
Jeschonneck, Malte

Working Paper

Collusion among autonomous pricing algorithms
utilizing function approximation methods

DICE Discussion Paper, No. 370

Provided in Cooperation with:
Düsseldorf Institute for Competition Economics (DICE), Heinrich Heine University Düsseldorf

Suggested Citation: Jeschonneck, Malte (2021) : Collusion among autonomous pricing
algorithms utilizing function approximation methods, DICE Discussion Paper, No. 370, ISBN
978-3-86304-369-8, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition
Economics (DICE), Düsseldorf

This Version is available at:
https://hdl.handle.net/10419/240913

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/240913
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

NO 370

Collusion among Autonomous Pricing
Algorithms Utilizing Function
Approximation Methods

Malte Jeschonneck

August 2021

IMP RIN T

DICE DISCUSSION PAPER

Published by:
Heinrich-Heine-University Düsseldorf,
Düsseldorf Institute for Competition Economics (DICE),
Universitätsstraße 1, 40225 Düsseldorf, Germany
www.dice.hhu.de

Editor:
Prof. Dr. Hans-Theo Normann
Düsseldorf Institute for Competition Economics (DICE)
Tel +49 (0) 211-81-15125, E-Mail normann@dice.hhu.de

All rights reserved. Düsseldorf, Germany 2021.

ISSN 2190-9938 (online) / ISBN 978-3-86304-369-8

The working papers published in the series constitute work in
progress circulated to stimulate discussion and critical comments.
Views expressed represent exclusively the authors’ own opinions
and do not necessarily reflect those of the editor.

Collusion among Autonomous Pricing Algorithms

Utilizing Function Approximation Methods

Jeschonneck, Malte *

August 2021

Abstract

The increased prevalence of pricing algorithms incited an ongoing debate about

new forms of collusion. The concern is that intelligent algorithms may be able to

forge collusive schemes without being explicitly instructed to do so. I attempt to

examine the ability of reinforcement learning algorithms to maintain collusive prices

in a simulated oligopoly of price competition. To my knowledge, this study is the

first to use a reinforcement learning system with linear function approximation and

eligibility traces in an economic environment. I show that the deployed agents sustain

supra-competitive prices, but tend to be exploitable by deviating agents in the short-

term. The price level upon convergence crucially hinges on the utilized method to

estimate the qualities of actions. These findings are robust to variations of parameters

that control the learning process and the environment.

*I thank Hans-Theo Normann for providing many useful comments and encouraging me to publish
this study. I was granted access to the High-Performance-Computing cluster HILBERT for which I am
grateful.
Contact Information: E-mail: Malte.Jeschonneck@hhu.de

1

1. Introduction

1. Introduction

There is little doubt that algorithms will play an increasingly important role in economic

life. Dynamic pricing software is just one of several applications that already impacts

market activities. Its frequent usage is reported in online retail markets (Chen, Mislove,

and Wilson 2016), the tourist industry (Boer 2015) and petrol stations (Assad et al. 2020).

As with many other technological advances, the economic advantages are conspicuous.

Not only does automating pricing decisions cut costs and free up resources, algorithms

may also be better at predicting demand and react faster to changing market conditions

(OECD 2017). Overall, it seems likely that pricing algorithms may be used as a tool by

companies to gain competitive advantages. It is worth pointing out that thereby intensified

competition also benefits consumers.1

Nevertheless, concerns have been raised that ceding pricing authority to algorithms

has the potential to create new forms of collusion that contemporaneous competition

policy is not well equipped to deal with.2 As Harrington (2018) notes, collusion itself is

not considered illicit behavior. Rather, it is the process, by which it is achieved, that

determines legality. Explicit communication among competitors who consciously agree

on price levels is illegal. Smart adaption to market conditions by individual agents is

typically tolerated despite the economic effect on consumers being equally detrimental

(Motta 2004). In practice, the distinction is sometimes vague and the advent of pricing

algorithms is believed to blur the line. If and when cooperating algorithms could elude

competition enforcement is not immediately clear and subject to ongoing debate.3

It is yet to be seen how likely the scenario of algorithms achieving collusion in real

markets is. Indeed, if it turns out to be improbable, any liability considerations are

rendered superfluous. Unfortunately, the empirical evidence is scarce. An exception is a

notable study of the German retail gasoline market by Assad et al. (2020) who document

1Of course other types of algorithms that benefit consumers exist. Price comparison tools have been
around for a while but applications extend beyond a mere reduction of search costs. Gal and Elkin-Koren
(2017) champion algorithmic consumers, electronic assistants that completely take over purchase decisions
and may challenge market power of suppliers by bundling consumer interests.

2A different issue is that pricing algorithms with information on consumer characteristics may be able
to augment the scope of price discrimination, i.e. companies extracting rent by charging to every consumer
the highest price he or she is willing to pay. Under which circumstances competition authorities should be
concerned with this possibility is outlined in OECD (2016). Ezrachi and Stucke (2017) develop a scenario
where discriminatory pricing and tacit collusion occur simultaneously. Both issues remain outside the
scope of this study.

3Academics seem to consent that algorithms could be utilized to facilitate existing collusive agreements
(OECD 2016, Ezrachi and Stucke 2018). While these scenarios may alter the operational scope of market
investigations, they are well covered by contemporary competition practices (Bundeskartellamt 2021, refer
to CMA 2016 and oefgen 2019 for two exemplary cases). The more controversial scenario concerns inde-
pendently developed or acquired algorithms that align pricing behavior (Mehra 2015, Ezrachi and Stucke
2017, Ittoo and Petit 2017, Harrington 2018, Schwalbe 2018, Gal 2019). See DoJ (2017) and EU (2017)
for institutional statements.

2

1. Introduction

that margins in duopoly markets increased substantially after both duopolists switched

from manual pricing to algorithmic-pricing software. Further field studies could prove

instrumental to confirm and refine these findings.

As a complement to empirical evidence, there is a growing number of simulation stud-

ies that show the capability of reinforcement learning algorithms to create and sustain

collusive equilibria in repeated games of competition.4 A seminal study by Waltman and

Kaymak (2008) examines two Q-Learning agents in a Cournot environment. Their simu-

lations result in supra-competitive outcomes. However, even memoryless agents without

knowledge of past outcomes manage to attain quantities below the one-shot Nash equilib-

rium. This casts doubt on the viability of the learned strategies vis-à-vis rational agents.

Truly memoryless agents can not pursue punishment strategies because they are unable

to even detect them. Thus, constantly playing the one-shot solution should be the only

rational strategy. It appears, the agents do not learn how to collude, but rather fail to

learn how to compete. Kimbrough and Murphy (2009) trial a probe and adjust algorithm

inspired by the management literature. They find that agents end up playing one-shot

Nash prices unless industry profits enter the reward function in some way.5

Recent studies have focused on price instead of quantity competition. In a groundbreak-

ing effort, Calvano et al. (2020) show that Q-Learning agents learn to sustain collusion

through a reward-punishment scheme in a simultaneous pricing environment. These find-

ings are remarkably robust to variations and extensions. Furthermore, they find that

agents learn to price competitively if they are memoryless (i.e. can not remember past

prices) or short-sighted (i.e. do not value future profits). This coincides with predictions

from economic theory. An important extension comes from Hettich (2021). Instead of a

Q-Learning algorithm, he utilizes function approximation, specifically a deep Q-Network

algorithm originally due to Mnih et al. (2015). He shows that the method converges much

faster than Q-Learning. The importance of that finding is augmented by the fact that the

algorithm is much easier to scale to real applications.6

Lastly, Klein (2021) shows that Q-Learning algorithms in a sequential price setting en-

4The literature on the general behavior of learning algorithms in cooperative and competitive multi-
agent games concerns a variety of applications and is impressively sophisticated (see e.g. Leibo et al. 2017
and Crandall et al. 2018 for recent large-scale experimental studies.) In comparison, their application in
oligopolistic environments has been rare and the trialed algorithms have been relatively simple.

5To my knowledge, probe and adjust is the only algorithm that explored continuous price setting in
repeated games of competition to date. The agents repeatedly draw from a confined, but continuous price
range. After some interval, they assess whether low or high prices yielded better rewards and adjust the
range of prices accordingly.

6Johnson, Rhodes, and Wildenbeest (2020) provide another supplement. Introducing a multi-agent
reinforcement learning approach, they show that collusion arises even when the number of agents, often
regarded a main inhibitor of cooperative behavior, is significantly increased. Moreover, they show that
market design can disturb collusion.

3

1. Introduction

vironment maintain a supra-competitive price level. He reports two types of equilibria:

constant market prices and Edgeworth price cycles where competitors sequentially under-

cut each other until profits become low and one firm resets the cycle by increasing its price

significantly.7 Importantly, the high price levels are underpinned by a reward-punishment

scheme, i.e. a price cut of one agent evokes punishment prices by the opponent. Interest-

ingly, the agents return to pre-deviaton levels within a couple of periods.

In summary, recent simulation studies show that reinforcement learning algorithms are

capable of colluding in prefabricated environments. However, most of them use a simple

tabular learning method, called Q-Learning, that requires discretizing prices and does not

scale well if the complexity of the environment increases (Ittoo and Petit 2017). Therefore,

the direct transferability of these findings to real markets is questionable. Similar to Het-

tich (2021), this study attempts to mitigate these problems by employing linear function

approximation to estimate the value of actions. More specifically, I develop three methods

of function approximation and run a series of experiments to assess how they compare to

tabular learning. Moreover, I utilize eligibility traces as an efficient way to increase the

memory of agents interacting in the environment.8

To preview the results, the simulations show that the developed function approxima-

tion methods, like tabular learning, result in supra-competitive prices upon convergence.

However, unlike tabular learning, the learned strategies are easy to exploit. By forcing

one of the agents to diverge from the convergence equilibrium, I show that the cheated

agent fails to punish that deviation. This indicates that the learned equilibrium strategies

are unstable vis-à-vis rational agents with full information. This observation is robust to

a number of variations and extensions. Also, with respect to eligibility traces, excessively

increasing memory tends to destabilize the learning process, but the overall impact for

reasonable parameter values appears small.

The remainder of this paper is organized as follows. The next section introduces the

repeated pricing environment in which the artificial competitors interact and presents in

detail the deployed learning algorithm with its parametrization. I present the results in

section 3 and consider variations and extensions in section 4. Section 5 concludes.

7Noel (2008) considers a similar environment. However, he uses dynamic programming for learning.
His deployed agents know their environment in detail, an assumption unlikely to hold in real markets.
With Q-Learning, agents estimate the action values based on past experiences.

8Neither linear function approximation nor eligibility traces are new concepts in reinforcement learning.
However, to my knowledge, this is the first study to apply them to a repeated pricing game.

4

2. Environment and learning algorithm

2. Environment and learning algorithm

This section begins with brief a presentation of the simulated economic environment that

the autonomous pricing agents interact with. Then I describe in detail the learning al-

gorithm utilized by the agents and the methods to approximate the value of state-action

combinations.

2.1. Economic environment

I consider an infinitely repeated pricing game with a multinominal logit demand as in

Calvano et al. (2020). Restricting the analysis to a symmetric oligopoly case with n = 2

agents (where i = 1, 2), the market comprises two differentiated products and an outside

option. In every period t, both agents simultaneously pick a price pi. Demand for agent i

is then determined:9

qi,t =
e
a−pi,t
µ∑n

j=1 e
a−pj,t
µ + e

a0
µ

(1)

The parameter µ controls the degree of horizontal differentiation, where µ → 0 approxi-

mates perfect substitutability. In this study I forego to incorporate vertical differentiation.

But it is easily incorporated by choosing firm-specific quality parameters a. a0 reflects the

appeal of the outside good. It diminishes as a0 → −∞. Profits of both agents πi are

simply calculated as

πi,t = (pi,t − c)qi,t , (2)

where c is the marginal cost. Anderson and Palma (1992) show that the multinominal

logit demand model with symmetric firms entails a unqique one-shot equilibrium with best

responses that solve:

pn = p∗ = c+
µ

1− (n+ e
a0−a+p∗

µ)−1
(3)

Naturally, the other extreme, a collusive (or monopoly) solution, is obtained by maximizing

joint profits. Both, the Nash outcomes characterized by pn and πn and the fully collusive

solution (pm and πm) shall serve as benchmarks for the simulations.

9The model was pioneered by Anderson and Palma (1992). Generalization to a model with n agents
is straightforward. In fact, the demand formula remains the same. The limitation to 2 agents is merely
chosen for computational efficiency and the (intuitive) conjecture that the simulation results generalize to
more players.

5

2. Environment and learning algorithm

Market entry and exit are not considered. The parametrization is identical to the

baseline in Calvano et al. (2020): c = 1, a = 2, a0 = 0 and µ = 1
4 . These parameters

give rise to a static Nash equilibrium with pn ≈ 1.47 and πn ≈ 0.23 per agent. The fully

collusive solution engenders pm ≈ 1.92 with πm ≈ 0.34.

2.2. Learning algorithm

This section describes the way both players approach, interact with and learn from the

environment presented in section 2.1. For the sake of simplicity, I will present that process

from the vantage point of a single player. Accordingly, the subscript i is dropped when

appropriate. The player’s objective is to maximize its net present value of discounted

future profits:

max

∞∑
t=0

γtπt, (4)

where γ ∈ [0, 1] is the discount factor.10 Importantly, the decision maker does not know

about the demand function, its opponent’s pricing strategy or the benchmark values pm

and pn. Rather, the player can only set a price p and retrospectively observe the opponent’s

action and own profits. This paradigm can be formalized as a Markov Decision Process

(MDP). In a MDP, at any point in time t, the player, or agent, observes the current state of

the environment St ∈ S and proceeds to select an action At ∈ A.11 S and A, respectively,

represent the entirety of possible states and actions. The environment returns a reward

Rt to the agent and moves to the next stage St+1.12 In this study, the action set comprises

a finite number of prices that are inputted into (1). The state set simply represents the

actions (i.e. prices) of the previous period. The next section details the grid of available

prices.

2.2.1. Price grid

For the trialed algorithms, it is necessary to discretize the action space. Compared to the

baseline specification in Calvano et al. (2020), I consider a wider price range confined by

10There is a small notational predicament. In economic papers, δ usually represents the discount factor.
However, reinforcement learning texts reserve δ for the temporal difference error (see section 2.2.4). Here,
I will follow the latter convention and let γ denote the discount factor.

11From the agent’s point of view, the environment consists of everything that is outside of its control,
mainly the demand function and the behavior of the other agent.

12Sometimes, the reward due to At and St is modeled as Rt+1 instead. The provided description of
MDPs is very brief and specific to this study. For a more general treatment of MDPs, consult Sutton
and Barto (2018). Calvano et al. (2020) and Hettich (2021) apply the MDP framework to the Bertrand
environment in a more rigorous fashion.

6

2. Environment and learning algorithm

a lower bound AL and an upper bound AU :

AL = c (5)

AU = pm + ζ(pn − c) (6)

The lower bound ensures positive margins. It is conceivable that a human manager could

implement a sanity restriction like that before ceding pricing authority to an algorithm.13

The parameter ζ controls the extent to which the upper bound AU exceeds the monopoly

price. With ζ = 1, the difference between AL and pn is equal to the difference between AU

and pm. The available set of prices A is then evenly spaced out in the interval [AL, AU]:

A = {AL, AL +
1(AU −AL)

m− 1
, AL +

2(AU −AL)

m− 1
, ..., AL +

(m− 2)(AU −AL)

m− 1
, AU}, (7)

where m determines the number of feasible prices. Note that the discretization implies that

agents will not be able charge exactly pn or pm. However, by choosing m appropriately,

one can get close (see section 2.2.5). Following Sutton and Barto (2018), I denote any

possible action as a and the actual realization at time t as At.

In this simulation, the state set merely comprises two variables, namely the actions

taken at t− 1:

St = {pi,t−1, pj,t−1} (8)

Accordingly, for both state variables, the set of possible states is identical to the feasible

actions A. However, this is not required with function approximation methods. Theo-

retically, any state variable could be continuous and unbounded. Similarly to actions, s

denotes any possible state set and St refers to the actual states at t.

2.2.2. Value approximation

As established, the agent chooses an action based on the current state without knowing

about the demand function. With the profit maximization objective from (4) in mind,

how does the agent decide on which action to play? It considers all the information that

is available, i.e. s, and estimates the value of playing a. With function approximation, a

set of parameters wt = {wt,1, wt,2, ..., wt,D} maps any combination of St and At to a value

13Johnson, Rhodes, and Wildenbeest (2020) do the same.

7

2. Environment and learning algorithm

estimate q̂t.
14 Formally:

q̂t = q̂(St, At,wt) = q̂(pi,t−1, pj,t−1, pi,t,wt) (9)

More specifically, each parameter wd is associated with a counterpart xd, called a feature.

The value of every feature is derived from a state variable, the considered action or a

combination thereof: xd = xd(St, At). Taken together, the features form a vector xt =

x(St, At) = {x1(St, At), x2(St, At), ..., xD(St, At)}. Any state-action combination can be

represented by such a feature vector. It is important to realize that xt is determined solely

by the combination of s and a. The mechanism, by which the state-action combinations

are mapped to numerical values remains constant over time. Consequently, there is no

need to subscript xd with respect to t. Contrary wt constitutes the agent’s valuation

strategy at t which is continuously refined over time.

Note that I will only consider linear functions of q̂. In this specific case, (9) can be

written as the inner product of the feature vector and the set of parameters:

q̂t = xt>wt =

D∑
d=1

xd(St, At)wd =

D∑
d=1

xd(pi,t−1, pj,t−1, pi,t)wd (10)

An intuitive policy to achieve profit maximization would be to always play the action a that

maximizes the estimated value q̂ given s. Indeed, this strategy, called a greedy policy, would

be optimal if the values of state-action combinations were estimated perfectly at all times.

However, initially, the agent has never interacted with the environment and its valuation

of state-action combinations is necessarily naive. To improve the value estimation, it is

necessary to explore the merit of various actions. The next section describes how the agent

mixes between exploration and exploitation. Subsequently, section 2.2.4 describes how the

agent continuously learns to improve the set of parameters w from interacting with the

environment and, ultimately, refines its value estimation.

2.2.3. Exploration and exploitation

In every period, the agent chooses either to exploit its current knowledge and pick the

supposedly optimal action or to explore in order to test the merit of alternative choices

that are perceived sub-optimal but may turn out to be superior. As is common, I use a

14In the computer science literature, w is typically referred to as weights. I will stick to the economic
vocabulary and declare w parameters. Henceforth, I will use d ∈ {1, 2, ..., D} to iterate over elements in
w. Moreover, from now one the time subscript is implied for individual components of wt, i.e. wt,d = wd.

8

2. Environment and learning algorithm

simple ε-greedy policy to steer this tradeoff:

At =

arg max

a
q̂(St, a,wt) with probability 1− εt

randomize over A with probability εt

(11)

In words, the agent chooses to play the action that is regarded optimal with probability

1 − εt and randomizes over all prices with probability εt. The subscript suggests that

exploration varies over time. The explicit definition is equivalent to Calvano et al. (2020):

εt = e−βt , (12)

where β is a parameter controlling the speed of decay in exploration. This time-declining

exploration rate ensures that the agent randomizes actions frequently at the beginning of

the simulation and stabilizes its behavior over time.

After both agents select an action, the quantities and profits are realized in accordance

with (1) and (2). The agents’ actions in period t become the state set in t + 1 and new

actions are chosen again as dictated by (9) and (11).

Whether the agent decided to explore or to exploit, it proceeds to leverage the observed

outcomes to refine w.

2.2.4. Parameter update

After observing the opponent’s price and own profits, the agent exploits this new informa-

tion to improve its estimation technique. This study’s full system to update the parameter

vector w at t comprises the calculation of a temporal-difference error (TD error, denoted

δt), a vector of eligibility traces zt tracking the importance of individual coefficients in wt

and the final update rule to refine wt. The formulas are:

δt = Rt + γV̄t(St+1,wt)− q̂(St, At,wt) , (13)

zt = γλρtzt−1 +
∆q̂t
∆wt

, (14)

wt+1 = wt + αδtzt (15)

I will explain all three of the system’s components. Starting with (13), δt represents the so

called temporal-difference or TD error, i.e. the error associated with the estimation of q̂t.
15

It measures the difference between the ex ante ascribed value to the selected state-action

15The utilized update system is referred to as Expected SARSA, where SARSA abbreviates a state-
action-reward-state-action sequence.

9

2. Environment and learning algorithm

combination in t on the right-hand side and the ex post actual reward in conjunction with

the estimated value of the newly arising state-action combination in t+ 1 on the left-hand

side. To elaborate on the latter, the reward Rt = πt − pn reflects the profits relative

to the Nash solution.16 γ is the discount factor and is applied to the expected value of

the upcoming state V̄t(St), i.e. the average of all state-action estimates weighted by their

probability of being played. Formally:

V̄t(St+1,wt) =
∑
a

Pr(a|St+1,wt) q̂(St+1, a,wt) , (16)

where Pr(a|St+1) represents the probability of selecting action a conditional on St+1 in

accordance with the ε-greedy policy from (11). A positive δt indicates that the value of

playing At turned out to exceed the original expectation. Likewise, a negative δt suggests

that the realization failed short of the estimated value. In both instances, w will be

adjusted accordingly, such that the state-action combination is valued respectively higher

or lower next time.

The second component γλρtzt−1 + ∆q̂t
∆wt

, labeled the eligibility trace zt, keeps track of

the importance of individual coefficients in w when estimating q̂t and, ultimately, selecting

an action. The idea is that the eligibility trace controls the magnitude by which individual

parameters are updated, prioritizing those that contributed to producing an estimate of

q̂t. Though there exist various forms, (14) employs the most popular variation, called

an accumulating eligibility trace (Sutton 1988). Specifically, the update comprises two

components: a decay term γλρtzt−1 and the gradient of q̂t. With respect to the former,

note that zt−1 is multiplied with the known discount factor γ, another parameter λ ∈

[0, 1] (more on this in section 2.2.5) and the importance sampling ratio ρt. ρt indicates

whether the played action coincides with the strategy currently considered optimal. More

specifically:

ρt =
κ(At|St)
Pr(At|St)

, (17)

where Pr(At|St) is the probability of having selected At given St under the utilized ε-

greedy policy and κ(At|St) is the probability of selecting At given St under a hypothetical

target policy without exploration (ε = 0). Accordingly, ρt is zero if the agent chooses to

explore a non-optimal action because, under the target policy, the probability of choosing

16Please note that I explicitly distinguish profits and rewards. Profits, π, represent the monetary
remuneration from operating in the environment and can be interpreted economically. However, profits
do not enter the learning algorithm directly. Instead, they serve as a precursor of rewards, Rt. Rewards
constitute the signal that agents interpret as direct feedback to refine their algorithms.

10

2. Environment and learning algorithm

a non-greedy action is null. On the other hand, ρt exceeds 1 if a greedy action is selected,

because under the target policy the selected action is always greedy. In summary, the left

term resets z to 0 once a non-greedy action is selected. Otherwise the specific combination

of γ, λ and β (which affects Pr(At|St)) determines whether the components of z decay

towards zero or accumulate.

The second term is the gradient of q̂ with respect to wt:

∆q̂t
∆wt

= { ∆q̂t
∆w1

,
∆q̂t
∆w2

, ...,
∆q̂t
∆wd

} =
∆(xt>wt)

∆wt
= xt (18)

The final simplification is possible because I only consider approximations that are linear

in parameters. (18) also elucidates the purpose of the eligibility trace. It puts higher

weights on coefficients that have been used to decide on At and ensures that they can be

altered faster and beyond the horizon of a single time period. To illustrate the benefits

of eligibility traces consider the following example. An agent selects an action that yields

a good immediate reward, but unexpectedly disappointing outcomes in the subsequent

period. Without eligibility traces, the action yields a positive δt and the responsible

coefficients in w are updated such that the action will be estimated to be more valuable

next time. However, the method can not assign ’negative credit’ to elements in w for

the underwhelming outcomes in more distant future periods. In the long run, the agent

might still end up refraining from playing the myopic action by taking into account the

low estimated value of the subsequent state, but this might take several revisits to the

state-action combination.

Eligibility traces can accelerate the learning process. While a similar immediate effect on

updating w takes place, the eligibility trace ’remembers’ which coefficients were adjusted

in the past and enables a retrospective readjustment prompted by underwhelming rewards

in future periods. Section 2.2.5 discusses that λ controls the degree of hindsight.

Armed with the TD error δt and the eligibility trace zt, the final piece of the system,

(15), is an update rule to improve the parameter vector: wt+1 = wt +αδtzt. It comprises

wt (the current knowledge of the agent we hope to improve) and three components, α, δt

and zt that dictate the specific shape of the update. I will briefly discuss each parameter’s

role. The TD error δt specifies the direction and magnitude of the update. Recall that

it estimates the error associated with the value estimation through q̂t. For instance, a

δt close to 0 suggests the value of the state-action combination was estimated accurately

and the update to w will be small. Contrary, a high (or strongly negative) δ unveils

a large divergence between the agent’s value estimation and the realized reward Rt and

11

2. Environment and learning algorithm

warrants a more significant update to the parameters. The eligibility trace zt specifies

which elements in w are adjusted giving priority to evocative parameters. As discussed,

z memorizes which parameters were responsible for the selected actions in the past and

ensures a retrospective adjustment beyond a one-period horizon. Lastly, α steers the

speed of learning. In this study, it is constant over time. I will briefly discuss selecting an

appropriate value in section 2.3.2. The outlined reinforcement learning algorithm in this

study, adapted from Sutton and Barto (2018) is summarized as Algorithm 1. Note that

the execution stops once convergence is achieved. I describe the employed convergence

rules in section 3.1.

Algorithm 1 Expected SARSA with eligibility traces.
input feasible prices via m ∈ N and ζ ≥ 0
configure static algorithm parameters α > 0, β > 0, and λ ∈ [0, 1]
initialize parameter vector and eligibility trace w0 = z0 = 0
declare convergence rule (see section 3.1)
randomly initialize state S
start tracking time: t = 1
while convergence is not achieved, do

select action A according to (11)
observe profit π, adjust to reward R
observe next state: St+1 ← A
calculate TD-error (13): δ ← R+ γV̄ (St+1)− q̂(St, A)
update eligibility trace (14): z ← γλρz + x
update parameter vector (14): w ← w + αδz
move to next stage: St ← St+1 and t← t+ 1

end while

2.2.5. Baseline parametrization

The presented learning paradigm requires specifying a number of parameters. Optimiz-

ing the setting is not a primary concern of this study. Nevertheless, I attempt to choose

reasonable values for all parameters. To some degree, this task can be guided by theo-

retical considerations and previous simulation studies. Still, there remains a high degree

of arbitrariness. To make the impact of those choices more transparent, section 4 will

present results for other specifications. Table 1 presents the baseline parametrization of

the learning algorithm as well as the considered variations. The discussion on appropriate

values of the learning rate parameter α is delayed until section 2.3. I will briefly provide

a justification for the specific parametrization and, if possible, relate it to other studies.

Starting with β, the parameter controlling the speed of decay in exploration, note that

the baseline in this study is about 4 times higher than in Calvano et al. (2020).17 Conse-

17Unfortunately, feature extraction methods require more computational power than tabular learning
and the scope of this study does not allow for a lower value of β without sacrificing robustness through
the execution of multiple runs per parametrization.

12

2. Environment and learning algorithm

quently, the agents have less time to explore actions and learn from the obtained rewards.

It is conjectured that this is partially offset by the introduction of eligibility traces. Also,

the variation β = 1 ∗ 10−5 falls right into the considered parameter grid in Calvano et al.

(2020).

The discount factor γ is the only parameter with an inherent economic interpretation. It

γ quantifies the time preference of profits today over profits tomorrow. The baseline value

0.95 is chosen to stay consistent with other simulations similar to this study (e.g. Calvano et

al. 2020, Klein 2021 and Hettich 2021). In reinforcement learning, the usage of discounting

is often void of any theoretical justification. Rather it is commonly employed as a practical

mean to avoid infinite reward sums in continuous learning tasks (Schwartz 1993). However,

there are some theoretical arguments questioning the validity of discounting in continuous

learning tasks with function approximation. In section 4.3, I will discuss results of an

alternative setting that attempts to optimize average rewards.

Regarding λ, recall that it appears in (14) to update the eligibility trace z. In particular,

λ controls the decay rate of z. To understand its purpose, consider first the special case

of λ = 0. This reduces the trace update to zt = ∆q̂
∆wt

= xt which is paramount to not

using eligibility traces at all.18 Increasing λ boosts the degree of hindsight by enlarging

the algorithm’s memory on which parameters were responsible for past action selections.

In turn, those evocative parameters are adjusted beyond a one-period horizon. However,

increasing λ comes at the cost of high variance. Persistent traces blow up the number

of variables in z such that any outcome is imputed to too many parameters that have

been activated in the distant past.19 Empirical results show that intermediate values of λ

tend to perform best (see e.g. Sutton 1988, Rummery and Niranjan 1994 and Sutton and

Barto 2018). Accordingly, I choose a baseline value of λ = 0.5. The variations comprise

experiments with λ between 0 and 0.9.

Parameter Baseline Value Variations

β 4 ∗ 10−5 {1 ∗ 10−5, 2 ∗ 10−5, 8 ∗ 10−5, 1.6 ∗ 10−4}
γ 0.95 {0, 0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.99}
λ 0.5 {0, 0.2, 0.4, 0.6, 0.8, 0.9}
ζ 1 {0.1, 0.5, 1.5}
m 19 {10, 39, 63}

Table 1: Baseline parametrization and variations.

18In fact, the system of (13)-(15) could then be conveniently reduced to a single equation:

wt+1 = wt + α(rt + γV̄t(St+1,wt)− q̂(St, At,wt))xt

19The other extreme, λ = 1, mimics Monte-Carlo algorithms where learning only takes place after an
entire sequence of time steps concludes. This is unnatural in the context of this study. Accordingly, λ = 1
is not considered a viable specification.

13

2. Environment and learning algorithm

The parameters ζ and m both control which prices are feasible. The baseline ζ = 1

ensures a symmetric excess of feasible prices above pm and below pn. The default value of

m is 19.20 The deliberate choice to depart from the scheme in Calvano et al. (2020) was

made to challenge the algorithms with a less prefabricated environment. It comes at the

cost of impeded comparability.

2.3. Feature extraction

This section lays out the methods used in this study to map state-action combinations to

a set of numerical values x. I shall refer to them as feature extraction methods (FEM).21

As outlined in section 2.2.2, the state-action space contains just 3 variables (pi,t−1, pj,t−1

and pi,t). To illustrate FEMs, consider a naive attempt of feature extraction where each

St and At is converted to a feature without mathematical transformation, i.e. x1 = pi,t−1,

x2 = pj,t−1 and x3 = pi,t. Every feature is assigned a single coefficient wd and the estimated

value of any state-action combination would then be q̂(St, At,w) =
∑3

d=1wdxd. Obviously,

this simplistic method does not do justice to the complexity of the optimization problem.

In particular, a reward-punishment theme requires that actions are chosen conditional on

past prices (i.e. the state space). Hence, it is imperative to consider interactions between

states and actions as well as non-linearities. Table 2 provides an overview of the 4 methods

used in this study. I will illustrate and discuss tabular learning as a special case of a linear

function here and present the other linear approximation methods in Appendix A.

2.3.1. Tabular learning

A natural way to represent the state-action space is to preserve a distinct feature (and

coefficient) for every unique state-action combination. Features are binary, i.e. any feature

Feature Factor when
Extraction Parametrization Length x with m = 19 doubling m

Tabular - m3 = 6, 859 x8
Tile coding T = 5, ψ = 9 T (ψ − 1)3 = 2, 560 x1

Polynomial tiles T = 5, ψ = 5, k = 4 T (ψ − 1)3(
(
k+3

3

)
− 1) = 10880 x1

Sep. polynomials k = 5 m(
(
k+2

2

)
−1) = 380 x2

Table 2: Feature extraction methods. The third column lists the number of elements in
the parameter vector w when m = 19. The last column displays the factor by which that
length is multiplied if m is doubled.

20As indicated earlier, both pm and pn can not be played exactly. The variations of m were chosen
specifically to encompass feasible prices close to both benchmarks. For instance, m = 19 entails one pricing
option at 1.466 (close to pn = 1.473) and another at 1.932 (close to pm = 1.925)

21The term feature is borrowed from the computer science literature. It usually refers to a (transformed)
input variable. It is common that the number of features dwarfs the number of original inputs.

14

2. Environment and learning algorithm

is 1 if the associated state-action combination is selected and 0 otherwise:

xTabulard =

1 if {p1,t−1, p2,t−1, p1,t} corresponds to celld

0 if {p1,t−1, p2,t−1, p1,t} does not correspond to celld

(19)

The respective coefficient tracks the performance over time and directly represents the

estimated value of that state-action combination. Accordingly, the length of x is m3. The

approach is called tabular because it is easy to imagine a table where every cell repre-

sents a unique state-action combination. Tabular methods have been used extensively in

the simulations on algorithmic collusion that provided experimental evidence of collusive

outcomes being possible in simple environments (see section 1). Their widespread applica-

tion in repeated pricing games is justified by their conceptual simplicity and their historic

usage in autonomous pricing of airline fares and in electricity markets (Ittoo and Petit

2017). Moreover, tabular methods give rise to a family of robust learning algorithms with

well-understood convergence guarantees (Jaakkola, Jordan, and Singh 1994).

However, tabular methods are not necessarily the best or fastest way to learn an optimal

policy. In real life markets, a salient factor may impede its effectiveness. Prices are

continuous - a feature completely disregarded by tabular learning. Ignoring the continuous

nature of prices gives rise to two major complications in reality. First, the leeway of

decision makers is artificially restricted. Second, due to a curse of dimensionality, learning

speed and success may deteriorate disproportionately with m. I will take a closer look at

both points.

Obviously, any decision maker is only restricted by the currency’s smallest feasible

increment and can charge more than just a couple of prices. It is certainly conceivable,

maybe even desirable, that a decision maker reduces the complexity of a decision process

by reducing the number of considered options. However, in most cases it will be impossible

to impose such a restriction on competitors. As an extreme example, consider an opponent

who never charges the same price twice. Whenever this opponent introduces a new price,

a tabular learning agent is coerced to create a new cell in the state-action matrix that will

never be revisited. Consequently, the agent continuously encounters new situations from

which it can learn, but it is unable to ever utilize the acquired knowledge.

More importantly, tabular learning falls victim to the curse of dimensionality and does

not scale well with m and n. In the baseline specification of this study, the number of

features is 193 = 6859. Doubling m from 19 to 38 causes an eightfold increase of that

number to 54872. Even worse, increasing the number of competitors alters the exponent.

Changing n from 2 to 3 entails an increase of features by the factor m, in the baseline

15

2. Environment and learning algorithm

specification from 6859 to 130321.22 It is easy to see that modest increases in complexity

have the potential to evoke a disproportionate reduction in learning speed. Indeed, Cal-

vano et al. (2020) show that increasing m and n tends to reduce profits of tabular learning

agents.

Another way of looking at the same issue is to consider the nature of prices. They

are continuous and transforming them into a qualitative set of discrete actions disregards

that fact. In particular, it prevents the opportunity to learn from the result of charging

a particular price about the quality of similar prices in the same situation. To illustrate

with an inflated example, consider a manager who observes large profits after charging a

price of 1000. A human manager is able to infer that charging 1001 instead would have

yielded a similar profit. Tabular learning agents are not.

The function approximation methods considered in this study alleviate the curse of

dimensionality. In fact, the length of the feature vector x in tile coding and polynomial

tiles is unaffected by m. For separate polynomials, it is proportional to m, i.e. doubling

the number of feasible prices also doubles the number of features. Moreover, all methods

augment learning in the sense that a particular state-action combination tends to evoke

ampler parameter updates that also change the future evaluation of similar state-action

combinations. Refer to Appendix 2.3 for a detailed description.

2.3.2. Learning speed

I have left open the parametrization of α until now. The reason is that choosing learning

speed is not trivial and should depend on which FEM is used. Note that I don’t attempt

to optimize α, but consider it important to use reasonable values to draw valid inference.

Principally, every value α ∈ [0, 1] is possible but values too high place too much emphasis

on recent steps while values too low decelerate learning. A natural starting point is to

consult other studies on the subject. Calvano et al. (2020) successfully trialed values be-

tween 0.025 and 0.25 in the environment presented in section 2.1. In a sequential pricing

environment, Klein (2021) shows that performance decreases with values greater than 0.5.

These studies provide helpful guidance for tabular learning. However, the range of rea-

sonable values is substantially lower when estimating values with function approximation

for two reasons. First, the utilized FEMs update many parameters simultaneously. The

advantage of function approximation methods is that they can improve learning speed

by inferring the value of many actions from a reward observed due to a single action.

22A similar problem arises when the algorithm is supposed to account for cost and demand factors.
Every added input, whether due to an additional opponent or any other profit-related variable, increases
the number of table cells by a factor of m. While changes in costs and prices are not considered in this
study, they obviously play an important role in reality.

16

3. Results

Naturally, this comes at the cost of precision and warrants careful adjustments of the

parameters to avoid premature valuation techniques. Second, both polynomial FEMs are

not binary. In fact, with a high degree k, elements in the feature vector x can become

very high. This increases the danger for individual elements to overshoot early.

In light of these considerations, I run experiments with various α. Table 3 displays

the trialed values. The range for tabular learning is smallest. I explore values down to

10−12 for the function approximation FEMs. For the polynomial approaches, I don’t even

consider values higher than 0.001.

2.4. Convergence considerations

Many reinforcement learning algorithms come with convergence guarantees.23 To my

knowledge, there exist none for the simulations in this study. There are two inhibitors.

First, the combination of function approximation, off-policy learning and bootstrapping

(i.e. estimating the value of future states) is known to pose a threat of instability (Sutton

and Barto 2018). Second, the environment is non-stationary because both agents dynam-

ically change their strategies over time. This engenders a moving target problem. The

optimal strategy might change over time depending on the other player’s learning pro-

cess (Tuyls and Weiss 2012). Notwithstanding the absence of a guarantee, convergence is

nevertheless possible.

3. Results

This section reports on the simulation outcomes of the baseline specification. It is helpful

to create a common vocabulary first. I will call every unique combination of FEM and

parameters an experiment. Every experiment consists of 48 runs, i.e. repeated simulations

with the exact same set of starting conditions. Lastly, within the scope of a particular

run, time steps are called periods.24

FEM Variations of α

Tabular {0.1, 0.01, 0.001, 10−4, 10−5}
Tile coding {0.1, 0.01, 0.001, 10−4, 10−5, 10−6, 10−7, 1 ∗ 10−8, 10−10, 10−12}
Polynomial tiles {0.001, 10−4, 10−5, 10−6, 10−7, 10−8, 10−10, 10−12}
Sep. polynomials {0.001, 10−4, 10−5, 10−6, 10−7, 10−8, 10−10, 10−12}

Table 3: Grid of trialed α by FEM.

23Jaakkola, Jordan, and Singh (1994) prove that Q-Learning is guaranteed to converge to an opti-
mal strategy under mild conditions in stationary environments. Tsitsiklis and Van Roy (1997) discuss
convergence with linear function approximation.

24The simulations are run in R. The code is available on github (https://github.com/MalteJe/ai_
collusion). Another technical note: The program seed does not vary between experiments, i.e. for every

17

https://github.com/MalteJe/ai_collusion
https://github.com/MalteJe/ai_collusion

3. Results

3.1. Convergence

Notwithstanding the lack of a theoretical convergence guarantee (see section 2.4), prior

experiments have shown that simulation runs tend to approach a stable equilibrium in

practice (see e.g. the studies mentioned in section 1). Note that I use a descriptive notion

of equilibrium that is detached from economic theory. It is characterized by the simple

observations that the same set of prices continuously recur over a longer time interval.

The following, arbitrary, but practical convergence rule was employed. If a price cycle

recurred for 10,000 consecutive periods, the algorithm is considered converged and the

simulation concludes. Both agents’ adherence is required.25 For efficiency reasons, price

cycles up to a length of 10 are considered and a check for convergence is only undertaken

every 2,000 periods. If no convergence is achieved until 500,000 periods, the simulation

terminates and the run is deemed not converged. Furthermore, there are a number of runs

that failed to complete as a consequence of the program running into an error. Unfortu-

nately, the program code does not allow to examine the exact cause of such occurrences

in retrospect. However, the failed runs only occurred with unsuitable specifications (see

below).

In accordance with the outlined convergence criteria above, Figure 1 displays the share

of runs that, respectively, converged successfully, did not converge until the end of the

simulation or failed to complete. Two main conclusions emerge. First, failed runs are only

prevalent in the polynomial tile experiment with α = 0.001. Second, the tiling methods

are more likely to converge. Both points deserve some further elucidation.

Regarding the failed runs, recall from section 2.3.2 that features of polynomial extraction

are not binary and warrant cautious adjustments of the coefficient vector. I suspect that

with unreasonably large values of α, the estimates of w overshoot early in the simulation,

diverge and at some point exceed the software’s numerical limits.26 While important to

acknowledge, the failed runs are largely an artifact of an unreasonable specification and I

will not account for them for the remainder of this text.

Out of the completed runs without program failure, 95.8% did converge. Interestingly,

there are subtle differences between FEMs. With only one exception, both tiling methods

converged consistently for various α. With only 89.3% of runs converging, separate poly-

run there is a sibling run with an equivalent initialization of the random number generator in every other
experiment. The seed determines the initial state and the decision in which periods the agents decide to
explore.

25Of course it is possible that the cycle length differs between agents. For instance, one agent may
continuously play the same price while the opponent keeps alternating between two prices. In this case,
the cycle length is 2.

26Controlled runs where I could carefully monitor the development of the coefficient vector w seem to
confirm the hypothesis.

18

3. Results

Figure 1: Number of runs per experiments that (i) achieved convergence, (ii) did not con-
verge or (iii) failed to complete as a function of FEM and α.

nomials constitute the other extreme. The figure also indicates that convergence becomes

less likely for low values of α. With tabular learning, 92.1% of runs converged without

clear relation to different values of α.

Figure 2 displays a frequency polygon of the runs that achieved convergence within

500,000 periods. Clearly, the distribution is fairly uniform across FEMs. Most runs

converged between 200,000 and 300,000 runs. This is an artifact of the decay in exploration

as dictated by β. Before the focal point of 200,000 is reached, agents probabilistically

experiment too frequently to observe 10,000 consecutive periods without any deviation

from the learned strategies. Thereafter, it becomes increasingly likely that both agents

keep exploiting their current knowledge and continuously play the same strategy for a

sufficiently long time to trigger the convergence criteria. Note that the low quantity of

runs converging between 300,000 and 500,000 suggests that increasing the maximum of

allowed periods would not necessarily produce a significantly higher share of converged

runs. Appendix B.1 unveils that the choice of the FEM affects cycle length and the range

of prices agents charge upon convergence. Next, I proceed by examining profits.

19

3. Results

Figure 2: Timing of convergence by FEM. Only includes converged runs. Width of bins:
8,000.

3.2. Profits

In order to benchmark the simulation profits, I normalize profits as in Calvano et al. (2020)

and Hettich (2021):

∆ =
π̄ − πn
πm − πn

, (20)

where π̄ represents profits averaged over the final 100 time steps upon convergence and

over both agents in a single run.27 The normalization implies that ∆ = 0 and ∆ = 1

respectively reference the Nash and monopoly solution. I will denote these special cases

as ∆n and ∆m. Note that it is possible to obtain a ∆ below 0 (e.g. if both agents charge

prices equal to marginal costs), but not above 1.

Figure 3 displays the convergence profits as a function of FEM and α.28 Every data

point represents one experiment, more specifically the mean of ∆ across all runs making

up the experiment. First of all, note that average profits consistently remain between

both benchmarks pm and pn across specifications.29 As with prior results, the plot unveils

salient differences between FEMs. On average, polynomial tiles runs yield the highest

profits. The average ∆ peaks at 0.84 for α = 10−8. Higher values of α tend to progressively

27Naturally, in the case of non-converged runs I use the final 100 episodes before termination.
28For comparison purposes, I also show the closest available experiment from Calvano et al. (2020)

(β = 2 x 10−5, m = 15). The disparity to tabular learning runs in this study can be explained by
differences in parameter choices and experiment setup (e.g. initialization of Q-Matrix).

29There are three exceptions that are hidden in the plot to preserve reasonable y axis limits. More
specifically, for the FEM polynomial tiles with α = 0.0001, the average ∆ is −1.72. With separated
polynomials, the average ∆ with, respectively, α = 0.0001 and α = 0.001 is −1.86 and −0.282. This refines
the observation from section 3.1. It appears that high values of α converge in equilibrium strategies void of
any reasonableness. In the case of polynomial tiles, the program even crashes due to diverging parameters.

20

3. Results

Figure 3: Average ∆ by FEM and α. Includes converged and non-converged runs.
Three experiment (polynomial tiles with α = 0.0001 and separated polynomials with
α ∈ {0.001, 0.0001}) are excluded for better presentability. An exemplary experiment
from Calvano et al. (2020) is provided for comparison purposes. Note the logarithmic
x-scale.

decrease profits. Moving downwards on the y-axis, both tabular learning and tile coding

yield similar average values of ∆. Furthermore, the level of α does not seem to impact

∆ much. For both methods α = 10−4 induces the highest average ∆ at 0.48 and 0.47

respectively. Similarly for separate polynomials, ∆ does not seem to respond to variations

in α. The maximum ∆ is 0.37.30

These insights establish that, what constitutes a sensible value of α clearly depends on

the selected FEM. Therefore, for the remainder of this text, I will select an optimal α

for every FEM and present further results only for these combinations. In determining

optimality of α, I do not rely on a single hard criteria. Instead, I consider a number of

factors including the percentage of converged runs, comparability with previous studies and

prefer to select experiments with high average ∆ as they are most central to the purpose of

this study. Table 4 provides a justification for every experiments setting deemed optimal.

To get a sense of the variability of runs within the optimized experiments and the price

trajectory over time, Appendix B.3 contains further visualizations of the development of

prices and profits of all runs with optimized α.

30Naturally, averaging ∆ over all runs of an experiment, as done to create Figure 3, has the potential
to hide subtleties in the distribution of ∆. Appendix B.2 shows that ∆ varies quite a bit between runs of
an experiment but the main points of this section remain valid.

21

3. Results

FEM α Justification

Tabular 0.1 - comparability with previous simulation studies
- most pronounced response to price deviations

(see section 3.3)
Tile Coding 0.001 - high ∆

- most pronounced response to price deviations
(see section 3.3)

Separate Polynomials 10−6 - high percentage of converged runs
Polynomial Tiles 10−8 - high ∆

Table 4: Optimized values of α by FEM

3.3. Deviations

This section examines whether the learned strategies are stable in the face of deviations

from the learned behavior. There are at least two explanations for the existence of supra-

competitive outcomes. First, agents simply fail to learn how to compete effectively and

miss out on opportunities to undercut their opponent. Second, agents avoid deviating

from the stable strategy because they fear retaliation and lower (discounted) profits in

the long run. Importantly, only the latter cause, supra-competitive prices underpinned by

some form of a reward-punishment scheme, allows to label the outcomes as collusive and

warrants attention from competition policy (Assad et al. 2020). Therefore, I conducted

an artificial deviation experiment to scrutinize whether agents learn to actually retaliate

in the wake of a deviation. The bottom line of that exercise is that only tabular learning

evokes a conspicuous punishment from the non deviating agent. Before the results are

discussed in detail, I follow with a short portrayal of the deviation experiment.

Denote the period in which convergence was detected as τ = 0. At this point, both

agents played for 10,000 periods an equilibrium strategy they mutually regard as optimal.

At τ = 1, I force one agent to deviate from her learned strategy and play instead the

short-term best response that mathematically maximizes immediate profits. Subsequently,

she reverts to the learned strategy. In order to verify whether the non deviating agent

proceeds to punish the cheater, he sticks to his learned behavior throughout the deviation

experiment. In total, the deviation episode lasts 10 periods. Learning and exploration are

disabled (i.e. α = ε = 0). In order to evaluate the deviation, it appears useful to define a

counterfactual situation where both agents stick to their learned strategies for another 10

periods. Comparing (discounted) profits between the experiment and the counterfactual

allows to assess the profitability of the deviation.

As the responses to one agent’s deviation vastly differ across FEMs, it is natural to

discuss them separately at first and contrast differences only thereafter. It is difficult to

summarize all information in a single graph or table, so I will consult Figure 4, Figure 5

22

3. Results

Figure 4: Average price trajectory around deviation by FEM. Points represent the average
price over all runs of an experiment. Dashed horizontal lines represent the fully collusive
price pm and the static Nash solution pn. Dotted vertical line reflects time of convergence,
i.e. the period immediately before the forced deviation.

and Table 5 simultaneously to describe the deviation and response patterns. Before that,

a brief description is in line. Figure 4 displays the price trajectory around the forced

deviations averaged over all runs of an experiment. Since the average price trajectory

might veil important differences between runs, Figure 5 illustrates the range of deviation

and punishment prices compared to the counterfactual price that would have materialized

if no deviation had taken place and agents kept following their learned strategies. Note that

in the presence of price cycles, part of the variation can be explained by cycle shifting,

a phenomenon where the agents return to the learned cycle but the intervals are not

aligned with the counterfactual path. These differences should even out over all runs of an

experiment and therefore, not systematically bias the boxes in either direction. Similarly,

the average price response in Figure 4 is largely unaffected by this phenomenon. Finally,

Table 5 reports the share of deviations that turned out to be profitable compared to the

counterfactual.31

As indicated earlier, the non-deviating agents in tabular learning runs learned to pun-

ish deviations. Figure 4 shows that the non deviating agent, on average, undercuts the

deviation price at τ = 2. Simultaneously, the deviating agent already begins reverting to

pre-deviation prices. However, this result’s general validity is qualified. Figure 5 unveils

31Appendix B.4 contains further visualizations of the deviation experiments.

23

3. Results

Figure 5: Distribution of price differences around deviation relative to counterfactual path
without forced deviation, i.e. the difference to the price had no deviation taken place, by
FEM. Only includes converged runs because a clear counterfactual exists. Boxes demarcate
15th and 85th percentiles. They are extended by whiskers that mark the entire range of
price differences. Horizontal lines represent the group median.

24

3. Results

that the non deviating agent does not always reduce prices compared to the counterfactual.

Despite the existence of punishment prices in some runs, agents are fairly quick to return

to the price levels observed before the deviation was forced upon them. As early as τ = 3

there is no visible difference between average pre- and post-deviation price levels.32 This

might partly follow from prices being relatively close to the Nash equilibrium in the first

place. The punishments ensure that deviating is (strictly) profitable in only 24% of runs.

This suggests that, upon convergence, agents stick to a stable equilibrium, from which

deviations tend to be unprofitable due to the cheated agent retaliating. These findings

confirm the results from previous studies.

When examining the outcomes of the other FEMs, different conclusions emerge. Recall

from Figure 3 that tile coding yielded convergence profits very similar to tabular learning.

Yet, Figure 4 and Figure 5 only hint at slight punishments in some runs. In fact, the

median of the cheated agent’s price at τ = 2 is exactly 0, which amounts to a complete

absence of a response. This lack of punishment renders 56% of the cheater’s deviations

profitable. In light of that, it is surprising that the cheating agent tends to return to pre-

intervention price levels instead of continuing to exploit her opponent’s failure to punish

deviations.

This is even more obvious for the separate polynomials FEM. The deviation responses

are easy to summarize. After the forced intervention at τ = 1, both agents immediately

return to the pre-deviation equilibrium in all runs. This is remarkable for two reasons.

First, the non deviating agent completely fails to punish the cheater’s behavior and does

not respond to the price cut whatsoever. Consequently, 69% of the deviations are prof-

itable.33 This leads to the second point. Despite the obvious advantage of cheating, the

deviating agent returns to the pre-deviation price without exception, thus failing to ex-

ploit her opponent’s weakness. To put this in the right context, remember that the initial

price levels are fairly close to the Nash equilibrium and the deviation’s profitability is

relatively small compared to the potential gains realizable in other experiments (see also

Appendix B.4). Still, it appears puzzling that such a simple strategy improvement remains

consistently untapped. A potential explanation is this. The FEM separate polynomials

preserves a distinct set of parameters for every feasible action a (see Appendix A.4).34

32Previous studies showcase a strong deviation is usually followed by a more gradual reversion to pre-
deviation behavior (around 5-10 periods), see in particular Figure 4 in Calvano et al. (2020) and Figure 3
in Klein (2021).

33The remaining 31% comprise runs where the deviating agent was already playing the short-term best
response. Remember that the separate polynomials FEM tends to converge with prices at or close to the
Nash equilibrium.

34As opposed to the two other function approximation FEMs that treat the action space as a continuous
variable.

25

3. Results

FEM agent share profitable share unprofitable

Tabular deviating 0.24 0.57
Tabular non deviating 0.07 0.74
Tile Coding deviating 0.56 0.31
Tile Coding non deviating 0.04 0.83
Separate Polynomials deviating 0.69 0.00
Separate Polynomials non deviating 0.00 0.69
Polynomial Tiles deviating 0.85 0.15
Polynomial Tiles non deviating 0.04 0.96

Table 5: Share of profitable and non-profitable deviations by FEM and agent. Deviations
are deemed profitable if the discounted profits until τ = 10 due to the deviation exceed
profits from a counterfactual without deviation. Only includes converged runs because a
clear counterfactual exists. Discounting is equivalent to γ in (13), i.e. 0.95. A significant
number of deviations are neither profitable nor unprofitable. In those runs, the learned
strategy of the deviating agent is actually the best response at τ = 1 and both agents keep
following their respective price cycle.

It appears that the set for the preferred action is constructed in a way that yields high

estimated values for that action irrespective of the state. In its effect, this is paramount

to a simplistic valuation technique involving just one parameter per action. With that

approach, the agent completely disregards the state set and simply plays the preferred

action at all times. A generous interpretation is that this is similar to a static Nash equi-

librium. However, many runs converge in price levels way above that. To conclude, the

agents’ failure to play economically sound strategies casts doubts on the viability of the

FEM in reality.

Finally, consider the experiment with polynomial tiles. Recall that this experiment gen-

erated prices closest to the monopoly benchmark. Despite that, the deviation experiment

for polynomial tiles leads to similar conclusions to the ones with separate polynomials.

Though there are some variations between runs that warrant detailed examination. Con-

sider first the non deviating agent. Again, the majority of runs exhibits a failure to respond

to the price cut. However, selected runs show a matching strategy where the cheated agent

meets the price cut with a similar price. Notably, in those circumstances, agents do not

return to the previously learned path but quickly establish a new equilibrium. Moreover,

note that Figures 4 and 5 display a slight bias downwards over all periods. This is in-

dicative of continued cheating of the deviating agent. After being forced to undercut the

price, she proceeds to set prices below pre-deviation levels without getting punished. This,

too, results in a new equilibrium.35 In light of high pre-deviation prices and the lack of

retaliatory prices, it is unsurprising that 85% of deviations are profitable.

35Figure 18 in Appendix B illustrates both phenomena (price matching and continued cheating) through
the exact price sequence of exemplary runs.

26

3. Results

To summarize the deviation experiments, tabular learning agents learned to collude and

tend to support the supra-competitive equilibria with a reward-punishment scheme. On

the other hands, baring a few exceptions, the non deviating agents in experiments with

the FEMs utilizing function approximation fail to respond to price cuts and are easy to

exploit. Moreover, the deviating agents tend to leave that weakness unexploited. Overall

the deviation exercise suggests that while algorithmic agents manage to sustain high prices

when playing each other, their strategies are incomplete and easy to exploit.

Evidently, under the regime of this study’s simulations, tabular learning is better in

producing stable supra-competitive outcomes than the function approximation FEMs. To

illustrate the notion of stability in this context, consider the following thought experiment

of a superagent. Upon convergence, a rational player with perfect information about the

economic environment and the learned policies of both agents enters the game and takes

over pricing authority from one of them. Importantly, the superagent can anticipate the

opponent’s price in the next period and calculate the short-term maximizing response

as well as the opponent’s reaction to the deviation and so on. When playing against a

tabular learning agent, the superagent would deliberately stick to the convergence pricing

scheme as cheating is sure to evoke a retaliation rendering a deviation unprofitable (see

Table 5). Contrary, when facing an opponent who learned its strategy through a function

approximation FEM, the superagent could easily cheat on the opponent to increase short-

term profits without being punished in subsequent periods.

The evidence also suggests that function approximation creates hesitation in the agents

to change best responses. Probabilistically, exploration ensures that both agents will

undercut the price of their opponent and realize excess profits similar to those in the forced

deviation experiment. However, it appears that agents fail to learn (enough) from such

explored cheating. As evidenced by the undertaken deviation experiment, they typically

return to the pre-deviation price (cycle) immediately. This rigidity in adjusting strategies

potentially points to a problem with the specific algorithm or the tuning of its parameters.

For instance, a higher α could enable the cheater to learn faster that an unpunished

deviation is more profitable than adhering to the learned strategy.

Recall that learning and exploration were turned off for the deviation experiment. This

gives rise to an objection to the presented results. The non deviating agent, stripped

of the ability to adjust his strategy, might only be exploitable for a finite number of

periods until he adjusts his strategy. In fact, a generosity to condone isolated price cuts

might be conducive to establishing high price levels early in the simulation runs. However,

Appendix B.5 demonstrates that the lack of punishment in response to a deviation remains

27

4. Robustness and variations

ubiquitous in prolonged deviation experiments with enabled learning (α > 0).

4. Robustness and variations

To show that the presented findings are not an artifact of specific experiment design

choices, this section performs a variety of robustness checks and reports results on slightly

altered learning schemes. In all additional experiments I hold α fixed at its optimal values

(see Table 4). I will show that the considered variations do not impact the simulation

results much. Rather, they reinforce the conclusions from the last section. In sections 4.1

and 4.2 I vary the parameters controlling the learning process and the price grid that is

available to both agents. I consider an alternative reward setting in section 4.3.36

4.1. Learning parameters

Besides the learning rate α, the exploration strategy is arguably the most important steer-

ing choice in reinforcement learning. As discussed, β controls the decay in exploration over

time. To assess its impact on the sensitivity of outcomes, I run a number of experiments

varying β while keeping the manually optimized values of α constant (see Table 4).37 Nat-

urally, I proportionately adjust the number of maximal periods before a run is forced to

terminate.38

Figure 6 displays that the impact of exploration on average ∆ is relatively small across

FEMs. Interestingly, applying the deviation routine described in section 3.3 uncovers that

extended exploration supports the stability of the convergence equilibrium only in the case

of tabular learning. Table 6 clearly shows that cheating becomes less profitable when the

non-deviating agent utilizing tabular learning had more opportunities to explore reactions

to a deviation. The share of profitable deviations ranges from 39% at β = 0.00016 to 6% at

β = 2 ∗ 10−5. Strangely, the separate polynomials FEM shows the opposite pattern. Less

exploration makes deviations less attractive. My interpretation is that the overall lower

prices levels associated with less exploration indicate that the deviating agent already

plays the best response in many runs. Lastly, the value of β does not seem to have a

large impact on either of the tiling FEMs. Their convergence equilibria are unstable for

36I also consider variations to the discount factor in Appendix C.5. Appendix C.6 shows that the
findings are also robust to amended versions of Algorithm 1.

37Note that these values are not necessarily optimized for alternative β. Ideally, exploration rate and
learning speed should not be considered in isolation. Indeed, Calvano et al. (2020) show that lower
values of α perform better if exploration is extensive. However, the scope of this study does not allow to
systematically search over a 2-dimensional grid of α and β.

38With the lowest and highest values of β (0.00016 and 10−5), the maximum number of periods is
adjusted to 125000 and 2000000 respectively.

28

4. Robustness and variations

Figure 6: Average ∆ by FEM and β. Includes converged and non-converged runs.

all trialed values of β.39

4.2. Price grid

Table 2 emphasized that the length of the parameter vector w with tabular learning in-

creases disproportionately with m. Likewise, the optimization problem is likely to become

more complex. On the other hand, the feature extraction mechanisms of tile coding and

polynomial tiles are largely unaffected by m. Recall the baseline specification with m = 19.

To gauge the effect on outcomes, I executed experiments with additional variations, specif-

ically m = 10, m = 39 and m = 63. Due to computational restrictions, these experiments

FEM agent β = 0.00016 β = 8e-05 β = 2e-05 β = 1e-05

Tabular deviating 0.39 0.38 0.06 0.08
Tabular non deviating 0.20 0.09 0.00 0.04
Tile Coding deviating 0.50 0.54 0.56 0.67
Tile Coding non deviating 0.04 0.08 0.04 0.00
Separate Polynomials deviating 0.58 0.67 0.89 0.90
Separate Polynomials non deviating 0.00 0.00 0.00 0.00
Polynomial Tiles deviating 1.00 0.92 0.92 0.91
Polynomial Tiles non deviating 0.02 0.02 0.02 0.00

Table 6: Share of profitable deviations by FEM, agent and β. Annotations from Table 5
apply.

39Appendix C.1 supplements the observation of this section by showing that punishment severity and
length also increase with extended exploration. Moreover, in Appendix C.2 I briefly discuss that the choice
of λ does have little impact on deviation behavior. But the variance in the distribution of profits between
runs seems to increase with high values of λ.

29

4. Robustness and variations

only comprise 16 runs. Accordingly, inference should be treated with care.

Unsurprisingly, convergence becomes less likely when m increases. While all runs with

m = 10 converged, the percentage for m = 39 and m = 63 is only 67.2% and 57.8%

respectively. Despite that, Figure 7 indicates that varying m does not seem to have

much of an impact on the average ∆. On first glance, this seems confusing. As the

complexity of the problem increases, one would expect agents to struggle with optimizing

their strategy. However, the puzzle is partly solved by taking into account the stability of

the equilibrium. Table 7 suggests that the share of profitable deviations increases with m

for tabular learning and the polynomial tiles FEM. Most notably, the share of profitable

punishments in runs with tabular learning increases from only 12% when m = 10 to 67%

when m = 63. Interestingly, the share of profitable deviation in runs with polynomial tiles

is also significantly smaller when m = 10. Recall that the FEM evoked a weak punishment

and gave rise to new equilibria in some runs. This tendency seems to be reinforced when

m is low.

In summary, increasing the environment’s complexity through the number of available

prices m makes supra-competitive outcomes not less likely, but less stable in the face of

deviations. Appendix C.3 supports this hypothesis by showing that punishments seem to

be strongest with m = 10 and that an increase in the share of viable prices in the range

of pm and pn (i.e. a lower ζ) seems to lower convergence profits. Despite these subtleties,

the qualitative conclusions from section 3 remain intact.

4.3. Differential reward setting

In reinforcement learning, discounting is commonly used to avoid infinite value accumula-

tion, but rarely has a practical interpretation (Schwartz 1993). Therefore, the blend with

an economic task seems natural. However, despite wide usage, Naik et al. (2019) argue

that discounting in combination with function approximation is fundamentally incompat-

FEM agent m = 10 m = 19 m = 39 m = 63

Tabular deviating 0.12 0.24 0.42 0.67
Tabular non deviating 0.00 0.07 0.08 0.33
Tile Coding deviating 0.69 0.56
Tile Coding non deviating 0.00 0.04
Separate Polynomials deviating 0.88 0.69 0.93 0.87
Separate Polynomials non deviating 0.00 0.00 0.00 0.20
Polynomial Tiles deviating 0.69 0.85 1.00 0.94
Polynomial Tiles non deviating 0.06 0.04 0.00 0.00

Table 7: Share of profitable deviations by FEM, agent and m. Annotations from Table 5
apply. Empty cells are a consequence of no converged runs for the particular experiment.

30

4. Robustness and variations

Figure 7: Average ∆ by FEM and m. Includes converged and non-converged runs.

ible in infinite sequences. They suggest an alternative differential reward setting, where

(13) is replaced by:40

δdifferentialt = Rt − R̃t + q̂(St+1, At+1,wt)− q̂(St, At,wt) , (21)

where R̃t is a (weighted) average reward periodically updated according to

R̃t+1 = R̃t + υrt , (22)

where υ is a parameter controlling the speed of adjustment. The formulation ensures that

recent rewards are weighted higher. The rest of Algorithm 1 remains untouched. Note

that the differential reward setting does not involve any discounting. At first glance, this

clashes with the economic understanding of time preferences. However, there are two

arguments why the differential reward setting might still be well suited. First, Sutton

and Barto (2018) proof that, due to the infinite nature of the Bertrand environment, the

ordering of policies in the discounted value setting and the setting with average rewards are

equivalent (irrespective of γ). Second, pricing algorithms tend to be used in markets with

frequent price changes where it is less important whether a profit is realized immediately

or in the next period.

I conducted a series of experiments varying over the following values of υ: 0.001, 0.005,

40See chapter 10 in Sutton and Barto (2018) for a rigorous treatment. Hettich (2021) shows that the
differential reward setting works well with agents in a Bertrand environment.

31

4. Robustness and variations

Figure 8: Number of runs per experiments that (i) achieved convergence, (ii) did not con-
verge or (iii) failed to complete by FEM and υ.

0.01, 0.025, 0.05 and 0.1. As with the other variations, α is fixed at values deemed

optimal. Figure 8 shows the share of converged runs as a function of υ and the FEM.

Disregarding two runs that failed to complete, convergence is consistently achieved for

tabular learning, tile coding and separate polynomials. Contrary, only 74.2% of polynomial

tiles runs converged. This starkly contrasts the observation made in the experiments using

the discounted reward setting. There, all runs with polynomial tiles converged for various

values of α. Moreover, the plot suggests that low values of υ impede convergence for this

FEM.

Figure 9 displays how the average profits relative to pn and pm change with υ. The

overall impact is small. However, tabular learning and, to a lesser extent, tile coding seem

to converge at higher profits when υ is very low. With respect to punishment of price

cuts, the results are similar to the discounted setting. Irrespective of υ, the majority of

deviations in experiments with separate polynomials and polynomial tiles is profitable and

evokes no retaliation. With tabular learning, the share of profitable deviations is 24.7%

over all runs. There are hints of evidence that some sort of punishment in tile coding is

more pronounced in the differential reward setting. Only 48.8% of deviations are strictly

profitable. Appendix C.4 shows that non deviating agents retaliate with a price cut at

τ = 2 in some runs.

32

5. Conclusions

Figure 9: Average ∆ by FEM and υ. Includes converged and non-converged runs. Note
the logarithmic x-scale.

5. Conclusions

The motivation for this paper is that, despite the success of Q-Learning in achieving collu-

sion in repeated games of price competition, tabular learning methods might face practical

challenges when applied to real markets. I developed three linear function approximation

methods that scale better with the learning task’s complexity and combined them with

suitable reinforcement learning algorithms. To assess their merit, I deployed them to a

simultaneous pricing environment and compared their performance to tabular learning.

The simulations have shown that all FEMs tend to converge in supra-competitive profits

as long as parameter specifications remain reasonable. As is shown in other studies, tabular

learning agents acquire truly collusive strategies and show a stubborn resilience to return

to the convergence equilibrium after episodes of forced deviation. On the contrary, the

convergence equilibra arising in simulations with function approximation FEMs are not

supported by a reward-punishment scheme. I show in various deviation exercises that

agents have not learned to systematically punish price cuts. Thus, the simulation failed to

provide evidence of collusion with function approximation FEMs. Furthermore, despite the

obvious lack of a credible deterrent, deviating agents are unable to exploit that weakness

and return to pre-deviation prices. This is clear evidence of irrational behavior on the side

of the agents. These findings also apply when using different algorithms and are robust

to variations in learning and environment parameters. In particular, the introduction of

33

5. Conclusions

eligibility traces does not qualitatively change the conclusions.

I stress that the mere existence of supra-competitive prices in the simulations does not

make the FEMs viable. In fact, the only reason supra-competitive prices arise in settings

with function approximation is that both agents fail to compete efficiently. Indeed, their

success hinges on the other agent also playing an inferior strategy. It is easy to see

that playing such exploitable strategies are unlikely to succeed in real market settings. A

potential exception is the hub and spoke scenario envisioned by Ezrachi and Stucke (2017).

The exploitable algorithms could prove successful if a vendor was able to supply it to all

competitors in an industry.

It is hard to pinpoint the exact causes of these failures. An obvious lever for improve-

ment is the parametrization. The default specification was largely arbitrary and I did not

systematically optimize parameters for computational reasons. The most obvious candi-

date for improving strategies is the exploration rate. But since the results are similar for

a number of specifications, I am doubtful that optimizing parameters would make much

of a difference. Alternatively, one could trial other, more sophisticated FEMs. However,

linear function approximation might be generally inadequate to learn collusive strate-

gies precisely because stable strategies require non-linear responses. I suspect that linear

function approximation could be futile in the realm of multi-agent reinforcement learning

in economic environments. Nevertheless, absence of evidence does not equate evidence

of absence. Indeed, Hettich (2021) proves that agents learning with non-linear function

approximation can be very successful in forging collusion.

I leave open two avenues for future research. First, further simulation studies could

prove instrumental to understand under which conditions algorithmic collusion is likely.

Most considered environments (including the one in this study) are rather simple and

prefabricated. It would be interesting to see how algorithms behave in more challenging

conditions (e.g. many players, dynamic demand, multi-sided markets). Possible extensions

include actor-critic models that allow to incorporate continuous action spaces. Second,

empirical studies on real markets are imperative to get a refined understanding of how real

the threat of algorithmic collusion is. Assad et al. (2020) show that increased price margins

in the wake of independently acquired algorithms are possible. Whether this results holds

for other industries and over time remains to be seen.

34

References

References

Anderson, S. P. and A. de Palma (1992). “The Logit as a Model of Product Differenti-

ation”. Oxford Economic Papers 44(1), pp. 51–67. url: https://www.jstor.org/

stable/2663424.

Assad, S. et al. (2020). “Algorithmic Pricing and Competition: Empirical Evidence from

the German Retail Gasoline Market”. Working Paper. url: https://papers.ssrn.

com/abstract=3682021.

Boer, A. V. den (2015). “Dynamic Pricing and Learning: Historical Origins, Current Re-

search, and New Directions”. Surveys in Operations Research and Management Sci-

ence 20(1), pp. 1–18. url: http://www.sciencedirect.com/science/article/

pii/S1876735415000021.

Bundeskartellamt (2021). Working Paper - Algorithms and Competition. url: https://

www.bundeskartellamt.de/SharedDocs/Publikation/EN/Berichte/Algorithms_

and_Competition_Working-Paper.html.

Calvano, E. et al. (2020). “Artificial Intelligence, Algorithmic Pricing and Collusion”.

American Economic Review 110(10), pp. 3267–97. url: https://papers.ssrn.com/

abstract=3304991.

Chen, L., A. Mislove, and C. Wilson (2016). “An Empirical Analysis of Algorithmic Pricing

on Amazon Marketplace”. Proceedings of the 25th International Conference on World

Wide Web, pp. 1339–1349. url: https://doi.org/10.1145/2872427.2883089.

CMA (2016). Case 50223. url: https://www.gov.uk/cma-cases/online-sales-of-

discretionary-consumer-products.

Crandall, J. W. et al. (2018). “Cooperating with Machines”. Nature Communications 9(1),

p. 233. url: https://www.nature.com/articles/s41467-017-02597-8.

DoJ (2017). “Algorithms and Collusion - Note by the United States”. OECD Roundtable

on Algorithms and Collusion.

EU (2017). “Algorithms and Collusion - Note from the European Union”. OECD Roundtable

on Algorithms and Collusion.

Ezrachi, A. and M. E. Stucke (2017). “Algorithmic Collusion: Problems and Counter

Measures”. OECD Roundtable on Algorithms and Collusion.

— (2018). “Sustainable and Unchallenged Algorithmic Tacit Collusion”. University of

Tennessee Legal Studies Research Paper No. 366. url: https://papers.ssrn.com/

abstract=3282235.

Gal, M. (2019). “Algorithms as Illegal Agreements”. Berkeley Technology Law Journal

34(1), pp. 67–118. url: https://papers.ssrn.com/abstract=3171977.

35

https://www.jstor.org/stable/2663424
https://www.jstor.org/stable/2663424
https://papers.ssrn.com/abstract=3682021
https://papers.ssrn.com/abstract=3682021
http://www.sciencedirect.com/science/article/pii/S1876735415000021
http://www.sciencedirect.com/science/article/pii/S1876735415000021
https://www.bundeskartellamt.de/SharedDocs/Publikation/EN/Berichte/Algorithms_and_Competition_Working-Paper.html
https://www.bundeskartellamt.de/SharedDocs/Publikation/EN/Berichte/Algorithms_and_Competition_Working-Paper.html
https://www.bundeskartellamt.de/SharedDocs/Publikation/EN/Berichte/Algorithms_and_Competition_Working-Paper.html
https://papers.ssrn.com/abstract=3304991
https://papers.ssrn.com/abstract=3304991
https://doi.org/10.1145/2872427.2883089
https://www.gov.uk/cma-cases/online-sales-of-discretionary-consumer-products
https://www.gov.uk/cma-cases/online-sales-of-discretionary-consumer-products
https://www.nature.com/articles/s41467-017-02597-8
https://papers.ssrn.com/abstract=3282235
https://papers.ssrn.com/abstract=3282235
https://papers.ssrn.com/abstract=3171977

References

Gal, M. and N. Elkin-Koren (2017). “Algorithmic Consumers”. Harvard Journal of Law

and Technology 30. url: https://papers.ssrn.com/abstract=2876201.

Harrington, J. E. (2018). “Developing Competition Law for Collusion by Autonomous

Artificial Agents”. Journal of Competition Law & Economics 14(3), pp. 331–363. url:

https://doi.org/10.1093/joclec/nhy016.

Hastie, T., R. Tibshirani, and J. Friedman (2009). “Basis expansions and regularization”.

The Elements of Statistical Learning. Springer, pp. 139–189.

Hettich, M. (2021). “Algorithmic Collusion: Insights from Deep Learning”. url: https:

//papers.ssrn.com/abstract=3785966.

Ittoo, A. and N. Petit (2017). “Algorithmic Pricing Agents and Tacit Collusion: A Tech-

nological Perspective”. L’intelligence artificielle et le droit. Social Science Research

Network, pp. 241–256. url: https://papers.ssrn.com/abstract=3046405.

Jaakkola, T., M. I. Jordan, and S. P. Singh (1994). “On the Convergence of Stochastic

Iterative Dynamic Programming Algorithms”. Neural Computation 6(6), pp. 1185–

1201. url: https://doi.org/10.1162/neco.1994.6.6.1185.

Johnson, J., A. Rhodes, and M. R. Wildenbeest (2020). “Platform Design When Sellers

Use Pricing Algorithms”. url: https://papers.ssrn.com/abstract=3691621.

Kimbrough, S. and F. Murphy (2009). “Learning to Collude Tacitly on Production Levels

by Oligopolistic Agents”. Computational Economics 33(1), pp. 47–78.

Klein, T. (2021). “Autonomous Algorithmic Collusion: Q-Learning Under Sequential Pric-

ing”. The RAND Journal of Economics forthcoming. url: https://onlinelibrary.

wiley.com/doi/10.1111/1756-2171.12383.

Leibo, J. Z. et al. (2017). “Multi-agent Reinforcement Learning in Sequential Social Dilem-

mas”. Proceedings of the 16th Conference on Autonomous Agents and Multi-Agent

Systems, pp. 464–473.

Maskin, E. and J. Tirole (1988). “A Theory of Dynamic Oligopoly, II: Price Competition,

Kinked Demand Curves, and Edgeworth Cycles”. Econometrica 56(3), pp. 571–599.

url: https://www.jstor.org/stable/1911701.

Mehra, S. K. (2015). “Antitrust and the Robo-Seller: Competition in the Time of Algo-

rithms”. Minnesota Law Review 100, p. 1323. url: https://papers.ssrn.com/

abstract=2576341.

Mnih, V. et al. (2015). “Human-level control through deep reinforcement learning”. Nature

518, pp. 529–533. url: https://www.nature.com/articles/nature14236.

Motta, M. (2004). Competition Policy: Theory and Practice. Cambridge University Press.

36

https://papers.ssrn.com/abstract=2876201
https://doi.org/10.1093/joclec/nhy016
https://papers.ssrn.com/abstract=3785966
https://papers.ssrn.com/abstract=3785966
https://papers.ssrn.com/abstract=3046405
https://doi.org/10.1162/neco.1994.6.6.1185
https://papers.ssrn.com/abstract=3691621
https://onlinelibrary.wiley.com/doi/10.1111/1756-2171.12383
https://onlinelibrary.wiley.com/doi/10.1111/1756-2171.12383
https://www.jstor.org/stable/1911701
https://papers.ssrn.com/abstract=2576341
https://papers.ssrn.com/abstract=2576341
https://www.nature.com/articles/nature14236

References

Naik, A. et al. (2019). “Discounted Reinforcement Learning Is Not an Optimization Prob-

lem”. Preprint. url: http://arxiv.org/abs/1910.02140.

Noel, Michael D. (2008). “Edgeworth Price Cycles and Focal Prices: Computational Dy-

namic Markov Equilibria”. Journal of Economics & Management Strategy 17(2),

pp. 345–377. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1530-

9134.2008.00181.x.

OECD (2016). “Price discrimination - Background Note by the Secretariat”. url: https:

//www.oecd.org/daf/competition/price-discrimination.htm.

— (2017). “Algorithms and Collusion: Competition Policy in the Digital Age”. Roundtable

on Collusion and Algorithms. url: http://www.oecd.org/competition/algorithms-

collusion-competition-policy-in-the-digital-age.htm.

oefgen (2019). Decision of 26.07.2019. url: https://www.ofgem.gov.uk/publications-

and-updates/investigation-whether-economy-energy-e-gas-and-electricity-

and-dyball-associates-have-infringed-chapter-i-competition-act-1998-

respect-suspected-anti-competitive-agreement.

Precup, D., R. S. Sutton, and S. P. Singh (2000). “Eligibility Traces for Off-Policy Pol-

icy Evaluation”. Proceedings of the Seventeenth International Conference on Machine

Learning, pp. 759–766.

Rummery, G. and M. Niranjan (1994). “On-Line Q-Learning Using Connectionist Sys-

tems”. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.

2539.

Schwalbe, Ulrich (2018). “Algorithms, Machine Learning, and Collusion”. Journal of Com-

petition Law & Economics 14(4), pp. 568–607. url: https://papers.ssrn.com/

abstract=3232631.

Schwartz, Anton (1993). “A Reinforcement Learning Method for Maximizing Undiscounted

Rewards”. Proceedings of the 10th International Conference on Machine Learning,

pp. 298–305.

Seijen, H. and R. Sutton (2014). “True Online TD(lambda)”. International Conference

on Machine Learning, pp. 692–700. url: http://proceedings.mlr.press/v32/

seijen14.html.

Sutton, R. S. (1988). “Learning to Predict by the Methods of Temporal Differences”.

Machine Learning 3(1), pp. 9–44. url: https://doi.org/10.1007/BF00115009.

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning, second edition: An Intro-

duction. MIT Press.

37

http://arxiv.org/abs/1910.02140
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1530-9134.2008.00181.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1530-9134.2008.00181.x
https://www.oecd.org/daf/competition/price-discrimination.htm
https://www.oecd.org/daf/competition/price-discrimination.htm
http://www.oecd.org/competition/algorithms-collusion-competition-policy-in-the-digital-age.htm
http://www.oecd.org/competition/algorithms-collusion-competition-policy-in-the-digital-age.htm
https://www.ofgem.gov.uk/publications-and-updates/investigation-whether-economy-energy-e-gas-and-electricity-and-dyball-associates-have-infringed-chapter-i-competition-act-1998-respect-suspected-anti-competitive-agreement
https://www.ofgem.gov.uk/publications-and-updates/investigation-whether-economy-energy-e-gas-and-electricity-and-dyball-associates-have-infringed-chapter-i-competition-act-1998-respect-suspected-anti-competitive-agreement
https://www.ofgem.gov.uk/publications-and-updates/investigation-whether-economy-energy-e-gas-and-electricity-and-dyball-associates-have-infringed-chapter-i-competition-act-1998-respect-suspected-anti-competitive-agreement
https://www.ofgem.gov.uk/publications-and-updates/investigation-whether-economy-energy-e-gas-and-electricity-and-dyball-associates-have-infringed-chapter-i-competition-act-1998-respect-suspected-anti-competitive-agreement
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539
https://papers.ssrn.com/abstract=3232631
https://papers.ssrn.com/abstract=3232631
http://proceedings.mlr.press/v32/seijen14.html
http://proceedings.mlr.press/v32/seijen14.html
https://doi.org/10.1007/BF00115009

References

Tsitsiklis, J. N. and B. Van Roy (1997). “An analysis of Temporal-Difference Learning with

Function Approximation”. IEEE Transactions on Automatic Control 42(5), pp. 674–

690.

Tuyls, Karl and Gerhard Weiss (2012). “Multiagent Learning: Basics, Challenges, and

Prospects”. AI Magazine 33(3), p. 41. url: https://www.academia.edu/15087104/

Multiagent_learning_Basics_challenges_and_prospects.

Waltman, L. and U. Kaymak (2008). “Q-learning agents in a Cournot oligopoly model”.

Journal of Economic Dynamics and Control 32(10), pp. 3275–3293. url: https:

//econpapers.repec.org/article/eeedyncon/v_3a32_3ay_3a2008_3ai_3a10_

3ap_3a3275-3293.htm.

38

https://www.academia.edu/15087104/Multiagent_learning_Basics_challenges_and_prospects
https://www.academia.edu/15087104/Multiagent_learning_Basics_challenges_and_prospects
https://econpapers.repec.org/article/eeedyncon/v_3a32_3ay_3a2008_3ai_3a10_3ap_3a3275-3293.htm
https://econpapers.repec.org/article/eeedyncon/v_3a32_3ay_3a2008_3ai_3a10_3ap_3a3275-3293.htm
https://econpapers.repec.org/article/eeedyncon/v_3a32_3ay_3a2008_3ai_3a10_3ap_3a3275-3293.htm

A. Function Approximation Methods

Appendix A Function Approximation Methods

This section describes the function approximation methods and their parametrization (see

Table 2) in more detail. Note that polynomial approximation, as described in section A.2,

is not directly used in this study but nevertheless introduced as a precursor to the final

two methods polynomial tiles and separate polynomials.

A.1 Tile coding

In reinforcement learning, tile coding is a common way to extract binary features from a

state-action space.41 Its appeal stems partly from the fact that it is a generalization of

tabular learning. The idea is that several tilings superimpose the state-action space. The

T tilings are offset but each tiling covers the entire state-action space:

TL ≤ AL and TU ≥ AU ∀ T ∈ {1, 2, ..., T } , (23)

where TL and TU , respectively, represent the lower and upper bound of tiling T . Each

tiling is itself composed of uniformly spaced out tiles.42 Every tile is uniquely demarcated

by a lower and an upper threshold for every dimension. Consequently, the number of tiles

per tiling is controlled by the number of thresholds. For this simulation, it suffices to define

a single set of thresholds per tiling that applies to all 3 dimensions. More specifically, the

thresholds are spaced out evenly in the tiling-specific interval [TL, TU]:

{TL, TL +
1(TU − TL)

ψ − 1
, TL +

2(TU − TL)

ψ − 1
, ..., TL +

(ψ − 2)(TU − TL)

ψ − 1
, TU} , (24)

where ψ represents the number of thresholds. This gives rise to (ψ − 1)3 tiles per tiling.

As indicated, tiles are binary, i.e. if a state-action observation falls into a particular de-

marcation, the corresponding tile is activated :

xT ile Codingd =

1 if {pi,t−1, pj,t−1, pi,t} in tile demarcationd

0 if {pi,t−1, pj,t−1, pi,t} not in tile demarcationd

(25)

Since tiles within a tiling are non-overlapping, any state-action combination activates

exactly T tiles, one per tiling. The total number of features is simply T (ψ − 1)3. Note

that the tabular case can be recovered by setting T = 1 and ψ ≥ m + 1. In this case,

every tile is activated by at most one feasible state-action combination which is equivalent

41For an extensive introduction with helpful illustrations refer to Sutton and Barto (2018, pp.217-221).
42With 2 dimensions, a tiling simply corresponds to a 2-dimensional grid. In our case, the state-action

space is 3-dimensional, so it may prove more intuitive to think of cubes instead of tilings and tiles.

39

A. Function Approximation Methods

to storing a dedicated coefficient for every state-action combination.43 For this study, I

set T = 5 and ψ = 9. These parameters give rise to 2, 560 elements in w, about a third

of the size in tabular learning.

A.2 Polynomials

Polynomial approximation applies polynomial transformations to its inputs. In order to

keep this (and the upcoming) section brief, I will introduce the notation for the specific

case of 3 variables.44 Polynomial approximation of order k maps St and At to a set of

features, where a single feature corresponds to:

xPolyd = p
κd,1
i,t−1 p

κd,2
j,t−1 p

κd,3
i,t (26)

Every combination of exponents that adheres to the restrictions

� 0 < κd,1 + κd,2 + κd,3 ≤ k ∀ d and

� κd,1, κd,2, κd,3 ∈ {0, 1, ..., k} ∀ d

constitutes one feature. Using polynomial approximation, the feature vector x contains(
k+3

3

)
−1 elements. I choose not to use a simple polynomial to approximate the valuation of

the entire state-action space. Exploratory runs have shown that the method has trouble

converging and frequently produces unreasonable results in the provided environment.

Perhaps, this is not surprising because every state-action combination will always produce

non-zero values for all features and change every single element in w. While this facilitates

learning similarity of actions, it makes it more difficult for the algorithm to develop distinct

notions for very different prices.

A.3 Polynomial tiles

What I call polynomial tiles is a blend of tile coding and polynomial approximation. To

be precise, just as in tile coding, the state-action space is divided into overlapping tiles.

However, instead of a binary indication, every tile comprises a distinct polynomial. For

the sake of notation, it is helpful to divide the index d into a tiling component e and a

43If ψ > m+ 1, some tiles would never be activated. Conversely, every state-action combination would
correspond to a unique tile.

44For a more thorough treatment with variations and extensions, see e.g. Hastie, Tibshirani, and Fried-
man (2009).

40

A. Function Approximation Methods

polynomial part f . Hence:

xPoly T ilesd = xPoly T ilese,f =
p
κf,1
i,t−1 p

κf,2
j,t−1 p

κf,3
i,t if {pi,t−1, pj,t−1, pi,t} in tile demaractione

0 if {pi,t−1, pj,t−1, pi,t} not in tile demarcatione

(27)

The restrictions on the exponents κ from Appendix A.2 apply. The method accompanies

T (ψ− 1)3(
(
k+3

3

)
− 1) features. As this method allows for a distinguished value estimation

for different state-action combinations even within a tile, it appears reasonable to increase

the size of the tiles in order to decrease the number of coefficients and avoid overfitting.

Specifically, I retain the number of tilings (T = 5), but reduce the number of tiles per

tiling from 512 to 64 by imposing ψ = 5. Moreover, I allow for polynomial combinations

up to degree k = 4. With a total number of 10, 880 parameters, w is about 50% larger

than in tabular learning.

A.4 Separate polynomials

Separate polynomials maintain for every action a distinct set of parameters that apply

polynomial approximation to the state set. In reinforcement learning, it is common to

store a separate set of coefficients for every feasible action.45 Since At is fixed within each

set, the polynomial only considers St:
46

xSeparate Polyd =

p
κd,1
i,t−1 p

κd,2
j,t−1 if a = At

0 if a 6= At

(28)

The number of encompassed features arises naturally as m(
(
k+2

2

)
−1).

Note that the method models the value of an action as a function of St. Perhaps, an

inverse variation could be more intuitive from an economic perspective. Consider that

every permutation of St holds a distinct set of parameters. This approach is closer to the

notion of optimizing a given a fixed state set s. I leave this variation open as a potential

avenue for future research.

45This approach is best suited if the action space is qualitative and the state space continuous. In this
simulation, only the latter is strictly true. Therefore, the two issues inherent to tabular learning I have
outlined in section 2.3.1, also apply to the action space of separate polynomials, but not to the state space.

46The restrictions on k are adjusted accordingly:

� 0 < κd,1 + κd,2 ≤ k ∀d and

� κd,1, κd,2 ∈ {0, 1, ..., k} ∀d

41

B. Further Results

Appendix B Further Results

B.1 Cycle length and price range

Figure 10 offers some interesting insights on the distribution of cycle length. Unsurpris-

ingly, a first glance suggests that the frequency of runs decreases with cycle length. Not

accounting for differences between selection methods, the bars appear similar to a geo-

metric distribution with the largest bar corresponding to a ’cycle length of 1’ (i.e. no cycle

at all). Moving towards the right, the frequency of observed runs decreases with cycle

length, though at a decreasing pace. In fact, there are 6 runs with the largest considered

cycle length of 10.

The differences between FEMs are substantial. Polynomial tiles largely follows the

described decaying pattern. Similarly, tile coding rarely converges in long cycles, though

the most prevalent cycle length is 2 (with a total of 220 runs). Interestingly, the frequency

of cycle length of converged tabular runs is distributed almost uniformly. This observation

also suggests that the employed convergence rule may well have misclassified some of the

runs in the top left panel of Figure 1 as not converged where in reality the convergence

cycle length simply exceeded the threshold arbitrarily set at 10. Finally, all runs of the

separate polynomials FEM converged in a static price. This is in sharp contrast to the

other methods and reinforces the conjectures from section 3.3. It is not obvious why there

exist such differences between FEMs, especially since there is no economic justification for

price cycles in a simultaneous pricing environment in the first place.

The observation that function approximation FEMs tend to converge with lower cycle

lengths is extended with the insight that those methods also produce lower prices ranges.

Figure 11 plots the range between the lowest and highest price a single agent charges in

a cycle upon convergence. Naturally, the price range is null if an agent does not vary its

actions at all. Perhaps unsurprisingly, the price range then tends to increase with cycle

length, at times becoming remarkably high. The range of prices due to tabular learning

frequently exceeds the range between collusive and Nash prices. This is a clear indication

that price setting is occasionally irrational. Irrespective of agents competing or colluding,

prices outside this range are not economically optimal. Note however, the inversion of the

argument is dangerous. One should not deduct that behavior is closer to optimal from

the mere fact that prices appear more stable. In fact, the study shows that the strategies

learned with function approximation are often far from optimal and easy to exploit.

42

B. Further Results

Figure 10: Count of converged runs by FEM and cycle length.

Figure 11: Distribution of price range by FEM and cycle length. Every point represents
a single run. Within groups, points are spaced out horizontally. Price range is defined as
the difference between the highest and lowest price an agent charges within a cycle. Only
converged runs are considered (as cycle length is unavailable for other runs). Horizontal
line represents the difference between collusive and Nash outcome (i.e. pm − pn).

43

B. Further Results

B.2 Distribution of ∆

Section 3.2 illustrates that mean profits across experiments exceed Nash prices. To show

that this is not an artifact of averaging, Figure 12 displays a violin plot illustrating the

distribution of ∆ per experiment. The distribution largely confirms the conclusion that

most runs converge between ∆m and ∆n. The only FEM that generated a significant

quantity of runs with profits below the Nash benchmark are separate polynomials where

39.3% of runs converged with profits below the Nash equilibrium (though this is heavily

biased through the experiments with high α where the share of negative average ∆ is

100%). While the other FEMs tend to elicit runs within the benchmarks, the variability

remains quite high. This indicates a degree of path dependence and suggests that the

algorithms are prone to stick to early explored strategies that are above average, but

sub-optimal. Polynomial tiles exhibit the narrowest range of ∆, in particular for low α.

44

B. Further Results

Figure 12: Distribution of ∆ by FEM and α. Includes converged and non-converged runs.
Violin widths are scaled to maximize width of individual violins, comparisons of widths
between violins are not meaningful. Violins are trimmed at smallest and largest obser-
vation respectively. Three experiment (polynomial tiles with α = 0.0001 and separated
polynomials with α ∈ {0.001, 0.0001}) and a single run with ∆ < −0.5 are excluded for
better presentability. Horizontal lines represent the median.

45

B. Further Results

B.3 Price trajectory

Figure 13 displays the trajectory of ∆ over time. Only runs of the optimized experiments

are printed, as explained in Table 4. ∆ is averaged over 50,000 periods apiece and over both

players. Due to amassed exploration early in the simulation, average profits are low early

on but increase over time. Furthermore, starting at t = 250, 000 violin widths decrease

because of some runs triggering the convergence criteria. Interestingly, the non-converging

runs in the optimized separate polynomials experiments are characterized by profits below

the static Nash equilibrium. Note also the remarkable speed at which polynomial tiles

increases profits. After merely 100, 000 periods, the median ∆ hovers around 0.75 already.

Figure 14 depicts the distribution of average prices in optimized experiments over time

and Figure 15 displays the price and profit trajectory of single runs over time. Both

figures illustrate that, by and large, prices and profits remain within the benchmarks of

Nash competition and the fully collusive case. Obviously, this does not apply to every

single period, but holds true on average.

46

B. Further Results

Figure 13: Distribution of trajectory of ∆ by FEM with optimized α (see Table 4). For
individual runs, ∆ is averaged over 50,000 periods apiece and both players. Plot includes
converged and non-converged runs. Violin widths represent quantity of active runs at
t which enables comparisons between violins. As most runs converge after 200,000 to
300,000 periods, violin widths decrease thereafter. Violins are trimmed at smallest and
largest observation respectively. Horizontal lines represent the median.

47

B. Further Results

Figure 14: Distribution of trajectory average prices by FEM with optimized α. For in-
dividual runs, p is averaged over 50,000 periods apiece and both players. Plot includes
converged and non-converged runs. Violin widths represent quantity of active runs at
t which enables comparisons between violins. As most runs converge after 200,000 to
300,000 periods, violin widths decrease thereafter. Violins are trimmed at smallest and
largest observation respectively. Horizontal lines represent the median.

Figure 15: Trajectories of average ∆ (top panel) and prices (bottom panel) with optimized
α. For individual runs, the respective metric is averaged over 50,000 periods apiece and
both players. Plot includes converged and non-converged runs.

48

B. Further Results

B.4 Deviations

Figure 16 displays the difference between profits agents receive after the forced deviation

takes place and profits of the alternative path with no deviation. Naturally, the deviating

agent makes larger profits at the deviation period τ = 1. With tabular learning, her

profits decrease thereafter due to retaliatory prices. The plot shows that this occasionally

happens with tile coding and polynomial tiles. With all FEMs, profits tend to return to

pre-deviation levels quickly.

Figure 17 displays a frequency polygon to gauge how much more or less profitable the

deviation is compared to the counterfactual of sticking to the learned strategy. With tabu-

lar learning, most deviations end up being unprofitable. Contrary, the line for polynomial

tiles indicates that most deviations are profitable, some of them quite high. With regards

to tile coding and separated polynomials, the deviations in many runs seem to yield profits

similar to not deviating. Unsurprisingly, the bottom panel is skewed to the left suggesting

that the deviation experiment is unprofitable for the non-deviating agent.

Figure 18 depicts the price trajectory of three individual runs belonging to the optimized

polynomial tiles experiment. Run 06 shows the deviating agent continuing to cheat and

increasing her long-term profits. It also shows that price asymmetries between players are

not an uncommon phenomenon. Run 08 shows the non deviating agent meeting the price

cut. This culminates in a new equilibrium with lower prices. Since the pre-deviation prices

were slightly above the collusive benchmark, the new equilibrium actually improves both

agent’s profits in this particular example. Run 09 shows the common pattern of quick

reversal to pre-deviation prices and profits.

49

B. Further Results

Figure 16: Distribution of profit differences around deviation relative to counterfactual
path without forced deviation, i.e. the difference to the price had no deviation taken
place, by FEM. Only includes converged runs because a clear counterfactual exists. Boxes
demarcate 15th and 85th percentiles. They are extended by whiskers that mark the entire
range of price differences. Horizontal lines represent the group median.

50

B. Further Results

Figure 17: Distribution of additional profitability due to deviation by agent and FEM.
Width of bins: 0.02. 13 extreme data points (< −0.5 or > 0.5) are excluded for better
presentability. Deviations are deemed profitable if the discounted profits until τ = 10 due
to the deviation exceed profits from a counterfactual without deviation. Only includes
converged runs because a clear counterfactual exists. Discounting is equivalent to γ in
(13), i.e. 0.95. A significant number of deviations are neither profitable nor unprofitable.
In those runs, the learned strategy of the deviating agent is actually the best response at
τ = 1 and both agents keep following their respective price cycle.

51

B. Further Results

Figure 18: Prices and profits in 3 exemplary polynomial tiles deviation experiments with
optimized α. Top panels display prices, bottom panels profits. The exemplary runs are
stacked horizontally . Numbers on strip indicate assigned run id. Dashed horizontal lines
represent the fully collusive and static Nash benchmarks. Dotted vertical line reflects time
of convergence, i.e. the period immediately before the forced deviation.

52

B. Further Results

B.5 Prolonged deviations

To extend the mixed results from the deviation experiments in section 3.3, I conducted

another prolonged deviation experiment with continued learning. As I will show, the pre-

viously drawn conclusions remain intact. However, first I briefly explain why a continued

intervention could theoretically be different from a one-time deviation. The critical com-

ponents are continued learning and the eligibility trace vector z that make conceivable an

agent tolerating isolated deviations but punishing longer price cuts.

Without eligibility traces and the ability to learn, a one-time deviation suffices to assess

retaliatory behavior because the memory is too short to remember that the opponent

cheated for longer than a single period. Likewise, stripping the non deviating agent of his

ability to update w renders him unable to learn that tolerating deviations is exploitable

and can culminate in continuous low rewards. Consequently, if he failed to punish a

deviation at τ = 2, he will not react at τ = 3 either. On the contrary, with the ability

to learn enabled, both agents can readjust the parameter updates. For instance, after

discovering that tolerating a one-time deviation yields a low reward, the non deviating

agent might adjust w and decide to play a different action next time he is cheated (e.g.

match the price cut). This is augmented by the length of deviation episodes and the

existence of eligibility traces. If the deviating agent continues to cheat, the opponent

should continue to decrease the valuation of the tolerating strategy and could ultimately

fall back to the next best action (which might be a price cut).47

The prolonged deviation experiment lasts 20 periods in total. It was set up as follows.

The deviating agent anticipates the price of her opponent perfectly and continuously plays

the best response for a total of 10 periods of cheating. This imposes the assumption that

she is capable of perfectly predicting her opponent’s response to the initial deviation. Ex-

ploration remains disabled (ε = 0) but both agents continue learning from their actions.48

After I stop forcing the deviating agent to play the best response, both agents play another

10 periods adhering to their learned strategies.

The additional deviation experiments were conducted with the optimal values of α in

accordance with Table 4. Figure 19 displays the average price trajectory around the

prolonged deviation. Figure 20 provides a more detailed view on the distribution of re-

sponses. Both plots confirm the previous observations. Only with tabular learning does

47Furthermore, remember that the deviation experiment is conducted right after convergence was de-
tected. Consequently, the algorithm was on-path for a large number of periods and the eligibility traces
have not been reset recently (see (14)). Therefore, updates are large in magnitude and after the deviation
experiment concludes, the convergence equilibrium might not be feasible anymore because its valuation by
the agents changed.

48I also prescribe that the forced deviation is considered on-policy. Since ε = 0, this is most natural to
incorporate.

53

B. Further Results

Figure 19: Average price trajectory around prolonged deviation by FEM. Points represent
the average price over all runs of an experiment. Dashed horizontal lines represent the
fully collusive price pm and the static Nash solution pn. Dotted vertical line reflects time
of convergence, i.e. the period immediately before the forced deviation.

the non deviating agent match the price cuts systematically. The top left panel shows both

agents hover around the Nash benchmark for the entire duration of the deviation episode.

Clearly, this is unprofitable for both agents but the punishment is necessary to sustain

supra-competitive prices in the first place. Note also the quick return to pre-deviation

levels as soon as the deviating agent returns to her learned behavior. Since the opponent

follows immediately, it appears that the return must be initiated be the original cheater.

The experiment illustrates that the supra-competitive outcomes remain sustainable in the

face of persistent interruptions.

With regard to the three function approximation methods, the deviating agent appears

to systematically exploit her opponent who fails to punish the price cut. The subtle

differences between FEMs extend to the prolonged deviation. Separate polynomials evoke

no response from the non deviating agent. Both tiling methods show a small average

price cut over the duration of the prolonged deviation, but this response falls short of

a reliable mechanism that consistently deters deviation across runs. Indeed, Figure 20

shows that only isolated runs exhibit the non deviating agent cutting the pre-deviation

price levels. Most runs show no reaction which is veiled by averaging over all runs of

the experiment. This absence of a retaliation opens up the opportunity for continuous

exploitation by the deviating agent. Despite that, the latter tends to return to pre-

54

B. Further Results

Figure 20: Distribution of price differences around prolonged deviation relative to coun-
terfactual path without forced deviation, i.e. the difference to the price had no deviation
taken place, by FEM. Only includes converged runs because a clear counterfactual exists.
Boxes demarcate 15th and 85th percentiles. They are extended by whiskers that mark the
entire range of price differences. Horizontal lines represent the group median.

55

B. Further Results

deviation price levels. Therefore, both agents act far from optimal (in the economic sense

of the word) and fail to learn (enough) from the prolonged deviation experiment. Lastly,

note the difference between pre- and post-deviation price levels at the bottom right panel,

representing polynomial tiles. As noted previously, this suggests that the agents proceed

to play a different, less profitable equilibrium after the deviation. This easy switch to a

new strategy further challenges the viability of the pre-deviation equilibrium in the first

place.

It is conceivable, maybe even likely, that the non deviating agent does alter its strategy

after a time frame much longer than 10 periods. However, this is not important for this

study because the agent’s strategy is easy to exploit in the short term and the deviations

are clearly profitable (refer to Table 5).

56

C. Further Variations

Appendix C Further Variations

C.1 Exploration (β)

Section 4.1 showed that deviations in tabular learning environments were less likely to be

profitable if exploration was extensive. Figure 21 confirms that the convergence equilibria

are more likely to be underpinned by severe punishment strategies if β decreases (i.e.

exploration becomes more extensive). The immediate response of the non deviating agent

is harshest with β = 10−5.

57

C. Further Variations

Figure 21: Average price trajectory around deviation by β (values on strip). Includes
only tabular learning experiments. Points represent the average price over all runs of
an experiment. Dashed horizontal lines represent the fully collusive price pm and the
static Nash solution pn. Dotted vertical line reflects time of convergence, i.e. the period
immediately before the forced deviation.

58

C. Further Variations

C.2 Memory (λ)

Recall that high values of λ increase the algorithm’s hindsight but also the variance. This

is reflected in both convergence rates and outcomes. Figure 22 clearly indicates that high

values of λ impede convergence for tabular learning and the separate polynomials FEM.

Similarly, Figure 23 exhibits greater variability in profits with increasing λ. This holds

true for all feature extraction methods, but is most salient for separate polynomials where

a significant number of runs end in profits below the Nash equilibrium once λ exceeds

0.6.49

49The runs with ∆ < 0 are mainly runs where convergence was not achieved.

59

C. Further Variations

Figure 22: Number of runs per experiments that (i) achieved convergence, (ii) did not
converge or (iii) failed to complete as a function of FEM and λ.

Figure 23: Distribution of ∆ by FEM and λ. Includes converged and non-converged runs.
Violin widths are scaled to maximize width of individual violins, comparisons of widths be-
tween violins are not meaningful. Violins are trimmed at smallest and largest observation
respectively.

60

C. Further Variations

C.3 Price grid

Recall that m determines the number of feasible prices and therefore increases the com-

plexity of the learning task. This holds particularly true for tabular learning and, to a

lesser extent, for separate polynomials (refer back to Table 2). Against that backdrop, it

is unsurprising that Figure 24 shows less runs converging if m increases. The effect is most

pronounced for tabular learning and tile coding. Figure 25 shows the average response to

a deviation for m = 10. Compared to the baseline parametrization, the punishment of the

cheated agent seems more severe with tabular learning and polynomial tiles. However, the

low sample size of runs (16 per experiment) warrants cautious interpretation.

Next, I will consider variations in ζ. Recall from (5) that ζ controls the available excess

range above the fully collusive price pm. These prices are inferior to pm in almost any

situation and the simulations confirm that few runs converge in supra-monopoly prices.

So how may a change in ζ affect the learning behavior? Most importantly, large values

of ζ increase the share of available prices above pm and decreases the share of viable

prices within the range of pm and pn. Consequently, the agents may quickly discard

a larger share of actions engendering low (or negative) rewards and narrow down the

range of reasonable actions between pn and pm. Then, with fewer available actions, the

optimization within that range might be facilitated. This might be particularly important

with the separate polynomials FEM because agents could learn that certain polynomials

associated with actions above pm (or below pn) consistently yield low rewards - irrespective

of the preceding state set, refrain from playing them early in the simulation and focus on

refining the polynomials of actions within the range of pn and pm.

There is an additional effect on both tiling methods. The thresholds of all tiles derive

from the size of the action space. Therefore, tiles are resized and relocated. The natural

consequence is that some state-actions combinations will be associated with different tiles.

A priori, the effect on outcomes is hard to predict.

I conducted three additional experiments with ζ ∈ {0.1, 0.5, 1.5} to assess the impact of

varying ζ while keeping m constant at 19 to ensure comparability between experiments.50

Figure 26 illustrates that ζ significantly influences profits upon convergence. Across FEMs,

the average ∆ increases with ζ. This trend is most pronounced with polynomial tiles. To

reiterate, prices close to the collusive solution are not necessarily evidence of a stable

equilibrium with a reward-punishment scheme. If anything, the simulation runs in this

study have suggested the opposite and it turns out that despite the differences in ∆, the

50Note however, other ζ may prohibit playing actions very close to pn or pm. For instance, with ζ = 1.5,
the price closest to pn = 1.473 (pm = 1.925) is 1.454 (1.908). These gaps are quite a bit higher than in the
default specification.

61

C. Further Variations

Figure 24: Number of runs per experiments that (i) achieved convergence, (ii) did not
converge or (iii) failed to complete as a function of FEM and m. m = 19 is not plotted
because the number of runs is not comparable (refer back to Figure 1).

Figure 25: Average price trajectory around deviation by FEM with m = 10. Points rep-
resent the average price over all runs of an experiment. Dashed horizontal lines represent
the fully collusive price pm and the static Nash solution pn. Dotted vertical line reflects
time of convergence, i.e. the period immediately before the forced deviation.

62

C. Further Variations

Figure 26: Average ∆ by FEM and ζ. Includes converged and non-converged runs.

stability of the learned strategies is not heavily influenced by ζ.

Figure 27 confirms that average prices upon convergence largely remain within the Nash

and collusive benchmarks. Polynomial tiles constitute the only exception. With ζ = 1, a

significant share of runs displays prices above pm. This finding further discredits the FEM

as appropriate for the learning task. Figure 28 displays the price trajectory during the

forced deviation episode for tabular learning. Retaliatory pricing is visible in all variations.

FEM agent ζ = 0.1 ζ = 0.5 ζ = 1.0 ζ = 1.5

Tabular deviating 0.24 0.21 0.24 0.31
Tabular non deviating 0.07 0.12 0.07 0.04
Tile Coding deviating 0.38 0.42 0.56 0.44
Tile Coding non deviating 0.04 0.02 0.04 0.08
Separate Polynomials deviating 0.46 0.57 0.69 0.60
Separate Polynomials non deviating 0.00 0.00 0.00 0.00
Polynomial Tiles deviating 0.83 0.96 0.85 0.84
Polynomial Tiles non deviating 0.10 0.08 0.04 0.09

Table 8: Share of profitable deviations by FEM, agent and ζ. Annotations from Table 5
apply.

63

C. Further Variations

Figure 27: Distribution of average prices upon convergence by FEM and ζ. Includes con-
verged and non-converged runs. Violin widths are scaled to maximize width of individual
violins, comparisons of widths between violins are not meaningful. Violins are trimmed
at smallest and largest observation respectively. Horizontal lines represent the median.

Figure 28: Average price trajectory around deviation by ζ. Numbers on strip represent
values of ζ. Includes only tabular learning experiments. Points represent the average price
over all runs of an experiment. Dashed horizontal lines represent the fully collusive price
pm and the static Nash solution pn. Dotted vertical line reflects time of convergence, i.e.
the period immediately before the forced deviation.

64

C. Further Variations

C.4 Differential reward setting

Section 4.3 described the differential reward setting, an alternative method to incorpo-

rate rewards into the learning process. I also described how the separated polynomial

method struggled to achieve convergence in the alternative setting (refer back to Fig-

ure 8). Figure 29 emphasizes that point. A surprisingly large number of runs converges at

a stage where exploration is incredibly rare. This suggests that agents, despite continuous

exploitation, frequently change their evaluation of what the optimal action is.

Figure 30 displays for every experiment in the differential reward setting the range of ∆

upon convergence. It appears that the considered values of υ do not impact the outcomes

much. In comparison to the baseline runs, tabular learning and tile coding exhibit larger

variation. In the case of tabular learning, some runs hover around Nash profits while

others converge in equilibria close to the perfectly collusive benchmark.

Figure 31 illustrates the charged prices around the intervention relative to a counterfac-

tual without a forced deviation for experiments with υ = 0.005. Tabular learning shows a

clear tendency to punish price cuts at τ = 2. For tile coding and polynomial tiles, a price

cut in response to the deviation occurs in some runs.

65

C. Further Variations

Figure 29: Timing of convergence in differential reward setting by FEM. only includes
converged runs. Width of bins: 8,000.

Figure 30: Distribution of ∆ by FEM and υ. Includes converged and non-converged runs
from experiments employing the differential reward setting. Violin widths are scaled to
maximize width of individual violins, comparisons of widths between violins are not mean-
ingful. Violins are trimmed at smallest and largest observation respectively.

66

C. Further Variations

Figure 31: Distribution of price differences around deviation by FEM relative to counter-
factual path without forced deviation, i.e. the difference to the price had no deviation
taken place in the differential reward setting with υ = 0.005. Only includes converged
runs because a clear counterfactual exists. Boxes demarcate 15th and 85th percentiles.
They are extended by whiskers that mark the entire range of price differences. Horizontal
lines represent the group median.

67

C. Further Variations

C.5 Discount factor

In dynamic oligopolies, theory ascribes great importance to the discount factor γ. Typ-

ically, there exists a critical value below which the weight on future profits becomes too

low to sustain any collusive behavior. Likewise, if γ is sufficiently high, rational actors

with full information will collude on the monopoly solution. In reality, there are various

reasons why decision makers may end up charging prices between both extremes. For in-

stance, they might not be fully aware of what exactly the benchmark prices are and might

struggle to communicate and agree on a joint action (explicitly or tacitly). Similarly, in

reinforcement learning, it is unlikely that there exists a strict dichotomy between fully

collusive and perfectly competitive agents. Indeed, the results so far suggests that many

intermediate levels are realistic. Nevertheless, with lower values of γ, less weight is put

on the (expected) value of the future state in (13) and the immediate reward Rt gains

relative importance. Accordingly, one would expect the agents to gradually approach the

Nash benchmark as γ decreases.

To gauge the actual effect of γ on outcomes, I conducted a series of experiments ranging

from perfectly myopic (γ = 0) to almost infinitely patient (γ = 0.99) agents.51 Figure 32

summarizes the variation in average ∆. Though the relationship is not as clear as antic-

ipated, the curves of tabular learning and tile coding confirm the hypothesized pattern.

With γ = 0, the average profits are much closer to the Nash benchmark. Another inter-

esting revelation is that the average profits for tabular learning are highest at γ = 0.85

(average ∆ = 0.48). This suggests the agents struggle with high variance if γ approaches

1 (Naik et al. 2019).

With regard to the polynomial FEMs, the figure serves as further evidence of their

ineptness for the considered learning task. Even without discounting (γ = 0), the outcomes

remain high. In fact, they are even higher with separate polynomials. This clearly hints

at a failure to learn how to compete when only the immediate reward should matter.52

With regard to prices, the expectation is that agents price closer to the competitive

benchmark pn in order to increase immediate profits. Indeed, Figure 33 shows that the

distribution of average prices clearly shifts downwards for three of the four FEMs. The

51While γ = 1 is usually easy to model in economics, it is highly problematic in continuing learning
tasks due to its infinite sum property (this is the main reason why discounting is commonly utilized
in reinforcement learning in the first place, see e.g. Schwartz (1993)). Consider the following example.
An agent with no time preference (γ = 1) in a continuous task explores early that a particular action
consistently yields positive rewards. When exploiting, the agent keeps playing that action and the value
estimate accumulates to infinity. This results in a significant bias towards actions that have been explored
early and at some point becomes computationally infeasible. Through similar reasoning, values marginally
below 1 are known to be unstable (Naik et al. 2019).

52I interpret this similar to the results in Waltman and Kaymak (2008) where memoryless agents without
the ability to assert whether the opponent cheated still learn to charge supra-competitive prices.

68

C. Further Variations

Figure 32: Average ∆ by FEM and γ. Includes converged and non-converged runs.

effect is very clear for tabular learning and polynomial tiles. With regard to the latter,

note that prices are still far above pn. This is puzzling. Without regard for future profits

one would expect agents to end up very close to the Nash solution. Likewise, γ’s effect on

average prices with tile coding points in the expected direction but is unexpectedly subtle.

With separate polynomials, the impact of γ is not obvious. If anything, the plot suggests

that low discount factors increase profits.

69

C. Further Variations

Figure 33: Distribution of average prices upon convergence by FEM and γ. Includes con-
verged and non-converged runs. Violin widths are scaled to maximize width of individual
violins, comparisons of widths between violins are not meaningful. Violins are trimmed
at smallest and largest observation respectively. Horizontal lines represent the median.

70

C. Further Variations

C.6 Alternative algorithms

Of course, the specific algorithm described in Algorithm 1 is only one of many ways to use

function approximation in learning tasks. I will consider two variations: Tree backup and

on-policy SARSA.

C.6.1 Tree backup

Precup, Sutton, and Singh (2000) suggest the tree backup algorithm as a successor to

Q-Learning. Compared to the expected SARSA algorithm, the update in (14) is replaced

by:

zt = γλκ(At|St)zt−1 +
∆q̂

∆wt
(29)

Recall that κ(At|St) represents the probability of choosing At if the agent were to follow

a hypothetical target policy with ε = 0. As with the eligibility trace in expected SARSA,

the idea is that z resets to 0 as soon as a non-greedy action is played. Unsurprisingly,

applying the tree backup algorithm with optimized values of α to the environment yields

not very different results. Figure 34 displays the distribution of ∆ which is reminiscent of

the violins for optimized values of α in Figure 12.

Similarly, the deviation experiments do not reveal new insights either. Figure 35 displays

the average price trajectory around the deviation episode due to runs utilizing the tree-

backup algorithm. The panels reiterate that only tabular learning agents show a consistent

punishment in response to the forced deviation and the cheated agents learning through

function approximation FEMs fail to respond in a compelling way. The bottom right panel,

representing the polynomial tiles FEM, hints at a vague matching strategy culminating in

new equilibria. But averaging turns out to be deceptive here. In fact, only in 12.5% of

the runs does the non deviating agent respond with a price cut. Figure 36 displays the

distribution of prices around the forced deviation. With regard to polynomial tiles, some

runs show a sort of punishment or matching behavior in the wake of a price cut, but the

vast majority (87.5%) of runs show no response.

71

C. Further Variations

Figure 34: Distribution of ∆ by FEM with tree backup algorithm. Includes converged
and non-converged runs. Violin widths are scaled to maximize width of individual violins,
comparisons of widths between violins are not meaningful. Violins are trimmed at smallest
and largest observation respectively. Horizontal lines represent the median.

Figure 35: Average price trajectory around deviation by FEM with tree backup algorithm.
Points represent the average price over all runs of an experiment. Dashed horizontal lines
represent the fully collusive price pm and the static Nash solution pn. Dotted vertical line
reflects time of convergence, i.e. the period immediately before the forced deviation.

72

C. Further Variations

Figure 36: Distribution of price differences around deviation relative to counterfactual
path without forced deviation, i.e. the difference to the price had no deviation taken
place by FEM with tree backup algorithm. Only includes converged runs because a clear
counterfactual exists. Boxes demarcate 15th and 85th percentiles. They are extended by
whiskers that mark the entire range of price differences. Horizontal lines represent the
group median.

73

C. Further Variations

C.6.2 On-policy SARSA

Q-Learning, tree backup and expected SARSA all belong to the family of off-policy learning

algorithms. This stems from the simple fact that the (discounted) value estimation of the

state-action combination at t+1 is not always based on the actually chosen action At+1.53

So, it is off-path of the actually pursued policy. Off-policy methods tend to exhaust the

entire range of state-action combination well, but convergence guarantees for them are

generally weaker than for on-policy algorithms (Sutton and Barto 2018).54 As their name

suggests, on-policy algorithms wait until the state-action combination at t+ 1 is actually

known and only then estimate the TD error δt. A straightforward adaption is:

δSARSAt = rt + γq̂(St+1, At+1,wt)− q̂(St, At,wt) , (30)

Note that learning is delayed in the sense that δSARSAt can only be calculated after the

action in the next period has been taken. Algorithm 2 documents the on-policy algorithm

in all its steps. Note that ρ does not appear in the update system anymore. This is

precisely because the algorithm only takes into account the actually selected action at

t+ 1.

Algorithm 2 SARSA (on policy)

input feasible prices via m ∈ N and ζ > 0
configure static algorithm parameters α > 0, β > 0, and λ ∈ [0, 1]
initialize parameter vector and eligibility trace w = z = 0
declare convergence rule (see section 3.1)
start tracking time: t = 1
randomly initialize state St

choose initial action At

while convergence is not achieved, do
observe profit π, adjust to reward r
move to next state: t← t+ 1 and St+1 ← At

select action At+1 according to (11)
calculate TD-error (30): δ ← r + γq̂(St+1, At+1)− q̂(St, At)
update eligibility trace: z ← γλz + x
update parameter vector (15): w ← w + αδz
S ← St+1 and A← At+1

end while

Using the optimized values of α, I conducted one experiment per FEM. Figure 37

illustrates that the distribution of outcomes per experiment resembles the two off-policy

algorithms. Overall, the conclusions drawn in the previous section also apply to the on-

policy algorithm.

53See (13). The only exception is ε = 0.
54The main reason why I haven’t put much consideration into this is that due to the moving target

problem described in section 2.4, convergence is not guaranteed anyway. Moreover, Hettich (2021) shows
that off-policy methods can work well with function approximation.

74

C. Further Variations

Figure 37: Distribution of ∆ by FEM with on-policy algorithm . Includes converged and
non-converged runs. Violin widths are scaled to maximize width of individual violins,
comparisons of widths between violins are not meaningful. Violins are trimmed at smallest
and largest observation respectively. Horizontal lines represent the median.

75

PREVIOUS DISCUSSION PAPERS

370 Jeschonneck, Malte, Collusion among Autonomous Pricing Algorithms Utilizing
Function Approximation Methods, August 2021.

369 Gösser, Niklas, Gürer, Kaan, Haucap, Justus, Meyring, Bernd, Michailidou, Asimina,

Schallbruch, Martin, Seeliger, Daniela and Thorwarth, Susanne,
Total Consumer Time – A New Approach to Identifying Digital Gatekeepers,
August 2021.

368 Fischer, Kai, Reade, J. James and Schmal, W. Benedikt, The Long Shadow of an

Infection: COVID-19 and Performance at Work, August 2021.

367 Suedekum, Jens, Place-Based Policies – How to Do Them and Why, August 2021.

366 Heiss, Florian, Ornaghi, Carmine and Tonin, Mirco, Inattention vs Switching Costs: An
Analysis of Consumers’ Inaction in Choosing a Water Tariff, July 2021.

365 Cobb-Clark, Deborah A., Dahmann, Sarah C., Kamhöfer, Daniel A. and
Schildberg-Hörisch, Hannah, Sophistication about Self-Control, July 2021.

364 Bie, Xiaodong and Ciani, Andrea, Born Similar, Develop Apart: Evidence on Chinese
Hybrid Exporters, July 2021.

363 Ali, Nesma and Stiebale, Joel, Foreign Direct Investment, Prices and Efficiency:
Evidence from India, July 2021.

362 Banerjee, Ritwik, Ibanez, Marcela, Riener, Gerhard and Sahoo, Soham, Affirmative
Action and Application Strategies: Evidence from Field Experiments in Columbia,
April 2021.

361 Wellmann, Nicolas and Czarnowske, Daniel, What Would Households Pay for a
Reduction of Automobile Traffic? Evidence From Nine German Cities, March 2021.

360 Haucap, Justus, Moshgbar, Nima and Schmal, Wolfgang Benedikt, The Impact of the
German “DEAL” on Competition in the Academic Publishing Market, March 2021.

359 Korff, Alex, Competition in the Fast Lane – The Price Structure of Homogeneous
Retail Gasoline Stations, January 2021.

358 Kiessling, Lukas, Chowdhury, Shyamal, Schildberg-Hörisch, Hannah and
Sutter, Matthias, Parental Paternalism and Patience, January 2021.

357 Kellner, Christian, Le Quement, Mark T. and Riener, Gerhard, Reacting to Ambiguous
Messages: An Experimental Analysis, December 2020.

356 Petrishcheva,Vasilisa, Riener, Gerhard and Schildberg-Hörisch, Hannah, Loss
Aversion in Social Image Concerns, November 2020.

355 Garcia-Vega, Maria, Kneller, Richard and Stiebale, Joel, Labor Market Reform and
Innovation: Evidence from Spain, November 2020.
Published in: Research Policy, 50 (2021), 104213.

354 Steffen, Nico, Economic Preferences, Trade and Institutions, November 2020.

353 Pennerstorfer, Dieter, Schindler, Nora, Weiss, Christoph and Yontcheva, Biliana,
Income Inequality and Product Variety: Empirical Evidence, October 2020.

352 Gupta, Apoorva, R&D and Firm Resilience During Bad Times, October 2020.

351 Shekhar, Shiva and Thomes, Tim Paul, Passive Backward Acquisitions and
Downstream Collusion, October 2020.
Forthcoming in: Economics Letters.

350 Martin, Simon, Market Transparency and Consumer Search – Evidence from the
German Retail Gasoline Market, September 2020.

349 Fischer, Kai and Haucap, Justus, Betting Market Efficiency in the Presence of
Unfamiliar Shocks: The Case of Ghost Games during the COVID-19 Pandemic,
August 2020.

348 Bernhardt, Lea, Dewenter, Ralf and Thomas, Tobias, Watchdog or Loyal Servant?
Political Media Bias in US Newscasts, August 2020.

347 Stiebale, Joel, Suedekum, Jens and Woessner, Nicole, Robots and the Rise of
European Superstar Firms, July 2020.

346 Horst, Maximilian, Neyer, Ulrike and Stempel, Daniel, Asymmetric Macroeconomic
Effects of QE-Induced Increases in Excess Reserves in a Monetary Union, July 2020.

345 Riener, Gerhard, Schneider, Sebastian O. and Wagner, Valentin, Addressing Validity
and Generalizability Concerns in Field Experiments, July 2020.

344 Fischer, Kai and Haucap, Justus, Does Crowd Support Drive the Home Advantage in
Professional Soccer? Evidence from German Ghost Games during the COVID-19
Pandemic, July 2020.
Forthcoming in: Journal of Sports Economics.

343 Gösser, Niklas and Moshgbar, Nima, Smoothing Time Fixed Effects, July 2020.

342 Breitkopf, Laura, Chowdhury, Shyamal, Priyam, Shambhavi, Schildberg-Hörisch,
Hannah and Sutter, Matthias, Do Economic Preferences of Children Predict
Behavior?, June 2020.

341 Westphal, Matthias, Kamhöfer, Daniel A. and Schmitz, Hendrik, Marginal College
Wage Premiums under Selection into Employment, June 2020.

340 Gibbon, Alexandra J. and Schain, Jan Philip, Rising Markups, Common Ownership,
and Technological Capacities, April 2021 (First Version June 2020).

339 Falk, Armin, Kosse, Fabian, Schildberg-Hörisch, Hannah and Zimmermann, Florian,
Self-Assessment: The Role of the Social Environment, May 2020.

338 Schildberg-Hörisch, Hannah, Trieu, Chi and Willrodt, Jana, Perceived Fairness and
Consequences of Affirmative Action Policies, April 2020.

337 Avdic, Daniel, de New, Sonja C. and Kamhöfer, Daniel A., Economic Downturns and
Mental Wellbeing, April 2020.

336 Dertwinkel-Kalt, Markus and Wey, Christian, Third-Degree Price Discrimination in
Oligopoly When Markets Are Covered, April 2020.

335 Dertwinkel-Kalt, Markus and Köster, Mats, Attention to Online Sales: The Role of
Brand Image Concerns, April 2020.
Forthcoming in: Journal of Economics and Management Strategy

334 Fourberg, Niklas and Korff, Alex, Fiber vs. Vectoring: Limiting Technology Choices in
Broadband Expansion, April 2020.
 Published in: Telecommunications Policy, 44 (2020), 102002.

333 Dertwinkel-Kalt, Markus, Köster, Mats and Sutter, Matthias, To Buy or Not to Buy?
Price Salience in an Online Shopping Field Experiment, April 2020.
Revised version published in: European Economic Review, 130 (2020), 103593.

332 Fischer, Christian, Optimal Payment Contracts in Trade Relationships,
February 2020.

331 Becker, Raphael N. and Henkel, Marcel, The Role of Key Regions in Spatial
Development, February 2020.

330 Rösner, Anja, Haucap, Justus and Heimeshoff, Ulrich, The Impact of Consumer
Protection in the Digital Age: Evidence from the European Union, January 2020.
Published in: International Journal of Industrial Organization, 73 (2020), 102585.

329 Dertwinkel-Kalt, Markus and Wey, Christian, Multi-Product Bargaining, Bundling, and
Buyer Power, December 2019.
Published in: Economics Letters, 188 (2020), 108936.

328 Aghelmaleki, Hedieh, Bachmann, Ronald and Stiebale, Joel, The China Shock,
Employment Protection, and European Jobs, December 2019.

327 Link, Thomas, Optimal Timing of Calling In Large-Denomination Banknotes under
Natural Rate Uncertainty, November 2019.

326 Heiss, Florian, Hetzenecker, Stephan and Osterhaus, Maximilian, Nonparametric
Estimation of the Random Coefficients Model: An Elastic Net Approach,
September 2019.
 Forthcoming in: Journal of Econometrics.

325 Horst, Maximilian and Neyer, Ulrike, The Impact of Quantitative Easing on Bank Loan
Supply and Monetary Policy Implementation in the Euro Area, September 2019.
Published in: Review of Economics, 70 (2019), pp. 229-265.

324 Neyer, Ulrike and Stempel, Daniel, Macroeconomic Effects of Gender Discrimination,
September 2019.

323 Stiebale, Joel and Szücs, Florian, Mergers and Market Power: Evidence from Rivals’
Responses in European Markets, September 2019.

322 Henkel, Marcel, Seidel, Tobias and Suedekum, Jens, Fiscal Transfers in the Spatial
Economy, September 2019.
Forthcoming in: American Economic Journal: Economic Policy.

321 Korff, Alex and Steffen, Nico, Economic Preferences and Trade Outcomes,

August 2019.

320 Kohler, Wilhelm and Wrona, Jens, Trade in Tasks: Revisiting the Wage and
Employment Effects of Offshoring, July 2019.
Forthcoming in: Canadian Journal of Economics.

319 Cobb-Clark, Deborah A., Dahmann, Sarah C., Kamhöfer, Daniel A. and Schildberg-
Hörisch, Hannah, Self-Control: Determinants, Life Outcomes and Intergenerational
Implications, July 2019.

318 Jeitschko, Thomas D., Withers, John A., Dynamic Regulation Revisited: Signal
Dampening, Experimentation and the Ratchet Effect, July 2019.

317 Jeitschko, Thomas D., Kim, Soo Jin and Yankelevich, Aleksandr, Zero-Rating and
Vertical Content Foreclosure, July 2019.
Published in: Information Economics and Policy, 55 (2021), 100899.

316 Kamhöfer, Daniel A. und Westphal, Matthias, Fertility Effects of College Education:
Evidence from the German Educational Expansion, July 2019.

315 Bodnar, Olivia, Fremerey, Melinda, Normann, Hans-Theo and Schad, Jannika, The
Effects of Private Damage Claims on Cartel Activity: Experimental Evidence,
June 2021 (First Version June 2019 under the title “The Effects of Private Damage
Claims on Cartel Stability: Experimental Evidence”).
Forthcoming in: Journal of Law, Economics, and Organization.

314 Baumann, Florian and Rasch, Alexander, Injunctions Against False Advertising,
October 2019 (First Version June 2019).
Published in: Canadian Journal of Economics, 53 (2020), pp. 1211-1245.

313 Hunold, Matthias and Muthers, Johannes, Spatial Competition and Price
Discrimination with Capacity Constraints, May 2019 (First Version June 2017 under
the title “Capacity Constraints, Price Discrimination, Inefficient Competition and
Subcontracting”).
Published in: International Journal of Industrial Organization, 67 (2019), 102524.

312 Creane, Anthony, Jeitschko, Thomas D. and Sim, Kyoungbo, Welfare Effects of
Certification under Latent Adverse Selection, March 2019.

311 Bataille, Marc, Bodnar, Olivia, Alexander Steinmetz and Thorwarth, Susanne,
Screening Instruments for Monitoring Market Power – The Return on Withholding
Capacity Index (RWC), March 2019.
Published in: Energy Economics, 81 (2019), pp. 227-237.

310 Dertwinkel-Kalt, Markus and Köster, Mats, Salience and Skewness Preferences,
March 2019.
Published in: Journal of the European Economic Association, 18 (2020), pp. 2057–2107.

309 Hunold, Matthias and Schlütter, Frank, Vertical Financial Interest and Corporate
Influence, February 2019.

308 Sabatino, Lorien and Sapi, Geza, Online Privacy and Market Structure: Theory and
Evidence, February 2019.

307 Izhak, Olena, Extra Costs of Integrity: Pharmacy Markups and Generic Substitution in
Finland, January 2019.

Older discussion papers can be found online at:
http://ideas.repec.org/s/zbw/dicedp.html

http://ideas.repec.org/s/zbw/dicedp.html

www.dice.hhu.de

Heinrich-Heine-Universität Düsseldorf

Düsseldorfer Institut für
Wettbewerbsökonomie (DICE)

Universitätsstraße 1, 40225 Düsseldorf

ISSN 2190-992X (online)
ISBN 978-3-86304-369-8

	algorithms_dp.pdf
	Introduction
	Environment and learning algorithm
	Economic environment
	Learning algorithm
	Price grid
	Value approximation
	Exploration and exploitation
	Parameter update
	Baseline parametrization

	Feature extraction
	Tabular learning
	Learning speed

	Convergence considerations

	Results
	Convergence
	Profits
	Deviations

	Robustness and variations
	Learning parameters
	Price grid
	Differential reward setting

	Conclusions
	Function Approximation Methods
	Tile coding
	Polynomials
	Polynomial tiles
	Separate polynomials

	Further Results
	Cycle length and price range
	Distribution of
	Price trajectory
	Deviations
	Prolonged deviations

	Further Variations
	Exploration ()
	Memory ()
	Price grid
	Differential reward setting
	Discount factor
	Alternative algorithms
	Tree backup
	On-policy SARSA

