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1 Introduction

Up to the outset of the Global Financial Crisis in the summer of 2007, the covered interest
rate parity (CIP) was among the most reliable relations in international finance. Events that
unfolded subsequently seem to have lasting effects on said relation. Significant measured de-
viations from CIP in the foreign exchange (FX) markets for “reserve” currencies crosses with
the US Dollar (USD) have been the norm, rather than the exception. The CIP is a cornerstone
of international finance, a bellwether of market efficiency, and is used, for example, to price
forward contracts, hence, informing on liquidity conditions prevailing in the FX market. As
outlined by Levich (2017), deviations from CIP have motivated a growing literature aiming to
answer questions such as: (i) What happened to CIP? (ii) What is behind the larger disparity
in CIP? (iii) What does it mean for pricing of assets that rely on the CIP being satisfied?

Levich (2017) also posed the following, perhaps subtler, question: “Are the CIP devia-
tions we see today only ‘measured deviations’ bounded within a neutral band that captures all
the costs and risks of arbitrage?” This paper proposes to answer this question by estimating
the size of the neutral band, thus complementing the extant literature in addressing questions
(i) to (iii). It has been long acknowledged that deviations from CIP may be present while
satisfying the absence of arbitrage opportunities, as long as they are contained within the
neutral band. The width of said band is, in turn, determined by a number of factors, such as
transaction costs, risk aversion, and uncertainty. This paper estimates the width of the neutral
band for three FX markets with a high volume of transactions according to BIS (2016): Two
markets that relate “reserve” currencies, Sterling (GBP-USD) and Euro (EUR-USD), and one
market from an Emerging Market Economy, Mexican Peso (MXN-USD). These FX markets
have displayed persistent deviations from CIP in the years 2008-2017.

Literature on estimating the band around deviations from CIP has focused on different
periods of the 20th century. Seemingly absent from this literature, however, is a measure
of the width of the corresponding neutral band for the post Global Financial Crisis period.
These studies have focused on estimating the band around deviations from CIP using either of
two approaches. First, the “counting” approach which entails declaring the upper- and lower-
limits of the neutral band as the levels of deviations such that 95% of the measured deviations
are contained. The second approach is based on econometric estimates of the values at which
a change of regime in or out the neutral band is determined. This paper synthesises the two
approaches by estimating the neutral band as the one-step-ahead 95% density forecast for
deviations from CIP.

The main difference between this paper and previous work estimating the neutral band,
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most notably Peel and Taylor (2002), is the following. Instead of testing if deviations from
CIP are within given fixed estimates of the upper- and lower-bounds of the neutral band, the
focus here is on determining if the majority of observed deviations from CIP are replicable
by a model in which arbitrage is absent. That is, if deviations from CIP are a Martingale
process.

Every found paper focusing on the post-Global Financial Crisis period can be motivated
by questions (i)-(iii) listed above. None, however, embarks on estimating whether deviations
from CIP are bounded within the neutral band that captures all costs and risks of arbitrage.
The main contribution of this paper is the estimate of the neutral band for the period 2003-
2017 for the USD-GBP, USD-EUR, and USD-MXN pairs. Estimation is carried out with
interest rates for interbank debt for each currency pair.

The best model to estimate the neutral band, for each currency pair, is obtained from the
comparison between the baseline threshold autoregressive model and (i) a local-level model
with a time-varying mean (estimated through maximum likelihood and through Markov
Chain Monte Carlo); and (ii) a stochastic volatility model (where volatility is estimated by
forward-filtering-backward-smoothing and auxiliary particle filtering). The time-varying ap-
proach to estimation aims to model that not all deviations from CIP are caused by the same
factors as acknowledged by Levich (2017). The goodness of fit of each model is assessed
through the log-score and the probability integral transformation of the one-step-ahead den-
sity forecast, estimated in an expanding window sample.

Estimation of the neutral band as the one-step-ahead density forecast synthesises both the
“counting” and econometric approaches previously followed. The former is embedded by
taking the 95% density forecast, while the latter is embedded in the econometric methods
applied to obtain the density forecast. Risk, hedging demand, and changes in the institutional
framework may be reflected in a rise of uncertainty, which, in turn, is a determinant of the
width of the neutral band. Hence, by modelling explicitly the mean and volatility processes
underlying the CIP, a reliable estimate of the neutral band is obtained.

This estimation strategy has several advantages and desirable features. First, both the
local-level and the stochastic volatility models are representations of a Martingale process
(Shephard, 2013). In turn, it has been long-established that no-arbitrage is equivalent to
Martingale pricing (Duffie, 2010). Thus, if the models fit the observed data, there should be
no arbitrage and the CIP should be satisfied. Second, by identifying those observations that
violate the Martingale property, a narrower focus on explaining deviations from CIP may be
undertaken in future work. The extant literature aims to explain these deviations (possibly a
discrete-process) with continuous omitted variables. Third, estimating and forecasting with
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an expanding window, replicates the way market participants assess time-varying transaction
costs and risk which are permanently changing. Finally, the models are suited to deal with
financial data collected at high frequency.

Results show that the stochastic volatility models fit the data better, both in- and out-of
sample. Hence, these models produce best neutral band estimates according to the log-score
statistic and the probability integral transformation computed from the predictive likelihood
functions. Unlike the local level and threshold autoregressive models, the neutral band es-
timates increase in periods of domestic or global financial stress. Moreover, the stochastic
volatility model is able to replicate that arbitrage opportunities are short-lived since deviations
from CIP outside the neutral band estimate are scattered through the sample. In contrast, the
local level and threshold autoregressive models yield a neutral band which implies long-lived
(clustered) arbitrage opportunities. The neutral band implied by these models is implausi-
bly large, since the estimated levels during and post-Global Financial Crisis are remarkably
similar.

The paper is organised as follows. The rest of this section contains a brief literature
review. In Section 2 theoretical foundations of the CIP are briefly reviewed and there is also
discussion on how the neutral band around deviations from CIP treated in this paper, along
with the data, are presented. The econometric analysis is contained in Section 3, wherein a
detailed explanation of the methods used to estimate the neutral band is provided, along with
the results from estimation and both the log-score and probability integral transformation
evaluation of the density forecast is provided. Section 4 presents some concluding remarks.

The following notation conventions are used extensively in the rest of the paper: x =

{xt}nt=1 is a sequence of random variables with n elements; an element of the sequences is
always indexed by time as xt. An estimate of xt conditional on the information available at
period t− 1, Ft−1, is written as xt|t−1.

Literature Review

A comprehensive literature review on the CIP and estimation of the neutral band deserves a
great amount of detail and space, hence, it is beyond the scope of this paper. Such a review
may be found in Levich (2017) and Claessens and Kose (2018). Closely related work to this
paper, however, is briefly surveyed. Peel and Taylor (2002) and Levich (2017) trace the first
efforts to estimate the neutral band back to Keynes (1923). Theory on the existence of the
neutral band may be found in Einzig (1967), Branson (1969), Frenkel (1973) who labelled
it, and Deardorff (1979). Estimations for the GBP-USD based on the “counting” approach
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described above were carried out by Frenkel and Levich (1975, 1977); Taylor (1987); and
Clinton (1988).

Frenkel and Levich (1975, 1977) analyse the GBP-USD during the period 1962-1975
finding a neutral band within a 0.126 - 1.03 per cent per annum range. They estimate trans-
action costs associated to exploit deviations from CIP. In particular, they measure the costs
of arbitrage as the sum of costs in the foreign exchange and costs in the market for securities.
The former are measured through the neutral band by establishing the upper and lower limits
as those in which 95% of the deviations from triangular arbitrage are contained. The latter are
measured by the bid-ask spread and the brokerage fee. They conclude that data are consistent
with the CIP, even when the analysis is made across exchange rate regimes. Indeed, they also
conclude that it might be preferred to classify periods in terms of financial turbulence, rather
than exchange rate regime. To obtain transaction costs from triangular arbitrage, an underly-
ing assumption is that the cost structure remains constant in each regime. This assumption is
relaxed in the present paper.

Taylor (1987) analyses the pairs USD-GBP, USD-Deutsche Mark, and GBP-Deutsche
Mark in daily data collected 11-13 November, 1985. Taylor uses high frequency, contempo-
raneously sampled, quotes of interest rates and exchange rates, both spot and forward. He
then recurs to a “counting” rule to determine if arbitrage opportunities existed in the sample.
Findings point towards the existence of profitable opportunities in the 0-8 per cent of obser-
vations, contingent on the exchange rate and the maturity of the security used. This approach
for estimating the neutral band is synthesised within the econometric approach in this paper.

Clinton (1988) analyses the exchange rates relating USD-GBP, USD-Canadian Dollar,
USD-Deutsche Mark, USD-French Franc, and USD-Japanese Yen in the period November
1985-May 1986. Clinton sets out to analyse the costs of foreign exchange swaps, not con-
sidered in previous work. Clinton argues that these are the only relevant costs, since foreign
exchange swaps are key determinants in pricing forward contracts. His estimates are based
on the minimum of two possible bounds. The first is the one-way arbitrage advocated by
Deardorff (1979), while the second is given by round-trip covered arbitrage. He estimates
percentile boundaries of the neutral band in the same way as did Frankel and Levich, finding
that a majority of deviations from CIP are within the 0.02-0.15 per cent per annum range.
The present paper includes indirectly the role of the FX swaps, since arbitrage opportunities
are in effect dislocations between a synthetic swap and the interest rate differential.

The earliest found estimation of the neutral band based on econometric techniques is
Branson (1969) for the currency pairs USD-GBP and USD-Canadian Dollar for the period
1954-1964. In both cases, the estimated neutral band is 0.18 per cent per annum. Using
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ordinary least squares, Branson estimates the average deviations from CIP. He then labels
said estimate as the average cost of transaction that an arbitrageur incurs when entering the
transactions required to take advantage of an arbitrage opportunity. A key difference with
respect to the present paper is the use of time-varying econometric methods to obtain neutral
band estimates.

Peel and Taylor (2002) estimate the neutral band by testing econometrically the validity of
the Keynes-Einzig Conjecture, which may be stated as a two-part proposition: (i) Deviations
from CIP in the USD-GBP market between 1922 and 1925 will trigger arbitrage, only if the
expected realised gain is larger than 1/2 per cent per annum. (ii) Deviations from CIP will
dissipate only gradually since supply of funds is not perfectly elastic. The empirical analysis
is carried through a single-equation estimate of the neutral band obtained with a threshold
autoregressive model (TAR). This model allows to estimate three regimes for deviations from
CIP. The upper and lower regimes satisfy the proposition since the estimation suggests the
process is mean reverting outside a threshold of 1/2 per cent per annum. The mid regime
satisfies the no-arbitrage condition since its behaviour resembles that of a Martingale process.
A cointegrating multivariate TAR confirms these findings. Unlike the analysis presented in
this paper, TAR estimates a neutral band that is fixed in time.

Juhl et al. (2006) use a TAR to analyse the USD-GBP pair for the Gold Standard period
in 1880-1914, much in the spirit of Peel and Taylor (2002), to estimate the transaction costs
which prevented arbitrage from taking place. They find evidence of a threshold for the pe-
riods 1880-1914 and 1897-1914 in the range 0.748 - 0.803 per cent per annum, whereas no
threshold is found in the period 1880-1896.

As previewed above, and unlike this paper, literature analysing the CIP after the Global Fi-
nancial Crisis has focused on explaining the recent behaviour of the CIP and finding possible
causes of seemingly large observed deviations from the parity. That is, aiming to find an omit-
ted variable. In the context of “reserve” currencies, the main candidate explanations are an
increase in counterparty risk (Baba and Packer, 2009; Ivashina et al., 2015; Liao, 2016); liq-
uidity constraints (Mancini-Griffoli and Ranaldo, 2011; Levich, 2012; Avdjiev et al., 2017);
changes in attitudes towards risk reflected in changes in demand for hedging assets (Borio
et al., 2016; Sushko et al., 2016; Cenedese et al., 2017); and changes in regulation (Du et al.,
2018).

With respect to deviations from CIP observed in Emerging Markets, Mexico in particu-
lar, on the one hand Carstens (1985) and Khor and Rojas-Suarez (1991) study dislocations
between long-run equilibrium conditions and observed exchange rate in a peg exchange rate
regime. Analysis of the post Global Financial Crisis in Hernandez (2014) and Bush (2019),
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on the other hand, suggests that liquidity constraints and risk are among the causes of ob-
served deviations from CIP. These papers do not provide estimates of the neutral band for
Mexico, however.

2 Covered Interest Parity

This section formally introduces the CIP and describes the transactions needed to arbitrage
away any deviations from it. In particular, two forms of arbitrage are defined, round-trip arbi-

trage as labelled by Levich (2017) and described typically in international finance literature,
and one-way arbitrage according to Deardorff (1979). Definitions and notation that allow
the modelling of the neutral band around deviations from CIP, follow. The section concludes
with a description of the data used in the empirical analysis.

2.1 Risk-less Arbitrage

Assume momentarily that transaction costs are zero, there is no risk, and supply of funds
for market participants is perfectly elastic. Let St be the spot exchange rate and let Ft→k be
the forward rate agreed at period t with maturity of k years. Also, let it→k and i∗t→k be the
interest rate on a (zero-coupon) bond with maturity of k years denominated in USD and a
foreign currency, respectively. Throughout the paper both St and Ft→k are measured as USD
per 1 unit of the foreign currency. Assuming individuals can always borrow in USD in order
to invest in foreign bonds and the absence of financial frictions and costs, the CIP predicts

Ft→k
St

=
1 + it→k
1 + i∗t→k

. (2.1)

There are at least two sets of market participants that may exploit deviations in (2.1),
(i) those in search of a profit, thus engaging in round-trip arbitrage; and (ii) those with
future commitments denominated in foreign currency who aim to minimise the costs of the
currency conversion, thus engaging in one-way arbitrage. Note that participants in one-way
arbitrage will enter transactions related to the FX spot or future market with certainty, whereas
transactions to exploit round-trip arbitrage opportunities are only engaged if profits are large
enough to compensate any transaction costs or risks. Details on each form of arbitrage are
given below.
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Round-trip Arbitrage

In round-trip arbitrage, a market participant holds the same currency before and after a se-
quence of transactions. For example, assume St and Ft→k are measured in USD per 1 GBP.
Assume further that

Ft→k
St

(1 + i∗t→k) > 1 + it→k. (2.2)

An investor borrowing B USD for k years at a rate it→k, can buy B/St GBP. Then, B/St
GBP are lent at an interest rate i∗t→k. Simultaneously, the investor enters a forward contract
promising to deliver (1 + i∗t→k)B/St GBP after k years in exchange for Ft→kB(1 + i∗t→k)/St

USD. As a result, the investor holds Ft→kB(1 + i∗t→k)/St USD and he has promised to
pay back B(1 + it→k). Since (2.2) holds, the investor will have made a (risk-less) profit:
B (Ft→k(1 + i∗t→k)/St − (1 + it→k)) USD.1

One-way Arbitrage

In one-way arbitrage, a market participant will need a known amount of foreign currency at a
future date, hence, holding one currency before entering arbitrage transactions and a second
one after. An example is now provided. An investor holds USD knowing that he will have to
deliver C∗ GBP in k years; he aims to minimise the amount C of USD invested to obtain C∗.
He then faces two alternatives represented by

C1

St
(1 + i∗t→k) = C∗, and (2.3)

C2

Ft→k
(1 + it→k) = C∗, (2.4)

this is, the investor is looking at a cost minimisation decision C = min {C1, C2}. In al-
ternative (2.3), the investor buys C1/St GBP in the spot market and invests the proceeds in
a GBP security, yielding at maturity C∗ GBP. In alternative (2.4), the investor buys a USD
denominated security and enters a future contract in which he will receive C∗ in exchange
for C2(1 + it→k) USD in k years. Note that, if (2.1) holds, then C1 = C2. If, however, (2.2)
holds, then C2 < C1, and the investor chooses (2.4).

1Assuming that the inequality sign in (2.2) is reversed, an investor borrowing B GBP for k years at a rate
i∗t→k, can buy StB USD. Then, StB USD are lent at an interest rate it→k. Simultaneously, the investor enters a
forward contract promising to deliver B(1 + it→k)St USD after k years in exchange for B(1 + it→k)St/Ft→k

GBP. As a result, the investor holds B(1 + it→k)St/Ft→k GBP and he promises to pay back B(1 + i∗t→k).
Since the inequality is reversed in (2.2), the investor will have made (a risk less) profit equal to: B((1 +
it→k)St/Ft→k − (1 + i∗t→k)) GBP.
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Deviations from CIP and the Neutral Band

If the assumptions of zero transaction costs, no risks, and perfect elasticity of funds supply
hold, theory predicts that, should a situation where (2.2) presents, for example, then (2.1)
will be re-established by arbitrage. Indeed, as argued by Deardorff (1979), either form of
arbitrage works to prevent permanent, or even exploding, deviations from CIP. In particular,
one-way arbitrage implies that there is no-clustering of CIP deviations outside a valid neutral
band.

Round-trip arbitrage implies the neutral band is not constant or even persistent, since it
is only triggered if deviations are large enough to compensate for costs and risk incurred
by market participants. In reality, (2.1) rarely holds exactly, in large part because the afore-
mentioned assumptions are not satisfied. Keynes (1923) acknowledged two caveats related
to the CIP proposition. First, arbitrageurs would demand a minimum profit that compensate
the costs and risks inherent to the transaction. The second caveat asserts that CIP deviations
would not be corrected entirely and instantaneously by transactions in the FX futures market,
since supply of funds for market participants is not perfectly elastic.

To discipline the analysis, notation similar to that from Peel and Taylor (2002) is intro-
duced. Consider the following approximation to expression (2.1)

Pk
Ft→k − St

St
= it→k − i∗t→k,

where Pk adjusts to annual terms the (annualised) forward premium. Further, let deviations

from CIP be represented by dt→k, and let the forward premium be represented by Φt→k =

Pk
Ft→k−St

St
, hence:

dt→k = Φt→k − it→k + i∗t→k. (2.5)

If transaction costs and risks are present, and the supply of funds for market participants
is not perfectly elastic, dt→k = 0 may not hold exactly. Literature in international finance
has long-acknowledged the latter. Indeed, previous work reviewed above declares that the
CIP is satisfied as long as dt→k is bounded within a neutral band, wt→k. If the observed
deviation from CIP is within the neutral band (i.e. profits are smaller than the minimum
required), round-trip arbitrageurs would not enter the sequence of transactions with certainty.
If the observed deviation from CIP is larger than the required minimum profit, then the CIP
deviation is outside the neutral band and arbitrageurs take up on the opportunity.

The magnitude of wt, in turn, is determined by costs and risks inherent to arbitrage trans-
actions, and availability of funds for said transactions. Formally, let bU,t and bL,t be the upper
and lower limits, respectively, of dt→k so that wt→k = bU,t→k − bL,t→k, at period t. In periods
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of financial stress, Levich (2017) acknowledged that wt increases. An immediate conse-
quence of the latter is that its values are conditional on daily available information. The wt,
however, can only be estimated from observed data, an endeavour undertaken below.

International finance literature has estimated bU,t and bL,t with either (i) a rule of thumb,
whereby these values are such that 95% of observed financial deviations are contained; or
(ii) non-linear econometric techniques that estimate thresholds, out of which dt→k does not
satisfy the Martingale property. Both techniques may be seen as backward-looking in that the
neutral band estimate is determined once a sequence of dt→k is observed. Moreover, neutral
band and arbitrage opportunities are modelled as occurring simultaneously. This approach is
therefore omitting the timing of decisions made by market participants.

Consider the following sequence of events, which more closely resembles what goes on
within a bank that aims to take advantage of arbitrage opportunities. Before entering any
arbitrage activity, the market participant knows bU,t and bL,t, possibly estimated by a risk-
management department. That is, risk management ought to estimate bU,t and bL,t before any
arbitrage transaction takes place at period t. The latter makes the last observed deviation from
CIP the best starting point for producing a forecast, as opposed to the theoretical zero value.
Moreover, note that the “counting” approach to estimation of wt discussed above resembles
the Value-at-Risk methodology.

Formally, let {Ft}nt=1 be the filtration containing any information available up-to time t.
Note that Ft contains both observable information in the data, as well as any unobservable
that is inherent to the bank or the industry. Assume further that {dt→k}nt=1 is adapted to
{Ft}nt=1. Conditional on both the described timing framework and the “counting” approach,
it is immediate that bU,t and bL,t satisfy

p (dt→k > bU,t→k|Ft−1) = p (dt→k < bL,t→k|Ft−1) = 0.025, (2.6)

where p (·|Ft−1) is a predictive distribution for dt→k, conditional on available information at
t − 1, Ft−1. Note that this is equivalent to stating that bU,t and bL,t are particular values of
a density forecast. Hence, a necessary condition to estimate wt is having an estimate of the
density forecast, p̂ (·|Ft−1). This is the task undertaken in the next section, after describing
the data used in the paper.

2.2 Data

Data used in the empirical analysis are sampled on a weekly frequency, as in recent studies
(Du et al., 2018). In particular, synchrony in collected data in measuring deviations from CIP
is very important. If an investor were to compute said deviations with miss-matched data he
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would be making decisions described in Section 2.1 based on either a forward premium that
is no longer available to take advantage of the interest rate differential, or vice-versa.2

To address the synchrony requirement, end-of-day data observed on Tuesday are used.
Moreover, this reduces the number of observations that coincide with holidays, which take
place mostly on Mondays or Fridays -which would limit, in turn, the use of daily data. It
also avoids some biases observed in financial markets, such as “settlement Wednesdays”
(Piazzesi, 2010).3 Data are obtained from Bloomberg, unless otherwise stated.

Spot and 3-month forward exchange rate for the crosses GBP-USD, EUR-USD, and
MXN-USD are used to compute the forward premium Φt. Interest rate differentials are com-
puted using the interbank lending 3-month interest rates, which is the most common maturity
used in the literature (Ivashina et al., 2015; Cenedese et al., 2017; Avdjiev et al., 2017; Sushko
et al., 2016), Du et al. (2018).4 This is the natural starting point as it embodies the costs that
banks face to fund themselves. In particular, LIBOR in GBP, Euribor, and Mexican Equilib-
rium Interbank Rate (obtained from Banco de México) vis-á-vis LIBOR in USD are used.5

Sample covers from January 7th, 2003 to December 26th, 2017 for a total of 782 ob-
servations. In all cases, deviations from CIP are computed using (2.5). Since all data used
throughout the paper have 3-month maturity (i.e. k = 1/4 hence Pk = 100 · 4), in what
follows the index “→ k” is omitted. The 3-month maturity is the one used in most of the
previous studies that estimate wt (Frenkel and Levich, 1975, 1977; Peel and Taylor, 2002).
For ease of exposition, the following discussion is divided into three periods: pre-, during-
and post-Global Financial Crisis (GFC).

US Dollar-Sterling Cross

Deviations from CIP in the GBP-USD FX market are shown in Figure 1 where it can be seen
that, pre-GFC period, the CIP behaved according to the theory outlined above. During the
GFC, which started in July 2007 and ended in 2010, the marked distinct behaviour of d is

2Taylor (1987) discusses the possible biases in measuring deviations from CIP at different times or dates.
3Moreover, conducting test for “Day of the week effect” following Solnik and Bousquet (1990); Dubois

and Louvet (1996); Berument and Kiymaz (2001); Gregoriou et al. (2004) suggests that only data collected in
Tuesday is free from bias for all the crosses considered in this paper.

4By using weekly sampled data the percentage of lost data because is not registered in a given Tuesday is
1.8, 1.5, and 4.6 for the GBP, EUR and MXN, respectively. For daily data, in turn, the percentage of lost data is
3.1, 3.3, and 8.87.

5For analysis made with sovereign rates in the Appendix, 3-month maturity sovereign bonds in domestic
currency are used. In particular, yields from the yield curve for the Gilts, German sovereign bond (obtained
from both Bloomberg and the Bank of England), and Mexican CETES (obtained from Banco de México),
vis-á-vis yields from the US Government yield curve.
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straight forwardly related to financial stress events such as: the dried liquidity conditions in
Europe for mortgage-backed-assets in July 2007; the Bear Sterns buyout in March 2008; the
Lehman Brothers failure in September 2008; and the AIG bail-out shortly after.

The Figure reflects how d returned only gradually to pre-GFC levels during 2009, thanks
in large part to an unprecedented provision of liquidity by major central banks through dif-
ferent mechanisms. In the post-GFC period, beginning in 2010, the sovereign debt crisis in
Europe is evident in the Figure. This event was a latent source of financial stress up to mid-
2012. After this date, d is close to zero for a brief period between 2013 and 2015. Values
for dt observed near the date of the “Brexit” vote in June 2016 are the highest after the GFC.
Note finally that, in said period, d is non-negative.

US Dollar-Euro Cross

Deviations from CIP in the case of the EUR-USD shown in Figure 2 are markedly different
from those of the GBP-USD during and after the GFC, regardless of both currencies having a
“reserve currency” status. Indeed, in the pre-GFC period, d behaved according to the theory
outlined above. Disruptions in the CIP are only noticeable after the summer of 2007. In fact,
after this date, zero-valued deviations are rare. This is associated to the sovereign debt crisis
in Europe.

The non-conventional monetary policy followed by the European Central Bank (ECB) in
the 2010 - 2017 period is reflected in the behaviour of d. It is worth mentioning that, in ad-
dition to liquidity provision mechanisms, the ECB moved to imposing negative interest rates
on its deposit accounts with commercial banks. This, in turn, may be causing an increasing
trend starting in 2014 and peaking about the time of the “Brexit” vote. As in the GBP-USD
case, most values of d after 2007 are non-negative.

US Dollar-Mexican Peso Cross

Unlike the GBP or the EUR, the MXN is not considered a “reserve currency”. It is, however,
the second most traded Emerging Market currency according to data from the BIS (2016)
and it ranked first in the previous assessment in 2013. Figure 3 shows that, similarly to the
GBP and the EUR, behaviour of d for the MXN was only disrupted in July 2007. The largest
deviations from CIP, in absolute value, are recorded during the GFC, but the currency swap
programme implemented by the Federal Reserve contributed to stabilising d during 2009. De-
viations remained positive during and after 2010 with local peaks about the aforementioned
Greek debt crisis.
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The MXN has experienced several shocks during and post-GFC periods. Among these
were the “Taper-tantrum” in mid-2013, the oil-price slump in the second half of 2014, and
uncertainty around the prevailing trade conditions with the US and Canada, with the latter
stemming from the US presidential election campaign. Noticeably, it has returned to theo-
retical levels since 2016 with a second local peak at the end of 2016. The return to levels
predicted by theory is remarkable when compared to the GBP and the EUR cases where d
seem to be diverging from zero.

3 Econometric Analysis

This section describes the econometric approach that is used to estimate wt. First, a moti-
vation for treating deviations from CIP within the neutral band as a Martingale process is
provided. Indeed, the latter should serve as a benchmark for the validity of the estimate.
Then, the dynamic models to estimate wt are introduced. A discussion on the results from
estimation and model evaluation concludes the section.

3.1 Dynamics within the Neutral Band

As discussed in Section 2.1 arbitrage is the underlying activity that corrects deviations from
CIP. Data, however, rarely satisfy exactly (2.1), as shown in Figures 1-3. Thus, the focus here
is to estimate bU and bL (i.e. w) defined in Section 2. To discipline dynamics of the deviations
from CIP process, d, note that one-way arbitrage will be prevalent regardless of the level of
the deviation, whereas round-trip arbitrage will only be triggered at period t if dt > bU,t|t−1

or dt < bL,t|t−1 from (2.6). Hence, as argued by Deardorff (1979), the dynamics of d within
w are determined primarily by one-way arbitrage.

From asset pricing theory, in turn, if d is a Martingale process (i.e. the expected value
of dt conditional on information available in period s, with s ≤ t, is ds) then there exists
a Martingale Measure and, hence, the market for d is arbitrage-free.6 Should the latter be
satisfied, data would not object the validity of the w estimate. Herein lies the main differ-
ence between this paper and the work from Peel and Taylor (2002). Instead of testing if
bU,t|t−1 < dt < bL,t|t−1, for given (and fixed) values of bU,t|t−1 and bL,t|t−1, the focus here

6In particular, if the market is arbitrage-free, then there exists a Martingale measure with positive probabili-
ties from Theorem 6.2 in Cvitanić and Zapatero (2004), page 193. By a contrapositive argument, if the process
is not a Martingale, then there is no relevant Martingale measure, hence, the market is not arbitrage-free. The
definition of Martingale Measure may be found in page 189 of the same reference.
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is on determining if the majority of observations are replicable by a model of a Martingale
process.

3.2 Models

To determine if d may be replicated by a model of a Martingale process, the goodness of fit
is assessed by estimating the posterior predictive distribution of the data. Then, w is given by
bU and bL, which, in turn, are estimated as the q = 0.025 and 1− q quantiles, respectively, of
the one-step-ahead density forecast for d, p̂ (dt|Ft−1). Moreover, bU and bL are time-varying,
thus allowing to rationalise that restrictions on arbitrage are updated frequently in response
to developments in financial markets, presumably at each period t.

Two popular models, used to parametrise a Martingale process, are the local level model
(LLM) and the stochastic volatility model (SV) which, in turn, are discrete Euler approxima-
tions to processes represented by stochastic differential equations. The LLM has the attractive
feature of relying on a very small number of parameters, while the SV is able to represent
a large class of Martingale processes, as discussed in Shephard (2013). These models are
means to obtain p̂ (dt|Ft−1). The LLM is described in detail in West and Harrison (2006) and
is stated as

yt = mt + σuut, (3.1)

mt = mt−1 + σννt, (3.2)

where (3.1) is the observation equation, and (3.2) is the state equation, and where yt is the
first difference of dt, (ut, νt)

′ is a 2×1 vector of iid standard Gaussian random variables. The
objects to be estimated are the parameter vector ψ = (σu, σν)

′, and the latent process for the
time-varying mean m.

The SV, described in detail in Kim, Shephard, and Chib (1998), is given by

yt = exp (ht/2) εt, (3.3)

ht = µ+ φ (ht−1 − µ) + σηηt, (3.4)

where (3.3) is the observation equation, (3.4) is the state equation, h is the (log) time-varying
conditional variance, and (εt, ηt)

′ is a 2×1 vector of iid standard Gaussian random variables.
Within the SV the conditional variance process is modelled as a mean-reverting first-order
autoregressive process with mean µ. Mean reversion of variance is an established fact in
financial variables. Moreover, this process is assumed to be stationary, that is 0 < φ < 1.
The objects to be estimated in the SV model are the 3 × 1 parameter vector θ = (µ, φ, ση)

′,
and the latent process for the (log) time-varying conditional variance, h. Note in passing that
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the assumptions imply symmetry of the neutral band, but this may be relaxed.
The model used for estimating w in the literature is the threshold autoregressive model

(TAR) from Tong (1990) and Granger and Teräsvirta (1993), hence, the natural candidate for
a benchmark model. The TAR may be stated as,

dt =


αm + ρmdt−1 + σεεt if κL < dt−1 < κU ,

αu + ρudt−1 + σεεt if dt−1 ≥ κU ,

αl + ρldt−1 + σεεt if dt−1 ≤ κL,

(3.5)

where κU and κL are the estimated upper- and lower-threshold levels, εt is a standard Normal
random variable, and (αj, ρj, σε)

′ is a parameter vector for the mid, upper, and lower regimes
in (3.5). Note that the Martingale process arises as a particular case when (αm, ρm, σε)

′ =

(0, 1, σε)
′.

The density forecast function associated to LLM, SV, and TAR is Gaussian. Hence, esti-
mates of the forecast mean and variance are needed. These objects are defined by

p̂ (dt|Ft−1) = N
(
dt|t−1, Vt|t−1

)
, (3.6)

dt|t−1 = E (yt|Ft−1) + dt−1, (3.7)

Vt|t−1 = V ar (yt|Ft−1) . (3.8)

Since the TAR outcome depends on the estimates of κ ∈ {κU , κL} and is estimated in
levels, the moments of the density forecast function are indexed by dt|t−1,κ and Vt|t−1,κ.

3.3 Estimates

Estimation is made using an expanding window sample to account for the real-time feature
of bU and bL. The training sample goes from January 7th 2003 to November 30th 2004, 100
observations in total. It should be noted that no events causing financial stress were registered
through this period. Since inference is conducted by means of the density forecast defined
in (3.6), estimates of ψ, m, θ and h are required. In turn, note that the posterior simulators
detailed below produce ergodic sequences

{
ψ(j),m(j)

}M
j=1

,
{
θ(j), h(j)

}M
j=1

for each sample of
the expanding window. A discussion of each model, and the algorithms for estimation, are
now provided.

LLM-MLE

The Maximum Likelihood estimates for the LLM (LLM-MLE) described in expressions
(3.1)-(3.2) are a natural starting point for estimating a time-varying process as w. It is in-
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expensive, in terms of computation demands, and the recursive nature of the Kalman Filter
allows to include information updates and forecast errors in subsequent forecasts. Since the
outcome is a point estimate of the parameters and latent process, hence, trivially ergodic,
results obtained do not entirely reflect the uncertainty around estimation.7 The steps to obtain
the w estimate and the likelihood are as follows:

1. Define the training sample t = 1, . . . , t0 = 100.

2. Obtain MLE point estimates of ψ and m using the R package dlm provided by Petris
(2010).

3. Apply the Kalman filter using the dlm package, with ψ from previous step. Save the
predicted value dt|t−1 and its variance Vt|t−1 defined in (3.7) and (3.8).

4. Estimate p̂ (dt|Ft−1) by obtaining draws, d(j)t|t−1, fromN
(
dt|t−1, Vt|t−1

)
, j = 1, . . . ,M ,

with M = 104.

5. Compute the log-likelihood of the next observation being contained in the forecast
distribution as LPLt = 1/M

∑M
j=1 ln p̂

(
dt|d(j)t|t−1, Vt|t−1,Ft−1

)
.

6. Define bU,t|t−1, bL,t|t−1 as the 0.975 and 0.025 quantiles from (3.6), respectively, and
wt|t−1 = bU,t|t−1 − bL,t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

LLM-Bayesian

The Bayesian estimates for the LLM (LLM-Bayesian) described in expressions (3.1)-(3.2)
are obtained through Gibbs-Sampling. As in the LLM-MLE case, this estimate possesses the
advantages of being relatively parsimonious and those inherent to the Kalman Filter recur-
sions. Unlike the MLE, however, this algorithm is able to account for the uncertainty around
the estimates for ψ and m since the outcome is its posterior distribution. The cost incurred
comes in the form of computation demands. The (diffuse) prior distribution for the elements
of ψ is Inverse-Gamma with hyperparameters 2 and 0.0001, denoted as ψ ∼ IG(2, 0.0001).8

7Specification tests for the LLM-MLE models are constrained to the Ljung-Box Q statistic, since serial
correlation is the only relevant violation of assumptions for inference. The latter, in view of the relatively large
number of observations with respect to the number of parameters estimated. The test suggest that residuals
associated with the MXN-USD cross are the only displaying serial correlation.

8Graphical inspection of the posterior distribution of each element of ψ shows that chains mix relatively
well, serial correlation is negligible beyond the 5th draw and distributions are uni-modal.
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It should be noted that the size of the sample guarantees that the likelihood function (or
sampling distribution) will dominate the results, as opposed to estimations where prior distri-
butions are highly relevant in view of a small sample. The steps to obtain the w estimate and
the likelihood are as follows:

1. Define the training sample t = 1, . . . , t0 = 100.

2. Obtain the posterior distribution of ψ andm using the R package dlm provided by Petris
(2010) and the Forward-Filter-Backward-Sampling (FFBS) from Carter and Kohn (1994)
and detailed in Shumway and Stoffer (2017). Note that this is given by

{
ψ(j)

}M
j=1

with
M = 104 and a burn-in sample of 103. A relatively small burn-in sample may be
enough to avoid the effects of initial conditions as long as distributions involved in
estimation are not multi-modal, as suggested by Gelman et al. (2013).

3. Apply the Kalman filter using the dlm package, with each ψ(j) from previous step. Save
the predicted value d(j)t|t−1 and its variance V (j)

t|t−1 defined in (3.7) and (3.8).

4. Estimate p̂ (dt|Ft−1) by obtaining a draw from N
(
d
(j)
t|t−1, V

(j)
t|t−1

)
for each j.

5. Compute the log-likelihood of the next observation being contained in the forecast
distribution as LPLt = 1/M

∑M
j=1 ln p̂

(
dt|d(j)t|t−1, V

(j)
t|t−1,Ft−1

)
.

6. Define bU,t|t−1, bL,t|t−1 as the 0.975 and 0.025 quantiles from (3.6), respectively, and
wt|t−1 = bU,t|t−1 − bL,t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

SV-FFBS

The SV-FFBS is the SV described in expressions (3.3)-(3.4) and is estimated through Markov
Chain Monte Carlo (MCMC) methods proposed by Kim et al. (1998), using the same diffuse
prior distributions and hyperparameters. In particular the prior distributions are given by
σ2
η ∼ IG(5, 0.05); φ ∼ B(20, 1.5) (the Beta distribution); and µ ∼ N (0, 10).9 The prior

distributions and hyperparameters are chosen to guarantee that σ2
η > 0 and φ ∈ (−1, 1).10

9Each element of θ shows that chains mix well. Moreover, serial correlation is negligible and posterior
distributions are uni-modal.

10The parameter space for φ is bounded to guarantee that the volatility process is stationary, as suggested by
theory. This is analogous to the assumptions on parameter estimates required for stationarity in GARCH(1,1)
models in this regard.
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Smoothed series for volatility estimated through FFBS is used to obtain forecast density.
An advantage of modelling volatility as a (stochastic) time-varying process is the model’s
capability of identifying periods of high uncertainty. A caveat of this method for producing
forecasts is that every time a new observation is collected, the MCMC must be implemented
to obtain the posterior distribution of h. The steps to obtain the w estimate and the likelihood
are as follows:

1. Define the training sample t = 1, . . . , t0 = 100.

2. Obtain estimates for the posterior distributions of θ and h using the R package stochvol

provided by Kastner (2016). Note that this is given by
{
θ(j)
}M
j=1

and
{
h
(j)
t

}M
j=1

with

M = 104, a burn-in sample of 103, and t = 1, . . . , t0.

3. Estimate p̂ (dt|Ft−1) by obtaining a draw from N
(
d
(j)
t|t−1, V

(j)
t|t−1

)
for each j:

(a) Compute h(j)t|t−1 = µ(j) + φ(j)
(
h
(j)
t−1 − µ(j)

)
+ σ

(j)
η ηt, where ηt is a draw from

N (0, 1).

(b) Compute d(j)t|t−1 = y
(j)
t|t−1 + dt−1, where y(j)t|t−1 =

√
V

(j)
t|t−1εt, V

(j)
t|t−1 = exp

(
h
(j)
t|t−1

)
and εt is a draw from N (0, 1), defined in (3.7) and (3.8).

4. Compute the log-likelihood of the next observation being contained in the forecast
distribution as LPLt = 1/M

∑M
j=1 ln p̂

(
dt|d(j)t|t−1, V

(j)
t|t−1,Ft−1

)
.

5. Define bU,t|t−1, bL,t|t−1 as the 0.975 and 0.025 quantiles from (3.6), respectively, and
wt|t−1 = bU,t|t−1 − bL,t|t−1.

6. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

SV-APF

The SV-APF is also described in expressions (3.3)-(3.4) and is estimated through MCMC
methods as in the case of SV-FFBS using the same prior distributions and hyperparameters.
The posterior distribution of h is obtained using the Auxiliary Particle Filter (APF) proposed
by Pitt and Shephard (1999). This methodology also possesses the advantages inherent to
modelling volatility as a time-varying process. Unlike the SV-FFBS, SV-APF is able to more
efficiently accommodate the arrival of new information since it only relies on the last estimate
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of the volatility. This is due to the forward recursions of the APF. The steps to obtain the w
estimate and the likelihood are as follows:

1. Define the training sample t = 1, . . . , t0 = 100.

2. Obtain estimates for the posterior distribution of θ using the R package stochvol pro-
vided by Kastner (2016). Note that this is given by

{
θ(j)
}M
j=1

with M = 104, a burn-in
sample of 103, and t = 1, . . . , t0. Compute the posterior mean for each parameter,
obtaining θ̄.

3. Fixing parameters at θ̄, apply the APF and obtain
{
h
(j)
t

}M
j=1

with M = 104, and t =

1, . . . , t0.

4. Estimate p̂ (dt|Ft−1) by obtaining a draw from N
(
d
(j)
t|t−1, V

(j)
t|t−1

)
for each j:

(a) Compute h(j)t|t−1 = µ(j) + φ(j)
(
h
(j)
t−1 − µ(j)

)
+ σ

(j)
η ηt, where ηt is a draw from

N (0, 1).

(b) Compute d(j)t|t−1 = y
(j)
t|t−1 + dt−1, where y(j)t|t−1 =

√
V

(j)
t|t−1εt, V

(j)
t|t−1 = exp

(
h
(j)
t|t−1

)
and εt is a draw from N (0, 1) defined in (3.7) and (3.8).

5. Compute the log-likelihood of the next observation being contained in the forecast
distribution as LPLt = 1/M

∑M
j=1 ln p̂

(
dt|d(j)t|t−1, V

(j)
t|t−1,Ft−1

)
.

6. Define bU,t|t−1, bL,t|t−1 as the 0.975 and 0.025 quantiles from (3.6), respectively, and
wt|t−1 = bU,t|t−1 − bL,t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

TAR

The TAR is estimated by non-linear least squares (NLLS), as explained in Peel and Taylor
(2002). As mentioned previously, this is the model that has been used to obtain an econo-
metric estimate of w. Hence, it is a natural benchmark to assess the results from the set of
models described above. Note that this model is estimated in levels with an autoregressive
component of order 1 to mimic previous results in the literature.11 The steps to obtain the w
estimate and the likelihood are as follows:

11Regarding the specification tests, the Ljung-Box Q statistic for the whole sample suggest that only the
GBP-USD cross fails to satisfy the no serial correlation assumption. This model-cross combination, however,
is the only found in the literature.

18



1. Define the training sample t = 1, . . . , t0 = 100.

2. Obtain NLLS point estimates of (αi, ρi, σε, κ)′ using the R package tsDyn provided by
Di Narzo et al. (2012). Here i ∈ {m,u, l} as in (3.5).

3. Obtain the one-step ahead forecast dt|t−1,κ and its variance Vt|t−1,κ, defined in (3.7) and
(3.8).

4. Estimate p̂ (dt|Ft−1) by obtaining draws, d(j)t|t−1,κ, fromN
(
dt|t−1,κ, Vt|t−1,κ

)
, j = 1, . . . ,M ,

with M = 104.

5. Compute the log-likelihood of the next observation being contained in the forecast
distribution as LPLt0 = 1/M

∑M
j=1 ln p̂

(
dt|d(j)t|t−1,κ, Vt|t−1,κ,Ft−1

)
.

6. Define bU,t|t−1, bL,t|t−1 as the 0.975 and 0.025 quantiles from (3.6), respectively, and
wt|t−1 = bU,t|t−1 − bL,t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

3.4 Results

General features of each type of model are immediately apparent in the w estimates across
the board. In particular, estimates obtained from the LLM and TAR models are highly per-
sistent. As discussed below for each cross, this is difficult to reconcile with both theory and
financial stress events observed in the sample, either global or idiosyncratic. Estimates from
SV models, in turn, are able to reflect the increase in transaction costs and risks associated
with financial stress events. Moreover, these estimates point to arbitrage opportunities that
are disperse through time, thus implying the presence of both one-way and round arbitrage.
Clustering of the suggested arbitrage opportunities by the LLM and TAR models are implau-
sible according to one-way arbitrage theory and reasonable assumptions on the works of the
FX markets. Finally, persistence and width of the w estimates from the LLM and TAR are
due to their inherent static variance estimates.12

12Results do not change if d is computed using sovereign bonds. These are included in the appendix.
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US Dollar-Sterling Cross

Results show that w estimates for the GBP-USD cross obtained from the LLM and TAR are
notably wide. These are displayed in Figure 4 left column, along with d.13 Indeed, observed
values of dt at period t outside wt|t−1 (marked with a vertical line) are clustered around the
GFC (rows 1, 2 and 5). This is at odds with the surveyed literature, which has documented
increases in uncertainty and transaction costs in the latter part of the sample. Moreover, the
GBP-USD cross experienced episodes of considerable financial stress during the “Brexit”
referendum in mid-2016. These models do not recognise the latter as a period where w
increases.

Observed values of dt outside wt|t−1 obtained from the SV models, in turn, seem short-
lived since they are more dispersed through time. The magnitude of the w estimate also
reflects the financial stress originated in Europe in late 2010 and the “Brexit” events in June
2016, in addition to the GFC. The estimated time series for w is displayed in Figure 4 right
column, and a summary is presented in Table 1. As in section 2.2, for ease of exposition the
Table presents the range of values for w in periods pre-, during- and post-GFC.

In particular, results related to the pre-GFC period, from December 2004 to June 2007,
point towards relatively similar highest estimates for w at around 12 basis points with the
exception of the SV-FFBS. The lowest estimates are similar only within classes of models.
LLM and TAR estimates are around 10 basis points, whereas SV’s are around five basis
points. During the GFC in the period from June 2007 to December 2009, the estimated
lowest value of w is very similar across models, around nine basis points. The highest value,
however, is again similar only within classes of models. LLM and TAR estimates are around
56 basis points, whereas SV’s are above 350 basis points, hence they have a broader range.

Estimates for post-GFC period also show that, within class of models, results are similar.
Interestingly, the LLM and TAR maximum estimates are very similar to those obtained for
the period during the GFC in a range of 35-54 basis points. The latter would suggest that
uncertainty and transaction costs are similar to those prevailing at the peak of the crisis. The
SV models, in turn, estimate a range of 2-58 basis points, higher than pre-GFC, but nowhere
near the peaks attained then.

Previous estimates of the neutral band for the GBP-USD cross were described in the
literature review above. Results obtained for the pre-GFC period are similar. In particular
the SV models, which estimate a neutral band width of a minimum of 5 and a maximum of
22 basis points, are similar to Taylor (1987) and Clinton (1988) and smaller than Frenkel and

13Figures 10-12 display the sub-sample 2014-2017.
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Levich (1975, 1977). The estimated w in these papers and in the present work are well below
early estimates from Keynes and Enzig, in line with the development of the relevant markets
and communication technology.

Pre-GFC During-GFC Post-GFC
Model/Period (Dec04-Jun07) (Jun07-Dec09) (Jan10-Dec17)
LLM-MLE 10-12 10-57 37-53
LLM-Bayesian 11-14 11-58 38-54
SV-FFBS 5-22 8-356 2-52
SV-APF 6-16 9-558 2-69
TAR 9-11 9-54 35-51

Table 1: Estimated range for w in basis points in the GBP-USD FX market in each period.
Source: Own estimates.

US Dollar-Euro Cross

The w estimates for the EUR-USD are displayed in Figure 5 left column along with the
measured d. As in the GBP-USD estimates, the LLM and TAR yield considerably wider
estimates than those obtained from the SV. Notably, the sovereign debt crisis experienced in
Europe through 2010 and peaking in the last quarter of 2012, is recognised by all models. The
LLM and TAR, however, only suggest arbitrage opportunities during episodes of considerable
financial stress.

As opposed to results from the SV, there is clustering of the measured d outside of w by
the LLM and TAR. This suggests that arbitrage opportunities are long-lived, a feature that is
difficult to reconcile with reality. The estimated magnitudes of w are shown in Figure 5 right
column. The LLM and TAR estimates are rather persistent, unlike those obtained from the
SV. This, in turn, reveals that, as in the GBP-USD analysis, the LLM and TAR do not account
fully for changes in transaction costs or uncertainty. The w estimates yielded by the SV seem
to track closely episodes of heightened stress in financial markets. The latter is confirmed by
the range of estimates presented in Table 2.

Results suggest that the highest estimates from the LLM and TAR during- and post-GFC
periods are remarkably similar, at around 60 basis points. But this suggests that, between
2010 and 2017, the FX market for EUR-USD was subject to financial stress similar to that
in the peak of the GFC. The latter is at odds with findings in the surveyed literature and the
extraordinary low levels of interest rates across advanced economies.

In contrast, the highest w estimates yielded by the SV are reduced from 363 to 104 basis
points, still reflecting a high degree of financial stress related to the sovereign debt crisis
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but considerably lower than that experienced during the GFC. Unfortunately, there are no
estimates of the neutral band for the EUR-USD cross, hence it is not possible to directly
compare this results.

Pre-GFC During-GFC Post-GFC
Model/Period (Dec04-Jun07) (Jun07-Dec09) (Jan10-Dec17)
LLM-MLE 7-8 7-60 42-56
LLM-Bayesian 10-11 10-62 42-58
SV-FFBS 5-14 7-363 5-121
SV-APF 7-12 8-253 5-107
TAR 8-9 8-56 40-53

Table 2: Estimated range for w in basis points in the EUR-USD FX market in each period.
Source: Own estimates.

US Dollar-Mexican Peso Cross

In Figure 6, left column, it is apparent that observations of d outside w for the MXN-USD
cross reflect two global financial shocks, during 2007-2009 and the last quarter of 2010 peri-
ods. Moreover, all models suggest arbitrage opportunities around the end of November 2016,
possibly associated with the presidential election campaign in the US.

In addition to these episodes, the SV models identify arbitrage opportunities during the
Brexit referendum in mid-2016, and the “tapper tantrum” in mid-2013. As in the GBP-USD
and EUR-USD estimations, the LLM and TAR estimate persistently large w with clustered
apparent arbitrage opportunities, whereas the SV are able to accommodate bouts of uncer-
tainty and suggest disperse arbitrage opportunities. Furthermore, the SV models replicate
both the financial stress associated with the MXN real depreciation after the slump in oil
prices in 2014, and uncertainty around the outcome of the revamped trade agreement with
the US and Canada in mid-2017.

Figure 6, right column, displays the magnitudes of w and Table 3 the range of values for
the three sub-periods as in the GBP- and EUR-USD crosses. The SV maximum estimates of
w during the GFC are at least 300 basis points larger than those for the 2010-2017 period,
from 846 to 324 basis points. Ranges for the LLM and TAR are remarkably similar in the
post-GFC periods, as in previous cases. Unfortunately, as in the case of the EUR-USD cross,
there are no previous estimates of the neutral band for comparison.
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Pre-GFC During-GFC Post-GFC
Model/Period (Dec04-Jun07) (Jun07-Dec09) (Jan10-Dec17)
LLM-MLE 71-96 68-148 108-141
LLM-Bayesian 71-97 68-151 109-143
SV-FFBS 17-125 22-846 30-331
SV-APF 28-96 28-711 36-370
TAR 63-83 60-145 103-137

Table 3: Estimated range for w in basis points in the MXN-USD FX market in each period.
Source: Own estimates.

3.5 Model Evaluation

It was shown that, in general, the time-varying-mean/constant-variance models suggest a
neutral band that is seemingly wide throughout the sample. The upside in terms of risk-
management of these estimates is that they may provide more a conservative w. These entail
a large opportunity cost in terms of missed arbitrage opportunities, however. Moreover, the
latter is obtained at the cost of not recognising financial stress periods, which should be
reflected in increases of w.14 The time-varying variance models, in contrast, are able to
account for changes in uncertainty and provide a narrower and less persistentw. As discussed
above, this is consistent with short-lived arbitrage opportunities.

Cumulative Log-Predictive Likelihood

To strike a balance between having a conservative w, without sacrificing precision in terms of
identifying financial stress periods, an in-sample evaluation and a density forecast evaluation
are conducted using the methods suggested by Geweke and Amisano (2010). Both evalua-
tions rely on computing the cumulative log-predictive-likelihood. Recall LPLt from Section
3.3, and define

CLPLt =
t∑

j=t0

LPLj, t = t0, . . . , n.

Results from the in-sample evaluation are contained in Table 4, which displays CLPLn
for each currency-model combination.15 Immediate notable features are, first, that in all
crosses the best model is the SV-APF. Second, the next best model is the LLM-Bayesian for
the GBP-USD and EUR-USD crosses, while the SV-FFBS is the second best model for the

14In line with the poor predictive properties of TAR models documented, for example, in Dacco and Satchell
(1999).

15Table 7 in the Appendix displays results for the sovereign rates case.
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MXN-USD cross. Third, the TAR used previously in the literature is considerably inferior in
terms of fitting the data. Finally, results suggest that accounting for the uncertainty around the
estimated parameters and latent process plays an important role in fitting the data, as reflected
by the fact that models estimated by MCMC methods dominate.

GBP-USD EUR-USD MXN-USD
LLM-MLE 56.70556 -256.0021 -491.635
LLM-Bayesian 306.6930+ 251.1586+ -418.3470
SV-FFBS 223.1345 19.93174 -271.9914+
SV-APF 529.8467* 413.4730* -174.0033*
TAR -2810.025 -4409.585 -3766.946

Table 4: CLPLn. * Refers to the combination with highest likelihood. + Is the second
highest. Source: Own estimates.

Log-Score

Density forecast evaluation is conducted through a log-score, LSt, statistic. As detailed in
Geweke and Amisano (2010), density forecast comparison is feasible regardless of the infer-
ence procedure as long as a time series for CLPLt is recovered. Since the comparison is
pair-wise, a two-step evaluation is made for each FX market following these authors. Define

LSMt = CLPLMt − CLPLTARt . (3.9)

LS∗t = CLPL
(1)
t − CLPL

(2)
t . (3.10)

whereM∈ {LLM-MLE, LLM-Bayesian, SV-FFBS, SV-APF} and CLPL(i)
t is the cumula-

tive predictive log-score corresponding to the model with the i-th highest CLPLn. In the first
step, a comparison is made based on CLPLn, and

{
LSMt

}n
t=t0

computed in (3.9). For the
second step, the two models with highest CLPLn are compared using {LS∗t }

n
t=t0

computed
with (3.10).

Results for the GBP-USD cross as displayed in rows 1 and 2 in Figure 7 correspond to the
first step. These suggest that both Martingale parametrisations out-perform the TAR model
in terms density forecasts throughout the sample, since LSMt is positive for all t and has a
positive slope. In particular, the spike in

{
LSMt

}n
t=t0

around the GFC, suggest that both the
LLM and SV are more able to account for financial stress in the GBP-USD cross. The last
row in Figure 7 displays the comparison between the LLM-Bayesian and SV-APF. The latter
yields better density forecasts, hence, better estimates for w in the sample, except for one
observation in mid-2005, one in mid-2007 and one at the last quarter of 2008. The latter is
possibly related to GFC, the Lehman Brothers’ failure in particular.16

16As shown in the Appendix Figure 22, the w estimate for the sovereign d is, with no exception, best fitted
by the SV-APF.

24



As in the GBP-USD cross, results for the EUR-USD FX cross all Martingale parametri-
sations and outperform the TAR, as shown in rows 1 and 2 in Figure 8. Even though the TAR
model is outperformed consistently, as implied by the positive slope of the plots, it is interest-
ing to note that two dates seem to explain the overwhelming result. First, the aforementioned
Lehman failure during the GFC and, second, the peak of the sovereign debt crisis in Europe
in 2012. The last row in Figure 8 displays the comparison between the LLM-Bayesian and
the SV-APF. In particular, it shows that w is best estimated by the SV-APF for the sample
2009-2017. That is, for any financial stress event distinct from the GFC, the SV-APF is un-
ambiguously the best candidate to estimate w. For the sample 2005-2007 the LLM-Bayes
does a better job, possibly due to the fact that swings in d were more prevalent in this period
(see Figure 5). Also noteworthy, the LLM-Bayesian has a better fit for w in dates that dis-
played a more acute financial stress such as the summer of 2007 and late 2008, both related
to the GFC.17

Figure 9 shows that, as in previous crosses, all Martingale parametrisations produce better
density forecasts, and, hence, better estimates of w than the TAR for the MXN-USD cross.
Interestingly, it is only after the GFC that the TAR is clearly outperformed by the LLM and
SV. As in the EUR-USD case, most of the difference of these models with respect the TAR
is explained by the Lehman failure in the last quarter of 2008, during the GFC. Interestingly,
instead of specific dates, the whole period related to the sovereign debt crisis stemming from
Europe in 2011-2012 seems to explain a large portion of the under-performance of the TAR.
This may be due to the large estimates for w during that period. The last row in Figure 9
displays the comparison between SV-APF and SV-FFBS. The latter yields better estimates
of w across the sample, but the difference in performance is notably small. Among the main
episodes explaining said difference is an apparent arbitrage opportunity arising in late 2005
(see Figure 6), when the interest rates in the Mexican interbank markets began a steep decline
responding to monetary policy easing.18

Probability Integral Transformation

These results are subject to the shortcomings of using the LSMt statistic to evaluate fore-
cast performance. In particular, as noted by Geweke and Amisano (2010), said statistic is a
local measure of performance and is only a relative measure, hence, conditional on choos-
ing a benchmark model. To address these shortcomings, results for the probability integral

17The SV-FFBS has a better fit for the sovereign w, as shown in Figure 23 in the appendix.
18Results vary considerably during the GFC in the sovereign w yielding the LLM-Bayesian as the best model

for the period, as shown in Figure 24 in the appendix.
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transformation (PIT) are included. Model assessment based on the PIT is not local. Further
computations are required, since this measure is based on the (empirical) cumulative distri-
bution function (CDF) of the forecasts (see discussion about expression (15) in the reference
of Geweke and Amisano for further details). In particular, let I (·) be an indicator function,
then the (empirical) CDF is given by

F̂ (dt) = 1/M
M∑
j=1

I
(
d
(j)
t|t−1 ∈ (−∞, dt)

)
.

Moreover, let Φ(x) be N (0, 1) computed at x. Note that a necessary condition for the test
statistic to work is ergodicity of the sequences

{
ψ(j),m(j)

}M
j=1

and
{
θ(j), h(j)

}M
j=1

, otherwise
the CDF should be conditional on the uncertainty inherent to the estimated parameters and la-
tent processes. The model assessment is then based on testing whether f̂(dt) = Φ−1

(
F̂ (dt)

)
is iid N (0, 1).

Table 5 displays the p-value for three commonly used normality tests: Kolmogorov-
Smirnov test, and Shapiro-Wilk test.19 It is worth noting that, despite the (very) low p-values,
these should be indicative of how far the empirical distribution F̂ (dt) is from the distribution
under the null hypothesis. For ease of comparison, the highest p-value for each cross and
each test is marked in the Table.

The PIT confirms the superior forecast performance of the SV for all crosses and all
tests. In particular, the PIT suggests that the SV-FFBS is superior to the SV-AFP, with the
exception of the GBP-USD tested with the Kolmogorov-Smirnov test. This result is in line
with the described nature of both the LSMt statistic and the PIT. In particular, the SV-APF
is more efficient in updating the information set to produce a forecast, hence, it uses new
information in a “local” sense. The SV-FFBS, however, uses all information contained in the
sample each time a new observation arrives, hence, it makes use of information in a “global”
sense. Overall, the results from model evaluation suggest that SV-APF is best-suited to obtain
forecasts allocating relatively more weight to recent information. The SV-FFBS, however, is
best-suited to include all information contained in the sample.

4 Concluding Remarks

This paper undertakes the estimation of the neutral band around deviations from CIP. Seem-
ingly large deviations have been observed in the post-Global Financial Crisis period in the

19Results from the Chi-squared goodness of fit test are not displayed. These0 suggests that the null should
always be rejected with a p-value of less than 2.22× 10−19. Hence, it was not useful for ranking the forecasts
performance. Analogous results for the sovereign rates case are displayed in Table 8 in the Appendix.
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GBP-USD, EUR-USD and MXN-USD FX markets. To assess whether these deviations are,
in fact, arbitrage opportunities, as theory would suggest, an estimate of the neutral band is
needed. The approach differs from previous work in that, if arbitrage opportunities are indeed
absent, then a parametrisation of a Martingale process should be able to replicate deviations
from CIP.

Results from model evaluation suggest that, for all crosses and cases, the stochastic
volatility models, a particular Martingale process parametrisation, yield superior neutral band
estimates. Several features suggest that these estimates have better properties than the alter-
natives. First, they have a superior performance in- and out-of sample. Second, they are able
to account for a wider neutral band in periods of financial stress. Third, the neutral band is
wider during the Global Financial Crisis than in the rest of the sample, whereas competing
models estimate similar values for the 2007-2017 period. Finally, the neutral band estimate
implies arbitrage opportunities scattered through time, hence, short-lived. In contrast, the
rival models imply clustered, and, hence, long-lived arbitrage opportunities.

Some caveats in interpreting the results are in order. First, estimates of the neutral band
are based on the one-step-ahead density forecast of a latent process. As such, it is not possible
to evaluate these estimates vis-á-vis observed data. It may be necessary to expand the number
of econometric models and techniques to assess if the approach proposed here to estimate the
neutral band may be improved upon. Second, results for the MXN may require refinement in
that, unlike the GBP and the EUR, it is not considered a “reserve” currency.

Modelling distinct FX markets may require further experiments with econometric tools,
such as a time-varying multivariate model, as the literature has aimed to model deviations
from CIP with a single-variable model. Future research should aim to consider a number
of alternative empirical models and data sets, which, in turn, may allow to condition on the
idiosyncratic features of each currency.
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GBP-USD EUR-USD MXN-USD
Kolmogorov-Smirnov

LLM-MLE 0 0 4.22× 10−15

LLM-Bayesian 0 0 0
SV-FFBS 0.111∗ 0.413∗ 0.884∗
SV-APF 0.024 0.312 0.7167
TAR 0 0 0

Shapiro-Wilk
LLM-MLE 0 0 0
LLM-Bayesian 0 0 0
SV-FFBS 4.26× 10−5∗ 5.35× 10−3∗ 0.453∗
SV-APF 2.65× 10−9 2.03× 10−8 0.117
TAR 0 0 0

Table 5: PIT. * Refers to the model with highest p-value for each cross and each test. Null-
Hypothesis is normality. Entries with “0” correspond to p-value< 2.22 × 10−16. Source:
Own estimates.
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Figure 1: Deviations from CIP in percentage points GBP-USD. Computed with 3-month interbank
rates. Sample: January 7th 2003 to December 26th 2017. Own calculations for weekly data. Source:
Bank of England and Bloomberg.
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Figure 2: Deviations from CIP in percentage points EUR-USD. Computed with 3-month interbank
rates. Sample: January 7th 2003 to December 26th 2017. Own calculations for weekly data. Source:
Bloomberg.
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Figure 3: Deviations from CIP in percentage points MXN-USD. Computed with 3-month interbank
rates. Sample: January 7th 2003 to December 26th 2017. Own calculations for weekly data. Source:
Banco de México and Bloomberg.
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Figure 4: Deviations from CIP in percentage points and neutral band estimates GBP-USD (left col-
umn) and estimated w in percentage points (right column). Vertical lines are observations outside w.
Label contains the percentage of observations within w. Source: Own estimates.
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Figure 5: Deviations from CIP in percentage points and neutral band estimates EUR-USD (left col-
umn) and estimated w in percentage points (right column). Vertical lines are observations outside w.
Label contains the percentage of observations within w. Source: Own estimates.
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Figure 6: Deviations from CIP in percentage points and neutral band estimates MXN-USD (left
column) and estimated w in percentage points (right column). Vertical lines are observations outside
w. Label contains the percentage of observations within w. Source: Own estimates.
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Figure 10: Deviations from CIP (left column) and estimated w in percentage points (right column) in
percentage points, final 180 observations, GBP-USD. Vertical lines are observations outside w. Label
contains the percentage of observations within w for the entire sample. Source: Own estimates.
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Figure 11: Deviations from CIP (left column) and estimated w in percentage points (right column) in
percentage points, final 180 observations, EUR-USD. Vertical lines are observations outside w. Label
contains the percentage of observations within w for the entire sample. Source: Own estimates.
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Figure 12: Deviations from CIP (left column) and estimated w in percentage points (right column)
in percentage points, final 180 observations, MXN-USD. Vertical lines are observations outside w.
Label contains the percentage of observations within w for the entire sample. Source: Own estimates.
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A Results for Sovereign Rate Differentials

A.1 Data
0

1
2

3

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 13: Deviations from CIP in percentage points GBP-USD. Computed with 3-month sovereign
rates (Gilt-Treasuries). Sample: January 7th 2003 to December 26th 2017. Own calculations for
weekly data. Source: Bank of England and Bloomberg.
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Figure 14: Deviations from CIP in percentage points EUR-USD. Computed with 3-month sovereign
rates (German Bond-Treasuries). Sample: January 7th 2003 to December 26th 2017. Own calcula-
tions for weekly data. Source: Bloomberg.
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Figure 15: Deviations from CIP in percentage points MXN-USD. Computed with 3-month sovereign
(CETES-Treasuries). Sample: January 7th 2003 to December 26th 2017. Own calculations for weekly
data. Source: Banco de México and Bloomberg.

A.2 Width Estimates
Model/Period Dec04-Jun07 Jun07-Dec09 Jan10-Dec17

GBP
LLM-MLE 18-21 20-78 52-73
LLM-Bayesian 19-23 22-79 52-74
SV-FFBS 14-41 13-388 7-55
SV-APF 17-29 14-404 8-99
TAR 15-20 20-77 49-71

EUR
LLM-MLE 16-28 28-94 64-88
LLM-Bayesian 17-29 29-95 64-89
SV-FFBS 16-91 12-472 6-145
SV-APF 16-43 15-346 8-162
TAR 15-26 26-90 60-83

MXN
LLM-MLE 90-122 88-168 122-160
LLM-Bayesian 89-122 88-171 121-161
SV-FFBS 30-191 38-899 26-336
SV-APF 39-187 50-712 35-266
TAR 82-113 82-157 112-150

Table 6: Estimated range for w in basis points using sovereign interest rate differentials.
Source: Own estimates.
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Figure 16: Deviations from CIP in percentage points and neutral band estimates GBP-USD computed
with sovereign rates (left column). Estimated w in percentage points (right column). Vertical lines
are observations outside w. Label reports the percentage of observations within w. Source: Own
estimates. 45
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Figure 17: Deviations from CIP in percentage points and neutral band estimates EUR-USD computed
with sovereign rates (left column). Estimated w in percentage points (right column). Vertical lines
are observations outside w. Label contains the percentage of observations within w. Source: Own
estimates. 46



−
4

−
2

0
2

4

2003 2005 2007 2009 2011 2013 2015 2017

Deviations from CIP
Bands: 96.47%

LLM-MLE

1.
0

1.
2

1.
4

1.
6

96.47% of the observations are inside the 95% bands    

2003 2005 2007 2009 2011 2013 2015 2017

LLM-MLE

−
4

−
2

0
2

4

2003 2005 2007 2009 2011 2013 2015 2017

Deviations from CIP
Bands: 96.76%

LLM-Bayesian
1.

0
1.

2
1.

4
1.

6

96.76% of the observations are inside the 95% bands    

2003 2005 2007 2009 2011 2013 2015 2017

LLM-Bayesian

−
6

−
4

−
2

0
2

4

2003 2005 2007 2009 2011 2013 2015 2017

Deviations from CIP
Bands: 94.85%

SV-FFBS

0
2

4
6

8

94.85% of the observations are inside the 95% bands    

2003 2005 2007 2009 2011 2013 2015 2017

SV-FFBS

−
6

−
4

−
2

0
2

4

2003 2005 2007 2009 2011 2013 2015 2017

Deviations from CIP
Bands: 96.03%

SV-APF

1
2

3
4

5
6

7 96.03% of the observations are inside the 95% bands    

2003 2005 2007 2009 2011 2013 2015 2017

SV-APF

−
4

−
2

0
2

4

2003 2005 2007 2009 2011 2013 2015 2017

Deviations from CIP
Bands: 95.88%

TAR

0.
8

1.
0

1.
2

1.
4

1.
6

95.88% of the observations are inside the 95% bands    

2003 2005 2007 2009 2011 2013 2015 2017

TAR
Figure 18: Deviations from CIP in percentage points and neutral band estimates MXN-USD com-
puted with sovereign rates (left column). Estimated w in percentage points (right column). Vertical
lines are observations outside w. Label contains the percentage of observations within w. Source:
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Figure 19: Deviations from CIP computed with sovereign rates (left column) and estimated w in
percentage points (right column) in percentage points, final 180 observations, GBP-USD. Vertical
lines are observations outside w. Label contains the percentage of observations within w for the entire
sample. Source: Own estimates. 48
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Figure 20: Deviations from CIP computed with sovereign rates (left column) and estimated w in
percentage points (right column) in percentage points, final 180 observations, EUR-USD. Vertical
lines are observations outside w. Label contains the percentage of observations within w for the entire
sample. Source: Own estimates. 49
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Figure 21: Deviations from CIP computed with sovereign rates (left column) and estimated w in
percentage points (right column) in percentage points, final 180 observations, MXN-USD. Vertical
lines are observations outside w. Label contains the percentage of observations within w for the entire
sample. Source: Own estimates. 50



A.3 Model Evaluation
GBP-USD EUR-USD MXN-USD

Sovereign
LLM-MLE -104.6278 -281.2509 -542.4628
LLM-Bayesian 48.6477 -117.5548 -480.2678+
SV-FFBS 164.3163+ -14.71815+ -554.4423
SV-APF 289.9309* 85.2192* -326.1555*
TAR -4484.403 -2647.52 -2795.97

Table 7: CLPLn. * Refers to the combination with highest likelihood. + Is the second
highest. Source: Own estimates.
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Figure 22: LSMt and LS∗t , GBP-USD. Computed with sovereign rates. Source: Own estimates.
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Figure 23: LSMt and LS∗t , EUR-USD. Computed with sovereign rates. Source: Own estimates.
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Figure 24: LSMt and LS∗t , MXN-USD. Computed with sovereign rates. Source: Own estimates.
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GBP-USD EUR-USD MXN-USD
Kolmogorov-Smirnov

LLM-MLE 0 0 4.44× 10−16

LLM-Bayesian 0 0 0
SV-FFBS 0.549 0.951∗ 0.562∗
SV-APF 0.573∗ 0.892 0.337
TAR 0 1.01× 10−13 2.74× 10−14

Shapiro-Wilk
LLM-MLE 0 0 0
LLM-Bayesian 0 0 0
SV-FFBS 4.47× 10−5∗ 5.35× 10−3∗ 0.083∗
SV-APF 2.46× 10−8 3.12× 10−7 2.73× 10−4

TAR 0 0 0

Table 8: PIT computed with sovereign rates. * Refers to the model with highest p-value
for each cross and each test. Null-Hypothesis is normality. Entries with “0” correspond to
p-value< 2.22× 10−16. Source: Own estimates.
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