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also affects aggregate output.
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1 Introduction

The comparative statics of equilibrium welfare with respect to the quality of private or public

information has long been of interest in economics. For example, private information could

be harmful to agents in an exchange economy (Hirshleifer, 1971) or players in a game of

imperfect information (Kamien et al., 1990) but never to a single Bayesian decision maker

(Blackwell, 1951, 1953). In auction theory, Milgrom and Weber (1982) find that releasing

public information about the common value of an object always increases revenue for the

seller without a�ecting e�ciency, while in the context of a Keynesian economy, Morris and

Shin (2002) find that releasing a public signal can sometimes have a negative e�ect on welfare.

More recently, the e�ect of information on welfare has been studied in Bayesian games

through the key concept of informational externalities (Angeletos and Pavan, 2007). These

externalities are characterized by first analyzing how information a�ects equilibrium actions

and then comparing the equilibrium actions and payo�s to the e�cient outcomes of a game.

Interestingly enough, the question of how information a�ects actions in games of imperfect

information has only been partially studied in some settings where closed-form solutions to

equilibrium actions can be explicitly computed, specifically, quadratic games with Gaussian

information so that best responses are linear functions of the state and other players’ actions.1

In this paper, we study how changes to the quality of private information in Bayesian games

and decision problems a�ect equilibrium actions. We consider a general class of payo�s and

information structures that embeds the familiar linear-quadratic games with Gaussian signals.

Our comparative statics is a useful tool to understand how the quality of information about

economic fundamentals (e.g., demand parameters in oligopolistic competition, or productivity

parameters in macroeconomic models) a�ects economic outcomes (e.g., the dispersion of

oligopoly prices, or the volatility of investment and aggregate output). From a normative

perspective, these comparative statics are also a useful intermediate step to characterize

informational externalities and investigate the welfare e�ects of information beyond linear-

quadratic-Gaussian games.

1For a very recent symposium summarizing the state of the art in these games see Pavan and Vives (2015) and
the references therein.
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Our theory of Bayesian comparative statics is comprised of three key ingredients: a

stochastic order of equilibrium actions (call it order 1), an information order (call it order 2),

and a class of utility functions. Our main result shows a duality between the order of actions

and information: First, if signal A is more precise than signal B according to order 2, then for

any preference in the class of utility functions, A induces equilibrium actions that are more

dispersed according to order 1 than signal B does. Second, if signal A induces more dispersed

equilibrium actions than signal B does for all preferences in the class of utility functions, then

A is necessarily more precise than B according to order 2.

We illustrate the usefulness of our approach through several examples and applications.

In persuasion games, we characterize the minimal and maximal levels of conflict between a

sender and a receiver, conditions under which extremal disclosure of information is optimal

(either full revelation or no information). We also extend the industrial organization literature

on information sharing in oligopolies to non-linear-quadratic environments.2 In macroeco-

nomic models, we show how information precision a�ects the amplitude of the business cycle

and emphasize that the e�ect of information on the expected aggregate output is important

for studying welfare.

In a novel application, we compare the demand for information in two games of information

acquisition: one in which information acquisition is a covert action and another in which it is

overt. We apply our theory of Bayesian comparative statics to give a taxonomy of the demand

for information in these games,3 as well as analyze the role of information acquisition as a

barrier to entry in oligopolistic competition.

The remainder of the paper is structured as follows. In Section 2, we consider an example of

monopoly production with an uncertain cost parameter to concretely motivate our comparative

statics question and illustrate our approach to the normative and positive e�ects of information.

We also discuss more thoroughly the theory of Bayesian comparative statics and relate it to

2See for example: Raith (1996), Angeletos and Pavan (2007), Bergemann and Morris (2013), Myatt and Wallace
(2015).
3The taxonomy of overt vs covert information acquisition is also connected to the seminal work of Fudenberg
and Tirole (1984) and Bulow et al. (1985) on capacity investment in the context of entry, accommodation and
exit in oligopolistic markets.
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the literature. In Section 3, we present the single agent framework and provide necessary and

su�cient conditions for an agent to become more responsive as information quality increases.

We extend the analysis to Bayesian games with strategic complementarities in Section 4.

In Section 5, we present our four main applications. Section 6 concludes. The proofs for

Section 3 are in Appendix A. All the other proofs that are not in the main text are in Appendix

B.

2 Background on Bayesian Comparative Statics

2.1 A Simple Example

A monopolist faces an inverse demand curve P(q) = 1 � q and a cost function c(✓, q) =

(1 � ✓)
⇣
q + aq2/2

⌘
+ q2/2, where q 2 [0, 1] is the quantity produced. Both ✓ and a are

cost parameters; ✓ is an unobserved random variable that is uniformly distributed on the unit

interval, while a > �1 is a constant.

The uncertainty about ✓ captures the monopolist’s uncertainty about her marginal cost. A

higher ✓ is associated with a lower intercept for the marginal cost curve. The parameter a

captures additional uncertainty about the slope of the marginal cost curve: When a = 0, there

is no additional uncertainty about the slope. When a > 0, higher ✓ is associated with a flatter

marginal cost curve while the opposite holds when a < 0.

The monopolist observes a signal s̃⇢ whose realization s matches the realized cost pa-

rameter (s = ✓) with probability ⇢ 2 [0, 1] and, with probability 1 � ⇢, the signal realization

s is uniformly and independently drawn from the unit interval. The quality of the signal is

increasing in ⇢: the signal is uninformative when ⇢ = 0 and fully revealing when ⇢ = 1.

How does the quality of information ⇢ a�ect consumer surplus? The quality of the signal

a�ects the monopolist’s production decision which in turn a�ects consumer welfare. Thus, in

order to identify the welfare e�ects, we must first answer: How does the quality of information

⇢ a�ect the monopolist’s production decision?

From an interim perspective, a monopolist that observes a signal realization s when the
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signal quality is ⇢ optimally produces:

qM (s; ⇢, a) =
⇢s + (1 � ⇢)E[✓]

3 + a(1 � ⇢s � (1 � ⇢)E[✓])
.

Since qM depends on the signal realization s, from an ex-ante perspective, the optimal

quantity is a random variable with distribution H (q; ⇢, a) = P({s : qM (s; ⇢, a)  q})— the

probability that the monopolist produces at most q units of output given her signal quality ⇢.

Our goal in this paper is to characterize how H (·; ⇢, a) changes when information quality ⇢

increases.

Let us consider the case when a = 0 which simplifies the monopolist’s production decision

to

qM (s; ⇢, 0) =
E[✓]

3|{z}
based

on prior

+ ⇢

 
s � E[✓]

3

!

|          {z          }
update based

on signal

.

In Figure 1a, we plot qM (·; ·; 0) for two di�erent signal qualities, ⇢0 and ⇢00 > ⇢0. The rotation

of the solid line, qM (·; ⇢0, 0), to the dashed line, qM (·; ⇢00, 0), captures the more “dispersed"

production decisions when signal quality increases from ⇢0 to ⇢00. Intuitively, the monopolist

produces more when good news (s > E[✓]) come from ⇢00 than when they come from ⇢0. This

is because good news from ⇢00 are stronger evidence of high values of ✓ (lower costs) than good

news from ⇢0. Symmetrically, the monopolist produces less when bad news (s < E[✓]) come

from ⇢00 than when they come from ⇢0. The rotation of qM (·; ·, 0) induces a mean-preserving

spread in the distribution H (·; ·, 0), as shown by the density function h, in Figure 1b.

Observe that the consumer surplus is a convex function of output CS(q) = 1
2 q2 which

implies that consumers benefit from a mean-preserving spread, i.e.,

Z
CS(q)dH (q; ⇢00, 0) >

Z
CS(q)dH (q; ⇢0, 0)

for any ⇢00 > ⇢0. Thus, for a = 0, we have an answer to our positive and normative questions:

Claim 1 In a monopoly with linear demand and quadratic cost with uncertainty only about
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⇢00

⇢0

1

qM

s

E[✓]/3

E[✓]

(a) Quantity produced

h(⇢00)
h(⇢0)

h

qE[✓]/3

(b) PDF of production decision

Figure 1: Monopolist signal quality and production decision

the intercept of the marginal cost (a = 0), an increase in signal quality induces a mean-

preserving spread of quantities which in turn increases expected consumer welfare. In other

words, the social value of information exceeds the monopolist’s private value of information.

For the case when a , 0, the cost is no longer a quadratic polynomial in (✓, a). We later

show (see Example 1 and also Section 5.1) that an increase in the quality of the signal leads

to a non-decreasing-mean spread of actions when a > 0 and a non-increasing-mean spread

of actions when a < 0. Moreover, the result that the social value of information exceeds

the monopolist’s private value of information still holds when a > 0, while the result is

ambiguous for a < 0.

These positive and normative results, however, make heavy use of the closed-form solution

to qM (·; ⇢, a), which depends on the functional form for profits and the “truth-or-noise"

signal. This paper develops the tools so we can address such normative and positive questions

for a general class of utility functions and information structures (signals). We revisit the

monopoly problem in Section 5.1 to characterize the environments where a Pigouvian subsidy

to information is desirable in a monopolistic market.

We now proceed to give a detailed description of the paper.
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2.2 The Theory of Bayesian Comparative Statics

We first analyze the case of a single-agent Bayesian decision problem and characterize how

the quality of the agent’s signal a�ects the induced distribution of her optimal action. We

consider a setting in which the agent has a supermodular utility function—the agent prefers

to take higher actions for higher states of the world.

There are three main ingredients to the comparative statics result: an order over the

distributions of optimal actions that captures changes in the mean and dispersion, an order

over information structures that captures quality, and a class of utility functions that leads to

a “duality” between the two orders.

An information structure ⇢ induces a distribution of optimal actions H (⇢). For two

information structures ⇢00 and ⇢0, we say the agent is more responsive with a higher mean

under ⇢00 than ⇢0 if H (⇢00) dominates H (⇢0) in the increasing convex order. Alternatively,

we say the agent is more responsive with a lower mean under ⇢00 than ⇢0 if H (⇢00) dominates

H (⇢0) in the decreasing convex order.4

To compare the quality of information, we first restrict attention to information structures

in which higher signal realizations lead to first-order stochastic shifts in posterior beliefs. For

two information structures ⇢00 and ⇢0, we say ⇢00 dominates ⇢0 in the supermodular stochastic

order if, loosely speaking, the signals from ⇢00 are more correlated with the state of the world

than are the signals from ⇢0.

Our main result shows that an agent whose marginal utility function is supermodular and

convex (in actions) is more responsive with a higher mean under ⇢00 than under ⇢0 if ⇢00

dominates ⇢0 in the supermodular stochastic order. Furthermore, we show that if every agent

with supermodular and convex marginal utility is more responsive with a higher mean under

⇢00 than under ⇢0, then ⇢00 necessarily dominates ⇢0 in the supermodular stochastic order.

We also present symmetric results linking responsiveness with a lower mean to preferences

with a submodular and concave marginal utility. Furthermore, we provide an example in which

a higher quality of information does not lead to a more dispersed distribution of actions when

4H (⇢00) dominates H (⇢0) in the decreasing convex order if, and only if, H (⇢0) second-order stochastically
dominates H (⇢00).
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the conditions on the agent’s marginal utility function are violated.

We then extend our comparative statics results to Bayesian games with strategic comple-

mentarities. The players receive private signals of varying quality about the underlying state

of the world before playing a game. Similar to the single agent case, under supermodularity

and convexity conditions (resp., submodularity and concavity) on the players’ marginal utili-

ties, we show that a higher quality of information for any one player makes all players more

responsive with a higher (resp., lower) mean, i.e., a more dispersed distribution of Bayesian

Nash equilibrium actions along with an increase (resp., decrease) in the mean equilibrium

actions for all players.

Our analysis points out a more intricate interaction between a player’s equilibrium strategy

and the quality of information than has been previously studied. First, we generalize the

observation in linear-quadratic games that a player’s distribution of best-responses becomes

more dispersed when that player’s own signal becomes more informative. Furthermore, even

when the quality of information is held fixed, we show that a player’s distribution of best-

responses becomes more dispersed if another player’s distribution of actions becomes more

dispersed. Our main result shows that the combination of these e�ects is that players are not

only responsive to changes in the quality of their own signals but also to changes in the quality

of their opponent’s signals.

2.2.1 Examples and Applications

We present several examples—generalized beauty contests, joint ventures with uncertain

returns, and network games with random graphs—in which our result can be readily applied

to study informational externalities. We also present several applications of our comparative

statics results. A reader who is more interested in these applications may skip ahead to

Section 5. As an application of the comparative statics in single-agent decision problems, we

reconsider the monopolist example from Section 2.1 in a more general setting and study how

a social planner should regulate the quality of the monopolist’s information. Additionally,

in a Bayesian persuasion framework, we derive su�cient conditions under which extremal

information disclosure is optimal.
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As an application of the comparative statics in games, we derive su�cient conditions on

payo�s for which full information sharing between players in a Bayesian game is optimal,

thereby extending the literature on information sharing in oligopolies beyond linear-quadratic

payo�s and Gaussian signals.

Additionally, we consider a novel application comparing two di�erent games of informa-

tion acquisition: one in which information acquisition is a covert activity (a player cannot

observe the quality of her opponents information) and another in which information acquisi-

tion is overt. The analysis is formally equivalent to the process of entry accommodation in

oligopolistic markets where an incumbent can invest in information acquisition. The di�erence

between the overt and covert demands for information is the indirect e�ect of information on

the incumbent’s profit through the induced behavior of the entrant (the value of transparency).

We characterize the value of transparency depending on the entrant’s responsiveness to the

incumbent’s information and the sign of the externality imposed on the incumbent by the

entrant’s responsiveness.

2.3 Related Literature

From a methodological point of view, this paper contributes to the literature on the theory

of monotone comparative statics (Milgrom and Shannon, 1994; Milgrom and Roberts, 1994;

Athey, 2002; Quah and Strulovici, 2009). Athey (2002) and Quah and Strulovici (2009) show

that optimal actions increase as beliefs become more favorable. We take the next step and

show how the distribution of optimal actions change as the distribution over beliefs changes.5

Our work also relates to literature on the value of information: Blackwell (1951, 1953),

Lehmann (1988), Persico (2000), Quah and Strulovici (2009), and Athey and Levin (2017).

In particular, Athey and Levin show that in the class of supermodular payo� functions,

an agent values more information if, and only if, information quality is increasing in the

supermodular stochastic order. For payo�s that additionally exhibit supermodular and convex

5In the context of our motivating example, Athey (2002) provides comparative statics results on qM (s; ⇢) as a
function of the signal realization s for a fixed ⇢. We instead provide comparative statics results for the entire
mapping qM (·; ⇢) as a function of ⇢.
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(or submodular and concave) marginal utilities, we show that the agent’s optimal actions are

more dispersed if, and only if, information quality is increasing in the supermodular stochastic

order.

When we move to Bayesian games, the references on comparative statics of equilibria

include Vives (1990), Milgrom and Roberts (1994), Villas-Boas (1997), Van Zandt and Vives

(2007). The value of information in Bayesian games with complementarities has also been

recently studied by Amir and Lazzati (2016). Amir and Lazzati show that in the class of

games with supermodular payo� functions, the value of information is increasing and convex

in the supermodular stochastic order. For payo�s that additionally exhibit supermodular and

convex (or submodular and concave) marginal utilities, we show that the equilibrium actions

for all players become more dispersed if information quality for any of the players increases

in the supermodular stochastic order.

As we have mentioned in the introduction, this paper also relates to the vast literature on

the use and social value of information, dating back to Radner (1962) and Hirshleifer (1971).

More recently Morris and Shin (2002) fostered renewed interest and Angeletos and Pavan

(2007) gave a characterization of the equilibrium and the e�cient use of information. Finally,

Ui and Yoshizawa (2015) provide necessary and su�cient conditions for welfare to increase

with public or private information in quadratic games with normally distributed public and

private signals.

Two papers that are closely related to ours but do not fit in the previous literatures are

Jensen (2018) and Lu (2016). Jensen (2018) considers a decision-maker who has complete

information about the state of the world. His paper characterizes how changes in the distri-

bution over the state of the world a�ect the induced distribution over optimal actions.6 We

instead characterize how increasing information (changes in distributions over beliefs) a�ects

the induced distribution over optimal actions, and we provide a duality between the order in

the distribution of actions and the information order. Moreover, in the application to games,

Jensen only considers exogenous changes to the distribution of independent private types,

6In the context of our motivating example, the monopolist observes the state ✓ and optimally produces quantity
qM (✓). Jensen characterizes how di�erent distributions over ✓ a�ect the distribution of qM (✓).
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while we allow for a richer environment.

Lu (2016) studies how the quality of information a�ects the value of a menu. In particular,

he shows that increasing the quality of information in Blackwell’s order implies the cumulative

distribution of the interim value of the menu becomes more dispersed (increases in the

increasing-convex-order). We instead show that the choice from within a menu becomes

more dispersed as the quality of information increases.

2.3.1 Applications

We contribute to the literature on information disclosure (Rayo and Segal, 2010) and Bayesian

persuasion (Kamenica and Gentzkow, 2011). We depart from common restrictions in payo�s

where the set of actions is discrete or the receiver only cares about the posterior mean.7

Instead, we restrict the preferences of the receiver to the class that allows unambiguous

Bayesian comparative statics (Theorem 1) and we characterize the minimal and maximal

levels of conflict between a sender and a receiver, conditions under which extremal disclosure

of information is optimal. More details on related papers can be found in subsection 5.2.

We also contribute to the industrial organization literature on information sharing in

oligopoly surveyed by Raith (1996) and recently touched upon in Angeletos and Pavan (2007),

Bergemann and Morris (2013) and more directly addressed in Myatt and Wallace (2015). We

explore the robustness of the results to the assumption of quadratic economies. More details

on related papers can be found in subsection 5.3.

In the last application, we study one sided information acquisition and compare the overt

and covert demands for information. Hellwig and Veldkamp (2009) studied the problem of

information acquisition within the framework of quadratic games and noticed the inheritance

of the complementarity in actions to information acquisition. Colombo et al. (2014) study how

the social value of public information is a�ected by private information acquisition decisions

in a more flexible quadratic framework, and Myatt and Wallace (2011) notably allow for

endogenously determined public information in a similar quadratic game of information

7For example, these conditions are used in Rayo and Segal (2010), Gentzkow and Kamenica (2016), Kolotilin
et al. (2017), Dworczak and Martini (2018).
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acquisition. Although complementarities are important for our analysis, none of these papers

studies the di�erence between the overt and covert demands for information.

Finally, our analysis of the value of transparency in Bayesian games is related to the

characterization of strategic investment in sequential versus simultaneous games of complete

information in Fudenberg and Tirole (1984) and Bulow, Geanakoplos, and Klemperer (1985).

We defer a detailed discussion of the relationship to Section 5.4.

3 Single-agent Model

3.1 Preliminary Definitions and Notation

Let X , ⇥m
i=1Xi be a compact subset of Rm, and let X�i , ⇥ j,i X j . For x00, x0 2 X , let

x00 � (resp., >)x0 if x00i � (resp., >)x0i for i = 1, 2, . . . ,m.

We say a function g : X ! R is increasing in xi if x00i > x0i implies g(x00i , x�i) � g(x0i, x�i)

for all x�i 2 X�i. We say g has increasing (resp., decreasing, or constant) di�erences in

(x�i; xi) if for any x00�i � x0�i, g(xi, x00�i)�g(xi, x0�i) is increasing (resp., decreasing, or constant)

in xi. We emphasize that any references to “increasing/decreasing," “increasing/decreasing

di�erences," or “concave/convex" are in the weak sense.

If g is a di�erentiable function, we write gxi as a shorthand for @
@xi g(x) and gxi x j for

@2

@xi x j
g(x). If g is di�erentiable and has increasing (resp., decreasing, or constant) di�erences

in (x�i; xi), then gxi x j � 0 (resp., gxi x j  0, or gxi x j = 0) for each j , i.

3.2 Setup

Let A , [a, ā] be the action space and let ⇥ , [✓, ✓̄] represent the state space. We denote

the random state variable by ✓̃ and the realization by ✓. Let �(⇥) denote the set of all Borel

probability measures on ⇥. An agent (she) has to choose an action a 2 A before observing

the realized state of the world. The agent’s prior belief is denoted by the measure µ0 2 �(⇥).

We allow for beliefs to be either discrete or absolutely continuous measures. Payo�s are given

by the function u : ⇥ ⇥ A! R such that
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(A.1) u(✓, a) is uniformly bounded, measurable in ✓, and twice di�erentiable in a,

(A.2) for all ✓ 2 ⇥, u(✓, ·) is strictly concave in a,

(A.3) for all ✓ 2 ⇥, there exists an action a 2 A such that ua (✓, a) = 0, and

(A.4) u(✓, a) has increasing di�erences in (✓; a).

Increasing di�erences (ID) implies that the agent prefers a high action when the state is

high and a low action when the state is low. Assumptions (A.1)-(A.3) allow us to characterize

the optimal actions by their first order conditions.8

Given any belief µ 2 �(⇥), define

a⇤(µ) = arg max
a2A

Z

⇥
u(✓, a)µ(d✓).

The continuity and strict concavity of the utility function along with the compactness of A

guarantee that a unique and measurable solution exists. Furthermore, (A.4) implies a⇤(µ2) �
a⇤(µ1) whenever µ2 first-order stochastically dominates µ1 (Athey, 2002).9

Prior to decision-making, the agent can observe an informative random signal s̃ about

the unknown state. We denote the signal realization by s to distinguish it from the random

signal. Signals are generated by an information structure ⌃⇢ , hS, F (·, ·; ⇢)i where S ✓ R is

the signal space, F (·, ·; ⇢) : ⇥ ⇥ S ! [0, 1] is a joint probability distribution over (✓̃, s̃), and

⇢ is an index that is useful when comparing di�erent signal structures.

We denote the marginal distribution of ✓̃ by F⇥(·; ⇢) : ⇥! [0, 1]. For Bayesian rationality

to hold (Kamenica and Gentzkow, 2011), we assume that any information structure ⌃⇢ induces

the same marginal F⇥(✓; ⇢) = F⇥(✓) =
R ✓

✓
µ0(d!) which depends only on the prior.

We denote the marginal distribution of s̃ by FS (·; ⇢) : S ! [0, 1]. Without loss of

generality, we assume that all information structures induce the same marginal on s̃, i.e.,

FS (s; ⇢) = FS (s) for all s 2 S. Moreover, FS has a positive bounded density f S.10

8In Section 7.2.1, we discuss the di�culties that arise when some of these assumptions are violated.
9We say that µ2 first-order stochastically dominates µ1, denoted µ2 ⌫FOSD µ1, if for any increasing function
g : ⇥! R,

R
⇥
g(✓)µ2(d✓) �

R
⇥
g(✓)µ1(d✓).

10The assumption is without loss of generality: we can apply the integral probability transform to any random
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3.3 Order 1: Actions

From an interim perspective, the agent first observes a signal realization s 2 S from an

information structure ⌃⇢, updates her beliefs to a posterior µ(·|s; ⇢) 2 �(⇥) via Bayes

rule, and then chooses the optimal action a⇤
�
µ(·|s; ⇢)

�
. Define the measurable function

a(⇢) : S ! A by a(s; ⇢) = a⇤
�
µ(·|s; ⇢)

�
.

From an ex-ante perspective, the signal realizations are yet to be observed. Therefore,

a(⇢) is a random variable that is distributed according to the CDF H (·; ⇢) which is defined as

H (z; ⇢) ,
Z

{s:a(s;⇢)z}

dFS (s)

for z 2 R.

Given two information structures ⌃⇢0 and ⌃⇢00, we say that a(⇢00) dominates a(⇢0) in the

increasing convex order if

Z 1

x
H (z; ⇢00)dz 

Z 1

x
H (z; ⇢0)dz

for all x 2 R. Alternatively, we say that a(⇢00) dominates a(⇢0) in the decreasing convex

order if Z x

�1
H (z; ⇢00)dz �

Z x

�1
H (z; ⇢0)dz

for all x 2 R.11 If a(⇢00) dominates a(⇢0) in both the increasing convex and decreasing convex

order, then a(⇢00) is a mean-preserving spread of a(⇢0).

Definition 1 (Responsiveness) Given two information structures ⌃⇢00 and ⌃⇢0, we say that

i. an agent is more responsive with a higher mean under ⌃⇢00 than under ⌃⇢0 if a(⇢00)

signal s̃ with a continuous marginal distribution and create a new signal which is uniformly distributed on the
unit interval. If the marginal distribution of s̃ is discontinuous at s̃ = s⇤ with FS (s⇤; ⇢) = q, then, as noted by
Lehmann (1988), we can construct a new signal, s̃0, where s̃0 = s̃ if s̃ < s⇤, s̃0 = s̃+ qt̃ if s̃ = s⇤, and s̃0 = s̃+ q
if s̃ > s⇤, where t̃ ⇠ U (0, 1). The new signal s̃0 is equally informative as s̃ and has a continuous and strictly
increasing marginal distribution.

11a(⇢00) dominates a(⇢0) in the decreasing convex order if, and only if, a(⇢0) second-order stochastically
dominates a(⇢00).
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dominates a(⇢0) in the increasing convex order, and

ii. an agent is more responsive with a lower mean under ⌃⇢00 than under ⌃⇢0 if a(⇢00)

dominates a(⇢0) in the decreasing convex order.

Figure 2 plots the distribution over actions induced by two information structures ⌃⇢00 and

⌃⇢0. In Figure 2a, the area between the y-axis and H (·; ⇢00) (the dashed curve) is bigger than

the area between the y-axis and H (·; ⇢0) (the solid curve) which implies that ⌃⇢00 induces

optimal actions with a higher mean than ⌃⇢0. Furthermore, integrating H (·; ⇢00) � H (·; ⇢0)
right to left always yields a negative value which implies responsiveness with a higher mean.

In contrast, in Figure 2b, the area between the y-axis and H (·; ⇢00) (the dashed curve) is smaller

than the area between the y-axis and H (·; ⇢0) (the solid curve) which implies that ⌃⇢00 induces

optimal actions with a lower mean than ⌃⇢0. Furthermore, integrating H (·; ⇢00) � H (·; ⇢0) left

to right always yields a positive value which implies responsiveness with a lower mean.

1

H (⇢0)

H (⇢00)

H

z

(a) Responsiveness with a higher mean

H (⇢0)

1

H (⇢00)

H

z

(b) Responsiveness with a lower mean

Figure 2: CDF of optimal actions and responsiveness

3.4 Order 2: Information

The next step is to determine an appropriate way to compare di�erent information structures.

We first restrict attention to information structures in which higher signal realizations lead to a

first-order stochastic shift in beliefs. This assumption is weaker than the monotone likelihood
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ratio property commonly assumed in settings with complementarities (Milgrom and Weber,

1982; Athey, 2002).

(A.5) For any given information structure ⌃⇢, s0 > s implies µ(·|s0; ⇢) ⌫FOSD µ(·|s; ⇢).

Definition 2 (Supermodular Stochastic Order) Given two information structures ⌃⇢00 and

⌃⇢0, we say that ⌃⇢00 dominates ⌃⇢0 in the supermodular stochastic order, denoted ⇢00 ⌫spm ⇢0,

if F (✓, s; ⇢00) � F (✓, s; ⇢0) for all (✓, s) 2 ⇥ ⇥ S. (Tchen, 1980).

Intuitively, ⌃⇢00 dominates ⌃⇢0 in the supermodular stochastic order if ✓̃ and s̃ are more

positively correlated under ⌃⇢00. By (A.5), low signal realizations are evidence of low states.

The agent considers a signal s̃  s from ⌃⇢00 as stronger evidence of a low state (than a signal

s̃  s from ⌃⇢0). Thus, P(✓̃  ✓ | s̃  s; ⇢00) � P(✓̃  ✓ | s̃  s; ⇢0). Without loss of generality,

the marginal on the signals are the same for both ⌃⇢00 and ⌃⇢0. Hence,

F (✓, s; ⇢00) = P(✓̃  ✓ | s̃  s; ⇢00)FS (s) � P(✓̃  ✓ | s̃  s; ⇢0)FS (s) = F (✓, s; ⇢0).

For example, the class of “truth-or-noise" information structures we considered in Sec-

tion 2.1 are ordered by the supermodular stochastic order. Another example is the class of

Gaussian information structures such that ✓̃ and s̃ are both Normally distributed with mean

✓0 and variance �2, and have a correlation coe�cient of ⇢ 2 [0, 1]. In both cases, ⇢00 ⌫spm ⇢0

if ⇢00 > ⇢0.

In Appendix B (Section 8), we elaborate that given (A.5), the supermodular stochastic

order nests the familiar Blackwell informativeness (Blackwell, 1951, 1953) and the Lehmann

(accuracy) order (Lehmann, 1988).12 We also provide an example of non-parametric infor-

mation structures that can be ranked by the supermodular stochastic order but not by either

the Blackwell or the Lehmann order.
12See Persico (2000) and Jewitt (2006) for detailed description and applications.
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3.5 Preferences and Main Result

The main contribution of this paper is to identify a class of decision problems for which

the agent becomes more responsive when information quality increases according to the

supermodular stochastic order.

LetU I be the class of payo� functions u : ⇥⇥ A! R that satisfy (A.1)-(A.4) and have a

marginal utility ua (✓, a) that

(i) is convex in a for all ✓ 2 ⇥, and (ii) has increasing di�erences in (✓; a).

In other words, a utility function u 2 U I exhibits increasing di�erences in (✓; a) that increase

with a, and a marginal utility that diminishes at a diminishing rate for every state ✓. Below,

we show that an agent with a payo� function u 2 U I becomes more responsive with a higher

mean as information quality increases in the supermodular stochastic order.

Similarly, letUD be the class of payo� functions u : ⇥ ⇥ A! R that satisfy (A.1)-(A.4)

and have a marginal utility ua (✓, a) that

(i) is concave in a for all ✓ 2 ⇥, and (ii) has decreasing di�erences in (✓; a).

In other words, a utility function u 2 UD exhibits increasing di�erences in (✓; a) that decrease

with a, and a marginal utility that diminishes at an accelerating rate. Below, we show that

an agent with a payo� function u 2 UD becomes more responsive with a lower mean as

information quality increases in the supermodular stochastic order.13

Theorem 1 Consider two information structures ⌃⇢00 and ⌃⇢0 that satisfy (A.5). Any agent

with payo� u 2 U I
⇣
resp., u 2 UD

⌘
is more responsive with a higher (resp., lower) mean

under ⌃⇢00 than under ⌃⇢0 if, and only if, ⌃⇢00 dominates ⌃⇢0 in the supermodular stochastic

order.

When information quality increases, the distribution over the agent’s posterior beliefs

becomes more dispersed. Theorem 1 provides the conditions on the agent’s utility function

13The class of functions U I (resp., UD) is a superset of ultramodular (resp., inframarginal) functions. See
Marinacci and Montrucchio (2005) for an analysis of ultra/inframodular functions and the connection to
cooperative game theory.
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under which we can map the more dispersed distribution of posterior beliefs to a more

dispersed distribution of actions that incorporates monotone changes to the average optimal

action.

The mechanism behind Theorem 1 is best understood through Proposition 1 which shows

that when u 2 U I �
resp.,u 2 UD�

, optimal actions are “convex" (resp., “concave") in the

agent’s posterior belief.

Proposition 1 Let µ1, µ2 2 �(⇥) be any two beliefs with µ2 ⌫FOSD µ1. If u 2 U I , then for

any � 2 [0, 1]

a⇤
�
�µ1 + (1 � �)µ2

�  �a⇤(µ1) + (1 � �)a⇤(µ2)

If u 2 UD, the opposite inequality holds.

Henceforth, we focus on payo�s inU I but the arguments we provide can be symmetrically

applied to payo�s inUD.

For a simple visual representation, let the state space be ⇥ = {✓, ✓̄} with ✓̄ > ✓. With

some abuse of notation, let µ 2 [0, 1] represent the agent’s belief that ✓̃ = ✓̄. Consider four

di�erent beliefs {µn}n=1,2,3,4 such that, µn = n� for some � 2 (0, 1/4). Figure 3a plots out the

expected marginal utility of a payo� function u 2 U I for the di�erent beliefs. The optimal

action an = a⇤(µn) is given by the action at which the expected marginal utility under belief

µn intersects the x-axis. Since µ4 ⌫FOSD µ3 ⌫FOSD µ2 ⌫FOSD µ1 and u(✓, a) satisfies ID,

a4 � a3 � a2 � a1.

ID of ua (✓, a) implies that the gap between the expected marginal utilities of µn+1 and µn

is widening as the action increases (the height of the dashed arrows increases left to right). In

such a case, for a small ✏ > 0, the agent’s benefit from increasing a2 to a2 + ✏ when beliefs

increase from µ2 to µ3 is larger than her benefit from increasing a1 to a1 + ✏ when beliefs

increase from µ1 to µ2, and so on.

In contrast, concavity of u(✓, a) in a implies that, for any fixed belief, the agent’s benefit

from increasing a2 to a2 + ✏ is less than her benefit from increasing a1 to a1 + ✏ , and so

on. Thus, there are two opposing forces at work. However, when ua (✓, a) is convex in a,

the marginal utility does not diminish too quickly. This diminishing diminishing marginal
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utility is captured in Figure 3a by the convex marginal utilities curves. All these properties

combined result in a4 � a3 > a3 � a2 > a2 � a1. Figure 3b depicts this “convexity" property

as described in Proposition 1.

a

Eµ [ua ]

µ1

µ2

µ3

µ4a⇤1a
⇤
2 a⇤3 a⇤4

(a) Marginal utilities

µ

a⇤ (µ)

µ1

a⇤1

µ2

a⇤2

µ3

a⇤3

µ4

a⇤4

(b) Optimal action

Figure 3: Convexity for u 2 U I

To see how the “convexity" of the optimal action is related to responsiveness, let us

continue with the above simplified setting. Let Figure 4a represent the convex optimal action

(as a function of posteriors) of some agent with utility u 2 U I . Let µ0 2 (0, 1) be the agent’s

prior belief.

Let ⌃⇢0 be a completely uninformative information structure which induces a⇤(µ0) with

probability one. Let ⌃⇢00 be a more informative structure that induces two posteriors {µ1, µ2}
with probability {�, 1 � �}. Hence, it induces a⇤(µ1) with probability � and a⇤(µ2) with

probability 1 � �. Since posteriors are derived by Bayesian updating, µ0 = �µ1 + (1 � �)µ2.

From Proposition 1, u 2 U I implies that �a⇤(µ1) + (1� �)a⇤(µ2) � a⇤(�µ1 + (1� �)µ2) =

a⇤(µ0), i.e., ⌃⇢00 induces a higher average optimal action than ⌃⇢0.

Figure 4b maps the induced distributions of actions, H (·; ⇢00) (the dashed line) and H (·; ⇢0)
(the solid line). The integral

R 1
x H (z; ⇢00) � H (z; ⇢0)dz  0 for all x 2 R which implies that

the agent is more responsive with a higher mean under ⌃⇢00 than under ⌃⇢0.

Corollary 1 Let ⌃⇢00 be an information structure that satisfies (A.5). Let ⌃⇢0 be any garbling

19



µ

a⇤

µ1 µ2µ0

a⇤ (µ)

(a) Optimal action
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a

1

�

H (⇢00)

H (⇢0)

a⇤ (µ1) a⇤ (µ2)a⇤ (µ0)

(b) Induced distribution

Figure 4: Convexity of a⇤ and responsiveness with higher mean

of ⌃⇢00. If an agent has utility u 2 U I �
resp., u 2 UD�

, then the agent is more responsive with

a higher (resp., lower) mean.

Remark 1 Proposition 1 directly implies Corollary 1, which shows that the agent becomes

more responsive when information quality increases in the Blackwell order. While the result

appears to be an implication of Theorem 1, there is a subtle di�erence—the garbling ⌃⇢0 does

not have to satisfy (A.5).14

Remark 2 Since ⇥ is an ordered set, the full information structure (the signal that perfectly

reveals the state) induces posteriors that trivially satisfy (A.5). Furthermore, any other

information structure is a garbling of the full information structure. Hence, when u 2 U I

(resp., u 2 UD), Corollary 1 implies that the agent’s actions are the most dispersed with the

highest (resp., lowest) mean under the full information structure.

Remark 3 Whenever u < U I , there exist beliefs µ1, µ2 2 �(⇥) with µ2 ⌫FOSD µ1 and a

� 2 (0, 1) for which Proposition 1 is violated. Consider a prior µ0 = �µ1 + (1 � �)µ2, an

uninformative structure ⌃⇢0 that induces the prior with probability 1, and a more informative

structure ⌃⇢00 that induces posteriors µ1 and µ2 with probabilities � and 1 � � respectively.

Then ⇢00 ⌫spm ⇢0 but the agent is not more responsive with a higher mean under ⌃⇢00. In this

14⌃⇢0 is a garbling of ⌃⇢00 if there exist stochastic maps {⇠ (·| ŝ)}ŝ2S with ⇠ (·| ŝ) : S ! [0, 1] such that F (✓, s; ⇢0) =R
[✓,✓]⇥S ⇠ (s | ŝ)dF (!, ŝ; ⇢00) for each (✓, s) 2 ⇥ ⇥ S.
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sense, the class of preferencesU I is not only su�cient but also necessary for responsiveness

with a higher mean. We present such an example in Section 7.2.1.

4 Games

In this section, we extend our results from the single-agent framework to games of incomplete

information with strategic complementarities. This class of games includes beauty contests

and quadratic games, oligopolistic competition, games with network e�ects, search models,

and investment games, among others (see Milgrom and Roberts (1990)).

4.1 Setup

There are n players with N , {1, 2, . . . , n} denoting the set of players. Let ⇥i , [✓i, ✓̄i] be the

state space for player i and define ⇥ , ⇥i2N⇥i and ⇥�i , ⇥ j,i⇥ j . Let ✓̃ = (✓̃i, ✓̃�i) denote

the random state variables, and let ✓ = (✓i, ✓�i) denote the realizations. The players hold a

common prior µ0 2 �(⇥). Once again, we allow for beliefs to be either discrete or absolutely

continuous measures. Let F⇥i be the marginal distribution of ✓̃i induced by µ0. Similarly, let

F⇥�i (·|✓i) be the joint distribution of ✓̃�i conditional on ✓̃i = ✓i. We assume that

(A.6) for all i 2 N , ✓0i > ✓i implies F⇥�i (·|✓0i ) ⌫FOSD F⇥�i (·|✓i),

which is a weaker assumption than a�liation (Milgrom and Weber, 1982).

Let Ai , [ai, āi] be the action space of player i. Let A , ⇥i2N Ai and A�i , ⇥ j,i Aj . The

payo� for each player i = 1, ..., n is given by a utility function ui : ⇥ ⇥ A! R such that

(A.7) ui (✓, a) is uniformly bounded, measurable in ✓, continuous and twice di�erentiable in

a,

(A.8) for all (✓, a�i) 2 ⇥ ⇥ A�i, ui (✓, a�i, ·) is strictly concave in ai,

(A.9) for all (✓, a�i) 2 ⇥⇥ A�i, there exists an action ai 2 Ai such that ui
ai (✓, a�i, ai) = 0, and

(A.10) ui (✓, a) has increasing di�erences in (✓, a�i; ai).
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Similar to the single-agent framework, (A.10) implies that there are complementarities

between the state of the world and a player’s action. Additionally, there are strategic comple-

mentarities between the players’ actions. Thus, when player j takes a higher action, player i

wants to do the same.

Following the terminology of Gossner (2000), we decompose the entire game of incom-

plete information into two components: the basic game and the information structure. The

basic game G , (N, {Ai, ui}i2N, µ0) is composed of (i) a set of players N , (ii) for each player

i 2 N , an action space Ai along with a payo� function ui : ⇥ ⇥ A ! R, and (iii) a common

prior µ0 2 �(⇥). The setting is general enough to accommodate private or common values

as well as independence or a�liation.

The second component of the game is the information structure: each player i 2 N

observes a signal s̃i about ✓̃i from an information structure ⌃⇢i ,
�
Si, F (·, ·; ⇢i)

�
.15 Si ✓ R

is the signal space, F (·, ·; ⇢i) : ⇥i ⇥ Si ! [0, 1] is a joint probability distribution over (✓̃i, s̃i),

and ⇢i is an index. For Bayesian rationality to hold, we assume that all information structures

induce the same marginal on ✓̃i which corresponds to the prior CDF F⇥i . Furthermore, we

assume (WLOG) that all information structures induce the same marginal on s̃i, denoted by

FSi , with a positive and bounded density f Si .

Let S , ⇥i2N Si. We denote the profile of information structures by ⌃⇢ ,
⇣
⌃⇢1, . . . , ⌃⇢n

⌘
.

A profile ⌃⇢ induces a joint distribution F (·, ·; ⇢) : ⇥ ⇥ S ! [0, 1] over (✓̃, s̃). The following

are working assumptions for this section:

(A.11) For all (✓, s) 2 ⇥ ⇥ S, F (s |✓; ⇢) =
Q

i2N F (si |✓i; ⇢i).

(A.12) For all players i 2 N , s0i > si implies µ(·|s0i; ⇢i) ⌫FOSD µ(·|si; ⇢i).

(A.13) For all players i 2 N , ✓0i > ✓i implies F (·|✓0i ; ⇢i) ⌫FOSD F (·|✓i; ⇢i).

Assumption (A.11) implies that player i cannot directly learn about (✓̃�i, s̃�i). Assumption

(A.12) is an extension of (A.5) and implies that higher signal realizations lead to a first-order

15There is an implicit assumption in the setup that player i can directly learn only about ✓̃i . We make this
assumption explicit in (A.11).
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stochastic shift in a player’s belief. Assumption (A.13) implies the converse: higher states are

likely to lead to higher signal realizations. A distribution over the state and signal space that

satisfies the monotone likelihood ratio property jointly satisfies (A.12)-(A.13).

The full game of incomplete information is given by G⇢ , (⌃⇢,G). Both components

of the game are common knowledge. First, each player i 2 N privately observes a signal

realization si 2 Si generated from ⌃⇢i . Then the players participate in the basic game G by

simultaneously choosing an action.

Momentarily ignoring existence issues, let a?(⇢) =
�
a?1 (⇢), a?2 (⇢), . . . , a?n (⇢)

�
be a profile

of pure strategy actions that constitute a Bayesian Nash equilibrium (BNE) of the game G⇢,
and let a?�i (⇢) be the profile of BNE strategies excluding player i. For each player i 2 N ,

a?i (⇢) : Si ! Ai is a measurable function. We interpret a?i (si; ⇢) as the solution to

max
ai2Ai

Z

⇥⇥S�i
ui �✓, a?�i (s�i; ⇢), ai

�
dF (✓, s�i |si; ⇢).

In other words, a?i (si; ⇢) is the action player i takes in an equilibrium of the game G⇢ when

she observes signal realization si and her opponents use strategies a?�i (⇢). Fixing the basic

game G, we are interested in how a change in the profile of information structures from ⌃⇢0

to ⌃⇢00 a�ects the BNEs of the full game G⇢0 , (⌃⇢0,G) and G⇢00 , (⌃⇢00,G).

We restrict our attention to monotone BNEs, i.e., each player’s equilibrium action,

a?i (si; ⇢) is increasing in the signal si.16 The existence of monotone pure strategy BNE

has long been established by the literature on supermodular Bayesian games. In particular,

the existence result of Van Zandt and Vives (2007) is noteworthy in our setting; their existence

result does not require players to have atomless posterior beliefs when they participate in the

basic game.

16By assumptions (A.6), (A.10), and (A.12), player i’s best response is monotone in si when her opponents use
monotone strategies. While restricting attention to monotone BNEs may be with loss of generality, extremal
equilibria are nonetheless monotone. Specifically, the least and the greatest pure strategy monotone BNEs of
a supermodular Bayesian game bound all other BNEs (Milgrom and Roberts (1990); Van Zandt and Vives
(2007)).
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4.2 Order 1: Bayesian Nash Equilibrium Actions

We parallel the single-agent framework as closely as possible. We first extend the responsive-

ness definition into a multi-player setting.

Definition 3 (Equilibrium Responsiveness) Given two Bayesian games, G⇢00 , (⌃⇢00,G)

and G⇢0 , (⌃⇢0,G), we say that

• players are more responsive with a higher mean under G⇢00 than G⇢0 if for each

monotone BNE a?(⇢0) of G⇢0, there exists a monotone BNE a?(⇢00) of G⇢00 such that

a?i (⇢00) dominates a?i (⇢0) in the increasing convex order for all i 2 N , and

• players are more responsive with a lower mean underG⇢00 thanG⇢0 if for each monotone

BNE a?(⇢00) of G⇢00, there exists a monotone BNE a?(⇢0) of G⇢0 such that a?i (⇢00)

dominates a?i (⇢0) in the decreasing convex order for all i 2 N .

The definition for responsiveness in the Bayesian game setting is more involved than

the single-agent case because we have to take into account the possibility of multiple BNE

outcomes. However, if we focus on a particular equilibrium selection, then we can restore the

simpler definition of responsiveness used in the single-agent setting.

4.3 Order 2: Information

We then extend the supermodular stochastic order from a single-agent framework into a setting

with multiple information structures.

Definition 4 (Supermodular Stochastic Order in Games) Given two profile of information

structures ⌃⇢00 , (⌃⇢001 , ⌃⇢002 , . . . , ⌃⇢00n ) and ⌃⇢0 , (⌃⇢01, ⌃⇢02, . . . , ⌃⇢0n ), we say ⌃⇢00 dominates

⌃⇢0 in the supermodular stochastic order, denoted ⇢00 ⌫spm ⇢0, if ⌃⇢00i dominates ⌃⇢0i in the

supermodular stochastic order for all i 2 N .
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4.4 Preferences and Main Result for Games

Let �I be the class of payo� functions u : ⇥ ⇥ A ! R that satisfy (A.7)-(A.10) and have a

marginal utility uai (✓, a) that, for all j 2 N ,

(i) is convex in aj for all (✓, a� j ) 2 ⇥⇥A� j , (ii) has increasing di�erences in

(✓, a� j ; aj ).

Below, we show that payo�s in �I are linked to responsiveness with a higher mean.17

Let �D be the class of payo� functions u : ⇥ ⇥ A! R that satisfy (A.7)-(A.10) and have

a marginal utility uai (✓, a) that, for all j 2 N ,

(i) is concave in aj for all (✓, a� j ) 2 ⇥ ⇥
A� j ,

(ii) has decreasing di�erences in

(✓, a� j ; aj ).

Below, we show that payo�s in �D are linked to responsiveness with a lower mean.

Theorem 2 Consider two Bayesian games G⇢00 , (⌃⇢00,G) and G⇢0 , (⌃⇢0,G) in which ⌃⇢00

dominates ⌃⇢0 in the supermodular stochastic order. If ui 2 �I �
resp., ui 2 �D�

for all i 2 N ,

then players are more responsive with a higher (resp., lower) mean under G⇢00 than G⇢0.

The proof for Theorem 2 can be found in Appendix B (Section 8). Here, we provide a

brief sketch which proceeds in four steps. Suppose ui 2 �I for all i 2 N , and consider a profile

of information structures ⌃⇢00 and ⌃⇢0. Fix a player i 2 N .

1. Holding all else fixed, a higher quality of own information leads to a more dispersed

distribution of best-responses.

• Suppose ⇢00i ⌫spm ⇢0i, and ⌃⇢00j = ⌃⇢0j for all j , i. Fix a monotone strategy for all

players j , i. Then player i’s best-reply under ⌃⇢00 dominates her best-reply under

⌃⇢0 in the increasing convex order. This is an extension of Theorem 1 from the

single-agent setting.
17Note that �I ✓ U I . Furthermore, if u(✓, a) is independent of (✓�i, a�i ) and u 2 U I , then u 2 �I .
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2. Holding all else fixed, a higher quality of an opponent’s information leads to a more

dispersed distribution of best-responses.

• Suppose ⇢00j ⌫spm ⇢0j for some j , i, and ⌃⇢00
k
= ⌃⇢0

k
for all k , j. Fix the monotone

strategies of players k , i. Then player i’s best-reply under ⌃⇢00 dominates her

best-reply under ⌃⇢0 in the increasing convex order.18 As player j’s information

quality increases, s̃ j becomes more correlated to ✓̃ j which in turn is (weakly)

correlated to ✓̃i.19 Thus, by increasing the quality of information for player j, the

signals s̃i and s̃ j indirectly become more correlated. Hence, player i can better

predict player j’s random action and match it.

3. Holding all else fixed, a more dispersed distribution of an opponent’s actions leads to a

more dispersed distribution of best-responses.

• Suppose ⌃⇢00 = ⌃⇢0. For some player j , i, consider two monotone strategies

↵00j and ↵0j such that ↵00j dominates ↵0j in the increasing convex order. Fix the

monotone strategies of players k , j, i. Then player i’s best-reply to ↵00j dominates

her best-reply to ↵0j in the increasing convex order. It is of similar spirit to the result

that strategic complementarities between (aj, ai) imply that player i’s best-reply

is in monotone strategies whenever player j uses a monotone strategy.

4. Finally, we show that the combination of the three aforementioned e�ects is that each

player’s distribution of BNE outcomes becomes more dispersed if at least one player

gets a higher quality of information.

4.5 Examples

While the conditions on payo�s in Theorem 2 might seem abstract, we illustrate with particular

examples how they are satisfied naturally.

18The dominance can be in the weak sense, i.e., it is possible for the best-reply to not change under the two
information structures.

19By weakly correlated, we mean that we allow for ✓̃i to be independent of ✓̃ j .
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Example 1 (Generalized Beauty Contests)

Let gi : ⇥ ⇥ A�i ! R and hi : A�i ! R be bounded and measurable functions, and let

�i 2 (0, 1). Let

ui (✓, a) = ��i
⇣
gi (✓, a�i) � ai

⌘2 � (1 � �i)
⇣
hi (a�i) � ai

⌘2
.

Then ui 2 �I �
resp., ui 2 �D�

if gi (✓, a�i) and hi (a�i) (i) are increasing, (ii) are twice

di�erentiable and convex (resp., concave) in aj for all j , i, and (iii) have increasing (resp.,

decreasing) di�erences in (✓, a� j ; aj ) for all j , i.

This example generalizes the canonical beauty contest model (Keynes, 1936; Morris and

Shin, 2002) which assumes a normally distributed (common value) state variable, normally

distributed signals, and a symmetric payo� with gi (✓, a�i) = ✓ and hi (a�i) = 1
n�1

P
j,i a j .

A more general formulation encompassing all quadratic games (Angeletos and Pavan,

2007; Bergemann and Morris, 2013) is the following:

ui (✓, a) = �a2
i + 2aigi (✓, a�i) + fi (✓, a�i),

where g satisfies the same conditions above and fi : ⇥⇥ A�i ! R is bounded and measurable

but otherwise is left free. While fi (✓, a�i) is not important from a positive perspective, it is

important for welfare analysis.

The canonical quadratic games satisfy ui 2 �I \ �D for every agent. As a corollary of

Theorem 2, we can maintain that more information leads to a mean-preserving spread of the

equilibrium distribution of actions without the assumption of normally distributed states and

signals, and without the assumption of symmetric preferences. However, we do have to take

into account the possibility of multiple equilibria (see Theorem 2).

Example 2 (Joint Projects)

Let Ai = [0, 1] for all i 2 N . Let vi : ⇥ ! R and ci : Ai ! R be bounded and measurable

functions. Let

ui (✓, a) =
nY

j=1
ajvi (✓) � ci (ai).
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Then ui 2 �I if (i) vi (✓) is a non-negative and increasing function, (ii) ci (ai) is a convex,

increasing, and twice di�erentiable function, and (iii) c0i (ai) is concave in ai (which is satisfied

if the player has quadratic cost).

This example is a variant of the “moral hazard in teams" model (Holmstrom, 1982): each

player i exerts e�ort ai at cost ci (ai). The probability of success is
Qn

j=1 aj , in which case

player i gets a (possibly common-value) payo� vi (✓). Each player privately observes a signal

about the value of the project before exerting e�ort.

We can also incorporate an adverse selection component to the example: additionally

assume that ⇥i = [0, 1] for all i 2 N and vi (✓) = ⌫i
Qn

j=1 ✓ j . A player’s productivity is given

by ✓iai where ✓i represents the player’s ability and ai represents e�ort. The total probability

of success is
Qn

j=1 ✓ j a j , in which case player i gets a value of ⌫i > 0. Each player privately

observes a signal about her productivity before exerting e�ort.

Example 3 (Network Games with Incomplete Information)

Let Ai = [0, āi] for all i 2 N . Let �i : ⇥ ! R and ci : Ai ! R be bounded and measurable

functions. Let g : ⇥ ! Rn⇥n be the graph of a network with gi,i (✓) = 0 for all ✓ 2 ⇥, i.e.,

g(✓) is an n ⇥ n zero-diagonal matrix. Let

ui (✓, a) = �i (✓)ai +

nX

j=1
gi, j (✓)aiaj � ci (ai).

Then ui 2 �I if (i) �i (✓) is an increasing function, (ii) gi, j (✓) is a non-negative and increasing

function for all j , i, (iii) ci (ai) is a convex, increasing, and twice di�erentiable function,

and (iv) c0i (ai) is concave in ai.

A complete information version of this game has been used to study peer e�ects in social

networks (Ballester et al., 2006) as well as monopoly pricing in the presence of network

externalities (Candogan et al., 2012).

The example can be used to study peer e�ects in education: if a student with ability ✓i

spends ai hours studying, she incurs an opportunity cost of ci (ai) but improves her educational

outcomes (test scores, earnings, etc.) by �i (✓i)ai. Holding fixed the number of hours spent
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studying, the higher the student’s ability, the higher her outcome.

Additionally, there are (positive) peer e�ects between student i and student j , i captured

by gi, j (✓)aiaj . Holding fixed the number of hours spent studying, the higher any student’s

ability, the more positively the student a�ects her peers. In particular, if we assume that

gi, j (✓) = max{✓i, ✓ j }, smart students have a multiplier e�ect on the rest of their peers. If we

instead assume gi, j (✓) = mink2N ✓k , peer e�ects are only as strong as the weakest student in

the class.

Example 4 ( Sentiments, Business Cycles and Aggregate Output)

Consider an “island economy" (Lucas Jr, 1972) in which island i 2 I = [0, 1] has an equal

probability of being matched with any other island j 2 I. After the match, each island first

observes some information concerning the island’s productivity ✓̃i, and then trades with its

partner. The reduced form of the model is summarized by the best response function

yi = (1 � ↵)Ei[✓i] + ↵Ei[h(y j,Y )]

where yi is the output in island i and Y =
R 1

0 y j dj is the aggregate output conditional on all

information. We depart from the classical setup by letting the aggregator h(y j,Y ) also depend

on Y .

Angeletos and La’O (2013) embed the above model in a dynamic setting to study how

business cycles are driven by “sentiment" shocks. Their main innovation is the information

structure which captures correlation in beliefs: In each period t = 1, 2, . . ., island i receives

signals about the state and her match partner from xi1t = ✓it + "i1t , xi2t = x j1t + "i2t ,

xi3t = x j2t + ⇠t + "i3t , where "i1t, "i2t, "i3t are idiosyncratic noise terms distributed iid (across

islands), Normal with mean 0 and variance�2
1,�

2
2,�

2
3. The sentiment shock ⇠t , which captures

the correlation in beliefs, is common to all islands and distributed N (0,�2
⇠ ).

If h is increasing and convex in each argument, and has increasing di�erences in (y j ;Y ),

then the game corresponds to one of the generalized beauty contests described in Example 1.

Increasing the precision 1/�1 of signal xi1t will increase the dispersion of output {y jt } j2I
across islands and also leads to a higher level of average output Yt in each period t.
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Furthermore, Angeletos and La’O show that whenever �2
2 > 0 and �2

⇠ > 0, output yit and

Yt vary with the sentiment ⇠t . Therefore, the economy displays business cycles triggered by

“exuberant” or “gloomy” beliefs. This amounts to aggregate output Yt = Y (xt, ⇠t ) =
R 1

0 yit di

having more dispersion relative to an economy without xi3t . Interestingly enough, when

h(y j,Y ) has increasing di�erences, the aggregate output has a higher trend, Ȳ = E(Yt ), in

the business cycle equilibrium. In particular, business cycles might shift the trend of output

upwards and allow for higher average investment and capital accumulation.

5 Applications

We consider two application of our main result in the single-agent setting and two applications

of our result in Bayesian games.

5.1 Application: Pigouvian Subsidies and Monopoly Production

In the example from Section 2.1, we considered the e�ect of information quality on a mo-

nopolist’s production decision in a highly stylized example. In this subsection, we consider

the example in a more general setting as follows: a monopolist who produces q 2 [0, q̄]

faces a downward sloping inverse demand curve P(q) and a cost function c(✓, q) where the

parameter ✓ 2 ⇥ is unknown. The monopolist holds a prior µ0 2 �(⇥). As ✓ increases, the

marginal cost declines, i.e. �c(✓, q) has increasing di�erences in (✓; q). We assume that the

monopolist’s profit ⇡(✓, q) = qP(q) � c(✓, q) is strictly concave in q and admits an interior

solution for each ✓ 2 ⇥.20

Prior to making any production decisions, the monopolist can acquire information from

P, a set of information structures that satisfy (A.5). We assume that for any ⌃⇢00, ⌃⇢0 2 P,

either ⇢00 ⌫spm ⇢0 or vice versa. Let  : P ! R be the cost of acquiring information with

(⇢00) � (⇢0) when ⇢00 ⌫spm ⇢0.

Consider a social planner who is unable to regulate prices or quantities. Under what

20A su�cient condition is that c(✓, q) is convex in q and P(q) is decreasing and concave in q.
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conditions does the social planner demand more information than the monopolist?21

Let qM (s; ⇢) be the optimal quantity the monopolist produces when she observes a signal

realization s 2 S from an information structure ⌃⇢ 2 P. The monopolist’s ex-ante problem is

to choose an information structure that maximizes

Z

⇥⇥S
⇡
�
✓, qM (s; ⇢)

�
dF (✓, s; ⇢) � (⇢).

In contrast, the social planner takes the consumer surplus into account. Let CS(q) be the

consumer surplus when the monopolist produces q. The planner’s ex-ante payo� is given by

Z

⇥⇥S
⇡
�
✓, qM (s; ⇢)

�
dF (✓, s; ⇢) +

Z

S
CS

�
qM (s; ⇢)

�
dFS (s) � (⇢).

Thus, the planner has a higher demand for information than the monopolist when a higher

quality of information increases the expected consumer surplus, i.e., when information has a

positive externality on the consumers.

Proposition 2 Let �qP00(q)/P0(q)  1, and let the profit function ⇡ 2 U I . Then the social

planner has a higher demand for information than the monopolist.

Remark 4 Su�cient conditions for �qP00(q)/P0(q)  1 and ⇡ 2 U I are that the inverse

demand P(q) is linear and �c(q, ✓) 2 U I .

In relation to Section 2.1, when a � 0 we have �c(q, ✓) 2 U I .22 Hence, given that P(q) is

linear, we have ⇡ 2 U I and Proposition 2 holds. When a < 0, we instead have ⇡ 2 UD\U I

and the ranking of the social value and the private value of information is ambiguous.

Intuitively, �qP00(q)/P0(q)  1 implies that as the quantity produced increases, the

consumers capture more and more of the welfare gains than does the monopolist. Therefore,

the consumer surplus is a convex function of the quantity. In other words, the social planner

is “more risk-loving" than the monopolist, i.e., consumers (and the planner) benefit when the

21Athey and Levin (2017) consider a similar problem. However, in their application, the planner can regulate
prices/quantities as well as the quality of information.

22When a = 0, �c(q, ✓) 2 U I \UD .
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monopolist becomes more responsive with a higher mean as quality of information increases.

From Theorem 1, we get the desired responsiveness behavior when ⇡ 2 U I .

5.2 Application: Information Disclosure

In the information disclosure game of Rayo and Segal (2010) and the Bayesian persuasion

game of Kamenica and Gentzkow (2011), a sender (he) has full flexibility in what information

to disclose to a receiver (she) in order to persuade the receiver to take an action that is desirable

to the sender. Kamenica and Gentzkow provide a tool to solve the sender’s problem: first,

characterize the sender’s interim value as a function of the receiver’s posterior belief, and then

take the concave closure of the sender’s interim value function.

However, the concavification approach requires a closed form solution to the receiver’s

optimization strategy. Usually, this is only possible when the set of actions is finite or when

the optimal strategy of the receiver only depends on the posterior mean.23

We depart from that approach and restrict the preferences of the receiver to the class

that allows unambiguous Bayesian comparative statics (Theorem 1), we then characterize the

conditions on the preferences of the sender that give maximal or minimal disclosure in two

cases: when the sender is restricted to a totally ordered set of signals, and when we allow for

complete flexibility in disclosure policies.

Let the sender’s payo� be given by v : ⇥ ⇥ A! R which is continuous in a for all ✓ 2 ⇥.

The receiver’s payo� is given by u : ⇥⇥A! Rwhich satisfies (A.1)-(A.4). For the next result

we assume that the sender is restricted to P, a set of information structures that satisfy (A.5)

(recall that a signal satisfies (A.5) if it generates posteriors that are first order stochastically

ordered).

23Examples of papers that use these simplifying conditions are Rayo and Segal (2010), Bergemann and Morris
(2013), Bergemann et al. (2015), Gentzkow and Kamenica (2016), Kolotilin (2018), Kolotilin et al. (2017),
Lipnowkski and Mathevet (2017), Taneva (2017), Li and Norman (2018), Dworczak and Martini (2018).
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The sender’s problem is given by

max
⌃⇢2P

V (⇢) =
Z

⇥⇥S
v(✓, a(s, ⇢))dF (✓, s; ⇢) s.t.

a(s; ⇢) = arg max
a2A

Z

⇥
u
�
✓, a

�
µ(d✓ |s; ⇢) 8⌃⇢ 2 P,8s 2 S.

Proposition 3 Assume v(✓, a) satisfies increasing di�erences (resp., decreasing di�erences)

in (✓; a), and one of the following holds:

i) u 2 U I and v(✓, a) is increasing and convex (resp., decreasing and concave) in a,

ii) u 2 UD and v(✓, a) is decreasing and convex (resp., increasing and concave) in a, or

iii) u 2 U I \UD and v(✓, a) is convex (resp., concave) in a.

For information structures ⌃⇢00, ⌃⇢0 2 P, V (⇢00) � V (⇢0)
⇣
resp., V (⇢00)  V (⇢0)

⌘
if ⇢00 ⌫spm

⇢0.

Therefore, when the sender is constrained to disclosure policies in P, the proposition

gives conditions under which maximal or minimal information disclosure obtains.

Proposition 3 can be seen as characterizing minimal and maximal conflict between a

sender and a receiver: if their desire to correlate actions and states goes in the same (opposite)

direction and the sender likes (dislikes) dispersion of the actions there will be full (null)

disclosure.24

Remark 5 The conditions in Proposition 3 are also related to Remark 1 in Kamenica and

Gentzkow (2011) as they are su�cient conditions for v̂(µ) =
R
⇥
v(✓, a⇤(µ))µ(d✓) to be a

“convex" or “concave" function over beliefs that are first order stochastically ranked —a

weakening of convexity and concavity respectively.

When full information revelation is a policy available to the sender, we provide a result that

holds independently of (A.5) and the supermodular stochastic order. Under the corresponding

24Note that whenever the sender violates one of the conditions i,ii,iii, there is a receiver satisfying them for
which there is interior disclosure. In that sense the conditions for the sender are also necessary.
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conditions on payo�s from Proposition 3, full information revelation is the optimal persuasion

policy over all unrestricted persuasion policies (all information structures).

Theorem 3 Assume v(✓, a) satisfies increasing di�erences in (✓; a), and suppose one of the

following holds:

i. u 2 U I and v(✓, a) is increasing and convex in a,

ii. u 2 UD and v(✓, a) is decreasing and convex in a, or

iii. u 2 U I \UD and v(✓, a) is convex in a.

Then full information revelation is the optimal disclosure policy among all possible signals.

Theorem 3 follows from a similar reasoning as the proofs of Proposition 1 and Corollary 1:

the full information structure is Blackwell more informative than any other signal, and trivially

induces posteriors that satisfy A.5 (because ⇥ is an ordered set). Thus, when the sender can

use any information structure, Corollary 1 and the conditions in Theorem 3 imply that there

is minimal conflict between the sender and the receiver, establishing the optimality of full

disclosure.

Note also that when the sender has full flexibility, some of the feasible signals do not satisfy

(A.5) and cannot be ordered by the supermodular order. However, in the special case when

there are only two possible states of the world, Proposition 3 implies full or null disclosure.

The reason is that (A.5) is always satisfied when there are only two possible states, which

implies that any information structure is both dominated by the full information structure and

dominates the null information structure in the supermodular stochastic order.

Example 5 (Portfolio Agency Problem)

To illustrate the value in Proposition 3, consider a portfolio management problem between

a risk-neutral financial adviser (the sender) and a risk-averse investor (the receiver) with a

Bernoulli utility # : R! R which is continuous, strictly increasing, and strictly concave.

There are two assets: money that yields a zero rate of return and a risky asset that yields

a random rate of return of x̃. The random return on the risky asset is drawn from a support
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in x < 0 < x̄ according to an absolutely continuous distribution function G✓ with density

g✓ . The state of the world ✓ captures the underlying distribution of returns of the risky asset.

Suppose for ✓00 > ✓0, Z z

x
x
⇥
dG✓ 00 (x) � dG✓ 0 (x)

⇤ � 0, (RS)

for all z 2 [x, x̄], with equality when z = x̄.25

Suppose the financial adviser gets a share ⇡ 2 (0, 1) of the return on the risky asset, where

⇡ represents management fees. Hence, if the investor places a fraction a 2 [0, 1] of her wealth

W > 0 in the risky asset, her ex-post payo� is

u(✓, a) =
Z x̄

x
#
⇣
(1 � a)W + aW

�
1 + x(1 � ⇡)

�⌘
dG✓ (x),

whereas the financial adviser’s ex-post payo� is given by

v(✓, a) = aW⇡

Z x̄

x
xdG✓ (x).

Ex-ante, the value of ✓ is unknown, and both the sender and receiver hold a common

prior µ0 2 �(⇥). The financial adviser chooses what information to disclose to the investor

in order to influence how much is invested in the risky asset. When is the financial adviser

better o� disclosing more information about the risky asset?

The investor’s optimal strategy is not characterized by a cuto� in her posterior beliefs

and it depends on higher moments of her posterior (not just the posterior mean). Thus, the

example does not fit the simplifying assumptions often made in the persuasion literature to

use the concavification approach.

Nonetheless, in our portfolio management example, (RS) implies that u(✓, a) has in-

creasing di�erences in (✓; a), and that the financial adviser has a payo� v(✓, a) which is

state-independent, linear, and increasing in a. We can readily apply Proposition 3 and con-

clude that the financial adviser prefers to provide the investor a higher (resp., lower) quality

25Rothschild and Stiglitz (1971) show that all risk-averse agents invest more in a risky asset distributed according
to G✓00 than G✓0 if, and only if, (RS) holds. We embed their agent into the portfolio management problem.
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of information if u 2 U I (resp., u 2 UD). For instance, when the investor’s Bernoulli utility

satisfies the relative prudence condition26

�#
000(x)
#00(x)

x � 1,

it is straightforward to show that u 2 U I (using the second mean value theorem). Thus,

the financial adviser prefers to disclose all information to the investor. Additionally, from

Theorem 3, full information revelation is the optimal persuasion policy over all information

structures.

5.3 Application: Information Sharing in Supermodular Games

Consider a two-player common value Bayesian game with ✓̃1 = ✓̃2 = ✓̃. The basic game

is given by G ,
⇣
{Ai, ui}i=1,2, µ0

⌘
where the payo� ui : ⇥ ⇥ A ! R for i = 1, 2 satisfies

(A.7)-(A.10), and the common prior µ0 2 �(⇥) trivially satisfies (A.6).

Prior to playing the basic game, each player i observes a signal from an information

structure ⌃⇢i 2 Pi, where Pi denotes the set of information structures. We assume that each

⌃⇢ ,
⇣
⌃⇢1, ⌃⇢2

⌘
2 P1 ⇥P2 satisfies (A.11)-(A.13). Furthermore, for any i = 1, 2 and any two

information structures ⌃⇢00i , ⌃⇢0i 2 Pi, either ⇢00i ⌫spm ⇢0i or vice versa. Let ⌃ ⇢̄i 2 Pi represent

the full-information structure, i.e., an information structure that perfectly correlates the signal

and the state.

Suppose player 1 is exogenously endowed with ⌃⇢1 = ⌃ ⇢̄1 , i.e., player 1 observes the

realization of ✓̃. In contrast, player 2 does not observe an exogenous signal. Instead, player 1

chooses an information structure ⌃⇢2 2 P2 for player 2. In other words, prior to the learning

the state, player 1 commits to how much information she will share with player 2 by choosing

a “disclosure" policy.27 Each choice of ⌃⇢2 defines a Bayesian game G⇢ , (⌃ ⇢̄1, ⌃⇢2,G) as

outlined in Figure 5.

26See Kimball (1990) for an analysis of the relative prudence coe�cient and its e�ect on precautionary savings.
27Another interpretation is player 1 plays the role of the “sender" and player 2 plays the role of the “receiver"

in a Bayesian persuasion game as in subsection 5.2. The only di�erence here is that both the sender and the
receiver take an action.
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Player 1 publicly
chooses ⌃⇢2 2 P2

Nature picks
(✓, s1, s2) ⇠ F (✓, s1, s2; ⇢)

Player 1 privately observes s1

Player 2 privately observes s2

Player i = 1, 2
chooses ai 2 Ai

Payo�s ui (✓, a)
realized

Figure 5: Timing of information sharing game

For each Bayesian game G⇢, we assume that the players can coordinate on the maximal

monotone BNE a?(⇢) =
⇣
a?1 (⇢), a?2 (⇢)

⌘
with a?i (·; ⇢) : Si ! Ai. Since s̃1 is perfectly

correlated to ✓̃, with some abuse of notation, player 1’s BNE payo� is given by

U1(⇢) =
Z

⇥⇥S2

u1 �✓, a?1 (✓; ⇢), a?2 (s2; ⇢)
�
dF (✓, s2; ⇢2).

How much information, if any, would player 1 want to share with player 2? The ques-

tion of information sharing in Bayesian games has been explored within the context of firm

competition starting with Novshek and Sonnenschein (1982), Clarke (1983), Vives (1984),

Gal-Or (1985), and Raith (1996). The literature overall shows that full information disclosure

is optimal for the case of firm competition with strategic complements (e.g., di�erentiated

Bertrand competition). More recently, Bergemann and Morris (2013) provide a comprehen-

sive analysis of information sharing in beauty contests and similarly show full information

disclosure is optimal when strategic complementarities exist between players.

However, the previous literature has focused on linear-quadratic games and normally

distributed states and signals. In this application, we instead use the comparative statics

developed in Theorem 2 to extend the optimality of full information disclosure beyond games

with linear best-responses.

Proposition 4 Suppose u1 : ⇥ ⇥ A ! R satisfies increasing di�erences in (✓, a1; a2), and

one of the following holds:

i. ui 2 �I for i = 1, 2 and u1 is increasing and convex in a2,

ii. ui 2 �D for i = 1, 2 and u1 is decreasing and convex in a2, or
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iii. ui 2 �I \ �D for i = 1, 2 and u1 is convex in a2.

Then, it is optimal for player 1 to choose ⌃⇢2 = ⌃ ⇢̄2 .

The joint project game from Example 2 and the network game in Example 3 satisfy the

first su�cient condition, and the standard di�erentiated Bertrand competition model with

linear demand (e.g., Raith (1996)) satisfies the third su�cient condition.28 Hence, in all three

cases, we can readily apply Proposition 4 to conclude that it is ex-ante optimal for player 1 to

fully share her information with player 2.

It is worth noting that, even with the generalization from the linear-quadratic games, the

application in this subsection is a special case of the standard information sharing model.

Player 1 observes everything about the (common value) state while player 2 does not. Thus,

only player 1 is in a position to share information. In Leal-Vizcaíno and Mekonnen (2018), we

generalize the result in Proposition 4 to a setting in which each player receives an exogenous

signal and decides how much information to share with her opponent.29 We establish that the

full-information sharing result is robust to di�erent specifications of information structures

and payo�s. Moreover, we show that it is a dominant strategy and, therefore, the unique Nash

outcome of the information sharing game.

5.4 Information Acquisition and the Value of Transparency

Oligopolists are a�ected by many variables they cannot observe or estimate precisely: their

own cost function, the cost function of their rivals, the demand in a particular market on

a given date, etc. To the extent that these pieces of information are private and subject to

28Linear di�erentiated Bertrand: for each player i 2 N , profit function is given by

ui (✓, a) = (ai � ci )
*.
,
↵i (✓) +

X

j,i

�i ja j � �iiai
+/
-
,

where a is the price vector, ↵i (✓) is a demand shifter with ↵0i (·) � 0, ci > 0 is the marginal cost, and
�i j � 0 > �ii 8 j , i.

29The generalization requires a stronger order over information structures. Therefore, the results in Leal-Vizcaíno
and Mekonnen (2018) are not an immediate application of Theorem 2.
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learning, we must envision the process of gathering information as a game of information

acquisition.

Just as fixed costs or increasing returns might generate an imperfectly competitive market

structure by limiting entry, superior information by an incumbent firm might also constitute a

barrier to entry. In principle, the case of information acquisition is no di�erent to the classical

treatment of capital or capacity investment when studying entry, accommodation, and exit in

oligopolistic markets. However, we illustrate how investing in information di�ers from other

types of investment, such as capacity, learning by doing, and advertising (Bulow et al., 1985).

We focus our analysis on entry accommodation.30 We decompose the impact of informa-

tion acquisition on the incumbent’s profits into two e�ects: a direct e�ect (which is always

non-negative (Blackwell, 1951, 1953)) from improving the incumbent’s decision making,

and an indirect e�ect (which can be positive or negative) stemming from the response of

the entrant adjusting her strategy to the incumbent’s information. We call the indirect e�ect

the value of transparency and we show that it is positive or negative depending on (i) the

responsiveness of the entrant to changes in the incumbent’s information quality, and (ii) the

sign of the externality imposed on the incumbent by the entrant’s responsiveness.

The analysis of entry accommodation and the value of transparency is formally equivalent

to characterizing the demand for information in overt and covert information acquisition

games. The di�erence in the value of information in these two games is precisely the value of

transparency. Understanding what drives the di�erence between the overt and covert demands

for information is of independent interest to theorists studying the value of information, who

more often than not restrict attention to one of the two games (covert or overt) for technical

simplicity.

5.4.1 Setup

We consider a two-player Bayesian game composed of two stages: an information acquisition

stage followed by a basic game G , ({Ai, ui}i=1,2, µ0) where the payo� ui : ⇥ ⇥ A ! R for

30In the face of an entry threat, three kinds of behavior by the incumbent will be possible: entry might be
blockaded, deterred or accommodated. See Tirole (1988) textbook.
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i = 1, 2 satisfies (A.7)-(A.10) and the common prior µ0 2 �(⇥) satisfies (A.6).

In the information acquisition stage, player 2 has an exogenously given information struc-

ture ⌃⇢2 . On the other hand, player 1 is allowed to choose an information structure from a

set P1 such that for any ⌃⇢1 2 P1, ⌃⇢ , (⌃⇢1, ⌃⇢2 ) satisfies (A.11)-(A.13). Additionally, we

assume that for any two information structures ⌃⇢001 , ⌃⇢01 2 P1, either ⇢001 ⌫spm ⇢01 or vice versa.

Let  : P1 ! R be the cost of acquiring information with (⇢001 ) � (⇢01) when ⇢001 ⌫spm ⇢01.

Throughout this section, we only consider information acquisition in pure strategies in the

first stage.31 We also assume that players coordinate on the maximal pure-strategy monotone

BNE in the second stage.

To better understand the di�erence between overt and covert information acquisition,

suppose initially that player 1 is endowed with information structure ⌃⇢01 and this is com-

mon knowledge, i.e., both players know the Bayesian game is G⇢0 , (⌃⇢01, ⌃⇢2,G). Let
�
a?1 (⇢0), a?2 (⇢0)

�
be the resulting BNE of G⇢0. Consider the following two scenarios as a

thought experiment.

In the first scenario, player 1 is allowed to either keep ⌃⇢01 or switch to ⌃⇢001 . Player 2

observes whether or not player 1 switches. This scenario mirrors the overt information acqui-

sition game. If player 1 switches to ⌃⇢001 , the game changes from G⇢0 to G⇢00 , (⌃⇢001 , ⌃⇢2,G)

and the resulting BNE is
�
a?1 (⇢00), a?2 (⇢00)

�
.

In the second scenario, player 1 can again switch to ⌃⇢001 but player 2 is neither aware

that player 1 can switch nor observes player 1’s choice. This scenario mirrors the covert

information acquisition game. If player 1 switches, player 2 will naively believe that the game

is still G⇢0 and continues to play a?2 (⇢0). On the other hand, player 1 best-replies to a?2 (⇢0) by

playing the strategy aBR
1 (a?2 (⇢0), ⇢00).

Since we wish to distinguish between player 1’s choice of information and player 2’s

beliefs, we denote the actual outcome of the information acquisition stage by ⇢ = (⇢1, ⇢2)

and player 2’s belief of the outcome of the information acquisition stage by ⇢̂ = ( ⇢̂1, ⇢2). We

say player 2 has correct beliefs when ⇢̂1 = ⇢1 (which must be the case in any equilibrium).

31For overt information acquisition, this is without loss as player 2 observes the chosen information structure
before the second stage. Hence, player 1 randomizes only when she is indi�erent.
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Given actual first stage outcome ⇢ and player 2’s belief ⇢̂, let player 1’s ex-ante payo� in

the covert game (second scenario) be U1(⇢; ⇢̂) � (⇢1) where

U1(⇢; ⇢̂) =
Z

⇥⇥S
u1 �✓, aBR

1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)
�
dF (✓, s; ⇢).

In the overt game (first scenario), player 2 has correct beliefs. Hence, given actual first stage

outcome ⇢, player 1’s payo� in the overt game is U1(⇢; ⇢) � (⇢1) with

U1(⇢; ⇢) =
Z

⇥⇥S
u1 �✓, aBR

1 (s1; a?2 (⇢), ⇢), a?2 (s2; ⇢)
�
dF (✓, s; ⇢)

=

Z

⇥⇥S
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

�
dF (✓, s; ⇢),

where the equality follows from aBR
1 (a?2 (⇢), ⇢) = a?1 (⇢) by the definition of a BNE.

Definition 5 Given actual first stage outcome ⇢ and player 2’s belief ⇢̂, the value of trans-

parency is given by:

VT (⇢; ⇢̂) = U1(⇢; ⇢) �U1(⇢; ⇢̂).

In other words, VT (⇢; ⇢̂) represents the gain/loss to player 1 from disclosing to player 2 her

actual first stage choice, ⌃⇢1 , instead of letting player 2 incorrectly believe that the first stage

choice is ⌃ ⇢̂1 . The value of transparency does not capture any direct substantive advantages of

information; player 1’s chosen information structure in both cases is ⌃⇢1 . Instead, it captures

the indirect e�ects of information stemming from a change in player 2’s beliefs and, therefore,

her strategic response.32

5.4.2 Value and Demand for Information

Before we discuss how to characterize the value of transparency, we present why it is an

interesting economic concept. In particular, we show that the value of transparency is

32Our treatment of the value of transparency is loosely connected to the expectations conformity conditions in
Tirole (2015). Expectations conformity implies that player 1 is more willing to acquire ⌃⇢1 over ⌃⇢̂1 when
player 2 believes that player 1 will acquire ⌃⇢1 . It is straightforward to show that expectations conformity is
equivalent to VT (⇢; ⇢̂) + VT ( ⇢̂; ⇢) � 0.
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helpful in answering the following questions: When is a higher quality of costless but overt

information acquisition always beneficial to player 1? Does player 1 acquire more information

when information acquisition is overt or when it is covert?

In covert games, information only has a direct e�ect, i.e., more information allows player

1 to make better decisions in the second stage. Therefore, the value of costless information is

never negative (Neyman, 1991).

While information has the same beneficial direct e�ect in overt games, there are also

strategic e�ects; player 2 observes how much information player 1 acquires and responds to it

in the second stage. If player 2 finds it optimal to choose an unfavorable action (punish player

1) in the equilibrium of the second stage whenever player 1 acquires more information, then

the value of information in overt games may be negative (Kamien et al., 1990). Nonetheless,

we show that the value of overt information cannot be negative if player 1 benefits from

disclosing to player 2 that a higher quality of information has been acquired.

Proposition 5 For any two information structures ⌃⇢1, ⌃ ⇢̂1 2 P1, suppose ⇢1 ⌫spm ⇢̂1 implies

VT (⇢; ⇢̂) � 0. Then U1(⇢; ⇢) � U1( ⇢̂; ⇢̂).

Proof. For two information structures ⌃⇢1, ⌃ ⇢̂1 2 P1, we can write

U1(⇢; ⇢) �U1( ⇢̂; ⇢̂) = U1(⇢; ⇢) �U1(⇢; ⇢̂)|                   {z                   }
=VT (⇢; ⇢̂)

+U1(⇢; ⇢̂) �U1( ⇢̂; ⇢̂)|                   {z                   }
value of covert information

.

Amir and Lazzati (2016) (Proposition 7) show that the second term is non-negative when

⇢1 ⌫spm ⇢̂1, i.e., the value of covert information is non-negative when quality of information

increases. Hence, if VT (⇢; ⇢̂) � 0, we can conclude that the value of overt information is

also non-negative when quality of information increases.

To answer the second question about the demand of information, let ⌃⇢c1 and ⌃⇢o1 denote

the information structures acquired in a pure strategy Nash equilibrium (PSNE) of covert and
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overt games.33 Specifically, ⌃⇢c1 is a solution to

max
⌃⇢12P

U1(⇢; ⇢c) � (⇢1).

In other words, given player 2 believes player 1 chooses ⌃⇢c1 in equilibrium, it is indeed optimal

for player 1 to choose ⌃⇢c1 . In contrast, ⌃⇢o1 solves

max
⌃⇢12P

U1(⇢; ⇢) � (⇢1).

In other words, ⌃⇢o1 is optimal for player 1 after taking into account that player 2 will observe

the chosen information structure in the first stage and will respond to it in the second stage.

We show that whenever the value of transparency is non-negative, player 1 acquires more

information in overt games than in covert games, regardless of the cost function.

Proposition 6 For any two information structures ⌃⇢1, ⌃ ⇢̂1 2 P1, let VT (⇢; ⇢̂) � 0 if, and

only if, ⇢1 ⌫spm ⇢̂1. Then ⇢o
1 ⌫spm ⇢c

1.

Proof. Suppose ⌃⇢c1 , ⌃⇢o1 (otherwise, it is trivial).34 By definition,

U1(⇢c; ⇢c) � (⇢c
1) � U1(⇢o; ⇢c) � (⇢o

1)

U1(⇢o; ⇢o) � (⇢o
1) � U1(⇢c; ⇢c) � (⇢c

1).

Combining the two inequalities, we getU1(⇢o; ⇢o)�U1(⇢o; ⇢c) = VT (⇢o; ⇢c) � 0, ⇢o
1 ⌫spm

⇢c
1.

33We have made an implicit assumption that a PSNE exists in the covert information acquisition game. Es-
tablishing such an equilibrium exists is beyond the scope of this section. However, when  is a constant
function, U1(⇢; ⇢̂) � (⇢1) satisfies single crossing in (⇢1; ⇢̂1), i.e., given ⇢001 ⌫spm ⇢01 and ⇢̂001 ⌫spm ⇢̂01,
U1(⇢00; ⇢̂0) � (⇢001 ) � U1(⇢0; ⇢̂0) � (⇢01) =) U1(⇢00; ⇢̂00) � (⇢001 ) � U1(⇢0; ⇢̂00) � (⇢01). Then, with ap-
propriate assumptions on P, we can use Milgrom and Shannon (1994) and Athey (2001) to establish existence
of PSNE of the covert game.

34The implicit assumption of unique equilibrium outcomes in the result above is only made to simplify exposition.
The antecedent of Proposition 6 implies VT ( ⇢̂; ⇢̂) = 0 and VT (⇢; ⇢̂) � 0 for any ⇢1 ⌫spm ⇢̂1. We can therefore
apply familiar monotone comparative statics tools for single-crossing functions to show that the solution set
for overt equilibrium maximization problem dominates the solution set for covert equilibrium.
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5.4.3 Characterizing the Value of Transparency

We now characterize the value of transparency which depends on the responsiveness of player

2 and the externality player 2’s responsiveness imposes on player 1.

Theorem 4 Suppose either the basic game G is one of independent private values, or u1(✓, a)

has increasing di�erences in (✓, a1; a2). Additionally, suppose one of the following holds:

i. ui 2 �I for i = 1, 2 and u1 is increasing and convex in a2,

ii. ui 2 �D for i = 1, 2 and u1 is decreasing and convex in a2, or

iii. ui 2 �I \ �D for i = 1, 2 and u1 is convex in a2.

Then for any two information structures ⌃⇢1, ⌃ ⇢̂1 2 P1, VT (⇢; ⇢̂) � 0 if, and only if, ⇢1 ⌫spm

⇢̂1.

The joint project game in Example 2, the network game in Example 3, and the standard

di�erentiated Bertrand models (Raith, 1996) all satisfy the conditions of Theorem 4. Hence,

applying Proposition 6, we can conclude that the demand for information in these examples

is higher when information acquisition is overt.

To gain some intuition, recall that VT (⇢; ⇢̂) = U1(⇢; ⇢) �U1(⇢; ⇢̂) is given by

Z

⇥⇥S

f
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

� � u1 �✓, aBR
1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)

�g
dF (✓, s; ⇢).

Consider the case of independent private values, and let S2 = [0, 1]. By taking a first-order

Taylor expansion, we can approximate the value of transparency as

⇡
Z

⇥⇥S
u1

a1

�
✓1, a?1 (s1; ⇢), a?2 (s2; ⇢)

� �
a?1 (s1; ⇢) � aBR

1 (s1; a?2 ( ⇢̂), ⇢)
�
dF (✓, s; ⇢)

|                                                                                                  {z                                                                                                  }
=0 by optimality in second stage

+

Z 1

0

"Z
⇥1⇥S1

u1
a2

�
✓1, a?1 (s1; ⇢), a?2 (s2; ⇢)

�
dF (✓1, s1; ⇢1)

#
|                                                               {z                                                               }

,⇣ (s2)

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
dFS2 (s2).
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The conditions in Theorem 4 connect the sign for the value of transparency to player 2’s

responsiveness, a?2 (⇢) � a?2 ( ⇢̂), the type of externality player 2’s action imposes on player 1,

sign(u1
a2), and player 1’s “risk" attitude towards player 2’s action, sign(u1

a2a2).

For example, suppose condition i. of Theorem 4 holds. As u1(✓1, a) is increasing and

convex in a2, ⇣ (s2) is non-negative and increasing in s2. Additionally, from Theorem 2,

ui 2 �I for i = 1, 2 implies that player 2 becomes more responsive with a higher mean as the

quality of player 1’s information increases. From Lemma 1,

⇢1 ⌫spm ⇢̂1 =)
Z 1

t

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
dFS2 (s2) � 0

for all t 2 [0, 1]. From the second mean value theorem, there exists some t⇤ 2 [0, 1] such that

VT (⇢; ⇢̂) ⇡
Z 1

0
⇣ (s2)

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
dFS2 (s2)

=⇣ (1)
Z 1

t⇤

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
dFS2 (s2) � 0.

For the independent private values case, Theorem 4 can be generalized into the taxonomy

provided in Figure 6. The first two columns describe how player 2 responds when the

information structure changes from ⌃ ⇢̂ to ⌃⇢. The next two columns are assumptions placed

on player 1’s utility function. The last column presents the resulting sign on the value of

transparency. The first, third, and fifth rows of Figure 6 correspond to condition i, ii, and iii

of Theorem 4 respectively. For instance, the fifth row of Figure 6 states that if a change from

⌃ ⇢̂1 to ⌃⇢1 leads to a mean-preserving spread in player 2’s actions (cst stands for constant

mean), and if player 1’s utility is convex in a2 (without any more restrictions on sign(u1
a2)),

then the value of transparency VT (⇢; ⇢̂) is non-negative.

5.4.4 Relation to Strategic E�ects of Investment in Firm Competition

The characterization of the value of transparency is related to the taxonomy of strategic

behavior in firm competition studied by Fudenberg and Tirole (1984), and Bulow et al.
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a2(⇢) � a2( ⇢̂) Externality Transparency
responsiveness mean sign(u1

a2 ) sign(u1
a2a2 ) VT (⇢; ⇢̂)

% % + + +

% % � � �
% & � + +

% & + � �
% cst · + +

% cst · � �
& % + � +

& % � + �
& & � � +

& & + + �
& cst · � +

& cst · + �

Figure 6: A taxonomy of the value of transparency for independently private values.

(1985).35 Here we follow the textbook treatment of Tirole (1988) and only consider the case

of entry accommodation in a duopoly under complete information.

There are two periods and two firms, an incumbent (firm 1) and an entrant (firm 2). In the

first period, the incumbent chooses a level of investment K1 2 R, which the entrant observes.

The term investment is used in a broad sense and can represent, for example, investment in

R&D that lowers the incumbent’s marginal costs or advertising that captures a share of the

market.

In the second period, both firms compete either in quantities (strategic substitutes) or

prices (strategic complements). Let
�
a?1 (K1), a?2 (K1)

�
be the resulting Nash equilibrium of

the second period after the incumbent chose K1 in the first period. The incumbent’s payo�

from choosing an investment level K1 is given by U1
�
K1, a?1 (K1), a?2 (K1)

�
.

Fudenberg and Tirole (1984) show that the total marginal e�ect on the incumbent’s payo�

35For a thorough treatment of di�erent examples and applications, we recommend Shapiro (1989). For a more
recent treatment using the tools of supermodular games, see Vives (2001).
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from increasing investment can be decomposed into

dU1
dK1
=

@U1
@K1|{z}

direct e�ect

+
@U1
@a1

da?1
dK1|    {z    }
=0

by Envelope theorem|                             {z                             }
value of “covert" investment

+
@U1
@a2

da?2
dK1|    {z    }

strategic e�ect

.

Increasing the level of investment has a direct e�ect on the incumbent’s payo�, for example, by

reducing the marginal cost. It also a�ects the incumbent’s optimal action choice in the second

period, captured by da?1
dK1

. If the entrant was unable to observe the incumbent’s investment

choice, these would be the only marginal e�ects to account for when the incumbent increases

investment.

However, since the entrant observes the incumbent’s first period choice of K1, the invest-

ment also has strategic e�ects; the entrant’s production/pricing decision is indirectly a�ected

by K1. This strategic e�ect depends on the entrant’s equilibrium response to an increase in

the level of investment, represented by da?2
dK1

, and on the externality the entrant’s actions impose

on the incumbent’s payo�, represented by @U1

@a2
.

In our model, the game is one of incomplete information: player 1 is the incumbent,

player 2 is the entrant, and the investment level K1 corresponds to the quality of the player

1’s information structure ⇢1. The total e�ect of overtly increasing investment in information

from ⌃⇢1 to ⌃ ⇢̂1 can be similarly decomposed into

U1(⇢; ⇢) �U1( ⇢̂; ⇢̂) = U1(⇢; ⇢̂) �U1( ⇢̂; ⇢̂)|                   {z                   }
value of covert investment

+U1(⇢; ⇢) �U1(⇢; ⇢̂)|                   {z                   }
strategic e�ect

.

The value of covert investment (value of covert information) captures how player 1’s payo�

increases by her ability to make better informed decisions while holding player 2’s strategy

fixed. The strategic e�ect in our model corresponds to the value of transparency. It captures

how player 1’s payo� changes when player 2’s strategy is indirectly a�ected by the change in

information quality.

From the first-order Taylor expansion, we have shown that the strategic e�ect of informa-
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tion depends on player 2’s responsiveness, a?2 (⇢) � a?2 ( ⇢̂), the externality player 2’s action

imposes on player 1, u1
a2 , and additionally, player 1’s “risk" attitude towards player 2’s action,

u1
a2a2 . Our characterization of the value of transparency can hence be thought of as a stochastic

extension to the characterization of strategic e�ects of investment by Fudenberg and Tirole

(1984).

6 Conclusion

We provide a general framework to study changes in equilibria and welfare as the quality

of private information increases. The theory has important implications in both Bayesian

games and Bayesian decision problems. Our theory of Bayesian Comparative Statics is

comprised of three key components: an information order, a stochastic ordering of actions,

and a class of utility functions. Our main theorem proves that for a subclass of supermodular

utility functions, there is a duality between the order of actions and the information order:

equilibrium outcomes become more dispersed in the stochastic order of actions if, and only

if, signal quality increases in the information order.

There are positive as well as normative implications. For example, the quality of private

information a�ects price dispersion in industrial economics. In the macroeconomy, it might

increase the cross-sectional volatility of investment or aggregate output and it can also induce

a higher expected aggregate output.

In welfare analysis, we connect information, actions, and payo�s through the concept of

externalities. A monopolist with more precise information about his costs increases both the

volatility and the average level of production if he faces a su�ciently convex demand. This

has positive externalities on the consumers.

In information disclosure (Bayesian persuasion) games, we characterize the minimal and

maximal levels of conflict between a sender and a receiver, conditions under which extremal

disclosure of information is optimal. We find that the conditions for full disclosure are

also similar to the conditions that imply full information sharing is optimal for competing

oligopolists, thereby extending the industrial organization literature to more general environ-
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ments.

Finally, we study the process of entry accommodation in oligopolistic markets where

an incumbent can invest in information acquisition. The analysis of the indirect e�ect of

information on the incumbent’s profit through the induced behavior of the entrant (the value

of transparency) is formally equivalent to characterizing the di�erence between the overt and

covert demands for information. We characterize the value of transparency depending on

the entrant’s responsiveness to the incumbent’s information and the sign of the externality

imposed on the incumbent by the entrant’s responsiveness.

The theory of Bayesian comparative statics will be useful to generalize many of the insights

developed for quadratic economies to a class of payo�s with richer dynamics. One avenue for

future research is to study the e�cient and equilibrium use of information.36 Another open

question is how a central planner should intervene in markets with uncertain fundamentals

and dispersed information in non-linear environments.37

More generally, the framework can be applied in information design.38 Other extensions

include studying the comparative statics of welfare and equilibrium outcomes with respect to

the quality of public information, exogenous changes to the prior distribution of the market

fundamentals, and changes in attitudes towards risk or temporal resolution of uncertainty.
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7 Appendix A

7.1 Preliminary Lemmas

We provide two equivalent characterizations of responsiveness, one using the CDF H (·; ⇢) and

another usnig the quantile function defined as â(q; ⇢) = inf{z : q  H (z; ⇢)} for q 2 (0, 1).

Lemma 1 [Shaked and Shantikumar, 2007; Theorem 4.A.2-A.3]

Given two information structures ⌃⇢00 and ⌃⇢0, the following are equivalent:

i. An agent is more responsive with higher mean under ⌃⇢00 than under ⌃⇢0.

ii. For any increasing convex function ' : R! R,

Z 1

�1
'(z)dH (z; ⇢00) �

Z 1

�1
'(z)dH (z; ⇢0).

iii. For all t 2 [0, 1], Z 1

t
â(q; ⇢00)dq �

Z 1

t
â(q; ⇢0)dq.

Similarly, the following are equivalent:

iv. An agent is more responsive with lower mean under ⌃⇢00 than under ⌃⇢0.

v. For any decreasing convex function � : R! R,

Z 1

�1
�(z)dH (z; ⇢00) �

Z 1

�1
�(z)dH (z; ⇢0).
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vi. For all t 2 [0, 1], Z t

0
â(q; ⇢00)dq 

Z t

0
â(q; ⇢0)dq.

The following characterization of the supermodular stochastic order will prove useful for

the proof of Theorem 1.

Lemma 2 Given two information structures ⌃⇢00 and ⌃⇢0, ⇢00 ⌫spm ⇢0 if, and only if, for all

integrable functions  : ⇥ ⇥ S ! R that satisfy increasing di�erences (ID) in (✓; s),

Z

⇥⇥S
 (✓, s)dF (✓, s; ⇢00) �

Z

⇥⇥S
 (✓, s)dF (✓, s; ⇢0)

Proof. Recall that all information structures induce the same marginal distribution of ✓̃ as it

corresponds to the agent’s prior. We have also assumed (WLOG) that all information struc-

tures induce the same marginal distribution of s̃. The result follows from (Theorem 3.8.2 of

Müller and Stoyan (2002) or Tchen (1980).

Some of our results also make use of the following result from Lemma 1 of Quah and

Strulovici (2009)

Lemma 3 Let g : [x0, x00]! R and h : [x0, x00]! R be integrable functions.

1. If g is increasing and
R x00

x h(t)dt � 0 for all x 2 [x0, x00], then
R x00

x0 g(t)h(t)dt �
g(x0)

R x00

x0 h(t)dt

2. If g is decreasing and
R x

x0 h(t)dt � 0 for all x 2 [x0, x00], then
R x00

x0 g(t)h(t)dt �
g(x00)

R x00

x0 h(t)dt

7.2 Single-Agent

Proof of Theorem 1

Proof. ( =) ) The payo� u(✓, a) satisfies ID in (✓; a) and the information structure ⌃⇢ has

the property that s > s0 implies µ(·|s; ⇢) ⌫FOSD µ(·|s0; ⇢). From monotone comparative
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statics, the optimal action a(⇢) : S ! A is a monotone function of s. Hence, from an

ex-ante perspective, the optimal action coincdes with the quantile function we used to define

responsiveness in Lemma 1, i.e., a(⇢) = â(⇢) almost surely.

Without loss of generality, we assume that the marginal on signals is uniformly distributed

on the unit interval.39 For any two information structures ⇢00 ⌫spm ⇢0 and any signal realization

s 2 [0, 1], the first order conditions imply that

Z

⇥
ua (✓, a(s; ⇢00))µ(d✓ |s; ⇢00) �

Z

⇥
ua (✓, a(s; ⇢0))µ(d✓ |s; ⇢0) = 0

which we rewrite as

Z

⇥

⇣
ua (✓, a(s; ⇢00)) � ua (✓, a(s; ⇢0))

⌘
µ(d✓ |s; ⇢00) +

Z

⇥
ua (✓, a(s; ⇢0))

⇣
µ(d✓ |s; ⇢00) � µ(d✓ |s; ⇢0)

⌘
= 0

If u 2 U I , then ua (✓, a) is convex in a for all ✓. Thus,

ua (✓, a(s; ⇢00)) � ua (✓, a(s; ⇢0)) � uaa (✓, a(s; ⇢0))
�
a(s; ⇢00) � a(s; ⇢0)

�

and

⇣
a(s; ⇢00) � a(s; ⇢0)

⌘ Z

⇥
uaa (✓, a(s; ⇢0))µ(d✓ |s; ⇢00) +

Z

⇥
ua (✓, a(s; ⇢0))

⇣
µ(d✓ |s; ⇢00) � µ(d✓ |s; ⇢0)

⌘
 0.

For each t 2 [0, 1],

Z 1

t

�
a(s; ⇢0) � a(s; ⇢00)

�
ds


Z 1

t

 
�

Z

⇥
uaa (✓, a(s; ⇢0))µ(d✓ |s; ⇢00)

!�1

|                                            {z                                            }
,B(s)

Z

⇥
ua (✓, a(s; ⇢0))

⇣
µ(d✓ |s; ⇢0) � µ(d✓ |s; ⇢00)

⌘
ds

=

Z

⇥⇥[0,1]
ua (✓, a(s; ⇢0))B(s)1[s�t]

⇣
dF (✓, s; ⇢0) � dF (✓, s; ⇢00)

⌘
,

39As mentioned in the text, we can apply the integral probability transformation to signals.
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where 1[s�t] is the indicator function that equals 1 if s � t and 0 otherwise.

Define  (✓, s; t) , ua (✓, a(s; ⇢0))B(s)1[s�t]. For any ✓00 > ✓0,  (✓00, s; t) �  (✓0, s; t) = 0

for s < t and

 (✓00, s; t) �  (✓0, s; t) = B(s)
⇣
ua (✓00, a(s; ⇢0)) � ua (✓0, a(s; ⇢0))

⌘
� 0

for s � t. The inequality follows from ID of u in (✓; a) and the strict concavity of u in a.

Since u 2 U I , ua also satisfies ID in (✓; a), i.e., ua (✓00, a) � ua (✓0, a) is increasing in a. Since

a(s; ⇢0) is increasing in s, ua (✓00, a(s; ⇢0)) � ua (✓0, a(s; ⇢0)) is also increasing in s.

Additionally, u 2 U I implies that �ua satisfies decreasing di�erences in (✓; a) and is

concave in a. Hence, �uaa (✓, a) is decreasing in both ✓ and a. Since higher signal realizations

lead to higher actions and to first-order stochastic shifts in beliefs,

�
Z

⇥
uaa (✓, a(s; ⇢0))µ(d✓ |s; ⇢00)

is a decreasing function of s. Thus B(s) is increasing in s. We can therefore conclude that

 (✓00, s; t) � (✓0, s; t) is increasing in s. In other words,  (✓, s; t) satisfies ID in (✓; s). Thus,

for each t 2 [0, 1],

Z 1

t

�
a(s; ⇢0) � a(s; ⇢00)

�
ds


Z

⇥⇥[0,1]
 (✓, s; t)

⇣
dF (✓, s; ⇢0) � dF (✓, s; ⇢00)

⌘
 0

where the last inequality follows from Lemma 2.

((=) By definition, if ⇢00 ✏spm ⇢0, there exists a (✓⇤, s⇤) 2 ⇥ ⇥ [0, 1] such that

F (✓⇤, s⇤; ⇢00) < F (✓⇤, s⇤; ⇢0).
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Define a payo� function

u(✓, a) = �1
2
⇣
ā � 1[✓✓⇤](ā � a) � a

⌘2
.

The payo� u(✓, a) satisfies (A.1)-(A.4): It is continuous, twice di�erentiable, and strictly

concave in a for each ✓ 2 ⇥. It satisfies ID in (✓; a). For each ✓ 2 ⇥, the optimal

action is easily computed from the first order conditions so that the optimal action under

complete information is a if ✓  ✓⇤ and ā otherwise. Furthermore, the marginal utility

ua (✓, a) = ā � 1[✓✓⇤](ā � a) � a is

(i) linear in a for all ✓ 2 ⇥, and (ii) has constant di�erences in (✓; a).

Therefore, u 2 U I TUD. For any given ⌃⇢,

a(s; ⇢) =ā � (ā � a)E
f
1[✓̃✓⇤] |s; ⇢

g

=ā � (ā � a)
Z ✓⇤

✓
µ(d! |s; ⇢).

Then given ⌃⇢0 and ⌃⇢00,

Z s⇤

0

�
a(s; ⇢00) � a(s; ⇢0)

�
dFS (s)

=(ā � a)
⇣
F (✓⇤, s⇤; ⇢0) � F (✓⇤, s⇤; ⇢00)

⌘
> 0.

Therefore, the agent is not more responsive with a lower mean under ⌃⇢00 than ⌃⇢0. Notice

that for any ⌃⇢,

E[a(⇢)] = ā � (ā � a)
Z 1

0

Z ✓⇤

✓
µ(d! |s; ⇢)dFS (s) = ā � (ā � a)

Z ✓⇤

✓
µ0(d!),
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which is independent of ⇢. Thus,

Z 1

s⇤

�
a(s; ⇢00) � a(s; ⇢0)

�
dFS (s)

=

Z 1

0

�
a(s; ⇢00) � a(s; ⇢0)

�
dFS (s)

|                                    {z                                    }
=E[a(⇢00)]�E[a(⇢0)]

=0

�
*....
,

Z s⇤

0

�
a(s; ⇢00) � a(s; ⇢0)

�
dFS (s)

|                                     {z                                     }
>0

+////
-
< 0.

Therefore, the agent is not more responsive with a higher mean under ⌃⇢00 than ⌃⇢0.

Proof of Proposition 1

Proof. Let ai = a⇤(µi) for i = 1, 2, a� = �a1 + (1 � �)a2, and µ� = �µ1 + (1 � �)µ2. By the

first order condition, we have that
R
⇥

ua (✓, ai)µi (d✓) = 0. Let u 2 U I .

Z

⇥
ua (✓, a� )µ� (d✓)  �

Z

⇥
ua (✓, a1)µ� (d✓) + (1 � �)

Z

⇥
ua (✓, a2)µ� (d✓)

= �2
Z

⇥
ua (✓, a1)µ1(d✓) + (1 � �)2

Z

⇥
ua (✓, a2)µ2(d✓)

+ �(1 � �)
"Z
⇥

ua (✓, a2)µ1(d✓) +
Z

⇥
ua (✓, a1)µ2(d✓)

#

= �(1 � �)
Z

⇥
[ua (✓, a1) � ua (✓, a2)] (µ2(d✓) � µ1(d✓))

 0

where the first inequality follows from the convexity of ua. As already noted, ID of the utility

u(✓, a) in (✓; a) along with µ2 ⌫FOSD µ1 implies a2 � a1. By ID of the marginal utility ua

in (✓; a), we have ua (✓, a1) � ua (✓, a2) is a decreasing function of ✓. The last inequality then

follows from the definition of first-order stochastic dominance. Since the marginal value of

a� is non-positive at µ� , we must have a⇤(µ� )  a� . A symmetric argument establishes that

if u 2 UD, then a⇤(µ� ) � a� .
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Proof of Corollary 1

Proof. We prove the case of increasing mean, the other case is analogous. We begin with a

lemma.

Lemma (A) Suppose u 2 U I . For any finite sequence of beliefs {µi}ni=1 with µn ⌫FOSD

µn�1 ⌫FOSD . . . ⌫FOSD µ1, and any sequence of weights {�i}ni=1 with �i 2 [0, 1] and
Pn

i=1 �i = 1, we have

a⇤(
nX

i=1
�iµi) 

nX

i=1
�ia⇤(µi)

If u 2 UD the opposite inequality holds.

Proof.

a⇤ *
,�1µ1 +

nX

i=2
�iµi+-  �1a⇤(µ1) + *

,
nX

i=2
�i+- a⇤ *

,
nX

i=2

�iPn
k=2 �k

µi+-


nX

i=1
�ia⇤

�
µi

�

The first line follows from Proposition 1 using the property that first order stochastic

dominance is preserved under convex combinations. The second line follows by induction.

Let ⌃⇢00 be an information structure that induces posteriors {µi}ni=1 with corresponding

probabilities {⌧⇢
00

i }ni=1 such that µi ⌫FOSD µ j whenever i > j. Let ⌃⇢0 be another information

structure that induces posteriors {⌫k }mk=1 with corresponding probabilities {⌧⇢
0

k }mk=1.

Assume ⌃⇢0 be a garbling of ⌃⇢00 so that for each k = 1, . . . ,m, there exist weights {�k
i }ni=1

such that (i) �k
i 2 [0, 1], (ii)

Pn
i=1 �

k
i = 1, and (iii) ⌫k =

Pn
i=1 �

k
i µi. Furthermore, for each

i = 1, . . . , n, ⌧⇢
00

i =
Pm

k=1 �
k
i ⌧

⇢0

k .

To show that the agent is more responsive with a higher mean under ⌃⇢00 than ⌃⇢0, take
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any increasing and convex function ' : R! R. Then

Z
'(z)dH (z; ⇢0) =

mX

k=1
'

�
a⇤ (⌫k )

�
⌧⇢
0

k

=

mX

k=1
' *

,a⇤ *
,

nX

1=1
�k

i µi+-
+
- ⌧

⇢0

k


mX

k=1
' *

,
nX

1=1
�k

i a⇤
�
µi

�+
- ⌧

⇢0

k


nX

1=1

mX

k=1
�k

i '
�
a⇤

�
µi

��
⌧⇢
0

k

=

nX

1=1
'

�
a⇤

�
µi

��
⌧⇢
00

i =

Z
'(z)dH (z; ⇢00)

where the first inequality follows from Lemma A and monotonicity of ', and the second

inequality follows from the convexity of '. The desired result follows by the characterization

of responsiveness with a higher mean in Lemma 1.

The above argument can be extended to the case of infinite posteriors following the

methods in Zhang (2008).

7.2.1 When Responsiveness Fails

In this section, we explore why a higher quality of information may not lead to more dispersed

optimal actions when u < U I [UD. Once again, let the state space be ⇥ = {✓, ✓̄}. Consider

four di�erent beliefs {µn}n=1,2,3,4 such that µn = n� for some � 2 (0, 1/4). Beliefs are ordered

by first-order stochastic dominance with µ4 ⌫FOSD µ3 ⌫FOSD µ2 ⌫FOSD µ1.

In Figure 7a, we plot the expected marginal utilities of some payo� function u. Notice that

u(✓, a) satisfies ID in (✓; a)—the expected marginal utility of µn+1 lies above the expected

marginal utility of µn. Thus, an+1 � an. Furthermore, ua (✓, a) also satisfies ID in (✓; a)—the

height of the dashed arrows increases left to right. However, the marginal utilities are now

concave which implies that the marginal utility diminishes at an accelerating rate. Therefore,
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u < U I . Furthermore, a4 � a3 < a3 � a2 whereas a3 � a2 > a2 � a1. Figure 7b depicts this

“non-convexity" of the optimal action as a function of beliefs.

a

ua

µ1 µ2µ3
µ4

a⇤1 a⇤2 a⇤3a
⇤
4

(a) Marginal utilities

µ

a⇤ (µ)

µ1

a⇤1

µ2

a⇤2

µ3

a⇤3

µ4

a⇤4

(b) Optimal action

Figure 7: Non-convexity for u < U I

Figure 8 illustrates why the agent may not be responsive to an increase in the quality of

information when the optimal action is neither convex nor concave, as in Figure 7b. Let

⌃⇢00 be an information structure that induces three posteriors {µ1, µ0, µ4} with probabilities

{1/3, 1/3, 1/3} such that µ4 ⌫FOSD µ0 ⌫FOSD µ1. Let ⌃⇢0 induce posteriors {µ1, µ2, µ3, µ4}
with probability {1/6, 1/3, 1/3, 1/6} where µ2 = 0.5µ1+0.5µ0 and µ3 = 0.5µ4+0.5µ0. Then

µ4 ⌫FOSD µ3 ⌫FOSD µ2 ⌫FOSD µ1. Notice that ⌃⇢0 is a equivalent to getting information

from ⌃⇢00 with probability 0.5 and no information with probability 0.5. Thus, ⇢00 ⌫spm ⇢0.

Let a⇤(µ) be neither convex nor concave and let the average action under ⌃⇢00 equal the

average action under ⌃⇢0. In Figure 8a, this corresponds to the point of intersection of the

dashed line and the solid curved line at µ0. Figure 8b maps the distribution over optimal

actions. ⌃⇢00 induces the dashed line while ⌃⇢0 induces the solid line.

If we start integrating from the right, then
R 1

x H (z; ⇢00) � H (z; ⇢0)dz  0 for all x >

a⇤(µ3) but the sign changes at some point x⇤ 2 (a⇤(µ0), a⇤(µ3)). Thus, the agent is not

more responsive with a higher mean under ⌃⇢00. If we instead integrate from the left, then
R x
�1 H (z; ⇢00) � H (z; ⇢0)dz � 0 for all x < a⇤(µ2) but the sign changes at some point

x⇤⇤ 2 (a⇤(µ2), a(µ0)). Thus, the agent is not more responsive with a lower mean under ⌃⇢00.
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µ

a⇤

µ1 µ4µ0 µ3µ2

a⇤ (µ)

(a) Optimal action

H

H (⇢00)

H (⇢0)

1

a1 a4a2 a3a0

1
6

1
3

1
2

2
3

5
6 x⇤x⇤⇤

(b) Induced distribution

Figure 8: Non-convexity/concavity and non-responsiveness

In fact, as the average action under ⌃⇢00 equals the average action under ⌃⇢0, we can

conclude that a(⇢00) and a(⇢0) cannot be ordered by most univariate stochastic variability

orders such as second-order stochastic dominance, mean-preserving spreads, Lorenz order,

dilation order, and dispersive order.40

Another reason why a higher quality of information may not lead to more responsive

behavior is when the interior solution assumption, (A.3), is violated. Suppose the upper limit

on the action space, ā, is a binding constraint for the prior, i.e., a⇤(µ0) = ā. Let ⌃⇢0 be a

completely uninformative information structure. Then ⌃⇢0 induces ā with probability one,

thereby first-order stochastically dominating the distribution over actions induced by any other

information structure ⌃⇢00, even if ⇢00 ⌫spm ⇢0.

8 Appendix B

8.1 Games

Proof of Theorem 2

Proof.

40Shaked and Shanthikumar (2007) provide a thorough treatment of these orders.
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To simplify exposition, let n = 2. Once again, we assume without loss of generality that

for each player i = 1, 2, the marginal on signals, FSi , is the uniform distribution on the unit

interval.

Fix a basic game G. For each player i, let ↵i : Si ! Ai be an arbitrary measurable and

monotone strategy. Let Ai be the set of all such monotone and measurable strategies and let

A , A1 ⇥A2. Given an information structure ⌃⇢ and opponent’s strategies ↵�i 2 A�i, let

aBR
i (·; ↵�i, ⇢) : Si ! Ai be player i’s best response strategy. Specifically, for all si 2 [0, 1],

aBR
i (si; ↵�i, ⇢) = arg max

ai2Ai

Z

⇥⇥S�i
ui

⇣
✓, ↵�i (s�i), ai

⌘
dF (✓, s�i |si; ⇢).

By (A.6) and (A.10)-(A.13), aBR
i (·; ↵�i, ⇢) 2 Ai for i = 1, 2.41

For any given arbitrary monotone strategies ↵ , (↵1, ↵2) 2 A, denote the profile of

best-response strategies by aBR(↵, ⇢) ,
⇣
aBR

1 (·; ↵2, ⇢), aBR
2 (·; ↵1, ⇢)

⌘
. Then, a BNE of G⇢,

a?(⇢), is given by the fixed point aBR(a?(⇢), ⇢) = a?(⇢).

We only prove the case for ui 2 �". A symmetric argument establishes the result for the

case of ui 2 �#. The proof to Theorem 2 proceeds in four steps:

1. Player i’s best response strategy increases in the increasing convex order when player

i’s information quality increases (Lemma 4)

2. Player i’s best response strategy increases in increasing convex order when player �i’s

information quality increases (Lemma 5)

3. Player i’s best response strategy increases in increasing convex order when player �i’s

strategy increases in increasing convex order (Lemma 6)

4. Given 1-3, apply comparative statics on fixed points to get desired result.

41By the monotonicity of the best response, aBR
i is equivalent to the quantile function almost everywhere. We

can thus directly use aBR
i to characterize responsiveness by applying Lemma 1.
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Lemma 4 Fix some arbitrary strategy ↵�i 2 A�i. Take two structures ⌃⇢00 , (⌃⇢00i , ⌃⇢�i ) and

⌃⇢0 , (⌃⇢0i, ⌃⇢�i ) with ⇢00i ⌫spm ⇢0i. If ui 2 �", then aBR
i (·; ↵�i, ⇢00) dominates aBR

i (·; ↵�i, ⇢0i)

in the increasing convex order.

Proof. Given ⌃⇢�i and ↵�i 2 A�i, let

ũi (✓i, ai) =
Z

⇥�i⇥S�i
ui

⇣
✓, ↵�i (s�i), ai

⌘
dF (✓�i, s�i |✓i; ⇢�i)

so that

aBR
i (si; ↵�i, ⇢) = arg max

ai2Ai

Z

⇥i

ũi (✓i, ai)µ(d✓i |si; ⇢i).

We have mapped this problem to the single-agent framework where the payo� is given

by ũi : ⇥i ⇥ Ai ! R. Thus, if ũi 2 U", then by Theorem 1, aBR
i (·; ↵�i, ⇢00) dominates

aBR
i (·; ↵�i, ⇢0) in the increasing convex order.

First, ũi inherits the measurability, boundedness, and smoothness properties of ui. Fur-

thermore, concavity of ui in ai for all (✓, a�i) 2 ⇥ ⇥ A�i implies concavity of ũi in ai for all

✓i 2 ⇥i. Similarly, convexity of ui
ai in ai for all (✓, a�i) 2 ⇥ ⇥ A�i implies convexity of ũi

ai in

ai for all ✓i 2 ⇥i.

To see that ũi (✓i, ai) has ID in (✓i; ai), let ✓00i > ✓
0
i . Then,

ũi
ai (✓

00
i , ai) � ũi

ai (✓
0
i, ai)

=

Z

⇥�i⇥S�i
ui

ai

⇣
✓00i , ✓�i, ↵�i (s�i), ai

⌘
dF (✓�i, s�i |✓00i ; ⇢�i)

�
Z

⇥�i⇥S�i
ui

ai

⇣
✓0i, ✓�i, ↵�i (s�i), ai

⌘
dF (✓�i, s�i |✓0i ; ⇢�i)

=

Z

⇥�i⇥S�i

 
ui

ai

⇣
✓00i , ✓�i, ↵�i (s�i), ai

⌘
� ui

ai

⇣
✓0i, ✓�i, ↵�i (s�i), ai

⌘!
dF (✓�i, s�i |✓00i ; ⇢�i)

+

Z

⇥�i⇥S�i
ui

ai

⇣
✓0i, ✓�i, ↵�i (s�i), ai

⌘  
dF (✓�i, s�i |✓00i ; ⇢�i) � dF (✓�i, s�i |✓0i ; ⇢�i)

!

Since ui (✓i, ✓�i, a�i, ai) has increasing di�erences (ID) in (✓i; ai) for each (✓�i, a�i) 2
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⇥�i ⇥ A�i and since ID is preserved under integration, the first term

Z

⇥�i⇥S�i

 
ui

ai

⇣
✓00i , ✓�i, ↵�i (s�i), ai

⌘
� ui

ai

⇣
✓0i, ✓�i, ↵�i (s�i), ai

⌘!
dF (✓�i, s�i |✓00i ; ⇢�i) � 0.

Furthermore, since ui (✓i, ✓�i, a�i, ai) has ID in (✓�i, a�i; ai) for each ✓i 2 ⇥i, ui
ai (✓i, ✓�i, a�i, ai)

is increasing in (✓�i, a�i). As ↵�i is a monotone strategy, by (A.13) and (A.6), the second

term

Z

⇥�i⇥S�i
ui

ai

⇣
✓0i, ✓�i, ↵�i (s�i), ai

⌘  
dF (✓�i, s�i |✓00i ; ⇢�i) � dF (✓�i, s�i |✓0i ; ⇢�i)

!
� 0.

Hence, ũi (✓i, ai) has ID in (✓i; ai).

A similar argument establishes that ũi
ai (✓i, ai) has ID in (✓i; ai). Thus, ũi 2 U". The

desired result in the statement of the lemma follows from Theorem 1.

Lemma 5 Fix some arbitrary strategy ↵�i 2 A�i. Take two structures ⌃⇢00 , (⌃⇢i, ⌃⇢00�i ) and

⌃⇢0 , (⌃⇢i, ⌃⇢0�i ) with ⇢00�i ⌫spm ⇢0�i. If ui 2 �", then aBR
i (·; ↵�i, ⇢00) dominates aBR

i (·; ↵�i, ⇢0)

in the increasing convex order.

Proof. Following the same first order condition argument we used in the proof of Theorem 1,

for each si 2 [0, 1],

⇣
aBR

i (si; ↵�i, ⇢
0) � aBR

i (si; ↵�i, ⇢
00)

⌘ Z

⇥⇥S�i
�ui

aiai
�
✓, ↵�i (s�i), aBR

i (si; ↵�i, ⇢
0)
�
dF (✓, s�i |si; ⇢00)

|                                                                         {z                                                                         }
,B̂(si )�1

+

Z

⇥⇥S�i
ui

ai
�
✓, ↵�i (s�i), aBR

i (si; ↵�i, ⇢
0)
� ⇣

dF (✓, s�i |si; ⇢00) � dF (✓, s�i |si; ⇢0)
⌘
 0.
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Then, for each t 2 [0, 1],

Z 1

t

⇣
aBR

i (si; ↵�i, ⇢
0) � aBR

i (si; ↵�i, ⇢
00)

⌘
dsi


Z 1

t
B̂(si)

Z

⇥⇥S�i
ui

ai
�
✓, ↵�i (s�i), aBR

i (si; ↵�i, ⇢
0)
� ⇣

dF (✓, s�i |si; ⇢0) � dF (✓, s�i |si; ⇢00)
⌘
dsi

=

Z

⇥⇥S
ui

ai
�
✓i, ↵�i (s�i), aBR

i (si; ↵�i, ⇢
0)
�
B̂(si)1[si�t]

⇣
dF (✓, s; ⇢0) � dF (✓, s; ⇢00)

⌘

=

Z

⇥�i⇥S�i
 ̂(✓�i, s�i; t)

⇣
dF (✓�i, s�i; ⇢0�i) � dF (✓�i, s�i; ⇢00�i)

⌘
,

where

 ̂(✓�i, s�i; t) =
Z

⇥i⇥Si
ui

ai
�
✓, ↵�i (s�i), aBR

i (si; ↵�i, ⇢
0)
�
B̂(si)1[si�t]dF (si |✓i; ⇢i)µ(d✓i |✓�i).

The equality follows from (A.11). Take s00�i > s0�i which implies that ↵�i (s00�i) � ↵�i (s0�i).

Then,

"
ui

ai
�
✓, ↵�i (s00�i), a

BR
i (si; ↵�i, ⇢

0)
� � ui

ai
�
✓, ↵�i (s0�i), a

BR
i (si; ↵�i, ⇢

0)
�

#
1[si�t] � 0,

for all (✓, si) 2 ⇥ ⇥ Si because ui (✓, a�i, ai) has increasing di�erences in (a�i; ai). It is also

increasing in both ✓ and si because ui
ai (✓, a�i, ai) has increasing di�erences in (✓, ai; a�i).

Similarly,

B̂(si) � 0

by concavity of ui in ai. It is increasing in si because ui
ai is convex in ai, has ID in (✓, a�i; ai),

and because F (✓, s�i |si; ⇢00) is increasing in FOSD as si increases. Thus, along with (A.6)
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and (A.13),

 ̂(✓�i, s00�i; t) �  ̂(✓�i, s0�i; t)

=

Z

⇥i⇥Si

( f
ui

ai
�
✓, ↵�i (s00�i), a

BR
i (si; ↵�i, ⇢

0)
� � ui

ai
�
✓, ↵�i (s0�i), a

BR
i (si; ↵�i, ⇢

0)
�g

⇥ B̂(si)1[si�t]

)
dF (si |✓i; ⇢i)µ(d✓i |✓�i)

is increasing in ✓�i. In other words,  ̂(✓�i, s�i; t) has ID in (✓�i; s�i). By Lemma 2, ⇢00�i ⌫spm

⇢0�i implies

Z

⇥�i⇥S�i
 ̂(✓�i, s�i; t)

⇣
dF (✓�i, s�i; ⇢0�i) � dF (✓�i, s�i; ⇢00�i)

⌘
 0,

giving us the desired result.

Lemma 6 Fix ⌃⇢. Let ↵00�i, ↵
0
�i 2 A�i such that ↵00�i dominates ↵0�i in the increasing convex

order. If ui 2 �", then, aBR
i (·; ↵00�i, ⇢) also dominates aBR

i (·; ↵0�i, ⇢) in the increasing convex

order.

Proof. Suppress the dependence on ⇢ as it is held fixed. For any t 2 [0, 1], we use the first

order conditions argument (similar to the proof of Lemma 5) to get the expression

Z 1

t

�
aBR

i (si; ↵0�i) � aBR
i (si; ↵00�i)

�
dsi


Z 1

t

(  
�

Z

⇥⇥S�i
ui

aiai

⇣
✓, ↵00�i (s�i), aBR

i (si; ↵0�i)
⌘
dF (✓, s�i |si)

!�1

|                                                                        {z                                                                        }
,B̃i (si )

⇥
Z

⇥⇥S�i

"
ui

ai

⇣
✓, ↵0�i (s�i), aBR

i (si; ↵0�i)
⌘
� ui

ai

⇣
✓, ↵00�i (s�i), aBR

i (si; ↵0�i)
⌘#

dF (✓, s�i |si)
)

dsi .
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By convexity of ui
ai in a�i,

ui
ai

⇣
✓i, ↵

0
�i (s�i), aBR

i (si; ↵0�i)
⌘
� ui

ai

⇣
✓i, ↵

00
�i (s�i), aBR

i (si; ↵0�i)
⌘

ui
aia�i

⇣
✓i, ↵

0
�i (s�i), aBR

i (si; ↵0�i)
⌘ �
↵0�i (s�i) � ↵00�i (s�i)

�
.

Thus,

Z 1

t

�
aBR

i (si; ↵0�i) � aBR
i (si; ↵00�i)

�
dsi


Z

S�i

�
↵0�i (s�i) � ↵00�i (s�i)

�
Z

⇥⇥Si
ui

aia�i

⇣
✓, ↵0�i (s�i), aBR

i (si; ↵0�i)
⌘
B̃(si)1[si�t]dF (✓, si |s�i)ds�i .

From Lemma 1 and the equivalence of the monotone strategy ↵�i with its quantile function,

↵00�i dominates ↵0�i in the increasing convex order if

Z 1

t

�
↵0�i (s�i) � ↵00�i (s�i)

�
ds�i  0, 8t 2 [0, 1].

Furthermore, for each s�i 2 [0, 1]

ui
aia�i

⇣
✓, ↵0�i (s�i), aBR

i (si; ↵0�i)
⌘
1[si�t] � 0, 8(✓, si) 2 ⇥ ⇥ Si

as ui has increasing di�erences in (a�i; ai) for all ✓ 2 ⇥. It is also increasing in both ✓ and si

because ui
ai has increasing di�erences in (✓, ai; a�i). Similarly,

B̃(si) � 0

by concavity of ui in ai. It is increasing in si because ui
ai is convex in ai, has ID in (✓, a�i; ai),

and because F (✓, s�i |si) is increasing in FOSD as si increases. Thus, along with (A.6) and

(A.13), Z

⇥⇥Si
ui

aia�i

⇣
✓, ↵0�i (s�i), aBR

i (si; ↵0�i)
⌘
B̃(si)1[si�t]dF (✓, si |s�i)
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is an increasing function of s�i. Applying Lemma 3, we have

Z 1

t

�
aBR

i (si; ↵0�i) � aBR
i (si; ↵00�i)

�
dsi


Z

S�i

�
↵0�i (s�i) � ↵00�i (s�i)

�
Z

⇥⇥Si
ui

aia�i

⇣
✓, ↵0�i (s�i), aBR

i (si; ↵0�i)
⌘
B̃(si)1[si�t]dF (✓, si |s�i)ds�i


Z

S�i

�
↵0�i (s�i) � ↵00�i (s�i)

�
ds�i

|                                  {z                                  }
0

Z

⇥⇥Si
ui

aia�i

⇣
✓, ↵0�i (s�i), aBR

i (si; ↵0�i)
⌘
B̃(si)1[si�t]

|                                                   {z                                                   }
�0

dF (✓, si |0)

0

for each t 2 [0, 1].

We now tackle the last step in the proof: comparative statics of the BNEs. We apply the

comparative statics of fixed points provided by Villas-Boas (1997). To do so, we will need

the following definition.

Definition 6 (Contractible Space) Let X be a topological space. We say that X is a con-

tractible space if there exists a map � : X ⇥ [0, 1]! X such that for all x 2 X

1. �(·, �) is continuous in �,

2. �(x, 0) = x and �(x, 1) = x⇤ for some x⇤ 2 X

Intuitively, X is contractible if it can be continuously shrunk into a point inside itself.

Villas-Boas (1997, Theorem 6) Let X be a compact subset of a Banach space. Consider

continuous mappings T1 : X ! X and T2 : X ! X , and a transitive and reflexive order ⌫ on

X . For all x 2 X , let the upper-set {x0 2 X : x0 ⌫ x} be a compact and contractible subset.

Let both T1 and T2 have a fixed point on X . Suppose x0 ⌫ x ) T1(x0) ⌫ T1(x), and suppose

T1(x) ⌫ T2(x) for all x 2 X . Then for every fixed point x?2 of T2, there is a fixed point x?1 of

T1 such that x?1 ⌫ x?2 .
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The remaining few steps prove that our setting satisfies the assumptions needed to apply the

Villas-Boas result.42

Let BV ([0, 1],R) be the space of functions of bounded variation from [0, 1] to R. Given a

function g 2 BV ([0, 1],R), let V (g) be the total variation of g.43 Define the bounded variation

norm by | |g | |BV =
R 1

0 |g(s) |ds + V (g). The space BV ([0, 1],R) equipped with the | | · | |BV is

a Banach space.

Lemma 7 For each i = 1, 2, Ai is a compact subset of the Banach space
�
BV ([0, 1],R), | | ·

| |BV
�
.

Proof. Any ↵i 2 Ai is of bounded variation as it is an increasing function. Therefore, Ai is

a subset of BV ([0, 1],R).

To show that Ai is a compact subset BV ([0, 1],R), take a sequence {↵̃i,k }1k=1 2 Ai.

The sequence is uniformly bounded as each function ↵i,k maps into the compact interval

Ai. By Helly’s Selection Theorem, the sequence converges to an increasing function ↵̃i 2
BV ([0, 1],R).

Furthermore, as ai  ↵̃i,k (0) for all k, the limit also satisfies ai  ↵̃i (0). Similarly,

as āi � ↵̃i,k (1) for all k, the limit also satisfies āi � ↵̃i (1). Finally, the point-wise limit

of measurable functions is measurable (Corollary 8.9, Measure, Integrals, and Martingales,

Schilling (2005)). As ↵̃i is a monotone and measurable function that maps from [0, 1] to Ai,

ãi 2 Ai.

Define a weak partial order over Ai by ↵00i ⌫i ↵0i if, and only if, ↵00i dominates ↵0i in the

increasing convex order. Using Lemma 1 (and the equivalence of ↵i to its quantile function),

42For the case when ui 2 �# for all i 2 N , we use Theorem 7 of Villas-Boas (1997) which uses the lower-sets
generated by the decreasing convex order to get the desired comparative statics of fixed points.

43Specifically, V (g) = supp2P
Pnp�1

i=0 |g(xi+1) � g(xi ) | where P is the set of all partitions p = {x0, x1, . . . , xnp }
on [0, 1].
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↵00i ⌫i ↵0i if, and only if,

Z 1

t
↵00i (si)dsi �

Z 1

t
↵0i (si)dsi, 8t 2 [0, 1].

Denote the upper-set of ↵i byUS(↵i) , {↵0i 2 Ai : ↵0i ⌫i ↵i} ✓ Ai.

Lemma 8 For each i = 1, 2, and for any ↵i 2 Ai,US(↵i) is a compact and contractible set.

Proof. For a given ↵i 2 Ai, US(↵i) is a closed subset of Ai (follows from the dominated

convergence Theorem). Hence, it is compact. To show that US(↵i) is contractible, let

↵c
i : [0, 1]! Ai be the constant function with ↵c

i (s) = āi for all s 2 [0, 1]. Note that ↵c
i 2 Ai.

Furthermore, ↵c
i (s) � ↵i (s), 8s 2 [0, 1] which implies ↵c

i ⌫i ↵i ) ↵c
i 2 US(↵i).

For each ↵i 2 Ai, defne the mapping � : US(↵i) ⇥ [0, 1]! US(↵i) such that

�(↵0i, �) = (1 � �)↵0i + �↵
c
i .

�(·, �) is continuous in �. As � increases from 0 to 1, � continuously deforms any strategy

in US(↵i) to the constant strategy ↵c
i , which is itself in US(↵i). Therefore, US(↵i) is

contractible.

Thus far, we have an order, ⌫i, on Ai that generates compact and contractible upper-sets.

We extend these properties toA , A1⇥A2 by the product order: given ↵00, ↵0 2 A, ↵00 ⌫ ↵0

if, and only if, ↵00i ⌫i ↵0i for each i = 1, 2. Along with the product topology, ⌫ is a partial

order on A that generates compact and contractible upper-sets.44

For a Bayesian game G⇢ , (⌃⇢1, ⌃⇢2,G), define an operator T⇢ : A ! A with

T⇢(↵) =
�
aBR

1 (↵2, ⇢), aBR
2 (↵1, ⇢)

�
.

T⇢ is continuous in ↵ as utility functions are continuous in actions. A monotone BNE of G⇢,
44A is a subset of a Banach space equipped with the metric d(↵0, ↵) =

P
i | |↵0i � ↵i | |BV .
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a?(⇢), is a fixed point of T⇢. We know such a fixed point exists (Van Zandt and Vives, 2007).

Consider two di�erent games, G⇢00 , (⌃⇢001 , ⌃⇢002 ,G) andG⇢0 , (⌃⇢01, ⌃⇢02,G), with ⇢00i ⌫spm

⇢0i for all i = 1, 2. For all ↵ 2 A,

⇢00i ⌫spm ⇢0i,8i )|{z}
by Lemma 4

and Lemma 5

aBR
i (↵�i, ⇢

00) ⌫i aBR
i (↵�i, ⇢

0),8i , T⇢00 (↵) ⌫ T⇢0 (↵).

Furthermore,

↵00 ⌫ ↵0 , ↵00i ⌫i ↵
0
i,8i )|{z}

by Lemma 6

aBR
i (↵00�i, ⇢

00) ⌫i aBR
i (↵0�i, ⇢

00),8i , T⇢00 (↵00) ⌫ T⇢00 (↵0).

We can now directly apply Theorem 6 of Villas-Boas (1997) to conclude that, for every fixed

point a?(⇢0) of T⇢0, there is a fixed point a?(⇢00) of T⇢00 such that a?(⇢00) ⌫ a?(⇢0).

8.2 Applications

Proof of Proposition 2

Proof. �qP00(q)/P0(q)  1 implies that CS(q) =
R q

0 P(t)dt � qP(q) is an increasing convex

function. If ⇡ 2 U I , then for two information structures ⌃⇢00 and ⌃⇢0 with ⇢00 ⌫spm ⇢0,

qM (⇢00) dominates qM (⇢0) in the increasing convex order, i.e., the monopolist is more re-

sponsive with a higher mean under ⌃⇢00. By definition, E[CS(qM (⇢00))] � E[CS(qM (⇢0))].

Proof of Proposition 3

Proof. Take two information structures ⌃⇢00, ⌃⇢0 with ⇢00 ⌫spm ⇢0. The sender’s ex-ante payo�

di�erence is given by V (⇢00) � V (⇢0)

=

Z

⇥⇥S
v(✓, a(s; ⇢00))

⇥
dF (✓, s; ⇢00) � dF (✓, s; ⇢0)

⇤
(1)

+

Z

⇥⇥S

⇥
v(✓, a(s; ⇢00)) � v(✓, a(s; ⇢0))

⇤
dF (✓, s; ⇢0).
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When v(✓, a) has ID in (✓; a) and a(s; ⇢) is increasing in s (which follows from u(✓, a)

satisfying ID in (✓; a) and posteriors increasing in FOSD as s increases), v(✓, a(s; ⇢)) has ID

in (✓; s). Thus, by Lemma 2, the first integral term is non-negative.

When v(✓, a) is di�erentiable45 and convex in a for all ✓ 2 ⇥, the second integral term

satisfies

Z

⇥⇥S

⇥
v(✓, a(s; ⇢00)) � v(✓, a(s; ⇢0))

⇤
dF (✓, s; ⇢0)

�
Z 1

0
[a(s; ⇢00) � a(s; ⇢0)]

Z

⇥
va (✓, a(s, ⇢0))µ(d✓ |s; ⇢0)

|                               {z                               }
=E⇥[va (✓̃,a(s,⇢0)) |s;⇢0]

ds.

When v(✓, a) is both convex in a and has ID in (✓; a), and posterior beliefs increase in FOSD

as s increases, the term E⇥[va (✓̃, a(s, ⇢0)) |s; ⇢0] is an increasing function of s.

Case I: u 2 U I and v is increasing in a.

From Theorem 1, u 2 U I implies that

Z 1

t
[a(s; ⇢00) � a(s; ⇢0)]ds � 0,8t 2 [0, 1].

From Lemma 3 and v(✓, a) increasing in a,

Z 1

0
[a(s; ⇢00) � a(s; ⇢0)]E⇥[va (✓̃, a(s, ⇢0)) |s; ⇢0]ds

�
Z 1

0
[a(s; ⇢00) � a(s; ⇢0)]ds

|                             {z                             }
�0 by u2U I

E⇥[va (✓̃, a(0, ⇢0)) |0; ⇢0] � 0.

Hence, the second integral term in (1) is also non-negative. In other words, V (⇢00) � V (⇢0).

Case II: u 2 UD and v is decreasing in a.

45If v is not di�erentiable, we can uniformly approximate it by a convex analytic function.
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From Theorem 1, u 2 UD implies that

Z t

0
[a(s; ⇢0) � a(s; ⇢00)]ds � 0,8t 2 [0, 1].

From Lemma 3 and v(✓, a) decreasing in a,

Z 1

0
[a(s; ⇢00) � a(s; ⇢0)]E⇥[va (✓̃, a(s, ⇢0)) |s; ⇢0]ds

=

Z 1

0
[a(s; ⇢0) � a(s; ⇢00)]E⇥[�va (✓̃, a(s, ⇢0)) |s; ⇢0]ds

�
Z 1

0
[a(s; ⇢0) � a(s; ⇢00)]ds

|                             {z                             }
�0 by u2UD

E⇥[�va (✓̃, a(1, ⇢0)) |1; ⇢0] � 0.

Once again, the second integral term in (1) is also non-negative. Therefore, V (⇢00) � V (⇢0).

Case III: u 2 UD \UD.

From Theorem 1, u 2 U I \UD implies that

Z 1

t
[a(s; ⇢00) � a(s; ⇢0)]ds � 0,8t 2 [0, 1],

with equality at t = 0. From Lemma 3

Z 1

0
[a(s; ⇢00) � a(s; ⇢0)]

Z

⇥
va (✓, a(s, ⇢0))µ(d✓ |s; ⇢0)ds

�
Z 1

0
[a(s; ⇢00) � a(s; ⇢0)]ds

|                             {z                             }
=0

Z

⇥
va (✓, a(0, ⇢0))µ(d✓ |0; ⇢0)ds = 0.

Hence, V (⇢00) � V (⇢0).

By setting the sender’s payo� in the above arguments to�v(✓, a), we get the corresponding

statements for preferences that satisfy decreasing di�erences and concavity.
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Proof of Theorem 3

Proof.

First case: Assume u 2 U I , and v(✓, a) is increasing and convex in a, and satisfies increasing

di�erences in (✓; a):

Let µ2 ⌫FOSD µ1 and let µ� = �µ1 + (1 � �)µ2. By Proposition 1 a⇤(µ� )  �a⇤(µ1) +

(1 � �)a⇤(µ2). Let a1 = a⇤(µ1), a2 = a⇤(µ2), a� = �a1 + (1 � �)a2 then

Z
v(a⇤(µ� ), ✓)dµ� 

Z
v(a⇤(µ� ), ✓)dµ�

 �
Z

v(a1, ✓)dµ� + (1 � �)
Z

v(a2, ✓)dµ�

= �2
Z

v(a1, ✓)dµ1 + (1 � �)2
Z

v(a2, ✓)dµ2

�(1 � �)
"Z

v(a1, ✓)dµ2 +

Z
v(a2, ✓)dµ1

#

= �

Z
v(a1, ✓)dµ1 + (1 � �)

Z
v(a2, ✓)dµ2

�(1 � �)
"Z

v(a1, ✓)dµ2 +

Z
v(a2, ✓)dµ1 �

Z
v(a1, ✓)dµ1 �

Z
v(a2, ✓)dµ2

#

 �
Z

v(a1, ✓)dµ1 + (1 � �)
Z

v(a2, ✓)dµ2

By induction, if any signal ⌃⇢00 satisfies (A.5) and has finite posteriors, then for any garbling

⌃⇢0 with finite posteriors we have that V (⇢00) > V (⇢0) (see the proof of Corollary 1). The

above argument can be extended to the case of infinite posteriors following the methods in

Zhang (2008). The other two cases are analogous.

Proof of Proposition 4

Proof. Take any two information structures ⌃⇢00 , (⌃ ⇢̄1, ⌃⇢002 ), ⌃⇢0 , (⌃ ⇢̄1, ⌃⇢02 ) with ⇢002 ⌫spm

⇢02. Then U1(⇢00) �U1(⇢0)

=

Z

⇥⇥S2

u1 �✓, a?1 (✓; ⇢00), a?2 (s2; ⇢00)
�
dF (✓, s2; ⇢002 ) �

Z

⇥⇥S2

u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)
�
dF (✓, s2; ⇢02),
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which can be written as

Z

⇥⇥S2

f
u1 �✓, a?1 (✓; ⇢00), a?2 (s2; ⇢00)

� � u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢00)
�g

dF (✓, s2; ⇢00) (2)

+

Z

⇥⇥S2

f
u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢00)

� � u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)
�g

dF (✓, s2; ⇢00)

+

Z

⇥⇥S2

u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)
� f

dF (✓, s2; ⇢00) � dF (✓, s2; ⇢0)
g
.

The first term of (2) is non-negative as a?1 (⇢00) is player 1’s best response to a?2 (⇢00) and

information structure ⌃⇢00. For the third term of (2), take s002 > s02 which implies a?2 (s002 ; ⇢0) �
a?2 (s02; ⇢0) and note that

u1 �✓, a?1 (✓; ⇢0), a?2 (s002 ; ⇢0)
� � u1 �✓, a?1 (✓; ⇢0), a?2 (s02; ⇢0)

�

is increasing in ✓ because u1 has ID (✓, a1; a2). Hence, u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)
�

has ID in

(✓; s2). By Lemma 2,

Z

⇥⇥S2

u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)
� f

dF (✓, s2; ⇢00) � dF (✓, s2; ⇢0)
g
� 0

and the third term of (2) is also non-negative.

By convexity and di�erentiability of u1 in a2, the second term of (2) can be rewritten as

Z

S2

Z

⇥

f
u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢00)

� � u1 �✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)
�g
µ(d✓ |s2; ⇢00)ds2

�
Z

S2

�
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

�
Z

⇥
u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)

�
µ(d✓ |s2; ⇢00)ds2.

Since u1 has ID in (✓, a1; a2), a?1 (✓; ⇢0) is increasing in ✓, a?2 (s2; ⇢0) is increasing in s2, and

assumption (A.12), Z

⇥
u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)

�
µ(d✓ |s2; ⇢00)

is increasing in s2.
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Case I: ui 2 �I for i = 1, 2 and u1 is increasing in a2.

By Theorem 2, ui 2 �I for i = 1, 2 implies a?2 (⇢00) dominates a?2 (⇢0) in the increasing

convex order. By Lemma 1,

Z 1

t

⇣
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

⌘
ds2 � 0

for all t 2 [0, 1]. By Lemma 3, the second term of (2) is greater than

Z

S2

�
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

�
Z

⇥
u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)

�
µ(d✓ |s2; ⇢00)ds2

�
Z

S2

�
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

�
ds2

|                                     {z                                     }
�0 by increasing convex order

Z

⇥
u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (0; ⇢0)

�
|                            {z                            }
�0 as u1 is increasing in a2

µ(d✓ |0; ⇢00) � 0.

Thus, ⇢002 ⌫spm ⇢02 implies U1(⇢00) � U1(⇢0). As ⇢̄2 ⌫spm ⇢2 for all ⌃⇢2 2 P2, player 1’s

ex-ante payo� is maximized by the full-information structure.

Case II: ui 2 �D for i = 1, 2 and u1 is decreasing in a2.

By Theorem 2, ui 2 �D for i = 1, 2 implies a?2 (⇢00) dominates a?2 (⇢0) in the decreasing convex

order. By Lemma 1, Z t

0

⇣
a?2 (s2; ⇢0) � a?2 (s2; ⇢00)

⌘
ds2 � 0

for all t 2 [0, 1]. By Lemma 3, the second term of (2) is greater than

Z

S2

�
a?2 (s2; ⇢0) � a?2 (s2; ⇢00)

�
Z

⇥
�u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)

�
µ(d✓ |s2; ⇢00)ds2

�
Z

S2

�
a?2 (s2; ⇢0) � a?2 (s2; ⇢00)

�
ds2

|                                     {z                                     }
�0 by decreasing convex order

Z

⇥
�u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (1; ⇢0)

�
|                               {z                               }

�0 as u1 is decreasing in a2

µ(d✓ |1; ⇢00) � 0.

Thus, ⇢002 ⌫spm ⇢02 implies U1(⇢00) � U1(⇢0) and player 1’s ex-ante payo� is maximized by

the full-information structure.

Case III: ui 2 �I \ �D for i = 1, 2.
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By Theorem 2, ui 2 �I\�D for i = 1, 2 implies a?2 (⇢00) is a mean-preserving spread of a?2 (⇢0),

i.e., a?2 (⇢00) dominates a?2 (⇢0) in both increasing and decreasing convex order. By Lemma 1,

Z t

0

⇣
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

⌘
ds2 � 0

for all t 2 [0, 1]. By Lemma 3, the second term of (2) is greater than

Z

S2

�
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

�
Z

⇥
u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (s2; ⇢0)

�
µ(d✓ |s2; ⇢00)ds2

�
Z

S2

�
a?2 (s2; ⇢00) � a?2 (s2; ⇢0)

�
ds2

|                                     {z                                     }
=0 by mean-preserving spread

Z

⇥
u1

a2

�
✓, a?1 (✓; ⇢0), a?2 (0; ⇢0)

�
µ(d✓ |0; ⇢00) = 0.

Thus, ⇢002 ⌫spm ⇢02 implies U1(⇢00) � U1(⇢0) and player 1’s ex-ante payo� is maximized by

the full-information structure.

Proof of Theorem 4

Proof. We only show the proof for the case when ui 2 �I for i = 1, 2 and u1(✓, a) is an

increasing and convex function of a2. The remaining cases can be established by a similar

argument.46

Take two information structures ⌃⇢1, ⌃ ⇢̂1 2 P. By definition, VT (⇢; ⇢̂) = U1(⇢; ⇢) �
46The reader may also refer to the proof of Proposition 4 which contains a similar proof for all three cases.
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U1(⇢; ⇢̂) is given by

Z

⇥⇥S

f
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

� � u1 �✓, aBR
1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)

�g
dF (✓, s; ⇢)

=

Z

⇥⇥S

f
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

� � u1 �✓, aBR
1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢)

�g
dF (✓, s; ⇢)

|                                                                                                          {z                                                                                                          }
�0 by optimality

+

Z

⇥⇥S

f
u1 �✓, aBR

1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢)
� � u1 �✓, aBR

1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)
�g

|                                                                                              {z                                                                                              }
�u1

a2 (✓,aBR
1 (s1;a?2 ( ⇢̂),⇢),a?2 (s2; ⇢̂))(a?2 (s2;⇢)�a?2 (s2; ⇢̂))

by convexity of u1 in a2

dF (✓, s; ⇢)

�
Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘ Z

⇥1⇥S1

u1
a2

�
✓, aBR

1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)
�
dF (✓, s1 |s2; ⇢)ds2.

Define ⇣ : [0, 1]! R by

⇣ (s2) ,
Z

⇥1⇥S1

u1
a2

�
✓, aBR

1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)
�
dF (✓, s1 |s2; ⇢).

So far, we have established that

VT (⇢; ⇢̂) �
Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
⇣ (s2)ds2.
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We can also rewrite VT (⇢; ⇢̂) = U1(⇢; ⇢) �U1(⇢; ⇢̂) as

Z

⇥⇥S

f
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

� � u1 �✓, aBR
1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)

�g
dF (✓, s; ⇢)

=

Z

⇥⇥S

f
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

� � u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢̂)
�g

|                                                                       {z                                                                       }
�u1

a2 (✓,a?1 (s1;⇢),a?2 (s2;⇢))(a?2 (s2; ⇢̂)�a?2 (s2;⇢))

by concavity of �u1 in a2

dF (✓, s; ⇢)

+

Z

⇥⇥S

f
u1 �✓, a?1 (s1; ⇢), a?2 (s2; ⇢̂)

� � u1 �✓, aBR
1 (s1; a?2 ( ⇢̂), ⇢), a?2 (s2; ⇢̂)

�g
dF (✓, s; ⇢)

|                                                                                                          {z                                                                                                          }
0 by optimality


Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘ Z

⇥1⇥S1

u1
a2

�
✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

�
dF (✓, s1 |s2; ⇢)ds2.

Define ⌘ : [0, 1]! R by

⌘(s2) ,
Z

⇥1⇥S1

u1
a2

�
✓, a?1 (s1; ⇢), a?2 (s2; ⇢)

�
dF (✓, s1 |s2; ⇢).

Then,

Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
⌘(s2)ds2 � VT (⇢; ⇢̂) �

Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
⇣ (s2)ds2.

Recall that u1(✓, a) is increasing in a2, i.e., positive externalities. Hence, both ⇣ (s2) � 0

and ⌘(s2) � 0 for all s2 2 [0, 1]. Additionally, u1
a2 (✓, a) is also increasing in a2 by convexity.

Thus, when we have independent private values, or when u1(✓, a) satisfies ID in (✓, a1; a2)

(along with (A.6) and (A.11)-(A.13)), then ⇣ (s2) and ⌘(s2) are increasing in s2.

(=)) Suppose ⇢1 ⌫spm ⇢̂1. From Theorem 2, ui 2 �I for i = 1, 2 implies that a?2 (⇢) dominates

a?2 ( ⇢̂) in the increasing convex order. By Lemma 1,

Z 1

t

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
ds2 � 0
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for all t 2 [0, 1]. Using Lemma 3, we can then conclude that

VT (⇢; ⇢̂) �
Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
⇣ (s2)ds2

�⇣ (0)
Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
ds2

�0.

((=) Suppose ⇢1 ✏spm ⇢̂1. By assumption,P is a totally ordered set of information structures.

Thus, ⇢̂1 ⌫spm ⇢1. From Theorem 2, ui 2 �I for i = 1, 2 implies that a?2 ( ⇢̂) dominates a?2 (⇢)

in the increasing convex order. By Lemma 1,

Z 1

t

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
ds2  0

for all t 2 [0, 1]. Using the second mean value theorem, there exists t⇤ 2 [0, 1] such that

VT (⇢; ⇢̂) 
Z 1

0

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
⌘(s2)ds2

=⌘(1)
Z 1

t⇤

⇣
a?2 (s2; ⇢) � a?2 (s2; ⇢̂)

⌘
⌘(s2)ds2

0.

This concludes the proof.

8.3 Blackwell, Lehmann, and Supermodular Order

It is natural to ask why the supermodular order is the relevant order to consider instead

of the more familiar Blackwell informativeness (Blackwell, 1951, 1953) or the Lehmann

(accuracy) order (Lehmann, 1988). The answer is two-fold: The first reason for focusing on

the supermodular order has to do with the value of information in the class of decision problems

we consider. Blackwell (1951, 1953) shows that all decision makers value a higher quality of
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information if, and only if, information quality is ranked by Blackwell informativeness. Athey

and Levin (2017) show that if the class of decision problems is restricted to supermodular

preferences, then a higher quality of information is valuable if, and only if, information

quality is ranked by the more general supermodular order. Our results further solidify the

link between the class of supermodular payo�s and the supermodular order by providing

conditions on the marginal utilities of supermodular payo� functions such that, agents are

more responsive when information quality increases if, and only if, information quality is

ranked by the supermodular order.

Second, within the class of information structures that satisfy (A.5), the supermodular

order is a more general ordering than Blackwell informativeness and the Lehmann ordering.

In particular, if information structures satisfy the MLRP property (a stronger assumption than

(A.5)), then Blackwell informativeness implies the Lehmann order which in turn implies the

supermodular order. The converse however is not true, as shown by the example below. Figure

7 depicts the nesting of information orders and the associated class of decision problems.

Montone Information Order

Lehmann Order

Blackwell Order

All decision problems

Single crossing utility

Supermodular
utility

Figure 9: Information ordering and decision problems

The following is an example of information structures that can be ordered using the super-

modular order but not the Lehmann order.47 For this section only, we consider information

structures ⌃⇢ ,
�
S, {F (·|✓; ⇢)}✓2⇥

�
such that {F (·|✓; ⇢)}✓2⇥ satisfies the MLRP property, i.e.,

47See Lehmann (1988), Persico (2000), and Jewitt (2007) for a more complete analysis of the Lehmann ordering.
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for any s < s0, the likelihood function

f (s0|✓; ⇢)
f (s |✓; ⇢)

is non-decreasing in ✓.48

Lehmann (Accuracy) Order: ⌃⇢00 dominates ⌃⇢0 in the Lehmann order, denoted ⇢00 ⌫L ⇢0,

if for all s 2 S,

F�1
⇣
F (s |✓; ⇢0)��✓; ⇢00⌘

is non-decreasing in ✓.

Example: Let ✓ 2 {✓1, ✓2, ✓3} with ✓1 < ✓2 < ✓3. Let µo
i be the mass at ✓i with µo

1 = µ
o
2 =

2
5

and µo
3 =

1
5 . Consider two information structure ⌃⇢0 and ⌃⇢00 such that the signal space S is

the unit interval for both structures and F (s |✓i; ⇢0) is given by

0  s < 1/2 1/2  s  1

✓1 s 3
2

1+s
2

✓2 s s

✓3 0 2s � 1

while F (s |✓i; ⇢00) is given by For both information structures, the marginal on the signal is

0  s < 1/2 1/2  s  1

✓1 2s 1

✓2
s
2

3s�1
2

✓3 0 2s � 1

simply the uniform distribution on S = [0, 1], i.e., FS (s; ⇢0) = Fs (s; ⇢00) = s for all s 2 [0, 1].

Furthermore, both structures satisfy the MLRP property: for any s < s0 < 1/2 or 1/2  s < s0,

48This is a more restrictive assumption on signal structures than (A.5).
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the likelihood functions satisfy

f (s0|✓i; ⇢0)
f (s |✓i; ⇢0)

=
f (s0|✓i; ⇢00)
f (s |✓i; ⇢00)

= 1 8i = 1, 2, 3,

while for any s < 1/2  s0, the likelihood ratios satisfy

f (s0|✓1; ⇢0)
f (s |✓1; ⇢0)|        {z        }
=1/3

<
f (s0|✓2; ⇢0)
f (s |✓2; ⇢0)|        {z        }

=1

<
f (s0|✓3; ⇢0)
f (s |✓3; ⇢0)|        {z        }
=1

,

and
f (s0|✓1; ⇢00)
f (s |✓1; ⇢00)|         {z         }

=0

<
f (s0|✓2; ⇢00)
f (s |✓2; ⇢00)|         {z         }

=3

<
f (s0|✓3; ⇢00)
f (s |✓3; ⇢00)|         {z         }

=1

.

As a result, s0 > s implies µ(·|s0; ⇢) ⌫FOSD µ(·|s; ⇢), for ⇢ = ⇢0, ⇢00 (Milgrom; 1981).

We first show that ⇢0 ✏L ⇢00 and ⇢00 ✏L ⇢0. If ⇢0 ⌫L ⇢00, then

F�1
⇣
F (s |✓; ⇢00)��✓; ⇢0⌘

must be increasing in ✓ for every s 2 [0, 1]. However, for all s 2 [0, 1]

F�1
⇣
F (s |✓3; ⇢00)��✓3; ⇢0

⌘
= s

whereas

F�1
⇣
F (s |✓1; ⇢00)��✓1; ⇢0

⌘
� F�1

⇣
F (s |✓1; ⇢0)��✓1; ⇢0

⌘
= s

since F (s |✓1; ⇢00) � F (s |✓1; ⇢0). Similarly,

F�1
⇣
F (s |✓2; ⇢00)��✓2; ⇢0

⌘
 F�1

⇣
F (s |✓2; ⇢0)��✓2; ⇢0

⌘
= s

because F (s |✓2; ⇢00)  F (s |✓2; ⇢0). Altogether, we have

F�1
⇣
F (·|✓2; ⇢00)��✓2; ⇢0

⌘
< F�1

⇣
F (·|✓3; ⇢00)��✓3; ⇢0

⌘
< F�1

⇣
F (·|✓1; ⇢00)��✓1; ⇢0

⌘
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violating the Lehmann monotonicity condition. Thus, ⇢0 ✏L ⇢00.

Figure 8 depicts the conditional distributions of the signals. The solid black line is the

conditional distribution of signals given ✓3 under both ⌃⇢0 and ⌃⇢00. The solid and dashed

blue lines are the conditional distribution of signals given ✓1 under ⌃⇢0 and ⌃⇢00 respectively.

Similarly, solid and dashed red lines are the conditional distribution of signals given ✓2 under

⌃⇢0 and ⌃⇢00 respectively. Starting from s⇤ 2 [0, 1], the arrows show the transformation to

⌧i = F�1
⇣
F (s⇤ |✓i; ⇢00)��✓i; ⇢0

⌘
where the blue, red, and black arrows correspond to ✓1, ✓2, and

✓3 respectively. Similarly, If ⇢00 ⌫L ⇢0, then

✓1, ⇢
00

✓1, ⇢
0

✓2, ⇢
0

✓2, ⇢
00

✓3, ⇢
00, ⇢0

1|{z}
=⌧1

1

F (s |✓; ⇢)

s

F (s |✓; ⇢)

1
4

3
4

ss⇤|{z}
=⌧3

1
2

⌧2

Figure 10: ⇢0 ✏L ⇢00

F�1
⇣
F (s |✓; ⇢0)��✓; ⇢00⌘

must be increasing in ✓ for every s 2 [0, 1]. However, for all s 2 [0, 1],

F�1
⇣
F (s |✓3; ⇢0)��✓3; ⇢00

⌘
= s
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whereas

F�1
⇣
F (s |✓1; ⇢0)��✓1; ⇢00

⌘
 F�1

⇣
F (s |✓1; ⇢00)��✓1; ⇢00

⌘
= s,

and

F�1
⇣
F (s |✓2; ⇢0)��✓2; ⇢00

⌘
� F�1

⇣
F (s |✓2; ⇢00)��✓2; ⇢00

⌘
= s.

Altogether, we have

F�1
⇣
F (·|✓1; ⇢0)��✓1; ⇢00

⌘
< F�1

⇣
F (·|✓3; ⇢0)��✓3; ⇢00

⌘
< F�1

⇣
F (·|✓2; ⇢0)��✓2; ⇢00

⌘

violating the Lehmann monotonicity condition. Thus, ⇢00 ✏L ⇢0. Furthermore, ⌃⇢00 and ⌃⇢0

are also not Blackwell ordered since Blackwell ordering implies Lehmann ordering (within

the class of information structures with MLRP property).

Figure 9 depicts the conditional distributions of the signals. The solid black line is the

conditional distribution of signals given ✓3 under both ⌃⇢0 and ⌃⇢00. The solid and dashed

blue lines are the conditional distribution of signals given ✓1 under ⌃⇢0 and ⌃⇢00 respectively.

Similarly, solid and dashed red lines are the conditional distribution of signals given ✓2 under

⌃⇢0 and ⌃⇢00 respectively. Starting from s⇤ 2 [0, 1], the arrows show the transformation to

⌧̃i = F�1
⇣
F (s⇤ |✓i; ⇢0)��✓i; ⇢00

⌘
where the blue, red, and black arrows correspond to ✓1, ✓2, and

✓3 respectively.
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✓1, ⇢
00

✓1, ⇢
0

✓2, ⇢
0

✓2, ⇢
00

✓3, ⇢
00, ⇢0

1

1

F (s |✓; ⇢)

s

F (s |✓; ⇢)

1
4

3
4

ss⇤|{z}
=⌧̃3

1
2

⌧̃2⌧̃1

Figure 11: ⇢00 ✏L ⇢0

Next, we show that ⇢00 ⌫spm ⇢0. From Lemma 2, ⇢00 ⌫spm ⇢0 if F (✓i, s; ⇢0)�F (✓i, s; ⇢00) 
0 for all (✓i, s). Notice that for all s 2 [0, 1],

F (✓1, s; ⇢0) � F (✓1, s; ⇢00) = µo
1

⇣
F (s |✓1; ⇢0) � F (s |✓1; ⇢00)

⌘
 0.

Furthermore, for all s 2 [0, 1],

F (✓2, s; ⇢0) � F (✓2, s; ⇢00) =µo
1

⇣
F (s |✓1; ⇢0) � F (s |✓1; ⇢00)

⌘
+ µo

2

⇣
F (s |✓2; ⇢0) � F (s |✓2; ⇢00)

⌘

=
2
5
⇣
F (s |✓1; ⇢0) � F (s |✓1; ⇢00) + F (s |✓2; ⇢0) � F (s |✓2; ⇢00)

⌘
= 0.

Finally, F (✓3, s; ⇢0)�F (✓3, s; ⇢00) =
P3

i=1 µ
o
i

⇣
F (s |✓i; ⇢0)�F (s |✓i; ⇢00)

⌘
= FS (s; ⇢0)�FS (s; ⇢00) =

0. Hence, ⇢00 ⌫spm ⇢0.
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