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Abstract 

In the past sixty years, transistor sizes and weights have decreased by 50 percent every eighteen months, 

following Moore’s Law. Smaller and lighter electronics have increased productivity in virtually every 

industry and spurred the creation of entirely new sectors of the economy. However, while the effect of the 

increasing quality of computers and electronics on GDP has been widely studied, the question of how 

electronic miniaturization affects economic growth has been unexplored. To quantify the effect of 

electronic miniaturization on GDP, this paper builds an economic growth model that incorporates 

physical constraints on firms’ production sets. This model allows for new types of productivity spillovers 

that are driven by products’ physical characteristics. Not only are there spillovers from changes in 

industry productivity, but also, there can be “size spillovers,” where the miniaturization of one industry’s 

product leads to miniaturization of products that are downstream in the supply chain, reflecting how 

transistor miniaturization has led to the decrease in size of a large variety of electronic products. Using a 

new data set of product weights and sizes, we test the predictions of the model and show that Moore’s 

Law accounts for approximately 3.5 percent of all productivity growth in the 1982-2007 period, and for 

37.5 percent of the productivity growth in heavy manufacturing industries. The results are robust under 

multiple specifications, and increase in strength during the 1997-2007 subperiod. 
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1 Introduction

Developing new combinations of existing materials is a key driver of economic growth. The

earliest results on endogenous technical change had an implicit assumption that, as ideas

arrived to the market, they could be combined with each other to yield exponential growth in

the number of existing products (Romer 1993). Weitzman (1998) made this intuition formal

by proposing a model of recombinant growth, where new ideas are generated by researchers

who combine existing ideas. Acemoglu and Azar (2020) and Jones (2021) built on Weitzman’s

work by developing models where growth is driven by the ability of firms to choose from an

exponentially increasing number of sets of input suppliers. Each combination is a “recipe”

with a different level of productivity, and firms choose the cost-minimizing combination. As

new inputs arrive, the number of recipes increases exponentially, and economic output grows.

The discovery of these new combinations is often driven by improvements in the physi-

cal properties of the materials being combined. However, most papers in the combinatorial

growth literature and in the economic growth literature more generally, do not take into ac-

count improvements in materials’ physical properties when modeling technological progress.

For example, James Watt worked on steam engines for 15 years before the invention of high-

precision machining tools made steam engines energy-efficient and commercially feasible.

Aviation would not be possible without light-weight and strong aluminum, and aluminum

could be mass produced only after improvements in electrical engineering. And modern

computers and electronics, which have permeated every aspect of contemporary firms and

households, would not have been possible without the development of ever-shrinking semi-

conductors.

To capture how improvements in physical properties lead to new technological innovations,

this paper builds a model where firms have physical constraints on their production sets, and

where these constraints dictate which inputs can and cannot be combined. This feature

captures real-world examples of physical limitations in production, such as engines needing

to be above a certain efficiency threshold, airplanes having to satisfy strict weight limits,

and electronics needing to be small enough to fit into office equipment, cars and industrial

machines.

My model builds upon Acemoglu and Azar (2020), while adding feasibility constraints

limiting which input combinations can be attempted by firms. Each input material has a

vector of physical properties, such as its size, electrical conductivity, or melting point. The set

of materials used has to satisfy a combinatorial constraint, such as a Knapsack constraint that

limits the sum of sizes of input materials, or a graph matching constraint determining which

materials can be safely used together. Both of these types of constraints are illustrated in

Figure 1. In a broader context, we can think of other examples of combinatorial constraints,
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(a) Knapsack Constraints in Cars (b) Matching Constraints in Materials

Figure 1: This figure shows two examples of combinatorial constraints on which input mate-
rials can be combined. Subfigure (a) illustrates a Knapsack constraint in car manufacturing:
the total sum of weights of car components cannot exceed the weight of the car, which in
this figure is 4000 lbs. Small electronic components, such as modern GPS devices (0.5 lbs),
cameras (0.06 lbs) and Engine Control Units (2 lbs) all fit comfortably inside the car. How-
ever, state-of-the-art supercomputers (5500 lbs) cannot be incorporated into the car without
violating the Knapsack constraint. Subfigure (b) illustrates a Matching constraints in mate-
rials science, where different types of plastic resins cannot be combined with certain types of
materials. The table’s rows correspond to acrylic, polycarbonate and a polycarbonate/acrylic
alloy. The table’s columns correspond to different types of chemicals and radiation sources,
including acids, alkalis, solvents, fuels and gamma radiation. Each entry in the table indi-
cates whether a given plastic resin can be combined with a given chemical or radiation source.
Entries in blue represent good performance, in red represent poor performance, and in grey
represent fair performance.

such as logistics firms matching items to warehouses, ride-sharing companies matching drivers

to passenger requests, and airlines buying the rights to use runways in different airports.

As the physical properties of materials improve, industries’ constraints are relaxed and

new productivity-enhancing combinations are developed. I use this observation to develop

a dynamic version of the model in which the joint arrival of new materials and new appli-

cations drives growth. Without new materials, no new combinations are possible, and there

is no growth. Without applications, the new materials are not useful, and again there is

no growth. It is the combined development of materials and applications at the same time

that leads to sustained growth. This is similar to models of Schumpeterian Waves (Helpman

and Trajtenberg, 1998, Violante, 2002, Aghion, Howitt and Violante, 2002 and Hornstein,

Krusell and Violante, 2005), where the arrival of a new technology—such as a material with

improved physical properties—does not directly lead to productivity growth. Instead, pro-

ductivity growth occurs only after the new technology has been sufficiently adapted to be

commercialized. These models can explain, for example, how the arrival of General Purpose

Technologies (GPTs) can lead to productivity slowdowns and increased wage inequality, thus

matching empirical facts documented by Jovanovic and Rousseau (2005).
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As in Acemoglu and Azar (2020) and Jones (2021), growth in the model is driven by

the combination of a small number of materials into exponentially many different “recipes,”

a force absent from workhorse models of economic growth. Growth is not driven by the

exponential arrival of new products ( as it is in Romer 1990; Grossman and Helpman 1992;

Jones 1995; Eaton and Kortum 2001; or Klette and Kortum 2004 ), nor by proportional

improvements in quality ( as in the quality-ladder models of Aghion and Howitt 1992; and

Grossman and Helpman 1991), nor by thick-tailed productivity draws continuously improving

technology and spreading in the economy via a diffusion process (as in Akcigit, Celik and

Greenwood 2016; Lucas 2009; Lucas and Moll 2014; and Perla and Tonetti 2014).

The closest point of comparison for this paper is Weitzman (1998) together with the

follow-up work of Auerswald, Kauffman, Lobo, and Shell (2000) and Ghiglino (2012). The

main difference with these models of recombinant growth is that they assume that there is an

idea-generating function that grows exponentially when new ideas are obtained by combining

existing ideas. In contrast, I assume that materials arrive more slowly, linearly with time

instead of exponentially. Firms can use combinations of products in production, with each

combination yielding a different productivity draw. As there is an exponentially growing

number of combinations—under the right distributional assumptions—productivity grows

exponentially as new materials and new combinations arrive.

In contrast with Acemoglu and Azar (2020) and other models that study firm productivity

in networks, this model allows for new types of productivity spillovers that are driven by

products’ physical characteristics. Not only are there productivity spillovers from changes

in industry TFP, but there can also be “physical spillovers” from changes in the physical

properties of one material that lead to changes in materials that are downstream in the

supply chain. These physical spillovers reflect, for example, how transistor miniaturization

has led to the decrease in size of a large variety of electronic products.

Applying the predictions of this model to the data, I estimate the effect of electronic

miniaturization on economic growth using a reduced form approach. I focus on the special

case where the combinatorial constraints are Knapsack constraints limiting the size of mate-

rials that can be used in any given product such as a car or an industrial machine. The model

predicts that, when new, more powerful generations of large computers arrive in the market,

industries with larger products, such as the aerospace industry, can use them as inputs in a

way that cars and medical equipment cannot.

I test this prediction using a two-stage least-squares approach and a new dataset on

product weights and sizes. The data shows that, after controlling for industry characteristics

and time, heavy-manufacturing industries with larger products are more likely to purchase
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computers and electronic materials.1 The regression results shows that these purchases have

a significant effect on productivity. I use this two-stage least-square regression to show that

electronic miniaturization accounts for 37.5% of all TFP growth in heavy manufacturing and

3.5% of all TFP growth during the 1982-2007 period. These results are robust to multiple

specifications, and grow stronger over time.

1.1 Related Work

Production Networks and Distortions This paper belongs within the input-output

network literature started by Leontief. In particular, it relies on the models of input-output

linkages proposed by Long and Plosser (1983) and analyzed further by Ciccone(2002), Gabaix

(2011), Jones (2011), Acemoglu et. al. (2012), Acemoglu et. al (2017), Bartleme and Gorod-

nichenko (2015), Biglio and La’o (2017), Baqaee (2018), Fadinger, Ghiglino and Teteryat-

nikova (2018), Liu (2017), Baqaee and Farhi (2019a, 2019b), Caliendo et. al (2018) and Liu

and Tsyvinski (2021).

The main modeling contribution of this paper is to augment the Long and Plosser model

by having physical constraints which distort firms’ production sets, leading to endogenous

adoption of suppliers. The main empirical contribution is to use this augmented model to

estimate how changes in the physical characteristics of computers and electronic devices

increased manufacturing productivity in the United States.

Because the input-output weights in the model are endogenous, this paper is closely

related to work by Jones (2013), Bigio and La’O (2017), Liu (2018), Fadinger et. al. (2018),

and Caliendo et. al. (2018) who analyze models of production networks with distortions.

This paper is also related to work by Carvalho et. al. (2016) and Baqaee and Farhi (2019a),

who study models of endogenous input-output networks where firms’ production functions

are not Cobb-Douglas. In all of these models, the input-output structure of the economy is

endogenous. The economic intuition is that—in the presence of distortions such as markups,

taxes and subsidies—the allocation of goods in the economy may be inefficient. Furthermore,

when the production function is not Cobb-Douglas, increases in productivity in one sector

may not increase aggregate TFP as much as they would in a non-distorted economy.

In my model, distortions arise from the combinatorial constraints on production, and

affect allocative efficiency and the propagation of shocks. For example, if industry j has

a weight constraint that binds from above, it will substitute away from heavy inputs into

lighter inputs. If a heavy machine in industry i becomes more productive, this increase in

1Heavy-manufacturing industries are those with 2-digit Standard Industry Classification (SIC) codes rang-
ing from 34 to 39 and include industrial machinery, appliances and precision instruments, but exclude in-
dustries in which electronics cannot be embedded in the final product, such as food, apparel, and glass
manufacturing.
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productivity may not propagate to industry j because industry j’s weight constraint will

prevent it from demanding more units of that machine.

Endogenous Production Networks The literature on production networks and distor-

tions considers changes in the input-output network at the intensive margin. However, there

is a recent and growing literature that analyzes changes in the production network at the

extensive margin. Atalay et. al. (2011) and Carvalho and Voigtlander (2015) give rule-

based2 models of network formation. More recently, Oberfield (2018), Acemoglu and Azar

(2020), Acemoglu and Tahbaz-Salehi (2020) and Taschereau-Dumouchel (2020) consider mod-

els where the structure of the network is determined by individual firms maximizing profit.

In Oberfield’s (2018) model, each firm bargains with a set of suppliers and chooses one

input, leading suppliers with very high productivity to become “superstars”, supplying many

firms at once. Acemoglu and Azar (2020) present a model where firms choose arbitrary sets of

suppliers, where each possible set of suppliers induces a different production technology. They

use this framework to construct an endogenous growth model, where the source of growth is

the exponentially increasing number of combinations of suppliers that a firm can use in its

production function. Acemoglu and Tahbaz-Salehi (2020) develop a framework where firms

purchase inputs from “customized” suppliers and use bargaining to reach agreement on how

to split the surplus generated by their relationship. They apply this model to understand how

firm failures can cascade throughout the supply chain and amplify recessions. Taschereau-

Dumouchel’s (2020) model studies the cascading effect of firms deciding to enter or exit the

market. An exiting firm will have negative spillovers on its clients and suppliers, leading

multiple firms to exit the network simultaneously.

In my model, changes in the parameters of the model can lead to a change in the input-

output network at the extensive margin. A sudden change in the size of a product (say,

because of technological advancement) can lead to a change in the structure of the input-

output network. For example, desktop computers replaced mainframes in the 1980s, laptops

replaced desktops in the 1990s and 2000s, and tablets replaced laptops in the 2010s. In

all these changes, the shift in demand toward lower-weight products was made possible by

technological improvements.

Effect of Information Technology on GDP Jorgenson and Stiroh (1999,2000) and

Jorgenson (2005) show that information technology (including computers, software and com-

munications equipment) accounted for a majority of TFP growth in the period 1973-2002.3

2For example, Atalay et. al. (2011) use a preferential attachment model.
3Table 8 in Jorgenson (2005) shows that information technology contributed 68% of all TFP growth in

the 1973-1989 period, 88% of all TFP growth in the 1989-1995 period, and around 66% of all TFP growth
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More recent work by the Bureau of Economic Analysis (Barefoot et al. 2018) showed that,

for the 2006-2016 period, the digital economy accounted for 28% of real GDP Growth.

In contrast with previous work—which focuses on the price and quality of computers—

this paper focuses on the effect of electronic miniaturization on the productivity of heavy

manufacturing industries. The results in Section 6 show that expenditures in computers and

electronics account for almost all of TFP growth in heavy manufacturing and that electronic

miniaturization accounts for 37.5% of this growth. These results are coherent with previous

results in the literature that show how information technology accounts for the vast majority

of TFP growth in the economy. However, I highlight that the identification strategy applies

only to industries whose products can have computers and electronics embedded in them

and does not generalize to other sectors such as food or glass manufacturing. Thus, I do not

account for any effect that computers and electronics may have on TFP through their direct

application in non-heavy manufacturing sectors such as the service industry.4

Physical Properties and International Trade In the international trade literature,

Hummels and Skiba (2004) show that products’ physical features, such as their weight, affect

trading costs. They use this observation to argue for the existence of the Alchian-Allen

effect, where high quality varieties within an industry are more likely to be exported than

low quality varieties. Evans and Harrigan (2003), Harrigan (2005), Baldwin and Harrigan

(2007) and Harrigan and Deng (2010) expand on this observation and show that heavier goods

are traded between physically close countries, while lighter goods are traded by physically

distant countries. Similarly, lighter goods are much more likely to be traded by air than by

sea.

Roadmap The rest of the paper is organized as follows. Section 2 shows the baseline

static model of production with combinatorial constraints. Section 3 shows that a generically

unique equilibrium exists, and characterizes the equilibrium under standard assumptions on

productivity distributions. Section 4 derives comparative statics on the effect that changes

in product’s physical characteristics have on aggregate GDP. Section 5 develops a dynamic

model where improvements in products’ physical characteristics drives GDP growth. Section

6 contains empirical evidence on the effect of electronic miniaturization on productivity.

Section 7, discusses potential future work, and concludes. The Appendices contain proofs for

all Propositions and Theorems along with additional robustness results.

in the 1995-2002 period.
4I account for indirect effects arising from the use of heavy manufacturing products in other industries,

through the use of Domar weights when computing the effect of changes in heavy manufacturing productivity
on aggregate TFP.
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2 A Static Model

This section presents a tractable general equilibrium model that captures how changes in the

physical properties of primary goods allows them to be combined in new ways, expanding

the production possibilities frontier.

In the model, there is a finite number of primary industries, which one can think of as

producing materials or components that have physical properties. Changes in the physical

properties of one primary good have effects on the physical properties of other primary

goods as well. In particular, this type of spillover effect captures the notion that smaller

semiconductors have led to smaller electronic components and smaller electronic machines in

general.

The second key feature of the model is that a large number of intermediate industries—

which one can think of as producing fixed machines, vehicles, or appliances—can choose the

subset of primary industries’ goods that they use as inputs. Different subsets S of primary

inputs represent the many different ways that an intermediate good can be produced. Each

subset S further corresponds to an independent random productivity draw A(S), so that new

combinations of inputs—such as replacing mechanical buttons with touchscreens—may lead

to potentially more productive machines.

A novel aspect of the model is that intermediate industries cannot choose arbitrary sets S

of inputs. Rather, S is restricted by constraints that may depend on the physical properties

of the primary goods contained in S. I show in Section 5, that as the physical properties of

primary goods change, new input sets S are unlocked, and productivity increases.

The model is closed by adding a final industry, which aggregates the output of all the in-

termediate industries into a final good. This allows us to use the law of large numbers to treat

aggregate productivity as a deterministic function of the number of feasible combinations of

primary inputs available to intermediate industries.

2.1 Market Structure

There are three types of industries:

1. Primary industries, which are indexed by j ∈ {1, ..., J}. Each primary industry j

produces one good using labor and other primary industries’ goods as inputs. Good

j has a vector of properties θj ∈ Rp. I denote the set of all primary industries by

J = {1, ...J}.

2. Intermediate industries, which are indexed by i = (τ, ι). Here, τ ∈ (0,+∞) is a

threshold which specifies which sets S of primary goods can be combined as inputs to the
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intermediate industry’s production function, and ι ∈ [0, 1] is an index that distinguishes

different industries with the same threshold τ .5 Intermediate industries are distributed

with a density ν(i)di. Throughout the paper, I assume that ν depends only on τ , so

that ν(i)di = ν(τ)dι dτ . Without loss of generality, I assume that
∫
ν(i)di = 1. Finally,

I assume that each intermediate industry i produces one good using primary goods as

inputs. For convenience of notation, I write τi when I refer to the threshold of industry

i, and denote the set of all intermediate industries by I = (0,+∞)× [0, 1].

3. A final industry, denoted by f . The final industry produces one final good, using an

aggregate of the intermediate industries’ goods.

Households There is a representative household which consumes Cf units of the final

good, and has utility U(Cf ). The household supplies one unit of labor inelastically, and has

a budget constraint PfCf ≤ W , where Pf is the price of the final good, and W is the wage

paid to labor. Throughout, I assume that the wage is the numeraire, so that W = 1.

Primary Industries Each primary industry j has a strictly quasi-concave, continuous and

increasing production function with constant returns to scale

Yj = Fj((Xjk)
J
k=1, Lj)

where Xjk is industry j’s demand for good k and Lj is industry j’s demand for labor. Good

j has a vector of physical characteristics θj ∈ Rp, which is determined by a continuously

differentiable function θj = θj(ζ). The input ζ is a vector of fundamental properties which

can affect any primary industry.

In addition to the standard assumptions of quasi-concavity, continuity, and monotonicity,

I make the assumption that labor is essential in the production of every primary good, so

that Fj(X, 0) = 0 for all X. This assumption prevents equilibria where production is fully

automated.

Example 1 (Leontief Production Functions) Consider an economy where primary in-

5While this may seem at first an excess of notation, the 2-dimensional indexing of intermediate industries
will be helpful to make the results more tractable. In particular, having a continuum of thresholds τ will
allow us to define and compute ∂ log Y

∂θj
, the effect of a change in a primary good’s physical properties on

aggregate log-output. Having a unit mass of industries ι ∈ [0, 1] for every threshold τ will allow us to use the
law of large numbers and have deterministic aggregate output and productivity, even when individual firm
productivities are drawn from random distributions.
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dustry j has a Leontief production function

Yj = min{AjLj,min{Xjk

αjk
}}.

With some abuse of notation, we can write αjk = 0 when industry j does not use industry

k’s good as an input.

Each primary good has only one physical property, its size, denoted by θj. Since producing

one unit of good j requires αjk units of good k, the size of one unit of good j will be given by

θj =
∑J

k=0 αjkθk + ζj, where ζj ≥ 0 is an idiosyncratic factor affecting the size of good j. In

matrix form, this equation is given by

θ = αθ + ζ (1)

As long as L = (I−α)−1 exists, we can write θ = θ(ζ) =def (I−α)−1ζ, which is a continuously

differentiable function. The intuition behind this specification is that if the idisosyncratic size

ζk of good k decreases by ∆ζk, then the size θj of industry j’s good will decrease, through

network spillover effects, by Ljk∆ζk.

Intermediate Industries Each intermediate industry i produces a single good using labor

and primary goods as inputs. The production technology is given as a menu of production

functions, indexed by the subset Si ⊂ J of primary inputs used in production. More con-

cretely, given a set of inputs Si, industry (τ, i) has a strictly quasi-concave, continuous and

increasing production function with constant returns to scale

Yi(Si) = Ai(Si)F (Si, (Xij)j∈Si , Li) (2)

where Ai(Si) ∈ R>0 is a Hicks-Neutral productivity shifter that depends on Si, (Xij)j∈Si is a

vector of demands for primary goods and Li is industry i’s labor demand.

Each intermediate industry i cannot use arbitrary combinations of primary inputs. In-

stead, firms in industry i are bound by a constraint

G(Yi, (Xij)j∈Si , (θj)j∈Si , Si) ≤ τiYi (3)

where G is a vector-valued function that has constant returns to scale in (Yi, (Xij)j∈Si) and

is quasi-convex as a function of (Yi, (Xij)j∈Si). For some sets Si, the set {(Y, (Xij)j∈Si) :

G(Yi, (Xij)j∈Si , (θj)j∈Si , Si) ≤ τiYi} may be empty, so that production is not feasible using

the set of inputs Si. I denote by F(θ, τi) the collection of all feasible input subsets S ⊂ J
for which there exists at least one vector (Yi, (Xij)j∈Si) such that constraint (3) holds.
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Example 2 Constraint (3) can encode both continuous and discrete constraints. For exam-

ple, it may encode a size constraint of the form

∑
j∈Si

Xij

Yi
θj ≤ τi. (4)

It may also encode a constraint that does not depend on the quantities Xij demanded by

industry i, but only on the chosen input set, such as a Knapsack constraint∑
j∈Si

γjθj ≤ τi. (5)

Because the function G is vector-valued, both constraints may hold simultaneously. I em-

phasize that the discrete Knapsack constraint is not that different from the continuous size

constraint. For example, the production of a car requires fuel, exhaust, cooling, lubrication

and electrical systems, as well as an engine, wheels, tires, and a chassis. These components

of a car have been increasing in quality, but have remained relatively constant in size. In this

very stylized example, one can think of the production function for a car as taking the form

Yi = Ai(Si)Fi(Si, {Xij}j∈Si , Li) subject to a combinatorial constraint
∑

j∈Si θj ≤ θi, where

Yi represents the quality-adjusted output of the car (e.g. adjusted for durability, mileage,

safety, speed and comfort), Xij represent the relative quality of the car’s individual systems,

θj represent the respective sizes of these systems, and τi represents the overall size of the car.

For the special case where Fi is Leontief, the discrete and continuous size constraints

coincide. Throughout the paper, I do not impose any assumptions on the functional form

of Fi besides continuity, monotonicity and quasi-concavity, and we may take Fi as Leontief

whenever a discrete constraint is used.

The Final Industry The final industry’s production function is given by

log Yf =
γ

γ − 1
(

∫ ∞
0

log(

∫ 1

0

X
γ−1
γ

fτι dι)ν(τ)dτ)

where Xfτι is the final industry’s demand for industry (τ, ι)’s good, γ ∈ (1,∞) is the elasticity

of substitution for goods within the same industry, and the elasticity of substitution across

industries is 1.

The final industry aggregates the idiosyncratic shocks of intermediate industries. This give

us—through the law of large numbers—a deterministic expression for how changes in primary

product features affect both aggregate output as well as the probability of a primary industry

being used in production. To perform this aggregation I make the following assumption about
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the distribution of Ai(Si).

Assumption 1 For each intermediate industry i ∈ I, the vector of possible productivities

Ai = (Ai(S))S∈F(θ,τi) ∈ R|F(θ,τi)| are independently drawn from distributions Ψ(S) which:

1. may depend on S;

2. do not depend on ι;

3. are absolutely continuous with respect to Lebesgue measure; and

4. satisfy V ar[A(S)γ] <∞ for all A(S) drawn from Ψ(S).

Assumption 1 implies, among other things, that the prices (Pi)i∈I are independently

distributed, so that that price aggregates of the form Pτ = (
∫ 1

0
P 1−γ
τι dι)

1
1−γ are well defined.

I will use the requirement that Ψ is absolutely continuous to show that most equilibrium

quantities are unique.6

2.2 Equilibrium

In this subsection, I give a definition of equilibrium. To make some of the notation more

compact, I introduce notational conventions that are carried throughout the paper. In ad-

dition, to address possible issues with the non-convexity of production technology, I define

industries’ marginal cost functions as in Baqaee and Farhi (2020) and Acemoglu and Azar

(2020). To ensure that aggregates are well defined, I also introduce a tie-breaking rule for

intermediate industries which have multiple potential cost-minimizing input sets, and show

that this tie-breaking rule is used only by a subset of industries with measure zero. The

subsection concludes with the definition of equilibrium.

Notation I will often work with equations that apply to all industries (primary, interme-

diate, and final) simultaneously. I will use the indices g, h ∈ J ∪ I ∪ {f}. to denote generic

industries which may belong to any sector.

For any industry g, I denote its revenue by Ŷg = PgYg. For any pair of industries g, h, I

denote the revenue that industry h obtains from this transaction by X̂gh = PhXgh. I denote

the amount of good h used in equilibrium to produce one unit of good g by αgh =
Xgh
Yg

and,

industry h’s share of industry g’s revenue by α̂gh =
PhXgh
PgYg

.

6More precisely, for each intermediate industry i ∈ I, there may exist a set of realizations of Ai such that
the cost-minimizing input set Si is not unique. This set of realizations will have Lebesgue measure zero.
Since I assume that the distribution Ψ of Ai is absolutely continuous with respect to Lebesgue measure, the
probability that any given industry will have multiple cost-minimizing sets is also zero. Thus, equilibrium
quantities that are aggregated across all intermediate industries will always be unique.
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I denote the aggregate demand of intermediate industries for a primary good j by

Xint,j =
∫
I Xijdi, and the aggregate revenue received by primary industry j from its sales to

intermediate industries by X̂int,j = PjXint,j.

Finally, given a set Ω, I use 2Ω to refer to the collection of all subsets of Ω, and ∆(Ω) to

refer to the set of all probability distributions over Ω.

Marginal Cost Functions Because intermediate firms can choose their set of inputs,

their overall production technologies may be non-convex. Thus, in some situations, it will

be more appropriate to state firms’ optimization objectives in terms of cost-minimization

instead of profit maximization.7

Definition 1 (Marginal Cost Functions) Let P = ((Pj)
J
j=1, (Pi)i∈I , Pf ) denote a vector

of prices. The marginal cost functions of primary industries, intermediate industries, and

the final industry are defined as follows:

1. For a primary industry j, Kj(P ) = minLj ,(Xjk)Jk=1

∑J
k=1 PkXjk + Lj, subject to

Fj((Xjk)
J
k=1, Lj) = 1.

2. For an intermediate industry i with threshold τ , Ki(P, τ) = minSi∈F(θ,τ) K(Si, P, Ai, τ)

where K(Si, P, Ai, τ) = min(Xij)j∈Si ,Li

∑
j∈Si PjXij + Li, subject to

Ai(Si)F (Si, (Xij)j∈Si , Li) = 1 and G(1, (Xij)j∈Si , (Θj)j∈Si , Si) ≤ τ.

3. For the final industry, Kf (P ) = min(Xfi)i∈I

∫
I PiXfidi, subject to

e
γ
γ−1

(
∫∞
0 log(

∫ 1
0 X

γ−1
γ

fτι dι)ν(τ)dτ) = 1.

Breaking Ties Between Cost-Minimizing Sets A technical issue that will arise is that,

when intermediate industries minimize costs, there may be two different optimal input sets

S∗i and S∗∗i , leading to two different allocations. In order to avoid this ambiguity, I define a

rule to be used by all intermediate industries use to choose an input set in the case of ties.

The tie-breaking rule is possibly randomized and always selects a set that minimizes costs.

Definition 2 (Tie Breaking Rule) When multiple input sets minimize costs, intermedi-

ate industries choose their input set according to a (possibly random) function TieBreak :

2F(θ,τ) → ∆(F(θ, τ)) which satisfies

TieBreak(arg min
S∈F(θ,τ)

K(S, P,A(S), τ)) ∈ arg min
S∈F(θ,τ)

K(S, P,A(S), τ).

7More concretely, an intermediate firm i with a constant returns to scale production function will obtain
zero profits by choosing any feasible set of inputs Si and choosing Li, (Xij)j∈Si

to maximize profits. This
does not mean that all feasible sets Si are equally likely to be used in equilibrium. Instead, firms which
choose Si to minimize marginal costs will be the only ones that will receive positive demand in equilibrium,
since they can charge the lowest prices.
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This tie-breaking rule is a technical construction to ensure that aggregates such as Xint,j =∫
I Xijdi are well defined. As the following Lemma shows, it is used only by a set of industries

that has measure zero.

Lemma 1 Let A = {A ∈ R|F(θ,τ)| : | arg minS∈F K(S, P,A(S), τ)| ≥ 2} be the set of produc-

tivity parameters for which there are at least two input sets which minimize the intermediate

cost function. Then A has Lebesgue measure zero.

I prove Lemma 1 in Appendix A. Since the distribution of productivity parameters is

absolutely continuous with respect to Lebesgue measure, the probability that any given

intermediate industry i has to use the tie breaking rule is zero.

Definition of Equilibrium

Definition 3 An equilibrium is defined by a tuple (P,C, Y,X, S) such that

1. Prices equal marginal costs. For any industry g ∈ J ∪ I ∪ {f},

Pg = Kg(P ). (6)

2. Intermediate firms choose input sets to minimize marginal costs

Si = TieBreak(arg min
S′∈F(θ,τi)

K(S ′, P, Ai(S
′), τi)). (7)

3. All firms choose their demands X,L to minimize marginal costs, subject to a given set

of inputs.

4. Households choose consumption C to maximize utility subject to their budget constraint.

5. Markets clear, so that

Yj = Fj((Xjk)
J
k=1, Lj) =

J∑
k=1

Xkj +

∫
I
Xijdi ∀j ∈ J (8)

Yi = Ai(Si)F (Si, (Xij)j∈Si , Li) = Xfi ∀i ∈ I (9)

log Yf =
γ

γ − 1
(

∫ ∞
0

log(

∫ 1

0

X
γ−1
γ

fτι dι)ν(τ)dτ) = logC (10)

J∑
j=1

Lj +

∫
I
Lidi = 1. (11)
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3 Existence, Uniqueness and Characterization of Equi-

librium

In this section, I show a mild necessary and sufficient condition for an equilibrium to exist,

and for prices and aggregate equilibrium quantities to be unique. I also show that, under

a standard assumption on the productivity term Ai(Si), there exists a tractable formula for

aggregate output. In Section 4, this formula will allow us to derive useful comparative statics

showing how output changes when the physical properties of primary products change. In

Section 5, it will also allow us to expand the static model into a growth model, where growth

is driven by improvements in the physical properties of primary inputs.

3.1 Existence

In this subsection, I show that an equilibrium can be obtained under a mild necessary and

sufficient condition.

Theorem 1 An equilibrium exists if and only if there exists a positive vector of primary

industry prices P1, ..., PJ > 0 such that Pj = Kj(P0, P1, ..., PJ) for every primary industry

j ∈ J .

I discuss the intuition behind the proof of Theorem 1 here and give a proof in Appendix B. It

is immediate that if such a vector of prices does not exist, then an equilibrium cannot exist, so

the condition is necessary. The intuition behind sufficiency is that the prices of intermediate

and final industries are completely determined by primary prices and the parameters of the

model. The cost-minimizing input sets Si are determined by prices and the tie breaking rule,

and equilibrium quantities are unique given Si, since all production functions are strictly

quasi-concave. I highlight that uniqueness is not immediate, since intermediate firms could

have multiple cost-minimizing input sets. Nevertheless, as discussed below, one can show

that all aggregate quantities are unique.

3.2 Uniqueness

In this subsection, I give mild conditions under which there is a unique equilibrium, and

discuss what happens when these conditions do not apply. I begin by showing that, when the

cost functions Kj(P ) of primary industries are strictly concave, the equilibrium price vector

P ∗ is always unique (if it exists).

Proposition 1 If the primary industry cost functions (Kj(P ))Jj=1 are strictly concave as a

function of prices, then the equilibrium price vector P ∗ is unique if it exists.
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Proposition 1 holds, for example, when the primary industry production functions are CES

with non-zero elasticity of substitution. For the special case where production functions are

Leontief, the cost function Kj(P ) is linear in prices, and not strictly concave. Nevertheless,

when the Leontief coefficients add up to less than 1, there is a unique primary price vector

(and therefore a unique price vector P ∗ for all industries).

Proposition 2 Let Fj(Aj, Lj, X) = min{AjLj,mink∈J {Xjkαjk
}}. If the matrix (I − α) is in-

vertible and all entries in (I − α)−1 are non-negative, then there exists a unique equilibrium

price vector P ∗.

Even when prices are unique, equilibrium quantities may not be. This is because there

may exist, for a given intermediate industry i ∈ I, two different input sets S∗i , S
∗∗
i , both of

which minimize costs, and ties may be broken randomly between these sets. If this happens,

intermediate industry i would have two different demand vectors X∗i , X
∗∗
i corresponding to

the two different input sets.

While intermediate industry demands for primary goods may not always be unique, all

other relevant quantities (including all industry outputs Y and profits) are unique. The

intuition behind this is two-fold: (i) Lemma 1 tells us the probability that any given industry

i has multiple input sets is 0, and (ii) these events of probability 0 do not affect the aggregate

result. I now make this intuition more formal.

Theorem 2 Assume that a unique price vector P ∗ satisfying equation (6) exists. Then,

1. The equilibrium output vector Y ∗, final input demands (X∗fi)i∈I and primary input

demands ((X∗jk)
J
k=1, L

∗
j)
J
j=1 are unique.

2. If the tie breaking rule is deterministic, the equilibrium input sets S∗i and intermediate

demands (X∗ij)
J
j=1 are also unique.

3. If the tie breaking rule is random, the the input set S∗i and intermediate demands

(X∗ij)
J
j=1 are unique with probability 1, where the probability is taken over the random

choice of Ai ∈ R|F| and the randomness of the tie breaking rule.

3.3 A Tractable Formula for Aggregate Output as a Function of

the Number of Feasible Production Sets

We want to understand how output depends on the physical properties θ of primary in-

puts. I show here that such an analysis is tractable under the assumption that intermediate

industries’ productivity terms Ai(Si) = φi(Si) ·
∏

j∈Si Aj are the product of deterministic
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input-specific productivities Aj, and of a random variable φi(Si) which is drawn identically

and independently from a Frechet distribution for every i ∈ I and every Si ∈ F . This

assumption is used by Acemoglu and Azar (2020) on their model of endogenous production

networks, and is inspired by the use of Frechet productivity draws in Kortum (1997) and

Eaton and Kortum (1998) to microfound gravity equations in international trade models.

Assumption 1′ For all intermediate industries i ∈ I and all sets Si ∈ F , the productivity

term Ai(Si) = φi(Si) ·
∏

j∈Si Aj where Aj > 0 is a deterministic term corresponding to input

j, and φi(Si) is a random variable drawn independently from a Frechet distribution with CDF

Ψ(x) = e−x
−κ

. The shape parameter κ satisfies κ > 2(γ − 1).

To give a tractable formula for aggregate output, I need to define what the cost of

intermediate products would be if all productivity terms are deterministic (that is, if

Ai(Si) =
∏

j∈Si Aj, and φi(Si) = 1).

Definition 4 (Deterministic Cost Function) Given an input set S ∈ F and an equilib-

rium vector P of primary prices, the deterministic cost function for intermediate goods with

threshold τ is given by

K(S, P, τ) = min
(Xij)j∈S ,Li

∑
j∈S

PjXij + Li

Subject to : (
∏
j∈S

Aj) · F (S,Xi, Li) = 1 and G(1, (Xij)j∈Si , (Θj)j∈Si , Si) ≤ τ

I can now characterize the equilibrium output as a function of deterministic cost functions

and the feasible collection |F(θ, τ)|.

Theorem 3 (Static Output Characterization) Suppose that Assumption 1′ holds. Let

Γ : R>0 → R be the Gamma function Γ(x) =
∫∞

0
tx−1e−tdt. Then the output of the final

industry is given by

log Yf =
1

κ

∫ ∞
0

log(
∑

S∈F(θ,τ)

K(S, P, τ)−κ)ν(τ)dτ − log(Γ(1− γ − 1

κ
)

1
1−γ ) (12)

I give a proof of Theorem 3 in Appendix B. The intuition for the result follows from the

fact that the production function for the final industry is a nested CES function, where the

inner nest has elasticity γ and the outer nest is Cobb-Douglas. For each threshold τ , the

inner nest’s output will be Yτ = (
∑

S∈F(θ,τ) K(S ′, P, τ)−κ)−
1
κ . Informally, this follows from

the fact that each firm with threshold τ faces a standard discrete choice problem where they

have to choose among |F(θ, τ)| alternatives, and each alternative has a cost which is Frechet

distributed with shape parameter κ. The outer nest’s output is given by
∫∞

0
log Yτν(τ)dτ ,
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minus a constant term log(Γ(1 − γ−1
κ

)
1

1−γ ) that arises from the Cobb-Douglas structure of

production.

Note that in the special case where K(S, P, τ) = 1,8 one can obtain a simplified formula

log Yf =
1

κ

∫ ∞
0

log |F(θ, τ)|ν(τ)dτ − log(Γ(1− γ − 1

κ
)

1
1−γ ). (13)

This simplification makes more explicit the connection between output and the number of

feasible combinations |F(θ, τ)| and will be important in Sections 4 and 5 for deriving tractable

comparative statics and growth rates.

4 Comparative Statics

In this section, I analyze how changes in primary goods’ physical properties affect aggregate

productivity. In particular, I give formulas for the first-order and second-order partial deriva-

tives
∂ log Yf
∂θj

and
∂2 log Yf
∂θj∂θk

of log-output with respect to physical properties. I then apply these

formulas to show how changes in products’ physical properties can propagate through the

supply chain, and have spillover effects on log-output.

4.1 Direct Comparative Statics

Throughout this section, Assumption 1′ holds. Furthermore, I assume that the feasibility

constraint G(Yi, (Xij)j∈Si , (θj)j∈Si , Si) ≤ τiYi depends only on Si and (θj)j∈Si , so that the

constraint becomes G((θj)j∈Si , Si) ≤ τi. For simplicity of analysis, I make the additional

assumption that K(S, P, τ) = 1 for all sets S ∈ F . In subsection 4.3, I show comparative

statics results when K(S, P, τ) can be arbitrary.

With these assumptions, log-output is given by equation (13). Its derivative with respect

to θj is given by

∂ log Yf
∂θj

=
1

κ

∫ ∞
0

∂
∂θj
|F(θ, τ)|
|F(θ, τ)|

ν(τ)dτ, (14)

where ∂
∂θj
|F(θ, τ)| is a distributional derivative. The following Lemma gives a simple formula

for this derivative in terms of Dirac delta functions.

8This may happen, for example, if all primary prices Pj are equal to 1, and the intermediate production

function is Cobb-Douglas so that Ki =
∏
j∈Si

P
−αj

j .

17



Lemma 2 Let δ(·) be the Dirac delta function. Then,

∂

∂θj
|F(θ, τ)| = −

∑
S⊂J

δ(τ −G(θ, S))
∂G

∂θj
(15)

I give a proof of Lemma 3 in Appendix C, and briefly discuss the intuition here. Recall

that |F(θ, τ)| is the number of sets that satisfy the combinatorial constraint G(θ, S) ≤ τ . If

G(θ, S) is differentiable and increasing in θ, then, for any fixed τ , |F(θ, τ)| is a decreasing

step function which takes integer values and ranges between 0 and 2J . Its derivative is 0 at

almost every point, except for those values of θ which satisfy G(θ, S) = τ for some set S. If

such a set S contains j, then increasing θj by an infinitesimally small amount would make

S infeasible, and would decrease |F(θ, τ)|. The size of this decrease is exactly the number of

sets S which contain j, and for which G(θ, S) = τ .

A Note on Computation, and an Example The sum in equation (15) is over 2J sets,

and may be daunting to compute. However, in many situations of interest, we can either

compute approximately or simulate the values of |F(θ, τ)|. Appendix E gives both exact and

approximation algorithms for computing F when the combinatorial constraints are multi-

dimensional Knapsack constraints.

The following numerical example shows how |F(θ, τ)| changes when there is a large num-

ber of primary goods which do not change size, and one primary good which shrinks. This

is reflective, for example, of an economy where electronic goods miniaturize, but other goods

remain at relatively constant sizes.

Example 3 Consider an economy where there are 51 primary goods. The first good has a

variable size θ1 and the 50 remaining goods have a constant size equal to 1. The collection

of feasible sets is given by F(θ, τ) = {S :
∑

j∈S θj ≤ τ}. The density ν(τ) is uniform over

[0, 50].

Figure 2 gives an illustration of the discontinuous nature of |F(θ, τ)| for this economy.

We can see from the ridges in the plot that |F(θ, τ)| is a step function, that it is very low

for low values of τ , and that decreasing the size of θ1 starts having a significant effect on

|F(θ, τ)| only when τ ≥ 25 and more than half of the goods can be combined. Subfigure

(b) shows a heatmap for |F(θ, τ)|, and clearly illustrates that phase transitions occur in the

value of |F(θ, τ)| as τ increases above 25, and when θ decreases below τ + 25. These phase

transitions appear exactly when θ is small enough or τ is large enough that more than half of

the goods can be combined.
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(a) |F(θ, τ)|

(b) Level curves for |F(θ, τ)|

Figure 2: This figure shows how |F(θ, τ)| changes as a function of θ and τ in the economy
given in Example 3. In this example, there are 51 goods. The first good has a variable size
θ1, and the 50 other goods have a constant size equal to 1. Subfigure (a) shows a 3D plot of
this function. We can see from the ridges in the plot that |F(θ, τ)| is a step function, that
it is very low for low values of τ , and that decreasing the size of θ1 starts having an effect
on |F(θ, τ)| only when τ ≥ 25 and more than half of the goods can be combined. Subfigure
(b) shows a heatmap for |F(θ, τ)|, and clearly illustrates that phase transitions occur as τ
increases above 25, and when θ decreases below τ + 25.
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First-Order Comparative Statics Applying Lemma 3 to equation (14), I obtain the

following Proposition.

Proposition 3

∂ log Yf
∂θj

= −1

κ

∑
S⊂J

ν(G(θ, S))

|F(θ,G(θ, S))|
∂G

∂θj
. (16)

Each term in the expression
∑

S⊂J
ν(G(θ,S))
|F(θ,G(θ,S))|

∂G
∂θj

in Proposition 3 has a natural inter-

pretation. Let τ be fixed, and suppose that θj increases. The number of feasible sets

|F(θ, τ) = {S : G(θ, S) ≤ τ}| will decrease only for those values of τ for which there exists

at least one set S such that τ = G(θ, S). The density of such sets is ν(τ) = ν(G(θ, s)). Now,

log output does not depend on |F(θ,G(θ, S))| directly, but rather through log |F(θ,G(θ, S))|.
Using the chain rule, the rate at which the expression log |F(θ,G(θ, S))| decreases will be
∂G
∂θj

1
|F(θ,G(θ,S))| . The sum aggregates these output changes over all possible affected sets S.

Second-Order Comparative Statics An important feature of the model is that, as the

physical properties of primary inputs change, they can relax intermediate industries’ combi-

natorial constraints, and increase demand for other primary goods as well. We can show this

effect quantitatively by taking second-order derivatives of output with respect to θ.

Proposition 4 If G(θ, S) is given by a linear function G(θ, S) =
∑

j∈S γjθj, then the matrix

of second partial derivatives of log output with respect to θ is almost-everywhere given by

∂2 log Yf
∂θj∂θk

= −γjγk
κ

∑
S⊂J

ν ′(G(θ, S))

|F(θ,G(θ, S))|
. (17)

I give a proof of Proposition 4 in the Appendix. It is important to note that Equation (17)

holds for all values of θ, except for a set of measure zero. The values of θ for which Equation

(17) does not hold are those for which the number of feasible combinations |F(θ,G(θ, S))|
may change with a small change in θ. More formally, for |F(θ,G(θ, S))| to change with θ,

there must exist a set S ′ 6= S such that G(θ, S) = G(θ, S ′). Since G is linear in θ, the set of

θ for which such condition holds has measure zero.

The second partial derivatives are always positive if ν is a decreasing function and γj, γk >

0. The economic interpretation of this fact is that—if the majority of intermediate industries

have small thresholds, then a decrease in the size θk of good k will amplify the positive

effect of a decrease in the size θj of good j. As θk decreases, any decrease in θj will make

intermediate industries feasible at a faster rate, and therefore increase productivity at a

faster rate, compared with the scenario where θk remained constant. This captures the
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notion that complementarity exists between the physical properties of different goods. If the

physical properties of good improve, then that increases the value of improving the physical

properties of other goods.

4.2 Spillovers of Physical Properties

A fundamental fact in the production networks literature is that increases in productivity in

one industry will lead, through spillover effects, to increases in productivity to downstream

industries. In this paper, increases in productivity are microfounded through changes in the

physical properties of primary inputs. In practice, miniaturization of one product such as

transistors, can lead to physical changes, such as greater portability and energy efficiency, in

other products.

In this subsection, I give a quantitative formula for how changes in the physical proper-

ties of one primary good propagate through the economy and have an effect on aggregate

output. As in Section 2, the vector θ of physical properties is a differentiable function θ(ζ) of

some fundamental properties ζ1, ..., ζK .9 The following result is an immediate corollary from

Proposition 3 and the chain rule.

Corollary 1

∂ log Yf
∂ζk

= −1

κ

J∑
j=1

∑
S⊂J

ν(G(θ, S))

|F(θ,G(θ, S))|
∂G

∂θj

∂θj
∂ζk

(18)

This result is very general, and applies to many areas outside miniaturization. To give a

concrete example, room temperature superconductors that can be produced reliably would

have impacts across the energy, transportation, defense, industrial and medical sectors (Johns

et. al. 1990). The conductivity, temperature, and size of superconducting inputs could be

modeled as property vectors θ(ζ) which may depend on the properties ζ of the materials used

to create these inputs. The impact of superconductors across industries could be modeled

through a constraint functionG(θ, S), which would specify size, temperature and conductivity

constraints of different industries.

9Here I emphasize that the number of fundamental properties K may be different from the number of
primary industries J , or the dimension p of the property vector θ.
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4.3 Comparative Statics with Heterogeneous Prices

I conclude this section by showing how to compute comparative statics when K(S, P, τ) can

be arbitrary. In this case, log-output is given by Equation (20) , and equation (14) becomes

∂ log Yf
∂θj

= −1

κ

∫ ∞
0

∂
∂θj

∑
S∈F(θ,τ) K(S, P, τ)−κ∑

S∈F(θ,τ) K(S, P, τ)−κ
ν(τ)dτ.

The following analogue of Lemma 3 holds:

Lemma 3 Let δ(·) be Dirac’s Delta function. Then,

∂

∂θj

∑
S∈F(θ,τ)

K(S, P, τ)−κ =
∑
S⊂J

δ(τ −G(θ, S))K(S, P, τ)−κ
∂G

∂θj
(19)

Applying Lemma 3, we obtain

∂ log Yf
∂θj

= −1

κ

∑
S⊂J

∂G
∂θj
K(S, P,G(θ, S))−κν(G(θ, S))∑

S′∈F(θ,G(θ,S′))K(S ′, P,G(θ, S))−κ
.

This result is completely analogous to Proposition 3, and yields analogous results for spillovers

with physical properties. One important thing to note is that now there is an additional

channel for second-order effects. When θk increases, it not only affects ν(G(θ, S)), but it also

affects K(S, P,G(θ, S)). Effectively, an increase in θk tightens the combinatorial constraint

for all intermediate industries using product k, and increases the marginal cost of producing

any intermediate product that uses both goods j and k in production.

5 A Growth Model

In this section, I show how growth arises from the miniaturization of primary inputs. I

extend the static model of Section 2 to a dynamic analogue that captures the intuition that,

as transistors become smaller, other electronic components also become smaller and new

combinations of inputs arise. These components can themselves be combined into machines,

and the exponential growth of combinations leads to sustained GDP growth.

The model has some interesting dynamics. Intermediate industries—such as electricity,

computer hardware, internet services and nanotechnology—arrive over time as primary com-

ponents miniaturize. Each intermediate industry has a threshold τ , and arrives only when

there are primary components with sizes smaller than τ which can be used in production.

Thus, when an intermediate industry first arrives, its productivity is very low since there are
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not many components that can be combined to create machines in that sector. As inputs

keep shrinking, the new sector’s productivity increases.

Primary Industries There are a countable number of primary industries, indexed by

j ∈ N. Time is continuous and indexed by t ∈ R≥0. Industry 1 uses labor as input, and its

production function is Y1(t) = L1(t). Industry j uses industry j − 1’s good as input, and its

production function is Yj(t) = Xj,j−1(t).10 The size of good 1 is given by θ1(t) = ζ(t), where

ζ(t) is a parameter whose dynamics I describe below. Since the size of good j is the sum of

sizes of its inputs, I have θj(t) = θj−1(t) = ... = ζ(t).

To ensure that the set of primary industries at any given point is finite, I introduce a

new constraint on primary good production, not present in the static model. This is a size

constraint θj(t) ≤ τj, where τj is a threshold. The constraint captures the idea that some

primary goods cannot be feasibly produced unless their size is below a given threshold. Since

in this model all primary goods have the same size ζ(t), primary goods arrive one at a time,

in order of descending τj. I assume that τ1 = 1 and that the conditional random variable

log τj− log τj+1 is exponentially distributed with mean 1
λ
> 0. I also assume that ζ(t) = e−Zt,

where Z > 0 is some exogenous level of research. With these dynamics, I can show the

following Lemma.

Lemma 4 New primary industries arrive according to a Poisson process with arrival rate

Zλ.

Intermediate and Final Industries There is a continuum of intermediate industries with

a feasibility set F(θ(t), τ) = {S :
∑

j∈S θj(t) ≤ τ, S 6= ∅}. As in Section 4, I assume that

the intermediate deterministic cost function satisfies K(S, P, τ) = 1.11The productivity term

for industry i if it chooses set S is given by Ai(S) = φi(S), which is drawn from a Frechet

distribution as in Assumption 1′. The output of the final industry is given by the aggregate

log Yf =
∫∞
0 log((

∫ 1
0 X

γ−1
γ

fτι dι)
γ
γ−1 )ν(τ)dτ∫∞

0 ν(τ)dτ
.

Density of Intermediate Industries In contrast with the model in Section 2, the mass

of intermediate industries
∫∞

0
ν(τ)dτ can be infinite. At any time t, the only intermediate

10Here I am deviating from the assumption that labor is essential for every primary industry. I used that
assumption only to prove Theorem 1. Since in this simple model, the existence of equilibrium is trivial to
verify, it is acceptable to deviate from the assumption.

11Since all primary good prices are equal to 1, one way to satisfy this assumption would be to have Cobb-
Douglas production functions with cost functions K(S, P, τ) =

∏
j∈S P

−αj

j . Another way to satisfy this

assumption would be to have Leontief production function with cost functions K(S, P, τ) = 1
|S|
∑
j∈S Pj .

The asymptotic characterization of the growth rate would still hold if we assume that all intermediate cost
functions are in a bounded interval K(S, P, τ) ∈ [Klower,Kupper] that does not depend on t.
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industries that will be active in the economy are those for which ζ(t) ≤ τ . Any industry

with τ < ζ(t) will not be able to use any inputs and will not be able to produce its good.

Intermediate industry thresholds are distributed in the interval (0, 1], and there’s a mass

ν(τ) = 1
τ
dτ of industries with threshold τ . At any given time t, the active intermediate

industries are in the interval [ζ(t), 1], and the total mass of intermediate industries is
∫ 1

ζ(t)
dτ
τ

=

log(1)− log(e−Zt) = Zt.

Dynamic Output Characterization Even though there is no longer a unit mass of

intermediate industries, the following variation of Theorem 3 holds.

Theorem 4 (Dynamic Output Characterization) Suppose that Assumption 1′ holds.

The output of the final industry is given by the formula

log Yf (t) =
1

κ

∫ 1

e−Zt
log |F(θ, τ)| 1

τ
dτ

Zt
− log(Γ(1− γ − 1

κ
)

1
1−γ ) (20)

Theorem 4 tells us that log output is a weighted average of the logarithms of the sizes of

feasible input set collections |F(θ, τ)|, with the weight for the collection F(θ, τ) given by 1
τ
.

The proof of the Theorem is analogous to that of Theorem 3 and takes into account that

households may choose to save some output for future periods. Even though consumption

is not equal to output, we still have a tractable formula for output that only depends on

production technology and not on household preferences.

5.1 Solving for the Long-Run Growth Rate

In this subsection, I characterize the long-run growth rate of output, defined as g∗ =

limt→∞
log Yf (t)

t
.12 This long-run growth rate will depend both on the rate λ at which new

primary industries arrive, as well as the rate Z at which existing inputs miniaturize.

Theorem 5 The long-run growth rate is given by

g∗ = lim
t→∞

log Yf
t

=
λz log 2

κ
. (21)

I give the proof of Theorem 5 in the Appendix, and give some interpretation here. Growth

is driven by the joint arrival of new materials and new applications. Without new materials,

12Traditionally, the long-run growth rate of output is defined as limt→∞
∂ log Yf (t)

∂t . When this limit exists,

L’Hopital’s rule tells us that g∗ = limt→∞
log Yf (t)

t is equal to the traditional definition. However—even

though the derivative
∂ log Yf (t)

∂t always exists in our model—the limit of this derivative may not exist due to
small oscillations as the number of newly discovered input combinations fluctuates with time. In contrast,

the limit limt→∞
log Yf (t)

t will always exist.
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no new combinations are possible, and there is no growth. Without applications, the new

materials are not useful, and there also isn’t any growth. It is the combined development of

materials and applications at the same time that leads to sustained growth.

In this model, new primary industries have log-thresholds τj distributed along (−∞, 0),

with the average distance between log-thresholds being 1
λ
. If λ → 0, then the average dis-

tance between thresholds goes to infinity. This means that, even if the existing industries

keep miniaturizing, new primary industries will not be unlocked. Without the arrival of new

primary industries, intermediate industries cannot attempt new combinations, and growth

goes to zero. On the other hand, if λ > 1, then there will be a large number of primary in-

dustries that are “discovered” over time. However, these newly discovered primary industries

cannot be fully used because the rate of miniaturization Z is smaller than the rate λZ at

which new primary industries arrive. Thus, these newly discovered primary goods are “too

large” to be combined in arbitrary ways. In this case, the growth rate in this case is dictated

entirely by the rate Z at which primary industries miniaturize, which also governs the rate

at which new intermediate industries arrive into the market.

6 Empirical Analysis

I test the predictions of the model in the context of computer and electronic miniaturization

during the late 20th and early 21st centuries. The intuition behind the empirical analysis

is that industries with larger products, such as the aerospace and agricultural machinery

industries, are early beneficiaries of electronic miniaturization. In contrast, industries with

smaller products, such as precision instruments or medical devices, cannot incorporate the

newest electronic devices until those devices become small enough.

Miniaturization can affect a single industry in multiple time periods. For example, in

agriculture, automated control and navigation systems were adopted in the 1980s and 90s

once powerful CPUs and GPS systems were small enough to fit inside agricultural vehicles.

As more electronics, such as as sensors and cameras became miniaturized, they were also

incorporated into agricultural machinery.

The effect of electronic and computer expenditure on TFP growth is fundamentally en-

dogenous, since industries with higher productivity growth are more likely to spend more on

computers and electronics. To address this issue, I use an instrumental variables strategy

motivated by the model. I use the physical features of industry i’s products, namely their

volume, weight, and density as instruments for industry i’s expenditures on computers and
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electronics. More precisely, I estimate a two-stage least squares regression

∆ logCompi,t = αS logSizei + αD logDensityi + ν logRevi,t−1 + ψI×t + τi,t (22)

∆ logAi,t = β∆ logCompi,t + γRevi,t−1 + δI×t + η∆ logAi,t−1 + εi,t (23)

where equation (22) is the first-stage regression and equation (23) is the second-stage. In

equation (23), ∆ logAi,t = logAi,t− logAi,t−1 is the change in log TFP for industry i at time

t, ∆ logCompi,t = logCompi,t − logCompi,t−1 is the change in industry i’s log-expenditures

on computers and electronics, logRevi,t−1 is revenue at the beginning of the period, δI×t is

a sector-by-time fixed effect,13 and ∆ logAi,t−1 captures autoregressiveness in changes in log

TFP. In equation (22), logSizei is the median log size of industry i’s products, logWeighti

is the median log weight, and logDensityi = logWeighti − logSizei.

The intuition behind this approach, which I test in the regression results, is that industries

with larger products will have larger Knapsack thresholds, and will be able to invest more

in computers and electronics as they shrink. Empirically, this would be reflected by having

αSize > 0. The main regression results also show that αDensity > 0, potentially implying that

producers of more dense products are more likely to invest in intermediate inputs, including

computers and electronics. The results still hold—albeit with lower significance—if I omit

density as an instrument and use only a product’s median weight or size.

Implicit in this instrumental variables approach is the assumption that the physical char-

acteristics of representative products in industry i have not changed. This is a reasonable

assumption for most manufacturing industries excluding computers and electronics. The

sizes of airplanes, trucks, and industrial machines have not significantly changed. Even in

industries such as medical devices, where some products like pacemakers have miniaturized,

most other products have remained at relatively the same size and weight.

Finally, there may be remaining endogeneity concerns about using an industry’s revenue

at the beginning of the period as a control. I include this control because it is possible that

an industry’s size (in terms of its revenue) will affect both its growth in the subsequent period

and its investment in computers and electronics. As a robustness check, I report regressions

both with and without revenue as a control variable. Under the assumption that a good’s

physical features are exogenous, the coefficient β from regressions without the control should

still be unbiased. The results show that the coefficient β does not change significantly whether

13In the OLS regression, I could also add industry fixed effects. However, the instrumental variables will
be industry specific and have no variation over time. Because of this, the IV regressions do not allow for
industry fixed effects. To be able to compare the OLS and IV results, I use only sector-by-time fixed effects.

Since equation (23) is a first-differences regression, adding industry-level fixed effects would account for
industry-specific changes in log-productivity. Industry-specific differences in levels of log-productivity are
already taken into account by taking first-differences.
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revenue is included as a control or not.

6.1 Data

I implement my empirical analysis with a new dataset on product weights and sizes and com-

bine it with existing datasets on input-output tables and industry productivity. The product

data comes from IHS Markit’s PIERS database of Schedule B information for imports into

the United States. This dataset contains shipment-level information on products, including

6-digit harmonized-system (HS) codes, price paid, volume (in Twenty-Foot Equivalent Units,

or TEUs),14 weight (in pounds), units and quantities. The data on computers and electronics

usage comes from Acemoglu, Autor, and Patterson’s (2017) harmonized input-output tables

for the United States, which are derived from the BEA benchmark input-output tables. The

harmonized tables cover industries at the SIC 1987 level; they span the years 1972-2007 with

5-year gaps. Finally, the data on productivity and revenue comes from the NBER-CES man-

ufacturing dataset, which covers 459 manufacturing industries (at the 1987 SIC level) from

1958 to 2011. I define the computer and electronics sectors as those industries whose SIC

codes start with 357 or 367.

I use a crosswalk matching HS and SIC codes to merge the datasets and compute median

weight-per-unit and volume-per-unit for every manufacturing SIC code. Observations where

the units are not boxes, packages or containers are dropped. The remaining observations

represent 87.1 % of the data.

Even though the dataset contains all manufacturing industries, some industries such as

food, tobacco, apparel, and glass manufacturing are less likely to have embedded electronics

inside them, and therefore unlikely to have directly benefited from electronic miniaturiza-

tion. Because of this, I focus on heavy manufacturing industries, with 2-digit SIC codes 34

(Fabricated Metal Products), 35 (Industrial Machinery and Equipment), 36 (Electronic and

Other Electric Equipment), 37 (Transportation Equipment), 38 (Instruments and Related

Products) and 39 (Miscellaneous Manufacturing). I further exclude the computers and elec-

tronics sectors (that is, those with SIC codes starting with 357 or 367), because I cannot

reasonably assume that their size has remained constant during the sample period. While

most of the tables use heavy manufacturing industries, Table 5 shows the regression results

using all manufacturing industries except computers and electronics, and shows significant

results.

Table 1 shows the top 5 and bottom 5 industries separately ranked by four metrics.

Panel A shows industries ranked by volume, measured in TEUs. We can see that the largest

14A TEU is the volume of a standard 20-foot cargo container, which is approximately 1172 cubic feet or
33 cubic meters.
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Panel A: Manufacturing Industries Ranked by Volume (TEUs)

Top 5 Industries Bottom 5 Industries

Truck and bus bodies 12.000 Other transportation equipment, nspf, and parts, nspf 0.001
Truck trailers 1.000 Dental equipment, supplies, and parts, nspf 0.001
Travel trailers and campers 0.670 Small arms ammunition, nspf 0.001
Machine tools, metal-forming, and parts, nspf 0.220 Electric lamps 0.002
Conveyors and conveying equipment, and parts, nspf 0.208 Telephone and telegraph apparatus, and parts, nspf 0.002

Panel B: Manufacturing Industries Ranked by Weight (Lbs)

Top 5 Industries Bottom 5 Industries

Truck and bus bodies 31,378.010 Guided missiles and space vehicles, and parts, nspf 9.645
Truck trailers 7,607.040 Telephone and telegraph apparatus, and parts, nspf 10.907
Travel trailers and campers 3,179.060 Dolls and stuffed toy animals 11.352
Machine tools, metal-forming, and parts, nspf 2,601.450 Electric lamps 12.138
Rolling mill machinery, and parts, nspf 2,416.508 Dental equipment, supplies, and parts, nspf 13.553

Panel C: Manufacturing Industries Ranked by Density (Lbs/TEUs)

Top 5 Industries Bottom 5 Industries

Other transportation equipment, nspf, and parts, nspf 36,788.140 Guided missiles and space vehicles, and parts, nspf 857.333
Fabricated plate work 28,377.130 Truck and bus bodies 2,614.834
Structural metal parts, nspf 28,208.570 Aircraft 3,306.925
Fabricated structural metal products, nspf 25,487.860 Aircraft equipment, nspf 3,748.971
Small arms ammunition, nspf 23,185.870 Travel trailers and campers 4,744.866

Panel D: Manufacturing Industries Ranked by Price ($/Lbs)

Top 5 Industries Bottom 5 Industries

Guided missiles and space vehicles, and parts, nspf 259.448 Structural metal parts, nspf 0.617
Aircraft 117.643 Architectural and ornamental metal work, nspf 0.797
Missile and rocket engines 90.623 Fabricated structural metal products, nspf 1.008
Aircraft equipment, nspf 68.309 Truck trailers 1.102
X-ray apparatus and tubes and related irradiation apparatus 38.773 Bolts, nuts, screws, rivets, and washers 1.367

Table 1: Top and Bottom Industries by Physical Characteristics. This table shows how

different SIC industries are ranked according to different physical features of their median product. Panel A

ranks industries by volume. Panel B ranks industries by weight. Panel C ranks industries by density. Panel

D ranks industries by Price-Per-Pound. The data is obtained from Schedule B reports of imports into the

United States, which provide shipment level details on product quantities, weights, volumes, units and prices.

products are trucks, buses, conveyors, and machine tools.15 The smallest products are parts of

other transportation equipment, parts of dental equipment, parts of telephones, ammunition

and lamps. Panel B shows the top and bottom 5 industries ranked by weight. Again, the

heaviest products are trucks and buses, followed now by metal-forming machine tools and

rolling mill machinery. The lightest products are missile and aerospace parts, phone parts,

dental equipment parts, toys, and lamps. Panel C shows products ranked by density, with

fabricated metal products and parts of transportation equipment and ammunition being the

most dense, and missiles, space vehicles, trucks and aircraft being the least dense. Panel D

shows the industries ranked by price per pound. Advanced industries such as the aerospace

and x-ray apparatus industries are the most expensive per pound. The cheapest products per

pound are structural metal products, ornamental metal work, and bolts, nuts, and screws.

15Except for truck and bus bodies, all products are smaller in volume than one 20-foot container. While it
may seem that the volume of truck and bus bodies (12 TEUs) is too large, the average semi truck is around
8,262 cubic feet (72 feet long, 8.5 feet wide, 13.5 feet tall) or 7.05 TEUs which is in the ballpark of the
data. The weight of an average semi truck (without any cargo) is around 35,000 pounds, which is also in the
ballpark of the data, as Panel B shows. For these reasons, I do not consider the size and weight of truck and
bus bodies to be an error in the data.
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6.2 Regression Results for the 1982-2007 Period

I focus my main analysis on the 25 years from 1982 through 2007, a period during which

computers and other electronic devices were introduced into virtually every household, office,

and factory. In 1981, the year immediately preceding this period, IBM introduced the PC.

Throughout the subsequent 25 years, new innovations such as laptop computers, Internet

browsers, the Windows operating system, smartphones, tablets and many others arrived to

the market.

Description of Table 2 Table 2 shows OLS and IV results illustrating the effect of com-

puter purchases on industry TFP for the 1982-2007 period. Each row in the table contains 6

columns, depending on which controls are used. All columns control for time and 2-digit SIC

sector fixed effects, to account for the fact that different periods and different sectors may

have different rates TFP growth. Column (2) additionally controls for SIC2 × Time fixed

effects. These fixed effects account for the fact that different sectors may have had different

growth rates at different periods in history. Column (3) adds lagged changes in log TFP

as a control, to account for autoregression in changes in TFP. Columns (4)-(6) repeat each

of these control combinations, with the addition of logRevi,t−1 as a control variable. This

accounts for the fact that changes in industry productivity between time t − 1 and time t

may be explained by that industry’s output at the beginning of the period, and not just by

investment in computers and electronics. All errors are clustered at the industry level to ac-

count for heteroskedasticity. Correspondingly, the F-statistics reported for the instrumental

variables results are the Effective F-statistics proposed by Montiel Olea and Pflueger (2013)

and advocated by Andrews, Stock and Sun (2019).

Table 2 contains six panels. Panel A shows the result of running an OLS regression, using

the controls specified in each column. Panel B shows first stage IV results, and Panel C

shows second-stage IV results. In Panels A, B and C, the (i, t)th observation is weighted by

its value added V alueAddedi,t−1 at the beginning of the period. This weighting by value-

added accounts for the fact industries are aggregates of multiple firms, and firms themselves

are aggregates of smaller production units. At a disaggregate level, industries with higher

value added represent more observations than industries with lower value added. Panels D,

E and F are analogous, with unweighted observations.

The results in Table 2 are significant and the coefficients for the first and second stages

do not vary much across specifications. For the weighted regressions, the IV estimates are

around 0.06, and the F-statistics are all above 10. For the unweighted regressions, the IV

estimates are around 0.07, and the F statistics are mostly above 9.16.

16The only exception is column (2), where the F-statistic is 8.961
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The table also reports counterfactual effects from expenditure on computers and elec-

tronics, and from electronic miniaturization. I give more details on how these counterfactual

effects are computed in Subsection 6.7. Across all specifications, the effect of electronic

miniaturization on aggregate TFP growth is 0.03% per year. This accounts for 3.4% of the

annualized TFP growth for the period, which is 0.88% per year, and for 37.5% of the produc-

tivity growth of heavy manufacturing industries. After controlling for lagged TFP and lagged

revenue, computer and electronics investment account for 0.07%− 0.08% of annualized TFP

growth. This accounts for almost all the productivity improvements in heavy manufacturing.

6.3 Robustness Results and Additional Regressions

In the main regression analysis, I focused on the years 1982-2007 when the IT revolution

was in full force. Table 3 shows the regression results for the full 1972-2007 sample. One

can see that, for value-weighted regressions, the IV coefficients are around 0.055 and the

F-statistics are above 9. The counterfactual effect from electronic miniaturization on TFP

is 0.01%, which accounts for 1.7% of all TFP growth in this 35-year period, and 20% of all

TFP growth in the heavy manufacturing sector.

6.4 Using all Manufacturing Industries: A Validation of The Iden-

tification Strategy

So far I have restricted the industry observations to be in the heavy manufacturing sectors

whose 2-digit SIC code is in the 34-39 range. This includes industrial machinery, precision

instruments and more, but excludes industries such as apparel and food manufacturing. I

should not expect electronic miniaturization to lead to computers being directly adopted

in these light manufacturing industries.17 The results in Table 4—which runs the analysis

for all manufacturing industries18 in the 1982-2007 time period—confirms this intuition. In

particular, Panels B and E show that an industry’s product size has no effect on that in-

dustry’s investment in electronics and computers, and that the corresponding F-statistics

(shown in panels C and F) are very weak. By looking at the estimated effect of computer

investment on manufacturing productivity, we can see that the coefficients have an upward

bias. The predicted annualized growth in productivity is at least 0.62%, whereas the observed

annualized productivity growth in manufacturing is 0.15%. Even with this upward bias, the

predicted effect of electronic miniaturization on aggregate TFP is at most 0.06%, which is not

17This is especially true for the sample that ends in 2007, but even recent developments in wearable
technology during the 2010s such as smart watches are likely not significant enough to show up in such
aggregate statistics.

18Once again, I exclude computer and electronics industries from the sample.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.025*** 0.019*** 0.020*** 0.025*** 0.020*** 0.021***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

TFP Change From Investment in Electronics and Computers 0.04% 0.03% 0.02% 0.05% 0.04% 0.02%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.074*** 0.074*** 0.074*** 0.075*** 0.075*** 0.075***
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

logDensityi 0.244*** 0.244*** 0.241*** 0.250*** 0.251*** 0.248***
(0.051) (0.052) (0.052) (0.054) (0.055) (0.054)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.060** 0.060** 0.065** 0.056** 0.056** 0.062**
(0.029) (0.029) (0.032) (0.028) (0.028) (0.031)

F-test 10.91 10.61 10.67 11.17 10.91 10.98
TFP Change From Investment in Electronics and Computers 0.13% 0.13% 0.08% 0.12% 0.12% 0.08%
TFP Change From Electronic Miniaturization 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.024*** 0.019*** 0.019*** 0.025*** 0.020*** 0.020***
(0.005) (0.006) (0.006) (0.005) (0.006) (0.006)

TFP Change From Investment in Electronics and Computers 0.05% 0.04% 0.02% 0.05% 0.04% 0.02%

Panel E: First Stage Results (Unweighted)

logSizei 0.065*** 0.065*** 0.065*** 0.066*** 0.066*** 0.066***
(0.022) (0.022) (0.022) (0.022) (0.022) (0.022)

logDensityi 0.207*** 0.207*** 0.205*** 0.214*** 0.216*** 0.214***
(0.050) (0.050) (0.050) (0.052) (0.053) (0.052)

Panel F: IV Results (Unweighted)

∆ logCompit 0.070** 0.070** 0.073** 0.065** 0.065** 0.068**
(0.032) (0.032) (0.034) (0.031) (0.030) (0.033)

F-test 9.216 8.961 9.055 9.621 9.400 9.529
TFP Change From Investment in Electronics and Computers 0.11% 0.11% 0.07% 0.10% 0.10% 0.07%
TFP Change From Electronic Miniaturization 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

Observations 735 735 735 735 735 735
Benchmark TFP Change 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 2: Regression Results for the 1982-2007 Sample. This table presents OLS and IV
estimates of the effect of computer and electronics investment on TFP for the years 1982-2007, using a dataset
of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding comput-
ers and electronics (SIC codes 3571-3579, 3671-3679). Panels A, B and C show results when observations are

weighted by the value added of industry i at the beginning of the period. Panel A shows the estimate β̂ in
the OLS regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is
industry i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents
lagged revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates
obtained from a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei + αDensity logDensityi +
ν∆ logCapexi,t +ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products.
Panel C shows the corresponding second-stage results. Panels D, E and F show analogous results where
observations are not weighted. Column (1) includes Sector and Time fixed effects, Column (2) adds Sector X
Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to Columns
(1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment on TFP
are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are computed
using equation (25). All standard errors are clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.026*** 0.019*** 0.021*** 0.026*** 0.020*** 0.021***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

TFP Change From Investment in Electronics and Computers 0.05% 0.03% 0.02% 0.05% 0.04% 0.02%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.054*** 0.054*** 0.060*** 0.054*** 0.055*** 0.061***
(0.019) (0.019) (0.020) (0.019) (0.019) (0.020)

logDensityi 0.187*** 0.186*** 0.195*** 0.191*** 0.191*** 0.200***
(0.039) (0.040) (0.044) (0.041) (0.042) (0.046)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.056* 0.055* 0.059* 0.050 0.050 0.054
(0.033) (0.033) (0.035) (0.033) (0.033) (0.034)

F-test 10.01 9.625 9.642 10.34 10.04 9.934
TFP Change From Investment in Electronics and Computers 0.13% 0.12% 0.05% 0.11% 0.11% 0.04%
TFP Change From Electronic Miniaturization 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.025*** 0.019*** 0.021*** 0.026*** 0.020*** 0.022***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

TFP Change From Investment in Electronics and Computers 0.05% 0.04% 0.02% 0.05% 0.04% 0.02%

Panel E: First Stage Results (Unweighted)

logSizei 0.027** 0.027** 0.041** 0.027** 0.028** 0.041***
(0.013) (0.013) (0.016) (0.012) (0.012) (0.016)

logDensityi 0.107*** 0.105*** 0.123*** 0.111*** 0.111*** 0.129***
(0.028) (0.028) (0.037) (0.027) (0.028) (0.039)

Panel F: IV Results (Unweighted)

∆ logCompit 0.068 0.066 0.055 0.058 0.057 0.049
(0.056) (0.056) (0.049) (0.055) (0.055) (0.048)

F-test 6.209 5.874 6.450 7.033 6.874 6.810
TFP Change From Investment in Electronics and Computers 0.10% 0.10% 0.05% 0.09% 0.09% 0.04%
TFP Change From Electronic Miniaturization 0.02% 0.02% 0.02% 0.02% 0.02% 0.01%

Observations 1,011 1,011 882 1,011 1,011 882
Benchmark TFP Change 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 3: Regression Results for the 1972-2007 Sample. This table presents OLS and
IV estimates of the effect of computer and electronics investment on TFP for the years 1972-2007, using a
dataset of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding

computers and electronics (SIC codes 3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS
regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is industry
i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents lagged
revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates obtained from
a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+
ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products. Panel C shows
the corresponding second-stage results. Column (1) includes Sector and Time fixed effects, Column (2) adds
Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to
Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment
on TFP are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are
computed using equation (25). All standard errors are clustered at the industry level.
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much higher than the predicted effect when the sample included only heavy manufacturing

industries.

6.5 Regression Results without using Density as an Instrument

Using the median product density as an instrument in Table 2 gives the regressions some

power, but may not be seen as immediately justified by the model. In this section I show that

using only median product weight as an instrument yields significant results, with similar

counterfactual effects of miniaturization on TFP growth as the main regression.

Table 5 shows the results using median product weight as the sole instrumental variable.

The first-stage coefficients are significant and positive, and the F-statistics are strong. The

counterfactual effects of electronic miniaturization on productivity growth are around 0.02%,

which are slightly attenuated to the counterfactual effects obtained in Table 2. One drawback

of using only the median product weight as the instrumental variable is that the second-stage

results are not significant.

For completeness, Table 6 shows the same results using median product volume as the

sole instrumental variable. The results in this case are still positive, but not as strong, with

very weak F-statistics and attenuated effects of electronic miniaturization on TFP growth. A

potential explanation for why these results are weaker is that the measurements of weight—

which come from customs data—are much more precise than the measurements of volume. In

the raw data, the weight-per-unit of a shipment is computed by dividing the shipment’s weight

by the number of units reported. The volume of the shipment is computed by measuring the

TEUs of containers that the shipment came in, and dividing by the number of units reported.

Since weight is precisely measured on a scale whereas volume is estimated from TEUs, the

latter measurement is naturally more noisy.

6.6 Rolling Regression Analysis

Finally, I analyze how the estimates change through time. To do this, I compute rolling

regression results covering the period of 35 calendar years from 1972 through 2007. I divide

the overall sample period into five partially overlapping 15-year periods. The second through

fifth windows each begin five years after the first year of the preceding period, as follows: 1972-

1987,1977-1992,1982-1997,1987-2002, and 1992-2007. The results are reported in Appendix

F, Tables 7 through 11. For the first two of these five windows—which end before 1992—

the results are not significant. However, for the last three windows, covering the 1982-2007

period, the results become stronger over time. The most robust results, with very strong F-

statistics, appear in the last period (1992-2007), which saw the explosion in the use of personal
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.019*** 0.016*** 0.016*** 0.020*** 0.019*** 0.018***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

TFP Change From Investment in Electronics and Computers 0.09% 0.07% 0.05% 0.09% 0.09% 0.06%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.016 0.016 0.020 0.020 0.020 0.020
(0.016) (0.016) (0.016) (0.015) (0.015) (0.015)

logDensityi 0.092** 0.092** 0.109*** 0.101*** 0.098** 0.102***
(0.040) (0.041) (0.039) (0.038) (0.039) (0.039)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.159** 0.160** 0.181*** 0.173** 0.174** 0.195***
(0.066) (0.066) (0.070) (0.069) (0.069) (0.073)

F-test 3.979 3.909 4.244 3.849 3.746 4.074
TFP Change From Investment in Electronics and Computers 0.89% 0.89% 0.73% 0.99% 1.00% 0.81%
TFP Change From Electronic Miniaturization 0.04% 0.04% 0.05% 0.06% 0.05% 0.06%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.019*** 0.016*** 0.016*** 0.020*** 0.019*** 0.018***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

TFP Change From Investment in Electronics and Computers 0.09% 0.07% 0.05% 0.09% 0.09% 0.06%

Panel E: First Stage Results (Unweighted)

logSizei 0.012 0.012 0.015 0.015 0.015 0.015
(0.015) (0.015) (0.015) (0.014) (0.014) (0.014)

logDensityi 0.085** 0.085** 0.100*** 0.091** 0.089** 0.092**
(0.039) (0.040) (0.038) (0.036) (0.038) (0.037)

Panel F: IV Results (Unweighted)

∆ logCompit 0.194** 0.194** 0.211*** 0.215** 0.216** 0.232***
(0.078) (0.077) (0.081) (0.085) (0.085) (0.088)

F-test 3.324 3.295 3.571 3.125 3.067 3.335
TFP Change From Investment in Electronics and Computers 0.73% 0.74% 0.62% 0.79% 0.80% 0.67%
TFP Change From Electronic Miniaturization 0.04% 0.04% 0.06% 0.06% 0.06% 0.06%

Observations 1,848 1,848 1,848 1,848 1,848 1,848
Benchmark TFP Change 0.15% 0.15% 0.15% 0.15% 0.15% 0.15%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 4: Regression Results for the 1982-2007 Sample and All Manufactur-
ing Industries. This table presents OLS and IV estimates of the effect of computer and electron-
ics investment on TFP for the years 1982-2007, using a dataset of five-year stacked differences for all
manufacturing industries (SIC Codes 2000-3999), excluding computers and electronics (SIC codes 3571-

3579, 3671-3679). Panel A shows the estimate β̂ in the OLS regression ∆ logAi,t = β∆ logCompi,t +
γ∆ logRevi,t−1 + δI×t + η∆ logAi,t−1 + εi,t, where logAi,t is industry i’s TFP at time t, Compi,t represents
investment in computers and electronics, Revi,t−1 represents lagged revenue, and δI×t is a 2-digit sector X
time fixed effect. Panel B shows the first-stage estimates obtained from a 2SLS regression with first-stage
∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+ψI×t+ τi,t, where Sizei, Densityi
are the median size and density of industry i’s products. Panel C shows the corresponding second-stage
results. Column (1) includes Sector and Time fixed effects, Column (2) adds Sector X Time fixed effects,
and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to Columns (1)-(3), while
adding lagged revenue as a control. Counterfactual effects of electronics investment on TFP are computed
using equation (24). Counterfactual effects of electronic miniaturization on TFP are computed using equation
(25). All standard errors are clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.025*** 0.019*** 0.020*** 0.025*** 0.020*** 0.021***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

TFP Change From Investment in Electronics and Computers 0.04% 0.03% 0.02% 0.05% 0.04% 0.02%

Panel B: First Stage Results (Weighted by Value Added)

logWeighti 0.080*** 0.080*** 0.080*** 0.081*** 0.081*** 0.081***
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.041 0.041 0.040 0.037 0.037 0.037
(0.035) (0.035) (0.038) (0.035) (0.035) (0.038)

F-test 10.98 10.67 10.85 11.41 11.20 11.33
TFP Change From Investment in Electronics and Computers 0.08% 0.08% 0.05% 0.07% 0.08% 0.05%
TFP Change From Electronic Miniaturization 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.024*** 0.019*** 0.019*** 0.025*** 0.020*** 0.020***
(0.005) (0.006) (0.006) (0.005) (0.006) (0.006)

TFP Change From Investment in Electronics and Computers 0.05% 0.04% 0.02% 0.05% 0.04% 0.02%

Panel E: First Stage Results (Unweighted)

logWeighti 0.070*** 0.070*** 0.070*** 0.071*** 0.072*** 0.072***
(0.022) (0.023) (0.022) (0.022) (0.022) (0.022)

Panel F: IV Results (Unweighted)

∆ logCompit 0.045 0.045 0.043 0.041 0.041 0.039
(0.038) (0.038) (0.041) (0.037) (0.037) (0.040)

F-test 9.849 9.577 9.741 10.46 10.28 10.43
TFP Change From Investment in Electronics and Computers 0.07% 0.07% 0.04% 0.07% 0.07% 0.04%
TFP Change From Electronic Miniaturization 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Observations 735 735 735 735 735 735
Benchmark TFP Change 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 5: Regression Results for the 1982-2007 Sample using Weight as the sole
instrumental variable. This table presents OLS and IV estimates of the effect of computer and
electronics investment on TFP for the years 1982-2007, using a dataset of five-year stacked differences for
heavy manufacturing industries (SIC Codes 3401-3999), excluding computers and electronics (SIC codes

3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS regression ∆ logAi,t = β∆ logCompi,t +
γ∆ logRevi,t−1 + δI×t + η∆ logAi,t−1 + εi,t, where logAi,t is industry i’s TFP at time t, Compi,t represents
investment in computers and electronics, Revi,t−1 represents lagged revenue, and δI×t is a 2-digit sector X
time fixed effect. Panel B shows the first-stage estimates obtained from a 2SLS regression with first-stage
∆ logCompi,t = αWeight logWeighti + ν∆ logCapexi,t + ψI×t + τi,t, where Weighti is the median weight
of industry i’s product. Panel C shows the corresponding second-stage results. Column (1) includes Sector
and Time fixed effects, Column (2) adds Sector X Time fixed effects, and Column (3) adds lagged TFP
as a control. Columns (4)-(6) are analogous to Columns (1)-(3), while adding lagged revenue as a control.
Counterfactual effects of electronics investment on TFP are computed using equation (24). Counterfactual
effects of electronic miniaturization on TFP are computed using equation (25). All standard errors are
clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.025*** 0.019*** 0.020*** 0.025*** 0.020*** 0.021***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

TFP Change From Investment in Electronics and Computers 0.04% 0.03% 0.02% 0.05% 0.04% 0.02%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.060** 0.060** 0.060** 0.060** 0.060** 0.061**
(0.026) (0.026) (0.026) (0.026) (0.026) (0.026)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.023 0.023 0.018 0.021 0.021 0.016
(0.044) (0.044) (0.048) (0.045) (0.045) (0.048)

F-test 5.346 5.198 5.363 5.469 5.347 5.499
TFP Change From Investment in Electronics and Computers 0.04% 0.04% 0.02% 0.04% 0.04% 0.02%
TFP Change From Electronic Miniaturization 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.024*** 0.019*** 0.019*** 0.025*** 0.020*** 0.020***
(0.005) (0.006) (0.006) (0.005) (0.006) (0.006)

TFP Change From Investment in Electronics and Computers 0.05% 0.04% 0.02% 0.05% 0.04% 0.02%

Panel E: First Stage Results (Unweighted)

logSizei 0.053** 0.053** 0.053** 0.054** 0.054** 0.054**
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

Panel F: IV Results (Unweighted)

∆ logCompit 0.023 0.023 0.016 0.020 0.020 0.014
(0.046) (0.046) (0.050) (0.047) (0.047) (0.050)

F-test 4.977 4.840 4.993 5.133 5.016 5.162
TFP Change From Investment in Electronics and Computers 0.04% 0.04% 0.02% 0.04% 0.04% 0.02%
TFP Change From Electronic Miniaturization 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Observations 735 735 735 735 735 735
Benchmark TFP Change 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 6: Regression Results for the 1982-2007 Sample using Size as the sole
instrumental variable. This table presents OLS and IV estimates of the effect of computer and
electronics investment on TFP for the years 1982-2007, using a dataset of five-year stacked differences for
heavy manufacturing industries (SIC Codes 3401-3999), excluding computers and electronics (SIC codes

3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS regression ∆ logAi,t = β∆ logCompi,t +
γ∆ logRevi,t−1 + δI×t + η∆ logAi,t−1 + εi,t, where logAi,t is industry i’s TFP at time t, Compi,t represents
investment in computers and electronics, Revi,t−1 represents lagged revenue, and δI×t is a 2-digit sector X
time fixed effect. Panel B shows the first-stage estimates obtained from a 2SLS regression with first-stage
∆ logCompi,t = αSize logSizei + ν∆ logCapexi,t +ψI×t + τi,t, where Sizei is the median size of industry i’s
product. Panel C shows the corresponding second-stage results. Column (1) includes Sector and Time fixed
effects, Column (2) adds Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns
(4)-(6) are analogous to Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects
of electronics investment on TFP are computed using equation (24). Counterfactual effects of electronic
miniaturization on TFP are computed using equation (25). All standard errors are clustered at the industry
level.
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computers both at home and at the workplace. For each of the last three 15-year windows,

the estimated effect of electronic miniaturization on TFP growth is around 0.02− 0.03%.

6.7 Computing The Effect of Electronic Miniaturization on Ag-

gregate Productivity

In the above analysis, I used the regression results to estimate how much of the increase in

aggregate TFP can be explained by industries using more computers and electronics, and

furthermore, how much of this effect is due to electronic miniaturization. In this subsection,

I show how these computations are performed.

The effect of computer use on an individual industry’s TFP is relatively straightfor-

ward to estimate. One can use the coefficient β̂ obtained from regression (23) to compute

̂∆ log TFPi,t ≈ β̂∆ logCompi,t.

To aggregate this effect across industries, I rely on Hulten’s Theorem (1978). In an

economy with N industries, each of which has a Hicks-Neutral production technology, the

change in aggregate TFP obtained from industry-specific TFP shocks ∆ log TFPi is given by

∆ log TFPt =
N∑
i=1

Di,t ·∆logTFPi,t

where Di,t =
Pi,tYi,t
GDPt

is industry i’s sales share as a fraction of GDP. The share Di,t is commonly

referred to as industry i’s Domar weight.

Because there are multiple time periods t, each of which spans five years, the annualized

average effect of industrial computer use on aggregate TFP is given by

̂∆ log TFP =
1

5T

T∑
t=1

̂∆ log TFPt. (24)

Computing the Effect of Electronic Miniaturization on Productivity using In-

strumental Variables

To estimate the effect of electronic miniaturization on aggregate productivity, I use the

first-stage regression to compute how much of industry i’s computer use ∆ logCompi can

be attributed to miniaturization. The logic behind the first stage regression (22) is that

industries with larger products, such as the aerospace industry, will have less binding size

constraints (higher τi), and will be able to incorporate larger and more powerful computers

into their products, making them more productive.

Because the data on product size and density is static, I do not observe changes in
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electronic sizes throughout the sample. Instead, I use Moore’s Law, which states that the

size of transistors has been shrinking by a factor of 2 every 18 months. At an annualized

level, this means that transistors have been shrinking by a factor of 21/1.5 = 1.5874 every

year. As discussed in the introduction, this shrinking of transistors has been accompanied

by a corresponding shrinking of computers and electronic devices.

To apply Moore’s Law in computing counterfactuals, recall that in the structural model,

firms will choose a set of inputs Si which maximizes their profits subject to the size constraint

(5). If we decompose Si = Si,Comp ∪ Si,−Comp as the union of computer and electronics

industries (Si,Comp)—which shrink by a factor of 1.5874 every year—and all other industries

(Si,−Comp)—which do not substantially change in size—then we can write the size constraint

for industry i at time t as

∑
j∈Si,Comp

θj
1.5874t

+
∑

j∈Si,−Comp

θj ≤ τi.

The key step to compute the counterfactual is to notice that the above size constraint is

equivalent to ∑
j∈Si,Comp

θj +
∑

j∈Si,−Comp

θj · 1.5874t ≤ τi · 1.5874t.

In the model, the production technology would change in exactly the same way if all inputs

except for computers and electronics were to grow in size and weight by a factor of 1.5874

every year. The intuition is that, if offices, airplanes, and cars all grew at the same rate,

while computers stayed the same size, then firms would be able to embed more computers

into machines, and obtain more productivity-enhancing combinations.

The first-stage regression (22) then asks: for each industry i and time period t, how much

higher would the left-hand side variable ∆ logCompi,t be if ∆ log Sizei increased by 1.5874?19

The answer is

̂∆Compi,t = α̂Size · 1.5874.

This is the effect of shrinking computers (or equivalently, growing industry i’s product) on

industry i’s computer and electronic investment.

The estimated change in computer expenditures ̂∆Compi,t is then used as an input in

the computation of aggregate TFP, weighing by the appropriate Domar weights. Putting all

equations together, I obtain that the effect of electronic miniaturization on aggregate TFP

19In practice, since each time period t is 5 years, the increase is 5 · 1.5874.
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is given by

̂̂
∆ log TFPt =

1

T

T∑
i=1

N∑
i=1

Di,tβ̂α̂size · 1.5874. (25)

7 Conclusion

Over the past few decades, transistors have been getting exponentially smaller and cheaper

over time, leading to significant changes across industries and countries. The effect of cheaper

transistors on GDP has been widely studied. This paper is the first attempt to build a

model where the miniaturization of electronic components leads to increases in aggregate

productivity.

To study the effect of smaller electronics on GDP, I have introduced a new model that

incorporates physical constraints into the profit-maximization problem of the firm. Even

though the constraints are discrete, one can still derive tractable formulas for aggregate

output, compute comparative statics on the effect of size spillovers on output, and estimate

growth rates.

My model is flexible enough to allow for arbitrary combinatorial constraints instead of the

baseline size constraint. This opens the door to more general models that capture physical

constraints in production. In future work, I hope to explore these more general constraints.

The model also has testable implications for which industries are more likely to adopt new

electronic innovations: industries with larger products such as aviation and heavy machinery

will have more slack in their physical constraints, and will be able to incorporate newly

arrived products more easily than industries with smaller products such as medical and

precision instruments.

I have used these implications to apply the model to the data. Using a new dataset on

the sizes and weights of goods imported into the United States, I have shown that industries

with larger products are more likely to use electronic inputs. This increase in computer

and electronic expenditures accounts for about 37.5% of the annualized increase in TFP for

heavy manufacturing sectors, and about 3.5% of the annualized increase in TFP for the whole

American economy between 1982 and 2007.

I have left unexplored the competitive aspects of semiconductor innovation, and the races

between firms to develop ever-shrinking transistors. In future work, I hope to develop the

model further to include markups, an oligopolistic market structure and an endogenous

growth model where firms invest in research and compete to develop smaller varieties within

an industry. Combining this model with micro-level data on semiconductor production would

yield new insights on how overcoming physical constraints in production leads to economic
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growth.
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A Proofs from Section 2

Proof of Lemma 1. Let Ai = {Ai ∈ R|F| : | arg minSK(S, P ∗, Ai)| ≥ 2} be the set of pro-

ductivity parameters which admit more than one cost-minimizing set. Since the distribution

Ψ of Ai is absolutely continuous with respect to Lebesgue measure, it suffices to show that

Ai has Lebesgue measure zero. Let S∗i , S
∗∗
i be two different possible input sets, and define

Ai(S∗, S∗∗) = {Ai : K(S∗, P ∗, Ai(S
∗)) = K(S∗∗, P ∗, Ai(S

∗∗))}. The following set inclusion

holds

Ai ⊂ ∪S∗,S∗∗Ai(S∗, S∗∗).

Since the right-hand side of this set inclusion is a countable union of sets, it suffices to show

that each Ai(S∗, S∗∗) has measure zero for each pair S∗, S∗∗. For any such pair, define the

function

∆i(Ai, S
∗, S∗∗) = K(S∗i , P

∗, Ai(S
∗
i ))−K(S∗∗i , P

∗, Ai(S
∗∗
i ))

and note that Ai(S∗, S∗∗) is exactly the set of productivity parameters Ai for which

∆i(Ai, S
∗, S∗∗) = 0. Since K is strictly increasing in A, we have Ai ∈ Ai(S∗, S∗∗) if and

only if Ai(S
∗
i ) = Ai(S

∗∗
i ). But this implies that Ai(S∗, S∗∗) is an |F| − 1 dimensional subset

of a |F| dimensional space, so it must have measure zero.

B Proofs from Section 3

Proof of Proposition 1. The primary price vector, if it exists, satisfies the system of

equations

Pj =
K∑
k=1

αjkPk +
1

Aj
.

Letting B = ( 1
A1
, ..., 1

AJ
)′, write this in matrix form as

(I − α)P = B.

Since (I − α)−1 exists and all of its coefficients are non-negative, the unique price vector is

given by P = (I − α)−1B.

Proof of Theorem 1. First, I show that the condition is necessary. Equation (6)

implies that if an equilibrium exists, then Pj = Kj(P ) for every primary industry.

Sufficiency To prove sufficiency, I proceed in three steps:
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1. I show that intermediate and final industry prices can be defined so that equation (6)

is always satisfied.

2. I construct equilibrium quantities for the special case where Yf = 1, so that only

one unit of the final good is produced in equilibrium. In this special case, I denote

equilibrium intermediate demands, labor demands and output by the lowercase vector

variables x, `, y.

3. I solve for the equilibrium level of final output Yf , and use the fact that all produc-

tion functions have constant returns to scale to solve for the equilibrium quantities

(X, Y, L) = Yf · (x, y, `).

Step 1: Solving for Prices and Intermediate Input Sets To prove the opposite

direction, note that for any intermediate industry i ∈ I, the cost function K(S, P,Ai(S), τi)

depends only on the price vector Ppri = (P0, P1, ..., PJ) of primary industries, and not on

any intermediate or final prices. Define Pi = minS′∈F(θ,τi) Ki(S
′, Ppri, Ai(S

′), τi) and Pf =

Kf ((Pi)i∈I), so that equation (6) is satisfied for all industries. The equilibrium input set Si

for firm i is given by Si = TieBreak(arg minS′∈F(θ,τi)
K(S ′, P, Ai(S

′)), τi), so that equation

(7) is satisfied for all intermediate industries i.

For convenience of notation, it will be helpful to define, for every intermediate industry

i = (τ, ι), the normalized price P τι = Pτι
Aτι(Sτι)

. Since intermediate production functions are

Hicks-Neutral, P τι does not depend on Aτι.

Step 2a: Final Industry Demands when Yf = 1 I now solve for the special case where

only one unit of the final good is produced. Define xfτι = arg minx′
∫∞

0

∫ 1

0
Pτιx

′
fτιν(τ)dτdι

subject to the constraint (
∫∞

0
(
∫ 1

0
(x′fτι)

γ−1
γ dι)

γ
γ−1

β−1
β ν(τ)dτ)

β
β−1 = 1. Because this is a nested-

CES unit cost minimization problem, the first order conditions for this optimization problem

yield

xfτι = (
Pτι
Pτ

)−γ(
Pτ
Pf

)−β = (
P τι

Pτ
)−γ(

Pτ
Pf

)−βAτι(Sτι)
γ, (26)

where Pτ = (
∫ 1

0
P 1−γ
τι dι)

1
1−γ is a price index over all industries with threshold τ . Note that

Pτ is deterministic, since Pτ = (
∫ 1

0
P 1−γ
τι dι)

1
1−γ = E[Aτι(Sτι)

γ−1]
1

γ−1 (
∫ 1

0
P

1−γ
τι dι)

1
1−γ , where the

expectation is taken over all industries (τ, ι) with the same threshold τ . Define normalized

demands that do not depend on the random productivity terms Aτι(Sτι) as xfτι =
xfτι

Aτι(Sτι)γ
=

(P τι
Pτ

)−γ(Pτ
Pf

)−β.
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Step 2b: Intermediate Industry Demands when Yf = 1 Since markets clear, and

intermediate industry outputs are used solely by the final industry, we have yi = xfi. Define

normalized output as yi = xfi.

Given industry i’s equilibrium input set Si and productivity Ai, intermediate input and

labor demands are given by

(xi, `i) = arg min
(x′ij)j∈Si ,`

′
i

∑
j∈S

Pjx
′
ij + `′i subject to: Ai(Si)F (Si, x

′, `′i) = yi and G(yi, x, θ, Si) ≤ τiyi.

(27)

So far, the intermediate demand xi is well defined. However, aggregate quantities
∫
I xidi

may diverge to infinity. I show that, under Assumption 1, this does not happen. Since

the intermediate production function is Hicks-Neutral, one can write (xi(Ai), `i(Ai)) =

Ai(Si)
γ(xi(Si), `i(Si)), where x, ` are independent of Ai and defined as

(x(Si), `(Si)) = arg min
(xij)j∈Si ,`i

∑
j∈Si

Pjxij + ` subject to: F (Si, x, `) = yi and G(yi, x, θ, Si) ≤ τiyi.

The aggregate demand of intermediate industries can be written as
∫
I xi(Ai)di =∫

I Ai(Si)
γxi(Si)di ≤ E[Ai(Si)

γ] maxS⊂J x(S). Analogously, the aggregate demand for labor

can be written as
∫
I `i(Ai)di =

∫
I Ai(Si)

γ`i(Si)di ≤ E[Ai(Si)
γ] maxS⊂J `(S). From Assump-

tion 1, the expectation of Ai(Si)
γ is finite.20 Therefore, the aggregate demand of intermediate

industries is finite.

Step 2c: Demand and Output of Primary Industries For any primary industry j,

define xint,j =
∫
I xijdi to be the aggregate intermediate demand for industry j’s good. Let

yj be the output of industry j when one unit of the final good is produced, and let xkj

be primary industry k’s demand for industry j’s good when exactly yk units of good k are

produced. The market-clearing condition for industry j yields

yj =
J∑
k=1

xkj + Pjxint,j.

20Assumption 1 is slightly stronger and requires the variance of Ai(Si)
γ to be finite. Since the terms

Ai(Si) are independently but not identically distributed, I need to assume finite variances to apply the law
of large numbers. Throughout most of the paper, I assume that Ai(S) = φi(S) ·

∏
j∈S Aj , where the Aj are

deterministic and φi(S) are iid random variables. Under this functional form, I only need to assume that
(Ai(S))γ has finite expectation to apply the law of large numbers.
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Note that xkj is a function of yk, so it suffices to solve for the vector of primary outputs

(y0, y1, ..., yJ).21

To solve for the vector of primary revenues, multiply the market clearing condition by Pj

to obtain an analogous expression in terms of revenues.

Pjyj =
J∑
k=1

Pjxkj + Pjxint,j. (28)

Multiply and divide the term Pjxkj by Pkyk, and rewrite equation (28) as a linear system in

terms of the variables ŷj =def Pjyk and x̂int,j = Pjxint,j.

ŷj =
J∑
k=1

Pjxkj
Pkyk

ŷk + x̂int,j (29)

Define industry j’s share of industry k’s revenue as α̂jk =
Pjxkj
Pkyk

.22 Write equation (29) in

matrix form as

(I − α̂′)ŷ = x̂int. (30)

The system of equations (30) has a solution only if (I−α̂′) is invertible. Note that
∑J

k=1 α̂jk =∑J
k=1

Pkxjk
Pjyj

< 1. The inequality follows from the fact that labor is essential in the production

of good j, so that some of the revenue obtained by good j is always paid to labor. Since∑J
k=1 α̂jk < 1, the spectral radius of the matrix α̂′ is less than 1, and the matrix (I − α′) is

invertible. Denoting its inverse by L̂′, primary industry revenues are given by

ŷ = L̂′x̂int. (31)

From the revenue vector, one can solve for yj =
ŷj
Pj

, and from yj, one can solve for industry

j’s demand vector xj, `j.

Step 3: Solving for Yf So far, I have solved for the price vector P ∗, for the input sets

(S∗i )i∈I , and for the quantities q∗ = ((y∗i )i∈I , (y
∗
j )
J
j=1, (x

∗
fi)i∈I , (x

∗
ij)i∈I,j∈J , (x

∗
jk)j,k∈J , (`

∗
j)j∈J )

that would be observed if Y ∗f = 1. Because of constant returns to scale in the production

function, the equilibrium quantities Q∗ are given by Q∗ = Y ∗f q
∗. Furthermore, the equilibrium

21Given knowledge of yk, one can solve for (xk1, ...xkJ , `k) as the unique solution to the cost minimization

problem minx′k,`′k
∑J
j=1 Pjx

′
kj + `′ subject to Fj(Aj , `

′
k, x
′
k) = yk.

22Note that, because of constant returns to scale, α̂jk only depends on the ratio
xkj

yk
and not on the

particular value of yk. For example, one can compute α̂jk =
Pjx
∗∗
kj

Pk
where x∗∗kj is the amount of good j

necessary to produce one unit of good k.
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input sets S∗i do not change if production is scaled by a factor of Y ∗f .

Combining the market clearing condition for the final good and the budget constraint

for the household, expenditure on final goods is given by P ∗f Y
∗
f = P ∗fC

∗
f = 1. One can write

Y ∗f = 1
P ∗f

, and obtain all the equilibrium quantities Q∗ = Y ∗f q
∗.

Proof of Proposition 1. Recall, from the proof of Theorem 1, that if there exists a vector

of primary prices (P0, P1, ..., PJ) which satisfies the equations Pj = Kj(P0, P1, ..., PJ), then

there exists a unique equilibrium price vector P ∗ such that P ∗j = Pj. Thus, it suffices to show

that if Kj(·) is strictly concave, then there exists at most one vector of primary prices that

satisfies equation (6).

I use the following Lemma from Kennan (1999):

Lemma 5 (Kennan) If f : Rn → Rn is an increasing, strictly concave function such that

1. fi(0, ..., 0) ≥ 0,

2. there exists a = (a1, ..., an) such that ai > 0 and fi(a) > ai for all i ∈ {1, ..., n}, and

3. there exists b = (b1, ..., bn) such that bi > ai and fi(b) < bi for all i ∈ {1, ..., n},

then there exists a unique positive vector x such that f(x) = x.

In the statement of Lemma 5, define f : RJ → RJ such that fj(P ) = Kj(P ). Because

equation (6) holds, f has a fixed point. I use Lemma 5 to prove that this fixed point is

unique. I proceed to show that all the conditions of the Lemma hold. First, note that, by

assumption f is strictly concave.

I now show that f(0) > 0. Recall that Kj(P ) = minX,L
∑Pk

k=1Xk+L subject to Fj(X,L) =

1, and that labor is an essential factor of production, so that the optimal L must be greater

than 0. This means that Kj(0) > 0, since—even if prices were zero—the wage would still be

equal to 1 (since labor is the numeraire), and a non-zero quantity of labor will be demanded.

Thus, the condition fj(0, ...0) in Lemma 5 is satisfied.

I now show that there exists a > 0 such that f(a) > a. This follows from the continuity

of f . Let {a(n)}∞n=1 be a sequence of positive vectors a(n) such that limn→∞ a(n) = 0. Since

f is continuous, limn→∞ f(a(n)) = f(0) > 0 = limn→∞ a(n). Thus, for n large enough,

f(a(n)) > a(n).

Finally, I show that there exists b > a such that f(b) < b. Let P be a fixed point of

f (which exists by assumption). Then f(P ) = P . Since f is strictly concave, f(2P ) <
1
2
f(P ) + 1

2
f(P ) = f(P ). Thus, by setting b = 2P , the last condition of Lemma 5 is satisfied.

I conclude that f has a unique fixed point. Therefore, there exists only one vector

P ∗1 , ..., P
∗
J of primary prices such that equation (6) is satisfied, and a unique equilibrium
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price vector P ∗.

Proof of Theorem 2.

Deterministic Tie Breaking Rule I begin with the case where the tie breaking rule is de-

terministic. Recall from the proof of existence of equilibrium that lowercase variables y∗, x∗, `∗

denote equilibrium quantities for the special case where only one unit of the final good is pro-

duced. From the proof of existence of equilibrium, we have y∗i = y∗τι = x∗fτι = (Pτι
Pτ

)−γ(Pτ
Pf

)−β,

so that final industry demands and intermediate outputs are uniquely determined.

Furthermore, since the intermediate production function is strictly quasi-concave, for ev-

ery possible input set Si to intermediate industry i there exists a unique vector x∗i (Si) =

(x∗ij)j∈Si which minimizes costs when the set Si is used and y∗i units of output are pro-

duced. Since the tie-breaking rule is deterministic, there exists a unique set S∗i =

TieBreak(arg minSi
∑

j∈Si P
∗
j x
∗
ij(Si)) that firms in industry i will choose in equilibrium.

Therefore, intermediate input sets and input demands are uniquely determined.

Given intermediate inputs x∗ij, I defined x∗int,j =
∫
I x
∗
ijdi, and showed that there exists a

non-negative matrix L̂ ∈ RJ×J such that P ∗j y
∗
j =

∑J
k=1 L̂kjP ∗kx∗int,k. Thus, primary industry

outputs are also uniquely determined. Since primary production functions are strictly quasi-

concave, there exist unique input demand vectors (x∗j , `
∗
j) = ((x∗jk)

J
k=1, `

∗
j) such that firms in

industry J choose (x∗j , `
∗
j) when producing y∗j units of output.

Since Y ∗f can be computed as a function of the unique price vector P ∗, Y ∗f is unique.

Therefore, the allocations (Y ∗, X∗, L∗) = Y ∗f · (y∗, x∗, `∗). Since Y ∗f , y
∗, x∗ and `∗ are unique,

the constructed equilibrium allocations are unique.

Randomized Tie Breaking Rule The uniqueness argument with a randomized tie break-

ing rule is identical for final industry demands and industry output y∗i = x∗fi, since both

of these depend only on the price vector. Because the tie breaking rule is now random-

ized, there may be multiple equilibrium sets S∗i . Since all intermediate industries use

the same tie-breaking rule and have independent productivity draws, the random variables

S∗i (τ), (x∗ij(S
∗
i (τ)))Jj=1 will be independently distributed for all intermediate industries i ∈ I

with the same threshold τ .23 Let i = (τ, ι) and xij = xτιj. From the law of large numbers, one

can write
∫ 1

0
x∗τιj(S

∗
τιj))dι = E[x∗τιj(S

∗
τιj)], where the expectation is taken over all ι ∈ [0, 1].24

The aggregate x∗int,j =
∫
I x
∗
ij(S

∗
i )di is given by

∫∞
0

E[x∗τιj(S
∗
τιj)]ν(τ)dτ and is uniquely

determined in equilibrium. Since x∗int,j is uniquely determined, primary industry outputs

23Here I have emphasized the dependence of the random variable S∗ on τ .
24I showed in the proof of Theorem 1 that this expectation is finite.
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(y∗j )
J
j=1 and demands (x∗j , `

∗
j) are also uniquely determined. Since Y ∗f only depends on y∗, P ∗,

it is also uniquely determined.

Finally, note that Lemma 1 implies that, for any given industry i ∈ I, the input sets S∗i

and intermediate demands X∗ij(S
∗
i ) are unique with probability 1.

B.1 Proof of Theorem 3

I begin by recalling some properties of the Frechet distribution. I use these properties to

solve for equilibrium quantities and prices.

Properties of the Frechet Distribution In this subsection, I recall the definition of a

Frechet distribution’s shape and scale parameters and show how these parameters change

when under multiplication by a constant, exponentiation, and the maximum operator.

Definition 5 Given a scale parameter s > 0 and a shape parameter κ > 0, a Frechet distri-

bution with scale s and shape κ is given by the CDF Ψ(x) = e−(x
s

)−κ.

Lemma 6 Let γ, c > 0, and let X be a random variable drawn from a Frechet distribution

scale parameter s and shape parameter κ. Then cXγ is a random variable drawn from a

Frechet distribution with scale parameter csγ and shape parameter κ
γ

.

Proof.

Φ(x) = Prob[cXγ ≤ x] = Prob[X ≤ (
x

c
)

1
γ ] = Ψ((

x

c
)

1
γ ) = e−(

(xc )
1
γ

s
)−κ = e−( x

csγ )
−κγ

Lemma 7 Let X1, ..., Xn be Frechet random variables drawn from independent distributions

with shape parameter κ and scale parameters s1, ..., sn, respectively. Then max(X1, ..., Xn) is

drawn from a Frechet distribution with scale parameter (
∑n

i=1 s
κ
i )

1
κ and shape parameter κ.

Proof. Let Ψi(x) = e
−( x

si
)−κ

be the CDF of Xi. Then

Prob[max(X1, ..., Xn) ≤ x] =
n∏
i=1

Ψi(x) =
n∏
i=1

e
−( x

si
)−κ

= e
−
(
x(
∑n
i=1 s

κ
i )−

1
κ

)−κ

Lemma 8 If U is a standard exponential distribution with CDF Φ(x) = 1 − e−x and X =

sU−
1
κ , then X is a Frechet distribution with scale parameter s and shape parameter κ.
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Proof.

Prob[X ≤ x] = Prob[sU−
1
κ ≤ x] = Prob[U ≥ (

x

s
)−κ] = e−(x

s
)−κ

where the sign change in Prob[sU−
1
κ ≤ x] = Prob[U ≥ (x

s
)−κ] is justified because f(x) =

(x
s
)−κ is a decreasing function.

Lemma 9 If X is a Frechet distribution with scale parameters sX and shape parameter κ,

and Y is a Frechet distribution with scale parameter sY and shape parameter κ which is

independent of X, then

E[X|X > Y ] · Prob[X > Y ] = Γ(1− 1

κ
)sκX(sκX + sκY )

1
κ
−1.25

Proof.

Using Lemma 8, there exist independent standard exponential random variables U, V

such that X = sXU
− 1
κ and V = sY V

− 1
κ . Furthermore, since the function f(x) = x−κ is

decreasing, the event X > Y happens if and only if s−κX U < s−κY V . Equivalently, X > Y

happens if and only if U( sY
sX

)κ < V . I use this fact to first compute Prob[X > Y ] and then

to compute E[X|X > Y ].

I first compute Prob[X > Y ], as follows

Prob[X > Y ] =

∫ ∞
0

Prob[V > (
sY
sX

)κu]e−udu =

∫ ∞
0

e
−(1+(

sY
sX

)κ)u
du

Using the change of variables t = (1 + ( sY
sX

)κ)u, dt = (1 + ( sY
sX

)κ)du, I conclude that

Prob[X > Y ] = (1 + (
sY
sX

)κ)−1

∫ ∞
0

e−tdt = (1 + (
sY
sX

)κ)−1.

Now I compute E[X|X > Y ] · Prob[X > Y ]. I can write this as

E[X|X > Y ] · Prob[X > Y ] = E[sXU
−κ|U(

sY
sX

)κ < V ]Prob[U(
sY
sX

)κ < V ].

I can write this expression as an integral∫ ∞
0

∫ ∞
(
sY
sX

)κu

sXu
−κe−ue−vdvdu = sX

∫ ∞
0

u−
1
κ e−u

∫ ∞
(
sY
sX

)κu

e−vdvdu = sX

∫ ∞
0

u−
1
κ e
−(1+(

sY
sX

)κ)u
du

25The proof of this Lemma is adapted from https://math.stackexchange.com/questions/2330661/

conditional-expectation-e-leftxx-geq-ay-right-if-x-and-y-are-independen
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Using the change of variables t = (1 + ( sY
sX

)κ)u, dt = (1 + ( sY
sX

)κ)du, I conclude that

E[X|X > Y ]·Prob[X > Y ] = sX(1+(
sY
sX

)κ)−1(1+(
sY
sX

)κ)
1
κ

∫ ∞
0

t−
1
κ e−tdt = sX(1+(

sY
sX

)κ)
1
κ
−1Γ(1−1

κ
)

Finally, I can multiply and divide this expression by (sκX)
1
κ
−1 = s1−κ

X to obtain

E[X|X > Y ] · Prob[X > Y ] = sκX(sκX + sκY )
1
κ
−1Γ(1− 1

κ
).

Lemma 10 Let log Y =
∫∞

0
log Yτν(τ)dτ be a Cobb-Douglas production function, where the

input with index τ has a price Pτ . The marginal cost of producing one unit of output is given

by

logP =

∫∞
0

logPτν(τ)dτ∫∞
0
ν(τ)dτ

+ log

∫ ∞
0

ν(τ)dτ.

Proof. Write the unit cost minimization problem as minYτ
∫
τ
YτPτν(τ) subject to log Y =∫∞

0
log Yτν(τ)dτ = 0. The first order condition is

Pτ =
λ

Yτ
.

Plugging this into the constraint, one can solve for λ as follows,∫ ∞
0

(log λ− logPτ )ν(τ)dτ = 0 =⇒ log λ =

∫∞
0

logPτν(τ)dτ∫∞
0
ν(τ)dτ

.

Finally, compute P =
∫∞

0
YτPτν(τ)dτ = λ

∫∞
0
ν(τ)dτ . Taking logarithms, one can write

logP = log λ+ log

∫ ∞
0

ν(τ)dτ =

∫∞
0

logPτν(τ)dτ∫∞
0
ν(τ)dτ

+ log

∫ ∞
0

ν(τ)dτ.

Corollary 2 Let the conditions of Lemma 10 hold. When
∫∞

0
ν(τ)dτ = 1, then

logP =

∫ ∞
0

logPτν(τ)dτ.

Proof of Theorem 3.
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Formula for Pf . I begin by giving a formula for the final price. Recall that the final

industry’s production function is given by log Yf = γ
γ−1

(
∫∞

0
log(

∫ 1

0
X

γ−1
γ

fτι dι)ν(τ)dτ). This is a

nested CES function where the inner nest has elasticity of substitution γ, and the outer nest

has elasticity of substitution 1. Using Lemma 10 and the fact that
∫∞

0
ν(τ)dτ = 1, write

logPf =

∫ ∞
0

logPτν(τ)dτ, (32)

where Pτ = (
∫ 1

0
P 1−γ
τι dι)

1
1−γ . Using the law of large numbers, write

Pτ = E[(
K(S∗τι, P, τ)

φτι(S∗τι)
)1−γ])

1
1−γ , (33)

where S∗τι is a random variable denoting the cost-minimizing set of intermediate firm (τ, ι).

Taking conditional expectations over S∗τι, one can write this as

Pτ = (
∑

S∈F(θ,τ)

Pr[S∗ = S]E[(
K(S, P, τ)

φτι(S)
)1−γ|S∗τι = S])

1
1−γ . (34)

Note that the event S∗τι = S is equivalent to the events

K(S, P, τ)

φτι(S)
≤ min

S′ 6=S

K(S ′, P, τ)

φτι(S ′)

φτι(S)

K(S, P, τ)
≥ max

S′ 6=S

φτι(S
′)

K(S ′, P, τ)

(
φτι(S)

K(S, P, τ)
)γ−1 ≥ max

S′ 6=S
(

φτι(S
′)

K(S ′, P, τ)
)γ−1

For any S ∈ F(θ, τ), Lemma 6 tells us that ( φτι(S)

K(S,P,τ)
)γ−1 has a Frechet distribution with

shape parameter κ
γ−1

and scale parameter 1
K(S,P,τ)γ−1 . Lemma 7 tells us that the distri-

bution of maxS′ 6=S( φτι(S′)

K(S′,P,τ)
)γ−1 is Frechet with shape parameter κ

γ−1
and scale parameter

(
∑

S′ 6=SK(S ′, P, τ)−κ)
γ−1
κ . Lemma 9 tells us that

Prob[S∗ = S] · E[(
φτι(S)

K(S, P, τ)
)γ−1|S∗ = S] = Γ(1− γ − 1

κ
)K(S, P, τ)−κ(

∑
S′∈F

K(S ′, P, τ)−κ)
γ−1
κ
−1.

(35)
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Adding this up over all sets S ∈ F(θ, τ), one can write

∑
S∈F(θ,τ)

Prob[S∗ = S] · E[(
φτι(S)

K(S, P, τ)
)γ−1|S∗ = S] = Γ(1− γ − 1

κ
)(
∑
S′∈F

K(S ′, P, τ)−κ)
γ−1
κ .

Plugging this into equation (34) yields

Pτ = Γ(1− γ − 1

κ
)

1
1−γ (

∑
S∈F(θ,τ)

K(S ′, P, τ)−κ)
1
−κ . (36)

Finally, combining equations (32) and (36), one can write

logPf = log(Γ(1− γ − 1

κ
)

1
1−γ )− 1

κ

∫ ∞
0

log(
∑

S∈F(θ,τ)

K(S ′, P, τ)−κ).

Since PfYf = 1, we have log Yf = − logPf .

C Proofs from Section 4

Proof of Lemma 3. Take τ as fixed, and consider the function f(θ) = |F(θ, τ)| = |S :

G(θ, S) ≤ τ | =
∑

S⊂J 1G(θ,S)≤τ , where 1G(θ,S)≤τ is an indicator function. The distributional

derivative of this indicator function is ∂
∂θj

1G(θ,S)≤τ = −δ(τ −G(θ, S)) ∂G
∂θj

. Adding up over all

sets S ⊂ J , we obtain ∂
∂θj
|F(θ, τ)| = −

∑
S⊂J δ(τ −G(θ, S)) ∂G

∂θj
.

Proof of Proposition 3. This proposition follows from applying Lemma 3 to equation

(14). From Lemma 3, we have ∂
∂θj
|F(θ, τ)| = −

∑
S⊂J :j∈S δ(τ − G(θ, S)) ∂G

∂θj
. From equation

(14), we have
∂ log Yf
∂θj

= 1
κ

∫∞
0

∂
∂θj
|F(θ,τ)|

|F(θ,τ)| ν(τ)dτ. Plugging in the partial derivative for |F(θ, τ)|
and using the fact that

∫
δ(τ −G(θ, S))f(τ)dτ = f(G(θ, S)) for any function f(·), we obtain

∂ log Yf
∂θj

= −1

κ

∑
S⊂J

ν(G(θ, S))

|F(θ,G(θ, S))|
∂G

∂θj
.

Proof of Proposition 4. From Proposition 3, the first-order partial derivative
∂ log Yf
∂θj

is
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given by − 1
κ

∑
S⊂J

ν(G(θ,S))
|F(θ,G(θ,S))|

∂G
∂θj
. Since G(θ, S) =

∑
j∈S γjθj, one can write this as

∂ log Yf
∂θj

= −1

κ

∑
S⊂J

ν(G(θ, S))

|F(θ,G(θ, S))|
γj.

We want to compute the second-order partial derivative
∂ log Yf
∂θj∂θk

.

Write the denominator as |F(θ,G(θ, S))| = |S ′ : G(θ, S ′) ≤ G(θ, S)| = |S ′ :
∑

j∈S′ γjθj ≤∑
j∈S γjθj|. Now suppose that θk increases by an infinitesimal amount to θ′k = θk + dθk.

The expression |F(θ,G(θ, S))| will change if and only if there exists some set S ′ such that

increasing θk to θ′k transforms S ′ from feasible to infeasible, or from infeasible to feasible.

Fix a pair of sets S, S ′, and consider the following four cases: (1) k 6∈ S ∪ S ′, (2)k ∈
S ∩ S ′, (3)k ∈ S\S ′, (4)k ∈ S ′\S. In case (1), neither G(θ, S ′) nor G(θ, S) depend on θk.

Thus, a change in θk will not affect the feasibility of the set S ′. In case (2), both G(θ, S)

and G(θ, S ′) increase by γkdθk, so that the feasibility of set S ′ is also not affected. In case

(3), the feasibility of S ′ is affected only if
∑

j∈S γjθj =
∑

j∈S′ γjθj. Let T (S, S ′) = {θ :∑
j∈S γjθj −

∑
j∈S′ γjθj = 0} denote the set of vectors θ for which this condition holds and

note that T (S, S ′) has measure zero. Analogously, in case (4), the feasibility of S ′ is affected

only if θ ∈ T (S, S ′).

Since there is only a finite number of possible supplier sets S, S ′ ⊂ J , the union

T =def

⋃
S,S′⊂J

T (S, S ′)

also has measure zero. We conclude that the set of values of θ for which any of the denomina-

tors |F(θ,G(θ, S))| changes when θk increases by an infinitesimal amount has measure zero.

Thus, we can treat the denominators as constant almost everywhere.

We can now easily compute the second-order derivative almost everywhere as

∂2 log Yf
∂θj∂θk

= −1

κ

∑
S⊂J

dν
dτ
|τ=G(θ,S)

|F(θ,G(θ, S))|
γjγk.

Proof of Lemma 3. The proof is analogous to the proof of Lemma 3.

Take τ as fixed , and consider the function f(θ) =
∑

S∈F(θ,τ)K(S, P, τ)−κ =∑
S⊂J 1G(θ,S)≤τK(S, P, τ)−κ. The derivative of the term 1G(θ,S)≤τK(S, P, τ)−κ with respect
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to θj is −δ(τ −G(θ, S)) ∂G
∂θj
K(S, P, τ)−κ. Adding up over all sets S ⊂ J , we conclude that

∂

∂θj

∑
S∈F(θ,τ)

K(S, P, τ)−κ =
∑
S⊂J

δ(τ −G(θ, S))K(S, P, τ)−κ
∂G

∂θj
.

D Proofs from Section 5

Proof of Lemma 4. Let tj be the arrival time of primary industry j. Since industry j

has a threshold τj, we must have ζ(tj) = τj. Since ζ(tj) = e−Ztj , we must have tj = − log τj
Z

and tj+1− tj =
log τj−log τj+1

Z
. Since log τj− log τj+1| log τj has an exponential distribution with

mean 1
λ
, the conditional difference tj+1− tj|tj has an exponential distribution with mean 1

λZ
.

Thus, new industries arrive following a Poisson process with arrival rate Zλ.

Proof of Theorem 5. Write log-output as

log Yf (t) =
1

κ

∫ 1

e−Zt
log |F(θ, τ)| 1

τ
dτ∫ 1

e−Zt
1
τ
dτ

.

The denominator in this expression can be written as g(t) =
∫ 1

e−Zt
1
τ
dτ = Zt.

To compute the numerator, define τ ∗(t) = J(t)e−Zt. Since θj(t) = e−Zt for all primary

industries j ∈ {1, ..., J}, all intermediate industries with threshold τ ≥ τ ∗(t) will be able

to feasibly combine any subset S ⊂ {1, ..., J} of primary inputs. For these industries, the

number of feasible combinations |F(θ, τ)| = 2J(t), and log |F(θ, τ)| = J(t) ln 2.

Conversely, any intermediate industry with τ < τ ∗(t) will not be able to attempt arbitrary

combinations of inputs. Industries with τ in the interval [e−Zt, 2e−Zt] will be able to attempt

only one combination, and therefore log |F(θ, τ)| = 0 for these industries. Industries with τ

in the interval [je−Zt, (j + 1)e−Zt] will be able to attempt
∑j−1

k=0

(
J
k

)
combinations of inputs.

Thus, one can write the numerator as

f(t) =
J∑
j=1

∫ (j+1)e−Zt

je−Zt
log

j∑
k=0

(
J

k

)
1

τ
dτ +

∫ 1

(J+1)e−Zt
log 2 · J 1

τ
dτ

=
J∑
j=1

[log(j + 1)− log(j)] · log(

j∑
k=0

(
J

k

)
) + log 2 · J · Zt− log 2 · J · log(J + 1). (37)

To compute the limit limt→∞
log Yf (t)

t
= 1

κ
f(t)
Zt2

, note that the following bounds apply to

each term in f(t):

55



1.
∑J

j=1[log(j + 1)− log(j)] · log(
∑j

k=0

(
J
k

)
) ≤ log(J + 1) · log 2 · J = O(J log J),

2. log 2 · J · Zt = O(Jt), and

3. log 2 · J · log(J + 1) = O(J log J).

Since J(t) is a Poisson process with arrival rate λZ, it satisfies limt→∞
J(t)
t

= λZ almost

surely. This implies that J = O(t) almost surely. Any term that is O(J log J) = O(t log t)

grows asymptotically slower than the denominator Zt2. The only term in the limit that does

not vanish is the second term. Thus, we have

lim
t→∞

log Yf (t)

t
= lim

t→∞

1

κ

log 2 · J · Zt
Zt2

= lim
t→∞

1

κ

log 2 · J
t

=
1

κ
log 2 · λZ.

E Algorithms for Computing the Number of Feasible

Combinations with Size Constraints

In this Appendix, I give a recursive formula to compute |F(θ, τ)| = |S :
∑

j∈S θj ≤ τ |, the

number of feasible combinations under a size constraint. Without loss of generality, I assume

that all θj and τ are rational numbers with p digits of precision. Multiplying all of them by

10p, I can further assume that they are all integers in {0, 1....,M} for some large integer M .

For any j ∈ J and m ∈ {0, ...,M}, define C(j,m) = |{S ⊂ {1, ..., j} :
∑

j∈S θj ≤ m}| to

be the number of feasible sets which only contain the first j industries and whose total size

is less than or equal to m. For any j ∈ J , let N0(j) = |{j′ : 1 ≤ j′ ≤ j and θj = 0}| be the

number of industries whose index is less than equal to j and which have size θj = 0. Note

that C(J,M) = C is the quantity that we want to compute, and that C(j, 0) = 2N0(j) for any

j ∈ J . Furthermore, note that C(1,m) = 2 if θ1 ≤ m and C(1,m) = 1 if θ1 > m. Using

{C(j, 0), C(1,m)}j≤J,m≤M as the base cases, one can use the recursive formula

C(j,m) = C(j − 1,m) + C(j − 1,m− θj) (38)

to build up the dynamic programming table all the way up to C(J,M) = C.
The recursive formula (38) is justified because there are two kinds of sets S ⊂ {1, ..., j}

which satisfy the constraint
∑

j′∈S θj ≤ m. The first kind is those sets which do not contain

j. The number of such sets which do not contain j is C(j − 1,m). The second type of set is

those that contain j. One can write each of these sets in a unique way as S = {j}∪S ′ where
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S ′ ⊂ {1, ..., j − 1} and
∑

j′∈S θj′ ≤ m− θj. There are exactly C(j − 1,m− θj) of these sets,

which justifies formula (38).

This dynamic programming algorithm runs in time O(J ×M). This is tractable when M

is small, but quickly becomes intractable when M is very large. Dyer (2003) gives a tractable

approximation algorithm whose running time does not depend on M , and which computes C
with arbitrary precision.

Both the exact and approximate counting algorithms can be generalized to situations

where the feasible sets S have to satisfy multiple knapsack constraints.26 These running time

of these algorithms increases exponentially with the number of constraints (see Dyer (2003)

for more details on these generalizations.)

F Rolling Regression Results

In this Appendix, I report rolling regression results discussed in Section 6.6 for the following

15-year rolling periods: 1972-1987,1977-1992,1982-1997,1987-2002, and 1992-2007 (Tables

7-11.)

26These arise naturally, for example, if there are both size and weight constraints.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.016* 0.016 0.019* 0.019** 0.019** 0.022**
(0.009) (0.010) (0.011) (0.009) (0.010) (0.011)

TFP Change From Investment in Electronics and Computers 0.03% 0.03% 0.00% 0.04% 0.04% 0.00%

Panel B: First Stage Results (Weighted by Value Added)

logSizei -0.039** -0.039** -0.034 -0.039** -0.039** -0.034
(0.016) (0.016) (0.022) (0.016) (0.016) (0.022)

logDensityi -0.110** -0.110** -0.134** -0.103** -0.103** -0.127*
(0.050) (0.050) (0.067) (0.042) (0.042) (0.066)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit -0.021 -0.023 -0.094 -0.011 -0.013 -0.085
(0.093) (0.093) (0.117) (0.096) (0.096) (0.120)

F-test 4.634 4.500 2.773 5.168 5.007 2.526
TFP Change From Investment in Electronics and Computers 0.06% 0.05% 0.00% 0.07% 0.07% 0.00%
TFP Change From Electronic Miniaturization -0.01% -0.01% 0.01% -0.01% -0.01% 0.00%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.015* 0.015* 0.021* 0.018** 0.019** 0.024**
(0.008) (0.009) (0.011) (0.008) (0.009) (0.011)

TFP Change From Investment in Electronics and Computers 0.03% 0.03% 0.00% 0.04% 0.04% 0.00%

Panel E: First Stage Results (Unweighted)

logSizei -0.047*** -0.046*** -0.041** -0.046*** -0.046*** -0.041**
(0.014) (0.015) (0.020) (0.013) (0.014) (0.020)

logDensityi -0.113** -0.113** -0.156** -0.107*** -0.107*** -0.150**
(0.046) (0.047) (0.063) (0.036) (0.037) (0.063)

Panel F: IV Results (Unweighted)

∆ logCompit 0.026 0.025 -0.040 0.034 0.032 -0.033
(0.079) (0.079) (0.092) (0.080) (0.080) (0.094)

F-test 6.745 6.543 4.383 8.746 8.497 4.116
TFP Change From Investment in Electronics and Computers -0.04% -0.05% 0.00% -0.02% -0.03% 0.00%
TFP Change From Electronic Miniaturization 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%

Observations 423 423 294 423 423 294
Benchmark TFP Change 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 7: Regression Results for the 1972-1987 Sample. This table presents OLS and
IV estimates of the effect of computer and electronics investment on TFP for the years 1972-1987, using a
dataset of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding

computers and electronics (SIC codes 3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS
regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is industry
i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents lagged
revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates obtained from
a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+
ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products. Panel C shows
the corresponding second-stage results. Column (1) includes Sector and Time fixed effects, Column (2) adds
Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to
Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment
on TFP are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are
computed using equation (25). All standard errors are clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.025*** 0.026*** 0.026*** 0.028*** 0.029*** 0.029***
(0.008) (0.009) (0.009) (0.008) (0.009) (0.009)

TFP Change From Investment in Electronics and Computers 0.03% 0.03% 0.01% 0.04% 0.04% 0.01%

Panel B: First Stage Results (Weighted by Value Added)

logSizei -0.011 -0.011 -0.011 -0.010 -0.010 -0.010
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

logDensityi -0.124** -0.124** -0.123** -0.114** -0.113** -0.113**
(0.058) (0.059) (0.059) (0.052) (0.052) (0.052)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit -0.140 -0.140 -0.138 -0.138 -0.139 -0.137
(0.107) (0.107) (0.106) (0.118) (0.118) (0.117)

F-test 2.247 2.195 2.190 2.173 2.118 2.131
TFP Change From Investment in Electronics and Computers -0.10% -0.10% -0.03% -0.09% -0.09% -0.02%
TFP Change From Electronic Miniaturization 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.025*** 0.026*** 0.026*** 0.028*** 0.029*** 0.029***
(0.008) (0.009) (0.009) (0.008) (0.009) (0.009)

TFP Change From Investment in Electronics and Computers 0.03% 0.03% 0.01% 0.04% 0.04% 0.01%

Panel E: First Stage Results (Unweighted)

logSizei -0.020 -0.020 -0.020 -0.020 -0.020 -0.020
(0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

logDensityi -0.140** -0.140** -0.141** -0.133*** -0.132*** -0.133***
(0.055) (0.056) (0.056) (0.050) (0.051) (0.050)

Panel F: IV Results (Unweighted)

∆ logCompit -0.076 -0.076 -0.074 -0.066 -0.067 -0.065
(0.088) (0.088) (0.084) (0.093) (0.093) (0.089)

F-test 3.565 3.482 3.523 3.557 3.470 3.535
TFP Change From Investment in Electronics and Computers -0.19% -0.19% -0.05% -0.18% -0.18% -0.05%
TFP Change From Electronic Miniaturization 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Observations 441 441 441 441 441 441
Benchmark TFP Change -0.02% -0.02% -0.02% -0.02% -0.02% -0.02%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 8: Regression Results for the 1977-1992 Sample. This table presents OLS and
IV estimates of the effect of computer and electronics investment on TFP for the years 1977-1992, using a
dataset of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding

computers and electronics (SIC codes 3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS
regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is industry
i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents lagged
revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates obtained from
a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+
ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products. Panel C shows
the corresponding second-stage results. Column (1) includes Sector and Time fixed effects, Column (2) adds
Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to
Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment
on TFP are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are
computed using equation (25). All standard errors are clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.022*** 0.014* 0.014* 0.022*** 0.015* 0.015*
(0.007) (0.008) (0.008) (0.007) (0.008) (0.008)

TFP Change From Investment in Electronics and Computers 0.07% 0.05% 0.03% 0.07% 0.05% 0.04%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.084** 0.084** 0.083** 0.086*** 0.086*** 0.086**
(0.033) (0.033) (0.033) (0.033) (0.033) (0.033)

logDensityi 0.243*** 0.243*** 0.244*** 0.253*** 0.257*** 0.258***
(0.088) (0.089) (0.087) (0.092) (0.094) (0.093)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.035 0.035 0.035 0.032 0.032 0.033
(0.030) (0.030) (0.030) (0.028) (0.028) (0.028)

F-test 5.769 5.635 5.781 5.890 5.778 5.935
TFP Change From Investment in Electronics and Computers 0.16% 0.16% 0.12% 0.15% 0.15% 0.11%
TFP Change From Electronic Miniaturization 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.022*** 0.015* 0.015* 0.022*** 0.015* 0.015*
(0.007) (0.008) (0.008) (0.007) (0.008) (0.008)

TFP Change From Investment in Electronics and Computers 0.07% 0.05% 0.03% 0.07% 0.05% 0.03%

Panel E: First Stage Results (Unweighted)

logSizei 0.069** 0.069** 0.069** 0.071** 0.072** 0.071**
(0.028) (0.029) (0.029) (0.028) (0.029) (0.028)

logDensityi 0.185** 0.185** 0.187** 0.197** 0.200** 0.201**
(0.075) (0.076) (0.075) (0.079) (0.081) (0.079)

Panel F: IV Results (Unweighted)

∆ logCompit 0.051 0.051 0.051 0.046 0.046 0.046
(0.036) (0.036) (0.036) (0.034) (0.033) (0.034)

F-test 4.938 4.823 4.971 5.188 5.101 5.271
TFP Change From Investment in Electronics and Computers 0.11% 0.11% 0.08% 0.10% 0.10% 0.08%
TFP Change From Electronic Miniaturization 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Observations 441 441 441 441 441 441
Benchmark TFP Change 0.12% 0.12% 0.12% 0.12% 0.12% 0.12%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 9: Regression Results for the 1982-1997 Sample. This table presents OLS and
IV estimates of the effect of computer and electronics investment on TFP for the years 1982-1997, using a
dataset of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding

computers and electronics (SIC codes 3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS
regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is industry
i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents lagged
revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates obtained from
a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+
ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products. Panel C shows
the corresponding second-stage results. Column (1) includes Sector and Time fixed effects, Column (2) adds
Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to
Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment
on TFP are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are
computed using equation (25). All standard errors are clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.023*** 0.018** 0.019** 0.024*** 0.018** 0.019**
(0.008) (0.009) (0.008) (0.008) (0.009) (0.008)

TFP Change From Investment in Electronics and Computers 0.06% 0.04% 0.03% 0.06% 0.04% 0.03%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.076** 0.076** 0.075** 0.077** 0.077** 0.077**
(0.031) (0.031) (0.031) (0.031) (0.031) (0.032)

logDensityi 0.290*** 0.290*** 0.287*** 0.295*** 0.296*** 0.293***
(0.085) (0.086) (0.085) (0.087) (0.089) (0.088)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.032 0.032 0.041 0.031 0.031 0.041
(0.035) (0.035) (0.039) (0.035) (0.035) (0.038)

F-test 6.715 6.560 6.476 6.733 6.593 6.501
TFP Change From Investment in Electronics and Computers 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%
TFP Change From Electronic Miniaturization 0.02% 0.02% 0.02% 0.01% 0.01% 0.02%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.025*** 0.019** 0.020*** 0.025*** 0.019** 0.020***
(0.008) (0.008) (0.007) (0.008) (0.009) (0.008)

TFP Change From Investment in Electronics and Computers 0.05% 0.04% 0.03% 0.05% 0.04% 0.03%

Panel E: First Stage Results (Unweighted)

logSizei 0.073** 0.073** 0.072** 0.074** 0.074** 0.074**
(0.028) (0.029) (0.029) (0.029) (0.029) (0.029)

logDensityi 0.262*** 0.262*** 0.259*** 0.267*** 0.269*** 0.266***
(0.077) (0.078) (0.078) (0.079) (0.081) (0.081)

Panel F: IV Results (Unweighted)

∆ logCompit 0.030 0.030 0.041 0.029 0.029 0.041
(0.038) (0.038) (0.041) (0.037) (0.037) (0.040)

F-test 6.927 6.766 6.627 6.980 6.837 6.700
TFP Change From Investment in Electronics and Computers 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%
TFP Change From Electronic Miniaturization 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Observations 441 441 441 441 441 441
Benchmark TFP Change 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 10: Regression Results for the 1987-2002 Sample. This table presents OLS and
IV estimates of the effect of computer and electronics investment on TFP for the years 1987-2002, using a
dataset of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding

computers and electronics (SIC codes 3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS
regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is industry
i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents lagged
revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates obtained from
a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+
ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products. Panel C shows
the corresponding second-stage results. Column (1) includes Sector and Time fixed effects, Column (2) adds
Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to
Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment
on TFP are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are
computed using equation (25). All standard errors are clustered at the industry level.
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(1) (2) (3) (4) (5) (6)

Panel A: OLS Results (Weighted by Value Added)

∆ logCompit 0.023*** 0.018*** 0.020*** 0.023*** 0.018*** 0.020***
(0.006) (0.005) (0.005) (0.006) (0.006) (0.005)

TFP Change From Investment in Electronics and Computers 0.04% 0.03% 0.03% 0.04% 0.03% 0.03%

Panel B: First Stage Results (Weighted by Value Added)

logSizei 0.100*** 0.100*** 0.100*** 0.101*** 0.101*** 0.101***
(0.035) (0.035) (0.035) (0.035) (0.036) (0.035)

logDensityi 0.379*** 0.379*** 0.374*** 0.382*** 0.383*** 0.377***
(0.080) (0.081) (0.080) (0.083) (0.084) (0.082)

Panel C: IV Results (Weighted by Value Added)

∆ logCompit 0.044* 0.044* 0.051* 0.042* 0.042* 0.050*
(0.023) (0.023) (0.028) (0.023) (0.023) (0.027)

F-test 10.44 10.20 10.24 10.33 10.12 10.10
TFP Change From Investment in Electronics and Computers 0.08% 0.08% 0.07% 0.07% 0.08% 0.07%
TFP Change From Electronic Miniaturization 0.03% 0.03% 0.02% 0.03% 0.03% 0.02%

Panel D: OLS Results (Unweighted)

∆ logCompit 0.022*** 0.018*** 0.019*** 0.022*** 0.018*** 0.019***
(0.006) (0.006) (0.005) (0.006) (0.006) (0.005)

TFP Change From Investment in Electronics and Computers 0.04% 0.03% 0.03% 0.04% 0.03% 0.03%

Panel E: First Stage Results (Unweighted)

logSizei 0.101*** 0.101*** 0.100*** 0.101*** 0.101*** 0.101***
(0.036) (0.037) (0.037) (0.037) (0.037) (0.037)

logDensityi 0.391*** 0.391*** 0.386*** 0.394*** 0.395*** 0.389***
(0.087) (0.088) (0.086) (0.089) (0.091) (0.089)

Panel F: IV Results (Unweighted)

∆ logCompit 0.042** 0.042** 0.048* 0.040* 0.040* 0.047*
(0.021) (0.021) (0.026) (0.021) (0.021) (0.026)

F-test 9.705 9.480 9.563 9.599 9.396 9.432
TFP Change From Investment in Electronics and Computers 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%
TFP Change From Electronic Miniaturization 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

Observations 441 441 441 441 441 441
Benchmark TFP Change 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%

SIC2 × Time Trend No Yes Yes No Yes Yes
Control for lagged change in TFP No No Yes No No Yes
Control for lagged revenue No No No Yes Yes Yes

Table 11: Regression Results for the 1992-2007 Sample. This table presents OLS and
IV estimates of the effect of computer and electronics investment on TFP for the years 1992-2007, using a
dataset of five-year stacked differences for heavy manufacturing industries (SIC Codes 3401-3999), excluding

computers and electronics (SIC codes 3571-3579, 3671-3679). Panel A shows the estimate β̂ in the OLS
regression ∆ logAi,t = β∆ logCompi,t+γ∆ logRevi,t−1+δI×t+η∆ logAi,t−1+εi,t, where logAi,t is industry
i’s TFP at time t, Compi,t represents investment in computers and electronics, Revi,t−1 represents lagged
revenue, and δI×t is a 2-digit sector X time fixed effect. Panel B shows the first-stage estimates obtained from
a 2SLS regression with first-stage ∆ logCompi,t = αSize logSizei+αDensity logDensityi+ν∆ logCapexi,t+
ψI×t + τi,t, where Sizei, Densityi are the median size and density of industry i’s products. Panel C shows
the corresponding second-stage results. Column (1) includes Sector and Time fixed effects, Column (2) adds
Sector X Time fixed effects, and Column (3) adds lagged TFP as a control. Columns (4)-(6) are analogous to
Columns (1)-(3), while adding lagged revenue as a control. Counterfactual effects of electronics investment
on TFP are computed using equation (24). Counterfactual effects of electronic miniaturization on TFP are
computed using equation (25). All standard errors are clustered at the industry level.
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