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Non-Technical Summary

Despite the perpetual debate surrounding the consequences of technological change for em-

ployment, there is only relatively little microeconometric work on the effect of innovations on

corporate employment growth. The sign of this effect is theoretically ambiguous: While in-

creasing the level of demand, product innovations might replace existing products and reduce

price elasticity of demand so that output and employment might decrease as well; process

innovations reduce production costs but often imply labour-saving progress. This paper analy-

ses empirically the relationship between innovative activity and employment growth at the

micro-level using panel data on German start-up firms followed through the 1990s. Patent

data from the German Patent Office are used to provide an indication of innovative activity.

Attention is also paid to the size-age-growth relationship.

The results reveal that small firms grow much faster than larger ones, while firm age affects

employment growth rather positively at this early stage of the life cycle in which the firms are

observed. Using different patent indicators, it further turns out that patenting activity has a

positive effect on employment growth. However, patenting firms do not generally exhibit

higher growth rates than their non-patenting counterparts; instead, growth performance de-

pends on their patenting activity over time. There is some evidence that the effect is greatest

two years after patent application and that it is larger for younger firms than for older ones.

Moreover, it is apparently rather the very act of applying for patents than the number of patent

applications that matters for the growth performance of a firm.
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Abstract: The effect of innovations on employment at the firm level is theoretically ambigu-

ous. The present paper analyses this relationship using panel data on German start-up firms as

well as German patent data. It employs different indicators of patenting activity. By applying

fixed-effects and first-differencing panel data methods it is shown that patenting activity has a
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1. Introduction

Innovation is universally regarded as a major source of economic growth. Likewise, innova-

tion activities of firms are generally supposed to have a positive effect on firm performance.

Product innovations increase demand; process innovations reduce marginal production costs.

As a consequence, firms are able to conquer market shares at the expense of other firms and

enhance their competitiveness. However, the length of time over which a competitive advan-

tage lasts is very short in highly competitive markets and continuous innovations are neces-

sary to maintain a leading position. The positive relationship between innovation activities

and economic performance is empirically less established at the firm level than at the macro-

level.

There are quite a few studies analysing the impact of R&D and innovations on productivity,

sales, and market value at the firm level. However, despite the ongoing debate on the conse-

quences technological change has for employment, there is only relatively little microe-

conometric work dealing with the effect of innovations on corporate employment growth. The

sign of this effect, derived from theoretical models, is not clear: While increasing the level of

demand, product innovations might replace existing products and reduce price elasticity of

demand so that output and employment may decrease as well; process innovations reduce

production costs but often imply a labour-saving progress. This paper analyses empirically the

relationship between innovative activity and employment growth at the micro-level using

panel data on German start-up firms and patent data from the German Patent Office. It fo-

cuses on other potential determinants of post-entry performance, particularly firm size. Fixed-

effects as well as first-differencing panel estimators are applied to the data.

The paper is structured as follows. The next section outlines the theoretical approaches to em-

ployment growth at the firm level while focusing on the effects of firm size and innovative

activity. The methodological problems encountered when analysing the relationship between

innovative activity and corporate growth are illustrated in the third section. Section 4 surveys

the relevant empirical literature. The econometric models used for the empirical analysis are

explained in section 5. A description of the underlying data set and the characteristics of pat-

enting and non-patenting firms are given in section 6. Section 7 presents the results, and sec-

tion 8 concludes.
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2. Theoretical Background

In contrast to the neoclassical growth theory, the theory of endogenous growth treats techno-

logical progress not as exogenously given but as a result of research and development effort.

Technological knowledge is disseminated and shared by the economy as a whole, promoting

in turn economic growth. The importance which the theory of endogenous growth attaches to

the production of technological knowledge for the growth process increased interest in the

microanalysis of innovation and its consequences for firm performance. Before turning to the

effects of innovative activity on employment growth, however, an overview of theoretical

approaches regarding the size-growth and age-growth relationship should be given.

The effect of firm size

The related theoretical literature has paid special attention to the effect of firm size on corpo-

rate growth and to the discussion of Gibrat´s Law (Gibrat 1931). According to this law, which

is also called the Law of Proportionate Effect (LPE), firms grow proportionally and independ-

ently of their size. This implies that growth is independent of past growth, that growth rates

are not heteroscedastic with firm size and that the firm size distribution tends to become in-

creasingly concentrated over time (Goddard et al. 2002).

Various theoretical approaches are contradictory to Gibrat´s Law. Models of optimum firm

size postulate that firms converge to the minimum efficient size (MES), which varies with

industry. Small firms operating below the MES have to grow to become competitive and sur-

vive. Large firms operating above the MES tend to shrink if the advantages of exploiting scale

economies are outstripped by organisational problems. “Reversion-to-mean” effects and an

approximation of firm sizes are then observed within industries. The need for start-up firms to

grow depends on their start-up size and how prevalent scale economies are in the firms’ in-

dustry. The smaller a firm’s start-up size relative to the MES, the more urgent it is for the firm

to grow.

The model of “noisy selection” introduced by Jovanovic (1982) explains why most firms

choose a start-up size below the optimal level. This theory emphasises managerial efficiency

and learning by doing as the key factors determining firms’ growth dynamics. It assumes that

new firms do not know their cost function in advance, but learn about their relative efficiency

as soon as they enter the market. Given the information before entry, firms might be inclined

to start with a suboptimal level of output to keep sunk costs low, to expand only if subsequent

performance is encouraging and to leave the market otherwise. The model implies that sur-

viving young and small firms grow faster than older and larger ones.



3

Models with Penrose (1959) effects suggest that firms’ current-period growth rates are con-

strained. According to the “managerial-limits-to-growth” hypothesis, expansion carries an

opportunity cost because some existing managers have to be diverted from their current re-

sponsibilities to help manage the expansion of the management team. These costs are higher

for faster growing firms. Firms therefore tend to smooth out their growth paths over time.

Additionally, each firm is born with or develops over time certain organisational capabilities

and competencies which define what the firm is capable of doing and produce a path depend-

ence of the firm’s development (Geroski 1999). Both arguments lead to a serial correlation of

growth rates over time which is not compatible with Gibrat´s Law.

The effect of firm age

As far as the age of a firm is concerned, learn-theoretic models like the one proposed by Jo-

vanovic (1982) postulate a negative relationship with firm growth. Older firms have already

learned about their relative efficiency and have adapted their size accordingly – they have no

need to grow. Moreover, returns from the process of learning are supposed to decrease over

time, making it more and more difficult to enhance efficiency further as firms grow older.

Life-cycle models explain the negative relationship by increasing saturation of the market for

a firm’s products (Markusen et al. 1986) and the expanding presence of competitors offering

new or enhanced products (Fritsch 1990).

The effect of innovation activities

The direction of the effect of innovation on employment at the firm level is theoretically am-

biguous. In addition to direct effects, indirect effects depending on parameters of the produc-

tion function, the respective output and labour markets and the characteristics of the innova-

tion itself exist (Blechinger et al. 1998). Innovations can be categorised as process or product

innovations. Process innovations make it possible to produce a given amount of output with

less input and change the production function of the firm. They are of the labour (capital)

augmenting type if they allow reduction of labour (capital) input. Product innovations com-

prise quality-improved products as well as new products and are supposed to affect the de-

mand function a firm is facing.

The direct effects of process innovations involve an increase in productivity and a decrease in

production costs. For a given amount of output, labour augmenting progress will have a nega-

tive impact on employment (displacement effect). However, the decline in marginal costs

tends to reduce prices and thus increase demand and employment (compensation effect). This

indirect positive effect on employment will outweigh the direct negative effect, ceteris pari-
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bus, if demand is elastic. Furthermore, it depends positively on the elasticity of substitution

between labour and capital (i.e., the degree to which the firm can substitute capital by the

relatively more cost-efficient factor labour in the case of the labour augmenting progress), on

the extent of scale economies resulting from the innovation, and on the level of competition

and the corresponding degree to which cost reductions are transmitted into price reductions

(Van Reenen 1997, Blechinger et al. 1998).

The direct effect of product innovations is the generation of new demand and/or the conquest

of market shares at the expense of other firms. Consequently, firms’ employment demand will

rise. By offering a new or quality-improved product, a firm can obtain temporary monopolis-

tic profits until other firms are able to imitate the product or to develop an even better one.

However, the new product might replace existing products offered by the firm. Moreover, the

novelty and uniqueness of the product might lead to a lower price elasticity of demand for the

product, which entails an increase in price and a decrease in optimal output. As a consequence

of this indirect effect, the employment of the firm in question might decline (Smolny 1998b).

The net effect on employment depends on the relative strength of the positive quantity effect

and the negative price effect. However, the positive quantity effect is more likely to prevail.

In the extreme case in which specialised buyers have not previously bought the industry inno-

vator’s product, the increase in demand and output can be enormous. There is no similar ef-

fect for process innovations (Cohen and Klepper 1996). Katsoulacos (1986) uses a theoretical

analysis to derive a positive net effect of product innovations on employment; conversely, he

finds the net effect of process innovations to be negative. As a consequence of these results, a

negative relation between employment growth and industry age arises. In the early stage of

the industry life-cycle, product innovations (i.e, the introduction of a new product and further

substantial product enhancements) prevail. In later stages in which the product is already

largely standardised, process innovations become more important. This would imply that in-

novations have a positive employment effect in the early stages and a negative effect in the

later stages of the industry life-cycle.

3. Methodological Issues

There are several methodological problems associated with the empirical analysis of how in-

novative activity affects employment growth. Firstly, the evolution of employment size is

determined by many factors. It has to be controlled for all of these factors in order to isolate

the specific contribution of a certain variable. However, not all the determinant factors are



5

observed – there is unobserved heterogeneity. If these unobserved effects are correlated with

the observed explanatory variables in the model, the estimated coefficients will be biased. For

example, innovative firms often have unobserved comparative advantages in implementing

new technologies or possess special strategic competencies. If employment growth in these

firms is driven by these unobserved factors, the effect of innovation per se will be overesti-

mated unless it is controlled for unobserved heterogeneity. Panel data models accounting for

unobserved, time-constant individual effects may help to overcome this problem.

Secondly, the data set used might be a non-random sample of the whole population of firms,

allowing the estimation to be affected by selection bias. With panel data, the problem be-

comes aggravated in the presence of panel attrition, i.e., if some firms drop out of the panel

after a period of time. If the selection mechanism is non-random but systematically related to

the response variable after conditioning on explanatory variables, the estimated coefficients

might be biased. In the present case, in which only surviving firms enter the estimation proce-

dure, such a systematic relation is very likely to exist because the growth and survival of

firms can be supposed to be partially influenced by the same unobserved factors. If these un-

observed factors are correlated with those observed, failure to control for them will lead to

erroneous inference regarding the impact of the observables on the dependent variable. For

example, it has been claimed that the negative relationship between size and growth revealed

by many empirical studies is actually due to the failure to account for survival bias (Mansfield

1962). Unobserved factors correlated with small firm size influence survival as well as growth

negatively. The early exit of small firms with minor growth rates leads to an overly positive

picture of small firms´ growth performance and a false rejection of Gibrat´s law. As long as

the probability of being in the sample is constant over time, the correction for selectivity is

time-invariant and consistent estimates can be obtained from fixed-effects or first-differencing

panel data methods. However, if selection varies over time and is correlated with the error

term of the structural equation of interest, special methods correcting for selection bias have

to be applied.

Further attention should be devoted to the possible endogeneity of innovative activity as a

determinant of employment growth. If the innovation indicators themselves are affected by

growth, econometric methods allowing for endogenous explanatory variables have to be used.

Generally, one might expect a two-way relationship between R&D, innovation activities and

performance at the firm level: A firm’s innovativeness is an important determinant of its per-

formance in the next period, but its current performance may also control its future innovative

effort. This is plausible for performance measures such as cash flow or sales which are closely
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connected to the liquidity of a firm and thereby determine its ability to finance innovation

activities. It may also apply to employment growth, which can be considered as a proxy for

the demand expectations of a firm. In order to capture a greater part of the growing market a

firm might decide to undertake innovative efforts. However, firms can directly influence only

the inputs into the innovation process. Throughput and output indicators (patents, innova-

tions) cannot be planned exactly since they involve R&D efforts with long gestation periods

and uncertain success (Van Reenen 1997). A priori, it is therefore not clear whether one can

assume innovations to be predetermined or must consider them as endogenous with respect to

employment growth. In their specification of an empirical model based on the innovation

model of Kline and Rosenberg (1986), Klomp and Van Leeuwen (2001) preclude any influ-

ence of employment growth on innovation by allowing for a feedback loop proceeding only

from sales growth to innovation output. Empirical evidence suggests that employment size

has a significant impact on number of patents and innovations (e.g., Schwalbach and Zim-

mermann 1991, Entorf and Pohlmeier 1990, König and Licht 1995, Acs and Audretsch

1990).1 However, there is no study known to the author which documents employment

growth’s effect on innovative activity. Performing a Granger causality test, Lööf and Hesh-

mati (2004) cannot detect any significant impact of employment growth on R&D intensity.

Another problem is presented by the appropriate measurement of employment and innovation

activity. Regarding employment, simply using the number of employees might be misleading.

Innovations may affect various skill levels of employment very differently. There is usually a

complementarity between new technology and skilled labour; this causes the demand for

skilled labour to rise with technical progress while the demand for unskilled labour declines

(Blechinger et al. 1998). It is therefore desirable to have employment data distinguishing the

skills required to do the job. Unfortunately, no such information was available for this study.

Different indicators have been used to measure innovative activity. There are input-oriented

indicators like share of R&D personnel in total personnel or R&D expenditures per employee,

as well as output-oriented measures such as innovation counts, self-reported statements on

innovations or share of turnover attributable to innovations. Measures also exist which have

been referred to as an intermediate result of the production process or a throughput indicator

of innovation (Licht and Zoz 1996, Blechinger et al. 1998), namely number of patent applica-

                                                          
1 Schwalbach and Zimmermann show for Western Germany that number of patents increases with firm size.
However, they find that the propensity to patent, i.e., number of patents per number of inventions, is lower for
the largest firms than for SMEs. Acs and Audretsch show that the most innovative US firms are large corpora-
tions. Still, they observe that innovation rates, i.e., number of innovations per thousand employees, are larger in
small firms.
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tions or grants. On the one hand, patents are inventions and insofar the output of research ac-

tivity. The application for a patent indicates that R&D efforts have been productive and have

led to an invention which the enterprise considers to be worth protecting. On the other hand,

patents have to be combined with information on manufacturability and user needs in order to

be implemented in the production process or converted into a marketable product. They can

thus be seen as an input factor for innovations which at the same time enable firms to exert

property rights and appropriate the profits from its ideas.

Of these measures, the one most suitable for empirical analysis depends on the research topic.

If the effect of innovative activity on employment is to be analysed, output-oriented indicators

incorporating economic success and thus the respective demand situation should be preferred

since a firm’s employment decision depends heavily on demand (Blechinger et al. 1998). In

this study, such indicators were not available for the underlying data set. For patents (which

have been used instead) the link to economic success is not as strong. Like all input and

throughput indicators of innovation, they affect productivity and output after a delay. The

underlying inventions first have to be converted into new production techniques or marketable

products. New capital equipment, training or even further R&D might be necessary. Moreo-

ver, patents can be regarded as real options guaranteeing exclusive rights which allow firms to

wait on the conversion into innovations. When facing uncertain market conditions, firms

might prefer to delay these investments, which are at least partly irreversible (Bloom and van

Reenen 2002). Hence, the length of time before patents affect firm performance depends on

the quantity and quality of the necessary investments and on market conditions.

Moreover, the patent indicator is beset with three fundamental problems: First, not all inven-

tions are patentable; second, not all patentable inventions are patented; and third, patented

inventions differ greatly in quality (Griliches 1990). As to the first point, there are some kinds

of technical progress, e.g., imitative or incremental innovations, which are too small or too

applied in nature to be patentable. Still, they represent an increasingly important part of inno-

vative activity and may affect firm performance (Licht and Zoz 1996). Referring to the second

point, it is clear that patents are only one way of protecting an innovation and not always the

most effective one. In some cases, other mechanisms like secrecy, lead time or long-term em-

ployment contracts are better suited to appropriate returns on R&D. Patents disclose at least

some information to competitors via patent documents and can play an important role in in-

formation diffusion (Cohen et al. 2002). The inclination to use patents for innovation protec-

tion is supposed to depend on industry and type of innovation. Patents are a more efficient

protection mechanism for product than for process innovations (König and Licht 1995). For
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process innovations, secrecy is a more effective instrument of avoiding imitation. The last

point refers to the fact that some patents reflect important inventions leading to successful

innovations, while others have almost no economic significance and are not converted into

innovations. Accordingly, some patents improve firm performance and others do not. This

makes it difficult to estimate the average effect precisely.

Finally, it is not likely that the effect of innovative activity – no matter how it is measured –

will be restricted to one time interval. It is likely distributed over several delays, as it takes

some time until a firm has fully adapted its production to the new technique/product in ques-

tion or until the market for the new product is saturated. This makes it difficult to estimate the

overall impact of innovation. Furthermore, only the effects of the proceeds of innovating (in-

volving either a product or process) have been addressed thus far. However, the process of

innovating will increase a firm’s ability to appropriate knowledge contained in other firms’

innovations and will improve its general competitiveness. Therefore, innovating firms can be

assumed to perform generally better than their non-innovating counterparts (Geroski et al.

1993).

4. Empirical Literature

Turnover and labour costs are undoubtedly decisive factors determining level of employment.

Innovations, however, are also among the most important determinants in many European

economies (Blechinger et al. 1998). In view of the empirical analysis in section 7, this survey

of related empirical literature first provides a short summary of the extensive observational

research dealing with the relations between employment growth and firm size and age; it then

focuses on the impact of innovative activity.

Survey articles summarising the empirical evidence for the US (e.g., Sutton 1997) have de-

tected some “statistical regularities”: Firm size and age are positively related to likelihood of

survival, while growth rates decrease with size and age. Similar results have been found in the

European context, but the links between growth and size and age are somewhat more am-

biguous here (Audretsch 2002). At least for firms exceeding a certain size (Becchetti and Tro-

vato 2002) and for those in specific sectors of the economy (Audretsch et al. 2002, Almus

2002), growth and size seem to be independent of one another. Audretsch et al. (2002) ascribe

the insignificant size coefficient in their analysis of the Dutch hospitality sector to the low

MES in the service sector which allows small firms to be competitive and stay in the market

without growing. According to Geroski (1999), past and recent econometric work has sug-
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gested that growth rates are random and driven by exogenous events. He states that the esti-

mated size coefficient is mostly small and that the evidence supporting convergence in firm

size is not all that strong. Firms in the same industry rather converge toward different steady-

state sizes. They make large and infrequent changes in output and employment, which is con-

sistent with the observation that the production of innovations is erratic as well – firms neither

grow nor innovate consistently. However, Mata (1994) and Goddard et al. (2002) illustrate the

impact which the particular econometric method applied has on the estimated coefficient of

firm size. Mata finds evidence of unobserved, time-invariant, firm-specific effects which are

positively correlated with firm size and growth. Accounting for these effects by using panel

data methods reveals a more pronounced negative influence of firm size on growth compared

to when standard cross-sectional methods are applied. This finding is corroborated by Das

(1995) and Liu et al. (1999), who compare the results of OLS and fixed-effects estimations of

employment growth.

At least up to a certain age, most empirical work reveals a negative relationship between em-

ployment growth and age (e.g., Evans 1987a/b, Liu et al. 1999, Heshmati 2001, Bechetti and

Trovato 2002); in other words, they confirm Jovanovic´s model. However, studies which

analyse firms in infant industries or very young firms often show a positive impact of age on

growth that diminishes with age (Das 1995, Almus et al. 1999). This suggests that the returns

on learning are increasing at a diminishing rate during the early life-cycle stage of an industry

or firm before starting to decrease as the firm or industry matures.

Empirical work on the effect of innovations on employment growth yields very mixed results.

Katsoulacos’ (1986) hypothesis that product innovations stimulate employment and process

innovations are labour-saving has only been partly confirmed. Many studies detect a positive

effect of product innovations and a negative (but often insignificant) effect of process innova-

tions (e.g., Rottmann and Ruschinski 1997, and Blechinger and Pfeiffer 1999 for German

manufacturing; Brouwer et al. 1993 for Dutch manufacturing; Evangelista and Savona 2003

for Italian services). Smolny´s (1998b) analysis of Western German manufacturing firms re-

veals a positive effect for both kinds of innovations, but the evidence for the effect of process

innovations is rather weak. Blechinger and Pfeiffer find a positive effect of product innova-

tions only for large firms, whereas this effect is negative for some SMEs. Therefore, they

caution against deriving any empirical patterns from their results. Similarly, Leo and Steiner

(1995) conclude from their analysis of Austrian manufacturing firms that product innovations

can increase employment in some firms and lower it in others, citing a dependence on the

character of each new product (complementary or substitutional). Analysing data from the
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Community Innovation Survey (CIS) for several European countries, Blechinger et al. (1998)

observe a positive employment effect of R&D commitment in German, Danish, Belgian and

Italian manufacturing firms. Given the total amount of R&D, a high share of R&D directed

toward process innovations significantly decreases employment in German firms. However,

the reverse effect can be found in Luxembourg and Italy. Further evidence in favour of a

positive effect of process innovations on employment growth was found by Doms et al.

(1994) for US manufacturing plants and by Klomp and Van Leeuwen (2001) for Dutch firms

mostly involved in the manufacturing sector. Surprisingly, Klomp and Van Leeuwen simulta-

neously detect a negative effect of the share of innovative products on employment growth.

Recent studies by Jaumandreu (2003) and Peters (2004) using CIS data on Spanish and Ger-

man manufacturing and service firms, respectively, find that product innovations increase

employment growth and that the magnitude of the effect corresponds approximately to the

increase in innovative sales. In addition, Peters’ results reveal that this holds for firm novelties

as much as for market novelties. As far as process innovations are concerned, Jaumandreu

does not observe any significant negative impact with respect to employment. Peters can only

detect such an effect for manufacturing firms which have carried out only process innovations

and have introduced a new production technology for rationalisation reasons (and not in order

to improve product quality or to fulfil legal requirements). She argues that the varying effects

of different types of process innovations may explain the contradicting empirical evidence

concerning the effect of process innovations on employment growth.

Of the studies cited above, those by Das, Goddard et al., Heshmati, Liu et al., Mata, and

Rottmann and Ruschinski applied panel data techniques (fixed- or random-effects models)

based on annual growth rates; Smolny performed pooled OLS regressions. All other studies

used cross-sectional methods and calculated growth rates for the most part over several years

in order to avoid short-term fluctuations. There are only two studies known to the author

which – like this analysis – use patents as an innovation indicator and apply panel data tech-

niques in their analysis of employment growth at the firm level. Van Reenen (1997) uses the

Arellano and Bond’s first-differencing model for UK manufacturing firm data and finds a

positive relationship between number of successful innovations2 and level of employment two

or three periods later; the effect of product innovations is stronger than that of process inno-

vations. The number of patents taken out in the US, however, has a positive but insignificant

effect when number of innovations is controlled for. Using a fixed-effects model, Greenalgh

                                                          
2 “Successful innovation” here means the successful commercial introduction of new or improved products or
processes.
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et al. (2001) discover that R&D intensity as well as UK patent publications have a positive

impact on employment level in British industrial and commercial companies. Instead of pat-

ent counts, they use a weighted average of patents published between two and four years prior

to the employment observation, with weights reflecting the average rate of patent renewals.

Like Van Reenen (1997), they are unable to find a positive impact of US patents on employ-

ment and conclude that patents in the respective domestic market rather than US patents have

a significant value to UK firms.

To conclude this survey, some stylised facts derived by Tether (1997) regarding employment

creation in innovative and technology-based new and small firms are reproduced: Controlling

for size and age, innovative and technology-based firms significantly outperform firms from

the general population in terms of rate of job creation, but the mean rates of direct employ-

ment creation in these firms are only modest. Moreover, the distribution of the rates of job

creation is highly skewed, i.e., the bulk of jobs are created by a small subset of the total

population of innovative and technology-based new and small firms. These stylised facts may

be one explanation as to why the empirical evidence regarding the effects of innovative activ-

ity on corporate employment growth is so diverse.

5. Econometric Model

The employment growth of firm i ( )...1 Ni =  in period t )...1( Tt =  can be presented by the

model

                                                                   itiitit ucxg ++= β .                                                                          1

itg  is the logarithmic employment growth rate, i.e., 1, −−= tiitit yyg  with ity  being the loga-

rithm of employment of firm i at period t. β  is a vector of unknown parameters, itx  a set of

explanatory variables, ic  an unobserved, time-constant, firm-specific effect, and itu  the error

term. Panel data methods treating ic  either as fixed or random can be used to estimate equa-

tion 1. The term ic  captures the unobserved heterogeneity across firms as far as it is due to

time-constant characteristics.

Empirical studies using panel data models to analyse employment growth usually choose a

fixed-effects or first-differencing method in order to account for unobserved heterogeneity.

Applying the Hausman test, fixed-effects methods often turn out to be superior to the random

effects approach (e.g., Mata 1994, Das 1995, Rottmann and Ruschinski 1997, Liu et al.1999).
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This can be explained by the probable correlation of unobserved, time-invariant, firm-specific

factors like entrepreneurial skills or technical knowledge with the explanatory variables, such

as innovation indicators. If there is correlation between the unobserved individual effects and

the covariates, the random effects model leads to inconsistent estimates.

The fixed-effects method is usually applied to the transformation of equation 1, which elimi-

nates ic  by subtracting the averages over Tt ...1=  from each term:

 iitiitiit uuxxgg −+−=− β)( .        2

The itu  are assumed to be homoscedastic and serially uncorrelated: Tuiiíi cxuuE Ι= 2, ),(|( σ .

The first-differencing method eliminates the fixed effects by taking the first differences of

equation 1:

1,1,1, )( −−− −+−=− tiittiittiit uuxxgg β

                                  ⇔              ititit uxg ∆+∆=∆ β .                                                              3

Here, the itu∆ , in the following denoted as ite , are assumed to be homoscedastic and serially

uncorrelated: 1
2, ),(|( −Ι= Teiiíi cxeeE σ . Using ittiit euu += −1,  makes it clear that no serial

correlation in the ite  implies that itu  is a random walk. Thus, in contrast to the fixed-effects

model, the first-differencing model assumes substantial serial dependence in itu  (Wooldridge

2002). Both equation 2 and equation 3 can be consistently estimated by pooled OLS, assum-

ing that 0),|( =iiit cxuE , Tt ...1= . The relative efficiency of the fixed-effects and first-

differencing methods depends on the appropriateness of their assumption concerning the se-

rial dependence of itu .

Turning now to the testing of Gibrat´s law, the following model has commonly been used as a

starting point:

;1,1, ittiitiit uyyy ++=− −− βα     ittiit euu += −1,ρ .

β  determines the relationship between logarithmic firm size and logarithmic firm growth.

0=β  implies that employment grows independently of firm size, the case described by Gi-

brat´s law. Further, if  0=ρ , growth follows a random walk, which is another implication of

the law. Departures from the law arise if either 0≠β  (with 0>β  implying explosive growth

rates, and 0<β  implying mean-reverting firm sizes) or 0≠ρ  (with 0>ρ  implying that
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above-average growth tends to persist, whereas for 0<ρ  such growth tends to be followed

by below-average growth).

For a test of Gibrat´s law using panel data, Goddard et al. (2002) suggest the following

reparameterisation of the model:

        ;)()1( 2,1,1,1, ittititiitiit yyyyy ηρβρα +−++−=− −−−−    2, −+= tiitit ye ρβη .        4

Estimation of equation 4 using the fixed-effects approach leads to biased coefficients. If

strictly exogenous instruments are available for the lagged dependent variable on the right-

hand side, equation 4 can be estimated by pooled 2SLS using the fixed-effects method. This is

not the case for the data set used in this study. To instrument 1, −tiy  by its own lags does not

allow for consistent estimation because these lags are, just like 1, −tiy  itself, connected to the

error term via the arithmetic mean iy . The resulting bias only diminishes as ∞→T . This is

of little help when the panel data set in question is relatively small as in the present context

(see the data description in the next section). Nevertheless, as Goddard et al. (2002) hold,

these problems “do not present insurmountable obstacles” to using the fixed-effects estimator

to test Gibrat´s law. It is in any case preferable to cross-sectional tests due to its important

advantage of accounting for heterogeneity. It will be used as a standard of reference in this

study.

If strictly exogenous instruments are not available but the assumption of sequential exogene-

ity – under which the error term is allowed to be correlated with future values of the explana-

tory variables – holds, the first-differencing method is more appropriate than the fixed-effects

approach (Wooldridge 2002). The first-differenced version of equation 4 can then be esti-

mated by pooled 2SLS using lags of 1, −tiy  as instruments. In section 7, equation 4 will be

estimated in two ways: The first involves performing a one-step estimation of the fixed-

effects model, and the second includes a 2SLS estimation of the first-differencing model us-

ing lagged values of 1, −tiy  as instruments.

The first-differencing model is also appropriate for coping with the possible non-randomness

of the sample. Selection bias could be caused by the temporary (incidental truncation) or per-

manent drop-out (attrition) of units observed in the data. The permanent drop-outs are often

due to firm closure, which, as stated above, should be influenced by the same unobserved

factors as growth. However, firms dropping out for other reasons may also exhibit unobserved

characteristics affecting employment growth. Before applying a method correcting for selec-
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tion bias, a simple test revealing whether such bias really exists is performed. A lead of a se-

lection indicator, 1, +tis , taking the value 1 if unit i is still in the panel in the following period

and zero otherwise, is included in a pooled regression of the growth model. If the coefficient

of the selection indicator is significant, selection bias is present in the data. According to this

test, temporary drop-outs do not cause any bias within the chosen econometric approach in

this study (see section 7). Therefore, only a method correcting for attrition bias is applied and

described in the following.

In order to eliminate attrition bias, an extension of Heckman´s (1979) two-step selection cor-

rection procedure to the panel data context as described in Wooldridge (2002:585ff) is used.

Let its  denote a selection indicator where 1=its  if ),( itit xg  are observed in t and 0=its  if

they are missing due to permanent drop-out. its  is only set to zero in the period immediately

following a unit’s departure from the sample. In later periods, these units will be ignored;

1=its  thus implies 1,..., 1,1 =−tii ss .

Wooldridge (2002) recommends applying the selection correction to the first-differencing

model (equation 3). As a first step, the selection equation

                                )0( >+= ittitit vwls δ ,       { }1,, −tiitit swv ~Normal(0,1)                               5

is estimated by a probit model for each 2≥t . itw  should contain all elements of itx  to avoid

exclusion restrictions on a reduced-form equation. However, for 0=its , contemporary terms

in x will generally not be observed. Therefore, w can only include lagged values of x, vari-

ables that can be computed (like age), or aggregate variables. Equation 5 should include at

least one significant explanatory variable which is not part of the structural equation. Other-

wise, the parameters in the structural equation are, in fact, identified, but severe collinearity

may be present among the regressors.

The inverse Mills ratios 
∧
itλ  are calculated for each of the 1−T  probit estimations of equa-

tion 5. These are then included in equation 3, yielding

                                     itittTittitit errordTdxg ++++∆=∆
∧∧

λρλρβ ...22 ,                                           6

where td 2  through tdT  are time dummies. Equation 6 is then estimated by 2SLS instru-

menting the 1, −tiy  contained in tix ,  with its own lagged values. Attrition bias can be tested

by a joint test of 0:0 =tH ρ  for Tt ,...,2= .
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6. Description of Data

The empirical analysis is based on a sample of German firms founded between 1990 and

1993. For its configuration a stratified sample of 12,000 firms was drawn from the ZEW

Foundation Panels, two complementary firm panels maintained by the Centre for European

Economic Research (ZEW), Mannheim (see Almus et al. 2000 for details). The firm data

were provided by Creditreform, the largest credit agency in Germany, which collects

information on active, legally independent firms. The data contain information on variables

like industry (five-digit code), legal status, foundation date, region (district), and founding

parties’ human capital. They comprise virtually all Eastern and Western German firms found

in the trade register. The probability of unregistered firms entering the panel depends on the

scope of their credit demand and of their business relationships with other firms.

The sample drawn from the foundation panels is stratified by region: It consists of two pools

of 6,000 firms each from Eastern and Western Germany, respectively. An indicator demon-

strating whether each firm had possibly exited the market was applied as a further stratifica-

tion criterion. Such firms were oversampled in order to counterbalance the probable positive

selection encountered in enterprise panels which results from the difficulty of contacting

agents of non-surviving firms and from their unwillingness to report about their failure. The

sample is confined to firms founded between 1990 and 1997 (more than 90% were founded

between 1990 and 1993) in the manufacturing, construction, trade, transport & communica-

tion and service sectors. A large telephone survey conducted in 1999 and 2000 provided in-

formation not contained in the foundation panels, e.g., annual number of employees and exact

date of firm closure. The survey ended up with 3,702 successfully interviewed firms.3 For this

study’s analysis, legally dependent firms, firms which were not truly new foundations but

take-overs, those that submitted a foundation year earlier than 1990 in the telephone inter-

view, and those belonging to sectors of the economy in which patents have no relevance

(communication & transporting, retail trade, and consumption-related services)4 were not in-

cluded. Furthermore, firms with an average employee base of more than 500 employees and

firms for which no employment figures were obtained have been excluded. Firms with im-

plausibly high average growth rates were also dropped. In the end, 1,387 firms remain for the

analysis. Annual growth rates can be calculated from the foundation year up until 1999 or the

respective year of closure.

                                                          
3 The survey is called „ZEW-Gründerstudie“ and is described in detail in Almus et al. (2001).
4 In the communication/transporting and consumption-related service sectors, not a single patent was applied for
during the observation period; in the retail trade sector only one patent application was filed.
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This firm data set has been merged with German patent data. The patent data contain infor-

mation on patent number, year of application, IPC code, an indicator of whether the applica-

tion was made at the European Patent Office (EPO), year of acceptance, and number of cita-

tions. The combination of the two data sets allows analysis of the relation between innovative

activity and employment growth. In the following, some descriptive findings from examina-

tions of the merged data set are depicted.

Only 44 of the 1,357 firms remaining in the sample (3.2 %) applied for one or more patents

between 1990 and 1999 (see table 1). Altogether, the sampled firms made 128 patent applica-

tions in that period, 21 (16.4%) of which were applied for at the EPO and 56 (43.8%) of

which were granted up to the year 2003.5 The distribution by economic sector reveals that half

of the patent applications came from the manufacturing sector. This explains why the empiri-

cal literature concerning patents has focused primarily on this sector. There is, however, con-

siderable patenting activity in business-related services as well; over a third of all patents stem

from this sector. The rest come from the wholesale & intermediate trade sector and – to a very

small extent – from construction.

As a comparison with the sectoral distribution of patenting firms shows, sectors obviously

differ by mean number of applied-for patents. The share of manufacturing firms in patenting

firms is somewhat higher than that of manufacturing-related patent applications in all appli-

cations: The mean number of applications by patenting firm is hence lower than average in

manufacturing. In contrast, the share of business-related service firms in patenting firms is

smaller than the share of applications attributable to this sector in all applications. Conse-

quently, the mean number of patent applications per patenting firm is higher than average in

business-related services. Still, the share of patent applications from both manufacturing and

business-related services exceeds by far the weight of these sectors – as measured by the

number of firms found in each – in the economy. The opposite holds for wholesale & inter-

mediate trade and, in particular, construction.

Overall, the distribution of patent applications across firms is highly skewed. Figure 1 shows

how many firms applied for a specific number of patents. 43% of all patenting firms only ap-

plied for one patent within the given period; a quarter of them applied for two patents. How-

ever, only about 5% of the patenting firms applied for more than ten patents and account for

more than a quarter of the total number of patent applications.

                                                          
5 The relatively low percentage of granted patents may be due to the fact that the patent data are still incomplete
for the year 2000 and after. The fraction of granted patents may therefore be underestimated for patent applica-
tions from the late 1990s.
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Table 1: Descriptive Statistics

All Firms Non-Patenting
Firms

Patenting Firms

Number of firms 1,387 1313 (96.8%) 44 (3.2%)
No. of patent applications   128 - 128
No. of EPO patent applications    21 -   21
No. of granted patents    56 -   56
Patents by sector (%)

manufacturing 49.2 - 49.2
construction   1.5 -   1.5

wholesale & intermediate trade 12.9 - 12.9
business-related services 36.4 - 36.4

Firms by sector (%)
manufacturing 22.4 21.2    59.1***

construction 34.5 35.5      4.6***
wholesale & intermediate trade 19.0 19.1            13.6

business-related services 24.2 24.2 22.7
Mean annual growth rate 12.7 12.7 11.8
Surviving firms (%) 73.3 72.9  84.1*
Mean employment size 16.6 15.9     37.9***
Mean firm age   3.3   3.3   3.5
Mean firm age at patent application - -   3.0
Firms by earliest legal form (%)6

Ltd. liability company 58.0 57.3     79.6***
Civil law association 10.6 10.7   6.8
Commercial partnership   1.4   1.5   0.0
Sole proprietorship 29.9 30.4    13.6**
Western Germany (%) 40.0 39.6   52.3*
Highest lvl., founder education (%)

doctoral level   2.9   2.8     9.1**
other academic degree 30.3 30.3 29.6

master craftsman 15.8 15.9 13.6
apprenticeship 26.2 26.1 27.3
low education   0.8   0.8  0.0

education unknown 24.0 24.1 20.4
Year of foundation (%)

1990 26.7 26.6 31.8
1991 24.4 24.6 18.2
1992 21.8 21.8 20.5
1993 19.2 19.3 15.9

after 1993   7.9   7.7 13.6
*** (**,*) indicates a significance level of 1% (5%, 10%) in a t-test on the equality of means.

Comparing the patenting and non-patenting firms, it is apparent that average annual growth

rates do not significantly differ between them. Further analysis shows that the distribution of

growth rates of patenting firms exhibits less variance and is less skewed, i.e., the rates are

more evenly distributed across the observed (smaller) range of growth rates. The share of

firms exhibiting growth rates near the outer edge of the distribution is higher than among non-

patenting firms. Following Freel (2000), Figure 2 categorises the employment trend into four

                                                          
6 The legal form of the remaining non-patenting firms is unknown. There are no stock companies in the sample.
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Figure 1: Share of Patenting Firms Applying for a Specific Number of Patents, 1990-1999

groups: declining (negative growth rate), stable (growth rate equal to zero), growth (positive

growth rate lower than that of the sample’s upper quartile), and super growth (growth rate at

least as large as that of the sample’s upper quartile). It is demonstrated that patenting firms

exhibit declining employment more often than their non-patenting counterparts, but also

evince much less zero growth. While both kinds of firms hardly differ in their share of firms

exhibiting growth, patenting firms show super growth somewhat more often than non-

patenting firms.

Figure 2: Share of Firms Falling into Specific Growth Categories

As a consequence of these results, it appears that some of the stylised facts found by Tether

(1997) regarding innovative, technology-based firms have to be reconsidered: Firstly, innova-

tive firms do not generally outperform non-innovating firms in terms of employment growth.
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Secondly, it is true that the growth rate distribution of the patenting firms in the sample is

skewed and exhibits a high variance, as has been generally noted of young, small firms; it is,

however, less skewed and variant than the growth rate distribution of non-patenting firms.

Thirdly, the share of firms showing exceptionally high growth rates is not that small among

patenting firms; it is somewhat larger than the corresponding share of non-patenting firms and

amounts to over 27%.

Table 1 further indicates that patenting firms have a higher probability of survival than their

non-patenting counterparts. However, the difference is only weakly significant. Average em-

ployment size (the average of the annual employment figures available for each firm) is more

than twice as large for patenting firms as for non-patenting ones. The mean age (the average

age of a firm over the period) of patenting firms at the time of patent application is slightly

lower than their mean age over the observation period, suggesting that firms exhibit patenting

activity rather at a relatively early stage in the life cycle.

Patenting firms are mostly founded in the legal form of limited liability companies, something

which is less common among non-patenting firms; the latter are more often sole proprietor-

ships. Firms engaging in patent activity are more often situated in the western part of Ger-

many than non-patenting ones. Comparing firm founders’ highest level of education shows

that founders of patenting firms possess doctoral degrees more often than those of non-

patenting companies. Somewhat surprisingly, they do not have other academic degrees more

often. There is no significant difference between the two firm types concerning the distribu-

tion over the year of foundation.

7. Empirical Results

The econometric analysis incorporates the estimation of an employment growth equation us-

ing fixed-effects as well as first-differencing methods. The appropriateness of a random ef-

fects model can be rejected by the Hausman test. The analysis is based on equation 4, i.e.,

growth is explained by firm size and growth (lagged one period). Following Evans (1987a/b),

firm age, squared terms of both size and age, and an interaction term between size and age are

also included in the regressions. Further micro-level variables consisting of legal status and a

measure of each firm’s patenting activity are also accounted for. Patenting activity is meas-

ured by number of patent applications, a variable indicating whether each firm applied for any

patents during the year of observation, or patent stock. The latter is a weighted index of the

number of current-period and past patent applications. An interaction term involving patent
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stock and age is included to test whether the effect of patenting activity varies over each

firm’s life cycle. The patenting indicators are not instrumented, as they turn out to be exoge-

nous in Granger causality tests. The test’s conclusion corresponds to the theoretical modelling

and empirical evidence concerning employment growth and innovative activity as cited in

section 3: Current employment growth has no significant influence on current or future pat-

enting activity.

Finally, either indicator variables of possible selection bias or selection correction terms are

included in the regressions. The three indicators of selection bias refer to temporary drop-

outs, attrition due to death, and attrition due to other reasons. In the first-differencing model

with selection correction, the Mills ratios obtained from estimating equation 5 are inserted as

correction terms. The names and definitions of the explanatory variables are given in table 2.

Table 2: Variable Definitions

Variable Name Variable Description
∆ employment logarithmic employment growth
employment log of employment
age log of firm age
empl*age interaction between log of employment and log of firm age
ltd_ liability limited liability or stock company
numb_pat number of patent applications in current period
patent indicator of whether firm applied for at least one patent in current period
pat_stock weighted index of number of current and past patent applications
pat_stock*age interaction between patent stock and log of firm age
attr_dead leading selection indicator taking value 1 if firm leaves the panel due to firm clo-

sure in the subsequent period, 0 otherwise
attr_perm leading selection indicator taking value 1 if firm leaves the panel permanently for

reasons other than death in the subsequent period, 0 otherwise
att_temp leading selection indicator taking value 1 if firm leaves the panel temporarily in

the subsequent period, 0 otherwise
mills 93-99 inverse Mills ratios estimated from probit regressions (equation 5)

Table 3 shows the estimation results using four different econometric approaches with em-

ployment growth as the dependent variable. The right-hand side variables are displayed in the

first column. The second column contains the estimated coefficients of the fixed-effects

model. The results in the third column are based upon a fixed-effects model where the error

term itu  is assumed to follow a first-order autoregressive process, i.e., ittiit euu += −1,ρ .

From section 5 it is clear that the introduction of serial dependence into the disturbances

makes the fixed-effects model more similar to the first-differencing model. The 2SLS results

of the first-differencing model without selection correction using lagged values of 1, −tiy  as
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instruments are given in the fourth column. The last column shows the corresponding 2SLS

results with selection correction including the estimated coefficients of the Mills ratios.

Number of observations and number of firms are lower in the fixed-effects model with auto-

correlated errors than in the normal fixed-effects model because the maximum number of ob-

servations per firm available for estimation is lower in the former. One observation per firm is

needed for the estimation of the autocorrelation coefficient which cannot be used for the

growth regression. Number of observations is even lower in the first-differencing model be-

cause two observations are needed to generate the instruments for the lagged dependent vari-

able.

The outstanding difference between the fixed-effects models with and without serial depend-

ence in the disturbances is the direction of the effect of employment growth lagged one pe-

riod. While this effect is positive in the normal fixed-effects model, it is negative in the fixed-

effects model allowing for autocorrelated disturbances. This could be explained as follows:

Even when controlling for time-constant, firm-specific effects, individual growth rates are

positively correlated over time. However, this correlation might not be due to firms smooth-

ing out their growth rates over time as suggested by Penrose. It is rather due to unobserved

effects like a specific economic situation lasting several periods or a firm’s temporary com-

petitive advantage. When controlling for such effects, the effect of the past growth rate itself

is negative, which can be ascribed to oscillatory movements of growth rates measured on an

annual basis. Hence, the fixed-effects model with autocorrelated disturbances which allows

differentiation between these opposite effects is clearly preferable to the normal fixed-effects

model. Still, it should be remembered that the inclusion of the lagged dependent variable in a

fixed-effects regression leads to estimation bias. In this respect the first-differencing method

with which lagged growth and lagged employment size are instrumented by their past values

is more reliable; it also allows for serial correlation of the error term in the form of a random

walk. The two first-difference estimations in table 3 do not reveal any significant effects of

past growth on current growth.

However, even if the growth process is not path-dependent, Gibrat´s law can clearly be re-

jected on the basis of the results in table 3: All four estimations show a highly significant

negative effect of previous firm size on current growth, albeit the positive sign of the quad-

ratic term – which is significant in the first-differencing models – indicates that this negative

effect diminishes with size. But the turning point at which the negative effect turns positive is

much higher than the maximum employment size ever reached by firms in the sample during
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the observation period. Thus, small firms clearly grow faster than their larger counterparts.

Employment growth is not a random process independent of firm size. The fixed-effects mod-

els indicate further that the negative effect of firm size on growth becomes more pronounced

as firms get older. This can be concluded from the coefficient of the interaction term between

size and age. However, this effect is not confirmed by the first-differencing models.

Firm age has a significant positive effect on growth. This result is inconsistent with many

empirical studies which find a negative relationship between age and growth; it may be ex

plained by the fact that the present data set contains only start-up firms. The propensity to

grow may actually be quite low shortly after firm formation when a firm has yet to learn

about its efficiency relative to its competitors. The more it learns and discovers that it operates

efficiently, the more likely it will decide to stay in the market and grow. In addition, returns

on learning might be increasing in such early stages of the life cycle. The results are in line

with other studies based on start-up samples which find a positive effect of age on growth that

turns negative after a few years (Almus and Nerlinger 1998, Almus et al. 1999). However,

evidence for the existence of a turning point at which the effect becomes negative can only be

found in the fixed-effects models.

Legal status affects employment growth as well. Public firms and firms with limited liability

have significantly higher growth rates in comparison with other companies. This result is in

line with other empirical work, such as Harhoff et al. (1998) and Engel (2002).

Patenting activities have a clear, positive impact on employment growth. Firms that apply for

a patent have above-average growth rates in the subsequent two years. This conclusion can be

drawn from the results of the first-differencing models. The model without selection correc-

tion even already indicates a somewhat significant positive effect in the year of application.

According to the fixed-effects estimates, a significant impact is only manifest in the second

year after application. Both types of models agree that the effect is greatest in that year. This

can be explained by the fact that inventions have to be converted into marketable products or

implemented into the production process before they can have an impact on employment.

More immediate effects might be due to the hiring of personnel in order to facilitate the exe-

cution of these tasks. Firms might also be inclined to recruit new employees in due time in

order to be able to fully exploit the competitive advantage implied by the patent.

An obvious weakness of the present model specification is the absence of any financial indi-

cators serving as explanatory variables. Patenting activity might just be a signal of available

internal financing, an important factor for growth. Unfortunately, there are no time-varying
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Table 3: Fixed-effects and First-difference Employment Growth Regressions I

FE FE with AR(1) FD FD with selection
correction

coefficient
(std. error)

coefficient
(std. error)

coefficient
(std. error)

coefficient
(std. error)

∆ employment t-1      0.041***    -0.045*** -0.001 -0.031
(-0.011) (0.015)  (0.025)  (0.020)

employment t-1     -0.414***    -0.672***     -1.971***     -1.996***
(0.022) (0.038) (0.566)  (0.517)

(employment)2 t-1 -0.001 -0.0002   0.168**    0.170**
(0.005) (0.007) (0.083) (0.075)

age t-1     0.060***   0.560**    0.272**    0.302**
(0.017) (0.239) (0.127) (0.127)

(age)2 t-1    -0.024*** -0.166** -0.114 -0.124
(0.008) (0.072) (0.166)  (0.173)

empl*age t-1    -0.012*** -0.020* 0.104  0.111
(0.004) (0.012) (0.088) (0.081)

ltd_liability     0.156***     0.262***     0.390***     0.397***
(0.038) (0.057) (0.063) (0.064)

patent t 0.052 0.056  0.097* 0.091
(0.046) (0.050) (0.059) (0.059)

patent t-1 0.039 0.051   0.131**  0.125*
(0.046) (0.051) (0.066) (0.065)

patent t-2    0.108**   0.107**     0.153***   0.138**
(0.052) (0.054) (0.058) (0.058)

attrition_dead    -0.112***    -0.113***    -0.134*** -
(0.019) (0.021) (0.024)

attrition_perm    -0.386***    -0.484***    -0.616*** -
(0.120) (0.158) (0.204)

attrition_temp -0.081 0.017 0.125 -
(0.119) (0.165) (0.204)

mills 93 - - - -0.108
 (0.213)

mills 94 - - -    -0.400**
 (0.159)

mills 95 - - -     -0.371***
(0.118)

mills 96 - - -    -0.436***
(0.142)

mills 97 - - -    -0.444***
(0.138)

mills 98 - - -   -0.305**
(0.132)

mills 99 - - - -0.289*
(0.167)

constant     0.725***      0.751*** -0.029 -0.037
(0.031) (0.137)  (0.087) (0.092)

No. of observations 6820 5549 4098 4098
No. of firms 1271 1175 1029 1029
R2  within 0.283 0.381 0.226 0.219
*** (**,*) indicates a significance level of 1% (5%, 10%).
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financial variables available for the present data set, only information on whether investment

activities are being carried out by external firms. Such investments should provide an indica-

tion of a firm’s financial situation. However, the corresponding variable proves to be insig-

nificant in the estimations.

Columns 2 - 4 in table 3 refer to estimations without selection correction. The fixed-effects

and first-differencing procedures only correct for selection bias due to time-invariant individ-

ual effects. The models only contain leading selection indicators which allow testing of selec-

tivity as a result of individual time-specific components. These are the indicators of perma-

nent drop-out due to firm closure, permanent drop-out due to other reasons, and temporary

drop out in the subsequent period. As the results show, firms leaving the panel consistently

show a relatively low employment growth rate in the precedent period. As expected and as

ascertained by Almus (2003), attrition due to firm closure is preceded by bad growth per-

formance. That this also holds for drop-outs due to other reasons could be ascribed to firms’

reluctance to report on the “rough patches” they go through.

These findings indicate the presence of an attrition bias. The last column gives the estimation

results of a first-differencing model which corrects for this bias. It is not corrected for a possi-

ble bias due to temporary drop-out since the existence of such a bias is rejected by the test.

The regression includes the inverse Mills ratios from the 1−T  probit estimations of equa-

tion 5 (not reported) as instruments at the first stage and as explanatory variables at the second

stage. The probit estimations include practically all of the variables used in the 2SLS regres-

sion except for current legal status. The latter is not available for 0=its  and is replaced by its

one-year-lagged value, which seems to be a good approximation given the low variation of

this variable over time. Explanatory variables which are included in the probit but not in the

2SLS regression in order to avoid multicollinearity are founders’ human capital, region (East-

ern or Western Germany), population density, an indicator of whether each firm has received

start-up assistance, and indicators of the payment history of each firm. They all lend signifi-

cant explanatory potential to the selection regressions.

The significance of the coefficients of six of the seven inverse Mills ratios again confirms the

presence of attrition bias. Consequently, one would tend to have more confidence in the re-

sults of the regression correcting for the bias. However, the estimated coefficients of the two

first-difference regressions differ only slightly (with the exception of the coefficient of lagged

employment growth). This negative coefficient is much larger in absolute value in the model

with selection correction than in the simple first-differencing model; it misses the 10% level
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of significance by two percentage points. Hence, the selection correction model yields a result

which is more consistent with that of the AR(1)-fixed-effects model. However, the similarity

between both first-differencing models with respect to all of the other coefficients indicates

that the leading selection indicators already correct for the bulk of the attrition bias.

Table 4 shows the estimation results of the fixed-effects model with autocorrelated distur-

bances and of the first-differencing model without selection correction using two other pat-

enting measurements, namely number of patent applications and patent stock. The latter is

based on a standard perpetual inventory equation with constant depreciation:

ttiit patnumbstockpatstockpat __)1(_ 1, +−= −δ ,

where the depreciation rate δ  is chosen to be 15% (Griliches and Mairesse 1984, Czarnitzki

and Kraft 2004). Thus, the older the patent application the smaller the weight attributed to it

in the patent stock. On the one hand, the use of a patent stock measure has the advantage of

avoiding the problem of long lag structures. The coefficients of the patent indicator’s different

lags used in table 3 may be estimated somewhat imprecisely because of the correlation of a

firm’s patenting behaviour over time. On the other hand, the patent stock measure presumes a

specific lag structure and does not allow the relative impacts of different lags to vary.

Comparing the results of the second and fourth columns with the corresponding estimations in

table 3, it turns out that number of patent applications has less influence on growth than the

indicator of whether a firm has applied for any patents. Thus, it is rather the act of carrying

out patenting activities itself than a firm’s number of patent applications which enhances em-

ployment growth. It seems that the relationship between growth and number of applications is

not linear. According to the fixed-effects model, the effect of number of patent applications is

largest in the application year, whereas the first-differencing model still indicates that the

greatest effect of patenting activity on employment growth is observed two years later. Pat-

enting stock turns out to be insignificant in the fixed-effects model, perhaps because the un-

derlying assumption of a constantly decreasing impact of patent applications over time is not

entirely correct. However, patenting stock has a positive significant effect on growth accord

ing to the first-differencing model, yielding further evidence of patenting activity’s positive

impact on employment growth. As the interaction term between patent stock and firm age

indicates, this effect becomes weaker as firms get older. The effect is only weakly significant,

but still suggests that patenting activity affects employment growth more strongly the younger

the firm. Innovative activity is probably a more important growth factor for very young firms



26

Table 4: Fixed-effects and First-difference Employment Growth Regressions II

FE with AR(1) FE with AR(1) FD FD
coefficient
(std. error)

coefficient
(std. error)

coefficient
(std. error)

coefficient
(std. error)

∆  employment    -0.045***    -0.045***  -0.0005 -0.0009
(0.015) (0.015) (0.025) (0.025)

employment t-1    -0.674***    -0.673***    -1.970***    -1.953***
(0.038) (0.038) (0.565) (0.561)

(employment)2 t-1 -0.0001  -0.0002   0.168**    0.166**
(0.007) (0.007) (0.083) (0.082)

age t-1   0.566**    0.580**   0.274**    0.279**
(0.239) (0.239) (0.127) (0.126)

(age)2 t-1   -0.168**   -0.166** -0.113 -0.118
(0.072) (0.072)  (0.165) (0.165)

empl*age t-1 -0.020* -0.019* 0.104 0.101
(0.012) (0.012) (0.088) (0.087)

ltd_liability     0.262***     0.263***     0.390***     0.391***
(0.057) (0.057) (0.063) (0.063)

numb_pat t  0.059* - 0.054 -
(0.032) (0.034)

numb_pat t-1 0.022 - 0.053 -
(0.029) (0.034)

numb_pat t-2 0.036 -   0.060** -
(0.023) (0.027)

pat_stock - 0.089 -    0.164**
(0.061) (0.073)

pat_stock*age - -0.030 - -0.070*
(0.035) (0.042)

attrition_dead    -0.113***    -0.113***     -0.134***    -0.135***
(0.021) (0.021)  (0.024) (0.024)

attrition_perm    -0.484***    -0.486***     -0.617***    -0.617***
(0.158) (0.158)  (0.204) (0.203)

attrition_temp 0.017 0.016 0.125 0.124
(0.165) (0.165)  (0.204) (0.204)

constant      0.747***     0.731*** -0.030 -0.026
(0.136) (0.136) (0.087) (0.087)

No. of observations 5549 5549 4098 4098
No. of firms 1175 1175 1029 1029
R2  within 0.381 0.381 0.225 0.228
*** (**,*) indicates a significance level of 1% (5%, 10%).

which still have to develop a company profile and conquer market shares than for more es-

tablished firms.

8. Conclusion

This paper analyses the post-entry growth performance of German start-up firms using fixed-

effects and first-differencing dynamic panel data methods. The advantage of these panel data
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approaches is that they control for time-constant, unobserved heterogeneity. The estimation

results obtained can therefore be accepted as unadulterated by firm-specific factors like flexi-

bility, entrepreneurial skills, and organisational and technical abilities, which presumably do

not vary much over time and exert considerable influence on firm growth. The econometric

methods chosen also account for observed constant heterogeneity resulting, for example, from

specific industries or regions or from cohort effects. Moreover, the first-differencing model

allows the correction of biases due to panel attrition. However, it turns out that these biases

can be eliminated to a large extent by simply introducing selection indicators into the regres-

sion.

The analysis leads to a clear rejection of Gibrat´s law: Employment growth in the surveyed

start-ups is negatively related to firm size in the previous year. This result was to be expected

because the sample consists exclusively of start-up firms, which usually start with a subopti-

mal size and are forced to grow in order to survive. Firm age has a positive effect on growth

at that early stage of the life cycle; this is likely to turn negative as time passes.

The other important finding is that involvement in patenting activities enhances a firm’s em-

ployment growth performance. This is the overall picture arising from the use of different

estimation methods and patent indicators. The positive effect of patenting activity may al-

ready be present in the year of patent application, but it most likely peaks two years after ap-

plication. There is some evidence that patenting activity is a more important growth factor for

very young firms than for more established firms. Moreover, it seems that with respect to

growth, the very act of performing patenting activities is more important than number of pat-

ent applications. This finding might be due to the varying quality and economic significance

of patents. Using patent grants and citations as a quality indicator, however, is prevented by

the nature of the underlying data set: The panel is too short to observe a sufficiently large

portion of the time period over which the patents can be granted and cited.

Since no other innovation indicators are used in the analysis, the result may not only reflect

the effect of patents per se but also innovative activities in general; this could also include the

ability to appropriate technical knowledge, which is presumably enhanced by patenting ac-

tivities. It is clear, however, that the results do not just reflect time-constant, unobserved fac-

tors like certain technical abilities or open-mindedness to change, which innovative firms are

assumed to have –  these are already captured by the firm-specific effects. Patenting firms do

not generally exhibit higher growth rates than their non-patenting counterparts; instead,

growth performance depends on their patenting activity over time.
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