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I. Introduction

Measuring financial risks is the backbone of risk management and portfolio 

investments decisions. A well-known financial risk measure is the volatility of assets prices, 

as it allows the risk manager to assess potential risks associated with portfolio investments. 

Forecasts of price returns volatilities is perhaps the most used analytical toolkit for measuring 

financial risk, since are useful to make contemporaneous decisions based on expectations 

about the future level of prices. It is known in theory about the link between futures prices 

and expected future spot price. An advantage of using futures prices instead of spot prices, is 

that the former usually contain relevant information about the representative trader’s future 

spot price expectation (Hull: 2013). Given the previously mentioned forward-looking 

component embedded in futures prices, it is relevant to consider these derivative instruments 

for financial decision making. Indeed, the price return volatility of futures prices has been 

used for risk management research in previous works (Bollerslev, Chou and Kroner: 1992, 

Engle: 2003). 

In terms of volatility forecasts, part of the relevant research shows volatility estimates 

that are symmetric as they have the same volatility reaction (measure) when prices go up or 

down. However, statistical evidence shows or suggests that financial volatility may be 

asymmetric, i.e. the volatility reaction may be larger for price increases than for price 

decreases or vice versa. There are a few academic works that analyze price return volatilities 

with asymmetric effects (Poon and Granger: 2003; Giot and Laurent 2004). The reason for 

this may be that not all financial time series have asymmetric effects. Also, there is more 

complexity in the estimation methodology when asymmetric effects are included. When it 

comes to taking into account asymmetric volatility effects from a risk management 

perspective, i.e. within a Value at Risk (VaR) framework, there are even less documents 

(Chkili et. al.: 2014, Brooks and Persand: 2003). So far, there are more research that 

emphasizes in the monetary (not statistical) gains about VaR.  

In the finance literature, volatility is seen as a risk variable, which captures all the 

uncertainty surrounding that financial variable. It is well-known that in the presence of 



2 

 

asymmetric volatility it is important to adjust risk models to avoid possible under (over) 

quantification of risks. An unintended risk missestimation is undesirable for a financial 

institution involved in quantifying risks, given the potential costs associated with not being 

at an optimal risk quantification value (Brooks et. al.: 2000). On the one hand, handling an 

extreme event might be particularly costly to a firm with insufficient capital reserves, if its 

risk was underestimated in the first place. On the other hand, an overestimated risk may 

reserve excessive capital compared to its optimal level, which cause the manager to have 

more than is required (capital reserves), with a high opportunity cost of other uses of capital. 

 In this study, we aim to assess whether volatility is asymmetric and determine to 

what extent may impact stock market dynamics. The objective is to quantify if there are any 

statistically significant differences between taking and not taking into account possible 

asymmetric effects in volatility within a VaR framework for stock indices. The methodology 

involves backtesting techniques to validate VaR models that are relevant for risk 

management (Kupiec: 1995, Jorion: 2000, 2001, Nieppola 2009). The volatility measures 

used are GARCH, TARCH and option implied volatility (IV). These last two are able to 

capture volatility asymmetries. The ARCH-types are considered a ‘backward-looking’ 

forecast estimation methods, whilst the IV is considered a ‘forward-looking’ one. A 

contribution of the present research analysis is the combination of both types of techniques 

from a VaR perspective. For the purpose of the present study, asymmetric volatility is defined 

as the difference in the volatility level given positive or negative returns. In other words, the 

volatility may be higher when the returns are negative (or in some cases when they are 

positive).    

The goal of the present research paper is twofold. First, provide optimal risk measures 

in order to avoid misestimation of risks, underlying the need to adjust for any volatility 

asymmetries. In doing that, we need to prevent unnecessary financial costs related to a non-

optimal risk measure. By adjusting the model for volatility asymmetries, it is expected that a 

risk measure with higher accuracy can be obtained. Second, we propose a novel approach to 

compare two different types of asymmetric volatility forecasts: one that is backward-looking 

(ARCH-type) and one that is forward-looking (option-implied), within a VaR framework. 

Most research papers use one or the other measure but they do not compare them in terms of 
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statistical performance in a VaR paradigm (Giot and Laurent: 2004, Chkili et. al.: 2014). We 

here assess each one of them and various combinations, including statistical inference. We 

start comparing volatility symmetries vs. asymmetries and also backward- vs. forward-

looking within a VaR model. The comparison of the results for two different types of 

asymmetric volatility methodologies could give light about any qualitative differences that 

should be accounted for when deciding on VaR estimations.  

The results show that asymmetric models provide more accurate VaR estimations. 

Among these the forward-looking forecast model is superior when compared to the 

backward-looking one. Based on these results, it is recommended to apply asymmetric IV 

volatility models, with VaR in particular, to perform risk management analysis. We argue 

that the present paper adds relevant information to the academic literature on of volatility 

forecast methodologies since our findings provide evidence about the accuracy gains of using 

asymmetric volatility models in the risk management sector. Also, the results can be useful 

for those involved in the risk management industry, i.e. portfolio-risk managers, to have 

better knowledge about superior (and close to optimal) estimation procedures. 

The layout of this paper is as follows. The literature review is presented in Section II. 

Symmetric and asymmetric models are explained in Section III. Data is described in detail in 

Sections IV and V, respectively. The results of four volatility models are discussed in Section 

VI. Section VII concludes. 

 

II. Literature Review 

Historical (backward-looking) volatility is described by Brooks (2013) as the variance 

or standard deviation (σ) of returns over some long period of time (n). This unconditional 

variance or standard deviation may serve as a volatility forecast for all future periods 

(Markowitz: 1952). However, there is a drawback in this type of calculation. Unconditional 

volatility is assumed to be constant. Thus, for an n-days ahead forecast the unconditional 

standard deviation of the price-return series needs to be multiplied by the square root of the 

n-days considered in the forecast horizon, i.e. 𝜎 × √𝑛 . With this product it is possible to 

obtain the time-adjusted volatility forecast for those n-days ahead. Nowadays, it is well 
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known that financial volatility is time-varying, i.e. that volatility changes over time. This is 

also the case for the volatility of stock indices that are usually included in investment and 

portfolio analysis and investment-decision making.  

It is well documented that non-linear Autoregressive Conditional Heteroskedasticity 

type models (ARCH-type models) can provide accurate in-sample estimates of time-varying 

price volatility. These type of volatility forecast models are also considered backward-

looking, i.e. the estimates are obtained based on past time series data.1 See for example, Engle 

(1982), Taylor (1986), Bollerslev, Chou and Kroner (1992), Wei and Leuthold (1998), Engle 

(2002), among many others.2 However, the out-of-sample forecasting accuracy of this type 

of non-linear models is, in some cases, questionable (see Park and Tomek: 1989, Schroeder 

et. al.: 1993, Manfredo et. al.: 2001, Benavides: 2006, 2009, Pong et. al.: 2003).3  

In addition, there is a related literature of the implications of non-linear dynamics of 

volatility forecasts for financial risk management (Hsieh: 1993). In light of this, some 

researchers have extended previous work on the application of time-varying volatility 

models, specifically ARCH- type models, and IV in VaR estimations (Brooks, Clare and 

Persand: 2000; Manfredo et. al.: 2001; Engle: 2003; Giot: 2005; Mohamed: 2005; among 

others). IV estimations are considered forward-looking since they are implied by derivative 

contracts (prices) and it is believed that these increase the performance of the volatility 

forecasts compared with the ARCH-type. Most of previously mentioned findings improved 

risk management applications using VaR, by proving to be more accurate in terms of 

quantifying risk. Although, there are several research papers that use these type of models 

for financial time series, there is, to the best of our knowledge, no research that carries out a 

rigorous comparison of volatility asymmetries using both ARCH-type (backward-looking) 

and option-implied (forward-looking) volatility within a risk management VaR perspective. 

                                                 
1 The volatility forecast that it is considered here is the conditional volatility of a financial asset, which is 

estimated from an econometric model assuming a standard distribution for the estimated parameters. 
2 For an excellent survey about applications of ARCH-type models in finance the interested reader can refer to 

Bollerslev, Chou and Kroner (1992).  
3 All of them found that the explanatory power of these out-of-the-sample forecasts is relatively low. In 

particular, Pong et al. (2003) find that option implied volatility forecasts performed at least as well as forecasts 

from Autoregressive Fractional Integrated Moving Average Models (ARFIMA) for time horizons of one and 

three months. These were superior forecasts to those from ARCH-type models. 
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Furthermore, there are no research documents in which there is an empirical comparison 

between risk properties of two stock indices, one from an advanced economy (the SP500 

stock index) and one from an emerging economy market (the IPC Mexican stock index), in 

which volatility asymmetries are accounted for.  

Additionally, in terms of risk management applications in financial regulation, 

previous works have applied non-linear models within a VaR framework in order to estimate 

Minimum Capital Risk Requirements (MCRR) (Hsieh: 1991; Brooks, Clare and Persand: 

2000). The MCRR are defined as the minimum amount of capital needed to successfully 

handle all but a pre-specified percentage of possible losses with a certain confidence level 

(Brooks, Clare and Persand: 2000). This concept is relevant to banks and bank regulators. 

For the latter, it is important to require banks to maintain enough capital so they can 

successfully cope with unforeseen losses. These regulatory practices go back to the original 

Basel Accord of 1988. Even though there is a broad consensus about the need of MCRR, 

there is significantly less agreement about the method to calculate them.4 By estimating the 

VaR of their financial portfolios banks are able to calculate the amount of MCRR needed to 

meet bank supervisory requirements.5 An additional contribution of the present research 

paper is the estimation and evaluation of MCRRs using both types of volatility forecasts with 

asymmetries (backward-looking vs. forward-looking). 

Among the main objectives of the present research document is to extend the research 

of Hsieh (1991) and Brooks, Clare and Persand (2000) in two dimensions. One is that 

MCRRs are estimated for futures contracts of the S&P 500 and the IPC. The other one is a 

formal analysis of empirical applications of ARCH-type models and option implied 

volatilities, which both include asymmetric volatility effects. In addition, the present 

                                                 
4 According to Brooks, Clare and Persand (2000) the most well-known methods are the Standard/International 

Model Approach of the Basel Accord (1988), the Building-Block Approach of the EC Capital Adequacy 

Directive (CAD), the Comprehensive Approach of the Securities Exchange Commission (SEC) of the US, the 

Pre-commitment Approach of the Federal Reserve Board (FED) and the Portfolio Approach of the Securities 

and Futures Authority of the UK. 
5 According to Basel Bank Supervision Requirements of 1988, banks have to hold capital (as a precautionary 

action) at least three times the equivalent to the VaR for a time horizon of 10 trading days at the 99% confidence 

level. There are no significant changes to this rule in the Basel II and III accords. The only change is that for 

repo-notes the time horizon must be 5 trading days. The interested reader can consult the previously mentioned 

information at the BIS webpage: http://www.bis.org/publ/bcbs107.htm 
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estimations do have implications for stock index level forecasts, given that simulations are 

carried out with certain statistical confidence levels. By considering a similar methodology 

as the one used in Hsieh (1991) and Brooks, Clare and Persand (2000), it is possible to have 

an idea of the future levels of both stock indices (S&P500 and IPC) with certain statistical 

confidence. For example, if a 95% confidence level VaR with a time horizon of one month 

is applied, it is possible to quantify the range of possible stock index level values one-month 

ahead, again, with 95% statistical confidence. Along the same lines, it is possible to quantify 

the probability of observing extreme values, i.e. those outside the 95% interval in a 

parametric and non-parametric distribution. The former is achieved with one-step ahead 

volatility forecasts from a parametric model (ARCH-type) whilst the latter is achieved by 

applying bootstrap simulation methods. 

 Furthermore, rigorous statistical accuracy tests for estimating VaR are carried out 

between ARCH-type models vs. IV following Kupiec (1995) backtesting tests. These will 

include an asymmetric volatility adjustment in them. The latter considers the number of 

violations or exceptions that occurred within the confidence intervals, i.e. the number of 

times the realized observed value was outside the relevant forecast range or confidence 

interval. Therefore, the null and alternative hypotheses to test are the following,  

H0: ARCH-type and IV asymmetric volatility are not accurate to estimate VaR.  

H1: ARCH-type and IV asymmetric volatility are accurate to estimate VaR. 

Rejection of the null hypothesis will be in favor of asymmetric volatility modelling as being 

superior in terms of higher volatility forecasting accuracy for the VaR model. In order to test 

the null hypothesis, the results will be analyzed, again, according to the backtesting 

methodology (Kupiec: 1995; Jorion: 2001; Nieppola: 2009). These findings contribute new 

knowledge to the existing academic literature given that volatility asymmetries are included 

in estimation techniques in order to have a more accurate measure of financial risk. These 

results could be of interest of agents involved in risk management decisions related to stock 

index forecasts, i.e. private bankers, financial analysts, financial institutions management, 

policy makers, investors, futures traders, central banks, academic researchers, among others. 

In particular, this topic could be of interest to policymakers in countries that have relatively 

high stock market volatility, as is more common in emerging economies.  
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III. The Models 

III.1 Volatility Models 

III.1.1 ARCH-Type (GARCH-Symmetric) Specification 

The volatility of the time series under analysis is estimated with historical data. A 

well-known model within the family of ARCH-type models is the univariate Generalized 

Autoregressive Conditional Heteroscedasticity, GARCH(p, q) model. This is an extension of 

the ARCH(q) model, in the sense that the ARCH model is nested in the GARCH model. The 

GARCH(p, q) model is estimated by applying the standard procedure as explained in 

Bollerslev (1986) and Taylor (1986).6 The formulae for the GARCH(p, q) are presented 

below. For the model there are two main equations. These are the conditional mean equation 

and the conditional variance equation:   

Conditional mean equation,  

 

                                                                   yt = μ + et                                                    (1) 

          et It-1 ~ N(0, σ2
t),  

 

and the conditional variance equation, 
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where yt are the first differences of the natural logarithm (logs) of the series under analysis 

at time t (the futures-index), et is the error term at time t, It-1 is the information set at time t-

1, σ2
t is the conditional variance at time t. μ, ω, i, i are parameters and it is assumed that 

the log returns are normally distributed. In other words, assuming a constant mean μ (the 

                                                 
6 The ARCH-type models presented in the present research paper were estimated using Eviews computer. 
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mean of the series Δyt), the distribution of et is assumed to be Gaussian with zero mean and 

variance σ2
t. The parameters are estimated using a maximum likelihood methodology 

applying the Marquardt algorithm.7  

Considering that the assumption of normality of the residuals stated above usually 

does not hold, the Bollerslev and Wooldridge (1992) methodology is used in order to estimate 

consistent standard errors. The estimators under the previously mentioned procedure are then 

statistically robust and obtained from Quasi-Maximum Likelihood Estimation. Thus, the 

coefficients are robust even if the normality assumption is not met by the data.8 The estimated 

coefficients can be used for statistical inference if they are statistically significant 

(statistically different from zero) and meet the conditions that the sum of the  +  < 1 

(otherwise, if the latter does not hold the series are considered explosive or, equivalently, 

non-mean reverting, which are undesirable properties when forecasting financial series, 

Taylor: 1986). 

 

III.1.2 Threshold GARCH (GARCH-Asymmetric) Model  

Another model used in this paper is the Threshold GARCH model, also known as 

TARCH. It was postulated by Glosten, Jaganathan, and Runkle (1993) and Zakoïan (1994). 

Compared with the GARCH(p, q) model, the specification of the TARCH model involves an 

additional term in the variance equation, that captures the asymmetric dynamics of the price-

returns: 
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where I’t = 1 if εt < 0 and 0 otherwise. εt represents an innovation (error term). The intuition 

for this model is that bad news εt < 0 will have a different impact on the conditional variance 

compared to good news εt   > 0.9 In case of good news, the impact is on αi for bad news the 

                                                 
7 This algorithm modifies the Gauss-Newton algorithm by adding a correction matrix to the Hessian 

approximation. This allows handling numerical problems when the outer products are near singular, thus 

increasing the chance of improving the convergence of the parameters. 
8 For more details about Quasi-Maximum Likelihood Estimation the interested reader can refer to Bollerslev 

and Wooldridge (1992). 
9 Good news refers to news that increase financial assets returns. Bad news is the opposite. 
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impact is on αi + δi. If δi > 0 and is statistically significant, there will be a higher increase in 

volatility driven by bad news. If δi ≠ 0, then the news impact is asymmetric. This model is 

normally used for estimating stock price volatility considering the leverage effect on stocks.10 

For the case of the stock-index futures, the asymmetric TARCH model is applied.  

  

III.1.3 Option-Implied Volatility (IV) Model 

In this research paper, option implied volatilities provided by the Chicago Mercantile 

Exchange and MexDer are used. These are the VIX (option implied volatility index), which 

is an implied volatility for one-month ahead, and the VIMEX, which is the equivalent 

volatility index for the Mexican stock index for the same maturity. The option-implied 

volatility of an underlying asset is the market’s forecast of its volatility and this is obtained 

with the options written on that underlying asset (Hull: 2013). To calculate an option implied 

volatility of an asset, an option valuation model is needed as well as the inputs for that model, 

such as the risk-free rate of interest, time to maturity, price of the underlying asset, the 

exercise price and the price of the option. An inappropriate valuation model will produce 

pricing errors and the option implied volatilities will be mismeasured (Harvey and Whaley: 

1992). For example, a valuation model that does not consider the early exercise privilege of 

an American option to find the option implied volatilities from American options will 

produce errors in the calculations, i.e. using the Black and Scholes (1973) model to find the 

option implied volatilities from American options (henceforth, the BS model).11  

To obtain the aforementioned implied volatility indices, the relevant derivatives 

exchanges use an approximation valuation method similar to the one widely known to price 

options, i.e. the BS. For completeness, an explanation of the BS is given next. The 

assumptions made for this model are: 1) Interest rates are non-stochastic, which means that 

                                                 
 
10 The leverage effect on stocks refers to asymmetric volatility considering that a bear market sentiment has 

higher price volatility when compared with a bull market sentiment. In a bear market higher uncertainty about 

the cash flow stream could cause the stock price to decrease and the company increases its leverage ratio, which 

is undesirable (Brooks: 2013). 
11 The Black-Scholes option valuation model is for European-style options. These options do not have the early 

exercise privilege that American-style options do have. 
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the forward is equal to the futures price; 2) there are no-arbitrage profits, 3) all options are 

European; 4) agents are risk-neutral; 5) there are no transaction costs, and 6) the prices follow 

a Geometric Brownian Motion. The BS for exchange rates is stated formally in Equation 10 

below. 

                                            c = Se-rfTN(d1) – Xe-rTN(d2)   ,                                                  (4) 
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Tdd  12 , where c is the value of the European call option, T represents the time to 

maturity of the option, N(x) is the cumulative probability distribution function, which is 

assumed to be normally distributed (in other words, the probability that a variable with a 

standard normal distribution, ψ(0, 1) will be less than x). The exercise price is represented by 

X, ln(·) is the natural logarithm function and σ is the asset’s volatility measured as its 

annualized standard deviation. The other variables are the same as previously defined. To 

find the relevant implied volatility the model is inverted to solve for σ given a market 

(observed) price for the option. 

III.2. The Value-at-Risk (VaR) Model 

The Value-at-Risk or VaR model is a useful measure of risk.12 It was developed in 

the early 1990s by the JP Morgan Corporation. According to Jorion (2001) ‘VaR summarizes 

the expected maximum loss over a target horizon with a given confidence interval.’ Even 

though it is a statistical figure, most of the times VaR estimates are presented in monetary 

terms. The intuition is to have an estimate of the potential change in the value of a financial 

asset resulting from systemic market changes over a specified time horizon (Mohamed: 

2005). It is also normally used to obtain the probability of losses for a financial portfolio of 

futures contracts. Assuming normality, the VaR estimate is relatively easy to obtain from 

GARCH models. For example, for a one trading day 95% confidence interval VaR, the 

                                                 
12 Value at Risk is normally abbreviated as VaR. The lower case ‘a’ letter differentiates this abbreviation to that 

of Vector Autoregressive Models, which are usually abbreviated as VAR (with a capital A). 
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estimated GARCH standard deviation (for the next day) is multiplied by ±1.645. If the 

standard deviation forecast is, say, 0.0065, the VaR is approximately 1.07%, looking at the 

positive tail of the distribution. To interpret this result, it could be said that an investor can 

be 95% sure that she will not lose more than 1.07% of asset or portfolio value in that specific 

day. However, a problem with the parametric approach is that if the observed asset returns 

depart significantly from a normal distribution the applied statistical model may be incorrect 

to use (Dowd: 1998). 

As mentioned, when using VaR models it is necessary to make an assumption about 

the distribution of the returns. Although normality is often assumed for price returns series, 

it is known in practice that this assumption is highly questionable (Mandelbrot: 1963, Fama: 

1965, Engle: 1982, 2003). If the daily returns are divided by the (adjusted) TARCH standard 

deviations, the new series will have a constant volatility with a non-normal distribution 

(Engle: 2003). For these ‘standardized residuals’ or ‘de-volatized returns’ the kurtosis must 

be above normal, thus a non-normal distribution is assumed in the VaR. The volatility 

asymmetries estimated within the TARCH model allow for this non-normality. This method 

will be considered here for the estimation of VaR for time horizons of one trading day. 

However, there is also another approach which will also be applied in this project for time 

horizons of more than one trading day. This is explained next. 

For time horizons of more than one trading day (ten, and twenty trading days), the 

bootstrapping methodology of Efron (1982) is applied.13 The fact that the returns of the series 

are non-normally distributed motivates the use of a non-parametric procedure such as 

bootstrapping. The procedure used in Hsieh (1993) and Brooks, Clare and Persand (2000) is 

considered here. In the latter, they empirically test the performance of that VaR model for 

futures contracts traded in the London International Financial Futures Exchange (LIFFE).14 

                                                 
13 The bootstrap is a resampling method for inferring the distribution of a statistic, which is derived by the data 

in the population sample. This is normally estimated by simulations. It is said to be a nonparametric method 

given that it does not draw repeated samples from well-known statistical distributions. Alternatively, a Monte 

Carlo simulation draws repeated samples from assumed statistical distributions. In this research project the 

bootstrap methodology was implemented using Eviews.  
14 These futures contracts were the FTSE-100 stock index futures contract, the Short Sterling contract and the 

Gilt contract. 

 



12 

 

A similar paradigm is applied here for stock-indexed futures contracts. Thus, a hypothetical 

portfolio of stock-indexed futures is considered and MCRRs are estimated.15 These estimated 

MCRRs values for the stock index futures portfolio are compared to the observed (historical) 

inflation. This analysis allows the evaluation of how accurate are the ARCH-type models in 

terms of estimating MCRRs for stock-indexed futures. Another objective is to analyze the 

performance of these in terms of how accurate they are for providing an upper threshold for 

the stock index, i.e. the statistical chances that the stock index will be high enough to be 

outside the upper (positive) confidence interval. 

In order to calculate an appropriate VaR estimate it is necessary to find out the 

maximum loss that a position might have during the life of the futures contract. In other 

words, by replicating via the simulations (bootstrapping) the daily values of a long futures 

position it is possible to obtain the possible loss during the sample period. This will be given 

by the lowest replicated value. The same reasoning applies for a short position. But in that 

case the highest possible loss will be given by the highest replicated value.16 Following 

Brooks, Clare and Persand (2000) and Brooks (2013) the formula is as follows. The 

maximum loss (L) is given by 

                              L = (P0 – P1) * Number of contracts                                         (5)              

where P0 represents the price at which the contract is initially bought or sold; and P1 is the 

lowest (highest) simulated price for a long (short) position, respectively, over the holding 

period. Without loss of generality it is possible to assume that the number of contracts held 

is one. Algebraically:  

                                            











0

1

0

1
P

P

P

L
.                                                             (6) 

                                                 
15 In finance textbooks it is common to see that the theoretical futures (forward) price is expressed in continuous 

time, (Hull: 2013, pg. 46): F0 = S0erT. Where F0 is the current futures (or forward) price, S0 is the current spot 

price, e equals the e(·) function, r is the risk-less rate of interest per annum expressed with continuous 

compounding and T is the time to maturity in years. For the previous formula it is assumed that the underlying 

asset pays no income. For the research purposes of this project F0 equals the observed stock-index futures price 

as reported by CME and MEXDER (in discrete time) and S0 equals the observed stock index spot price, taken 

from a Bloomberg terminal. 
16 As it is well known in futures market payoffs that decreases in futures prices mean losses for long positions 

and increases in futures prices mean losses for short positions. 
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Given that P0 is a constant, the distribution of L will depend on the distribution of P1. It is 

reasonable to assume that prices are lognormally distributed (Hsieh: 1993), i.e. the log of the 

ratios of the prices are normally distributed. However, this assumption is not considered here 

given that empirical distributions of the series under study are not normal. However, the log 

of the ratios of the prices is transformed into a standard normal distribution following J.P. 

Morgan Risk-Metrics (1996) methodology. This is done by matching the moments of the log 

of the ratios of the prices’ distribution to a distribution from a set of possible ones known 

(Johnson: 1949). Following Johnson (1949) a standard normal variable can be constructed 

by subtracting the mean from the log returns and then dividing it by the standard deviation 

of the series, 

                                                              












0

1ln
P

P

.                                                        (7) 

The expression above is approximately normally distributed. It is known that the 5% lower 

(upper) tail critical value is -1.645 (+1.645).  

From Equation 6 the following can be expressed as 

                                                         645.1exp1
0P

L
                                           (8) 

when the maximum loss for the long position is obtained. For the case of finding the 

maximum possible loss for the short position the following formula applies: 

                                                        1645.1exp
0

 
P

L
.                                            (9)    

The MCRRs of the short position can be interpreted as an upper threshold for the 

stock index. By the same reasoning the MCRRs of the long position can be interpreted as a 

lower threshold for the stock index.  

The simulations were performed in the following way. The GARCH and TARCH 

models were estimated with the bootstrap using the standardized residuals from the whole 

sample (instead of residuals taken from a normal distribution as was written in Equation 1). 

The stock index variable was simulated, for the relevant time horizon (10 and 30 trading 

days) with 10,000 replications. The formula used was 𝑌𝑡+1 = 𝑌𝑡𝑒𝑟𝑇(where Y is the futures 
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price, rT are the underlying asset’s returns for time T, from an ARCH-type (GARCH, 

TARCH) model and the rest of the notation is the same as specified above). From the futures 

price indices simulations, the maximum and minimum values were taken in order to have the 

MCRRs for the short and long positions respectively. 

 

IV. Data 

IV.1. Data Sources 

It is known that the US capital market is a relatively large and liquid market. In 

contrast the Mexican capital market is relatively smaller and less liquid. These different types 

of markets may give light about differences between capital markets (investments) between 

developed and developing stock markets within a VaR framework. In the present research 

project, stock index volatility for both the US Standard & Poors 500 Index (S&P500) and 

Mexico ‘Índice Nacional de Precios y Cotizaciones’ (IPC) are analyzed using their respective 

daily stock futures indices. The methodology is carried out for futures prices of both stock 

indices. The data consists of daily spot and futures closing prices of the IPC and S&P indices 

obtained from MEXDER and CME respectively.17 Table 1 shows the contract specifics for 

each of the underlying assets under analysis. The sample period under analysis consists of 

more than two years of daily data for a time frame from 3rd January 2016 to 30th December 

2019. The sample size consists of 889 daily observations. The sample period was chosen 

considering the most recent data available in Bloomberg, which for IPC futures is from 

January 2016. The sample size of 889 observations is considered large enough for the 

estimation task at hand. These types of derivative contracts have daily trading and daily data 

is commonly publicly available. Given that the time horizon for these simulations is relatively 

short (up to one month ahead) there is no need for a larger sample size. The futures contracts 

for the Mexican IPC have delivery dates for up one year and a half ahead. The periodicity of 

the maturities of the contracts is four times within one year and the delivery months are 

                                                 
17 The MEXDER web page is http://www.mexder.com.mx/MEX/paginaprincipal.html 

The CME webpage is https://www.cmegroup.com/trading/equity-index/us-index/sandp-500.html 

 

http://www.mexder.com.mx/MEX/paginaprincipal.html
https://www.cmegroup.com/trading/equity-index/us-index/sandp-500.html
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March, June September and December. The MEXDER is relatively new compared to other 

derivatives exchanges around the world. It began operations in December 1998, whilst 

Chicago started in 1848.  

 

IV.2. Data Transformation 

When creating a time-series of futures prices a significant number of researchers use 

the prices of the futures contract closer to maturity or the one with higher trading volume.18 

These procedures have the inconvenience of creating a pattern of ‘jumps’ in the price series 

when switching prices from one futures contract to another.19 This type of ‘jumps’ is 

unrealistic according to the market’s price dynamics. Even though ‘jumps’ are observable in 

futures prices, there is usually no clear pattern. In order to avoid these unrealistic ‘jumps’ 

when creating a time-series of futures prices from different contracts (Pelletier, 1983; Wei 

and Leuthold: 1998), synthetic futures prices were created.20 These were calculated by a ‘roll-

over’ procedure that is basically an interpolation of futures prices from different maturity 

futures contracts (Herbst et. al. 1989, Kavussanos and Visvikis: 2005). This procedure creates 

a constant maturity weighted average futures price based upon the futures prices and the days 

to maturity of the two nearby expiration contracts. The formula used to obtain the synthetic 

futures price is shown in Equation 10 below:21 
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where SYNT is the synthetic futures price for delivery at T, Fj is the contract j futures price 

expiring at Tj, Fi  is the contract i futures price expiring at Ti, T equals 30, the chosen constant 

                                                 
18 Even though futures contracts can be used to hedge financial risk it is common to observe that, in some cases, 

there is not an optimal demand for them. For example, see Benavides and Snowden (2006) for details. 
19 For a good reference about the mechanics of futures markets the reader could refer to Fink and Feduniak 

(1988). 
20 The synthetic futures prices were calculated using the Visual Basic for Applications computer language. 
21 The terms synthetic futures price and futures price are taken to be synonymous for the rest of this paper. 
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maturity in number of days, Ti is the contract i expiration in days remaining, Tj is the contract 

j expiration in days remaining, j = i + 1, with Ti ≤ T  ≤ Tj. 

The time to expiration of the synthetic futures prices calculated is T equals 30 days. 

This means that a constant 30-day maturity synthetic futures price was calculated. This is 

considered an appropriate time-to-expiration given that a shorter time-to-expiration could 

have higher expected volatility. This situation is observed in empirical research papers, which 

have found that volatility in futures prices increases as a contract gets closer to expiration 

(Samuelson: 1965). This could be the case for futures contracts of less than 30 days 

remaining. A higher expected volatility due to time-to-expiration could bias the results of 

this analysis. It is also possible to increase the maturity of the futures price if needed and we 

could always have a greater maturity contracts available for comparison. 

 

V. Descriptive Statistics 

This section presents the descriptive statistics for the daily (observed) volatilities of 

the IPC and S&P500 spot and futures returns. The volatility forecast from the models is also 

presented. Prior to fitting the GARCH and TARCH models shown in the graphs, an ARCH-

effects test was conducted for the series under analysis. This was done in order to see if these 

types of models are appropriate for the data (Brooks: 2002). The test conducted was the 

ARCH-LM following the procedure of Engle (1982).22 According to the results both series 

under study have ARCH effects. Under the null of homoscedasticity in the errors the F-

statistics were 8.04 for the spot and 4.00 for the futures prices of the IPC (the critical value 

is 2.21 for 5 restrictions, 877 degrees of freedom). Both statistics clearly reject the null in 

favour of heteroscedasticity on those errors. For the S&P 500 the results were qualitatively 

                                                 
22 These tests were conducted by using ordinary least squares, regressing the logarithmic returns of the series 

under analysis against a constant. The ARCH-LM test is performed on the residuals of that regression. The test 

consists on regressing, in a second stage regression, the square residuals against constant and lagged values of 

the same square residuals. The square residuals are a proxy for the variance. The null hypothesis is that the 

errors are homoscedastic. An F-statistic was used in order to test the null. The test was carried out with different 

lags 2 to 10. All have the same qualitative results. Only the cases for 5 lags are reported in the main text above, 

given the common practice in the literature for daily data, in which there could be seasonality effects or ‘day of 

the week effects’ with that frequency of the data. Thus, five trading days can take into consideration the 

previously mentioned situation. 
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similar, indicating heteroscedasticity on those errors dynamics (F-statistics were 21.75 for 

the spot and 21.79 for the futures prices of the S&P500). Therefore, it is consistent to apply 

ARCH-type models to the data.  

Figure 1 presents the logs of the spot and futures prices of the IPC and their respective 

daily volatilities for the time frame under analysis.23 It can be observed that the futures price 

is usually above the spot price. This could be an indication of the expected inflation reflected 

in futures prices (Working: 1958). Also, it can be observed that the futures volatility is 

considerably higher than the spot volatility (Samuelson: 1965). Figure 2 presents the logs of 

the spot and futures prices of the S&P500 and their respective daily volatilities for the 

relevant sample period. The graph is qualitatively different to that one for the IPC, given that 

it is not clear that futures price is usually above the spot price, which gives insights of a 

‘normal backwardation’ market (the spot price being above the futures price). It is sometimes 

the case that markets show ‘normal backwardation’ and it is related mostly to random events 

(Working: 1958). The difference between both indices may be related to the liquidity and 

trade volume, which is significantly larger for the S&P500. Also, there is a clear trend in the 

S&P500 series, which is not seen for the IPC. 

According to Zivot (2009) it is possible to test for asymmetric effects analyzing the 

returns of the sample series. If rt
2 and rt-1 have a negative correlation coefficient (statistically 

different from zero) then there are asymmetric effects (also known as ‘leverage effects’). For 

the series under study these are -0.0634 and -0.0989 for the spot and futures respectively IPC 

series and -0.1570 and -0.2089 for the spot and futures respectively S&P500 series.24 Given 

that there are asymmetric effects the TARCH model explained above will be applied in the 

following estimations. Tables 2 and 3 show the parsimonious specifications GARCH(1,1) 

and TARCH(1,1) for the IPC and S&P500, respectively. These models were chosen 

according to results obtained from information criteria (Akaike Information Criterion and 

Schwarz Criterion tests). The model parameters were positive and most of them statistically 

                                                 
23 The daily volatility is simply defined as the absolute value of the log-return. 
24 The relevant t-statistics for these estimated coefficients are -4.95 and -7.61 for the IPC and -9.33 and -6.80 

for the S&P500, which clearly rejects the null hypothesis of the estimated coefficients being equal to zero at 

the 1% significance level. 
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significant at the 5% level. The sum of α1 + β1 was less than one. Diagnostic tests on the 

models were applied to ensure that there were no serious misspecification problems. The 

Ljung-Box statistic in the Autocorrelation Function was applied on the standardized residuals 

obtained from the forecast models (white noise test). This shows that these residuals are white 

noise by analysing the test statistic at the twelve lag, so these are i.i.d., which show no serious 

specification problems with the estimated models, considering that Portmanteau test. 

Table 4 shows the descriptive statistics for the daily volatility and the volatility from 

the forecasting models for the IPC and S&P500. As it can be observed, the means of the 

futures IPC series are the ones with higher values (the daily volatilities and the volatility 

forecasts). These findings are consistent with Figure 1 where the daily volatility of the futures 

was normally seen higher than the spot’s volatility. The distributions in that table are highly 

skewed and leptokurtic, indicating non-normality of the returns and the forecast estimates. 

This is consistent with the work of Wei and Leuthold (1998) that analyzed volatility in futures 

markets and had similar findings with daily futures price volatility for agricultural 

commodities. In terms of the S&P500, it can be observed that there is also clear evidence of 

time series (either for spot and futures prices) with a distribution different than the standard 

normal, given that the skewness and kurtosis values are different to zero and three 

respectively, which are the values for a standard normal distribution. In terms of comparing 

the IPC vs S&P500, it can be observed that the kurtosis for the latter is relatively larger to 

that of the former. This is an indication that for the time period under analysis the S&P500 

had more extreme (tails) events, compared with the IPC. 

Lastly, Figure 3 presents the observations of the daily IPC (top line) and the estimates 

of the volatility forecast models for the futures and spot series respectively (bottom lines). It 

can be observed in both graphs that the models captured the volatility clustering shown for 

the daily volatility. The implications of these forecasts are that they capture fairly well the 

dynamics of the IPC levels for both series under study. It is worthwhile to mention that the 

peaks observed in that graph coincide with financial volatility periods: the FED increase of 

its target interest rates, Brexit and the 2016 US elections. That is, the GARCH(1,1) and 

TARCH(1,1) models show forecasts that predict high volatility when in fact the actual IPC 

level was low and predict low volatility when the actual IPC level was high. The forecasts 



19 

 

are relatively consistent in terms of capturing the dynamics for basically all the days in the 

sample. Similarly, Figure 4 shows the same type of information for the S&P500 series. As it 

can be observed in Figure 4 the results are qualitatively similar the ones obtained for the IPC 

series. The peak values coincide for both series in relation with the events of the FED 

increasing its target interest rate. 

 

VI. Results 

VI.1 Parametric Method  

Once the next-day volatility estimate is obtained, the 95% confidence intervals are 

created by multiplying ±1.96 by the forecasted conditional standard deviation (from the 

GARCH and TARCH model). An analysis is made about the number of times the observed 

IPC spot return was above that 95% threshold (a violation or an exception). Figure 5 shows 

the spot IPC returns and the futures confidence intervals constructed with the GARCH model. 

It can be observed that the IPC spot returns were mostly within the 95% confidence level for 

the daily forecasts. However, for the GARCH model there were violations in 14 days, which 

represent 2.75% of the total number of observations. Considering that a 95% confidence level 

is applied, the model should not exceed the VaR more than 5% (Jorion: 2001) and should not 

be far below from 5% or it will be overestimating the VaR. Figure 6 shows the same IPC 

spot returns but with confidence intervals constructed with the asymmetric volatility model 

(TARCH model). For this case the number of violations is 27, which represents 5.29% of the 

total number of observations.  

In order to analyse the accuracy of both methodologies the Kupiec test (1995) is 

applied. This test chcks if the number of exceptions is consistent with the chosen confidence 

level. The null hypothesis is in favour of the model ‘being accurate’, by having statistically-

speaking relevant number of exceptions considering the confidence level. As explained in 

Dowd and Blake (2006), in order to carry out the Kupiec test, only 3 inputs are needed. Using 

the same notation as in Dowd and Blake (2006) these are (c) the confidence level chosen, (x) 

the number of exceptions or violations and (T) the total number of observations. The null 
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hypothesis for the aforementioned Kupiec test is 𝐻0: 𝑝̂ = 𝑝 =
𝑥

𝑇
, where 𝑝̂ is the relevant 

exception rate (observed with the estimated model) and p is the suggested failure rate 

according to the statistical table. This test follows a χ2 distribution and it has a likelihood-

ratio form (LR) as follows (Dowd and Blake: 2006), 

                           𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = −2𝑙𝑛 (
(1−𝑝)𝑇−𝑥𝑝𝑥

[1−(
𝑋

𝑇
)]

𝑇−𝑥
(

𝑥

𝑇
)

𝑥).                                    (11) 

 The Kupiec test, as explained by Jorion (2000) and Dowd and Blake (2006), and 

having one degree of freedom for the χ2 the critical value is 3.84 is applied. The non-rejection 

region (interpolating) for 889 observations (Kupiec: 1995) is 16 < x < 36. So the GARCH 

model is rejecting the null hypothesis of having a correct model. The asymmetric volatility 

model (TARCH model) is not rejecting the relevant null hypothesis in favour of a ‘correct’ 

model. According to Equation 11 the Kupiec test statistic for the GARCH model is 6.5284, 

which clearly rejects the null of the ‘correct’ model (6.5284>3.8401). The TARCH model 

(asymmetric model) has a Kupiec test statistic of 0.0851, which clearly does not reject the 

null of the ‘correct’ model (0.0851<3.8401). So it is possible to conclude that for these 

estimations the asymmetric model is superior to the symmetric model in terms of risk 

management analysis. 

For the S&P500 the results are qualitatively similar. Figures 7 and 8 present the 

relevant estimations with the GARCH and TARCH models respectively. It can be observed 

that the S&P500 spot returns were mostly within the 95% confidence level for the daily 

forecasts. However, for the GARCH model there were exceptions for 15 days, which 

representing 2.94% of the total number of observations (Figure 7). In Figure 8 the same 

S&P500 spot returns but with confidence intervals constructed with the asymmetric volatility 

model (TARCH model) are presented. For this case the number of violations is 55, which 

represents 6.27% of the total number of observations. Again, according to Equation 11 the 

Kupiec test statistic for the GARCH (S&P500) model is 5.35, which clearly rejects the null 

of the ‘correct’ model (5.35>3.84). The TARCH model (asymmetric model) has a Kupiec 

test statistic of 1.59, which clearly does not reject the null of the ‘correct’ model (1.59<3.84). 
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So it is possible to conclude that for these estimations the asymmetric model is superior 

compared to the symmetric model in terms of risk management analysis. 

The likelihood ratio (LR) type tests include the null in favour of the traditional non-

asymmetric type models. Rejection of the null will be in favour of the asymmetric ARCH-

type and models and option implied volatilities. The n-day ahead forecast horizon is also 

interpreted as the probability that the future stock market level will be within certain 

statistical confidence interval, i.e. the 95% confidence interval. It is then expected that these 

results can also give forecasts of the future (expected) U.S. and Mexican stock index level, 

which could also have implications for investment-decision making. According to the results 

we can see the LR in favour of the asymmetric modelling.  

 

VI.2 Bootstrapping Simulations 

The methodology to carry out the simulations was explained in Section III above.  

Tables 5 and 6 present the VaR for the bootstrap simulations performed in the IPC and 

S&P500 futures series respectively. The numbers of n-days ahead considered in the 

simulations were 10 and 30 trading days. The simulations were done applying the 

GARCH(1,1), TARCH(1,1) and an option implied volatility measures. The simulations were 

conducted for 10,000 replications. For each replication the lowest, highest and the average 

were taken from time series to separate matrices (low, average, high). In order to obtain the 

MCRR for the long position, the relevant observations from the low value matrix were 

considered. The same applies for the short position, but for that case, the matrix with the 

highest values were considered. This follows the logic that for long positions price decreases 

(low values) are risks for potential losses and for short positions price increases (high values) 

are risk for potential losses. 

Considering the fact that the IPC spot returns have autocorrelation, it is necessary to 

do the bootstrap adjusting for this autocorrelated process. The procedure postulated by Politis 

and Romano (1994) is applied here. This is basically a method in which the autocorrelated 

returns are grouped into non-overlapping blocks. For this case the size of these blocks is fixed 
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during the estimation.25 With the bootstrap the blocks are resampled. During the simulation 

of the IPC spot prices the returns are taken from the resample blocks. The intuition is that if 

the autocorrelations are negligible for a length greater than the fixed size of the block, then 

this ‘moving block bootstrap’ will estimate samples with approximately the same 

autocorrelation structure as the original series (Brownstone and Kazimi: 2000). Thus, with 

this procedure the autocorrelated process of the residuals is almost replicated and it is 

possible to obtain a more accurate simulated IPC spot series. In addition, that standard 

procedure is common practice for similar types of estimations considering sample sizes and 

statistical dynamics of the series (Mader et. al.: 2013, Shao and Tu: 2012, Kosowski et. al. 

2006, Brownstone and Valleta: 2001).26 

From Table 5 it can be observed that for ten trading days long and short positions 

(third and fourth columns) the null hypothesis is rejected for the GARCH(1,1) model and not 

rejected for the TARCH(1,1) model during the simulated period from 19/12/2019 until 

30/12/2019. Not rejecting the null is in favor of the ‘correct’ model, so it can be observed 

that the asymmetric volatility model is superior to its counterpart. For completeness Figure 

9 show the relevant density obtained with the simulated process for the IPC. The expected 

value is 46,448.85, which refers to the level of the IPC expected for 30/12/19. Similar 

qualitative results to those of ten trading days are observed for S&P500 series. However, for 

that series the GARCH(1,1) estimations do reject the null. An explanation for these results is 

that the adjustment of the volatility forecast for asymmetric effects show a gain, statistically 

speaking, compared to not having the adjustment, as it can be observed for those estimations 

besides the GARCH(1,1). Figure 10 shows the relevant density for the S&P500, again, with 

the bootstrap simulation process. In this case the expected value for that stock index is 

                                                 
25 It is also possible to have random size blocks. For a more detailed explanation please refer to Politis and 

Romano (1994). 
26 Some part of the literature evidenced that for strongly dependent returns the use of block-bootstrapping fails. 

However, there is no consensus about it. Parts of the literature in which they advocate the statistical robustness 

of that block-bootstrapping methodology for some autocorrelated process, that are not specifically strongly 

dependent (See for example, Shao and Tu: 2012, Kosowski et. al. 2006, Brownstone and Valleta: 2001). The 

basic idea behind the latter is that there is a problem of observations in the same block being dependent in the 

bootstrap samples, but observations in different blocks are independent. The procedure carried out in the present 

research paper applies a moving block bootstrap, which is in line with that part of the literature. I am thankful 

to an anonymous referee for pointing out the problems of block-bootstrapping estimation. 
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2,621.74 for the 30/12/19. We can observe that for the 30-day ahead time horizon, besides 

the GARCH(1,1) estimations for the remaining models the null is not rejected showing that 

they are qualitatively similar in terms capturing the relevance between asymmetric and 

symmetric models. This is true for 1-day and 10-day ahead VaR estimations. For both cases 

we can observe gains that range from 4 to around 150 basis points of minimum capital risk 

requirements (VaR). However, a word of caution must be made. Clare et. al (2002) argue 

about the possibility of the volatility persistence in the series, that are sometimes observed in 

ARCH-type, estimations may overestimate the VaR. Further research for other financial 

assets, i.e. exchange rate, interest rates, commodity prices in addition to the possibility of 

expanding the present analysis to include stochastic volatility estimations as well as for 

different periods is encouraged.   

 

VII. Conclusions  

 In the present research we analyze volatility asymmetries in stock indices with 

superior performance and more Kupiec-accurate forecasts than those obtained through 

symmetric models within a Value-at-Risk (VaR) framework. We estimate three main 

volatility forecasts models: a backward looking ARCH-type model, a forward-looking 

option-implied volatility model, and VaR models with volatility asymmetries. The results 

show that VaR models with asymmetries provide superior estimates relative to the same 

model without asymmetries. The empirical case is for the Mexican Stock Index and the S&P 

500 Index daily future prices from 2016 to 2019. According to the estimated results, the null 

hypothesis about ARCH-type and Option-implied asymmetric volatility being not accurate 

to estimate VaR was rejected in favor of modelling VaR models with volatility asymmetries. 

Thus, there is a statistical gain in terms of applying an asymmetrical volatility model within 

a VaR (Risk Management) framework. Thus, it is concluded that it is important to carry out 

asymmetric volatility forecasts within VaR models in order to obtain more accurate risk 

measures. Our findings are in line with the literature, regarding the relevance of taking into 

account volatility asymmetries as we show sizeable improvements when comparing 

estimates of symmetric volatility VaR models to those obtained in both backward and 
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forward- looking forecasts models. The referred gains range from 4 to around 150 basis 

points of minimum capital risk requirements (VaR). It is documented the relevance of taking 

into account volatility asymmetries for both broad volatility estimation methodologies, 

backward- vs. forward-looking.   
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Appendix 

TABLE 1 IPC AND S&P 500 FUTURES CONTRACT SPECIFICATIONS 

Underlying asset IPC (Índice de Precios y Cotizaciones). S&P 500 Index 

Exchange MexDer.  CME Globex.  

Settlement The value of the IPC is multiplied by $100 
MXN 

$250 USD x S&P 500 Index 

Symbol IPC. SP 

Maturity months Every month for the following twelve 
months and every quarter afterwards. 

CME Globex: One month in the 
March Quarterly Cycle (Mar, 
Jun, Sep, Dec). 

Price limits There are no price limits. 7%, 13%, and 20% price limits 
are applied to the futures fixing 
price and are effective from 
8:30 a.m. CT – 3:00 p.m. CT. 
Mondays through Fridays. 

Negotiations 
mechanics 

Electronically through the MEXDER’s 
electronic trading system. 

Electronically through CME 
Globex (Electronic Platform: 

Trading hours Weekdays from 7:30 until 15:00 hrs 
Mexico City time. 

CME Globex:  
Sunday – Friday: 6:00 pm – 
5:00 pm New York Time/ET . 

Marking-to-
market 

Applies according to the rules established 
by MEXDER. Daily profit/losses are daily 
by the clearinghouse. 

Applies according to the rules 
established by CME. Daily 
profit/losses are daily by the 
clearinghouse 

Minimum price 
fluctuation  

First trading day (non-holiday) following 
the last trading day. 

0.10 index points=$25 

     This table presents detail information about the IPC and S&P500 futures contracts. MXN = 
Mexican pesos (Mexican currency). The source of the information is MEXDER and CME. The web 
page where this information was obtained is: 
http://www.mexder.com.mx/MEX/Contratos_Futuros.html (the information is also available in 
English) and https://www.cmegroup.com/ 
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TABLE 2 VOLATILITY ESTIMATES (VARIANCE EQUATION) OF THE DAILY SPOT 

AND FUTURES PRICES OF THE IPC 

GARCH(1, 1) Spot Futures TARCH(1,1) 
Spot 

Futures 

a0 1.49 x 10-4

(3.06 x 10-4)

6.13 x 10-6

(2.25 x 10-6)**

1.25 x 10-5

(3.75 x 10-6)***

5.01 x 10-6

(1.75 x 10-6)**

a1 0.1899 

(4.42 x 10-2)***

0.1322 

(3.28 x 10-2)***

0.2097 

(6.09 x 10-2)***

0.0689 

(2.76 x 10-2)**

b1 0.5802 
(0.0915)*  

0.7731 
(0.0398)** 

0.5830 
(0.0957)** 

0.823 
(0.0379)** 

δ N/A N/A 0.00045 
(0.0007)** 

0.1194 
(0.0415)** 

L 1,802.52 1,686.40 1,806.95 1,690.67 
Q(12) 18.26 12.08 19.18 14.82 

Q2(12) 14.87 12.83 13.69 48.65 

N   889   889  889   889 
 This table reports parameter values of the GARCH(1,1) and TARCH(1,1) models. Standard errors 
are shown in brackets. L represents the log likelihood of the estimation. The rows showing Q(12) and 
Q2(12) are the Ljung-Box statistic for standardized residuals and standardized residuals squared
respectively, which has a c2 distribution with 5 degrees of freedom. The critical value is 21.02 at the
5% level. N represents the sample size. The sample size consists of daily data from June 2016 to 
December 2019. Source: Bloomberg and Banco de México. 
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TABLE 3 VOLATILITY ESTIMATES (VARIANCE EQUATION) OF THE DAILY SPOT 

AND FUTURES PRICES OF THE S&P500 

GARCH(1, 1) Spot Futures TARCH(1,1) 
Spot 

Futures 

a0 4.58 x 10-6

(7.93 x 10-4)***

4.38 x 10-6

(5.75 x 10-7)**

4.29 x 10-6

(6.19 x 10-7)***

3.65 x 10-6

(4.43 x 10-7)***

a1 0.1751 
(0.0288)* 

0.2470 
(0.0280)** 

-0.0235
(0.0246)

0.0027 
(0.0281)* 

b1 0.7356 
(0.0389)* 

0.6771 
(0.0337)** 

0.7589 
(0.0369)** 

0.7314 
(0.0255)** 

δ N/A N/A 0.3184 
(0.042)** 

0.1301 
(0.0495)** 

L 1,877.20 1,912.22 1,919.93 1,919.51 
Q(12) 8.23 8.613 7.23 7.73 

Q2(12) 3.87 3.83 2.45 3.433 

N 889  889 889 889 
 This table reports parameter values of the GARCH(1,1) and TARCH(1,1) models. Standard errors 
are shown in brackets. L represents the log likelihood of the estimation. The rows showing Q(12) and 
Q2(12) are the Ljung-Box statistic for standardized residuals and standardized residuals squared
respectively, which has a c2 distribution with 5 degrees of freedom. The critical value is 21.02 at the
5% level. N represents the sample size. The sample size consists of daily data from June 2016 to 
December 2019. Source: Bloomberg, Banco de México, Fred Database. 
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TABLE 4 DESCRIPTIVE STATISTICS FOR THE DAILY VOLATILITY OF THE  SPOT 

AND FUTURES IPC THE FORECASTING MODELS 

Model/Series 

IPC/S&P500 

Mean Std. Deviation Skewness Kurtosis N 

Spot daily 5.54 x 10-3 4.99 x 10-3 2.3350 14.33 889 

volatility series 

4.34 x 10-3 1.28 x 10-3 2.7614 14.75 889 

Futures daily 6.88 x 10-3 6.32 x 10-3 2.1365 10.15 889 
volatility series 

4.53 x 10-3 5.65 x 10-3 3.4085 23.36 889 

GARCH(1,1) 5.44 x 10-5 3.79 x 10-5 6.9702 79.36 889 

model for the 
spot series 4.36 x 10-5 3.69 x 10-5 6.6691 79.23 889 

GARCH(1,1) 9.11 x 10-5 5.87 x 10-14 2.3384 9.15 889 
model for the 
futures series 9.13 x 10-5 5.29 x 10-14 2.3719 11.39 889 

TARCH(1,1) 5.57 x 10-5 3.89 x 10-5 6.9191 79.87 889 

model for the 
spot series 4.92 x 10-5 2.24 x 10-5 4.7726 31.63 889 

TARCH(1,1) 9.15 x 10-5 5.86 x 10-5 2.4319 11.98 889 
model for the 
futures series 5.18 x 10-5 2.36 x 10-5 5.7714 46.84 889 

This table reports the descriptive statistics of the daily volatility and the volatility forecasting 
models for the daily IPC and S&P 500spot and futures returns. The sample size is 889 daily 
observations (adjusted sample 888 daily observations) from 19th June 2016 to 30th December 2019.
N = Number of observations. Source: Bloomberg, Banco de México, Fred Database. 
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TABLE 5 VaR FOR THE IPC FUTURES PORTFOLIO OBTAINED WITH 

BOOTSTRAPPING SIMULATIONS 

Model VaR t-day 
horizon (trading 
days) 

Minimum 
capital risk 
requirement 
long position 

Minimum 
capital risk 
requirement 
short position 

Kupiec-test 
outcome 

GARCH(1,1) 
TARCH(1,1) 

10 trading days 
(from 
19/12/2019 until 
30/12/2019). 

8.23% 

8.27% 

3.74% 

3.85% 

Reject 
the null 

Do not 
reject 
the null 

GARCH(1,1) 30 trading days 
(from 
30/11/2019 until 
30/12/2019). 

15.85% 

15.24% 

9.83% 

5.34% 

5.47% 

4.96% 

Do not 
reject 
the null 
Do not 
reject 
the null 
Do not 
reject 
the null 

TARCH(1,1) 

Implied 
volatility 
(VIMEX) 

This table presents the results of the bootstrap simulations. 10,000 replications were applied 
to simulate the IPC price. The time horizons are 10 and 30 trading days. IPC futures prices are used 
for this table. The models applied are GARCH(1,1), TARCH(1,1) and the Implied Volatility 
(VIMEX). The Kupiec-test outcome refers to the statistical test (result) as explained in Kupiec 

(1995).  The sample size is 889 observations from 17th June 2016 to 30th December 2019.
Source:Bloomberg and Banco de México. 
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TABLE 6 VaR FOR THE S&P500 FUTURES PORTFOLIO OBTAINED 

WITH BOOTSTRAPPING SIMULATIONS 

Model VaR t-day 
horizon (trading 
days) 

Minimum 
capital risk 
requirement 
long position 

Minimum 
capital risk 
requirement 
short position 

Kupiec-test 
outcome 

GARCH(1,1) 
TARCH(1,1) 

10 trading days 
(from 
19/12/2019 until 
30/12/2019). 

6.25% 

5.92% 

11.35% 

11.71% 

Reject 
the null 

Do not 
reject 
the null 

GARCH(1,1) 30 trading days 
(from 
30/11/2019 until 
30/12/2019). 

11.99% 
10.26 % 
10.43% 

12.84% 

13.51% 

11.44% 

Reject 
the null 

Do not 
reject 
the null 
Do not 
reject 
the null 

TARCH(1,1) 

Implied 
volatility (VIX) 

This table presents the results of the bootstrap simulations. 10,000 replications were applied 
to simulate the S&P500 price. The time horizons are 10 and 30 trading days. S&P500 futures prices 
are used for this table. The models applied are GARCH(1,1), TARCH(1,1) and the Implied Volatility 
(VIX). The Kupiec test outcome refers to the statistical test (result) as explained in Kupiec (1995). 
The sample size is 889 observations from 17th June 2016 to 30th December 2019. Source: Bloomberg
and Banco de México. 
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FIGURE 1 LOG FUTURES AND SPOT IPC AND THEIR DAILY  

VOLATILITIES (RIGHT AXIS CORRESPONDS TO THE DAILY VOLATILITIES) 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 2 LOG FUTURES AND SPOT S&P500 AND THEIR DAILY  

VOLATILITIES (RIGHT AXIS CORRESPONDS TO THE DAILY VOLATILITIES) 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 3 IPC INDEX AND SPOT AND FUTURES DAILY VOLATILITIES 

(LEFT AXIS CORRESPONDS TO THE DAILY VOLATILITIES) 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 4 S&P500 INDEX AND SPOT AND FUTURES DAILY VOLATILITIES 

(LEFT AXIS CORRESPONDS TO THE DAILY VOLATILITIES) 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 5 IPC SPOT RETURN AND 95% CONFIDENCE LEVEL OF THE  

VaR CONSTRUCTED WITH IPC FUTURES PRICES – GARCH (1,1) MODEL 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 6 IPC SPOT RETURN AND 95% CONFIDENCE LEVEL OF THE  

VaR CONSTRUCTED WITH IPC FUTURES PRICES – TARCH (1,1) MODEL 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 7 S&P500 SPOT RETURN AND 95% CONFIDENCE LEVEL OF THE 

VaR CONSTRUCTED WITH S&P FUTURES PRICES – GARCH (1,1) MODEL 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 8 S&P500 SPOT RETURN AND 95% CONFIDENCE LEVEL OF THE VaR 

CONSTRUCTED WITH S&P FUTURES PRICES – TARCH (1,1) MODEL 

Source: Own estimation with data from Bloomberg and Banco de México. 
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FIGURE 9 IPC FUTURES RETURN BOOTSTRAPPING AND 95% CONFIDENCE LEVEL 

OF THE VaR CONSTRUCTED WITH THE TARCH (1,1) MODEL (Kernel, Bandwith=309.7) 

 

 

Source: Own estimation with data from Bloomberg and Banco de México. 

 

FIGURE 10 S&P500 FUTURES RETURN BOOTSTRAPPING AND 95% CONFIDENCE LEVEL 

OF THE VaR CONSTRUCTED WITH THE TARCH (1,1) MODEL (Kernel, Bandwith=25.55) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own estimation with data from Bloomberg and Banco de México. 


