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Abstract

We investigate whether revenue-maximizing auctioneers selling heterogeneous items will

allow for combinatorial bidding in the presence of auctioneer competition. We compare

the choice of auction format by two competing auctioneers with that of a single auctioneer.

Bidders are heterogeneous in their demands, with some having synergies for items. We

find that, even if a single auctioneer offers a combinatorial auction, competing auctioneers

in a comparable setting will not. Instead, the competing auctioneers will segment the

market by restricting allowable package bids in order to increase competition between

bidders. This shows that it might not be advantageous for an online market platform to

offer combinatorial auctions as a design option to competing auctioneers.

Keywords: Competing auctioneers, combinatorial auction, electronic marketplace, VCG

mechanism

1 Introduction

In recent years, we have seen the advent of combinatorial auctions as well as the emergence of

online market platforms with competing auctioneers.1 However, “the combinatorial auction

mechanism has yet to become popular in the electronic market place” (Adomavicius et al.
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available at https://doi.org/10.1287/isre.2021.1018.
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1For combinatorial auctions of a single auctioneer, see Bichler et al. (2006), Cantillon and Pesendorfer

(2006), Caplice and Sheffi (2006), Olivares et al. (2012), Ausubel and Baranov (2014), Goossens et al. (2014),
Mastropietroa et al. (2014). For competing auctioneers, see Bapna et al. (2010), Andersson et al. (2012), Han
et al. (2018).
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2012). These observations raise two questions: First, why have combinatorial auctions yet

to become popular on online auction platforms with competing auctioneers? Second, should

combinatorial auctions be offered as a design choice to competing auctioneers on online auction

platforms? This paper is, to our knowledge, the first to address these fundamental questions

about electronic marketplaces hosting competing auctioneers.

Combinatorial auctions are those auctions that allow bids on packages, that is, subsets of

items, thus enabling bidders to express their synergies for items. Consequently, combinatorial

auctions avoid the well-known exposure problem and the converse problem, which we refer to

as the bundle problem, which is when a bidder needs to bid on a superset of his desired items in

order to obtain them. Both problems can have an adverse effect on auctioneer revenue. While

combinatorial auctions eliminate these problems, there might exist a concomitant attenuating

effect on auction revenue. To explain, consider a bidder β1 whose bid is complemented by bids

of bidders β2, β3, . . . , βk such that together the bids of β1, β2, . . . , βk cover a set of items desired

by some competing bidder, γ. Then, bidder β1 might benefit from the complementing bidders,

because β1’s probability of winning against γ is increasing in each of the bids of β2, β3, . . . , βk.

Thus, combinatorial auctions create a free-rider problem, which is associated with low-revenue

non-core outcomes.2

Our main finding shows that, even if a single auctioneer permits bids on all packages of

items, competing auctioneers might not. To gain some intuition, first note that it can be ben-

eficial for competing auctioneers to segment bidders. Consider the example from the previous

paragraph. If bidders β1, β2, . . . , βk were to bid with a different auctioneer than bidder γ, this

segmentation would mitigate the free-rider problem. Second, note that if competing auction-

eers restrict package bidding, segmentation of bidders can become self-enforcing. Specifically,

in order to avoid the bundle problem, bidders β1, β2, . . . , βk would avoid auctioneers who allow

bids only on the package desired by bidder γ; whereas, in order to avoid the exposure problem,

bidder γ would avoid auctioneers who allow bids only on subsets of his desired package.

To show this and derive our main finding, we adopt the widely used LLG (local-local-

global) framework,3 which is just rich enough to incorporate the free-rider, exposure, and

bundle problems. In our benchmark model—the single-auctioneer model—a single auctioneer

offers two non-identical items, A and B, to three heterogeneous bidders. One bidder desires

only item A and one only item B; these bidders are referred to as local bidders. The third bidder,

2An auction outcome is a non-core outcome if there is a group of bidders who, together with the auctioneer,
can generate a higher payoff for each of them by trading among themselves. The free-rider problem in this
context is often referred to as the threshold problem.

3The use of LLG models goes back at least to Krishna and Rosenthal (1996). Other papers employing an
LLG model include Erdil and Klemperer (2010), Beck and Ott (2013), Goeree and Lien (2016), Baisa and
Burkett (2018), Ausubel and Baranov (2020), Bosshard et al. (2020), Finster (2020).
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referred to as a global bidder, desires only the package of both items. In the main model—the

competing-auctioneers model—two competing auctioneers each offer the two items, A and B,

and compete for six bidders; specifically, for two copies of the three heterogeneous bidders.

Thus, our model of competing auctioneers is a duplication and then merger of our single-

auctioneer model. The timing in our game-theoretic model is as follows: first, the auctioneers

announce the packages on which they will accept bids; second, the bidders decide in which

auction they will participate; third, bidders submit bids.

We make the following modeling assumptions. First, we concentrate on the most promi-

nent combinatorial auction: the Vickrey-Clarke-Groves (VCG) mechanism (see Ausubel and

Milgrom 2002, 2006, Day and Milgrom 2008). This assures that, in most continuation games

following the bidders’ participation decisions, each bidder will have a weakly dominant strat-

egy, which is to bid his valuation. The free-rider problem manifests itself indirectly in the

VCG mechanism, whereas it may manifest itself directly through low bids, e.g., in pay-as-bid

or core-selecting combinatorial auctions.4

Second, we parameterize the global bidders’ valuation distribution function in terms of their

strength. We employ the uniform distribution, which fulfills many of the technical assumptions

often made to obtain tractable models, such as monotonicity of virtual valuations, or to obtain

closed-form solutions. From the analysis it follows that, due to continuity and because all

inequalities restricting equilibrium behavior hold with slackness, our results remain valid for

distribution functions sufficiently close to the uniform.

Third, we assume that the item or package in which a bidder is interested, which we call

his kind, is common knowledge. However, a bidder’s valuation is private information and

independent of the other bidders’ valuations. These are standard assumptions in LLG models.

(See the references in Footnote 3.) A bidder’s kind is more apparent and requires less detailed

knowledge about the bidder than knowing his valuation. In repeated interactions, knowing

the kind of a bidder can be the result of observation and learning. In procurement contexts,

production costs are typically private information, whereas information about a firm’s products

is not.

Fourth, we allow each bidder to bid with only one auctioneer. This simplification, which is

standard and required in models of competing auctioneers of single items to derive closed-form

solutions (e.g., Bapna et al. 2010, Kim and Kircher 2015), can be justified by sufficiently high

4For combinatorial pay-as-bid auctions, see Baranov (2010), Bosshard et al. (2020); for combinatorial core-
selecting auctions, see Sano (2012), Goeree and Lien (2016), Ausubel and Baranov (2020). For the magnitude
of the free-rider problem in various auctions see Section 5. An empirical counterfactual analysis for a large scale
VCG mechanism found that it performed similarly to the analyzed pay-as-bid combinatorial auction (Kim et al.
2014).
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costs of participation, or simply by bidders’ physical inability to interact with more than one

auctioneer at a time. Furthermore, in an experiment that allowed for bidding in multiple

auctions, most bidders indeed decided to bid with only one auctioneer (Bapna et al. 2010).

Fifth, we restrict attention to equilibria in which bidders’ participation decisions are valu-

ation independent. This implies that, on the equilibrium path, inferences about other bidders’

valuations from their participation decisions are neither necessary nor possible. For this non-

empty class of equilibria we provide a full characterization for the relevant parameter range.

The rest of the paper provides a literature review (Section 2), develops our single-auctioneer

and competing-auctioneer models (Section 3), presents our results (Section 4), provides ad-

ditional discussion (Section 5), and concludes (Section 6). The appendix provides detailed

proofs.

2 Literature Review

To the best of our knowledge, the restriction of package bidding in combinatorial auctions in a

competing-auctioneers setting has not been previously addressed in the literature. This paper

is related to four different research streams.

First, there exists a literature on competing single-item auctioneers where each auctioneer

offers a single item and bidders are ex-ante symmetric. Consequently, the type of horizontal

market segmentation that we find is not possible in these models. These models vary with re-

gard to the assumed market size (e.g., large finite markets, infinite markets, or two-auctioneer

markets), bidder information regarding valuations when choosing an auctioneer, the available

auction formats, and whether items are sold in sequential, overlapping, or simultaneous auc-

tions (see McAfee 1993, Peters 1997, Peters and Severinov 1997, Burguet and Sakovics 1999,

Parlane 2008, Bapna et al. 2009, 2010, Virág 2010, Albrecht et al. 2012, 2014, Kim and Kircher

2015, Truong et al. 2017). For a survey of work in this literature up until 2010, see Pai (2010).

Second, we draw on auction models with bidders facing an exposure problem (see Krishna

and Rosenthal 1996, Rosenthal and Wang 1996, Bikhchandani 1999, Szentes and Rosenthal

2003, Szentes 2007, Goeree and Lien 2014). In our framework, we find that bidders respond

to the exposure problem by submitting either very low or very high bids and may react

to increased bidder competition by reducing their bids (for similar results, see Krishna and

Rosenthal 1996).

Third, a single auctioneer’s decision regarding the packages on which to allow bids has been

investigated for symmetric bidders with additive valuations by Palfrey (1983), Chakraborty

(1999), Armstrong (2000) and Jehiel et al. (2007); for symmetric bidders who consider two
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items complements or substitutes by Subramaniam and Venkatesh (2009); and for asymmetric

bidders with single-item or additive-value multi-item demand for two items by Avery and Hen-

dershott (2000). Allowing bids on all packages can be optimal for a single auctioneer facing

symmetric bidders with either additive valuations, substitutes valuations, or strong comple-

ments valuations (Jehiel et al. 2007, Subramaniam and Venkatesh 2009). Our benchmark

scenario with a single auctioneer has not been addressed in these studies. Furthermore, there

exist studies that acknowledge the benefit of reducing complexity for both the bidders and the

auctioneer by disallowing bids on some packages (see Rothkopf et al. 1998, Lehmann et al.

2006, Nisan 2006). Our results identify an additional motive for the designer to restrict pack-

age bidding or even entirely avoid offering a combinatorial design: the presence of competing

auctioneers.

Fourth, the spirit of our result is similar to a central idea from the industrial organization

and strategic management literature on the value of product differentiation for competing

firms. In order to mitigate competition, firms deliberately differentiate their products from

those of other firms. This involves creating a more attractive product for a subset of customers,

while at the same time rendering it less attractive for other potential customers. The seminal

paper in this large literature is d’Aspremont et al. (1979); Belleflamme and Peitz (2010) provide

an introduction to the topic. In contrast to this literature, our paper considers offering different

auction formats rather than offering different items for sale.

3 The Two Models

The single-auctioneer model. Consider an auctioneer who offers for sale two non-identical

items, A and B, to three bidders.

We use an LLG model, in which bidders are interested in either the one-item package A,

the one-item package B, or the two-item package AB. We refer to these three kinds of bidders,

respectively, as A-bidders, B-bidders, and AB-bidders. We assume that there is one bidder of

each kind. The A- and B-bidders are collectively referred to as local bidders, the AB-bidder

is referred to as a global bidder.

Bidder j’s valuation for any package that contains his preferred package A, B, or AB is

given by vj ∈ R≥0, where vj is private information.5 Valuations for packages that do not

contain a bidder’s preferred package are commonly known to be zero. The valuations vj are

drawn independently from the commonly known distribution functions vj ∼ U [0, 1] for a local

bidder and vj ∼ U [0, k], k > 1, for a global bidder. The parameter k measures the strength of

5This implies free disposal.
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the global bidder vis-a-vis the local bidders.

Suppose a bidder’s valuation for the package he wins is v, where v = vj or v = 0. Then

the bidder’s payoff is given by v − p where p ∈ R≥0 is the price he pays in the auction. If he

wins no package, his payoff is zero. Each bidder maximizes his expected payoff.

The auctions are VCG mechanisms restricted by the allowable bids.6 The auctioneer’s

options can be delineated in terms of three possible auction formats: (i) allowing exclusive bids

on A, B, and AB, by offering a VCG mechanism for the two items, denote this option by [A,B];

(ii) allowing non-exclusive bids on A and on B, by offering two separate simultaneous second-

price auctions, denote this option by [A][B]; and (iii) allowing bids on AB only, corresponding

to a single second-price auction on the package AB, denote this option by [AB]. These three

are the only options that need to be considered, because an auctioneer would never want to

restrict bids to only on A or only on B, and because options to allow exclusive bids on A and

AB, or on B and AB, are equivalent to offering [AB]. (See the proofs in Appendix B.2.4 and

B.3.) The auctioneer maximizes his expected revenue. We assume that an auctioneer prefers

the combinatorial auction [A,B] over both [AB] and [A][B] only if the combinatorial auction

generates a strictly larger expected revenue.7

The game consists of the following two stages:

Stage 1: The auctioneer chooses an auction format among [A,B], [A][B], and [AB]. The chosen

auction format becomes common knowledge. Thus, each decision by the auctioneer defines

a subgame.

Stage 2: The bidders observe their private valuations and then simultaneously and indepen-

dently submit bids. Items are allocated and payments are made. Ties are broken randomly.

A bidder’s strategy consists of his bidding strategy for each auction format. A bidder can

submit bids on all permissible packages but has the option not to submit a bid on some or all

packages.

The competing-auctioneers model. This setup is a duplication and merger of the single-

auctioneer setting. Two auctioneers, each offering items A and B, compete for six bidders:

two A-bidders, two B-bidders, and two AB-bidders.

The game consists of the following three stages:

6For a definition of the VCG mechanism, see e.g., Krishna (2010), ch. 16, or Ausubel and Milgrom (2006).
7That is, we break an auctioneer’s indifference between [A,B] and [A][B], or between [A,B] and [AB], in favor

of the less complex auction format. In the single-auctioneer model, this rule will be applied only for one value
of k. In the competing-auctioneers model below, we will need to apply this tie-breaking rule only in cases where
the auctions’ sets of participants are equal and consist only of local or only of global bidders.
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Stage 1: The two auctioneers simultaneously and independently choose an auction format

among [A,B], [A][B], and [AB]. The chosen auction formats become common knowledge.

Thus, each combination of decisions by the auctioneers defines a subgame.

Stage 2: The bidders observe their private valuations and then simultaneously and indepen-

dently make their participation decisions; each bidder can participate in the auction of

only one auctioneer.

Stage 3: The bidders observe all participation decisions and then simultaneously and inde-

pendently submit bids. Items are allocated and payments are made. Ties are broken

randomly, with exceptions where this would not preserve value.8

A bidder’s strategy consists of his participation decision for each feasible pair of offered

auction formats by the auctioneers together with his bidding strategies for each observed bidder

partition.

Equilibrium concept. We consider Perfect Bayesian Equilibria in pure strategies with the

following three properties.

P1 A bidder’s participation decisions are independent of his valuation.

P2 A bidder submits only undominated bids.

P3 If a global bidder participates in [A][B], then bidders play according to an efficient ex-post

equilibrium, if it exists.9

Formal specifications of these properties are provided in Appendix B.1. It should be empha-

sized that these properties constitute an equilibrium selection criterion and not a restriction

on the strategies available to players. If an equilibrium with these properties exists, then it is

selected. In Theorem 2 we show existence for a range of parameter values of k.

Property P1 can be thought of as a simplicity criterion. If an equilibrium can include

pooling participation strategies, then these strategies should be selected, because they imply

simpler beliefs for the bidders than non-pooling strategies. Property P1 implies that a bidder

does not reveal any private information with his participation decision. Thus no bidder has

8Specifically, in [A][B], ties among global bidders are broken such that both items are allocated to the same
global bidder. If global bidders in [A][B] submit the same bid on one package but not on the other, this tie is
broken in favor of the bidder with the higher bid on the other package; if global bidders in [A][B] tie with their
bids on both packages, both ties are broken in favour of the same global bidder, which is chosen randomly.

9Existence of such an equilibrium in the continuation game is guaranteed if, in addition to the global bidder,
another global bidder and/or local bidders of only one kind participate. See Lemma 2 in Appendix B.2.1. As
this cannot happen in the single-auctioneer case, property P3 will not appear in Theorem 1.
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an incentive to switch auctions after observing the participation decisions of other bidders. In

this sense participation decision are stable, and we do not need to assume that, once executed,

participation decisions cannot be revoked. Also, for any equilibrium with Property P1 there

is a payoff-equivalent equilibrium in a modified game in which bidders learn their valuation

only after the participation decision. Properties P2 and P3 are common refinements.

4 Results

In order to identify and evaluate the relevance of competition for the choice of auction for-

mat, we start out by analyzing the cases of a single auctioneer and of competing auctioneers

separately, and then compare the two cases to derive our main result. The single auctioneer’s

optimal decision is given in the following theorem.

Theorem 1. Consider the single-auctioneer model. There exists a unique k̂ such that in any

equilibrium in pure strategies with properties P1 and P2:

� For all k > k̂, the auctioneer offers the combinatorial auction [A,B].

� For all k ≤ k̂, the auctioneer offers [AB].

The single auctioneer never offers [A][B] because for all k he is better off by offering

[A,B], which shields the global bidder from the exposure problem. Whether the auctioneer

prefers [A,B] or [AB] depends on the strength of the global bidder. With a strong global

bidder, generating competition for the global bidder is more important; with a weak global

bidder, generating competition between local bidders is more important. In [A,B] local bidders

complement each other against the global bidder, whereas [AB] creates competition between

local bidders.

In contrast to the single-auctioneer case, the competing auctioneers’ auction format choices

determine revenue by affecting the number and kind of participating bidders. The following

theorem describes the equilibria of the competing-auctioneers model.

Theorem 2. Consider the competing-auctioneers model. There exists a unique k∗ such that

an equilibrium in pure strategies with properties P1, P2, and P3 exists if and only if k ≤ k∗.

For every k ≤ k∗, the following hold:

(a) There exists an equilibrium in which one auctioneer offers [A][B] and one auctioneer

offers [AB]. There does not exist an equilibrium in which both auctioneers offer a com-

binatorial auction.

(b) In every equilibrium, all local bidders bid for the items of the same auctioneer and all

global bidders bid for the items of the other auctioneer.
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If global bidders are weak, specifically if k ≤ k̂ (as determined in Theorem 1), there may

be additional equilibria to the one mentioned in Theorem 2, part (a). These are: (i) both

auctioneers offer [A][B] and one attracts the local bidders and the other attracts the global

bidders, and (ii) one auctioneer offers [A,B] and attracts the local bidders, and the other

auctioneer offers [A][B] or [AB] and attracts the global bidders.

Remarkably, even if the combinatorial auction [A,B] is offered in equilibrium, only local

bidders will enter that auction, and thus the auctioneer with the combinatorial auction allows

bids on more packages than is necessary to accommodate the heterogeneity of the participating

bidders. We discuss this counterintuitive result in Section 5.

In all equilibria, one auctioneer is better off than the other auctioneer (unless k = 2). The

auctioneer who attracts the local bidders receives an expected revenue of 2/3, and the auc-

tioneer who attracts the global bidders receives an expected revenue of k/3. (See Proposition

1 in Appendix B.2.)

If global bidders are significantly stronger than local bidders, k > k∗, then equilibria with

properties P1, P2, and P3 fail to exist in the competing-auctioneers setting, because some

subgames fail to have equilibria with these properties.

Our main finding, Theorem 3, shows that competing auctioneers might not choose a com-

binatorial auction, even if a single auctioneer would do so.

Theorem 3. Let k̂ be as in Theorem 1 and k∗ as in Theorem 2. It holds that k̂ < k∗. For

every k̂ < k ≤ k∗, in every equilibrium in pure strategies with properties P1, P2, and P3 of

the competing-auctioneers model, one auctioneer offers [A][B] and one offers [AB], whereas a

single auctioneer offers [A,B].

Thus, for levels of k for which the single auctioneer offers the combinatorial auction, nei-

ther of the competing auctioneers offers a combinatorial auction. This is because a single

auctioneer, by choosing an auction format, needs to trade-off the negative effects on revenue

caused by the exposure problem (in [A][B]) or the bundle problem (in [AB]) with that of the

free-rider problem (in [A,B]). Competing auctioneers share the market. They have the option

to segment the market, which can be achieved by offering non-combinatorial auctions, thereby

eliminating the free-rider, exposure, and bundle problems. In order to achieve segmentation,

the auctioneers can offer different non-combinatorial auction formats. One auctioneer offers

[A][B] and attracts all local bidders; the other auctioneer offers [AB], attracts all global bidders,

and has the higher expected revenue.

Example to illustrate the auctioneers’ choices. Let k = 7/3 ∈ (k̂, k∗]. (This value

of k is in the relevant range for Theorem 3 because, as shown in the Appendix, k̂ = 2 and
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k∗ = 8/3.) A single auctioneer’s revenue from offering [A][B], [AB], or [A,B] is 0.57, 0.60, or

0.64, respectively. Competing auctioneers’ revenues in Stage 1 are depicted in Table 1 for the

nine subgames. (Complete tables for any k ≤ k∗ are derived in Appendix B.2.) Auctioneers’

equilibrium revenues are in bold.

Table 1: Expected auctioneer revenue for k = 7/3.

Auctioneer 2

[A][B] [AB] [A,B]

[A][B] (.57, .57) (.67, .78) (.67, .78)

Auctioneer 1 [AB] (.78, .67) (.60, .60) (.78, .67)

[A,B] (.78, .67) (.67, .78) (.64, .64)

A single auctioneer would offer a combinatorial auction and receive an expected revenue

of 0.64. This is also the expected revenue of a competing auctioneer if both auctioneers offer

[A,B] and attract the same kinds of bidders. However, for every auction format offered by

the competitor, an auctioneer has an incentive to offer a different auction format targeted

at local ([A][B]) or global ([AB]) bidders, thereby inducing bidder segmentation and higher

expected revenue of 0.67 or 0.78, respectively. Only if one auctioneer offers [A][B] and the

other auctioneer offers [AB] does neither auctioneer have an incentive to deviate.

Idea of proof of Theorem 2. We focus on the main drivers of the players’ equilibrium

decisions. First we describe bidding behavior in the various possible auctions, then we discuss

what drives bidders’ participation decisions, and finally we explain why this makes auctioneers

prefer to differentiate.

With the exception of global bidders in [A][B], all bidders—regardless of the auction in

which they chose to participate—bid their valuation. A global bidder’s bidding strategy in

[A][B] depends on his information about the other bidders in the auction, consisting of the

number and kind of the other bidders. In particular, if there is at least one A-bidder and at

least one B-bidder, global bidders in [A][B] face an exposure problem. To avoid this problem,

a global bidder either submits a bid of zero on either item if his valuation for the package

is sufficiently small, or otherwise bids in a way that ensures that he wins against any local

bidder.

Bidders’ participation decisions are driven by four considerations. First, global bidders

tend to avoid [A][B] with local bidders due to the exposure problem. Second, global bidders

tend to avoid the combinatorial auction [A,B] with local bidders, because local bidders who

want different items complement each other, which effectively makes them jointly compete
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against global bidders. Third, local bidders avoid [AB] with other local (and global) bidders

because of a bundle problem, i.e., because they will need to compete against all of the bidders.10

Fourth, bidders tend to avoid an auctioneer who attracts more or stronger bidders, and thus

there is a tendency towards an equal distribution of bidders. Bidder segmentation is mainly a

consequence of the first three considerations if auctioneers offer different auction formats.

In general, for k ≤ k∗, auctioneers collectively benefit from a segmented market and the

resulting bidder homogeneity; that is, they benefit from attracting only local or only global

bidders. This is because, in each auction of a segmented market, local and global bidders do

not compete against each other, and each bidder can bid on his desired package. Therefore, the

free-rider, exposure, and bundle problems vanish and low-revenue (non-core) outcomes do not

occur. Which market segment—that of the local bidders or that of the global bidders—is more

remunerative for an auctioneer depends on the relative strengths of these subsets of bidders,

as determined by the value of k. Being able to attract the more remunerative market segment

provides the auctioneer with an additional incentive for segmentation.

If global bidders are weak, specifically if k ≤ k̂, then the competing auctioneer maximizes

his expected revenue if he attracts the market segment of the local bidders. If one auctioneer

offers [A][B] and the other offers [AB], then bidders will segment and the auctioneers will

have no incentive to deviate from their choices. The auctioneer offering [A][B] already has the

highest possible expected revenue. The auctioneer offering [AB], by deviating to [A,B], will

still attract the global bidders, and by deviating to [A][B] expects a lower revenue due to the

exposure problem (as then bidders do not segment). There cannot be an equilibrium where

both auctioneers offer the combinatorial auction [A,B], because at least one of them would

prefer to attract all global bidders by offering [AB].

If global bidders are stronger, specifically if k̂ < k ≤ k∗ (as in the example above with

k = 7/3), the highest expected revenue a competing auctioneer can obtain is that from the

market segment of the global bidders. Also, attracting all local bidders is more remunerative

than attracting one bidder of each kind, which creates a free-rider, exposure, or bundle problem.

If only one auctioneer offers [AB], this auctioneer will necessarily (i.e., in any equilibrium of

a subgame following such a choice) attract the global bidders, and thus he cannot do better.

If one auctioneer offers [AB] and the other offers [A][B], the auctioneer offering [A][B] cannot,

by deviating to a different auction, attract the global bidders.

If global bidders are significantly stronger than local bidders, k > k∗, then only in the three

subgames starting at the auctioneers’ choices of ([A][B],[A][B]), ([AB],[AB]), or ([A,B],[A,B])

10Note that in [A][B] and [A,B] local bidders compete only with local bidders of the same kind (and global
bidders) and, in addition, local bidders can free-ride on bids of local bidders of the other kind.
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do equilibria with properties P1, P2, and P3 exist. No competing auctioneer will be able to

attract both global bidders, because a global bidder with a high valuation (v ∈ (k∗, k]) wants

to avoid the other global bidder even if that requires him to compete against all local bidders.

In subgames, only equilibria in which bidders split into two symmetric groups are possible. As

for k ≤ k∗, these can occur only if both auctioneers offer the same format.

5 Discussion

Bidders segment in all equilibria satisfying P1, P2, and P3 (Theorem 2, part (b)). This

segmentation naturally occurs in equilibria where the auctioneers offer auction formats [AB]

and [A][B] tailored to the respective segments. However we can have additional, less intuitive,

equilibria if global bidders are sufficiently weak, but each will have a more intuitive counterpart

with the same revenues for auctioneers and payoffs for bidders. If k < k̂, we can have one

auctioneer offering the combinatorial auction [A,B] and attracting the local bidders, and the

other offering [A][B] and attracting the global bidders. Notably, one auctioneer allows bids

on more packages than is necessary to accommodate the participating bidders’ heterogeneity

whereas the other auctioneer does not allow the participating global bidders to bid on the

package. To understand why these counterintuitive equilibria exist, note that the auctioneer

who offers the combinatorial auction [A,B] attracts the more remunerative segment, viz., the

local bidders. This is possible because, conditional on segmentation, these two auction formats,

[A,B] and [A][B], are payoff-equivalent for all bidders (due to the lack of an exposure problem

in [A][B] without local bidders). The auctioneer offering [A,B] would attract a strictly less

remunerative set of bidders if he offered a different auction format. If he offered the same

format as his competitor then the market would not be segmented, and if he offered [AB]

then he would attract the global bidders. The auctioneer who offers [A][B] would attract the

same (global) bidders and receive the same expected revenues if he deviated to [AB], or would

attract one bidder of each kind if he offered [A,B], which would be less remunerative due to

the low-revenue (free-rider) problem of [A,B]. We cannot have that one auctioneer offers [A,B]

and the other offers [AB], unless global bidders are almost as weak as local bidders. (For this

exceptional case, k ≈ 1, see Section B.2.3 in the Appendix.) In contrast, if k ≥ k̂ there is

no equilibrium in which an auctioneer offers the combinatorial auction [A,B]. This is because,

given the choice between [AB] and [A,B], global bidders will necessarily participate in [AB].

Thus the auctioneer offering [A,B] will get the local bidders and will want to deviate to [A][B].

A comparison of revenues in the competing-auctioneer and single-auctioneer models reveals

that auctioneers benefit from competition if market size, in terms of the number and kind
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of buyers, increases proportionally. More precisely, the sum of the competing auctioneers’

expected revenues is larger than twice the expected revenue in the single-auctioneer model.

If market segments do not differ too much in their attractiveness to auctioneers, viz., if k

is neither too small nor too large, then each auctioneer is better off under competition than

in the single-auctioneer setup. This suggests that allowing for or intensifying competition in

an electronic marketplace can help attract auctioneers, if the average number of bidders per

auctioneer does not decrease.

We have discussed the free-rider problem in the VCG mechanism. This problem is not

specific to this auction. For example, for k = 2 in our LLG setting, the expected revenue from

[A,B] is 0.583, and the expected revenue from the combinatorial pay-as-bid auction and from

various bidder-optimal core-selecting auctions has been calculated to values between 0.500

and 0.596 (Baranov 2010, Beck and Ott 2013, Ausubel and Baranov 2020). Specifically, these

expected revenues are below the expected total valuations of the losing bidders (0.708), which

implies the occurrence of non-core outcomes in these auctions (see, e.g., Ausubel and Milgrom

2006, Day and Milgrom 2008, for the low-revenue problem and the core).

6 Conclusion

Although a single auctioneer may offer a combinatorial auction, competing auctioneers in

a comparable setting will not. Instead, the competing auctioneers will segment the market

by restricting the packages on which they accept bids, attracting more homogeneous sets

of bidders, resulting in increased bidder competition. The advantage to an auctioneer of

accommodating bidder heterogeneity via a combinatorial auction is dominated in a competing-

auctioneer setting by the greater advantage from attracting homogeneous sets of bidders who

will compete more fiercely with each other.

The intuition for our results rests upon the presence of the free-rider problem and the asso-

ciated low revenues. The intuition does not extend to scenarios without a free-rider problem,

for example if all items are substitutes for all bidders. Our model is rich enough to incorpo-

rate the free-rider problem while still maintaining tractability. This allows us to identify the

free-rider, exposure, and bundle problems as sufficient drivers for beneficial market segmen-

tation. The effect of additional auction design features (e.g., payment rules, reserve prices)

on these drivers, and therefore on the auctioneers’ incentives to segment the market, remain

unaddressed. We leave this for future research.

According to Adomavicius et al. (2012), the explanation for the scarcity of online combi-

natorial auctions is “the computational complexity of determining winners in such auctions
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and the cognitive complexity of formulating combinatorial bids.” In this paper, we examined

combinatorial auctions in online markets where both types of complexity become insignificant,

revealing an additional explanation for the scarcity of competitive combinatorial auctions in

the electronic marketplace.

Our findings may help to explain why, despite the increased use of combinatorial auctions in

markets with a single auctioneer, combinatorial auction formats have largely been absent from

online market platforms. These findings have implications for market design and, in particular,

show that it might not be advantageous for an online market platform on which different sellers

and buyers interact to offer combinatorial auctions as a design option to competing auctioneers.
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Appendix

A Proof of Theorem 1

We show that for k ≤ 2 the auctioneer offers [AB] and for k > 2 he offers [A,B], i.e., k̂ = 2.

When an A-bidder with vA ∼ U [0, 1], a B-bidder with vB ∼ U [0, 1], and a global bidder with

vAB ∼ U [0, k] participate, a single auctioneers’s expected revenue if he allows only a bid on A

or only a bid on B is zero. The revenue when only exclusive bids on A and AB, or on B and

AB, are allowed is the same as from offering [AB]. The expected revenues from the auction

formats [A,B], [AB], and [A][B] are

E[π0]
[A][B] = (k − 1)/k for k > 1

E[π0]
[AB] = (4k − 1)/(6k) for k > 1

E[π0]
[A,B] =

(k4 − 8k3 + 24k2 − 20k + 6)/(12k) for 1 < k < 2

(6k − 5)/(6k) for k ≥ 2.

In [A,B], all bidders bid their valuation (by Property P2). With these bids, E[π0]
[A,B] is

calculated for 1 < k < 2 as
∫ 1
k−1

∫ k−a
0

∫ k
a+b(a+ b)/k dc db da+

∫ k−1
0

∫ 1
0

∫ k
a+b(a+ b)/k dc db da+

2
∫ 1
k/2

∫ a
k−a

∫ k
a (2c−a−b)/k dc db da+2

∫ k−1
0

∫ 1
a

∫ a+b
b (2c−a−b)/k dc db da+2

∫ k/2
k−1

∫ k−a
a

∫ a+b
b (2c−

a − b)/k dc db da + 2
∫ 1
0

∫ 1
a

∫ b
a (c − a)/k dc db da = (k4 − 8k3 + 24k2 − 20k + 6)/(12k) and for

k ≥ 2 as
∫ 1
0

∫ 1
0

∫ k
a+b(a+ b)/k dc db da+ 2

∫ 1
0

∫ 1
0

∫ a+b
a (c− a)/k dc da db) = (6k − 5)/(6k).

In [AB], all bidders bid their valuation (by Property P2). With these bids, the auctioneer’s

revenue for all k > 1 is E[π0]
[AB] = 2

∫ k
1

∫ 1
0

∫ b
0 b/k da db dc + 6

∫ 1
0

∫ c
0

∫ c
b a/k da db dc = (4k −

1)/(6k).

In [A][B], all local bidders bid their valuation (by Property P2). The global bidder’s

expected utility from bidding bA ≤ 1 and bB ≤ 1 for item A and B, respectively, is vAB bA bB−∫ bA
0 vAdvA−

∫ bB
0 vBdvB, and his utility from bidding more than 1 is the same as from bidding

bA = 1 and/or bB = 1. The first-order conditions, vABbB − bA = 0 and vABbA − bB = 0 for

an interior maximum can only be fulfilled for vAB = 1, in which case any bids bA = bB are

optimal and which occurs with probability zero. His optimal bids for all vAB < 1 are bA = 0

and bB = 0 with a utility of zero, because bidding (bA, bB) ∈ {(1, vAB), (vAB, 1), (1, 1)} results

in a negative expected utility. For all vAB ≥ 1, bA = 1 and bB = 1 are optimal bids, with the

strictly positive expected utility vAB−1. With these bids of the three bidders, the auctioneer’s

revenue for all k > 1 is zero if the global bidder bids zero and the local bidders win, which

occurs with probability 1/k, and the revenue is vA+vB if the global bidder wins, which occurs
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with probability 1− 1/k. Thus, E[π0]
[A][B] = (1− 1/k) · 2

∫ 1
0 vA dvA = (k − 1)/k.

Comparing the revenues, we find that, for k > 2, we have that E[π0]
[A,B] >

max{E[π0]
[A][B], E[π0]

[AB]} because then (6k−5)/(6k) > max{(k−1)/k, (4k−1)/(6k)} due to

(6k−5)/(6k)−(k−1)/k = 1/(6k) and (6k−5)/(6k)−(4k−1)/(6k) = 1/3−2/(3k). For k = 2, we

have that E[π0]
[AB] = E[π0]

[A,B] > E[π0]
[A][B] because 7/12 = (4k−1)/(6k) = (6k−5)/(6k) >

(k− 1)/k = 1/2. For 1 < k < 2 we have that E[π0]
[AB] > max{E[π0]

[A][B], E[π0]
[A,B]} because

then (4k − 1)/(6k) > (k4 − 8k3 + 24k2 − 20k + 6)/(12k) > (k − 1)/k.

Every bidder prefers participating and submitting a bid over not submitting a bid in any

of the auction formats [A][B], [AB], and [A,B]. Thus, P1 is trivially fulfilled.

B Proof of Theorem 2

To prove Theorem 2, we show that for k∗ = 8/3 an equilibrium with properties P1, P2, and

P3 exists if and only if k ≤ k∗. Section B.2 characterizes equilibria with properties P1, P2,

and P3 for all k ≤ 8/3, and Section B.3 proves that equilibria with properties P1, P2, and P3

do not exist if k > 8/3.

B.1 Notation and Properties P1, P2, and P3

We label the two auctioneers by i ∈ {S1, S2}, the two bidders interested in A by A1, A2,

the two bidders interested in B by B1, B2, and the two bidders interested in obtaining the

package by AB1, AB2. We label bidders by j where j ∈ J :={A1, A2, B1, B2, AB1, AB2}.
The valuations vj are drawn independently from the commonly known distribution functions

vj ∼ U [0, 1] for a local bidder j ∈ {A1, A2, B1, B2} and vj ∼ U [0, k], where k > 1, for a global

bidder j ∈ {AB1, AB2}.
The auctioneers simultaneously choose their respective auction format from the strategy

set Σ. Auctioneer i’s strategy is denoted by σi, i.e., auctioneer i chooses an auction format:

σi ∈ Σ, where i ∈ {S1, S2}. To simplify the proof, we first restrict the auctioneers’ options to

Σ = {[A,B], [A][B], [AB]} and argue (in Section B.2.4) that auctioneers would never prefer to

offer any other of the possible restrictions on bidding.

We denote the participation decision of bidder j ∈ J by γj , where γj ∈ {S1, S2} denotes

the auctioneer in whose auction bidder j participates. We denote the bid of bidder j by a

triple (bAj , bBj , bABj) ∈ (R≥0 ∪ {out})3, where bAj is bidder j’s bid on A if σγj ∈ {[A][B],

[A,B]} and is ignored if σγj = [AB], and where out signifies that the bidder opts out of bidding.

Equivalently, bBj constitutes j’s bid on B and bABj his bid on AB, and these bids are ignored

if the auction does not allow bids on the respective package. Bidder j’s bids depend on his
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valuation vj , the auctioneers’ strategies σ = (σS1, σS2) ∈ Σ2, and the vector of the participation

decisions of the other bidders, denoted by γ−j . Thus, the strategy of bidder j ∈ J is a vector

(γj(vj , σ), bAj(vj , σ, γ−j), bBj(vj , σ, γ−j), bABj(vj , σ, γ−j)) ∈ {S1, S2} × (R≥0 ∪ {out})3.
We denote an equilibrium strategy of auctioneer i by σ∗i and of bidder j by

(γ∗j (vj , σ), bA∗j (vj , σ, γ−j), bB
∗
j (vj , σ, γ−j), bAB

∗
j (vj , σ, γ−j)).

Bidder j’s equilibrium belief at the beginning of Stage 3 regarding the distribution of bidder

`’s valuation is given by µ∗j`(σ, γ−j).

Our equilibrium refinement uses the three properties P1, P2, and P3, formalized as:

P1 A bidder’s participation decisions are independent of his valuation:

For all σ ∈ Σ2 : γ∗j (vj , σ) = γ∗j (v̂j , σ) ∀ vj , v̂j .

P2 A bidder submits only undominated bids:

(a) If σγj = [A,B], a local X-bidder j (X = A, B) bids bX∗j (vj , σ, γ−j) = bAB∗j (vj , σ, γ−j) =

vj , and opts out of bidding on the other item. A global bidder j bids bAB∗j (vj , σ, γ−j) =

vj , and opts out of bidding on both A and B.

(b) If σγj = [AB], then bAB∗j (vj , σ, γ−j) = vj .

(c) If σγj = [A][B], a local X-bidder j bids bX∗j (vj , σ, γ−j) = vj , and opts out of bidding

on the other item.

(d) If σγj = [A][B], a global bidder j bids bA∗j (vj , σ, γ−j) ≤ vj and bB∗j (vj , σ, γ−j) ≤ vj .

P3 If there is a global bidder j with σγj = [A][B], then, if an efficient ex-post equilibrium of

[A][B] exists, bidders bid according to an efficient ex-post equilibrium.

P2 excludes dominated bids. Bids (other than opting out of bidding) in (a), (b), and (c) are

weakly dominant and, thus, are the only undominated bids. In (d), the bid (bA∗j (vj , σ, γ−j),

bB∗j (vj , σ, γ−j)) with bA∗j (vj , σ, γ−j) > vj is dominated by (vj , bB
∗
j (vj , σ, γ−j)) because the

marginal value of winning in [A] is at most vj and bidding bA∗j (vj , σ, γ−j) > vj wins additionally

only in cases where payments in [A] exceed vj . The same argument holds for bB∗j (vj , σ, γ−j).

B.2 Equilibria for k ≤ 8/3

The following proposition summarizes the auctioneers’ equilibrium decisions. Note that the

cutoff-values 2 and 8/3 in the proposition correspond to k̂ in Theorem 1 and to k∗ in Theorem
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2, respectively. Proposition 1 implies that for k ≤ 8/3 the statements in Theorem 2(a) and

(b) hold.

Proposition 1. Consider the competing-auctioneers model. For all k ≤ 8/3, an equilibrium

in pure strategies with properties P1, P2, and P3 exists. For each such equilibrium:

(a1) If 2 < k ≤ 8/3, then one auctioneer offers [A][B] and receives an expected revenue of

2/3, and the other auctioneer offers [AB] and receives an expected revenue of k/3.

(a2) If k ≤ 2, one of the following must hold:

(i) One auctioneer offers [A][B] and receives an expected revenue of 2/3, and the other

auctioneer offers [A][B] or [AB] and receives an expected revenue of k/3.

(ii) One auctioneer offers [A,B] and receives an expected revenue of 2/3, and the other

auctioneer offers [A][B] or [AB] and receives an expected revenue of k/3.

(b) If the equilibrium revenue is 2/3, this is because all local bidders participate in that

auction; if it is k/3, this is because all global bidders participate in that auction.

Proposition 1 will be proven in Sections B.2.1–B.2.4. In Section B.2.1 we derive the optimal

bids in Stage 3 of the game. In Section B.2.2 we derive the bidders’ optimal participation

decisions in Stage 2. In Section B.2.3 we derive the auctioneers’ equilibrium choices in Stage

1. Finally, in Section B.2.4, we show that the results hold if we relax a restriction on the

auctioneers’ strategy sets that we had imposed in the previous arguments.

B.2.1 Stage 3: Bidding Decisions

According to P2, all bidders in [AB] and [A,B] and local bidders in [A][B] bid their valuation.

The following two lemmas characterize important properties of a bidder’s equilibrium payoffs

if he participates in [A][B], for the case where at least one global bidder and at least one other

bidder participate.

Lemma 1. Consider the continuation game given by [A][B] in which m > 0 global bidders and

at least one A- and one B-bidder participate. Suppose that bidders’ beliefs equal their prior

beliefs. Let h be the sum of the expected maximum valuations of A-bidders and the expected

maximum valuations of B-bidders in [A][B]. For every equilibrium in which bidders choose

only undominated bids, the following holds:

(a) Every global bidder with valuation v ∈ [0, h] has an expected payoff of zero. If h < k and

m = 1, a global bidder with v ∈ (h, k] wins both items and his expected payoff is v − h.
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If h < k and m = 2, there exists a global bidder with valuation v ∈ (h, k] whose expected

payoff is strictly below v − h.

(b) If m = 1, a local bidder with valuation v has an expected payoff of hvn/(kn). If m = 2, a

local bidder’s expected payoff is at least vn/(nk2), where n is the number of local bidders

participating in his auction.

Proof of Lemma 1. Denote the cdf of the highest valuation of X-bidders, X ∈ {A, B} by FX

(with support [0, 1]) with density fX . Let h be the sum of the expected maximum valuations

of A-bidders and B-bidders. Local bidders have the weakly dominant strategy to bid their

valuation.

Assume first that m = 1. The expected utility of the global bidder with valuation v

who bids bX ≤ 1 on item X ∈ {A, B} (bidding bX > 1 gives the same expected utility as

bX = 1) is given by U(bA, bB, v) = vFB (bB)FA (bA)−
∫ bA
0 xdFA (x)−

∫ bB
0 xdFB (x). We get

∂U(bA, bB, v)/∂bA = (vFB(bB) − bA)fA(bA) and an interior maximum exists only if bA =

vFB(bB) and bB = vFA(bA). Thus, for 0 < v < 1, by FA(bA) ≤ bA and FB(bB) ≤ bB we get

that bA = bB = 0 and an interior maximum does not exist. If v = 1 and FA(x) = FB(x) = x,

bA = bB is another bid with expected utility zero. It cannot be optimal to submit a positive bid

on only one item, A or B, which results in a negative expected utility. Thus in equilibrium either

the global bidder’s payoff is zero or it is optimal to bid bA ≥ 1 and bB ≥ 1. The resulting utility

U(bA, bB, v) = v−
∫ 1
0 xdFA(x)−

∫ 1
0 xdFB(x) is negative for v < h :=

∫ 1
0 xdFA(x)+

∫ 1
0 xdFB(x).

Therefore, the global bidder’s equilibrium payoff is zero if v ≤ h and it is v − h if v > h. The

probability that one of the local bidders wins item X, X ∈ {A, B}, is h/k. Assume the number

of X-bidders is n. If n = 1, an X-bidder’s expected payoff is vh/k. If n = 2, an X-bidder has

an expected payoff of (h/k)
∫ v
0 (v − x)(n− 1)xn−2dx = hvn/(kn).

If h < k, there must exist a global bidder with v ∈ (h, k] (i.e., who would submit a positive

bid if he was the only global bidder) who is strictly worse off as compared to a situation where

he was the only global bidder (the case m = 1) and consequently faced less competition. Also

a global bidder with v < 1 bids bA = bB = 0 because he could not obtain a positive expected

payoff with a positive bid even if there was no other global bidder. Thus, the probability that

an X-bidder wins X ∈ {A, B} is at least 1/k2 and an X-bidder’s expected payoff is at least

(1/k2)
∫ v
0 (v − x)(n− 1)xn−2dx = vn/(nk2), where n is the number of X-bidders. �

Lemma 2. Consider a continuation game given by [A][B].

(a) If two global bidders and no local bidders participate, then an efficient ex-post equilibrium

in undominated strategies exists. In every such equilibrium, each bidder bids according to

the same strategy (bA(v), bB(v)), consisting of weakly increasing bidding functions that
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fulfill bA(v) + bB(v) = v for all v ∈ [0, k], where v denotes the bidder’s valuation. If each

bidder believes that the other bidder has valuation ṽ ∼ U [0, k], then each bidder has an

expected payoff of v2/(2k).

(b) If m > 0 global bidders, n > 0 A-bidders, and no B-bidders participate, then an efficient

ex-post equilibrium in undominated strategies exists. In every such equilibrium, a global

bidder with valuation v ≤ 1 bids (bA(v), bB(v)) = (v, 0). A global bidder with valuation

v > 1 bids as in case (a) with the additional requirement that bA(v) ≥ 1. Suppose

that a bidder’s belief equals his respective prior belief. Then each global bidder has an

expected payoff of vm+n/((m + n)km−1) if v ∈ [0, 1] and an expected payoff of ((n +

m)vm − n)/(m(m+ n)km−1) if v ∈ (1, k], and each local bidder has an expected payoff of

vm+n/((m+ n)km).

Proof of Lemma 2. (a) Ex-post efficiency requires that the same global bidder wins both items

and that the bidder with the higher valuation always wins. Thus, in every efficient equilibrium,

both bidders must bid according to the same bidding strategies (bA(v), bB(v)), where bA(v)

and bB(v) increase weakly in v, and b(v) := bA(v) + bB(v) increases strictly.11

Assume for now that b(v) is continuous (which implies that bA(v) and bB(v) are continuous

as well). We first show that in every symmetric equilibrium with weakly increasing contin-

uous functions bA(v) and bB(v) such that b(v) is strictly increasing, we have that b(v) = v.

Assume bidder j 6= i with valuation vj bids according to the increasing continuous functions

(b̂A(vj), b̂B(vj)) such that b̂(vj) := b̂A(vj)+ b̂B(vj) is strictly increasing. We show that bidder

i with valuation v has the unique best response (bA(v), bB(v)) = (b̂A(v̂), b̂B(v̂)) such that

b̂A(v̂) + b̂B(v̂) = v, i.e., (bA(v), bB(v)) = (b̂A(b̂−1(v)), b̂B(b̂−1(v))). With this bid, i wins

both items if v > b̂(vj) and does not win any item if v < b̂(v̂j). (If v = b̂(vj), he either wins

both or no item due to the tie-breaking rule and is indifferent between winning both items

and winning nothing.) Thus, there exists ṽ = b̂−1(v) such that i wins against all vj < ṽ and

loses against all vj > ṽ. His bid does not influence his payment conditional on winning. If

he instead bids (b̂A(b̂−1(v + α)), b̂B(b̂−1(v + α))), α > 0, in expectation he is strictly worse

off because he then additionally wins both items against (a set with positive measure of)

11One can more generally show that b(v) is strictly increasing in every efficient equilibrium for every tie-
breaking rule that awards both items to a single bidder. Assume, to the contrary, that in equilibrium there
exists βA and βB such that {v | bA(v) = βA} ∩ {v | bB(v) = βB} =: I contains more than one valuation v. The
intersection I is an interval because bA(v) and bB(v) are weakly increasing and v has full support on [0, k].
Then, if a bidder with a valuation v ∈ I and v < βA + βB exists who wins with positive probability in a tie
among these valuations, this bidder will prefer to reduce his bids marginally to avoid the loss. If such a valuation
does not exist, then v ≥ βA +βB for all v ∈ I who win with positive probability in a tie among these valuations.
By I being an interval, there is more than one such valuation and more than one bidder with v > βA + βB .
One of these bidders will want to marginally increase his bid to prevent the tie. This gives a contradiction to
our assumption.
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valuations vj > ṽ but makes a loss against each of them. If v > 0 and he submits the bid

(b̂A(b̂−1(v − α)), b̂B(b̂−1(v − α))), v ≥ α > 0, in expectation he is strictly worse off because

there is a positive measure of valuations vj < ṽ such that i does not win anything against

them and forgoes the positive gains from winning both items against them. If he varies his

bids (bA(v), bB(v)) in another way, he either is strictly worse off for reasons just given, or he

wins against different valuations of opponents with his bids on A and B, which makes him

even worse off because he may pay a positive price for one item he values at zero.

We now confirm that b(v) has to be continuous. Assume bidder j 6= i bids according to

the weakly increasing functions (b̂A(v), b̂B(v)) such that b̂(v) is strictly increasing. Assume

that b̂(v) has discontinuities, i.e., there exist q′ and q′′ such that q′ < q′′ and b̂−1((q′, q′′)) = ∅.
Consider bidder i with valuation v. Adjusting and applying the argument from the previous

paragraph, for v ∈ [q′, q′′] in each best response he will choose a bid b(v) ∈ [q′, q′′]. (He bids

to win against bids below v and to avoid winning against bids above v.) Therefore, either

b−1((q′, q′′)) 6= ∅ or b−1(q′)∪b−1(q′′) = [q′, q′′], a contradiction to b(v) being strictly increasing.

The expected payoff of a bidder with valuation v ∈ (0, k] if all bidders choose the same

strategy (bA(v), bB(v)) such that bA(v) + bB(v) = v, is
∫ v
0 (v − x)/k dx = v2/2k.

(b) We restrict the argument to the non-trivial case m = 2. A-bidders follow their weakly

dominant strategy and bid their respective valuation on A, and ex-post efficiency requires that

the global bidders with v ≤ 1 bid v on A. If both global bidders bid (bA(v), bB(v)) = (v, 0),

then, just as in a second-price auction, unilaterally deviating will make them weakly worse off

for all v ≤ 1. For v > 1, the analysis from (a) applies as long as global bidders always win

against local bidders (which is required by ex-post efficiency). Thus, all global bidders with

v > 1 follow weakly increasing bidding functions (bA(v), bB(v)) such that bA(v) + bB(v) = v

and bA(v) ≥ 1.

We next show that ex-post efficiency requires that global bidders with valuation v ≤ 1

bid zero on B. Bidding positively on B can occur in an ex-post efficient equilibrium only if all

global bidders bid according to the same function bB(v). We argued above that all bidders

bid their valuation on A (in every ex-post efficient equilibrium). Consider now a global bidder

with valuation v, with bB(v) > 0, who bids as if he had a valuation v̂, i.e., he bids according to

(v̂, bB(v̂)). Denote his probability of winning against a global bidder with a valuation below v̂

by Fg(v̂) and his probability of winning against all A-bidders with valuations below v̂ by F`(v̂).

His expected payoff is then given by U(v̂, v) = vF`(v̂)Fg(v̂)−
∫ v̂
0 x(f`(x)Fg(x)+Fl(x)fg(x))dx−∫ v̂

0 bB(x)fg(x)dx. We have that ∂U(v, v̂)/∂v̂ = v(fl(v̂)Fg(v̂) + Fl(v̂)fg(v̂)) − v̂((fl(v̂)Fg(v̂) +

Fl(v̂)fg(v̂))) − bB(v̂)fg(v̂), which is negative for v = v̂ and bB(x) > 0: −bB(v̂)fg(v̂) < 0.

Therefore, a bidder with valuation v would not want to bid according to bB(v) if bB(v) > 0.

23



In the equilibrium, the expected payoff of a local bidder with valuation v is vm+n/((m +

n)km), and that of a global bidder with valuation v with v ≤ 1 is vm+n/((m+n)km−1) (for the

calculations, see the proof of Supporting Lemma 2). The expected payoff of a global bidder

with valuation v ∈ (1, k] is
∫ v
0 v(m− 1)xm−2/km−1dx−

∫ v
1 x(m− 1)xm−2/km−1dx−

∫ 1
0 x(n+

m− 1)xn+m−2/km−1dx = ((n+m)vm − n)/(m(m+ n)km−1). (We use the density of the first

order statistic of m− 1 independent draws from U [0, k] and n independent draws from U [0, 1],

which is (n+m− 1)xn+m−2/km−1 for x ∈ [0, 1] and (m− 1)xm−2/km−1 for x ∈ (1, k].)

By symmetry, Lemma 2 also applies to the case where all local bidders are B-bidders. �

B.2.2 Stage 2: Bidders’ Participation Decisions

We organize properties and revenues of equilibria of the subgames starting in Stage 2 in six

lemmas, lemmas 3–8, one for each subgame. We first state all six lemmas, and then provide the

proofs. For each subgame, we characterize bidders’ equilibrium participation decisions that

fulfill P1 (i.e., participation decisions that are valuation independent). On the equilibrium

path, because of P1, bidders’ equilibrium beliefs are given by µ∗j`(σ, γ
∗
−j) = U [0, 1] for ` ∈ {A1,

A2, B1, B2} and µ∗j`(σ, γ
∗
−j) = U [0, k] for ` ∈ {AB1, AB2}, for all j ∈ J. For the results, we

do not impose any restrictions on off-the-equilibrium-path beliefs. Off-the-equilibrium-path

beliefs matter only for equilibria of subgames in which at least one auctioneer offers [A][B] and

bidding decisions of global bidders who do not play according to an ex-post equilibrium in the

continuation game following a deviation from the equilibrium participation decision (and may

therefore influence participation decisions of other bidders).

Lemma 3. Assume k ∈ (1, 8/3]. Consider the subgame that follows the auctioneers’ choices

σ = ([A][B], [A][B]). In an equilibrium with properties P1, P2, and P3, one of the following

cases occurs:

(a) One global bidder, one A-bidder, and one B-bidder participate in each [A][B]. Each

auctioneer’s expected revenue is (k − 1)/k.

(b) All global bidders participate in the auction of one auctioneer and all local bidders in the

auction of the other auctioneer. The auctioneer with the global bidders has an expected

revenue of k/3, and the other auctioneer has an expected revenue of 2/3.

Lemma 4. Assume k ∈ (1, 8/3]. Consider the subgame that follows the auctioneers’ choice

σ = ([A][B], [AB]) or σ = ([AB], [A][B]). In an equilibrium with properties P1, P2, and P3

one of the following cases occurs:

(a) Both global bidders participate in [AB] and all local bidders participate in [A][B]. The

auctioneer offering [AB] has an expected revenue of k/3, and the auctioneer offering
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[A][B] has an expected revenue of 2/3.

(b) Both global bidders and one local bidder participate in [A][B], and the remaining local

bidders participate in [AB]. The auctioneer offering [A][B] has an expected revenue of

(2k3 + 2k − 1)/(6k2), and the auctioneer offering [AB] has an expected revenue of 1/2.

This case can occur only if k ≤ 2/
√

3 ≈ 1.15.

Lemma 5. Assume k ∈ (1, 8/3]. Consider the subgame that follows the auctioneers’ choice

σ = ([A][B], [A,B]) or σ = ([A,B], [A][B]). In an equilibrium with properties P1, P2, and P3,

one of the following cases occurs:

(a) Both global bidders participate in [A,B], and all local bidders participate in [A][B]. The

auctioneer offering [A,B] has an expected revenue of k/3, and the auctioneer offering

[A][B] has an expected revenue of 2/3.

(b) Both global bidders participate in [A][B], and all local bidders participate in [A,B]. The

auctioneer offering [A][B] has an expected revenue of k/3, and the auctioneer offering

[A,B] has an expected revenue of 2/3.

(c) One A-bidder and one B-bidder participate in [A][B], and the remaining bidders partic-

ipate in [A,B]. The auctioneer offering [A][B] has an expected revenue of 0, and the

auctioneer offering [A,B] has an expected revenue of (7k5 − 50k4 + 140k3 − 80k2 − 10k+

16)/(60k2). This case can occur only if k ∈ (1, k◦], where k◦ is the positive solution to

3k◦4 − 16k◦3 + 36k◦2 − 24k◦ − 2 = 0 (i.e., k◦ ≈ 1.23).

Lemma 6. Assume k ∈ (1, 8/3]. Consider the subgame that follows the auctioneers’ choice

σ = ([AB], [AB]). In an equilibrium with properties P1, P2, and P3, one of the following cases

occurs:

(a) Two local bidders and one global bidder participate in each [AB]. Each auctioneer’s

expected revenue is (4k − 1)/(6k).

(b) Three local bidders participate in one [AB], and two global bidders and one local bidder

participate in the other [AB]. The auctioneer who attracts only local bidders has an

expected revenue of 1/2, and the auctioneer who attracts two global bidder and one local

bidder has an expected revenue of (2k3 + 2k − 1)/(6k2). This case can occur only if

k ≤ 2/
√

3 ≈ 1.15.

Lemma 7. Assume k ∈ (1, 8/3]. Consider the subgame that follows the auctioneers’ choice

σ = ([AB], [A,B]) or σ = ([A,B], [AB]). In an equilibrium with properties P1, P2, and P3,

both global bidders participate in [AB] and all local bidders participate in [A,B]. The auctioneer

offering [AB] has an expected revenue of k/3, and the auctioneer offering [A,B] has an expected

revenue of 2/3.
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Lemma 8. Assume k ∈ (1, 8/3]. Consider the subgame that follows the auctioneers’ choice

σ = ([A,B], [A,B]). In an equilibrium with properties P1, P2, and P3, one of the following

cases occurs:

(a) One A-bidder, one B-bidder, and one global bidder participate in either [A,B]. Each

auctioneer’s expected revenue is (k4 − 8k3 + 24k2 − 20k + 6)/(12k) if 1 < k < 2 and

(6k − 5)/(6k) if k ≥ 2.

(b) Both global bidders participate in one [A,B], and all local bidders participate in the other

[A,B]. The auctioneer who attracts the global bidders has an expected revenue of k/3, and

the other auctioneer receives an expected revenue of 2/3.

The proofs of lemmas 3 to 8 all follow the same basic line of argument and make use of

the following two supporting lemmas.

Supporting Lemma 1. Suppose that bidders’ beliefs equal their respective priors. For all

k ∈ [1, 8/3), a global bidder with valuation v ∈ (0, k] is strictly better off competing against

another global bidder in either of [A][B], [AB] or [A,B], than competing against all four local

bidders in [A][B]. For v = 0 and for k = 8/3 = v, he is indifferent.

Proof of Supporting Lemma 1. A global bidder with a valuation of v competing against another

global bidder in either of [A][B], [AB] or [A,B], receives an expected revenue of v2/(2k) (see

Lemma 2). A global bidder with a valuation of v competing against all four local bidders in

[A][B] receives an expected payoff of v − 4/3 if v > 4/3, and otherwise an expected payoff

of 0 by Lemma 1. For v = 0 and v = 8/3 = k he is indifferent, for 0 < v ≤ 4/3 we have

v2/(2k) > 0, and for k ≥ v > 4/3 we have v2/(2k) > v − 4/3 if k < 8/3. �

Supporting Lemma 2. Suppose that bidders’ beliefs equal their respective priors. Consider

[AB] with n local bidders and m global bidders. Then the expected payoff of a local bidder with

valuation v is vn+m

(n+m)km and the expected payoff of a global bidder with a valuation v ≤ 1 is
vn+m

(n+m)km−1 .

Proof of Supporting Lemma 2. First, consider a local bidder with a valuation of v. Using the

density of the first order statistic of m independent draws from U [0, k] and n− 1 independent

draws from U [0, 1] which is fl(x) := (n − 1 + m)x
n+m−2

km , we have that his expected payoff

is
∫ v
0 (v − x)fl(x)dx = vn+m

(n+m)km . Second, consider a global bidder with a valuation of v ≤ 1.

Using the density of the first order statistic of m − 1 independent draws from U [0, k] and n

independent draws from U [0, 1] which is fg(x) := (n−1+m)x
n+m−2

km−1 , we have that his expected

payoff is
∫ v
0 (v − x)fg(x)dx = vn+m

(n+m)km−1 . �
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Proof of Lemma 3. As we consider only equilibria with P1, P2, and P3, the belief of every

bidder on the equilibrium path has to be equal to his respective prior. Based on the number

of global bidders in the first [A][B] we distinguish two cases:

� Assume that in an equilibrium (with properties P1, P2, and P3) there are two global bidders

in the first [A][B].

If in such an equilibrium there is only one local bidder in the first [A][B], this local bidder

competes with two global bidders who bid their valuations and wants to deviate to the

second [A][B] to compete only with one local bidder of his own kind.

If in such an equilibrium both A-bidders participate in the first [A][B] and both B-bidders

participate in the second [A][B], then an A-bidder would want to deviate to obtain the item

for free in the second [A][B].

If there is exactly one A- and one B-bidder in the first [A][B], at least one global bidder

with a valuation v > 1 is better off deviating because he faces strictly less competition in

the second [A][B].

If there are three or four local bidders in the first [A][B], at least one local bidder does not

face any competition in the second [A][B] and deviates to obtain the item for free.

It is possible in equilibrium that all local bidders are in the second [A][B] because no local

bidder has an incentive to deviate to the first [A][B], where he would compete against two

global bidders who are stronger than one local bidder because k > 1 (see Lemma 2), whereas

in [A][B] he competes against one local bidder. According to Supporting Lemma 1, a global

bidder does not want to deviate either.

� Assume that in an equilibrium there is one global bidder in each [A][B].

There exists an equilibrium in which exactly one of each kind of local bidder (A and B) is

in each [A][B] because a deviating bidder would face a more competitive situation.

If there is at most one local bidder in one of the [A][B], the global bidder with a low

valuation in the other [A][B] has zero payoff due to the exposure problem and enters to

have a positive expected payoff (by P3 and Lemma 2) (and therefore this cannot be an

equilibrium).

If both A-bidders are in the same [A][B] and both B-bidders are in the other [A][B], a

local bidder deviates even if the global bidder in the auction that he enters places his most

aggressive bid v (by P2(d), see page 19) on his desired item, because before the deviation he

faces a local and a global bidder who bid their valuations, and after the deviation he faces

only a global bidder who bids his valuation.

In sum, the only allocations of bidders to auctions that are consistent with equilibrium with

properties P1, P2, and P3 are that either exactly one of each kind of bidder (A, B, and global)
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is in each [A][B], or all local bidders are in one [A][B] and all global bidders are in the other

[A][B]. If one of each kind of bidder (A, B, and global) is in each [A][B], the expected revenue

(for each auctioneer) is 1/k · 0 + (1− 1/k)2
∫ 1
0 xdx = (k − 1)/k. If all local bidders are in one

[A][B] and all global bidders are in the other [A][B] the expected revenue of the auctioneer

with the local bidders is 2
∫ 1
0

∫ 1
y x dxdy = 2/3 and the expected revenue of the auctioneer with

the global bidders is
∫ k
0

∫ k
y x/k

2 dxdy = k/3. �

Proof of Lemma 4. Based on the number of global bidders in [AB] we distinguish three cases:

� Assume that there exists an equilibrium (with properties P1, P2 and P3) in which there are

two global bidders in [AB].

If in such an equilibrium there is a local bidder in [AB], this local bidder competes with at

least two global bidders who bid their valuations and deviates to compete against at most

one local bidder of his kind.

Inversely, if all local bidders are in [A][B], then no local bidder has an incentive to deviate

to [AB] and by Supporting Lemma 1 no global bidder has an incentive to deviate from [AB].

� Assume there is exactly one global bidder in [AB].

If there is at least one A- and one B-bidder in [A][B], a global bidder in [A][B] with

0 < v < 1 receives an expected payoff of zero (by Lemma 1) and deviates to receive a

strictly positive expected payoff in [AB].

If in [A][B] there are no local bidders for one of the items but there are two local bidders

for the other item, a local bidder in [AB] deviates even if the global bidder in the single-item

auction that he enters places his most aggressive bid v (by P2(d), see page 19), because

before the deviation he faces a local and a global bidder who bid their valuations, and after

the deviation he faces only a global bidder who bids his valuation.

If in [A][B] there are no local bidders for one of the items (say for B) but there is one

local bidder for the other item, then the A-bidder in [AB] deviates to [A][B] to face less

competition (by P3 and Lemma 2).

If there is no local bidder in [A][B], any local bidder competes with one global and three

local bidders in [AB] and deviates to compete only with one global bidder who bids his

valuation (see Lemma 2).

� Assume there is no global bidder in [AB].

If there is a local bidder for each of the two items in [A][B], a global bidder with low

valuation receives an expected payoff of zero (by Lemma 1) and deviates to [AB] to receive

a strictly positive payoff.

If there are two local bidders for one of the items in [A][B] and no local bidder for the

other item, a global bidder deviates to [AB] to face less competition and to increase his
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payoff from v4/(4k) (see Lemma 2) to v3/3 (see Supporting Lemma 2).

If there is exactly one local bidder in [A][B] and k > 2/
√

3 ≈ 1.15, then the local bidder

deviates, but if k ≤ 2/
√

3, then there are off-the-equilibrium-path beliefs and corresponding

bids, such that no bidder wants to deviate. The local bidder in [A][B], say this is an A-

bidder, has the payoff v3/(3k2) (see Lemma 2). If he deviates, he gets v4/4 (see Supporting

Lemma 2). Deviating is profitable for v > 4/(3k2). Thus, the valuation for which a bidder

is most prone to deviating is v = 1, and he deviates if and only if k > 2/
√

3. A global

bidder has the payoff v3/(3k) if 0 ≤ v ≤ 1 and (3v2 − 1)/(6k) if v > 1 (see Lemma 2). If he

deviates to [AB], his payoff is v4/4 if 0 ≤ v ≤ 1 and (4v − 3)/4 if 1 ≤ v ≤ k and deviating

does not pay for k ≤ 2/
√

3. The A-bidder in [AB] will not deviate to [A][B] because there

he faces more competition (by P3 and Lemma 2). The B-bidders will not deviate to [A][B]

if a global bidder then bids most aggressively, i.e., his valuation by P2(d), page 19, in [B].

The global bidder may do so if his beliefs about the A-bidder and the other global bidder

in [A][B] are that their valuation (and bid) is zero with probability one.

If there is no local bidder in [A][B], a local bidder with valuation v deviates if v4/4 <

v3/(3k2), that is, if 0 < v < 4/(3k2). (For the payoffs see Supporting Lemma 2.)

If in equilibrium all local bidders are in [A][B] and all global bidders are in [AB] then the

expected revenue of the auctioneer offering [A][B] is 2/3 (as in Lemma 3) and the expected

revenue of the auctioneer offering [AB] is
∫ k
0

∫ k
y x/k

2 dxdy = k/3. This is the only allocation of

bidders to auctions consistent with equilibrium with properties P1, P2, and P3 if k > 2/
√

3.

If k ≤ 2/
√

3 and two global bidders and one local bidder participate in [A][B] and the

remaining local bidders participate in [AB] then the expected revenue of the auctioneer with

[A][B] is (2k3 + 2k − 1)/(6k2) and the expected revenue of the auctioneer with [AB] is 1/2.

This is the second allocation of bidders to auctions consistent with equilibrium with properties

P1, P2, and P3 if k ≤ 2/
√

3.

All other allocations of bidders to auctions are not consistent with an equilibrium that

fulfills P1, P2, and P3. �

Proof of Lemma 5. Based on the number of global bidders in [A,B] we distinguish three cases:

� Assume that in an equilibrium (with properties P1, P2, and P3) there are two global bidders

in [A,B].

We first show that if there is exactly one local bidder for each item in [A][B] than no

bidder has an incentive to deviate if and only if k ≤ k◦ where k◦ is the positive solution

to 3k◦4 − 16k◦3 + 36k◦2 − 24k◦ − 2 = 0 (we have that k◦ ≈ 1.23). A local bidder with a

valuation of v who deviates from [A,B] receives an expected payoff of v2/2 by Supporting

Lemma 2. If k ≥ 2, a local bidder with valuation v = 1 would deviate because for him
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∫ 1
0

[∫ b+v
0 v 2c

k2
dc−

∫ b+v
b (c− b) 2c

k2
dc
]
db = (2v3 + 3v2 + 2v)/(6k2) < v2/2. If k ∈ (1, 2),

his expected payoff from not deviating is (2v3 + 3v2 + 2v)/(6k2) if v ∈ [0, k − 1] and is∫ k−v
0

∫ v+b
b (v − c+ b) 2c

k2
dc db+

∫ 1
k−v

∫ k
b (v − c+ b) 2c

k2
dc db+

∫ 1
0

∫ b
0 v

2c
k2
dcdb = (−v4 + 6k2v2 −

(8k3 − 12k2)v + 3k4 − 8k3 + 6k2 − 1)/(12k2) if v ∈ [k − 1, 1]. The maximum gain from

deviating, that is, the maximum difference in expected payoffs, if v ∈ [0, k−1] is achieved at

v = k−1 and is strictly positive for all k > 1.59, the solution to 3k4−8k3 +6k2−2k+1 = 0

for k ∈ (1, 2). The maximum difference if v ∈ [k − 1, 1] and k ≥ 3/2 is achieved at v = 1

and is strictly positive. The maximum difference if v ∈ [k− 1, 1] and k < 3/2 is at v = k− 1

or v = 1 and is strictly positive for k > 1.48 (the solution to 3k4 − 16k3 + 18k2 − 2 = 0 for

k ∈ (1, 3/2)). A local bidder with v = 1 would deviate for all k > 1.48. A global bidder

with valuation v ∈ [1, k] would deviate if (v− 1)− (−3v4 + 16v3− 12v2 + 2)/(24k) > 0. The

left hand side expression takes its maximum at v = k and is positive for v = k for k > k◦

with k◦ ≈ 1.23, the positive solution to 3k◦4 − 16k◦3 + 36k◦2 − 24k◦ − 2 = 0. In addition,

local bidders in [A][B] have no incentive to deviate as they obtain the object for free.

If there are exactly three local bidders in [A][B], the local bidder in [A,B] competes with

two global bidders who bid their valuations and would deviate to [A][B] to compete against

at most one local bidder of his kind.

If there is no A-bidder, no B-bidder, or no local bidder at all in [A][B], then there is a

local bidder who faces competition in [A,B] and deviates to [A][B] to get the item for free.

If all local bidders are in [A][B], then no local bidder has an incentive to deviate to [A,B]

and by Supporting Lemma 1 no global bidder has an incentive to deviate from [A,B].

� Assume that in an equilibrium there is one global bidder in [A,B].

If all local bidders are in [A,B], a local bidder with a valuation v < min{1/2, k − 1}
expects to get

∫ 1
0

∫ v
0

∫ v+b
0 v 1

k dc da 2b db −
∫ 1
0

∫ v
0

[∫ a+b
0 a 1

k dc+
∫ v+b
a+b (c− b) 1k dc

]
da2b db =

v2(v+1)/(3k), where b denotes the highest bid by a local bidder interested in the other item.

He deviates profitably to [A][B] to receive an expected payoff of v2/(2k) > v2(v + 1)/(3k)

(by Lemma 1).

If there is at least one A-bidder and at least one B-bidder in [A][B], a global bidder in [A][B]

with a valuation below 1 receives an expected payoff of zero (by Lemma 1) and deviates to

[A,B] to receive a strictly positive payoff.

If there is exactly one local bidder in [A][B], then the global bidder in [A,B] with v ≤ 1

has the payoff v4/12 and profitably deviates to [A][B] to get v3/(3k) (by P3 and Lemma 2).

If there are two A-bidders or two B-bidders in [A][B], then a local bidder in [A,B] faces a

local bidder of his kind and a global bidder who bid their valuations and our local bidder

profitably deviates to [A][B] even if the global bidder places his most aggressive bid v (by
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P2(d), see page 19) in the auction that our local bidder enters.

� Assume that in an equilibrium there is no global bidder in [A,B].

If there are one or more local bidders of each kind in [A][B], a global bidder with 0 < v < 1

has a payoff of zero and deviates to [A,B] to get a strictly positive expected payoff.

If there is only one local bidder in [A][B], this local bidder competes with two global

bidders who bid their valuations (by Lemma 2) and deviates to [A,B] to compete only with

one local bidder of his kind.

If there are two local bidders of the same kind in [A][B], then each of them has an incentive

to deviate to [A,B] and receive the item for free, being the only local bidder of his kind in

[A,B].

It is possible in equilibrium that there are no local bidders in [A][B]. Then a local bidder

in [A,B] receives v2/2 and has no incentive to deviate, since in [A][B] he would by Lemma

2 receive v3/(3k2) ≤ v2/2 because 0 ≤ v ≤ 1 and k ≥ 1. A global bidder in [A][B] receives

v2/(2k) (see Lemma 2). If his valuation v < 1 he will not want to deviate because in [A,B]

he would receive
∫ v
0

∫ v−a
0 (v − a − b) 2a 2b db da = v5/30, which is smaller than v2/(2k), as

k ≤ 8/3. If 1 ≤ v ≤ 2, he will not deviate because in [A,B] he receives
∫ v−1
0

∫ 1
0 (v − a −

b) 2a 2b db da+
∫ 1
v−1

∫ v−a
0 (v−a−b) 2a 2b db da = −v5/30+2v3/3−4v2/3+v−4/15 < v2/(2k)

for k ≤ 8/3 and 1 ≤ v ≤ min{k, 2}. If v > 2, then a global bidder would receive v − 4/3 by

deviating to [A,B] and it holds that v − 4/3 ≤ v2/(2k) for 2 < k ≤ 8/3 and 2 < v ≤ k.

For k ∈ (1, 8/3] it is consistent with an equilibrium with properties P1, P2, and P3 that all

global bidders are in [A,B] and all local bidders are in [A][B] or that all local bidders are in [A,B]

and all global bidders are in [A][B]. In the former case the expected revenue of the auctioneer

with [A,B] is
∫ k
0

∫ k
y x/k

2 dxdy = k/3 and that of the auctioneer with [A][B] is 2
∫ 1
0

∫ 1
y x dxdy =

2/3. In the latter case the expected revenue of the auctioneer with [A,B] is 2/3 (equivalent to

all locals in [A][B]) and that of the auctioneer with [A][B] is
∫ k
0

∫ k
y x/k

2 dxdy = k/3.

If k ≤ k◦ where k◦ is the positive solution to 3k◦4 − 16k◦3 + 36k◦2 − 24k◦ − 2 = 0, it is

also possible in equilibrium that both global and exactly one A-bidder and one B-bidder are

in [A,B] and the remaining A-bidder and B-bidder are in [A][B]. Then the expected revenue

of the auctioneer with [A][B] is zero and that of the auctioneer with [A,B] is (7k5 − 50k4 +

140k3 − 80k2 − 10k + 16)/(60k2).

All other allocations of bidders to auctions are not consistent with an equilibrium that

fulfills P1, P2, and P3. �

Proof of Lemma 6. Based on the number of global bidders in the first auctioneer’s [AB] two

cases are relevant:

� Assume that in equilibrium there are two global bidders in the first [AB].
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If there is more than one local bidder in the first [AB], such a local bidder competes with

two global and at least one local bidder who all bid their valuations and profitably deviates

to the second [AB] to compete with at most two local bidders who bid their valuations.

It is possible in equilibrium that there is one local bidder in the first [AB], if k ≤ 2/
√

3 ≈
1.15, but if k > 2/

√
3 there cannot be one local bidder in the first [AB]. This bidder

with valuation v earns v3/(3k2) (Supporting Lemma 2), which is less than his expected

payoff from deviating to the second [AB] if v4/4 > v3/(3k2). The valuation for which

this deviation would be most profitable is v = 1. A bidder with this valuation deviates

if and only if k > 2/
√

3. A global bidder with v ≤ 1 deviates if v4/4 > v3/(3k). Then,

v4/4 > v3/(3k2), and the local bidder also deviates. A global bidder with v > 1 deviates

if v − 3/4 > (3v2 − 1)/(6k) or 6kv − 9k/2 − 3v2 + 1 > 0. 6kv − 9k/2 − 3v2 + 1 takes its

maximum at v = k and is positive at v = k for k > (9 +
√

33)/12 ≈ 1.22 > 2/
√

3. Thus, for

k > (9 +
√

33)/12 the global bidder with v = k deviates and for k ≤ (9 +
√

33)/12 no global

bidder with v ∈ [1, k] deviates.

If there is no local bidder in the first [AB], a local bidder with a valuation v < 4/(3k2) in

the second [AB] earns v4/4 and profitably deviates to the first [AB] to earn v3/(3k2).

� Assume in equilibrium there is a global bidder in each [AB].

No bidder deviates if there are two local bidders in each auction, because a deviating local

bidder faces more local and the same number of global competitors and a deviating global

bidder faces the same number of local bidders but faces a global competitor in addition. To

the contrary, if there are more local bidders in one auction than in the other, then local

bidders can profitably deviate to the auction with fewer local bidders.

Depending on k, there are two equilibrium allocations of bidders to auctions that are consistent

with P1, P2, and P3. If k ≤ 2/
√

3, one local and two global bidders are in one [AB] and three

local bidders are in the other [AB]. For all k, one global and two local bidders participate

in each [AB]. The expected revenue in an auction with one local and two global bidders is

1/k2(2
∫ k
1

∫ c
1

∫ 1
0 b dadbdc+4

∫ k
1

∫ 1
0

∫ b
0 b dadbdc+6

∫ 1
0

∫ c
0

∫ c
b a dadbdc) = (2k3+2k−1)/(6k2), with

three local bidders it is 6
∫ 1
0

∫ c
0

∫ c
b a dadbdc = 1/2, and with one global and two local bidders

it is 1/k(2
∫ k
1

∫ 1
0

∫ b
0 b dadbdc + 6

∫ 1
0

∫ c
0

∫ c
b a dadbdc) = (4k − 1)/(6k). All other allocations of

bidders to auctions are not consistent with an equilibrium that fulfills P1, P2, and P3. �

Proof of Lemma 7. Distinguish three cases, depending on the number of global bidders in

[A,B].

� Assume that in equilibrium there are two global bidders in [A,B].

If there is at least one A-bidder and one B-bidder in [A,B], the expected payoff of the

global bidder with v ≤ 1 is at most v4/(8k) (the expected payoff of a global bidder with
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v ≤ 1 if there is exactly one A- and one B-bidder in [A,B]). A global bidder with 0 < v ≤ 1

profitably deviates to receive at least v3/3 (the expected payoff of a global bidder with v ≤ 1

in [AB] if the only other bidders in [AB] are one A- and one B-bidder).

If there is one local bidder in [A,B], say an A-bidder, and no local bidder for the other

item, a B-bidder with v ∈ (0, k−1] in [AB] profitably deviates to [A,B] if v3/3 < (2v3+3v2+

2v)/(6k2) =
∫ 1
0

∫ a+v
a (v−c+a)·2c/k2 dc da+

∫ 1
0

∫ a
0 v ·2c/k

2 dc da, or 0 < −2(k2−1)v2+3v+2.

This condition holds for k > 1 if 0 < v < (3 +
√

16k2 − 7)/(4(k2− 1)), and thus, a B-bidder

with low valuation v ∈ (0,min{k − 1, (3 +
√

16k2 − 7)/(4(k2 − 1))} deviates to [A,B].

If there are two local bidders for the same item and no local bidder for the other item in

[A,B], a global bidder deviates to [AB] to face less competition.

If all local bidders are in [AB], the calculations in the proof of Lemma 6 apply and show

that a local bidder would deviate if v < 4/(3k2).

� Assume that in equilibrium there is one global bidder in [A,B].

If there are three or four local bidders in [A,B], the global bidder with v ∈ (0, 1] in [A,B]

receives an expected payoff of at most v4/12 (his expected payoff if there are exactly three

local bidders). He profitably deviates to [AB] if v ∈ (0, 4/k) because he obtains at least

v3/3k (his payoff if he is in [AB] with one more global and one local bidder).

If there are at most two local bidders in [A,B], a local bidder in [AB] deviates. The

case least prone to such a deviation is when there is an A- and a B-bidder in [A,B]. The

A-bidder with v < min{1, k − 1} in [AB] obtains v3/(3k), whereas in [A,B] he would get

(4v3 + 3v2)/(12k), which is strictly larger for all v ∈ (0,min{1, k − 1}].
� Assume that in equilibrium there is no global bidder in [A,B].

If all local bidders are in [A,B], no bidder wants to deviate. For the global bidders this

follows from the corresponding argument in the proof of Lemma 5, and for the local bidders

this follows from the argument in the proof of Lemma 4.

If there are one or more local bidders in [AB], such a local bidder deviates if 0 < v < 3k2/2

because in [AB] he receives at most v3/(3k2) whereas if he deviates he obtains at least v2/2.

The only equilibrium allocation of bidders to auctions that is consistent with P1, P2, and P3

is that all local bidders are in [A,B] and all global bidders are in [AB]. The expected revenue

of the auctioneer with [A,B] is 2/3 and that of the auctioneer with [AB] is k/3. �

Proof of Lemma 8. We consider two cases, depending on whether in equilibrium both global

bidders are in the same [A,B] or not.

� Assume that there are two global bidders in the (w.l.o.g.) first auctioneer’s [A,B].

If no local bidder is in the first [A,B], no bidder would want to deviate for the same reasons

as in the proof of Lemma 7.
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If there is exactly one local bidder in the first [A,B], he deviates to increase his expected

payoff from v3/(3k2) to v2/2 if v ∈ (0, 1].

If there are exactly one A-bidder and one B-bidder in the first [A,B], a global bidder with

v ∈ (0, k] profitably deviates to the auction with less competition.

If there are at least two local bidders and at least two of the same kind in the first [A,B],

then a local bidder profitably deviates to the second [A,B] to get the item for free.

� Assume that there is one global bidder in each [A,B].

If there is one A-bidder and one B-bidder in each [A,B] then no bidder would deviate as

he would face tougher competition.

If there are two local bidders for the same item (w.l.o.g. A-bidders) and zero or one for

the other item in the first [A,B], then an A-bidder profitably deviates to the second [A,B]

to face less competition and to complement with at least as many B-bidders.

If all local bidders are in the same [A,B], a global bidder with v ∈ (0, 1] who is with the

local bidders in this [A,B] deviates and increases his expected payoff from v5/30 to v2/(2k).

The only equilibrium allocations of bidders to auctions that are consistent with P1, P2, and

P3 are that either all local bidders are in one [A,B] and all global bidders are in the other

[A,B], or exactly one of each kind of bidder (A, B, and global) is in each [A,B]. The expected

revenue from four local bidders is 2/3 and that from two global bidders is k/3 as shown before.

The expected revenue from an A-, a B-, and a global bidder is, if k ≥ 2, (6k − 5)/(6k) and, if

k ∈ (1, 2), (k4− 8k3 + 24k2− 20k+ 6)/(12k) (calculations are as in the proof of Theorem 1).�

B.2.3 Stage 1: Auctioneers’ Auction-Format Choices

We can now derive the auctioneers’ equilibrium choices. Bidders’ participation decisions and

auctioneers’ expected revenues conditional on the auctioneers’ choices (σ1, σ2) are given by

lemmas 3 to 8. We need to show that no auctioneer has an incentive to unilaterally deviate

from the equilibrium decision stated in Proposition 1 and that for any other combination of

choices σ = (σ1, σ2) an auctioneer can profitably deviate.

We will prove case 2 < k ≤ 8/3 of Proposition 1 first. Then, we will prove case k ≤ 2 in

subcases (a) k ∈ (2/
√

3, 2] and (b) k ∈ (1, 2/
√

3]. We will make use of the following inequalities

that hold for k ∈ (1, 8/3]: k−1
k < k

3 , k−1
k < 2

3 , 4k−1
6k < 2

3 , and 6k−5
6k < k

3 .

If k ∈ (2, 8/3], Auctioneer 1’s and Auctioneer 2’s expected revenues given their choices

(σ1, σ2) are taken from Lemmas 3 to 8 and summarized in the following table. Multiple entries

in a cell for a given (σ1, σ2) denote that different expected revenues are possible because the

subgame following the auctioneers’ choices can have multiple equilibria. The statement follows

from comparing, for each pair of revenues in the various cells in the table, an auctioneer’s
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revenue with the maximum of the respective minimum revenue from the two alternate cells he

could reach by a unilateral deviation.

k ∈ (2, 8/3]: Auctioneer 2

σ1 \σ2 [A][B] [AB] [A,B]

[A][B] (k−1k , k−1k )∗,∗∗ (23 ,
k
3 ) (k3 ,

2
3)∗∗

(k3 ,
2
3)∗∗ (23 ,

k
3 )∗,(∗∗)

(23 ,
k
3 )∗

Auctioneer 1 [AB] (k3 ,
2
3) (4k−16k , 4k−16k )∗,∗∗ (k3 ,

2
3)(∗∗)

[A,B] (23 ,
k
3 )∗ (23 ,

k
3 )(∗) (23 ,

k
3 )∗,(∗∗)

(k3 ,
2
3)(∗),∗∗ (k3 ,

2
3)(∗),∗∗

(6k−56k , 6k−56k )∗,∗∗

∗/∗∗ Auctioneer 1/2 can profitably deviate
(∗)/(∗∗) Auctioneer 1/2 prefers a less complex, revenue-equivalent auction

If and only if σ =([A][B],[AB]) or σ =([AB],[A][B]) no auctioneer can profitably deviate.

Unilaterally deviating from σ =([A][B],[AB]) or σ =([AB],[A][B]) is not profitable because
k
3 ≥ max{min{k−1k , 23 ,

k
3},min{23 ,

k
3}} = max{k−1k , 23} and 2

3 ≥ max{4k−16k , 23} (and deviating

is not profitable independently of the equilibria of the subgames following an auction-format

choice). If σ =([A][B],[A][B]), at least one auctioneer (with a revenue of k−1k or 2
3) can profitably

deviate to [AB] to get a revenue of k
3 . If σ ∈ {([A][B],[A,B]), ([A,B],[A][B]), ([A,B],[A,B])}, an

auctioneer who offers [A,B] can profitably deviate to [AB]. If σ ∈ {([AB],[A,B]), ([A,B],[AB])},
an auctioneer who offers [A,B] will by tie breaking deviate to [A][B]. If σ =([AB],[AB]), an

auctioneer can profitably deviate to [A][B].

Consider k ∈ (1, 2]. (a) If k ∈ (2/
√

3, 2], the auctioneers’ expected revenues given (σ1, σ2)

are taken from lemmas 3 to 8 and summarized in the following table. For the sake of clarity,

let Y := 7k5−50k4+140k3−80k2−10k+16
60k2

and Z := k4−8k3+24k2−20k+6
12k . We have that k

3 < Y < 2
3 for

all 1 < k ≤ k◦ ≈ 1.23 and Z < k
3 for all k ∈ (1, 2].
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k ∈ (2/
√

3, 2]: Auctioneer 2

σ1 \σ2 [A][B] [AB] [A,B]

[A][B] (k−1k , k−1k )∗,∗∗ (23 ,
k
3 ) (k3 ,

2
3)(∗∗) for k=2

(k3 ,
2
3) (23 ,

k
3 )(∗∗)

(23 ,
k
3 ) (0, Y )~,∗

Auctioneer 1 [AB] (k3 ,
2
3) (4k−16k , 4k−16k )∗,∗∗ (k3 ,

2
3)(∗∗)

[A,B] (23 ,
k
3 )(∗) for k=2 (23 ,

k
3 )(∗) (23 ,

k
3 )(∗∗)

(k3 ,
2
3)(∗) (k3 ,

2
3)(∗)

(Y, 0)~,∗∗ (Z,Z)~~,∗,∗∗

~ subgame revenues possible only for k ≤ k◦ ≈ 1.23, ~~ subgame revenues not possible for k = 2
∗/∗∗ Auctioneer 1/2 can profitably deviate
(∗)/(∗∗) Auctioneer 1/2 prefers a less complex, revenue-equivalent auction

No auctioneer can profitably deviate (for appropriate equilibria of the subgames following

the auction-format choices) if σ ∈ {([A][B],[A][B]),([A][B],[AB]),([AB],[A][B]),([A][B],[A,B]),

([A,B],[A][B])} with the following exception. If σ ∈ {([A][B],[A,B]),([A,B],[A][B])} and k = 2,

the auctioneer offering [A,B] will by tie-breaking deviate to [AB]. If σ = ([AB],[AB]), deviating

to [A][B] is profitable. If σ ∈ {([AB],[A,B]),([A,B],[AB])} the auctioneer who offers [A,B] will by

tie-breaking deviate to [A][B]. If σ =([A,B],[A,B]), at least one auctioneer will by tie-breaking

deviate to [AB].

(b) If k ∈ (1, 2/
√

3], the auctioneers’ expected revenues given (σ1, σ2) are taken from

lemmas 3 to 8 and summarized in the following table, with Y and Z as defined in case (ii.a).

We have that k−1
k < k

3 <
1
2 <

4k−1
6k < 2k3+2k−1

6k2
< 2

3 for all k ∈ (1, 2√
3
].

k ∈ (1, 2/
√

3]: Auctioneer 2

σ1 \σ2 [A][B] [AB] [A,B]

[A][B] (k−1k , k−1k )∗,∗∗ (23 ,
k
3 ) (k3 ,

2
3)

(k3 ,
2
3) (2k

3+2k−1
6k2

, 12)∗ (23 ,
k
3 )(∗∗)

(23 ,
k
3 ) (0, Y )∗

Auctioneer 1 [AB] (k3 ,
2
3) (4k−16k , 4k−16k )∗,∗∗ (k3 ,

2
3)

(12 ,
2k3+2k−1

6k2
)∗∗ (12 ,

2k3+2k−1
6k2

)∗

(2k
3+2k−1
6k2

, 12)∗∗

[A,B] (23 ,
k
3 ) (23 ,

k
3 ) (23 ,

k
3 )(∗∗)

(k3 ,
2
3)(∗) (k3 ,

2
3)(∗)

(Y, 0)∗∗ (Z,Z)∗,∗∗

∗/∗∗ Auctioneer 1/2 can profitably deviate
(∗)/(∗∗) Auctioneer 1/2 prefers a less complex, revenue-equivalent auction
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No auctioneer can profitably deviate (for appropriate equilibria of the subgames following

the auction-format choices) if and only if σ /∈ {([AB],[AB]),([A,B],[A,B])}. If σ =([AB],[AB]),

at least one auctioneer can profitably deviate to [A][B]. If σ =([A,B],[A,B]), at least one

auctioneer can profitably deviate to [AB].

B.2.4 Allowing for Other Auction Formats

The results in Proposition 1 remain valid if auctioneers are allowed to restrict bidding to any

possible set of packages.

Lemma 9. Allowing bids only on A and AB or only on B and AB is equivalent for bidders

and auctioneers to offering [AB]. If auctioneers can decide to accept bids only on A or only

on B, then they will not make use of this in an equilibrium with properties P1, P2, and P3 for

k ∈ (1, 8/3].

Proof of Lemma 9. If bids are allowed only on packages A and AB or on B and AB, only

the higher of each bidder’s two bids can win and influence payments. The auction format is

revenue- and payoff- equivalent to [AB] when each bidder submits only the higher of these two

bids.

An auctioneer who allows only bids on A or only bids on B would be better off if he

offered [AB] instead. To see this consider w.l.o.g. an auctioneer who allows only bids on A.

B-bidders and global bidders will not participate in his auction because they cannot make

a positive profit. This auctioneer’s expected profit is at most 1/3 (which occurs if both A-

bidders participate in his auction). If the other auctioneer allows only bids on A or only

bids on B, our auctioneer can profitably deviate to [AB], thereby attracting two local and

both global bidders and strictly increasing his expected revenue. If the other auctioneer offers

[A][B], [AB], or [A,B] we can see from the three tables in the proof of Proposition 1 that for

all k ≤ 8/3 our auctioneer can profitably deviate to [AB] to earn k/3, 1/2, (4k − 1)/(6k), or

(2k3 + 2k − 1)/(6k2), which all are larger than 1/3. �

B.2.5 Proof of Proposition 1(b)

The result follows directly from Proposition 1(a) and lemmas 3, 4, 5, and 7.

B.3 Non-Existence of Equilibria for k > 8/3

We will show that subgames in which auctioneers offer different auctions do not have equilibria

with all three properties P1, P2, and P3 if k > 8/3, hence the three-stage game does not have

such equilibria.
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All profitable deviations considered in the proofs of lemmas 3 to 8 remain profitable if k >

8/3. In addition, if k > 8/3 a global bidder with valuation v = k is strictly worse off competing

against another global bidder in either of [A][B], [AB], or [A,B], than competing against all four

local bidders in [A][B]. Thus, he deviates even in the worst case of all four local bidders being

in the other auction. A global bidder with a valuation of v competing against another global

bidder in either of [A][B], [AB] or [A,B], receives an expected payoff of v2/(2k) (see Lemma 2).

A global bidder with a valuation of v > 4/3 competing against all four local bidders in [A][B]

receives an expected payoff of v − 4/3 by Lemma 1. For k > 8/3 and v ∈ [8/3, k] we have

v2/(2k)−(v−4/3) < 0 because for v = 8/3 it is (8/3)2/(2k)−(8/3−4/3) = 4/3(8/(3k)−1) < 0

for all k > 8/3 and (∂/∂v)(v2/(2k)−(v−4/3)) = v/k−1 ≤ 0 for all v ≤ k. Therefore, a global

bidder in lemmas 3.b, 4.a, 5.a and 5.b, 7, and 8.b has a profitable deviation. For k > 8/3,

the remaining cases are lemmas 3.a, 6.a, and 8.a with σ =([A][B],[A][B]), σ =([AB],[AB]),

or σ =([A,B],[A,B]) and participation of one A-bidder, one B-bidder, and one global bidder.

In these remaining cases, no bidder deviates because he would face additional competition in

the other auction. Thus, an equilibrium with properties P1, P2, and P3 exists only in the

subgames defined by σ =([A][B],[A][B]), σ =([AB],[AB]), or σ =([A,B],[A,B]).

The previous arguments took only auction formats [A][B], [AB], and [A,B] into account. As

argued in the proof of Lemma 9, offering an auction format that allows bids only on packages

A and AB, or on B and AB, is equivalent for bidders and the auctioneer to offering [AB]. An

auctioneer that allows bids only on A (or only on B) has an expected profit of at most 1/3

(which occurs if both appropriate local bidders participate in his auction). If his opponent

allowed bids only on A (or only on B), our auctioneer could profitably deviate to [AB], thereby

attracting both global and two local bidders who have zero profit in the opponent’s auction. If

his opponent offered [A][B], [AB], or [A,B], our auctioneer could profitably deviate to offering

the same auction format as the opponent. As shown above, this will attract one A-bidder,

one B-bidder, and one global bidder. The resulting expected profits (taken from the proof of

Theorem 1) of (k−1)/k, (4k−1)/(6k), or (6k−5)/(6k), respectively, exceed 1/3. The previous

comparison of profits implies that no auctioneer would want to deviate from σ =([A][B],[A][B]),

σ =([AB],[AB]), or σ =([A,B],[A,B]) to allowing only bids on A or only on B.

C Proof of Theorem 3

The statement holds for k̂ = 2 and k∗ = 8/3. For the competing-auctioneers model, the

statement is shown in Appendix B.2.3 (the case 2 < k ≤ 8/3). The statement concerning the

single-auctioneer model is taken from Theorem 1.
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