget. Guerrieri and Shimer (2014a) study implications of asset subsidy and

asset purchase programs and show that these programs can improve the liquidity of assets.

I study the optimal policy under the frictions of the environment using a budget-balanced

policy. Chang (2018) characterizes equilibrium and shows that if the quality of assets for

buyers is an increasing function of the sellers’ opportunity cost, then there exists a unique,

separating equilibrium. If the quality is not a monotonic function of the opportunity cost,

pooling or semi-pooling equilibrium with ironing or fire sales will arise. My results imply

that there exists a tax schedule that improves welfare relative to the equilibrium and may

even lead to the first-best allocation.

Other papers have used models with search and information frictions to study over-the-

counter markets and to understand the effects of government interventions. For example,

Chiu and Koeppl (2016) study the optimal design of government asset purchase programs

and focus on the announcement effect of such programs. Fuchs and Skrzypacz (2015) also

study the timing of optimal policy, albeit in a model without search frictions, and show that

subsidizing early and taxing later is optimal. Camargo and Lester (2014) show that the

8In Assumption 1(i) of Davoodalhosseini (2019) or Assumption A1 of Guerrieri et al. (2010), the value of

the asset to buyers should be a monotonic function of types.
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effects of government interventions depend on their size and duration.

Philippon and Skreta (2012) study interventions aimed at stabilizing the financial mar-

kets affected by adverse selection. They focus, among other things, on the stigma that

participants in government programs may face, because their participation may reveal in-

formation about their types. Tirole (2012) studies the interventions when the government’s

proposed mechanism affects the set of participants, which affects the market outcome, which

in turn affects the reservation payoff of participants in the mechanism. In short, reservation

payoffs of participants depend on the proposed mechanism itself.9

The paper is organized as follows. I introduce the environment of the model in Section

2 and define the planner’s problem. In Section 3, I characterize the constrained efficient

allocation and compare it with the equilibrium allocation. In Section 4, I study the shape

of the optimal tax schedule along with several examples. I conclude in Section 5. All proofs

appear in the Appendix.

2 Model

I introduce the environment of the model of an asset market with a continuous-type space

first and then define the constrained efficient allocation (i.e., the planner’s problem) for that.

By revelation principle, I show in Lemma 1 that using a direct mechanism is equivalent to

using submarket-specific taxes and subsidies. Therefore, I focus on the direct mechanism

in most of the paper. Next, I characterize the optimal tax schedule that implements the

constrained efficient allocation.

9More broadly, my paper is related to the literature on directed search and on adverse selection. For

a non-exhaustive list of contributions on directed search, see Peters (1991), Moen (1997), Acemoglu and

Shimer (1999), Shi (2001, 2002), Shimer (2005), Mangin and Julien (2017) and Wright et al. (2017) among

many others. For some important contributions on adverse selection, see Rothschild and Stiglitz (1976),

Wilson (1977), Miyazaki (1977), Spence (1978), Holmström and Myerson (1983) and Maskin and Tirole

(1992). Golosov et al. (2013) study optimal taxation in a model of labor market with moral hazard where

the planner cannot see whether the workers have searched or not, or toward which firms if they have.

Davoodalhosseini (2020) studies an asset market with search frictions and adverse selection where some

buyers are more informed than others about the quality of the assets.
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2.1 Environment

There is a continuum of measure one of heterogeneous sellers indexed by z ∈ Z ≡ [zL, zH ] ⊂
R, with F (z) denoting the measure of sellers with types below z. F is continuously dif-

ferentiable and strictly increasing in z, and F ′ is its derivative. Type z is sellers’ private

information and determines the quality of the asset to buyers and the value of the asset to

(or equivalently the liquidity needs of) sellers. Buyers’ and sellers’ payoffs are quasi-linear

in a numeraire good. The payoff of a buyer who enters the market and matches with a type

z is h(z) − p − k, where h(z) denotes the value of the asset to the buyer, p ∈ R denotes

the amount of the numeraire good that he produces and k is the entry cost, all in terms of

the numeraire good. His payoff is −k if unmatched. The payoff of a type z seller matched

with a buyer is p − c(z), where c(z) denotes the value of the asset to the seller and p ∈ R
denotes the amount of the numeraire good that he consumes in terms of the numeraire good.

His payoff is 0 if unmatched. Functions h : Z → R and c : Z → R are twice continuously

differentiable almost everywhere. I assume c is strictly increasing.10 Matching function m(.)

is increasing, strictly concave and twice continuously differentiable.

As a benchmark, I characterize the complete information or first-best (FB) allocation:

UFB(z) = maxθ{m(θ)(h(z)− c(z))− kθ}, and θFB(z) ≡ arg maxθ{m(θ)(h(z)− c(z))− kθ},
so

m′(θFB(z))(h(z)− c(z)) = k, (1)

for both the planner’s problem with complete information and the laissez-faire economy with

complete information. I assume for simplicity that there are positive gains from trade for all

types; i.e., UFB(z) > 0 for all z.

2.2 Constrained Efficient Allocation

I first describe the laissez-faire economy in which the planner imposes no taxation. The

buyers simply post prices and commit to them. Given the distribution of posted prices, the

sellers decide which price (i.e., submarket) they want to visit. When contemplating posting

a price, buyers take into account what type of sellers will be attracted to that submarket and

what the market tightness at that submarket will be. Given the posted prices, the sellers

10One could assume without loss of generality that c(z) = z throughout the paper and no insights would

be lost.
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choose to go to a submarket that maximizes their payoff. Buyers and sellers share the same

beliefs about the market tightness in every submarket.

Now we can define the planner’s problem. The planner uses two types of transfers: t̃(p)

is a sales tax levied on buyers who want to buy at price p, and t̃0 is a lump-sum transfer

paid to sellers. We call {t̃(.), t̃0} a policy.11 Given a policy, buyers and sellers engage in

the same game that they play in the laissez-faire economy. That is, for a given policy,

buyers choose what price they want to post, and given the posted prices, the sellers choose

what submarket they want to visit. I define the implementable allocation first and then the

constrained efficient allocation, i.e., the welfare-maximizing implementable allocation. In

the laissez-faire economy (i.e., under the policy of zero taxes where t̃0 = 0 and t̃(.) = 0), the

definition of implementable allocation reduces to the static version of equilibrium definition

in Chang (2018).

An allocation is a four-tuple {G,P ,Θ, µ} where G(p) denotes the measure of buyers

posting prices below p, and P denotes the support of G, so P encompasses all prices that are

posted—i.e., all submarkets that attract some buyers and some sellers—in the allocation.

Θ denotes the market tightness—i.e., the ratio of buyers to sellers—at every submarket p.

Finally, µ denotes the distribution of types at every price p.

Definition 1. An allocation {G,P ,Θ, µ} is implementable through policy {t̃(.), t̃0} if the

following conditions are satisfied:

(i) Buyers’ profit maximization and free entry

For any p ∈ P,

q(Θ(p))
(∫

h(z)µ(z|p)dz − p− t̃(p)
)
≤ k,

with equality if p ∈ P.

(ii) Sellers’ optimal search

Let U(z) = max

{
0,maxp′∈P

{
m(Θ(p′))(p′− c(z))

}}
+ t̃0 and U(z) = t̃0 if P = ∅. Then, for

any p ∈ P and z, U(z) ≥ m(Θ(p))(p− c(z)) + t̃0 with equality if Θ(p) <∞ and µ(z|p) > 0.

Moreover, if p− c(z) < 0, either Θ(p) =∞ or µ(z|p) = 0.

(iii) Feasibility or market clearing

For all z,
∫
P
µ(z|p)
Θ(p)

dG(p) ≤ F ′(z), with equality if U(z) > t̃0.

11I assume in this paper that there are positive gains from trade for all types, so t̃0 is redundant and set

to 0 because it can be incorporated into t̃(.). I included t̃0 so that the model can be easily used even if there

are no gains from trade for some types so it may be optimal that they do not participate in the market.
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(iv) Planner’s budget-balance condition∫
P
q(Θ(p))t̃(p)dG(p) ≥ t̃0.

This definition describes, for a given policy, what the resulting allocation would be when

agents play their optimal strategies, where the planner is subject to a budget-balance con-

dition. Given a policy {t̃(.), t̃0}, condition (i) states that buyers maximize their profit by

posting a price (i.e., choosing a submarket to enter), and because of the free-entry condition,

they get a zero profit if that price is actually posted in the market. Condition (ii) states that

sellers choose a submarket that maximizes their payoff. To pin down the type of sellers and

the market tightness at each submarket, I impose the same belief restrictions that Guerrieri

et al. (2010) introduce. Since these restrictions have been extensively discussed in other

papers, I do not discuss them here.12 Condition (iii) simply states that the total measure of

each type of sellers allocated to different submarkets should not exceed their measure in the

population. Condition (iv) is simply a budget-balanced condition stating that all payments

to sellers should be financed by the taxes levied on buyers not from external sources.

Definition 2. A constrained efficient allocation is an implementable allocation that maxi-

mizes welfare among all implementable allocations. That is, a constrained efficient allocation

solves the following problem:

max
{G,P,Θ,µ},{t̃(.),t̃0}

∫
U(z)dF (z)

subject to {G,P ,Θ, µ} is implementable through {t̃(.), t̃0},

where U(z) is defined in part (ii) of Definition 1.

Using the revelation principle, we can assume without loss of generality that sellers are

allocated to different submarkets through a direct mechanism. Let {θ(.), p(.), t(.), t0} be a

direct mechanism. In a direct mechanism, the planner allocates each seller a market tightness,

θ : Z → R+, and a transfer conditional on finding a match, p : Z → R, depending on the

seller’s self-reported type, and an unconditional transfer, t0 ∈ R+. Also, the planner charges

each buyer who is matched t : Z → R units of the numeraire good based on the type of the

12Guerrieri et al. (2010) elaborate on these restrictions and Chang (2018) uses them too. The Appendix

of Davoodalhosseini (2019) includes the rationales behind these restrictions.
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seller that the buyer is matched with.13 A feasible mechanism and an optimal mechanism,

which are counterparts of these definitions in the discrete-type space (Definitions 1 and 2 in

Davoodalhosseini (2019)) are defined below.

Definition 3. A feasible mechanism is a set {(θ(.), p(.), t(.), t0)} such that the following

conditions hold:

(i)Incentive compatibility of sellers: For all z and ẑ,

U(z) ≡ m(θ(z))(p(z)− c(z)) + t0 ≥ U(z, ẑ) ≡ m(θ(ẑ))(p(ẑ)− c(z)) + t0.

(ii) Participation constraint of sellers: For all z,

U(z) ≥ 0.

(iii) Buyers’ zero profit condition: For all z,

q(θ(z))(h(z)− p(z)− t(z))− k = 0.

(iv) Planner’s budget-balance condition∫
m(θ(z))t(z)dF (z) ≥ t0.

Definition 4. An optimal mechanism is a feasible mechanism that maximizes welfare among

all feasible mechanisms.

The lemma below states that we can use direct mechanisms without loss of generality.

That is, we can characterize the optimal mechanism first, then find a policy and an allocation,

which is implementable through that policy, in which all sellers receive the same payoff as

in the direct mechanism.

Lemma 1. Assume c′(z) > 0 for all z. Take any feasible mechanism in which all types

receive a strictly positive payoff. Then there exists an associated implementable allocation

under which all types receive exactly the same payoff as in the direct mechanism.

Elements of the first-best, constrained efficient and equilibrium allocations are denoted,

respectively, by superscript FB, CE and EQ.

13Notation-wise, when variable p is used as a function, the price function in a direct mechanism is con-

cerned, but if it is used independently, an individual price in the market is concerned. Also, whenever˜ is

used for a variable, it indicates that an allocation, not a direct mechanism, is concerned.
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3 Characterization

To characterize the planner’s problem, as common in the mechanism design literature, I first

replace the incentive compatibility constraint of sellers by other constraints—a monotonicity

constraint and an envelope condition. Next, I use buyers’ profit maximization together with

the budget-balance condition to obtain a simpler problem for characterization of the optimal

mechanism. As mentioned earlier, we assume t0 = 0.14

In a direct mechanism, if a type z seller reports ẑ, their payoff is given by:

U(z, ẑ) ≡ {m(θ(ẑ))(p(ẑ)− c(z))}.

Therefore, the payoff to type z is given by:

U(z) = max
ẑ
U(z, ẑ). (2)

The incentive compatibility (IC) constraint implies that ẑ = z.

Furthermore, t(z) can be substituted from part (iii) of Definition 3 into the budget-

balance condition. The planner’s problem then turns into:

Problem 1.

max
θ(z),p(z)

∫ [
m(θ(z))(h(z)− c(z))− kθ(z)

]
dF (z)

subject to: z ∈ arg max
ẑ
U(z, ẑ) (Incentive Compatibility or IC),

U(z) ≥ 0 (Participation Constraint or PC),∫ [
m(θ(z))(h(z)− p(z))− kθ(z)

]
dF (z) = 0 (Budget Balance or BB).

This problem states that, to obtain an optimal mechanism, the planner maximizes the

total surplus created in this economy subject to IC, PC and BB. No transfers appear in

the objective function, because agents have quasi-linear preferences, so the transfers are

immaterial for the planner. I have also assumed that all types participate in the mechanism.

This will be verified in the proofs. Finally, the planner does not want to keep any resources

because distributing any remaining resources equally across all sellers can increase welfare,

so the planner’s budget-balance condition has been written with equality.

14This is without loss of generality if all types are active—i.e., θ(z) > 0—because then p(z) can be changed

to p(z) + t0
m(θ(z)) . It can be easily verified that all types should be active under the requirements of Theorem

1.
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Lemma 2 (Necessary and sufficient condition for incentive compatibility). Assume c′(.) > 0.

(i) Take any mechanism {(θ(z), ., ., .)} that satisfies IC. If θ(z) is a piecewise C1 (contin-

uous) function, then
dθ(z)

dz
≤ 0 (3)

wherever θ(z) is differentiable at z.

(ii) Consider any piecewise C1 function θ(z) satisfying dθ(z)
dz
≤ 0. Then there exists transfer

schedules p(.) such that the mechanism {(θ(z), p(.), ., .)} satisfies IC.

(iii) If mechanism {(θ(z), ., ., .)} satisfies IC, then

U(z) = U(zH) +

∫ zH

z

m(θ(z0))c′(z0)dz0. (4)

This lemma states that in any direct mechanism that satisfies IC, higher types should

be matched with a lower probability. Furthermore, with a decreasing schedule for market

tightness, it is possible to find a transfer schedule that, together with the schedule for market

tightness, forms an IC direct mechanism. Finally, (4) is simply the integral form of the

envelope condition applied to (2).

From IC, U(z) = m(θ(z))(p(z) − c(z)) for all z. I substitute U(.) from (4) into U(z) =

m(θ(z))(p(z)− c(z)) to derive the transfer function:

p(z) = c(z) +
U(zH) +

∫ zH
z

m(θ(z0))c′(z0)dz0

m(θ(z))
. (5)

Given that the planner’s BB holds with equality, the budget-balance condition can be used

to derive U(zH):

U(zH) =

∫ [
m(θ(z))

(
h(z)− c(z)− c′(z)

F (z)

F ′(z)

)
− kθ(z)

]
F ′(z)dz (6)

See the Appendix for derivation. The integral in (6) indicates the number of resources left

for the highest type. According to (4) and because c′(.) > 0, if U(zH) ≥ 0, then U(z) ≥ 0

for all z. Hence, if the expression in (6) is positive, BB and PC constraints of all types will

be satisfied. Altogether, the planner’s problem can now be written only in terms of θ(z):

Problem 2.

max
θ(z)

∫ [
m(θ(z))[h(z)− c(z)]− kθ(z)

]
F ′(z)dz

subject to
dθ(z)

dz
≤ 0 (monotonicity constraint or MC) and U(zH) ≥ 0.
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Then, p(z) will be automatically given by (5) and t(z) will be given by buyers’ zero profit

condition.

In the main results of the paper, we derive sufficient conditions under which the planner

achieves the first-best and then compare the equilibrium allocation with the constrained

efficient allocation. Before presenting the main results, I first characterize the equilibrium

allocation briefly to make the comparison easier.

3.1 Equilibrium

As mentioned earlier, the environment here is basically the static version of Chang (2018),

so I take the characterization of equilibrium from her paper.

Proposition 1 (Equivalent to Proposition 1 in Chang (2018)). Suppose c′(z) > 0, h′(z) > 0

and UFB(z) > 0 for all z. Given the policy of zero taxes (the laissez-faire economy), a

unique implementable allocation (equilibrium) exists. The equilibrium is separating. The

market tightness solves the differential equation (8). The initial condition and prices are

given by θEQ(zL) = θFB(zL) and pEQ(z) = h(z)− k
q(θEQ(z))

.

The IC constraints faced by agents in the laissez-faire economy are the same as those

faced by the planner; therefore, (2) can be used to describe IC constraints in equilibrium too.

However, the number of transfers that each type receives is different in equilibrium than the

constrained efficient allocation, because they are pinned down by the free-entry condition

absent of any cross-subsidization.

Following Guerrieri et al. (2010), Chang shows that the equilibrium under the assump-

tions c′(.) > 0 and h′(.) > 0 is separating, so free entry implies that pEQ(z) = h(z)− k
q(θEQ(z))

for all z. Therefore, the payoff to type z in the laissez-faire economy, denoted by UEQ(z), is

calculated as follows:

UEQ(z) = max
ẑ
{m(θEQ(ẑ))(p(ẑ)− c(z))} = max

ẑ
{m(θEQ(ẑ))(h(ẑ)− c(z))− kθEQ(ẑ)}, (7)

where the objective function is the payoff to type z if he reports type ẑ. FOC with respect

to ẑ, together with the assumption of differentiability of θ(z) almost everywhere, yields[
m′(θEQ(z))(h(z)− c(z))− k

] dθEQ(z)

dz
+m(θEQ(z))h′(z) = 0, (8)

where I used the fact that at the solution, ẑ = z because of IC. With respect to the initial

condition, roughly speaking, the market delivers the complete information payoff to the type

12



Condition Necessary condition for IC Initial conditions

0 < c′(z) and 0 < h′(z) dθ
dz
≤ 0 θ(zL) = θFB(zL)

0 < c′(z) and 0 > h′(z) dθ
dz
≤ 0 θ(zH) = θFB(zH)

0 > c′(z) and 0 < h′(z) dθ
dz
≥ 0 θ(zL) = θFB(zL)

0 > c′(z) and 0 > h′(z) dθ
dz
≥ 0 θ(zH) = θFB(zH)

Table 1: Equilibrium allocation in different cases

that has the most incentive to deviate. For example, when h′ > 0, the lowest type has

the most incentive to deviate, so the market tightness for this type is set to the complete

information level; i.e., θEQ(zL) = θFB(zL).

The necessary condition for IC and the initial conditions for the differential equation are

depicted in Table 1 under different assumptions. I maintain the assumption that c′ > 0. All

results can be obtained similarly if c′ < 0. Also note that Chang has not analyzed the case

where buyers and sellers rank the assets in the opposite order (c′ > 0 and h′ < 0).15

For example and for future reference, if c′ > 0 and h′ > 0, the differential equation implies

that m′(h− c)− k is positive. Therefore, θ is distorted downward relative to the first-best.

That is:

c′ > 0 and h′ > 0⇒ θEQ(z) < θFB(z) for all z ∈ (zL, zH ].16 (9)

Let’s focus on the case with c′ > 0. Table 1 has two messages. First, the probability

of trade for high-type sellers is lower than low-type sellers, so that sellers with a low type,

who value the asset less or are more willing to sell, do not want to pretend to be a high

type. In both cases, low-type sellers want to get rid of their assets so they prefer a higher

probability of match (i.e., lower wait) to a higher price. Second, under- or over-participation

of buyers happens in equilibrium depending on whether buyers and sellers rank the assets in

an identical or opposite order, respectively. When h is increasing, those sellers with higher-

quality assets value their assets more. The participation of buyers is less than that in the

first-best (under-participation) so that IC and free-entry conditions are both satisfied. When

15If the value of assets to buyers is an increasing (decreasing) function of the sellers’ opportunity cost,

then we say that the buyers’ and sellers’ ranking of the assets are identical (opposite). Hence, the rankings

are identical if c′ and h′ are both positive, and are opposite if c′ is positive but h′ is negative. If the value

of assets to buyers is not a monotonic function of the sellers’ opportunity cost, then we say that the buyers’

and sellers’ rankings of the assets are different.
16With a similar argument, we can write: c′ > 0 and h′ < 0⇒ θEQ(z) > θFB(z) for all z ∈ [zL, zH).
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h is decreasing, those sellers with higher-quality assets value their assets less. In this case,

the participation of buyers is more than that in the first-best (over-participation).

3.2 Constrained Efficiency

To solve the planner’s problem, I use a somewhat backward approach. I first guess that the

planner can achieve the first-best. That is, the planner can maximize his objective function

for each type separately without worrying about the IC constraints. I then find a set of

transfers and taxes, p(z) and t(z), such that the sellers’ maximization condition and buyers’

zero profit condition are satisfied. Finally, I derive sufficient conditions under which the

planner’s budget-balance condition is satisfied. Define H0(z) ≡
∫ z
zL
m(θFB(ẑ))h′(ẑ)dẑ.17

Theorem 1. Suppose c′(z) > 0 and UFB(z) > 0 for all z.

(i) Suppose h′(z) ≤ 0 for all z, then the planner achieves the first-best.

(ii) Suppose h′(z) ≤ c′(z) for all z. The planner achieves the first-best if and only if

H̄0 ≡
∫
H0(z)dF (z) ≥

∫
m(θFB(z))c′(z)dz − UFB(zL). (10)

In Theorem 1 the planner achieves the first-best. That is, θCE(z) is given by:

θCE(z) = θFB(z) for all z,

pCE(z) and UCE(zH) are given by (5) and (6) with θ(z) being replaced by θCE(z), and

tCE(z) = h(z)− pCE(z)− k

q(θCE(z))
for all z. (11)

Some comments are in order regarding this result. First, technically speaking, part (i) of

the proposition is redundant, as it is implied by part (ii). This is because if h′(z) ≤ 0, then

both h′(z) ≤ c′(z) and (10) are satisfied. I included part (i) to have a clear characterization.

Second, the right-hand side (RHS) of condition (10) is independent of the distribution of

types. Therefore, the average cost to the sellers (or any other moment of the cost distribution)

17Theorem 1 is an extension of Theorem 3 in Davoodalhosseini (2019) to an environment with a continuous-

type space. Theorem 2 is an extended and modified version of Theorems 1 and 2 in Davoodalhosseini (2019).

Proposition 2 is an extension of Theorem 4 in Davoodalhosseini (2019). The proof techniques are different,

though, because the type space is continuous here in contrast to the discrete-type space in that paper. Even

the idea of some proofs is different, as explained in the text.
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is irrelevant as long as the average value of H0, which I call effective value, over the population

is sufficiently high. Third, (10) is equivalent to∫ [
m(θFB(z))

(
h(z)− c(z)− c′(z)

F (z)

F ′(z)

)
− kθFB(z)

]
F ′(z)dz ≥ 0, (12)

or ∫ (h(z)− c(z)

c′(z)
η(θFB(z))− F (z)

F ′(z)

)
m(θFB(z))c′(z)F ′(z)dz ≥ 0,

where η(θ) ≡ − θq′(θ)
q(θ)

. See the derivation in the proof of Theorem 1(ii) in the Appendix. For

the latter inequality to hold, it is sufficient for the terms inside the brackets to be positive

for all z. That is, if h′(.) ≤ c′(.), then (h(.)− c(.))η(θFB(.))/c′(.) ≥ F (.)/F ′(.) is a sufficient

condition for the planner to achieve the first-best regardless of whether h is monotone or

not. This condition is easy to verify in applications.

Given the formulation of the planner’s problem in Problem 2, the proof is simple. In

either case of h′(.) ≤ 0 or h′(.) ≤ c′(.), θFB(z) ≡ m′−1( k
h(z)−c(z)) is decreasing in z, so the first

constraint in Problem 2 is satisfied. For the second constraint, I show that if h′(.) ≤ 0, then

the planner has enough resources to distribute among agents regardless of the distribution;

i.e., U(zH) ≥ 0 is not binding. If h′(z) ≤ 0 does not hold for some z, as long as h′(z)−c′(z) ≤ 0

for all z, I show in the proof that (10) is equivalent to U(zH) ≥ 0.

Intuitively, efficiency requires that the planner allocates fewer buyers (i.e., a lower θ)

to the sellers with assets with a lower surplus (i.e., sellers with a lower h − c). Incentive

compatibility requires that the planner allocates fewer buyers to the sellers with a higher

opportunity cost (i.e., sellers with a higher c). This is because the sellers with a lower

opportunity cost are willing to trade faster, so it is more costly for them to wait relative to

sellers with a higher opportunity cost. When h − c and c move in the opposite directions,

the planner can achieve both objectives of efficiency and satisfying incentive compatibility.

Notice that so far the value of the asset to the buyers (i.e., h) has not been discussed in the

planner’s motives, apart from h − c, so where does (10) come from? The above intuition

suggests that the planner can find a schedule for θ to achieve both efficiency and IC. However,

any allocation requires payments to support a given IC scheme. (10) requires that the average

effective value of the asset to buyers should be sufficiently high that buyers are willing to

participate and pay enough taxes to satisfy the planner’s BB constraint.
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3.3 Constrained Efficiency Versus Equilibrium

In this section I compare the constrained efficient and constrained Pareto efficient allocations

with the equilibrium allocation. An allocation is constrained Pareto efficient if there does

not exist another allocation that is implementable and gives all sellers a weakly higher

payoff and a strictly positive measure of sellers a strictly higher payoff. Define H1(z) ≡
−
∫ zH
z

m(θFB(ẑ))h′(ẑ)dẑ.

Theorem 2. Suppose c′(z) > 0 and UFB(z) > 0 for all z.

(i) Suppose h′(z) ≤ 0, then the welfare level in the constrained efficient allocation is

strictly higher than that in equilibrium. Also, if

H̄1 ≡
∫
H1(z)dF (z) ≥

∫
(m(θEQ(z))−m(θFB(z)))c′(z)dz, (13)

then the constrained efficient allocation Pareto dominates the equilibrium allocation.

(ii) Suppose 0 < h′(z). Then the welfare level in the constrained efficient allocation is

strictly higher than that in equilibrium.

(iii) Suppose 0 ≤ h′(z) ≤ c′(z) and

H̄0 ≥
∫

(m(θFB(z))−m(θEQ(z)))c′(z)dz, (14)

then the constrained efficient allocation Pareto dominates the equilibrium allocation.

Remember from Theorem 1 that when h is decreasing, the planner can achieve the first-

best. The equilibrium, on the other hand, does not achieve the first-best because the market

tightness is distorted relative to the first-best, as discussed in Section 3.1. Therefore, when

h is decreasing, the equilibrium is never constrained efficient. Part (i) of this theorem

gives us an even stronger result. It also establishes conditions under which equilibrium is

not constrained Pareto efficient or, more precisely, conditions under which the constrained

efficient allocation Pareto dominates the equilibrium allocation.

Part (ii) establishes the constrained inefficiency of equilibrium when h is increasing (even

if (10) does not hold, in which case the planner does not achieve the first-best). This result

is an extension of Theorem 1 in Davoodalhosseini (2019), although the proof is different

because the construction method in that paper relies on the discrete-type space assumption

and cannot be replicated here. The proof can be summarized below. In the equilibrium,

the market tightness is distorted downward relative to the first-best allocation. In order to

increase welfare, the planner allocates to all sellers a slightly higher market tightness, so
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Figure 1: Schematic diagram demonstrating the construction of a better allocation with market tightness

θB than equilibrium allocation under requirements of Theorem 2(ii).

that they can trade with a higher probability. Therefore, the aggregate surplus increases as

more trades happen in the economy. The challenge here is that the market tightness should

continue to be decreasing such that the IC continues to hold. In order to construct a market

tightness function that satisfies IC, I first find the greatest weakly decreasing function that

does not exceed θFB(.) and call it θD(.). See Figure 1. I then use a linear combination

of θD(.) and θEQ(.) to obtain a decreasing market tightness function θB(.).18 If θB(.) is

sufficiently close to θEQ(.), then the change in the sellers’ payoffs is small enough that the

sellers continue to receive a payoff greater than zero.

Regarding part (iii), notice that if 0 ≤ h′(z) ≤ c′(z) and (14) both hold, then (10) holds,

too. Therefore, the planner achieves the first-best according to Theorem 1(ii). I show in the

proof that all sellers are better off in the constrained efficient allocation (where they trade

with the first-best level of market tightness) relative to the equilibrium.

In Figure 2, the sellers’ payoffs in different allocations are illustrated. The slopes of payoff

functions in the constrained efficient allocation and equilibrium are equal to m(θFB(z))c′(z)

and m(θEQ(z))c′(z), respectively. The market tightness in the equilibrium is distorted

downward—i.e., θEQ(.) ≤ θCE(.) ≡ θFB(z) by (8)—so UCE(z) is steeper than UEQ(z). As

a result, in order for the constrained efficient allocation to Pareto dominate the equilibrium

18Since I have not imposed any assumption on h − c, the market tightness at the first-best level can be

non-monotone; therefore, we cannot just use a linear combination of θFB(.) and θEQ(.) as a proposal for

increasing welfare.
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Figure 2: Schematic diagram for sellers’ payoffs in different allocations under requirements of Theorem 2

(iii).

allocation, the necessary and sufficient condition is that the payoff to the highest type should

be weakly higher in the former than the latter. That is, UCE(zH) ≥ UEQ(zH). It is easy to

see that (14) is equivalent to this condition after some manipulation. (13) can be explained

in a similar manner.

Finally, notice that (13) and (14) have been stated in terms of θEQ(.), for which the

closed-form solution is not generally available, as it is described by (8). However, they are

easy to check numerically. In Example 3, I assume identical gains from trade for all types,

solve for θEQ(.) and give explicit conditions equivalent to (14) as well as (10). Similarly, in

Example 4 in the Appendix, I adopt a specific matching function, solve for θEQ(.) and give

explicit conditions equivalent to (13) and (14).

3.4 What If the First-Best Cannot Be Achieved?

In the next proposition, I keep the assumptions that c′(.) > 0 and h′(.) − c′(.) ≤ 0, but I

assume that the distribution of types is such that the planner cannot achieve the first-best.

Therefore, the probability of matching should be distorted.

Proposition 2. Assume c′(z) > 0, h′(z)− c′(z) ≤ 0, and

m′(0)

[
h(z)− c(z)− c′(z)

F (z)

F ′(z)

]
> k, (15)

d

dz

[
h(z)− c(z)− c′(z)

F (z)

F ′(z)

]
≤ 0, (16)
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for all z. Then there exists a unique µ ≥ 0 such that the market tightness for the constrained

efficient allocation, θCE(.), solves the following equations:

m′(θCE(z))

[
h(z)− c(z)− µ

1 + µ
c′(z)

F (z)

F ′(z)

]
= k, (17)

U(zH) =

∫ [
m(θCE(z))

[
h(z)− c(z)− c′(z)

F (z)

F ′(z)

]
− kθCE(z)

]
F ′(z)dz ≥ 0 with equality if µ > 0.

Moreover, pCE(z) and tCE(z) are given by (5) and (11).

Following Theorem 1(ii), it was shown that a sufficient condition to achieve the first-best

is that m(θ(z))[h(z) − c(z) − c′(z) F (z)
F ′(z)

] − kθ(z) is positive for all z. However, if that is

negative for some types, or more generally if (10) is not satisfied, then Proposition 2 would

be useful. It provides sufficient conditions for solving the planner’s problem even if the first-

best cannot be achieved. It requires that h(z) − c(z) − c′(z) F (z)
F ′(z)

, called virtual surplus, be

positive and decreasing in z for all z. Chang (2018) shows that if h(.) is not monotone, it is

not possible for the market to separate types. However, this proposition states that, under

its requirements, even if h is not monotone, the planner still wants to separate different

types.19

If h is monotone but under other conditions (as in Example 3), the equilibrium is sep-

arating but the constrained efficient allocation is not. It is true that there is some cross-

subsidization in the pooling allocation, which improves efficiency, but different types are

allocated to the same θ, which hinders efficiency. Because of this trade-off, drawing con-

clusions about efficiency of an allocation by simply considering whether it is pooling or

separating is misleading in a general case with more than two types.

If the expression in brackets in (17) is decreasing in z, even if h−c is not, then Proposition

2 can be used. If that expression is not decreasing for some z, then we need to solve Problem

2 in a general form, which will lead to pooling of some types. This is despite the fact that if

h is increasing, the market separates the types completely. For the sake of brevity, I delegate

this part to the Appendix.

19Chang (2018) extends her analysis to allow for two-dimensional private information. See also Guerrieri

and Shimer (2014b) for a closely related model. Following this extension, function h may have a strict local

maximum and, therefore, full separation of types in the market is not possible (Proposition 4 in Chang

(2018)). With a non-monotone h, I effectively capture the two-dimensional model in terms of equilibrium

and efficiency properties.
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4 Optimal Taxation

In this section I study the optimal tax schedule first and then present several examples.

The following proposition states that when the buyers’ and sellers’ rankings are identical

or opposite, the low-quality assets should be subsidized and the high-quality assets should

be taxed.

Proposition 3 (Single-crossing property of sales tax schedule). Assume 0 < c′(.). Also

assume (i) h′(z) ≤ 0 for all z, or (ii) both (10) and 0 ≤ h′(z) ≤ c′(z) for all z hold. Then

dtCE

dz
= h′(z) +

(m′(θFB(z)))2

m(θFB(z))m′′(θFB(z))

tCE(z)

h(z)− c(z)
(h′(z)− c′(z)). (18)

Under case (i), there is a unique ẑ ∈ (zL, zH) where t(ẑ) = 0, t(z) > 0 for z < ẑ and

t(z) < 0 for z > ẑ. Similarly, under case (ii), there is a unique ẑ ∈ (zL, zH) where t(ẑ) = 0,

t(z) < 0 for z < ẑ and t(z) > 0 for z > ẑ.

Guerrieri et al. (2010) study the laissez-faire equilibrium of a similar example with only

two types, which is an extension of the Akerlof (1970) lemons market to an environment

with search frictions. Davoodalhosseini (2019) conducts welfare analysis for that example

where the buyers’ and sellers’ rankings are identical and obtains the same result. Proposi-

tion 3 extends the intuition obtained from that simple example to environments (i) with a

continuous-type space, and (ii) where the buyers’ and sellers’ rankings of assets are opposite.

The intuition can be summarized below for the two-type example for the case where the

rankings are identical. (The intuition is similar if the rankings are opposite.) In the laissez-

faire equilibrium, there are two submarkets: a low-price one where low-quality assets are

sold with a high probability, and a high-price one where the high-quality assets are sold with

a low probability. The participation of buyers in the high-price submarket is endogenously

limited so that the low-quality sellers do not want to go to that submarket. The planner

subsidizes trade in the low-price submarket and taxes trade in the high-price submarket to

discourage low-quality sellers from going to the high-price submarket. As a result, more

buyers can enter the high-price submarket to trade with previously unmatched high-quality

sellers.

I show in the following lemma that even if the buyers’ and sellers’ rankings are identical

or opposite, still the tax schedule may not be monotone in the price or quality of assets.20

20By monotonicity of taxes I refer only to the taxes levied on on-the-equilibrium-path prices. For other

prices (i.e., those prices that the planner does not want posted), the taxes should be prohibitively high.
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This result is novel and cannot be obtained in a simple two-type example.

Lemma 3 (Conditions for non-monotonicity of sales tax schedule). Assume 0 < c′(.).

[Identical rankings] Assume h′(.) ≤ 0. If h′(zL) = 0 and h′(.) < 0 for a strictly positive

measure of sellers, then the optimal sales tax schedule is not monotone in the price of assets.

Specifically, dtCE(p)
dp
|p=pCE(zL) > 0 and dtCE(p)

dp
|p=pCE(z0) < 0 for some z0 ∈ (zL, zH ].

[Opposite rankings] Assume 0 ≤ h′(.) < c′(.) and (10) hold. If h′(zL) = 0 and 0 < h′(.)

for a strictly positive measure of sellers, then the optimal sales tax schedule is not monotone

in the price of assets. Specifically, dtCE(p)
dp
|p=pCE(zL) < 0 and dtCE(p)

dp
|p=pCE(z0) > 0 for some

z0 ∈ (zL, zH ].

This lemma states that the level of trading tax is not necessarily monotone in the quality

of the assets. For example, for the case where buyers’ and sellers’ rankings are opposite,

if the slope of value of the asset to buyers is zero at zL, then the tax schedule becomes

decreasing around zL. That is, when the quality of assets are low, as the quality increases,

the trading of those assets is subsidized even more.

Changes in tCE(z) are influenced not only by changes in h(z) but also by another term

that has the same sign as tCE(z). Therefore, when the first term above is sufficiently small,

the second term may dominate the first term and tCE(z) may become decreasing. More

intuitively, the free-entry condition can be written as follows, if the constrained efficient

allocation is separating:

tCE(z) = h(z)− k

q(θCE(z))︸ ︷︷ ︸
decreasing

− pCE(z)︸ ︷︷ ︸
increasing

.

The term k
q(θCE(z))

is decreasing in z because θCE(z) is decreasing in z. Also, pCE(.) is

increasing, as higher-type sellers should be compensated for selling with a lower probabil-

ity (formally proved in Lemma 4 in the Appendix). Hence, tCE(z) may not be generally

monotone in z. Put differently, efficiency is a force to make the tax schedule increasing and

incentive compatibility is a force to make the tax schedule decreasing. The following propo-

sition introduces conditions under which the optimal tax schedule is monotone. Intuitively,

it states that if h changes sufficiently fast, then changes in h dominate the effects of the two

forces above.

Proposition 4 (Conditions for monotonicity of sales tax schedule). Assume 0 < c′(.).
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Case (i): Suppose h′(z) ≤ 0 for all z and

h′(z) ≤
(
− m′2(θFB(z))

m(θFB(z))m′′(θFB(z))

)
h′(z)− c′(z)

h(z)− c(z)
tL for all z.

Case (ii): Suppose (10), 0 ≤ h′(z) ≤ c′(z) for all z and

h′(z) ≥
(
− m′2(θFB(z))

m(θFB(z))m′′(θFB(z))

)
h′(z)− c′(z)

h(z)− c(z)
tL for all z (19)

all hold.

In both cases, tL is defined:

tL ≡ tCE(zL) = h(zL)− c(zL)− k

q(θCE(zL))
−
U(zH) +

∫ zH
zL

m(θCE(z0))c′(z0)dz0

m(θCE(zL))
.

Under case (i) (case (ii)), tCE is a weakly decreasing (increasing) function of z.

Cases (i) and (ii) are similar, so I focus on case (ii). Condition (19) states that h should

be sufficiently increasing so that the taxation schedule becomes increasing. The distribution

matters only through tL, where tL is affected by that only through U(zH). The rest is

independent of the distribution, making this condition easy to verify in applications. One

special case, studied in Example 3 below, is where the gains from trade in the match, h− c,
are constant and independent of z. In this case, the condition is trivially satisfied because

its RHS is zero.

4.1 Examples of Optimal Taxation

Three examples are presented in this section to compare the first-best, equilibrium and

constrained efficient allocations, to identify the types that should be taxed and the types

that should be subsidized, and to examine whether or not taxes are monotone in the type

of sellers or in the price of assets.

Example 1. Model parameters: m(θ) = 1−e−θ, Z = [1, 2], c(z) = z, h(z) = 0.5(z−1)2+4,

k = 1.85, and F (.) is uniform.

Here, c′ > 0, h′ ≥ 0 and h′ − c′ ≤ 0. It is easy to check that Theorem 1(ii) applies, so

the market tightness for the constrained efficient allocation is given by θCE(z) = θFB(z) =

m′−1( k
h(z)−c(z)) = ln(h(z)−c(z)

k
), and pCE(z) and tCE(z) are given by (5) (in which θ is replaced

by θCE) and (11). The net payment that buyers make in the constrained efficient allocation,
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pCE(z)+tCE(z), is equal to pFB(z) ≡ h(z)− k
q(θFB(z))

, the price that buyers pay in the market

with complete information. For the equilibrium allocation, θEQ(z) is given by (8):

[
exp(−θEQ(z))(h(z)− c(z))− k

] dθEQ(z)

dz
+ (1− exp(−θEQ(z)))h′(z) = 0,

with the initial condition θEQ(1) = θFB(1) and θEQ(z) being decreasing in z. The price that

buyers pay in equilibrium is pEQ(z) = h(z)− k
q(θEQ(z))

.

Figure 3 illustrates the first-best, equilibrium and constrained efficient allocations for

Example 1. Here, θEQ(.) ≤ θFB(.). Market tightness is the tool that buyers in the laissez-

faire economy use to screen high-type sellers. Low-type sellers prefer to sell their assets more

quickly, because they do not want to be left with their “lemons.” Consequently, pEQ(z) is

generally greater than pFB(z) ≡ h(z) − k
q(θFB(z)

. Also, pCE(.) is higher for lower types and

lower for higher types compared with pFB(.). Since the market tightness is the same in the

first-best and constrained efficient allocations, the net price that buyers should pay is the

same in both cases so that buyers’ zero profit condition is satisfied. The amount of tax that

buyers should pay, tCE(.), is simply equal to the difference, pFB(.)− pCE(.).

Next, I study an example in which h is not monotone and, therefore, separation of types

in equilibrium is not possible, as explained in the last section.

Example 2. Model parameters: m(θ) = 1−e−θ, Z = [0, 2], c(z) = z, h(z) = 0.5(z−1)2+4,

k = 1.85, and F (.) is uniform.

Theorem 1(ii) applies, so the market tightness at the constrained efficient allocation is

similarly given by θCE(z) = θFB(z) = m′−1(h(z)−c(z)
k

) = ln(h(z)−c(z)
k

). According to Proposi-

tion 3 in Chang (2018), I construct one semi-pooling equilibrium in which types z ∈ [0, 1)

trade in a pool with a low price but with high probability. Types z ∈ (1, 2] trade in sep-

arating submarkets. Type z = 1 is indifferent between the pool and one of the separating

submarkets. This equilibrium can be called a fire-sale equilibrium in that many sellers sell

their assets in a pool with a low price but very quickly. Some sellers in the pool have

low-quality assets (i.e., sellers with z close to 1) and some of them have high-quality assets

but are in need of liquidity (i.e., sellers with z close to 0). Prices and taxes are calculated

similarly as in Example 1.

Figure 4 is similar to Figure 3 for parameters in Example 2. Market tightness in the

constrained efficient allocation is the same as that in the first-best. Market tightness in

equilibrium is higher than that in the first-best for most types in the pool. In Figure 5, the
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payoff to sellers of different assets is depicted for both Examples 1 and 2. In the left (right)

graph of Figure 6, tCE(z) is drawn in terms of z (in terms of pCE(z)). An interesting fact

here is that in both examples—even in Example 1, in which buyers’ and sellers’ rankings of

assets are identical, as h and c are both increasing—the amount of tax levied on buyers is

neither monotone in the type of sellers that buyers meet, nor in the price paid to the sellers.

Furthermore, in Example 1, since the rankings are identical, all low-quality assets are

subsidized and high-quality assets are taxed although the tax schedule is not monotone. In

contrast, in Example 2, the assets in the middle are subsidized although they are not the

lowest-quality ones. (Note the asymmetry of the tax schedule around z = 1 in Example 2.)

For example, the z = 0.4 assets are subsidized but the z = 1.6 assets are taxed although

their quality is identical. In terms of surplus, the z = 1.8 assets (with a lower surplus) are

taxed while the z = 1 assets (with a higher surplus) are subsidized.

Example 3. Special case: h(z) = c(z) + x, x > 0. Since the gains from trade, x, are

fixed, θFB(z) = m′−1(k/x) does not depend on z. Denote θ̄FB ≡ m′−1(k/x) and ŪFB ≡
m(θ̄FB)x− kθ̄FB. Assume ŪFB > 0. The equilibrium market tightness is given by:∫ θEQ(zL)

θ̄FB

m′(θ)x− k
m(θ)

dθ = c(z)− c(zL). (20)

I show that if x is sufficiently high and m has a decreasing elasticity (which is correct for

most applications), then the planner can achieve the first-best regardless of the distribution

of types. If the distribution satisfies the following:∫ zH

zL

m(θEQ(z))

m(θ̄FB)
c′(z)dz ≥

∫ zH

zL

F (z)c′(z)dz, (21)

then the constrained efficient allocation Pareto dominates the equilibrium allocation. The

proofs are shown in the Appendix.

It is easy to see that U(z) = ŪFB − m(θ̄FB)
∫ zH
zL

F (z)c′(z)dz, and p(z) = ŪFB

m(θ̄FB)
+∫ zH

zL
c(z)F ′(z)dz ≡ p̄. Notice that p(z) is not a function of z. This is natural because the

market tightness for all types is identical in the first-best allocation since all types produce

identical surplus. A way that the planner can implement this direct mechanism is to have a

pool with price p̄ composed of all sellers without any explicit tax (and arbitrarily large taxes

on other prices with which the planner does not want agents to trade). The buyers enter

the pool until the market tightness becomes equal to θFB, at which point the buyers’ zero

profit condition is also satisfied.
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4.2 Sales Tax and Entry Tax

Implementation of a non-monotone tax schedule is difficult in practice, as it requires the

planner to have precise information about the distribution of types. Although it is usually

assumed in the literature, including in this paper, that the planner has such information,

one ideally wants to reduce the dependence of what the planner should do on the details of

the environment.

Entry tax is introduced in this subsection, so buyers will be subject to two types of taxes:

sales tax, which is conditional on trade as before, and entry tax, denoted by t̃e(p), which is a

sales tax levied on buyers who want to buy at price p regardless of whether they trade. The

definition of implementable allocation should be slightly modified to include both types of

taxes. See Definition 5 in the Appendix for the details. I show in the following proposition

that any feasible mechanism can be implemented by using a decreasing entry tax and an

increasing sales tax in the price of assets.21

Proposition 5 (Implementation of the direct mechanism with monotone entry and sales

tax schedules). Take any feasible mechanism in which all types receive a strictly positive

payoff, and in which the market tightness allocated to different types is all different. Then,

there exists an associated implementable allocation with monotone tax schedules in the price

of assets, decreasing entry tax and increasing sales tax, such that all types receive the same

payoff as their payoff in the feasible mechanism.

In the language of direct mechanisms, to design a monotone tCE(z), we add an entry

tax, te
CE(z), for each submarket so the free-entry condition can be written as tCE(z) =

h(z) − k+teCE(z)
q(θ(z))

− pCE(z). If te
CE(z) is constructed to be decreasing sufficiently fast in z,

then the effect of k+teCE(z)
q(θ(z))

dominates the effect of pCE(z), and tCE(z) becomes increasing in

z. The following corollary is implied directly by Proposition 5.

Corollary 1. Take an optimal mechanism. Under the requirements of Proposition 5, there

exists an associated allocation that is constrained efficient and in which all types receive

exactly the same payoff as in the optimal mechanism, and the associated entry tax and sales

tax are, respectively, decreasing and increasing in the price of assets.

21If the entry tax for a submarket is less than −k, then buyers pay this negative tax—i.e., receive a positive

subsidy of te + k—and then do not participate in the matching stage that delivers them a strictly negative

payoff. Therefore, another constraint that should be added to the definition of implementable allocation is

k + te(z) ≥ 0. See Definition 5 in the Appendix.
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Figure 3: Model parameters are defined in Example 1. In the upper left (right) graph, the value of type z

asset to buyers (surplus from the match) is depicted. In the lower left (right) graph, the price that sellers

receive (the market tightness) in the first-best, constrained efficient and equilibrium allocation is depicted.

A schedule of monotone sales tax and entry tax, which implements the first-best alloca-

tion, is depicted for Examples 1 and 2 in Figure 7.

26



0 0.5 1 1.5 2
4

4.2

4.4

4.6
Asset Value to Buyers (h)

0 0.5 1 1.5 2
2.5

3

3.5

4

4.5
Surplus (h-c)

Type of Sellers (z)
0 0.5 1 1.5 2

1

1.5

2

2.5

3
Price

Equilibrium
Constrained
FB

Type of Sellers (z)
0 0.5 1 1.5 2

0

0.5

1
Market Tightness

Example 2

Figure 4: This figure is similar to Figure 3 but with model parameters defined in Example 2.
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Figure 5: Model parameters are defined in Example 1 (2) for the left (right) graph. The expected payoff

to sellers in the first-best, constrained efficient and equilibrium allocation is depicted.
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5 Concluding Remarks

I characterized the optimal taxation in an asset market with search frictions and adverse

selection. I derived conditions under which the planner can correct the inefficiencies caused

by adverse selection. I also investigated the shape of the optimal tax schedule. What assets

should be taxed and what assets should be subsidized, and is the tax schedule monotone in

the price of assets? I showed that the optimal tax schedule is sometimes non-monotonic,

then I derived sufficient conditions for its monotonicity. Finally, I showed that the laissez-

faire economy is not constrained efficient. That is, the planner can always improve upon the

market allocation.

Two main frictions that I focused on in this paper are search frictions and adverse se-

lection. The presence of search frictions is less debatable because many assets, a few of

them named in the Introduction, are traded over the counter; agents must engage in a

time-consuming search to find a trading partner and there is no competitive price to clear

the market. What about adverse selection? Is it relevant in the financial markets at all?

Guerrieri and Shimer (2014a) admit that “[i]n practice, it is difficult to measure the extent

of adverse selection in any market simply because the data demands are acute.” Yet, they

discuss in detail some empirical evidence on the relevance of adverse selection in financial

markets, so I do not elaborate on that here.

In this paper, I considered bilateral (one-on-one) meetings. However, one could consider

many-on-one meetings—i.e., allowing a buyer to meet several sellers so that sellers face some

competition after meeting a buyer—which could be more realistic in some markets. Would

that induce sellers to reveal their types in a less costly manner, and would the equilibrium

remain constrained inefficient?
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Appendix of “Optimal Taxation in Asset Markets with

Adverse Selection:” Definitions and Proofs

Proof of Lemma 1. Consider a feasible mechanism {θ(.),p(.), t(.), t0}. Denote by

U(z) the payoff to type z in this mechanism. I construct an allocation {G,P ,Θ, µ} as

follows:

P ≡ [pL, pH ] ⊆ P ≡ R+ where pL ≡ p(zL) and pH ≡ p(zH)

and p is given by (5).22 Define m̄ = limθ→∞m(θ). The market tightness for this allocation

is given by: 

Θ(p) =∞ for p ≤ c(zL)

m(Θ(p)) = min{m̄, U(zL)
p−c(zL)

} for p ∈ (c(zL), pL)

Θ(p) = θ(p−1(p)) for p ∈ [pL, pH ]

m(Θ(p)) = min{m̄, U(zH)
p−c(zH)

} for p > pH

G(p) =


0 for p < pL∫ p
pL

Θ(p)F ′(p−1(p))dp for p ∈ [pL, pH ]

1 for p > pH

∫
µ(z|p)dz = 1 for all p, and µ(z|p) =


0 for p < pL and z 6= zL

0 for p 6= p(z) and p ∈ [pL, pH ]

0 for p > pH and z 6= zH

.

The policy is given by:

t0 = 0, t(p) =


h(zL)− p for all p < pL

h(p−1(p))− p− k
q(Θ(p))

and p ∈ [pL, pH ]

h(zH)− p for p > pH

.

22According to Lemma 4, p(z) is weakly increasing in z. I assume in this proof that the price function

p(z) is strictly increasing. If it is not, which happens when the direct mechanism requires some pooling of

types, then the proof can be extended, but I do not include that case in here for the sake of brevity. The

treatment is discussed in the Appendix of Davoodalhosseini (2019) in the proof of Lemma 1.

Since p(z) is strictly increasing and continuous, the set of prices in the constructed implementable mech-

anism is P ≡ [pL, pH ].
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The construction is straightforward. We allocate to all types the same market tightness

and transfer that they were given in the direct mechanism. For construction of off-the-

equilibrium-path beliefs, if p < pL, then the only type attracted to this post is zL. Therefore,

µ(z|p) = 0 for all z 6= zL, and µ(z|p) has a mass point at z = zL. Similarly, if p > pH , then

the only type attracted to this price is zH . Therefore, µ(z|p) = 0 for all z 6= zH . Given the

above beliefs, the tax amount for all p is constructed such that buyers receive a net profit

of exactly 0 for p ∈ P and −k for p /∈ P . Note that the choice of t is not unique for p /∈ P .

We could construct t differently such that buyers receive any non-positive amount of profit

for p /∈ P . G(p) is easily constructed given the construction of Θ(.).

The conditions for implementability should be verified now. It is easy to check that the

buyers’ zero profit condition is satisfied because of the construction of t. The feasibility or

market-clearing condition is satisfied because of the construction of G. The budget-balance

condition is satisfied because of the choice of U(zH).

Regarding the sellers’ optimal search condition, first note that the restriction on off-the-

equilibrium-path beliefs is equivalent to:

m(Θ(p)) = min
{
m̄, inf z∈{z|c(z)<p}

U(z)

p− c(z)

}
,

if {z|c(z) < p} is non-empty. Otherwise, set Θ(p) = ∞. See Chang (2018) for a more

detailed discussion. Now it is easy to see that sellers’ optimal search is satisfied because of

the construction of Θ(p). The only thing worth explaining here is why only zL is attracted

to any price less than pL (and similarly, why only zH is attracted to any price greater than

pH). To see why, I begin by writing the incentive compatibility condition for any feasible

mechanism: m(θ(zL))(p(zL) − c(z)) ≤ U(z) for all z. Remember that the payoff to type

z is the same in the mechanism and in the proposed allocation. After using the fact that

U(zL) = m(θ(zL))(p(zL)− c(zL)), one can write:

U(zL)− U(z) ≤ m(θ(zL))(c(z)− c(zL)) for all z.

⇒ U(zL)− U(z) ≤ m(θ(zL))(c(z)− c(zL)) =
U(zL)

p(zL)− c(zL)
(c(z)− c(zL))

≤ U(zL)

p− c(zL)
(c(z)− c(zL)) for all z and for p ∈ (c(zL),p(zL)),

or equivalently,

U(zL)

p− c(zL)
≤ U(z)

p− c(z)
for all z and for p ∈ (c(zL),p(zL)).
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Therefore, for the above choice of m(Θ(p)), the restriction on off-the-equilibrium-path beliefs

is satisfied.

Proof of Lemma 2. Define V (W,R, z) ≡ Wc(z) + R, w(z) ≡ −m(θ(z)) and r(z) ≡
m(θ(z))p(z) + t0. Obviously, U(z, ẑ) = V (w(ẑ), r(ẑ), z). A necessary condition for w(.) to

satisfy IC is ∂
∂z

( ∂V
∂W
∂V
∂R

)
dw
dz
≥ 0, whenever w(.) is differentiable at z, according to Theorem 7.1,

Fudenberg and Tirole (1991). But ∂
∂z

( ∂V
∂W
∂V
∂R

)
dw
dz

= ∂
∂z

( c(z)
1

)(−m′(θ(z)))dθ(z)
dz

. Also c′(.) > 0 and

m′(.) ≥ 0; therefore, the necessary condition is equivalent to

c′(z)
dθ(z)

dz
≤ 0. (22)

According to Theorem 7.3 in Fudenberg and Tirole (1991), a sufficient condition for w(.)

to satisfy IC is that dw(z)
dz
≥ 0, or equivalently, c′(z)dθ(z)

dz
≤ 0.

For the third part of the lemma, I use Corollary 1 in Milgrom and Segal (2002). Their

result states that if θ(z) satisfies IC, then U(.) can be written as follows:

U(z) = U(zH)−
∫ zH

z

∂U(z0, z0)

∂z
dz0 = U(zH) +

∫ zH

z

m(θ(z0))c′(z0)dz0. (23)

This equation is derived from the envelope theorem and is standard in the mechanism design

literature. The requirements of the result of Milgrom and Segal (2002) are as follows:

1. U(z, ẑ) is differentiable and absolutely continuous in z. This is satisfied because c is

assumed to be twice differentiable.

2. supẑ
∣∣∂U(z,ẑ)

∂z

∣∣ is integrable. This is satisfied because supẑ
∣∣∂U(z,ẑ)

∂z

∣∣ ≤ ∣∣c′(z)
∣∣ < M for

some M ∈ R+, because c′(.) is continuous and is defined over a compact set [zL, zH ].

3. θ(z) is obviously non-empty.

Derivation of Equation (6). Begin from the BB condition:

0 =

∫
[m(θ(z))[h(z)− p(z)]− kθ(z)]F ′(z)dz

=

∫
[m(θ(z))[h(z)− c(z)]− kθ(z)−m(θ(z))(p(z)− c(z))]F ′(z)dz

=

∫ [
m(θ(z))(h(z)− c(z))− kθ(z)−

∫ zH

z

m(θ(z0))c′(z0)dz0 − U(zH)

]
F ′(z)dz.

The third equality follows from (5) and the fact that U(z) = m(θ(z))(p(z) − c(z)). Using

integration by parts, one yields (6) from the last equation.
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Proof of Theorem 1(i). Theorem 1 is proved using a guess-and-verify approach. I

guess that the first-best is achievable, and then I verify the conditions for feasibility.

I need to check that the two constraints of Problem 2 are satisfied for the proposed mech-

anism under the respective assumptions. The first-best level of market tightness, θFB(z),

is given by m′(θFB(z))(h(z) − c(z)) − k = 0. By differentiating it with respect to z, one

yields dθFB(z)
dz

= − k(h′(z)−c′(z))
m′′(θFB(z))(h(z)−c(z))2 ≤ 0, where the inequality is due to the fact that

h′(.)− c′(.) ≤ 0 and m′′(.) ≤ 0. Hence, MC in problem 2 is satisfied. Moreover,

UCE(zH) =

∫ [
m(θ(z))(h(z)− c(z)− c′(z)

F (z)

F ′(z)
)− kθ(z)

]
F ′(z)dz

=

∫ [(
−
∫ zH

z

m(θFB(z))(h′(z)− c′(z))dz + UFB(zH)

)
−m(θFB(z))c′(z)

F (z)

F ′(z)

]
F ′(z)dz

= −
∫ [

m(θFB(z))(h′(z)− c′(z)) +m(θFB(z))c′(z)
]
F (z)dz + UFB(zH)

= −
∫
m(θFB(z))h′(z)F (z)dz + UFB(zH) ≥ 0. (24)

The second equality uses the fact that θ(z) = θFB(z) and also the fact that dUFB(z)
dz

=
d[maxθ{m(θ)(h(z)−c(z))−kθ}]

dz
= m(θFB)(h′(z)− c′(z)). The third equality is derived by using inte-

gration by parts. The inequality holds because h′(z) < 0 by assumption, and UFB(zH) ≥ 0

because there are positive gains from trade for all types. Both constraints in Problem 2

are satisfied. Finally, the proposed mechanism achieves the first-best, which is the highest

possible welfare, so it is not needed to check whether any other allocation achieves higher

welfare.

Proof of Theorem 1(ii) (“if” part). Again, I need to show that the proposed

mechanism is feasible. But h′(z) − c′(z) ≤ 0, so dθFB(z)
dz

≤ 0, thus the first constraint in

Problem 2 is satisfied. Furthermore,

UCE(zH) =

∫ [
m(θFB(z))[h(z)− c(z)]− kθFB(z)−m(θFB(z))c′(z)

F (z)

F ′(z)

]
dF (z)

=

∫ [∫ z

zL

m(θFB(z))(h′(z)− c′(z))dz + UFB(zL)−m(θFB(z))c′(z)
F (z)

F ′(z)

]
dF (z)

=

∫
H0(z)dF (z)−

∫ ∫ z

zL

m(θFB(z))c′(z)dzdF (z)−
∫
m(θFB(z))c′(z)F (z)dz + UFB(zL)

=

∫
H0(z)dF (z)−

(∫
m(θFB(z))c′(z)dz − UFB(zL)

)
≥ 0,
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where the last equality is derived using integration by parts and the last inequality is derived

using (10).23

Proof of Theorem 1(ii) (“only if” part). The planner achieves the first-best,

so θFB(z) must solve Problem 2; thus the second constraint, specifically, must hold. Exactly

similar to the last part, one can manipulate the integral to show that condition (10) must

be satisfied too.

Proof of Theorem 2(i). By Theorem 1(i), the planner achieves the first-best and

the equilibrium does not. Therefore, the welfare level in the former is strictly higher than

the latter.

For Pareto inefficiency of equilibrium, let’s start from the envelope conditions implied by

IC: U ′CE(z) = −m(θFB(z))c′(z) and U ′EQ(z) = −m(θEQ(z))c′(z) almost everywhere. Since

h′(z) ≤ 0 < c′(z), the boundary condition in the equilibrium is θEQ(zH) = θFB(zH). Equilib-

rium condition (8) implies that θEQ(z) ≥ θFB(z) for all z. Therefore, |U ′CE(z)| ≤ |U ′EQ(z)|
almost everywhere. To show that the equilibrium allocation is Pareto dominated by the con-

strained efficient allocation, it is necessary and sufficient to show that UCE(zL) ≥ UEQ(zL).

But UCE(zL) = UCE(zH)+
∫ zH
zL

m(θFB(z))c′(z)dz = UFB(zH)−
∫ zH
zL

m(θFB(z))h′(z)F (z)dz+∫ zH
zL

m(θFB(z))c′(z)dz, where the second equality follows from (24). Moreover,

UEQ(zL) = UEQ(zH) +

∫ zH

zL

m(θEQ(z))c′(z)dz = UFB(zH) +

∫ zH

zL

m(θEQ(z))c′(z)dz.

Hence, it is necessary and sufficient to show that

−
∫ zH

zL

m(θFB(z))h′(z)F (z)dz ≥
∫

(m(θEQ(z))−m(θFB(z)))c′(z)dz.

The proof is now complete, because the left-hand side (LHS) is exactly the same as the LHS

of (13) using integration by parts.

Proof of Theorem 2 (ii). I construct a function for market tightness that satisfies

the constraints of Problem 2 and achieves a higher value for the objective function. I proceed

in three steps:

23To show that (10) and (12) are equivalent, begin from the integral in the first line above. That is positive

if and only if (10) is satisfied. Now notice that the integrand is equal to m(θFB(z))[h(z)− c(z)]−kθFB(z)−
m(θFB(z))c′(z) F (z)

F ′(z) = − θ
FB(z)q′(θFB(z))
q(θFB(z))

(h(z)−c(z))m(θFB(z)) −m(θFB(z))c′(z) F (z)
F ′(z) , where (1) is used for

the equality. But the latter expression is the same integrand as in (12).
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Step 1. Denote the set of all weakly decreasing functions on [zL, zH ] by D. Define θD ∈ D
as follows:

(i) θD(z) ≤ θFB(z) for all z.

(ii) θD(z) ≥ θ̄(z) for all z and all θ̄ ∈ D.

θD(z) is denoted in Figure 1. Intuitively, θD(z) is the greatest decreasing function not

exceeding θFB(z).

Step 2. For any ε ∈ (0, 1), define

θB(z) ≡ εθD(z) + (1− ε)θEQ(z).

First, notice that θB(z) is a strictly decreasing function of z by definition of θD(z) and

the fact that θEQ(z) is strictly decreasing.

Second,

θB(z) = εθD(z) + (1− ε)θEQ(z) ≤ εθFB(z) + (1− ε)θFB(z) = θFB(z),

where the inequality holds by definition of θD(z) and the fact that θEQ(z) is distorted in

equilibrium downward relative to the first-best. For this, see the differential equilibrium (8)

that characterizes θEQ(z).

Third,

θB(z) = εθD(z) + (1− ε)θEQ(z) > εθEQ(z) + (1− ε)θEQ(z) = θEQ(z)

for all z > zL. Notice that θD(z) is either strictly decreasing, in which case θD(z) = θFB(z)

and the inequality follows. Or, θD(z) is constant over an interval of [z0, z1] where θD(z0) =

θFB(z0). Then, θD(z) = θD(z0) = θFB(z0) ≥ θEQ(z0) > θEQ(z), where the first inequality is

due to the fact that θEQ(z) is distorted in equilibrium downward relative to the first-best,

and the second inequality is due to the fact that θEQ(z) is strictly decreasing. See Figure 1

again.

The second and third points above together imply that θB(z) ∈ (θEQ(z), θFB(z)] for all

z ∈ (zL, zH ]. Therefore, the amount of surplus created with market tightness θB(z) is higher

than that with market tightness θEQ(z) for all z ∈ (zL, zH ].

Step 3. Notice that U(zH) > 0 in equilibrium. Now choose ε > 0 sufficiently small

such that the change in U(zH), calculated from (6), is sufficiently small so that U(zH) ≥ 0

continues to hold. For this ε, θB(z) is decreasing and leads to strictly higher welfare than

equilibrium. This concludes the proof.
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Proof of Theorem 2(iii). Since h′(z) ≥ 0, it is easy to see that (14) is stronger

than (10); therefore, the planner achieves the first-best in this case too, according to The-

orem 1(ii). Similarly as above, by IC we have U ′CE(z) = −m(θFB(z))c′(z) and U ′EQ(z) =

−m(θEQ(z))c′(z) almost everywhere. Since h′(z) ≥ 0, then the boundary condition in the

equilibrium is θEQ(zL) = θFB(zL). Equilibrium condition (8) implies that θEQ(z) ≤ θFB(z)

for all z. Therefore, |U ′CE(z)| ≥ |U ′EQ(z)| almost everywhere.

To show that the equilibrium allocation is Pareto dominated by the constrained efficient

allocation, it is necessary and sufficient to show that UCE(zH) ≥ UEQ(zH). From (24), one

yields UCE(zH) = UFB(zH)−
∫ zH
zL

m(θFB(z))h′(z)F (z)dz. Moreover,

UEQ(zH) = UEQ(zL)−
∫ zH

zL

m(θEQ(z))c′(z)dz = UFB(zL)−
∫ zH

zL

m(θEQ(z))c′(z)dz

= UFB(zH)−
∫ zH

zL

m(θFB(z))(h′(z)− c′(z))dz −
∫ zH

zL

m(θEQ(z))c′(z)dz.

Hence, it is necessary and sufficient to show that∫ zH

zL

m(θFB(z))h′(z)(1− F (z))dz ≥
∫

(m(θFB(z))−m(θEQ(z)))c′(z)dz.

The proof is now complete, because the LHS is exactly the same as the LHS of (14) using

integrating by parts.

Proof of Proposition 2. I assume that the IC constraints are not binding, so I max-

imize the planner’s objective function in Problem 2 given only the U(zH) ≥ 0 constraint.

Next, I will check that the IC constraints are not binding under condition (16).

The Lagrangian can be written as:∫ [
s(θ(z), z) + µ

(
s(θ(z), z)−m(θ(z))c′(z)

F (z)

F ′(z)

)]
F ′(z)dz,

where s(θ, z) ≡ m(θ)[h(z) − c(z)] − kθ, and µ is the Lagrangian multiplier associated with

the U(zh) ≥ 0 constraint. The conditions for optimality imply:(
sθ(θ(z), z)− µ

1 + µ
m′(θ(z))c′(z)

F (z)

F ′(z)

)
F ′(z)(1 + µ) = 0,

U(zH) =

∫ [
m(θ(z))

[
h(z)− c(z)− c′(z)

F (z)

F ′(z)

]
− kθ(z)

]
F ′(z)dz ≥ 0 with equality if µ > 0.

The first condition is equivalent to (17) and the second one is identical to that in the propo-

sition. These conditions together are necessary and sufficient for optimality under the re-

quirements of Proposition 2.
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Combining (16) together with h′(.)− c′(.) < 0, one can see that θ obtained from (17) is de-

creasing in z, confirming the premise that the IC constraints are not binding. Also, because

of (15), all types will be active under the planner’s solution because their contribution to

the Lagrangian, (s(θ(z), z)− µ
1+µ

m(θ(z))c′(z) F (z)
F ′(z)

)F ′(z)(1 + µ), is positive.

Finally, note that if the constraint is not binding, then µ = 0 and the solution is obviously

unique, because the first-best can be achieved. If the constraint is binding, θ(.) is uniquely

determined for a given µ. As µ increases, θ(z) decreases, so does U(zH). As a result, there

exists a unique µ such that the constraint becomes binding at U(zH) = 0. This completes

the proof.

Proof of Proposition 3. I suppress the superscript CE in this proof to reduce the

notation when there is no danger of confusion. If h′ < 0, the proof is similar, so I focus only

on the case where both 0 < h′ < c′ and (10) hold.

Theorem 1(ii) applies, so θ(z) = θFB(z) for all z. I calculate m(θ(z))t(z) and take its

derivative with respect to z:

m(θ(z))t(z) = m(θFB(z))(h(z)− c(z))− kθFB(z)− U(zH)−
∫ zH

z

m(θFB(z0))c′(z0)dz0

= UFB(z)− U(zH)−
∫ zH

z

m(θFB(z0))c′(z0)dz0

⇒ ∂

∂z
[m(θ(z))t(z)] =

dUFB(z)

∂z
+m(θFB(z))c′(z) = m(θFB(z))h′(z). (25)

The second equality is derived by applying the envelope theorem to the following maximiza-

tion problem: UFB(z) = maxθ{m(θ)(h(z)− c(z))− kθ}. Therefore,

dt

dz
= h′(z)− m′(θ(z))

m(θ(z))

dθ(z)

dz
t(z).

Also, dθ(z)
dz

can be calculated from (1) to obtain dt
dz

as in Lemma 3.

Since
∫
t(z)dF (z) = 0, there exists a ẑ ∈ (zL, zH) such that t(ẑ) = 0. At such a point,

dtCE

dz
= h′(z) > 0 at z = ẑ. Since tCE is continuous, there cannot be more than one such ẑ.

If so, the slope of tCE for at least one of such ẑ should be negative.

Proof of Lemma 3. The proof for part (i) is similar, so I focus only on part (ii).

h(.) − c(.) is strictly decreasing, so θFB(.) is strictly decreasing; therefore, the associated

implementable allocation must be separating. Hence, there is a one-to-one mapping from

types to prices. I show below that t(z) is decreasing in z at z = zL. Furthermore, dt
dp

= dt/dz
dp/dz

,
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and as shown in Lemma 4 that the denominator is always positive, dt
dp

must be negative for p =

pL. Now consider (18) at z = zL. Given the assumption that h′(zL) = 0 and given the fact

that θ′(z) < 0 for all z, it is sufficient to show that t(zL) < 0. It will follow that t′(zL) < 0. To

calculate t(z), I use the planner’s budget-balance condition to write:
∫
m(θ(z))t(z)dF (z) = 0.

Let χ(.) ≡ m(θ(z))t(z), then 0 =
∫
χ(z)dF (z) = −χ(z)(1− F (z))

∣∣zH
zL

+
∫
χ′(z)(1− F (z))dz

by using integration by parts. Therefore, χ(zL) = −
∫
χ′(z)(1−F (z))dz < 0. The inequality

holds because χ′(z) = m(θ(z))h′(z) from (25) and the fact that h′(z) ≥ 0. Also, the inequality

is strict because h′(z) > 0 for a positive measure of z. Hence, t(zL) = χ(zL)
m(θ(zL))

< 0 by

definition of χ(.).

Finally, I show that dt
dp
> 0 for some p. The facts that

∫
m(θ(z))t(z)dF (z) = 0, t(zL) < 0,

t(z) is continuous, and F has full support, together imply that t(z) must be strictly positive

for a strictly positive measure of z, therefore, t′(z) > 0 for for a strictly positive measure of

z. Finally, dt
dp

= dt/dz
dp/dz

, so dt
dp

must be strictly positive for some p, using Lemma 4.

Lemma 4. Assume c′(.) > 0. Take any feasible mechanism. The transfer function in this

mechanism, p(z), is increasing in z.

Proof of Lemma 4. According to (5), d[m(θ(z))p(z)]
dz

= m′(θ(z))dθ(z)
dz
c(z), so

dp(z)

dz
= −m

′(θ(z))

m(θ(z))

dθ(z)

dz
(p(z)− c(z)) ≥ 0. (26)

The inequality holds because θ(z) is decreasing in z following the fact that the mechanism

satisfies the incentive compatibility constraint. Moreover, p(z)− c(z) is positive for all types

following the fact that the mechanism satisfies the participation constraint. Therefore, p(z)

is weakly increasing in z.

Finally, p(z)− c(z) = U(z)
m(θ(z))

=
U(zH)+

∫ zH
z m(θ(z0))c′(z0)dz0
m(θ(z))

> U(zH)
m(θ(z))

≥ 0 for z < zH . There-

fore, if dθ(z)
dz

> 0, then p(z) is strictly increasing in z.

Proof of Proposition 4. Again, I focus only on case (ii), as the proof is similar for

case (i).

From (18) and (19), one obtains dtCE

dz
> 0 at z = zL. Now suppose tCE is not increasing;

then it must be the case that tCE has a local maximum. Consider the first local maximum,

say at z = zM . Since tCE is increasing at z = zL, then tCE(zM) > tCE(zL). Now we can

write the following at z = zM :

h′(z) = − m′2

mm′′
h′ − c′

h− c
tCE(zM),
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and

h′(z) ≥ − m′2

mm′′
h′ − c′

h− c
tL

because of (19). The last two inequalities together imply that tCE(zM) ≤ tCE(zL), which is

a contradiction. This completes the proof.

Proofs of the claims in Example 3. Theorem 1(ii) and 2(iii) apply, so we need

to check conditions (10) and (14). H0 and H̄0 can be calculated as follows:

H0(z) = m(θ̄FB)

∫ z

zL

h′(ẑ)dẑ = m(θ̄FB)(c(z)− c(zL)).

H̄0 =

∫
H2(z)dF (z) = m(θ̄FB)

∫ zH

zL

(c(z)− c(zL))dz.

To verify (10), we need to verify that:

m(θ̄FB)

∫ zH

zL

(1− F (z))c′(z)dz ≥ m(θ̄FB)

∫
c′(z)dz − UFB,

⇔ ŪFB

m(θ̄FB)
≥
∫ zH

zL

F (z)c′(z)dz.

I argue that if the gains from trade, x, are sufficiently high, then this inequality holds, so

the planner can always achieve the first-best. The RHS is independent of x, so it is enough

to show that the LHS is increasing in x, and when x goes to ∞, the LHS is greater than the

RHS. The LHS can be written as UFB

m(θFB)
= x− k/q(θFB). Therefore,

∂ UFB

m(θFB)

∂x
= 1 +

kq′ ∂θ
FB

∂x

q2
= 1− k2q′

q2s2m′′
= 1− q′m′

qm′′
m′

q
≥ 1/2 > 0,

where the second and third equalities follow from the definition of θFB. The inequality

follows from the fact that m has a decreasing elasticity (See Eeckhout and Kircher (2010) or

Davoodalhosseini (2015)). This completes the proof for verifying (10).

It is easy to see that (14) is equivalent to (21) in this example. Here, I characterize only

the equilibrium allocation, which is given by the following differential equation:

[
m′(θEQ(z))x− k

] dθEQ(z)

dz
+m(θEQ(z))c′(z) = 0.

Rewrite the equation in a separable form in z and θ:

−m
′(θEQ)x− k
m(θEQ)

dθEQ = c′(z)dz.
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Integrate the LHS over θ and the RHS over z to obtain (20):∫ θEQ(zL)

θEQ(z)

m′(θ)x− k
m(θ)

dθ = c(z)− c(zL).

Notice that the upper bound of the integral is equal to θFB. This equation gives us θEQ(z)

(which is less than θFB) in terms of z and can be easily solved.

Example 4 (Characterizing equilibrium and constrained efficient allocation form(θ) = µmin{θ, 1}).
Assume 0 < h′(z) ≤ c′(z) and µ(h(z) − c(z)) > k for all z. According to the differ-

ential equation (8), θEQ(z) solves: θEQ(z)exp

(∫ z
zL

q(θEQ(ẑ))h′(ẑ)
m′(θEQ(ẑ))(h(ẑ)−c(ẑ))−kdẑ

)
= const. But

0 < h′(.) ≤ c′(.), so θEQ(zL) = θFB(zL), thus const = θFB(zL). The equilibrium mar-

ket tightness is distorted downward for all z > zL, so q(.) and m′(.), given by q(θ) =

m′(θ) = µ for all θ < 1, are both differentiable almost everywhere. Therefore, θEQ(z) =

θFB(zL)exp

(
−
∫ z
zL

h′(ẑ)
h(ẑ)−c(ẑ)−k/µdẑ

)
. Moreover, θFB(z) = 1 for all z, so H0 = h(z) − h(zL)

and H̄0 =
∫
h(z)dF (z) − h(zL) ≡ E(h(z)) − h(zL). Therefore, (14) in this example reduces

to:

E(h(z))− h(zL) ≥
∫ (

1− exp
(
−
∫ z

zL

h′(ẑ)

h(ẑ)− c(ẑ)− k/µ
dẑ

))
c′(ẑ)dz.

This condition is explicitly on the fundamentals of the model. (13) can be given in a similar

fashion.

With this special matching function, θFB(z) = 1. To achieve the first-best, we need∫ [
µ

(
h(z)− c(z)− c′(z)

F (z)

F ′(z)

)
− k
]
F ′(z)dz ≥ 0, (27)

which is equivalent to (12) or (10).

Planner’s problem in a general form

If the expression in brackets in (17) is decreasing in z, even if h−c is not, then Proposition 2

can be used. If that expression is not decreasing for some z, then we need to solve Problem

2 in a general form, which is described below. We continue to assume that c′(z) > 0.

Problem 3.

max
θ(z)

∫ [
m(θ(z))[h(z)− c(z)]− kθ(z)

]
F ′(z)dz
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subject to:

φ(z) : dθ(z)
dz

= χ(z)

η(z) : −χ(z) ≥ 0

µ : U(zH) ≥ 0.

with complementary slackness for η(z) and µ.

The second constraint is to ensure that the IC is satisfied. Functions φ(z) and η(z) are

the associated multipliers for the first two constraints, and µ, as in Proposition 2, is the

multiplier for the last constraint. Also, U(zH) is calculated from (6).

This is an optimal control problem with state variable θ and control variable χ, so we

form the Hamiltonian to solve the problem:

H = s(θ(z), z)F ′(z) + µ

(
s(θ(z), z)−m(θ(z))c′(z)

F (z)

F ′(z)

)
F ′(z) + φ(z)χ(z)− η(z)χ(z),

where s(θ, z) ≡ m(θ)[h(z)− c(z)]− kθ. Hence:

∂H

∂θ(z)
=

(
sθ(θ(z), z)− µ

1 + µ
m′(θ(z))c′(z)

F (z)

F ′(z)

)
F ′(z)(1 + µ) = −dφ(z)

dz
(28)

∂H

∂χ(z)
= φ(z)− η(z) = 0 (29)

If IC constraints are not binding, then η(z) = 0. Hence φ(z) = 0 by (29). Then, (28)

implies that sθ(θ(z), z) − µ
1+µ

m′(θ(z))c′(z) F (z)
F ′(z)

= 0, which is identical to (17). Under the

requirements of Proposition 2, θ obtained by (17) is decreasing, confirming the premise that

the IC constraints are not binding.

Now suppose IC constraints are binding for some z. More precisely, define

θSB(z) ≡ max
θ

{
s(θ, z)− µ

1 + µ
m′(θ)c′(z)

F (z)

F ′(z)

}
.

Suppose θSB(z) is increasing between z1 and z2. See Figure 8. This means that the constraint

efficient allocation would entail pooling of some types. We want to find the pooling region.

Suppose θSB(z) has only one local minimum at z1 > zL and one local maximum at z2 < zH .

At the solution:

θCE(z) =


θSB(z) zL ≤ z ≤ za

θ̄ za < z ≤ zb

θSB(z) zb < z ≤ zH

,
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𝑧𝑧𝐿𝐿𝑧𝑧0 𝑧𝑧1 𝑧𝑧2 𝑧𝑧3𝑧𝑧𝑎𝑎 𝑧𝑧𝑏𝑏

𝜃𝜃𝐶𝐶𝐶𝐶(𝑧𝑧)

Pooling region

Figure 8: Schematic diagram for the pooling region in the planner’s problem.

where θ̄ ≡ θSB(za). The unknowns are za and zb.
24 Since the constraint is not binding for z

below za and above zb, then φ(za) = φ(zb) = 0. Integrating (28) over [za, zb] leads to:∫ zb

za

(
sθ(θ̄, z)− µ

1 + µ
m′(θ̄)c′(z)

F (z)

F ′(z)

)
F ′(z)(1 + µ)dz = −φ(zb) + φ(za) = 0.

Define I(θ̄) to be z ∈ [z0, z1] that solves θSB(z) = θ̄. Similarly, define J(θ̄) to be z ∈ [z2, z3]

that solves θSB(z) = θ̄. See Figure 8 again. Now define

∆(θ̄) ≡
∫ J(θ̄)

I(θ̄)

(
sθ(θ̄, z)− µ

1 + µ
m′(θ̄)c′(z)

F (z)

F ′(z)

)
F ′(z)(1 + µ)dz.

Note that at θ̄ = θSB(z0), ∆(θ̄) < 0 and at θ̄ = θSB(z1), ∆(θ̄) > 0. Note also that m is a

concave function, (15) holds and I(θ̄) and J(θ̄) are the optimal choices, so ∆(θ̄) is decreasing

in θ̄. Hence, there exists a unique θ̄ that solves ∆(θ̄) = 0. Then, za = I(θ̄) and zb = J(θ̄).

This completes the characterization.

The main message is that, if maximization of the virtual surplus gives rise to a function

that is not decreasing in z, then the planner wants to pool some types. This is despite the

fact that if h is increasing, the types will be separated completely in the market.

24The technique to solve the problem in the case where there is more than one local minimum or maximum

has been discussed in Fudenberg and Tirole (1991), Appendix of Chapter 7, for example.
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Entry Tax

The implementable allocation with two types of taxes on buyers, sales tax and entry tax,

is defined here similarly to the definition of implementable allocation in Definition 1. The

main difference is that the policy here includes t̃e(p), which is an entry tax schedule, the tax

levied on buyers when they enter a submarket whether or not they find a match.

Definition 5 (Implementable allocation for continuous-type space with sales and entry

tax). An allocation, {G,P , θ, µ}, is implementable through policy {t̃, t̃e, t̃0} if the following

conditions are satisfied:

(i) Buyers’ profit maximization, free entry and no commitment

For any p ∈ P,

q(θ(p))[

∫
h(z)µ(z|p)dz − t̃(p)] ≤ k + t̃e(p),

with equality if p ∈ P. Also, 0 ≤ k + t̃e(p) for any p ∈ P.

(ii) Sellers’ optimal search: the same as Definition 1(ii).

(iii) Feasibility or market clearing: the same as Definition and 1(iii),

(iv) Planner’s budget-balance condition∫
P

[q(θ(p))t̃(p) + t̃e(p)]dG(p) ≥ t̃0.

Proof of Proposition 5. I focus on the cases in which c and h are both increasing.

Analyzing other cases are similar. The set of admissible prices, P, is assumed to be [c(zL),∞)

as opposed to (0,∞). This assumption is not restrictive (and made only to avoid some

technical difficulties), as no seller would have incentives to apply to p < c(zL).

Consider again a feasible mechanism {θ(.),p(.), t(.), t0}. I construct the allocation {G,P ,Θ, µ}
and policy {t̃, t̃e, t̃0} and show that if M ∈ R+ and M ′ ∈ R+, defined below, are chosen suf-

ficiently large, then this allocation is implementable and t̃e(p) is strictly decreasing and t̃(p)

is strictly increasing in p. The allocation is constructed as follows:

P ≡ [pL, pH ] ⊆ P ≡ R+, where pL ≡ p(zL) and pH ≡ p(zH),

and pCE is given by (5) (where θ should replace θCE). Moreover,

Θ(p) = 1 for p = c(zL)

m(Θ(p)) = min{m̄, U(zL)
p−c(zL)

} for p ∈ (c(zL), pL)

Θ(p) = θ(p−1(p)) for p ∈ [pL, pH ]

m(Θ(p)) = min{m̄, U(zH)
p−c(zH)

} for p > pH
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G(p) =


0 for p ∈ [c(zL), pL)∫ p
pL

Θ(p)F ′(p−1(p))dp for p ∈ [pL, pH ]∫ pH
pL

Θ(p)F ′(p−1(p))dp for p > pH

∫
µ(z|p)dz = 1 for all p, and µ(z|p) =


0 for p < pL and z 6= zL

0 for p 6= p(z) and p ∈ [pL, pH ]

0 for p > pH and z 6= zH

.

The policy is given by:

t̃0 = 0, t̃e(p) =

−k +M(pH − p) for p ∈ [c(zL), pH ]

−k for p > pH

t̃(p) =


h(zL)− p− k+t̃e(p)

q(Θ(p))
for all p ∈ [c(zL), pL)

h(p−1(p))− p− k+t̃e(p)
q(Θ(p))

and p ∈ [pL, pH ]

t̃(pH) + (p− pH)M ′ for p > pH

.

The conditions for implementability can be verified easily, so I do not repeat them here.

Regarding monotonicity of taxes, it is obvious that t̃e(p) is decreasing in p for all p ∈
[pL, pH ] if M > 0. It is just left to show that t̃(p) is increasing in p for p ∈ [pL, pH ]. I take a

derivative of t̃(p) with respect to p:

t̃′(p) = h′(p−1(p))
d(p−1(p))

dp
− 1 +M

q(Θ(p)) + q′(Θ(p))Θ′(p)(pH − p)
q(Θ(p))2 .

Now, define

M1 ≡ max

{
1, sup

p∈[pL,pH ]

(1− h′(p−1(p))d(p−1(p))
dp

)q(Θ(p))2

q(Θ(p)) + q′(Θ(p))Θ′(p)(pH − p)
, sup
p∈[c(zL),pL]

q(Θ(p))2

q(Θ(p)) + q′(Θ(p))Θ′(p)(pH − p)

}
.

M1 is a lower bound for M and 1 is merely an arbitrary positive number. I want to show that

M1 <∞, so the second and third expressions in the max have to be less than ∞. Consider

the second one. If q(Θ(p)) → 0, then the expression goes to 0; therefore, I simply need to

show that d(p−1(p))
dp

> −∞. But dp
dz

has been already calculated in Lemma 4, so d(p−1(p))
dp

,

which is merely the inverse of dp
dz

, is always positive too. Since z lies in a compact interval,

1− h′(.)dp
dz

is not greater than 1 and the proof in this part is complete. The same argument

applies to the third expression but for p ∈ [c(zL), pL].
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Therefore, if M > M1 and M ′ > 0, then t̃(p) is strictly increasing over each separate

interval. Since t̃(p) is continuous by construction, it is therefore increasing over the entire

domain.
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