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English Summary

This dissertation contains three self-contained chapters. They are united by the dynamic
economic models that are either studied theoretically or applied empirically. The first two
were written in collaboration with co-authors.

The first chapter is about the theoretical properties of the value function when solving
discrete time, discrete choice dynamic programming problems using sieves to approximate
the value function. The second chapter is about the incentives and dynamics that governs
students’ progression and work choices. Using a dynamic structural model we explore be-
havior of university students in Denmark and look into why students generally do not finish
on time. We use the model to evaluate a number of counter factual policies affecting uni-
versity students. The third chapter derives equilibrium conditions for directional dynamic
games and shows how to solve them using homotopy continuation methods for systems of
multivariate polynomials in the complete information formulation of the games and interval
arithmetic for the incomplete information games.

Chapter 1 – Solving Dynamic Discrete Choice Models Using Smoothing and
Sieve Methods
with Dennis Kristensen, Jong-Myun Moon, and Bertel Schjerning
Forthcoming in Journal of Econometrics1

We propose to combine smoothing, simulations and sieve approximations to solve for ei-
ther the integrated or expected value function in a general class of dynamic discrete choice
(DDC) models. We use importance sampling to approximate the Bellman operators defin-
ing the two functions. The random Bellman operators, and therefore also the corresponding
solutions, are generally non-smooth which is undesirable. To circumvent this issue, we intro-
duce smoothed versions of the random Bellman operators and solve for the corresponding
smoothed value functions using sieve methods. We also show that one can avoid using sieves
by generalizing and adapting the “self-approximating” method to our setting. We provide
an asymptotic theory for both approximate solution methods and show that they converge
with

√
N -rate, where N is number of Monte Carlo draws, towards Gaussian processes. We

examine their performance in practice through a set of numerical experiments and find that

1Available online now. DOI: https://doi.org/10.1016/j.jeconom.2020.02.007
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both methods perform well with the sieve method being particularly attractive in terms of
computational speed and accuracy.

Chapter 2 – Student Choices, Incentives, and Labor Markets Outcomes: The
Case of Delayed Graduation
with Bjørn Bjørnsson Meyer
In this chapter, we set up a dynamic choice model describing how various pecuniary and non-
pecuniary incentives influence university students’ decisions on part-time work, dropout, and
delayed graduation. We estimate the model using Danish register micro data combined with
administrative data from the country’s largest university. Counterfactual simulations using
the estimated model show that: (i) About half of the average delay in time-to-graduation
can be explained by students following economic incentives to prepare for the labor market
with work experience. The other half is due to a range of factors, such as income through
part-time work and grants and the cost of effort for heavy course load. (ii) Cutting financial
aid with one year reduces average time-to-graduation by 0.3 year, but also increases dropout.

Chapter 3 – Equilibrium Conditions and Solution Methods for Directional Dy-
namic Oligopoly Games
In this paper, I derive equilibrium conditions for sub-stages in directional dynamic games
with different model specifications in terms of number of actions, number of players, and
exogenous (non-)directional states. I show how to use these to solve for all Markov Perfect
Equilibria using Recursive Lexicographical Search. I add to the existing literature by deriving
the needed equilibrium conditions needed to solve these games, and provide details on how to
solve the sub-stages. I show how to solve the system of multivariate polynomial equations in
complete information games using all-solution methods and propose a way to solve the more
complex system of equations using interval arithmetic in incomplete information versions
of some of the games. Full solution methods are important if the aim is to characterize
the potential market configurations that can obtain, or if the goal is to estimate structural
parameters in a model of dynamic, strategic interaction.
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Danish Summary

Denne PhD-afhandling best̊ar af tre selvstændige kapitler. The forenes af dynamiske økonomiske
modeller som enten behandles teoretisk eller i en anvendt sammenhæng. De første to kapitler
er skrevet sammen med medforfattere. Det andet kapitel indgik ogs̊a i min medforfatters
afhandling.

Det første kapitel handler om de teoretiske egenskaber ved værdifunktionen n̊ar man
løser dynamiske programmeringsmodeller med diskret tid og diskrete valg n̊ar sieves bruges
til at approksimere værdifunktionen. Det andet kapitel handler om incitamenter og de dy-
namiske overvejelser studerende gør sig n̊ar de melder sig til fag og søge studiejob imens
de er p̊a universitetet. Ved brug af en dynamisk strukturel model undersøger vi de danske
studerendes adfærd og kigger p̊a hvorfor de studerende ikke bliver færdige til normeret tid.
Vi bruger modellen til at evaluere et par kontrafaktiske simulationer for at evaluere to forslag
til politikændringer. The tredje kapitel udleder ligevægtsbetingelser for dynamiske spil hvor
tilstandsvariablene har en indlejret retningsbestemmelse. Jeg viser hvordan man løser de
forskellige modeller med udførlige trin og foresl̊ar to metoder til at løse de udledte ligevægts-
betingelser.

Chapter 1 – Solving Dynamic Discrete Choice Models Using Smoothing and
Sieve Methods
with Dennis Kristensen, Jong-Myun Moon, and Bertel Schjerning
Forthcoming in Journal of Econometrics2

I dette kapitel foresl̊ar vi at kombinere udglatning, simulering, og sieveapproksimationer
til at løse den integrerede værdifunktion eller de forventede værdifunktioner i en generel
klasse af dynamiske modeller med diskrete valg. Vi bruger importance sampling til at lave
en tilnærmelse af Bellmanoperatorerne som definerer de to funktioner. De randomiserede
Bellmanoperatorer, og de tilhørende løsninger, er generelt ikke-glatte hvilket er uønsket. For
at h̊andtere dette problem introducerer vi udglattede udgaver af operatorerne og løser for
de tilsvarende udglattede værdifunktioner ved brug af sievemetoder. Vi viser ogs̊a hvordan
man kan undg̊a sieveapproksimationerne ved at generalisere den s̊akaldte ”selv-tilnærmende”
metode til vores setup. Vi udleder assyptotisk teory for begge approksimationer og viser de
konvergerer med rate

√
N , hvor N er antal Monte Carlo-træk, til Gaussiske processer. Vi

2Available online now. DOI: https://doi.org/10.1016/j.jeconom.2020.02.007
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undersøger metodernes ydelse i et praktisk eksempel ved brug af numeriske eksperimenter,
og ser at begge metoder fungerer tilfredsstillende. Sieve-metoden er særligt attraktiv b̊ade
n̊ar det kommer til ydelse og præcision.

Chapter 2 – Student Choices, Incentives, and Labor Markets Outcomes: The
Case of Delayed Graduation
with Bjørn Bjørnsson Meyer
I dette kapitel opsætter vi en dynamisk choice model, der beskriver hvordan økonomiske og
ikke-økonomiske incitamenter p̊avirker studerendes valg af deltidsarbejde, frafald og forsin-
ket færdiggørelse. Vi estimerer modelen p̊a dansk register mikrodata kombineret med ad-
ministrativt data fra landets største universitet. Simulationer af modellen viser at: (i)
Omkring halvdelen af den gennemsnitlige forsinkelse kan forklares af, at studerende følger de
økonomiske incitamenter til at forberede sig til arbejdsmarkedet med arbejdserfaring. Den
anden halvdel best̊ar af en række faktorer s̊asom indkomst fra erhvervsarbejde og uddan-
nelsesstøtte og ulempen ved at tage mange kurser samtidigt. (ii) En beskæring af et års
uddannelsesstøtte sænker den gennemsnitlige færdiggørelsestid med 0,3 år, men resulterer
ogs̊a i flere afbrudte studieforløb.

Chapter 3 – Equilibrium Conditions and Solution Methods for Directional Dy-
namic Oligopoly Games
I dette kapitel udleder jeg ligevægtsbetingelser i dynamiske spil hvor tilstandsvariablene har
en indlejret retningsbestemmelse. Jeg kigger p̊a modeller med forskelligmarkedsstruktur,
og behandler tilfældene hvor agenterne har mange valg, hvor der er flere spillere, og hvor
der er eksogene (ikke)-retningsbestemte tilstande. Jeg viser hvordan man kan finde alle
Markovperfekte ligevægte ved til brug i Recursive Lexicographical Search. Jeg bidrager med
viden om nye typer af spil og detaljer om hvordan disse løses. I viser hvordan man kan løse
de multivariate polynomiumssystemer som fremkommer i spil hvor spillerne har viden om
alle tilstande, og foresl̊ar en retning i forhold til løsning af spil hvor agenterne har privat
information om en personlig tilstandsvariabel. Det er vigtigt at kunne finde alle løsninger i
dynamisk spil hvis disse skal kunne bruges i b̊ade teoretisk og empirisk sammenhæng til at
belyse komplekse strategiske interaktioner.
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Solving Dynamic Discrete Choice Models
Using Smoothing and Sieve Methods∗

Dennis Kristensen† Patrick K. Mogensen‡ Jong Myun Moon§

Bertel Schjerning¶
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Abstract

We propose to combine smoothing, simulations and sieve approximations to solve for
either the integrated or expected value function in a general class of dynamic discrete
choice (DDC) models. We use importance sampling to approximate the Bellman opera-
tors defining the two functions. The random Bellman operators, and therefore also the
corresponding solutions, are generally non-smooth which is undesirable. To circumvent
this issue, we introduce smoothed versions of the random Bellman operators and solve
for the corresponding smoothed value functions using sieve methods. We also show that
one can avoid using sieves by generalizing and adapting the “self-approximating” method
of Rust (1997b) to our setting. We provide an asymptotic theory for both approximate
solution methods and show that they converge with

√
N -rate, where N is number of

Monte Carlo draws, towards Gaussian processes. We examine their performance in prac-
tice through a set of numerical experiments and find that both methods perform well
with the sieve method being particularly attractive in terms of computational speed and
accuracy.
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1 Introduction
Discrete Decision Processes (DDPs) are widely used in economics to model forward-looking
discrete decisions. For their implementation, researchers are required to solve the model which
generally cannot be done in closed form. Instead, a number of methods have been proposed for
solving the model numerically; see, e.g., Rust (2008) for an overview. We propose two novel
methods for approximating the solutions to a general class of Markovian DDP models in terms
of either the so-called integrated or expected value function. These two functions are relevant for
estimation of DDP’s and for welfare analysis of policy experiments. Our framework allows for
both continuous and discrete state variables, non-separable utility functions and unrestricted
dynamics. As such, we cover most relevant models used in empirical work. The proposed
implementation of model and estimators are found to be computationally very efficient, and
at the same time providing precise results with small approximation errors due to the use of
simulations and sieve methods.

Our first proposal proceeds in three steps: First, we develop smoothed simulated versions
of the Bellman operators that returns the integrated and expected value functions as fixed
points. Next, we approximate the unknown value function by a sieve, that is, a parametric
function class, thereby turning the problem into a finite-dimensional one. Finally, we solve for
the parameters entering the chosen sieve using projection-based methods. When the chosen
sieve is linear in the parameters, the approximate solution can be computed using an iterative
procedure where each step is on closed form.

As an alternative to the above sieve-based method, we also adapt and generalize the so-
called “self-approximating” method proposed in Rust (1997b) to our setting: We design the
importance sampler used in the simulated Bellman operators so that the corresponding expected
and integrated value functions can be solved for directly without the use of sieves. In comparison
with the sieve approach, the self-approximating solution method has the advantage that it will
not suffer from any biases due to function approximations. But at the same time, the importance
sampler used in its implementation will generally have a larger variance compared to the class
of samplers that can be used for the sieve method. This larger variance also translates into
a larger simulation bias of the self-approximating solution due to the non-linear nature of the
problem. Thus, neither method strictly dominates the other.

Our two procedures, the sieve-based and self-approximating one, differ from existing pro-
posals in three important aspects: First, we solve for either the integrated or expected value
function instead of the value function itself. This reduces the dimensionality of the problem
since we integrate out any i.i.d. shocks appearing in the model before solving it. Moreover,
while the value function is non-differentiable, the integrated and expected value functions are
generally smooth which means that our sieve method performs better compared to existing
ones that aim at approximating the value function. Second, we allow for a general class of im-
portance samplers in the simulation of the Bellman operator; these can be designed to reduce
variances and biases due to simulations. Third, we smooth the simulated Bellman operator

Chapter 1
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by replacing the max-function appearing in its expression by a smoothed version where the
degree of smoothing is controlled by a parameter akin to the bandwidth in kernel smoothing
methods. This is similar to the logit-smoothed accept-reject simulator of probit models as
proposed by McFadden (1989); see also Fermanian and Salanie (2004), Kristensen and Shin
(2012) and Iskhakov et al. (2017). The smoothing turns the problem of solving for the inte-
grated and expected value functions into differentiable ones. In particular, the exact solutions
to the smoothed simulated Bellman equations become smooth as functions of state variables
and any underlying structural parameters. This in turn means that standard sieves, such as
polynomials, will approximate the exact solutions well and that we can control the error rate
due to function approximation. Moreover, if used in estimation, standard numerical solvers can
be employed in computing estimators of the structural parameters. The smoothing entails an
additional bias but this can be controlled for by suitable choice of aforementioned smoothing
parameter.

The smoothing device also facilitates the theoretical analysis of the approximate value func-
tions since it allows us to use a functional Taylor expansion of it. This expansion is then used
to analyze the leading numerical error terms of the approximate value functions due to sim-
ulations, smoothing and function approximations. In particular, under regularity conditions,
we show that the approximate value function will converge weakly towards a Gaussian process
which is the first result of its kind to our knowledge. These results allow researchers to, for
example, build confidence intervals around the approximate value function and should be useful
when analyzing the impact of value function approximation when used in welfare analysis and
estimation of structural parameters. They may also be potentially helpful in designing selection
rules for number of basis functions and the smoothing parameter.

A numerical study investigates the performance of the solution methods in practice. We im-
plement the proposed methods for the engine replacement model of Rust (1987) and investigate
how smoothing, number of basis functions and number of simulations affect the approximation
errors. We also investigate how the procedures are affected by the dimensionality of the prob-
lem and how derivative-based solvers affect computation times. We find that the sieve method
generally performs best of the two methods: It is computationally faster and in most situations
provides a better approximation in terms of bias and variance. Moreover, the sieve method
is found to also work well in higher dimensions with its bias and variance being fairly stable
as we increase the the number of state variables of the model. In contrast, variances of the
self-approximating method increase dramatically as the number of state variables increases and
so appears to be less robust. Finally, the errors due to simulations and function approximation
behave according to theory and are found to vanish at the expected rates.

Our proposed methods share similarities with the ones developed in, amongst others, Ar-
cidiacono et al. (2013), Keane and Wolpin (1994), Munos and Szepesvari (2008), Norets (2012),
Pal and Stachurski (2013) and Rust (1997b) who also use simulations and/or sieve methods to
solve DDP’s. However, except for Keane and Wolpin (1994), the methods proposed in these pa-
pers approximate the value function while ours target the integrated or expected value function
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which are more well-behaved (smooth) objects and therefore easier to approximate. Moreover,
in contrast to the cited papers, we employ importance sampling and smoothing in our im-
plementation which comes with the aforementioned computational advantages. From a theory
perspective, we provide a more complete asymptotic analysis of the approximate integrated and
expected value functions. On the other hand, Munos and Szepesvari (2008) and Rust (1997b)
provide an analysis of the computational complexity of solving for the value function and so
the theories of this paper and these studies complement each other.

The remains of the paper are organized as follows: Section 2 introduces a general class
of DDP’s and their corresponding value functions. In Section 3, we develop our smoothed
simulated versions of the Bellman operators that the integrated and expected value functions
are fixed points to. We then show how to (approximately) solve these simulated Bellman
equations in Section 4. An asymptotic theory of the approximate value function is presented
in Section 5, while the results of the numerical experiments are found in Section 6. Appendix
A contains some general results for approximate solutions to fixed point problems, while proofs
of the main results can be found in Appendix B.

2 Model
We consider the following DDP where a single agent at time t ≥ 1 solves

dt = arg max
d∈D
{u(St, d) + βE [ν(St+1)|St, dt = d]} , (2.1)

where D = {1, ..., D} is the set of alternatives, u(St, d) is the per-period utility, 0 < β < 1
is the discount factor, St is a set of state variables that follows a controlled Markov process
with transition kernel FS (St|St−1, dt−1) and the so-called value function ν solves the following
fixed-point problem,

ν(St) = max
d∈D
{u(St, d) + βE [ν(St+1)|St, dt = d]} . (2.2)

Following Rust (1987) and many subsequent empirical specifications, we assume that St =
(Zt, εt) ∈ Z × E ⊆ RdZ × Rdε where Zt and εt satisfy the following conditional independence
condition,

FS (Zt, εt|Zt−1, εt−1, dt−1) = Fε (εt|Zt)FZ (Zt|Zt−1, dt−1) .

In many cases Fε (εt|Zt) = Fε (εt) in which case εt is an i.i.d. sequence and so can be thought of
as idiosyncratic shocks to utility. If no shocks are present in the model, we can always choose
εt = ∅ to be an empty variable so that St = Zt. Throughout, we will assume that the support Z
is a compact set. This is done to simplify the theoretical analysis since it, for example, implies
that value functions defined below will lie in the space of bounded functions on Z, B (Z),
equipped with the sup-norm, ‖v‖∞ = supz∈Z |v (z)|. At the same time, we allow the support
of the error term, E , be unbounded and for both countable and continuously distributed state
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variables.
In the above formulation, the model is characterized by the value function ν(s). However,

it is possible to rewrite the models in terms of either the so-called integrated value function or
the expected value function and solve for these instead. These are defined as

v(Zt) = E [ν(Zt, εt)|Zt] =
∫

E
ν (Zt, e) dFε (e|Zt) ,

and

V (Zt, dt) = E [ν(Zt+1, εt+1)|Zt, εt, dt] = E[v(Zt+1)|Zt, dt] =
∫

E
v(z′)dFZ (z′|Zt, dt) ,

respectively, where we have used the conditional independence assumption. Observe that given
v (z), we can recover V (z, d) = E[v(Zt+1)|Zt, dt] which in turn can be used to compute ν(St) =
maxd∈D {u(Zt, εt, d) + βV (Zt, d)}. Thus, there is no loss in focusing on the integrated and
expected value function, except that in the former case we need to compute E[v(Zt+1)|Zt, dt]
numerically to obtain the value function. Furthermore, in many cases the expected value
function itself is of interest. For example, the conditional choice probabilities, which are needed
for counterfactuals and for estimation, take as input the relative expected value function,

P (dt = d|Zt = z) = Mu,d(β∆V (z)|z), Mu,d(r|z) = ∂Mu(r|z)
∂r (d) ,

where ∆V (z, d) = V (z, d)−V (z,D), d ∈ D, andMu(r|z) is a generalized version of the so-called
social surplus function defined as, for any r = (r(1), ..., r(D)),

Mu(r|z) =
∫

E
max
d∈D
{u(z, e, d) + r(d)} dFε(e|z). (2.3)

It is also useful in welfare analysis of policy experiments where we wish to see how a policy
change will affect the expected present value of lifetime utility (i.e., the expected value function).

Except for a few special cases, analytical expressions of v and V are not available and so
numerical approximations have to be employed. We will here develop numerical methods for
solving for either v or V instead of ν for the following reasons: First, ν is a function of s = (z, ε)
while V and v are functions of z alone and therefore their approximations are lower-dimensional
problems. Second, ν is non-differentiable due to the max-function in (2.2); in contrast, v(z)
and V (z, d) are both smooth functions of z if Fε(e|z) and FZ (z′|z, d) are. If there is no i.i.d.
component in the model, εt = ∅, then ν (s) = ν (z) = v(z) and so the integrated value function
becomes non-smooth. In contrast, V (z, d) remains smooth even in this case. The functions
v and V each solves their own fixed-point problem: Taking conditional expectations on both
sides of eq. (2.2), V can be expressed as the solution to

V (z, d) = Γ(V )(z, d), (2.4)

6



where, with Mu defined in eq. (2.3),

Γ(V )(z, d) = E
[
max
d′∈D
{u(Zt+1, εt+1, d

′) + βV (Zt+1, d
′)} |Zt = z, dt = d

]

=
∫

Z

∫

E
max
d′∈D
{u(z′, e, d′) + βV (z′, d′)} dFε(e|z′)dFZ(z′|z, d)

=
∫

Z
Mu(βV (z′)|z′)dFZ(z′|z, d).

Here and in the following, we let V (z) = (V (z, 1), ...., V (z,D))′ denote the D × 1-vector of
expected value function and similar for other objects. With this notation, we can represent the
fixed-point problem in vector form, V (z) = Γ(V )(z), where

Γ(V )(z) =
∫

Z
Mu(βV (z′)|z′)dFZ(dz′|z). (2.5)

Next, to derive the fixed-point problem that v solves, again take conditional expectations on
both sides of eq. (2.2) but now only condition on Zt to obtain

v(z) = Mu(βV (z)|z). (2.6)

Combining this with eq. (2.4),

v (z) = Mu

(
β
∫

Z
Mu(βV (z′)|z′)dFZ(dz′|z)

∣∣∣∣ z
)

= Γ̄(v)(z). (2.7)

where
Γ̄(v)(z) = Mu

(
β
∫

Z
v (z′) dFZ(dz′|z)

∣∣∣∣ z
)
.

Under regularity conditions provided below, Γ and Γ̄ are contraction mappings and so V and
v are well-defined and unique. The above two transformations of the original problem into the
ones for either the integrated or expected value function are particular cases of the general class
of transformations analyzed in Ma and Stachurski (2020).

Example 1. Consider the special case where u(Zt+1, εt+1, d) = ū(Zt+1, d) + λεt+1 (d) for some
scale parameter λ > 0 and Fε(e|z) = Fε(e) in which case

Mu(r|z) =
∫

E
max
d∈D
{ū(z, d) + λe (d) + r(d)} dFε(e) = Gλ (ū(z) + r) ,

where Gλ (r) :=
∫
E maxd∈D {λe (d) + r(d)} dFε(e). Thus,

Γ̄(v)(z) = Gλ

(
ū(z) + β

∫

Z
v (z′) dFZ(z′|z)

)
.

If εt (1) , ..., εt (D) are mutually independent and each component follows a suitably normalized
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extreme value distribution then (see, e.g., Rust et al., 2002),

Gλ(r) = λ log

∑

d∈D
exp

(
r (d)
λ

)
 . (2.8)

3 Simulated Bellman operators
As a first step towards a computationally feasible method for solving for either v or V , we here
develop simulated versions of their two Bellman operators and then introduce the smoothing
device. To allow for added flexibility and precision in the implementation and to cover as special
case a modified version of Rust’s self-approximating solution method, we employ importance
sampling: Let ΦZ (z′|z, d) and Φε (e|z) be conditional importance sampling distribution func-
tions as chosen by the researcher. These have to be chosen such that FZ(·|z, d) and Fε (·|z)
are absolutely continuous w.r.t. ΦZ (·|z, d) and Φε (·|z), respectively, with Radon-Nikodym
derivatives wZ (·|z, d) ≥ 0 and wε (·|z) ≥ 0 so that

dFZ(z′|z, d)
dΦZ (z′|z, d) = wZ (z′|z, d) , dFε(e|z)

dΦε (e|z) = wε (e|z) . (3.1)

We will throughout assume that eq. (3.1) is satisfied. In the leading case dFZ = fZdµZ and
dΦZ = φZdµZ for some measure µZ in which case wZ = fZ/φZ and similar for the sampling of
εt. The above covers the case where FZ(z′|z, d) is a continuous distribution (in which case µZ is
the Lesbesque measure), a discrete distribution (in which case µZ is the counting measure) and
the mixed case. With discrete finite support, we could in principle compute the exact Bellman
equation and its corresponding solution and so would not need to resort to numerical methods.
But if the discrete support is large this may still be computationally very demanding and so
even in this case the numerical methods developed below may be computationally attractive,
c.f. Arcidiacono et al. (2013).

Given the chosen importance sampler, we can rewrite Γ(V )(z, d) as

Γ(V )(z, d) =
∫

Z

∫

E
max
d′∈D
{u(s′, d′) + βV (z′, d′)}w (s′|z, d) dΦ(s′|z, d)

where s′ = (z′, e′) and

w (s′|z, d) = wε (e′|z′)wZ (z′|z, d) , Φ (s′|z, d) = Φε(e′|z′)ΦZ (z′|z, d) .

For any given candidate V , we can then approximate this integral by Monte Carlo methods:
First generate N ≥ 1 i.i.d. draws, Zi (z, d) ∼ ΦZ (·|z, d) and εi (z, d) ∼ Φε(·|Zi (z, d)), i =
1, ..., N , and then compute

ΓN(V )(z, d) =
N∑

i=1
max
d′∈D
{u (Si (z, d) , d′) + βV (Zi (z, d) , d′)}wN,i (z, d) , (3.2)

8



where Si (z, d) = (Zi (z, d) , εi (z, d)) and

wN,i (z, d) = w (Si (z, d) |z, d)
∑N
i=1w (Si (z, d) |z, d)

. (3.3)

Note here that we normalize the importance weights so that ∑N
i=1wN,i (z, d) = 1. This is done

to ensure that ΓN is a contraction mapping on B (Z)D. Similarly, we approximate Γ̄ (v) by

Γ̄N(v)(z) =
N∑

j=1
max
d′∈D

{
u(z, εj (z, d′) , d′) + β

N∑

i=1
v (Zi (z, d′))wZ,N,i (z, d′)

}
wε,N,j (z, d′) , (3.4)

where again we normalize the weights to ensure Γ̄N is a contraction on B (Z),

wZ,N,i (z, d) = wZ (Zi (z, d) |z, d)
∑N
i=1 wZ (Zi (z, d) |z, d)

, wε,N,i (z, d) = wε (εi (z, d) |z)
∑N
i=1wε (εi (z) |z)

.

When εt = ∅, the simulated Bellman operator Γ̄N includes as special cases the ones considered
in Rust (1997b) (who chooses ΦZ as the uniform distribution on Z) and Pal and Stachurski
(2013) (who chooses ΦZ = FZ).

Example 1 (continued). Suppose we can compute the integral w.r.t. εt analytically. In
this case, the following simplified version of the simulated Bellman operator can be employed,

Γ̄N(v)(z) = Gλ

(
ū(z) + β

N∑

i=1
v (Zi (z))wZ,N,i (z)

)
, (3.5)

where Gλ was defined in eq. (2.8). Importantly, the max-function has been replaced by its
smoothed version Gλ (·).

If Fε(e|z) and FZ(z′|z, d) are smooth functions w.r.t. z then Γ(V )(z) and Γ̄(v)(z) will be
smooth functions of z as well. In contrast, the general versions of ΓN(V )(z, d) and Γ̄N(v)(z)
are non-smooth due to the presence of the max-function in their definitions which does not get
smoothed for finite N . This in turn implies that their corresponding fixed points, VN (z) =
ΓN(VN) (z) and vN (z) = Γ̄N(vN) (z), will be non-differentiable w.r.t. the state variables, z, and
w.r.t. any underlying structural parameters in the model. This is an unattractive feature for
two reasons: First, estimation and counterfactuals will be non-smooth problems. Second, the
theoretical analysis of VN and vN becomes more complicated.

To resolve this issue, we take inspiration from the additive model in Example 1 and propose
to smooth the simulated Bellman operators by replacing the “hard” max-function appearing
in eqs. (3.2) and (3.4) by its smoothed version Gλ(r) defined in eq. (2.8). This yields the
following smoothed simulated operators,

ΓN(V )(z;λ) =
N∑

i=1
Gλ (u (Si (z, d)) + βV (Zi (z, d)))wN,i (z) , (3.6)

Chapter 1

9



Γ̄N(v)(z;λ) =
N∑

j=1
Gλ

(
u(z, εj (z)) + β

N∑

i=1
v (Zi (z))wZ,N,i (z)

)
wε,N,j (z) , (3.7)

where u(z, εj (z)) = (u(z, εj (z, 1) , 1), ..., u(z, εj (z,D) , D)) and other vector functions are de-
fined similarly. Setting λ = 0 in eqs. (3.6)-(3.7), we recover the original non-smooth versions
defined in eqs. (3.2)-(3.4). Thus, the smoothed versions are generalized versions of the original
ones. The use of Gλ(r) in place of maxd∈D r (d) generates an additional bias in the approximate
solutions, but this can be controlled for by suitable choice of λ. We now interpret λ > 0 as
a smoothing parameter that plays a role similar to that of the bandwidth in kernel regression
estimation. Elementary calculations show

0 ≤ Gλ (r)−max
d∈D

r (d) ≤ λ logD, (3.8)

so that Gλ (r)→ maxd∈D r (d), as λ→ 0, uniformly in r ∈ RD. Thus, the smoothing entails a
bias of order OP (λ). We discuss the choice of λ in practice in the next section.

In some situations, Gλ(r) appears in the Bellman operators as an inherent feature of the
model specification in which case no smoothing bias will be present. We saw this in Example
1 and it extends to the following class of models: Suppose that εt =

(
ε

(1)
t , ε

(2)
t

)
with ε

(1)
t =(

ε
(1)
t (1) , ..., ε(1)

t (D)
)
are mutually independent extreme value shocks that enter the per-period

utility additively,

dt = arg max
d∈D

{
ū(Zt, ε(2)

t , d) + λε
(1)
t (d) + βV (Zt, d)

}
, (3.9)

where as in Example 1 λ > 0 is scale parameter that determines the impact of ε(1)
t (d) on the

per-period utility. By the same arguments as in Example 1, we find that the expected value
function in this case solves Γλ (V ) = V where

Γλ(V )(z) =
∫

Z

∫

E
Gλ (u(z′, e′)) + βV (z′)) dFε(−1)(e′|z)dFZ(z′|z, d),

and ΓN,λ in eq. (3.6) is clearly an unbiased simulated version of Γλ. Similarly, Γ̄N,λ is an
unbiased estimator of Γ̄λ. To summarize, if the original model of interest contains an additive
extreme value term, which is the case in many empirical papers, Gλ appears as part of the
model and so no smoothing bias will be present in our proposed simulated Bellman operators.

The above shows that the smoothing device corresponds to adding structural shocks to
the DDP of interest. In earlier work on solving DDPs, researchers have in some cases done
the opposite and removed structural errors in order to facilitate the numerical solution of the
model; see Lumsdaine et al. (1992) for one example of this. This was, however, done in the
context of discrete state variables with a small number of support points in which case removing
continuous structural errors meant that the Bellman operators could be evaluated analytically.
Our method is aimed at models where the state variables are either continuous or have a very
large discrete support in which case simulations are required in the first place to evaluate the
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Bellman operator. Once simulations are introduced, there is little computational gains from
removing shocks from the model and instead the introduction of smoothing facilitates solving
and analyzing the corresponding solution.

4 Approximate value functions
The smoothed simulated Bellman operators ΓN(V ) (z, λ) and Γ̄N(v) (z, λ) in eqs. (3.6)-(3.7)
are functionals that, for given function V and v, depend on (z, λ). We will here and in the
following treat them as functionals that take given function V (z, λ) and v (z, λ), respectively,
and map them into functions of (z, λ) ∈ Z ×

[
0, λ̄

]
for some λ̄ > 0. This simplifies the

analysis of the impact of smoothing. In particular, under suitable regularity conditions, ΓN
and Γ̄N are contraction mappings on B

(
Z ×

[
0, λ̄

])D
and B

(
Z ×

[
0, λ̄

])
, respectively, where

B
(
Z ×

[
0, λ̄

])
denotes the space of bounded functions with domain Z ×

[
0, λ̄

]
. Thus, they

have unique fixed points VN (z, λ) and vN (z, λ) solving

VN (z, λ) = ΓN(VN) (z, λ) , vN = Γ̄N,λ(vN) (z, λ) . (4.1)

In practice, we will only solve for the particular value of λ as chosen by us, but for the theory
it proves helpful to treat the solutions as mappings defined on (z, λ) ∈ Z ×

(
0, λ̄

)
. However,

solving these two simulated Bellman equations are not generally feasible since these are infinite-
dimensional problems. We here present two ways to reduce the problems to finite-dimensional
ones. The first method is a generalized version of the so-called self-approximating method
proposed in Rust (1997b) while the second one uses projection-based methods as advocated by
Pal and Stachurski (2013).

4.1 Self-approximating method

Rust (1997b) proposed to turn the infinite-dimensional problems in eq. (4.1) into a finite-
dimensional ones by choosing the importance sampling to be based on marginal, instead of con-
ditional distributions. In our generalized version this corresponds to restricting ΦZ (z′|z, d) =
ΦZ (z′) for some marginal distribution ΦZ (·) so that the draws Zi ∼ Φz (·) and εi ∼ Φε(·|Zi),
i = 1, ..., N no longer depend on (z, d). In this case, for a given value of λ ∈

[
0, λ̄

]
, the

fixed-point problems in eq. (4.1) reduce to the following two sets of N nonlinear equations,

VN,k =
N∑

i=1
Gλ (u (Si) + βVN,i)wN,i (Zk) , (4.2)

vN,k =
N∑

j=1
Gλ

(
u(Zk, εj) + β

N∑

i=1
vN,iwz,i (Zk)

)
wε,N,j (Zk) , (4.3)

for k = 1, ..., N , that can be solved for w.r.t. {VN,λ,k : k = 1, ..., N} and {vN,λ,k : k = 1, ..., N},
respectively. Here, VN,k = VN (Zk, λ) and vN,k = vN,λ (Zk, λ), k = 1, ..., N . Each of the two sets
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of equations have a unique solution due to the contracting property of ΓN,λ and Γ̄N,λ. Once, for
example, eq. (4.2) has been solved, the approximate expected value functions can be evaluated
at any other value z by

VN (z, λ) =
N∑

i=1
Gλ (u (Si) + βVN,i)wN,i (z) .

Note that VN (z, λ) is a smooth function even if λ = 0 as long as wN,i (z) is smooth and
so smoothing is not needed for this property to hold when marginal samplers are employed.
However, without smoothing, the set of equations (4.2) become non-smooth w.r.t. the vari-
ables {VN,k : k = 1, ..., N} and so cannot be solved using derivative-based methods. Thus, the
numerical implementation of the self-approximating method still benefits from smoothing.

In addition to smoothing, the above self-approximating method differs from Rust’s original
proposal in two other ways: First, while Rust (1997b) solved for the value function ν (z, ε), we
here solve for either V (z, λ) or v (z, λ) for a fixed value of λ. As explained in Section 2, V
and v convey the same information as ν and at the same time they are of lower dimension in
terms of variables and are more smooth, features which facilitate their numerical approximation.
Moreover, our formulation allows for the following generalized version of the simulated Bellman
equations for vN ,

vN,k =
Ñ∑

j=1
Gλ

(
u(Zk, εj) + β

N∑

i=1
vN,iwz,N,i (Zk)

)
wε,N,j (Zk) , (4.4)

where we allow for different number of draws from Φε and ΦZ . In particular, we can choose
Ñ as large as we wish (thereby decreasing the variance of the problem) without increasing the
number of variables that need to be solved for (N). A similar generalization of the simulated
Bellman equations for VN is possible. Second, we here only require that the state dynamics
together with the chosen importance sampler satisfy (3.1); in contrast, Rust (1997b) assumed
that St was continuously distributed with compact support and chose as importance sampler
the uniform distribution with same support. Thus, our version allows for a broader class of
models and samplers.

The self-approximating method may not always work well: First, finding a marginal dis-
tribution ΦZ (·) so that (3.1) holds can be difficult in some models. For example, in many
specifications with continuous dynamics, the transition density fZ (z′|z, d) of Zt will have sin-
gularities, e.g., limz′→z fZ (z′|z, d) = +∞, in which case wZ (z′|z, d) = fZ (z′|z, d) /φZ (z′) is not
well-defined no matter how we choose φZ (z′). And even if (3.1) does hold, the use of marginal
samplers instead of conditional ones will generally lead to a larger variance of the solutions
since the “marginal” draws Z1, ..., ZN do not adapt to the changing shape of FZ (·|z, d) as a
function of z. In particular, many of the draws may fall outside of the support of FZ (·|z, d) and
so are “wasted” in which case a large N is required to achieve a reasonable approximation; see
Section 6 for an example of this. This issue tends to become more severe in higher dimensions
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(dZ is “large”) since the volume of the support shrinks, and so the self-approximating method
will generally suffer from a built-in curse-of-dimensionality. This curse-of-dimensionality does
not appear in the subclass of models that Rust (1997b) focused on where it was assumed that
St|St−1, dt−1 has support [0, 1]dim(St) for all values of St−1, dt−1.

Finally, given that VN,λ and vN,λ are solutions to non-linear equations, a large variance in
the simulated Bellman operator translates into a large bias as is well-known from non-linear
GMM estimators. This can be controlled for by choosing N large. But large N means that
numerically solving either (4.2) or (4.3) becomes computationally very costly. These issues
motivate us to pursue a sieve-based solution strategy.

4.2 Sieve-based method

We now return to the general versions of the simulated Bellman operators and so again allow
for conditional importance samplers. Let V̄ ⊆ B (Z) be a suitable function space that z 7→
vN (z;λ) defined in (4.1) is known to lie in; see below for more details on this. We then choose
a finite-dimensional function space (commonly called a sieve in the econometrics literature)
V̄K = {vK (·;α) : Z 7→ R|α ∈ AK} ⊆ V̄ , where AK ⊆ RK is a parameter set with K < ∞,
that provides a good approximation to functions in V̄ . Similarly, we let V ⊆ B (Z)D be a
space of D-dimensional vector functions that the solution z 7→ VN (z;λ) to (4.1) lie in and
VK =

{
VK (·;α) : Z 7→ RD|α ∈ AK

}
⊆ V be our sieve for this space. Let

Π̄K (v) = arg min
v′∈V̄K

‖v − v′‖V̄ , ΠK (V ) = arg min
V ′∈VK

‖V − V ′‖V , (4.5)

be the corresponding projections for given (pseudo-) norms ‖·‖V̄ and ‖·‖V as chosen by us as
well. We then approximate VN,λ and vN,λ by the solutions to the projected Bellman equations,

v̂N,λ = arg min
v∈V̄K

∥∥∥v − Π̄KΓ̄N,λ(v)
∥∥∥
V̄
, V̂N,λ = arg min

V ∈VK
‖V − ΠKΓN,λ(V )‖V . (4.6)

These are finite-dimensional problems of size K. When K is small relative to N , which
will generally be the case, the above problems are computationally much more tractable
compared to the corresponding self-approximating ones. Note here that these projection-
based approximations are different from the least-squares approximations that would solve
minV ∈VK ‖V − ΓN,λ(V )‖V and minv∈V̄K

∥∥∥v − Γ̄N,λ(v)
∥∥∥
V̄
, respectively. In particular, by suitable

choice of the projection operators, ΠKΓN,λ and Π̄KΓ̄N,λ will be contraction mappings w.r.t.
‖·‖∞ guaranteeing that V̂N,λ and v̂N,λ exist and are unique. The following discussion focuses on
the integrated value function approximation since it carries over with only minor modifications
to the one of the expected value function. We discuss their numerical implementation in further
detail in the subsection below.

The projection operator Π̄K can be thought of as a function approximator with the approx-
imation error being v − Π̄K (v) for a given function v. Roughly speaking, the projection-based
method approximates vN in (4.1) by v̂N = Π̄K (vN) which incurs an additional sieve approxi-
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mation error, vN − Π̄K (vN). The smoothness of vN here proves helpful since many well-known
sieves are able to provide good approximations of smooth functions using a low-dimensional
space (“small” K). Due to these features, our proposed projection-based solutions will gener-
ally suffer from quite small additional biases relative to the exact simulated solution. This is in
contrast to existing projection-based solution methods, such as the one in Pal and Stachurski
(2013), that aim at approximating the value function ν (s) which is non-differentiable.

The smoothness of vN here help guiding us in choosing the sieve: It allows us to restrict V̄ to
a suitable smoothness class and then import existing approximation methods for smooth func-
tions as developed in the literature on numerical methods and nonparametric econometrics. A
leading example is the class of linear function approximations where the finite-dimensional
function space takes the form of V̄K =

{
α′BK (z) : α ∈ RK

}
for a set of basis functions

BK (z) = (b1 (z) , ..., bK (z))′. The basis functions can be chosen as, for example, Chebyshev
polynomials or B-splines that are able to approximate smooth functions well. However, other
non-linear function space are possible such as wavelets, artificial neural networks and shrinkage-
type function approximators such as LASSO, where the additional constraints are imposed on
α; we refer to Chen (2007) for a general overview of different function approximators and con-
strained sieve estimators. We also allow for flexibility in terms of the chosen norms ‖·‖V̄ with a
leading example being ‖v‖V̄ = ∑M

i=1 v
2 (zi) for a set of design points z1, ..., zM ∈ Z. Very often

the M ≥ 1 design points will be chosen in conjunction with the sieve.
The above procedure does not suffer from any of the above mentioned issues of the self-

approximating method: We can use conditional importance samplers freely which can be de-
signed to control the variance of the simulated Bellman operators; and the dimension of the
problem remains K irrespectively of the number of draws N . The main drawback is that
unique solutions to eqs. (4.6) do not necessarily exist for a given choice of N and K. A
sufficient condition for this to hold is that Π̄K is a non-expansive operator w.r.t ‖·‖∞, that
is,
∥∥∥Π̄K (v1)− Π̄K (v2)

∥∥∥
∞
≤ ‖v1 − v2‖∞ for any two functions v1, v2 ∈ V̄ , since this translates

into Π̄KΓN being a contraction mapping. However, while Π̄K is non-expansive w.r.t. ‖·‖V̄ by
definition, it is not necessarily non-expansiveness w.r.t ‖·‖∞. Pal and Stachurski (2013) provide
some examples of projections that are non-expansive w.r.t. ‖·‖∞, but these are unfortunately
computationally expensive to use in general. But Π̄K will generally be close to non-expansive
w.r.t ‖·‖∞ asymptotically as K →∞ for a wide range of sieves and pseudo-norms in the sense
that ∥∥∥Π̄K

∥∥∥
op,∞

:= sup
v∈V̄,‖v‖=1

∥∥∥Π̄K (v)
∥∥∥
∞
≤ sup

v∈V̄,‖v‖=1

∥∥∥Π̄K (v)− v
∥∥∥
∞

+ 1,

where the first term in the last expression will go to zero in great generality as K →∞ for many
popular sieves (see next subsection for details). Given that Γ̄N is a contraction with Lipschitz
coefficient β < 1, this in turn implies that Π̄KΓ̄N will be a contraction mapping for all K large
enough. This will be used in our asymptotic analysis of the algorithm. Unfortunately, it is
generally not known how large K should be chosen to ensure Π̄KΓ̄N is a contraction. But in
our numerical experiments we did not experience any convergence problems.
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4.3 Numerical implementation of the two methods

We here discuss in more detail the numerical implementation of the self-approximating and
projection-based methods. First, the researcher has to choose the importance sampling dis-
tributions, the smoothing parameter λ and, in the case of the projection-based method, the
function approximation method. Second, given these choices, either eq. (4.3) or (4.6) has to be
solved for. As before, the discussion here focuses on solving for the integrated value function
since most results and arguments for this case carries over with very minor modifications to
the expected value function.

4.3.1 Importance sampler

The choices of ΦZ and Φε determine the variance of Γ̄N and should ideally be tailored to
minimize it. In the case of projection-based methods, where we can choose ΦZ and Φε as
conditional distributions, we can rely on the already existing theory for efficient importance
sampling for how to do so; see Chapter 3 in Robert and Casella (2013) for an introduction. In
our numerical experiments, we did not experiment with different choices and throughout set
ΦZ = FZ and Φε = Fε.

In the case of the self-approximating method, the choice of ΦZ is restricted to the class of
marginal distributions. Generally, this entails a large variance of the corresponding simulated
Bellman operators. It will hold in great generality that (Zt, dt) has a stationary distribution,
say, F ∗S (z, d). In this case, a suitable choice would be the marginal of this, ΦZ (z) = F ∗S (z,D).
However, the stationary distribution depends on the value function and so is rarely available
on closed form; so this strategy requires an initial exploration of the model and its solution.
Alternatively, one can try to construct a good approximation of the stationary approximation
through a mixture Markov model on the form ΦZ (z′) = ∑

d∈D
∫
ωd (z)FZ (z′|z, d) dµZ (z) for a

set of pre-specified mixture weights ωd (z) ≥ 0. In the numerical experiments, we follow Rust
(1997b) and choose ΦZ (z) as the uniform distribution on Z which we conjecture is far from
optimal in many cases, and so more research in this direction is needed.

4.3.2 Smoothing

The use of Gλ (r) in place of maxd∈D r (d) generally generates an additional bias in the cor-
responding integrated value function of order O (λ). At the same time, the variance of vN
is an increasing function of λ. Thus, ideally we would like to choose λ to balance these two
effects. A natural criterion would be to minimize the so-called integrated mean-square-error,
λ∗ = arg minλ≥0E

[∫
Z ‖vN,λ (z)− v (z)‖2 dFZ (z)

]
, where FZ (z) is a suitably chosen distribu-

tion such as the stationary one of Zt. Since v (z) is unknown and we cannot evaluate the
expectations, λ∗ cannot be solved for but cross-validation methods can be used instead. This
could in principle be done along the same lines as bandwidth selection for smoothed empiri-
cal cdfs, see Bowman et al. (1998). However, this is computationally somewhat burdensome.
Moreover, in our numerical experiments we found that the quality of the approximate value
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function was quite insensitive to the choice of λ and so in practice we recommend using very
little smoothing such as λ = 0.01.

4.3.3 Function approximation

As mentioned earlier, many approximation architectures are available in the literature. In our
numerical experiments we focus on the class of linear function approximators where V̄K ={
α′BK (z) : α ∈ RK

}
for a set of pre-specified basis functions BK (z) ∈ RK . For a given set of

M ≥ 1 design points in Z, z1, ..., zM , eq. (4.5) then becomes

Π̄K (v) (z) = BK (z)′
[
M∑

i=1
BK (zi)BK (zi)′

]−1 M∑

i=1
BK (zi) v (zi) . (4.7)

The design points may either be random or deterministic and can be chosen relative to the
basis functions to ensure that Π̄K is easy to compute and provides a good approximation for a
broad class of functions. The performance of most function approximations will depend on the
smoothness of the function of interest.

A standard smooth function class often considered in approximation theory is the following:
For any vector a = (a1, ..., adZ ) ∈ NdX

0 , let Daf (x) = ∂|a|f (x) /
(
∂xα1

1 · · · ∂xadzdZ

)
, where |a| =

a1 + · · · + adz , be the corresponding partial derivative. For α > 0, let α ≥ 0 be the greatest
integer smaller than α. For any α times differentiable function f (x), we then define

‖f‖α,∞ = max
|a|≤α
‖Daf‖∞ + max

|a|=α
sup
x1 6=x2

|Daf (x1)−Daf (x2)|
‖x1 − x2‖α−α

, (4.8)

and let Cα
r (X ) be the space of all α ≥ 0 times continuously differentiable functions f : X 7→ R

with ‖f‖α,∞ < r. Due to smoothing, vN ∈ Cα
r (Z), for some r <∞, if u and FZ are sufficiently

smooth (see Theorem 1). We can therefore import existing results for approximation methods
for functions in Cα

r (Z):

Example 2. Polynomial interpolation using tensor products. Suppose we use Jth order Cheby-
shev interpolation with M ≥ J nodes in each of the dz dimensions, or a Jth order B-spline
interpolation with M ≥ J number of nodes in each of the dz dimensions (see Appendix C for
their precise expressions). Let p1, ..., pJ denote the J polynomials; we then have

BK (z) =
{
pj1 (z1) · · · pjdz (zdz) : j1, ..., jdz = 1, ..., J

}
,

which is of dimension K = JdZ . Choosing J ≥ α, where α ≥ 1 denotes the number of
derivatives of v (z), both interpolation schemes satisfy, for any radius r <∞,

sup
v∈Cαr (Z)

∥∥∥Π̄K (v)− v
∥∥∥
∞

= O

(
log (J)
Jα

)
= O

(
log (K)
Kα/d

)
;

see p.14 in Rivlin (1990) for Chebyshev interpolation and Schumaker (2007) for B-splines. If
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v (z) is analytic (α =∞), the above result holds for any (large) J, α <∞.

As can be seen from the above example, standard polynomial tensor product approximations
suffer from the well-known computational curse of dimensionality: To reach a given level of error
tolerance, the total number of basis functions K has to grow exponentially as dZ increases. This
issue can be partially resolved by using more advanced function approximation methods:

Example 3. Interpolation with sparse grids. Instead of using tensor-product basis functions to
approximate a given function, where the total number of basis function and interpolation points
will have to grow exponentially with dZ to control the approximation error, one can instead
use so-called Smolyak sparse grids; see, e.g., Judd et al. (2014) and Brumm and Scheidegger
(2017). Using these, the number of grid points needed to obtain a given error tolerance are
reduced from O

(
MdZ

)
to O

(
M (logM)dZ

)
with only slightly deteriorated accuracy.

Example 4. Variable selection, shape constraints, shrinkage estimators, and machine learning.
An alternative way of breaking the curse of dimensionality appearing in Example 2 is to select
the basis functions judiciously. This could, for example, be done using standard variable selec-
tion methods; one example of this approach can be found in Chen (1999). Alternatively, one
can in some cases show that the value functions satisfy certain shape constraints that can then
be imposed on the sieve; see, for example, Cai and Judd (2013). Other automated selection
methods include shrinkage methods where a penalization term is added to the least-squares
criterion. Again this leads to a more sparse representation which is able to break the curse-of-
dimensionality. Finally, machine learning algorithms, such as neural networks, may potentially
be useful in approximating the value functions; see, for example, Chen and White (1999). On
the other hand, these methods are generally computationally more expensive compared to the
least-squares projection method in (4.7) and require that the value function satisfies certain
sparsity. We will investigate the performance of such more advanced projection operators in
future work.

As noted earlier, there is no guarantee that a given function approximator is non-expansive.
But this can, in principle, be examined numerically for a given choice of Π̄K . For the least-
squares projection, this amounts to solving, for a given choice of basis functions and grid points,

∥∥∥Π̄K

∥∥∥
op,∞

= sup
v∈RM ,‖v‖=1

sup
z∈Z

∣∣∣∣∣∣
BK (z)′

[
M∑

i=1
BK (zi)BK (zi)′

]−1 M∑

i=1
BK (zi) vi

∣∣∣∣∣∣
. (4.9)

When M and/or dimZ is large this may be computationally demanding and instead one can
obtain a lower bound by restricting z to only take values on the chosen set of grid points: With
BK,M ∈ RK×Mcontaining the basis functions evaluated at the grid points, we can represent Π̄K

when only evaluated at chosen grid points z1, ...., zM in terms of

PK,M = B′K,M
[
BK,MB′K,M

]−1
BK,M ∈ RM×M .
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In particular, it is easily checked that with the supremum in (4.9) being only taken over z ∈
{z1, ..., zM},

∥∥∥Π̄K

∥∥∥
op,∞

= ‖PK,M‖op,∞. Furthermore, ‖PK,M‖op,∞ ≤ 1 if and only if

max
i=1,...,M

M∑

j=1
|pij| ≤ 1,

where pij is the (i, j)th element of P, c.f. Lizotte (2011).

4.3.4 Solving for the approximate value functions

Computing the simulated self-approximating solution or the projection-based one can be done
using three different numerical algorithms: Successive approximation (SA), Newton-Kantorovich
(NK), or a combination of the two. The latter corresponds to the hybrid solution method pro-
posed in Rust (1988). We here discuss the implementation of these algorithms with focus on
the sieve-based approximation of v; the implementations of the sieve approximation of V and
the self-approximating solutions of either of the two follow along the same lines. The main
difference between solving for V or v is that the latter involves smaller computational burden
since it is a scalar function while the former is a D-dimensional vector function.

SA utilizes that (for K chosen large enough), Π̄KΓ̄N,λ, is a contraction mapping which
guarantees that the following algorithm will converge towards the solution to (4.2),

v̂
(k)
N = Π̄KΓ̄N(v̂(k−1)

N ), (4.10)

for k = 1, 2, ..., given some initial guess v̂(0)
N . In the leading case of (4.7), this can be expressed

as a sequence of least-squares problems that are easily computed: v̂(k)
N (z) = α̂′kBK (z) where

α̂k =
[
M∑

i=1
BK (zi)BK (zi)′

]−1 M∑

i=1
BK (zi) Γ̄N,λ(α̂′k−1BK) (zi)′ ∈ RK ,

for k = 1, 2, ..., given some initial guess α̂0. In the case where εt = ∅ or when the model is on
the form eq. (3.9) with ε(1

t being extreme-valued distributed and ε(−1)
t = ∅,

Γ̄N(α′BK)(zi;λ) = Gλ


u (z) + βα′

N∑

j=1
BK (Zj (zi))wZ,N,j (zi)


 ,

and so ∑N
j=1BK (Zj (zi))wz,N,j (zi), i = 1, ...,M, only need to be computed once and then

recycled in each iteration; in contrast, the simulated averages appearing in ΓN(α̂′k−1BK) (zi),
i = 1, ...,M , have to be recomputed in each step of the SA algorithm. Thus, in this special
case, it is faster to (approximately) solve for vN,λ instead of VN,λ. While SA is guaranteed to
converge globally when Π̄KΓ̄N is a contraction, the rate of convergence will be slow with the
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error vanishing at rate βk,

∥∥∥v̂(k)
N − vN

∥∥∥
∞
≤ βk (1 + β)

1− β
∥∥∥v̂(0)

N − vN
∥∥∥
∞
. (4.11)

To speed up convergence, we therefore follow Rust (1988) and combine SA with NK itera-
tions since NK converges with a quadratic rate once a given guess of the value function is close
enough to the fixed point. Moreover, in situations where Π̄KΓ̄N is expansive, NK is still guar-
anteed to converge locally. Since both the self-approximating and sieve-based methods solve
finite-dimensional problems, the NK algorithm for these are equivalent to Newton’s method.
First consider the sieve-based method where we focus on the least-squares projection as given
in (4.7). We are then seeking α̂ solving the following K equations,

S̄N,K (α;λ) = 0,

with

S̄N,K (α;λ) = α−
[
M∑

i=1
BK (zi)BK (zi)′

]−1 M∑

i=1
BK (zi) Γ̄N (α′BK) (zi;λ) .

The corresponding derivatives of the left-hand side as a function w.r.t. α can be expressed in
terms of the Hadamard differential of Γ̄N w.r.t. v,

∇Γ̄N(v) [dv] (z;λ) = β
∑

d∈D

N∑

j=1
Ġd,λ

(
u (z, εj (z)) + β

N∑

i=1
v (Zi (z) ;λ)wZ,N,i (z)

)

×
(

N∑

k=1
dv (Zk (z, d) ;λ)wZ,N,k (z, d)

)
wε,N,j (z) ,

where dv : Z ×
[
0, λ̄

]
7→ R is the direction and

Ġ
(r)
λ,d(r) = ∂Gλ(r)

∂r (d) =
exp

(
r(d)
λ

)

∑
d′∈D exp

(
r(d′)
λ

) . (4.12)

The partial derivatives of S̄N,K (α;λ) then becomes

H̄N,K (α;λ) = IK −
[
M∑

i=1
BK (zi)BK (zi)′

]−1 M∑

i=1
BK (zi)∇Γ̄N (α′BK) [BK ] (zi;λ)′ ∈ RK×K .

With these definitions, the NK algorithm takes the form

α̂k = α̂k−1 − H̄−1
N,K (α̂k−1;λ) S̄N,K (α̂k−1;λ) .

The NK algorithm for the self-approximating method is on the same form, except that we
now solve directly for the value function at the N draws. With slight abuse of notation, let
vN = {vN,λ (Zk;λ) : k = 1, ..., N} be the vector of integrated values across the set of draws
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solving S̄N (vN ;λ) = 0 where

S̄N,k (vN ;λ) = vN,k −
N∑

j=1
Gλ

(
u(Zk, εj) + β

N∑

i=1
vN,iwz,N,i (Zk)

)
wε,N,j (Zk) , (4.13)

for k = 1, ..., N . The corresponding derivatives is H̄N (α;λ) =
(
H̄N,1 (α;λ) , ..., H̄N,N (α;λ)

)′ ∈
RN×N where, with 1N = (1, ..., 1)′ ∈ RN ,

H̄N,k (α;λ) = IN −∇Γ̄N (vN) [1N ] (zk;λ) ∈ RN .

Finally, we note that the NK algorithm for the expected value function takes a similar form
with the functional differential of ΓN given by

∇ΓN(V ) [dV ] (z;λ) = β
∑

d∈D

N∑

i=1
Ġ

(r)
λ,d(r) (u (Si (z)) + βV (Zi (z) ;λ)) dV (Zi (z) , d)wN,i (z) ,

(4.14)
where dV (z) = (dV (z, 1) , ..., dV (z,D))′ .

Comparing the NK algorithm for the self-approximating and the sieve-based method, we
note that the former involves inverting a N × N -matrix while the latter a K × K-matrix.
As pointed out earlier, the self-approximating method generally needs N to be chosen quite
large to achieve a precise simulated version of the Bellman operator, in particular in higher
dimensions, and so the NK algorithm for this method may become numerically infeasible in
some cases. While the projection-based method also suffers from a curse of dimensionality,
since the number of basis functions, K, has to be quite large in higher dimensions to achieve a
reasonable approximation, it is less severe and is implementable for higher-dimensional models.
If more advanced function approximation methods are employed, even better performance can
be achieved.

5 Theory
We here develop an asymptotic theory for the self-approximating and sieve-based methods.
We first establish some important properties of the smoothed simulated Bellman operators
and their exact solutions, vN and VN defined in (4.1). These are then used in the asymptotic
analysis of the self-approximating solution method and the sieve-based one. This analysis will
rely on two general results for estimated solutions to fixed point problems as stated in Theorems
A.1 and A.2 in the appendix. The asymptotic analysis will mostly focus on VN and V̂N since
our results for these easily translate into similar results for the approximate integrated value
function. For example, vN(z;λ) = MN,u (βVN (z;λ) |z;λ), where

MN,u (r|z;λ) =
N∑

j=1
Gλ (u(z, εj (z)) + r)wε,N,j (z) ,
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and so the asymptotic results for VN in conjunction with the functional Delta method can be
used to obtain similar results for vN .

Without loss of generality, we assume that the draws can be written as

Zi (z) = ψZ (Ui; z) ∈ Z, εi (z) = ψε (Ui; z) ∈ E , (5.1)

for some i.i.d. draws Ui ∼ PU , i = 1, ..., N , and some functions ψZ and ψε. We then define,
with ψ = (ψZ , ψε) and for any given function V (z, λ),

uψ (U ; z) := u (ψ (U ; z)) , wψ (U ; z) = w (ψ (U ; z) |z) , Vψ(U ; z, λ) = V (ψZ (u; z) , λ) (5.2)

so that
Γ(V )(z, λ) = E [Gλ (uψ (U ; z) + βVψ(U ; z, λ))wψ (U ; z)] (5.3)

where expectations are taking over U ∼ PU , and

ΓN(V )(z, λ) =
N∑

i=1
Gλ (uψ (Ui; z) + βVψ(Ui; z, λ))wψ,N (Ui; z) , (5.4)

where wψ,N (Ui; z, d) = wψ (Ui; z, d) /∑N
j=1wψ (Uj; z, d) . Here, and in the following, we let

V0(z, λ) denote the exact solution to

V0 (z, λ) = Γ (V0) (z, λ) (5.5)

As explained earlier, we here define the two operators to take a given function V (z, λ), (z, λ) ∈
Z×

[
0, λ̄

]
, for some given λ̄ > 0, and map them into another function with domain Z×

[
0, λ̄

]
. In

particular, V0(z, 0) and VN (z, 0) are the non-smoothed (λ = 0) exact and simulated solutions,
respectively. We then impose the following regularity conditions on the model and chosen
importance sampler, where we recall the function norm defined in eq. (4.8) and the function
set Cα

r (Z) defined below this equation:

Assumption 1. The support Z is a compact set; ūψ (u) := supz∈Z ‖uψ (u; z)‖ and w̄ψ (u) :=
supz∈Z wψ (u; z) satisfy E

[
ū2
ψ (U) w̄2

ψ (U)
]
<∞.

Assumption 2. For some α > 0, z 7→ uψ (U ; ·) and z 7→ wψ (U ; z) belong to Cα
∞ (Z) PU -almost

surely with E
[
‖uψ (U ; ·) ‖2

α,∞‖wψ (U ; ·) ‖2
α,∞

]
<∞.

Assumption 1 share some similarities with the regularity conditions found in Rust (1988)
who considered an additive version of our general model. Importantly, we only require that
Zt has bounded support while εt can have potentially unbounded support. This is in contrast
to Pal and Stachurski, 2013 and Rust, 1997b who require both components to be bounded.
We conjecture that the subsequent results can be generalized to also hold in the case of Z
unbounded but then our conditions and arguments would have to be changed. For example,
the existence of unique fixed points would have to be verified in a function space equipped
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with a weighted sup-norm and with additional moment conditions on Zt, see, e.g., Norets
(2010). Similarly, our empirical process results would need to be established using bracketing
conditions with weighted norms and additional moment conditions, see, e.g., Section 2.10.4 in
van der Vaart and Wellner, 1996. Similar to the results in Rust (1988), Assumption 1 implies
Γ(V ) ∈ B

(
Z ×

(
0, λ̄

))D
for all V ∈ B

(
Z ×

(
0, λ̄

))D
, see below. This particular result actually

holds under the weaker requirement that E [‖uψ (U ; ·) ‖0,∞‖wψ (U ; ·) ‖,∞] <∞ but the existence
of the second order moment is needed for the subsequent asymptotic analysis of VN (z;λ) and
so we impose this restriction throughout.

Assumption 2 impose smoothness conditions on the model and the chosen samplers in
terms of the state variables Zt. These conditions imply that the expected and integrated value
functions will be smooth too. Note here that the degree of smoothness α is left unrestricted at
this stage and so the functions are not required to be differentiable, merely Lipschitz. While the
focus is on models with continuous state variables our theory also covers models with discrete
state space. In this case, we can dispense of Assumption 2 and instead rely on the more general
Theorem B.1 which implies that the subsequent results still go through when Zt is discrete.

We first establish existence and uniqueness of the (generally) infeasible simulated solutions
and show that they inherit the smoothness properties of z 7→ uψ (U ; ·) and z 7→ wψ (U ; z). This
feature of the approximate solutions is important for two reasons: First, it allows us to show
uniform convergence of certain functionals as part of our proof of weak convergence. Second,
we can control the approximation error due to the use of sieves later on.

Theorem 1. Suppose Assumption 1 holds and, for a given N ≥ 1, infz∈Z
∑N
i=1wψ (Ui; z) > 0.

Then the operators Γ and ΓN in eqs. (5.3) and (5.4) are almost surely contraction mappings on
B
(
Z ×

(
0, λ̄

))D
and so V0 : Z ×

(
0, λ̄

)
7→ RD and VN : Z ×

(
0, λ̄

)
7→ RD exist and are unique.

If furthermore Assumption 2 holds then V0 ∈ Cα
r0

(
Z ×

(
0, λ̄

))
for some constant r0 <∞ while

VN ∈ Cα
rN

(
Z ×

(
0, λ̄

))
for some rN <∞ PU -almost surely.

The above is a fixed N result with the bound on VN , rN , being random since it depends
on the particular set of draws. We derive a deterministic bound on rN as N → ∞ below.
The condition infz∈Z

∑N
i=1wψ (Ui; z) > 0 will hold with probability approaching 1 (w.p.a.1) as

N → ∞ and so can be dropped in our asymptotic analysis. Next, we analyze the effect of
smoothing on the exact and simulated value function:

Theorem 2. Under the conditions of Theorem 1, the following hold: ‖V0 (·;λ)− V0 (·; 0)‖∞ =
O (λ) and ‖VN (·;λ)− VN (·; 0)‖∞ = OP (λ) for any given N ≥ 1.

This shows that the smoothing can be controlled for by suitable choice of λ both asymp-
totically (N = +∞) and for any finite number of simulations (N < ∞). Also note that the
above result holds independently of the smoothness properties of the unsmoothed exact and
simulated solutions.
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5.1 Self-approximating method

In this section, we provide an analysis of the smoothed fixed point, VN , to ΓN defined in
eq. (5.4) thereby allowing for general importance samplers. As a special case, we obtain an
asymptotic theory for the self-approximating solution method (where Φz (z′|z, d) is restricted
to be marginal distribution). The results for VN will then in turn be used in the analysis of the
corresponding sieve-based methods in the next section.

Theorem 3. Suppose Assumptions 1-2 hold for some α > 0. Then VN solving ΓN(VN) = VN

satisfies ‖VN − V0‖∞ = OP (1/
√
N).

If Assumption 2 holds with α ≥ 1, then V0, VN ∈ C1
r

(
Z ×

[
0, λ̄

])
w.p.a.1 for some constant

r < ∞. Moreover, supz∈Z ‖∂VN (z, λ) / (∂zj)− ∂V0 (z, λ) / (∂zj)‖ = OP

(√
N/λ

)
uniformly

over λ ∈
(
0, λ̄

)
.

The first part of this theorem is similar to results found in Rust (1997b) and Pal and
Stachurski (2013) who also show

√
N -convergence of their value function approximation. Im-

portantly, the convergence result holds uniformly over the smoothing parameter λ and so there is
no first-order effect from smoothing if λ vanishes sufficiently fast. Specifically, for any sequence
λN satisfying

√
NλN → 0, Theorems 2 and 3 yield supz∈Z ‖VN (z, λN)− V (z, 0)‖ = Op(1/

√
N).

This is similar to convergence of smoothed empirical cdf where the indicator function is replaced
by a smoothed version; this also does not affect the convergence rate as long as the smoothing
bias is controlled for. The second part of the theorem appears to be a new result and shows that
if the problem is smooth enough, the first-order partial derivatives of VN (z, λ) also converge
uniformly over z with rate

√
N/λ. Since we need λ→ 0 to kill the smoothing bias, this could

seem to imply that the first-order derivatives converge with slower than
√
N -rate. However,

we conjecture that the derived rate is not sharp and that
√
N -convergence does actually hold.

The proof of this appears to require a more delicate and refined arguments, however, and so
we leave this for future research.

The above result is then in turn used to derive the asymptotic distribution of VN (z, λ)
uniformly in (z, λ) ∈ Z ×

(
0, λ̄

)
. Here, the smoothing proves important since it allows us to

generalize the standard arguments used in the analysis of finite-dimensional extremum esti-
mators to our setting: We first expand the “first-order condition”, VN − ΓN(VN) = 0, around
V0 = Γ(V0) to obtain, with ∇ΓN defined in (4.14),

0 = Γ(V0)− ΓN(V0) + {I −∇ΓN(V0)} [VN − V0] + oP
(
1/
√
N
)
,

where the rate of the remainder term follows from Theorem 3. Next, employing empirical
process theory, we show that

√
N {Γ(V0)− ΓN(V0)}  G in B

(
Z ×

(
0, λ̄

))D
for a Gaussian

process G (z, λ) with covariance kernel

Ω (z1, λ1, z2, λ2) = EU
[
g (U ; z1, λ1) g (U ; z2, λ2)′

]
, (5.6)
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g (U ; z, λ) = {Gλ (uψ (U ; z) + βV0 (ψZ (U ; z) , λ))− Γ(V0) (z, λ)}wψ (U ; z) . (5.7)

Finally, we show that ∇ΓN(V0) [dV ] →P ∇Γ(V0) [dV ] uniformly over dV ∈ C1
2r

(
Z ×

[
0, λ̄

])D

with r <∞ given in Theorem 3. Since VN − V0 ∈ C1
2r

(
Z ×

[
0, λ̄

])D
, we conclude that:

Theorem 4. Suppose Assumptions 1 and 2 hold with α ≥ 1. Then,
√
N{VN − V0}  GV

on B
(
Z ×

(
0, λ̄

))D
where GV (z, λ) = {I −∇Γ(V0)}−1 [G] (z, λ) is a D-dimensional Gaussian

process.

The above result implies, for example, that
√
N {VN (z, λ)− V0 (z, λ)} →d N (,ΩV (z, λ, z, λ) /N)

as N →∞ for any given (z, λ), where

ΩV (z1, λ1, z2, λ2) =
∫ ∫

r∗ (z′1, λ′1|z1, λ1) Ω (z′1, λ′1, z2, λ2) r∗ (z′2, λ′2|z2, λ2)′ d (z′1, λ′1) d (z′2, λ′2) ,

where r∗ is the Riesz representer of dV 7→ {I −∇Γ(V0)}−1 [dV ] (z, λ). Thus, it allows us to
construct (pointwise or uniform) confidence bands for the expected value function. We expect
that the result will also be useful in analyzing the impact of value function approximation when
used in estimation. This could be done by combining the above weak convergence result with,
e.g., the results for approximate estimators found in Kristensen and Salanie (2017).

The proof of Theorem 4 proceeds by verifying the two high-level conditions of the “master”
Theorem B.1 where the same weak convergence result is obtained under more general conditions.
Theorem B.1 allows us to replace the smoothness conditions in Assumption 2 with some other
conditions implying that VN −V0 is situated in a function set with finite entropy. One example
would be to impose restrictions on u and w so that the value function and its estimator are
both monotone functions, c.f. Pal and Stachurski, 2013, in which case we could then appeal to
Theorem 2.7.5 in van der Vaart and Wellner, 1996 to obtain the results of Theorem 4.

We conjecture that a similar weak convergence result will hold for the non-smoothed value
function approximation (λ = 0). However, the proof of such a result would require different
arguments and seemingly stronger assumptions. In particular, the current proof only requires
the empirical process (z, λ) 7→ ΓN(V0) (z, λ) to converge weakly. To allow for non-smooth value
function approximation, we conjecture that we would now need to show that the empirical
process (V, z) 7→ ΓN(V ) (z, 0) converges weakly over a suitable function set that the estimated
non-smooth solution, VN , would be situated in. For this to hold, the uniform entropy of the
function set would need to be finite. Standard choices of function sets are smooth classes, but
VN and its limit V0 are both non-smooth now and so the proof appears to be rather delicate.

Finally, for a complete analysis that takes into account the smoothing bias, we state the
following corollary to Theorem 4: For any λN → 0 such that λN

√
N → 0,

√
N{VN (·;λN) −

V0 (·; 0)} GV (·, 0) .
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5.2 Sieve-based approximation of value functions

We now proceed to analyze the asymptotic properties of the sieve-based approximate value
function, V̂N . To this end, we use the following decomposition of the over-all error,

V̂N − V0 =
{
V̂N − VN

}
+ {VN − V0} , (5.8)

where the second term converges weakly towards a Gaussian process, c.f. Theorem 4. What
remains is to control the first term which is due to the sieve approximation; this is done by
imposing the following high-level assumption on the projection operator when applied to a
function set V which is chosen so that VN ∈ V w.p.a.1.:

Assumption 3. The projection operator ΠK satisfies supv∈Cαr0 (Z) ‖ΠK (v)− v‖∞ = OP (ρK) for
some sequence ρK → 0, where α is given in Assumption 2 and r0 <∞ in Theorem 1.

This is a high-level condition that requires the chosen function approximation method to
have a uniform error rate over the function class Cα

r (Z) which we know z 7→ V0 (z, λ) belongs
uniformly in λ under Assumption 2. As discussed earlier, one could replace Assumption 2 with
other regularity conditions that ensure z 7→ V0 (z, λ) is sufficiently regular (e.g., monotonic) in
which case Cα

r (Z) in Assumption 3 should be modified accordingly. Assumption 3 is satisfied for
standard polynomial approximators with ρK = log (K) /K(s+1)/d, c.f. Section 4.3. Compared to
results on sieve approximations of value functions found elsewhere in the literature, our rate is
better since we are here seeking to approximate the expected value function that is situated in
Cα
r (Z). In contrast, sieve-based approximations developed in other papers, such as Munos and

Szepesvari (2008) and Pal and Stachurski (2013), try to approximate the value function which
is at most Lipschitz and for such functions the approximation error will be larger in general.
In the case of Z being finite, we have supV ∈V ‖ΠK (V )− V ‖∞ = 0 for K > |Z| under great
generality and so there will be no asymptotic bias component due to sieve approximations in
this case.

The second part of Theorem A.1 together with the fact that ΓN,λ(Vλ)−Γλ(Vλ) = OP

(
1/
√
N
)
,

c.f. Proof of Theorem 3, now yield the following result:

Theorem 5. Suppose Assumptions 1-3 hold. Then V̂N , defined as the solution to ΠKΓN(V̂N) =
V̂N , satisfies ‖V̂N−V0‖∞ = Op(1/

√
N)+OP (ρK). Suppose in addition that α ≥ 1 in Assumption

2. Then, if
√
NρK → 0,

√
N{V̂N − V0} GV .

The discussions following Theorems 3 and 4 carry over to the above result. In particular,
the rate result still goes through when no smoothing is employed (λ = 0) but the current
proof of the asymptotic distribution result requires smoothing (λ > 0). Compared to the rate
results for VN,λ, the projection-based method suffers from an additional error due to the sieve
approximation, OP (ρK). This can be interpreted as a bias term, while Op(1/

√
N) is its variance

component which is shared with VN,λ. The requirement that
√
NρK → 0 is used to kill the

sieve bias term so that V̂N is centered around V0.
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The above result provides a refinement over existing results where a precise rate for the bias
is not available; see, e.g., Lemma 5.2 in Pal and Stachurski (2013). It shows that there is an
inherent computational curse-of-dimensionality built into our projection-based value function
approximation when polynomial interpolation is employed: In high-dimensional models, a large
number of basis functions are needed which in turn increases the computational effort. In the
case of polynomial approximations, the rate condition becomes

√
N log (K) /K(s+1)/d → 0 and

so, as d increases, we needK to increase faster withN to kill the sieve bias component. However,
also note that K as no first-order effect on the variance and so there is no bias-variance trade-off
present. In particular, we can let K increase with N as fast as we wish and so our procedure
should in principle also work for models with high-dimensional state space. That is, we can
achieve

√
N -rate regardless of the dimension of the problem and so our method does not suffer

from any statistical curse-of-dimensionality. However, this requires choosing K large enough
in order to control the sieve approximation bias which will increase computation time as the
dimension grows. Thus, there is a potential computational curse-of-dimensionality.

6 Numerical results
In this section we examine the numerical performance of the proposed solution algorithms with
focus on how the theoretical results derived in the previous sections translate into practice and
how different features of model and implementation affect their performances.

We focus exclusively on approximating the integrated value function, v (z), and measure the
performance of a given approximate solution, say, ṽ (z) in terms of its pointwise bias, variance
and mean-square error (MSE) defined as Bias (z) := E[ṽ (z)]− v (z), V ar (z) := V ar (ṽ (z)) =
E [(ṽ (z)− E[ṽ (z)])2] andMSE (z) = Bias2 (z)+V ar (z), respectively. As overall measures we
use uniform bias, variance and MSE, ‖Bias‖∞ = supz∈Z |Bias (z)|, ‖V ar‖∞ = supz∈Z |V ar (z)|
and ‖MSE‖∞ = supz∈Z |MSE (z)|. Given that the exact solution v (z) is unknown, we replace
this by a very precise approximate solution computed in the following way: First, instead
of using simulations in the computation of the Bellman operator, we utilize that the state
transitions follow a Beta distribution in the chosen model (see below) and so we can use
nodes and weights based on Jacobi polynomials to compute it using numerical integration.
We then implement the sieve method using K = 60 Chebyshev polynomials and N = 60 sets of
quadrature nodes and weights. The “exact” solution was computed by successive approximation
until a contraction tolerance of machine precision was reached. We approximate the point-
wise bias and variance of a given method through S ≥ 1 independent replications of it: Let
ṽ1 (z) , ...., ṽS (z) be the solutions obtained across the S replications, where S generally was
chosen to 2,000. We then approximate the mean by Ê[ṽ (z)] = 1

S

∑S
s=1 ṽs (z) which in turn is

used to obtain the following pointwise bias and variance estimates, ˆBias (z) = Ê[ṽ (z)]−v0 (z),
and ˆV ar (z) = 1

S

∑S
s=1(ṽs (z) − Ê[ṽ (z)])2. Based on these, we approximate ‖Bias‖∞ and

‖V ar‖∞ by the maximum pointwise biases and variances over a uniform grid over [0, 1000] of
size 500 in the univariate case and a uniform grid over [0, 1000]2 of size 250.
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To implement the sieve-based method, we need to choose the sieve space used in constructing
ΠK . We here focus on Chebyshev basis functions and B-Splines as discussed in Section 4.31.

6.1 A model of optimal replacement

To provide a test bed for comparison of the sieve-based approximation method, we use the
well-known engine replacement model by Rust (1987). Rust’s model has become the basic
framework for modeling dynamic discrete-choice problems and has been extensively used in
other studies to evaluate the performance of alternative solution algorithms and estimators.
While the model and its solution is well described in many papers, for completeness we briefly
describe our variation of it below.

We consider the optimal replacement of a durable asset (such as a bus engine) whose
controlled state Zt ∈ R+ is summarized by the accumulated utilization (mileage) since last
replacement. In each period, the decision maker faces the binary decision dt ∈ D = {0, 1}
whether to keep (dt = 0) or replace (dt = 1) the durable asset with a fixed replacement
cost RC > 0. If the asset is replaced, accumulated usage Zt regenerates to zero. The
maintenance/operating costs are assumed to be linear in usage Zt, c(Zt) = θc · 0.001 · Zt.
The state and decision dependent per period utility is then given by ū(Zt, dt) + εt(dt) where
ū(Zt, dt) = (RC + c(0)) I {dt = 0} + c (Zt) I {dt = 1} and the utility shocks εt = (εt(0), εt(1))
are i.i.d. extreme value and fully independent of Zt. This specification is a special case of
Example 1 with λ = σε and so the simulated Bellman operator takes the form (3.5) where
Gσε (·) appears as part of the model. Thus, there is no smoothing bias present in the baseline
model. In Section 6.5, we investigate the effect of smoothing by pretending that we are not able
to integrate out εt analytically in the baseline model and instead we simulate both Zt and εt
and then include our smoothing device in the computation of the simulated Bellman operator.

We assume that Zt (in absence of the replacement decision) follows a mixture of a discrete
distribution with a probability mass π > 0 at zero and a linearly transformed Beta distribution
with shape parameters a and b and scale parameter σε > 0. Thus,

FZ (z′|z, d) = πI {z′ = z}+ (1− π)F+ (z′|z, d) , (6.1)

where F+ (z′|z, d) has density f+ (z′|z, d) = fβ ((z′ − z)/σZ ; a, b) /σZ , π > 0 is the probability of
no usage and fβ(x; a, b) is the probability density function of the Beta distribution with shape
parameters a, b. Note here that it has bounded support (0, σZ) so that f+ (z′|z, d) = 0 for z′ < z

or z′ − z > σZ . This is in line with the discretized model in the original formulation in Rust
(1987) where monthly mileage were only allowed to take a few discrete values and monthly
mileage is naturally bounded above and below (busses never drives backwards and there are
limits how far a bus can drive within a month). We introduce probability mass π at z′ = z to

1 For more details on their implementation, see appendix C .
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Figure 1: Fine Approximation as “Exact” Solution
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Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 1, λ = 1 and transition
parameters are σZ = 15, a = 2, b = 5 and π = 0.000000001.

allow for the possibility that the asset is not used in a given period and thereby can end in the
same state with positive probability when π > 0. As explained below, this feature turns out
to be quite important for the applicability of the self-approximating method of Rust (1997).
Note that the support of Zt is unbounded (the positive half line) and therefore the theory does
not apply directly, since we throughout assumed bounded support. However, we expect that
the theory extends to the unbounded case after suitable modifications, c.f. discussion following
Assumptions 1-2.

In the numerical illustrations below we use the following set of benchmark parameter values
unless otherwise specified: We set replacement cost to RC = 10 and the cost function parameter
to θc = 2 so that RC is 5 times as large as c(1000). This implies a large variation in the
probability of replacement over Zt compared to Rust (1987) and a more curved value function.
The parameters indexing the transition density f+ (z′|z, d) are set to σZ = 15, a = 2, b = 5
and π = 10−10 as default. This implies a quite sparse transition density, which is similar to
the fitted model in Rust (1987). In Figure 1 we plot the corresponding “exact” solution as
described earlier. Importantly, since the transition density is an analytic function the value
function is also analytic and so well-approximated by polynomial interpolation methods.

6.2 Numerical implementation of simulated Bellman operators

The simulated Bellman operators in (3.6) and (3.7) require the user to choose an impor-
tance sampling distribution. For the self-approximating solution method we need to choose
a marginal sampler, dΦZ (z′|z, d) = φZ (z′) dz′. We follow Rust (1997b) and choose φZ (z′) =
I {0 < z′ < zmax} as a uniform density with support support [0, zmax] for some truncation
point 0 < zmax < ∞ chosen by us. First note that this entails that the simulated Bell-
man operator used for the self-approximating value function is biased since we do not sam-
ple from the full support Z = R+; however, this bias can be controlled by choosing zmax

large enough. We will explain below why we do not choose φZ (z′) as a density with support
R+. Using a uniform sampler, the corresponding Radon-Nikodym derivative takes the form
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Figure 2: Random Grids
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Notes: In the left panel we present the grids used for the self-approximate random Bellman operator. We
have uniformly sampled a random grid, {Z1, ..., ZN} on the interval [0; 1000] with N =400. Dots (.) mark
sampled grid points in R2: ZN × ZN , plus (+) mark grid points where f(zj |zi, d = 0) > 0 and circles (o) mark
points where f(zj |zi, d = 1) > 0. In the right panel, we plot the grid the projected random Bellman operator,
where we have sampled directly from the conditional transition density in each of the M = 400 uniformly
spaced evaluation points. To have equally many grid-points with non-zero transition density we only need
N = 400 ∗ σZ/max(ZN ) = 9 random grids for each of the M = 400 evaluation points. Both figures show only
a subset of the state space, (z, z′) ∈ [0; 100]2. Parameters are σZ = 15, a = 2, b = 5 and π = 0.0000000001.

wZ (z′|z, d) = πδ (z′ − z) + (1 − π)f+ (z′|z, d) where δ (·) denotes Dirac’s delta function. We
approximate this by ŵZ (z′|z, d) = πI {z′ = z}+ (1− π)f+ (z′|z, d) which entails another small
approximation error. For the sieve-based version, we simply choose ΦZ (z′|z, d) = FZ (z′|z, d)
and so wZ (z′|z, d) = 1.

As explained in Section 4.3, using a marginal importance sampler creates issues since it fails
to adapt to the particular shape of the support of FZ (z′|z, d). In particular, for a given choice
of z, many of the draws from φZ (z′) will tend to fall outside the support of fZ (z′|z, d) and
so will not contribute. In contrast, when φZ (z′|z, d) = fZ (z′|z, d), the draws from φZ will by
construction fall within the support of fZ (z′|z, d). This can be seen in Figure 2 where we have
plotted the random draws obtained from the two different importance samplers used for the
sieve-based and self-approximating solutions together with the actual support of fZ (z′|z, d). In
the left-hand side panel we have plotted pairs of the uniform draws, (Zi, Zj) for i, j = 1, ..., N ,
used for Rust’s self-approximating method with N = 400 and zmax = 1, 000, while in the right-
hand side we have plotted (zi, Zj (zi, d)) where zi are uniform draws and Zj (z, d) ∼ fZ (·|z, d).
In both cases, we have marked the pairs for which the corresponding density, fZ (Zj|Zi, d) and
fZ (Zj (zi, d) |zi, d), respectively, is positive. Clearly, the use of a marginal importance sampling
density leads to very poor coverage of the actual support of fZ (z′|z, d) as z varies while by
construction ΦZ (z′|z, d) = FZ (z′|z, d) does an excellent job. This translates into the former
simulated Bellman operator exhibiting much larger variance compared to the latter.

This issue is further amplified when we introduce the normalization given in eq. (3.3):
Suppose that we had not included a discrete component πI {z′ = z} in the model. Then, with
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Figure 3: Truncation bias due to zmax being too low.
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Zi ∼ U [0, zmax], wN,Z,i(Zj, d) = f+ (Zi|Zj, d) /∑N
k=1f+ (Zk|Zj, d) . Since f+(z′|z, d) has bounded

support, it often happens that ∑N
k=1f+ (Zk|Zj, d) = 0 for even large values of N and so the

simulated Bellman operator is not even well-defined. This issue will vanish as N →∞, but this
on the other hand increases the computational burden since the self–approximating method
require us to solve for the value function at the N draws. Introducing the discrete component
in the model resolves this issue since now wZ,N,i(Zj, d) = ŵZ (Zi|Zj, d) /∑N

k=1ŵZ (Zk|Zj, d) ,
where ∑N

k=1ŵZ (Zk|Zj, d) > 0 for all j = 1, ..., N by construction. Thus, π > 0 functions as a
regularization device.

Why not choose φZ (z) as a density with unbounded support in order to avoid the issue of
truncation? In our initial experimentation, we did try out sampling from distributions with
unbounded support, but the above numerical issues became even more severe in this case since
the resulting draws are even more dispersed. Figure 3 shows how the solution depends on
zmax. The effect of the truncation zmax will be model specific and in practice experimentation
is required. If we, for example, simply set zmax = 1, 000, 000, the variance of the simulated
Bellman operator becomes very large for a given N due to the issue with undefined sample
weights wN,i (z, d) mentioned above. At the same time, choosing zmax too small leads to a large
bias. To balance the bias and variance, we ended up using zmax = 1000 which all subsequent
numerical results for the self-approximating method is based on. Finally, we would like to stress
that none of these issues appear for the sieve-based method.

6.3 Convergence properties and computation times

We first investigate the convergence properties of our solution methods for given choice of K
and N . Do they converge and if so how fast?

Global convergence properties of sieve method

As demonstrated in Theorem 1, the simulated Bellman operators are always contraction map-
pings and so the self-approximating method is guaranteed to converge using successive approx-
imations. In contrast, ΠKΓ̄N,λ is not necessarily a contraction and so global convergence of the
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Figure 4: Convergence and discount factor
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sieve method may fail, c.f. discussion in Section 5.2. A sufficient condition for global conver-
gence is ||ΠK ||op,∞ < 1/β and we saw that ||PK ||op,∞ > 1 implies ||ΠK ||op,∞ > 1. However, even
if ||PK ||op,∞ > 1, successive approximation may still converge: Across various parameter values
of model, choices of sieve spaces and number of simulations, we did not encounter any failure
of the sieve method to converge and the resulting approximate solution was well-behaved. This
finding held across various initializations of the solution algorithms (initial choice of sieve co-
efficients). For example, we implemented the sieve method using M = 64 evaluation points
and using either K = 1 or K = 4 Chebyshev basis functions. We found that ||P1||op,∞ = 1
while ||P4||op,∞ > 1.78 and so the sieve method was guaranteed to converge for K = 1 but not
for K = 4. Nevertheless, the method of successive approximations did in fact converge to a
tolerance of 10−12 for both K = 1 and K = 4.

Successive approximation versus Newton-Kantorovich

In Section 4.3 we advocated a hybrid of successive approximation (SA) and Newton-Kantorovich
(NK) where we start with SA to ensure global convergence, and switch to NK iterations once
the domain of attraction has been reached since NK generally converges faster. We illustrate
this attractive feature of the NK algorighm in Figure 4 where we have plotted the log residual
error of the current value function approximation (relative to the “exact” solution) against
the iteration count for the SA and NK algorithms, respectively, for four different values of β.
As expected, the convergence of the SA algorithm requires a very large number of iterations
(> 1000) with computation time increasing in β, where as NK converges after less than 10
iterations and with the value of β having little effect on its performance.

Figure 4 is silent about the over-all computation time of SA relative to NK. Compared to
SA, each NK iteration is more expensive since the former only requires computing the simulated
Bellman operator evaluated at the value function obtained in the previous step while the latter,
in addition, requires computing its functional derivative and inverting a K × K dimensional
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Figure 5: Run-times (incl setup times) for SA (dotted lines) and NK (drawn lines) algorithms.
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matrix for the integrated value function and a KD×KD dimensional matrix for the expected
value function, c.f. Section 4.3. With K large, one could therefore fear that NK would become
computationally too expensive.

In Figure 5 we report best of 10 run-times for various levels of K and β and tolerance levels
of SA and NK where we also include set-up time (time spent on initial computations before
starting the actual algorithm). As expected, we find that NK is the faster of the two algorithms
when β is relatively large and K is relatively small. With K = 5 NK is faster across all levels
of β while for K = 100 and K = 500, SA is faster for moderate values of β. However, as we
shall subsequently see, with K = 5 the sieve method carries almost no bias and so choosing K
larger (such as 100 or 500) is actually unnecessary here and is only included here to illustrate
potential issues with NK for models where a large number of sieve terms are needed to obtain
a good approximation of the value function. Moreover, in most empirical applications, β is
chosen to be larger than 0.99 in which case NK still dominates SA even with K = 500.
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6.4 Approximation quality

We here investigate how the approximate value function is affected by the number of draws
and the chosen projection basis. The goal is to demonstrate the rate results of the theoretical
sections, and to compare the two types of basis functions spaces that we described above. We
will take a partial approach and first fix N to study the role of K, and then afterwards fix K
to study the role of N . All subsequent results are for the case of β = 0.95. This is to save
space. We implemented the methods for other values of β and since the numerical results were
qualitatively the same, we have left these out. The main difference in the numerical results is
that higher values of β tend to shift the overall level of the value function upwards and add more
curvature to it. This in turn generally leads to an increase in the absoute bias and variance
numbers. However, in terms of percentage bias and variance, the performance of the methods
were very similar across different values of β.

Effect of varying K for projection-based value function approximation

The theory for the projection-based value function approximation informs us that the choice of
the basis functions will have a first-order effect on the bias while only a second-order effect on
the variance. In particular, we expect Bias (z), as defined in the beginning of this section, to
satisfy Bias (z) ∼= ΠK (v) (z)− v (z), c.f. discussion following Theorem 5, while V ar (z) should
be much less affected by K. The actual size of the bias obviously depends on the curvature
and smoothness of v0 and the particular choice of basis functions. But we know that v is
an analytic function and with only moderate curvature, c.f. Figure 1 and so expect it to be
well-approximated by a small number of polynomial basis functions.

This is confirmed by the pointwise bias and standard deviation,
√
V ar (z), reported in

Figure 6: First, as can be seen in the left-hand side panel of Figure 6, first-order B-splines lead
to significantly larger point-wise bias compared to the other two sieve bases, namely second-
order B-splines and Chebyshev polynomials. This is accordance with theory since we know
that a smooth function is better approximated by higher-order polynomials, c.f. the error
rates reported in Example 1 as a function of s. At the same time, second-order B-splines and
Chebyshev polynomials exhibit very similar biases for a given choice of K.

The right-hand side panel of Figure 6 shows the point-wise standard deviation across dif-
ferent choices of K for the three different sieve bases. Consistent with the theory, the standard
deviation of the value function approximation is not very sensitive to the particular choice of
the sieve basis and the number of basis functions uses. That is, the sieve basis mostly affect
the bias with only minor impact on the variance.

Finally, we examine how the bias behaves as we further increase K. Figure 7 plots ‖Bias‖∞
as a function of K. Similar to Figure 6 we see much more rapid convergence when smooth basis
functions are used, and with little improvement forK greater than 9. This is not surprising given
the reported shape of v. The second-order B-splines and Chebyshev basis functions produce
very similar fits, even if they are evaluated on different grids and the B-splines have very different

Chapter 1

33



Figure 6: Point-wise bias and standard deviation of solutions for various choices of K using
different interpolation schemes, N = 200, S = 200, σZ = 15.
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Figure 7: Sup-norm of bias of solutions for various choices of K using various interpolation
schemes, N = 200, S = 200.
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properties compared to Chebyshev polynomials. Indeed, the curves are practically overlapping.
This is in accordance with the asymptotic theory that predicts that higher-order B-splines and
Chebyshev polynomials should lead to similar biases. Moreover, the theory informs us that if
v is analytic, and this is the case in this particular implementation, we should expect the bias
to vanish with rate O(K−K) when using polynomial interpolation. The bias indeed does go to
zero very quickly and so the numerical results support the theory.

Simulation errors, rates of convergence and asymptotic normality

We now compare the errors due to simulations and the rates with which these vanish for the
two solution methods. For both methods, theory tells us that N should have a first-order
effect on the variance of the approximate value function which is supposed to vanish at rate
1/N , c.f. Theorems 5 and 3. Our asymptotic theory is, on the other hand, silent about the
size of simulation bias and the rate with which it should vanish with. However, we can think
of both the sieve-based and self-approximating method as a nonlinear GMM-estimator where
the simulated Bellman operator defines the sample moments. Importing results for GMM
estimators, see, e.g., Newey and Smith (2004), we should expect the simulation bias to be of
order 1/N .

In Figure 8 we investigate this prediction by plotting ‖Bias‖∞ and
∥∥∥
√
V ar

∥∥∥∞ for the sieve-
based method (left panels) and for the self-approximating method (right panels) for two different
choices of σε and for across different values of N . To examine the rate with which the simu-
lation bias and variance vanish we estimate the following an exponential regressions by NLS
||
√
V ar||∞ = exp(αSD + ρSD ln(N)) and ||Bias||∞ = exp(αBias + ρBias ln(N)) where ρSD and

ρBias measures the rate that ||
√
V ar||∞ and ||Bias||∞ vanishes with respectively. The resulting

regression fit estimates are reported in both Figure 8 as well as in Table 1. In Table 1 we
present bias and standard deviation for N = 500 as well as their rates of convergence both
methods; with various values of K for the sieve approximation method.

According to the theory, the variance should vanish with rate 1/N for both methods and we
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Figure 8: Convergence results
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Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 10, and transition parameters
are a = 2, b = 5 and π = 0.000000001. Uniform bias and variance were estimated using 500 evaluation points
and S = 2000 implementations.
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Table 1: Bias, variance, and rates of convergence for various values of K
Sieve Method Self-approx.

# of basis functions, K 1 2 5 10 15 method
σz=15

||Bias||∞ for N = 500 12.743 7.029 0.348 0.016 0.003 0.203
||
√
V ar||∞ for N = 500 0.000 0.020 0.063 0.066 0.066 0.450

Convergence rate for ||Bias||∞ 0.000 0.000 0.002 -0.012 -0.212 -1.290
Convergence rate for ||

√
V ar||∞ 0.169 -0.500 -0.501 -0.501 -0.501 -3.618

σz=100
||Bias||∞ for N = 500 22.446 10.937 0.112 0.009 0.009 0.084
||
√
V ar||∞ for N = 500 0.000 0.128 0.218 0.215 0.215 0.094

Convergence rate for ||Bias||∞ 0.000 0.000 -0.027 -0.299 -0.299 -1.331
Convergence rate for ||

√
V ar||∞ 0.169 -0.500 -0.501 -0.501 -0.501 -0.543

therefore expect ρSD = −0.5 so that ||
√
V ar||∞ vanish with 1/

√
N . For the projection based

method, we see that the rate with which the standard deviation shrinks to zero is indeed close
to −0.5 for all values of K > 1 and irrespectively of the value of σε. For the self-approximating
method we estimate the rate to ρSD = −0.541 when σε = 100, which is in line with the theory.
However, ||

√
V ar||∞ is found to vanish with rate 1/N3.6 for σε = 15. This seems to indicate

that the asymptotic theory developed in Theorems 3 and 4 do not provide a very accurate
approximation of the performance of the self-approximating method for small and moderate
choices of N when the support of Zt| (Zt−1 = z, dt = 1) is small (σZ = 15). We conjecture that
the discrepancy between theoretical predictions and numerical results for the self-approximating
method is due to the aforementioned issues with the marginal importance sampler discussed
in Section 6.2: Many of the draws are not used in the computation of the simulated Bellman
operator because they fall outside the support of Zt|Zt−1 = z for a given choice of z. Thus, the
effective number of draws is smaller than N and changes as z varies.

For the projection based method, the main source of bias is due to the sieve projection.
From Figure 6, we see that, with N = 200 and K = 9, the sieve-based methods using second-
order B-splines or Chebyshev polynomials have virtually no bias, and both Figure 8 as well as
in Table 1 also confirms that we practically eliminate by approximate the value function using
Chebychev polynomials with K = 20. However, there still remains a small bias that vanishes
as N grows. For small K, we see that the bias is roughly independent of N . As K increases so
does the dependence on N . However, even for K = 20 where we estimate ρBias to be 0.21 and
0.30 for σZ = 15 and σZ = 100 respectively, the rate of convergence is far from 1/N . This is
probably due to the presence of higher-order bias components that our asymptotic theory does
not account for.

For the self-approximating method, there is no sieve projection bias but a larger simulation
induced bias that decreases with N . We obtain rate estimates of 1/N1.7 and 1/N1.4 for the bias
when σZ = 15 and σZ = 100 respectively; these are slightly faster than expected but not too
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far from the theoretical predictions of 1/N . For the self-approximating method, bias constitute
more than half of RMSE when N < 600 for σZ = 15 (or N < 400 for σZ = 100), but since
||Bias||∞ decays faster than ||

√
V ar||∞ , the simulation bias eventually becomes second order

for large N .
Comparing ||MSE||∞ for N = 500 we find that the sieve-based method clearly dominates

the self-approximating method when σZ = 15, whereas the self-approximating method performs
best when σZ = 100. This is not entirely surprising since a large value of σε implies a large
conditional support of Zt in which case the draws of the marginal sampler are more likely to
fall within the support, c.f. the discussion in Subsection 6.2. Thus, the over-all error of the
self-approximating method will tend to be smaller when σZ is large. The opposite is the case for
the sieve based method which becomes more precise for smaller value of σZ since the variance
of the simulated Bellman operator used for this method gets smaller as σZ gets smaller. This
shows that there is considerably scope for improving the performance of the sieve-based method
by more careful design of the sampling method.

Figure 9: Asymptotic Normality
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Notes: Each panel shows kernel density estimates of (v̂N (z) − E[v̂N (z)])/
√
var(v̂N (z)) for z = 500 based on

S = 2000 solutions for each sample size N . Discount factor is β = 0.95, utility function parameters are θc = 2,
RC = 10, and transition parameters are σZ = 100, a = 2, b = 5 and π = 0.000000001.

Theorems 4 and 5 state that when N is large, the approximate value functions should be
normally distributed. We here investigate whether this asymptotic approximation is useful
in practice by looking at the pointwise distribution of the approximate solutions obtained
through both methods. In Figure 9, we plot the distribution of (ṽ (z)− E [ṽ (z)]) /

√
V ar (ṽ (z))
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Figure 10: Sup-norm MSE of solutions to Bellman operators with simulated taste shocks and
state transitions for varying levels of smoothing, for N = 100.
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for z = 500, where ṽ denotes a given approximation method, together with the standard normal
distribution. It is here important to note we do not center the estimate around v (z) but instead
around E[ṽ(z)] ; this is due to the sizable bias of the self-approximating method. For the sieve-
based method, we see that its normalized distribution is quite close to the standard normal
irrespectively of the value of σZ . In contrast, the normal distribution is a poor approximation
for the self-approximating method when σZ = 15 when N = 500; we expect this is due to the
fact that the effective number of draws is quite small and so the asymptotic approximation is
poor in this case. As expected the approximation gets better as N and/or σZ increases.

6.5 Effect of smoothing

The results reported above did not involve any smoothing bias. We now numerically study the
effect of smoothing. This is done by, instead of integrating out the i.i.d. extreme value taste
shocks εt analytically as we have done so far, using Monte Carlo simulations to evaluate this
part of the integral and then introducing the smoothing device to ensure that the simulated
Bellman operator remains smooth. While this may appear somewhat artificial, the merit of
doing this exercise is that we can use the same “exact” solution as benchmark as used above.

In Figure 10 we plot the sup-norm of the mean squared error, ||MSE||∞ as a function of
λ (the smoothing scale parameter) for the sieve-based method using K = 4 or 8 Chebyshev
polynomials (similar results were obtained for the self-approximating method and so are left
out). For K = 4, the MSE increases monotonically as a function of λ while for K = 15 the
bias due to smoothing is non-monotonic in λ. In both cases, at λ = 0, any remaining biases
are due to either sieve-approximation or simulations. Importantly, the bias due to smoothing
is negiglible (relative to the other biases) for small and moderate values of λ while the variance
is largely unaffected. We have no theory or heuristics for choosing an optimal λ to optimally
balance bias and variance due to smoothing but the current numerical results indicate that
choosing a quite small λ value works well.
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6.6 Performance in the bivariate case

We now examine how the solution methods perform in the bivariate case (dZ = dim (Zt) = 2)
in order to see if there is any curse of dimensionality built into the two methods. We do this
for two different models as described below.

An Additive DDP

We here follow the approach of Arcidiacono et al. (2013) and Rust (1997a) and build a dZ-
dimensional model by adding up dZ independent versions of the univariate model considered
so far. That is, we choose the utilities and state dynamics as ū(z, ε, d) = ∑dZ

i=1 u(zi, εi, di) and
F̄Z(z′|z, d) = ∏dZ

i=1 FZ(z′i|zi, di), where z = (z1, ..., zdz) and d = (d1, ..., ddZ ), with FZ(z′i|zi, di)
and u(zi, εi, di) denoting the state transition and per-period utility in the univariate case as
described in Section 6.1. Note here that (Zt,i, εt,i) and (Zt,j, εt,j) are fully independent of each
other, i 6= j and the number of alternatives are 2dZ , where dZ Thus, the model considers the
joint replacement decision of dZ assets whose stochastic usages (Zt,1, ..., Zt,dZ ) are mutually
independent. Conveniently, the integrated value function of this multidimensional problem,
v̄(z1, ..., zdZ ), is simply the sum of the solutions to each of the underlying univariate models,
v̄(z1, ..., zdZ ) = ∑dZ

i=1 v(zi), where v(zi) is the solution to the univariate model in Section 6.1.
This is a rather simplistic multivariate model but it comes with the major advantage that we
can obtain a very accurate approximation of the exact solution by simply adding up the “exact”
solution found for the univariate case. With a more complicated multidimensional structure, the
computational cost of finding the “exact” solution is much higher. However, when implementing
our solution methods, we forgo forgo the knowledge of the additive structure of the solution
and so treat the above model as a “proper” multivariate problem.

Simulation error

Given the issues with the self-approximating method for small values of σZ = 15, we here focus
exclusively on the case σZ = 100. To get a sense of the pointwise performance of the self-
approximating method, we plot the pointwise bias and standard deviation for this method with
N = 3000 in Figure 11 together with the pointwise errors of the corresponding replacement
(choice) probabilities. The overall shape and level of the integrated value function is quite well
captured, and the same is true for the policy. However, the approximation errors tend to get
larger out in the tails of the distribution and some of this comes from the fact that the issues
with the marginal sampler used for the self-approximating method are amplified here. The
problems are especially present in the off-grid evaluations, where we often have very few draws
in a given region where we want to evaluate the value function or policies.

Next, we examine ||Bias||∞ and ||
√
V ar||∞ for both methods as we increase N . These are

plotted in Figure 12 where it should be noted that the reported range of N reported on the
x-axis of the two figures differ substantially. This is due to the fact that the self–approximating
method became numerically unstable for N smaller than 1,400 while no such issues were present
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Figure 11: Approximation errors of self-approximating method, bivariate DDP

Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 10, λ = 1 and transition
parameters are σZ = 100, a = 2, b = 5 and π = 0.000000001. The “exact” solution was computed by averaging
over S = 100 solutions, each found using the smoothed random Bellman operator with N = 3000 pseudo random
draws. Each fixed point was found using a contraction tolerance of machine precision.

for the sieve-based method. As in the univariate case, both bias and variance of the two methods
vanish as N increases. However, comparing Figures 12 and 8, while the errors of the sieve-based
method in the bivariate case is of a similar magnitude as in the univariate case, the errors of
the self-approximating method are much larger in the bivariate case. This seems to indicate a
certain type of curse-of-dimensionality in this particular application of the self-approximating
method. This is caused by the issues with the marginal importance sampler employed for this
method.

Sieve approximation error

In the implementation of the sieve-based method we use as sieve basis the tensor product of
univariate Chebyshev polynomials or B-splines. That is, given, say, J univariate basis functions,
say, p1, ..., pJ , we construct our bivariate basis functions as Bi,j (z1, z2) = pi (z1) pj (z2) for
i, j = 1, ..., J yielding a total of K = J2 bivariate basis functions. In particularly, we do not
exploit the additive structure of the problem since we are interested in the practical contents
of Theorems 5 where no particular sparsity/special structure of the model is assumed to be
known.

However, in practive, Chebyshev polynomials very easily pick up the additive structure and
effectively sets the coefficients of the cross-product terms to zero. This is illustrated in Table
2 in Appendix C, where we report the coefficients for one particular projection-based bivariate
value function estimate using a tensor product of J = 5 Chebyshev polynomials. However, this
is due to the particular properties of the Chebyshev polynomials and is not enforced by us in
the implementation. For example, if we instead use B-splines, the “estimated” coefficients of
the cross-product terms were significantly different from zero, c.f. Table 3 in Appendix C.

In the left-hand side panel (a) of Figure 13, we report the uniform bias of the projection-
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Figure 12: Simulation errors for bivariate additive DDP
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Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 10, λ = 1 and and parameters
for transition density f(z′|z, d) are σZ = 100, a = 2, b = 5 and π = 0.000000001. Point-wise bias and variance
was estimated in 500 evaluation points based on S = 200 replications. We report the sup norm of the bias and the
standard deviation for each N for both methods and NLS regression fits of ||

√
V ar}||∞ = exp(αSD +ρSD ln(N)

and ||Bias||∞ = exp(αBias + ρBias ln(N).

based method with N chosen very large for the additive bivariate model. We find that the bias
vanishes as K increases as in the one-dimensional model. However, convergence is now slower
in K relative to the univariate case and we require K = 50 to obtain a sieve approximation bias
of 10−2 while K = 7 sufficed in the univariate case. This is consistent with theoretical error
rates for polynomial interpolation where the rate slows down as the dimension of the problem
increases, c.f. Section 4.3.

A non-additive DDP

One concern with the numerical results reported for the bivariate additive model in the previous
section is that they may understate the curse of dimensionality of the sieve method: The
true value function is by construction additive in the two state variables and so interaction
terms do not appear. This in turn implies that the computational complexity of solving this
particular model is relatively low; in particular, the solution should be well-approximated by
lower-dimensional sieves (K small).

To investigate how the sieve method performs when applied to a more complex, non-additive
model, we here consider a slightly more complicated bivariate model where we include a multi-
plicative interaction term so that maintenance and replacement costs of the two busses interact,
ū(z, d) = ∑2

i=1 u(zi, di)−u(z1, d1)u(z2, d2)/20. Such a structure could, for example, reflect that
capacity constraints make it more costly to simultaneously replace the engines of both busses.
The resulting value funtion will have a more complicated multidimensional structure and so we
expect that the computational cost of our sieve method should be higher in this scenario.

The sieve approximation bias of our solution method for this model is reported in the right-
hand side panel (b) in Figure 13. Compared to panel (a) – the additive case – we see that
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Figure 13: Bias of value function in bivariate DDP for varying K .
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more sieve terms are required in order to reach a specific absolute error level in the model
with interactions. In Table 4 in Appendix C the coefficients on the first ten basis functions in
each dimension and their interactions are reported. Compared to the Chebyshev-based solution
earlier we see quite significant coefficients on the coefficients for the cross-terms. However, the
coefficients on the basis functions tend to zero quite quickly as K increase. The sup-norm of
the difference in the value function at 40.000 evaluation grids is on the order of 10−5 when
comparing the solutions with K = 502 = 2500 and K = 302 = 900 basis functions, and
individual coefficients fall below 10−6 for univariate basis functions and cross products beyond
the 22nd univariate basis functions, and below 10−8 around the 30th basis functions.However,
it is important to stress that a large K here only comes with a computational cost while a
large K has little effect on the variance of the sieve method. All together, we find that the
sieve-based solution method works well also in higher dimensions, in particular when the model
has a particular structure that can be utilized in the solution method.

7 Conclusion
We have proposed two novel methods for numerical computation of either the so-called in-
tegrated or expected value functions in a general class of dynamic discrete choice models..
Both methods rely on a smoothed simulated version of the Bellman operators definining the
integrated and expected values functions. The smoothing facilitates both the practical imple-
mentation and the theoretical analysis of the approximate value functions. Under regularity
conditions, we develop an asymptotic theory for the two methods as the number of simulations
used to compute the simulated Bellman operators diverge. A set of numerical experiments show
that our first method, the so-called self-approximating method can be somewhat unstable while
the second one, which relies on sieve methods, apppears much more numerically robust. The
next step is to develop methods for choosing the number of simulations, sieve basis functions
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and smoothing parameter λ in a given setting so that the resulting approximate solution is of
a good quality. Another area of research is to investigate how the proposed solution methods
can be used for the estimation of dynamic discrete choice models.
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A Auxiliary Results
We derive two general results for approximate solutions to functional fixed-points. Let (X , ‖·‖)
be a normed vector space and Ψ : X → X be some contraction mapping w.r.t. ‖·‖ so that
there exists a unique solution x0 ∈ X to x = Ψ (x). Let ΨN be an approximation to Ψ and let
ΠK be a projection operator, K,N ≥ 1.

Theorem A.1. Suppose (i) ‖ΨN (x0)−Ψ (x0)‖ = Op(ρΨ,N) for some ρΨ,N → 0 and (ii) for
some β < 1, ‖ΨN (x)−ΨN (y)‖ ≤ β‖x − y‖ for all N large enough and all x, y. Then there
exists a unique solution xN ∈ X to x = ΨN (x) with probability approaching one (w.p.a.1)
satisfying ‖xN − x0‖ = OP (ρΨ,N) .

Suppose furthermore (iii) ΠK : X → X satisfies ‖ΠK (xN) − xN‖ = Op(ρΠ,K) for some
ρΠ,K → 0. Then there exists a unique solution x̂N ∈ X to x = (ΠKΨN) (x) w.p.a.1 satisfying

‖x̂N − x0‖ ≤ ‖x̂N − xN‖+ ‖xN − x0‖ = Op(ρΠ,K) +Op(ρΨ,N).

Proof. We first observe that due to (ii), there exists a unique solution xN = ΨN (xN) for all N
large enough which satisfies

‖xN − x0‖ = ‖ΨN(xN)−Ψ(x0)‖ ≤ ‖ΨN(xN)−ΨN(x0)‖+ ‖ΨN(x0)−Ψ(x0)‖
≤ β‖xN − x0‖+ ‖ΨN(x0)−Ψ(x0)‖,

and so ‖xN −x0‖ ≤ ‖ΨN(x0)−Ψ(x0)‖/ (1− β) = OP (ρΨ,N) . Next, combining (ii) and (iii), we
see that ΠKΨN is a contraction mapping w.p.a.1. with Lipschitz coeffient β, and so x̂N defined
in the theorem exists and is unique w.p.a.1. Moreover, by the same arguments employed in the
analysis of xN ,

‖x̂N − xN‖ ≤
‖ΠKΨN(xN)−ΨN(xN)‖

1− β = ‖ΠK (xN)− xN‖
1− β = Op(ρΠ,K).

Theorem A.2. Suppose the following conditions are satisfied: (i) ‖xN − x0‖ = OP (ρΨ,N); (ii)
ρ−1

Ψ,N {ΨN(x0)−Ψ(x0)}  G in (X , ‖·‖); (iii) ΨN(x0) is Frechet differentiable at x0 w.p.a.1
with Frechet differential ∇ΨN(x0) [·] : ∂X 7→ X for some function set ∂X , where xN − x0 ∈
∂X w.p.a.1, such that ‖ΨN(xN)−ΨN(x0)−∇ΨN(x0) [xN − x0]‖ = oP (‖xN − x0‖) and (iv)
supdx∈∂X :‖dx‖=1 ‖{∇ΨN(x0)−∇Ψ(x0)} [dx]‖ = op (1). Then {I −∇Ψ(x0)} [ρΨ,N {xN − x0}] 
G. If furthermore (v) I−∇Ψ(x0) [·] : ∂X 7→ X has a continuous inverse, then ρΨ,N {xN − x0} 
{I −∇Ψ(x0)}−1 [G].

Proof. To show the first claim, combine a functional Taylor expansion with conditions (i) and
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(iii),

0 = (I −ΨN) (xN) = (I −ΨN) (x0) + {I −∇ΨN(x0)} [xN − x0] + oP (‖xN − x0‖)
= Ψ(x0)−ΨN(x0) + {I −∇ΨN(x0)} [xN − x0] + oP (ρΨ,N) .

Next, by (iv),

‖{I −∇ΨN(x0)} [xN − x0]− {I −∇Ψ(x0)} [xN − x0]‖
= ‖{∇ΨN(x0)−∇Ψ(x0)} [xN − x0]‖
≤ sup

dx∈∂X :‖dx‖=1
‖{∇ΨN(x0)−∇Ψ(x0)} [dx]‖ ‖xN − x0‖

= oP (ρΨ,N) .

Combining this with (ii),

{I −∇Ψ(x0)}
[
ρ−1

Ψ,N {xN − x0}
]

= ρ−1
Ψ,N {ΨN(x0)−Ψ(x0)}+ oP (1) G,

The second claim follows by (v) and the continuous mapping theorem.

It is important here to note the tension between the requirement that that xN − x0 ∈ ∂X
in (iii) andsupdx∈∂X :‖dx‖=1 ‖{∇ΨN(x0)−∇Ψ(x0)} [dx]‖ = op (1). The first condition will hold if
we choose ∂X large enough. But at the same time, we need to show uniform convergence over
the same space which will generally only hold if ∂X is Glivenko-Cantelli. In the application
to value function approximation, this is achieved by choosing ∂X = C1

r (Z) defined in Section
4.3.3 for some r <∞.

B Proofs
Proof of Theorem 1. First note that for any V (z;λ) ∈ B

(
Z ×

(
0, λ̄

))D
and with C denoting

a generic constant,

|Gλ (uψ (U, z) + βVψ (U ; z, λ))| ≤ C (1 + ‖uψ (U, z)‖+ β ‖Vψ (U ; z, λ)‖) (B.1)
≤ C (1 + ūψ (U) + β ‖V ‖∞) ,

and so, using Assumption 1,

‖Γ(V )‖∞ ≤ sup
(z,λ)∈Z×(0,λ̄)

E [|Gλ (uψ (U ; z) + βVψ(U ; z, λ))|wψ (U ; z)]

≤ CE [|(1 + ūψ (U) + β ‖V ‖∞)| w̄ψ (U)] <∞,

Chapter 1

49



which shows that Γ : B
(
Z ×

(
0, λ̄

))D 7→ B
(
Z ×

(
0, λ̄

))D
. Recycling eq. (B.1),

‖ΓN(V )‖∞ ≤
∑N
i=1 ‖Gλ (uψ (Ui; z) + βVψ (Ui; z, λ))‖wψ (Ui; z)

∑N
i=1wψ (Ui; z)

≤ C

(∑N
i=1 ‖ūψ (U)‖wψ (Ui; z)
∑N
i=1wψ (Ui; z)

+ 1 + β ‖V ‖∞
)

≤ C

(∑N
i=1 ‖ūψ (Ui)‖ w̄ψ (Ui)

infz∈Z
∑N
i=1wψ (Ui; z)

+ 1 + β ‖V ‖∞
)
<∞.

Thus, for any given N ≥ 1, ΓN : B
(
Z ×

(
0, λ̄

))D 7→ B
(
Z ×

(
0, λ̄

))D
. To show that ΓN :

B
(
Z ×

(
0, λ̄

))D 7→ B
(
Z ×

(
0, λ̄

))D
is a contraction, use that, by quasi-linearity of Gλ (r), for

any V1, V2 ∈ B
(
Z ×

(
0, λ̄

))D
,

ΓN(V1)(z, λ, d) =
N∑

i=1
Gλ (uψ (Ui; z) + βVψ,2 (Ui; z, λ) + β [Vψ,1 (Ui; z, λ)− Vψ,2 (Ui; z)])wN,i (z, d)

≤
N∑

i=1
Gλ (uψ (Ui; z) + βVψ,2 (Ui; z, λ) + β ‖V1 − V2‖∞1D)wN,i (z, d)

=
N∑

i=1
Gλ (uψ (Ui; z) + βVψ,2 (Ui; z, λ))wN,i (z, d) + β ‖V1 − V2‖∞

N∑

i=1
wN,i (z, d)

= ΓN(V2)(z, λ, d) + β ‖V1 − V2‖∞,

where 1d = (1, ...., 1) ∈ RD and we have used that ∑N
i=1wN,i (z, d) = 1 by construction. The

proof of Γ being a contraction is analogous.
Next, we prove that VN (z, λ) is s ≥ 1 times continuously differentiable under Assumption

2: We know that ΓN is a contraction mapping on B
(
Z ×

(
0, λ̄

))D
. But the set of s ≥ 0

continuously differentiable functions Cs
(
Z ×

(
0, λ̄

))D
is a closed subset of B

(
Z ×

(
0, λ̄

))D

and so the result will follow if ΓN,λ
(
Cs

(
Z ×

(
0, λ̄

))D) ⊆ Cs
(
Z ×

(
0, λ̄

))D
. But for any

V ∈ Cs
(
Z ×

(
0, λ̄

))D
, it follows straightforwardly by the chain rule in conjuction with the

stated assumptions that ΓN(V )(z, λ) = ∑N
i=1Gλ (uψ (Ui; z) + βVψ (Ui; z, λ))wN,i (z) is s ≥ 0

continuously differentiable w.r.t. (z, λ). The proof of the Lipschitz property under Assumption
2(i) is similar and so left out.

Proof of Theorem 2. We only show the result for V0; the proof for the VN is analogous. Applying
(3.8), the following holds for any V ,

|Γ(V )(z, 0, d)− Γ(V )(z, λ, d)| ≤
∫ ∣∣∣∣max

d∈D
{u(s′, d) + βV (z′, d′)} −Gλ (u(s′) + βV (z′))

∣∣∣∣ dFS(s′|z, d)

≤ sup
r∈RD

∣∣∣∣Gλ (r)−max
d∈D

r (d)
∣∣∣∣
∫

Z×E
dFs(ds′|z, d)

≤λ logD.
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The result now follows from the first part of Theorem A.1 with ΨN (·) = Γ (·) (·, λN).

Our asymptotic analysis of VN proceeds in two steps: First, we develop a master theorem
that delivers the desired result under a set of high-level conditions on the model and chosen
importance sampler. The conditions are formulated to cover a wide range of different spec-
ifications, including both the case of Zt being continuously distributed or having countable
support. Also, the master theorem allows for a wide range of the per-period utility functions
and importance samplers. To state the high-level conditions, we recall the following definitions
(see van der Vaart and Wellner, 1996): A class F of measurable functions mapping U into
R is called PU -Glivenko-Cantelli if supf∈F

∣∣∣ 1
N

∑N
i=1 f (Ui)− E [f (U)]

∣∣∣ →P 0 and it is called
PU -Donsker if supf∈F 1√

N

∑N
i=1 {f (Ui)− E [f (U)]} G in the space of all bounded functions

from F to R, where G is a tight Gaussian process.

Theorem B.1. (i) Suppose that Assumption 1 is satisfied and the function classes W :=
{U 7→ wψ (U ; z)| z ∈ Z} and

G =
{
U 7→ Gλ (uψ (U ; z) + βV0 (ψZ (U ; z) , λ))wψ (U ; z)| (z, λ) ∈ Z ×

(
0, λ̄

)}
(B.2)

are PU -Donsker. Then the first part of Theorem 3 holds.
(ii) Suppose furthermore that VN − V0 ∈ ∂V where ∂V is PU -Glivenko-Cantelli with an

integrable envelope function and

G ′ =


U 7→

∑

d∈D
Ġd,λ (uψ (U ; z) + βVψ,0 (U ; z, λ))wψ (U ; z)

∣∣∣∣∣∣
(z, λ) ∈ Z ×

(
0, λ̄

)




is PU -Glivenko-Cantelli. Then the conclusions of Theorem 4 also hold.

Proof. To show (i), we apply the first part of Theorem A.1 with ΨN = ΓN , which is a contraction
w.p.a.1, c.f. Theorem 1. First write

ΓN(V )(z, λ) = Γ̃N(V )(z, λ)
WN (z) . (B.3)

where

Γ̃N(V )(z, λ) = 1
N

N∑

i=1
Gλ (uψ (Ui; z) + βVψ(Ui; z))wψ (Ui; z) , (B.4)

WN (z) = 1
N

N∑

j=1
wψ (Ui; z) , (B.5)

The Donsker condition on G and W now implies that

√
N
(
Γ̃N(V0)− Γ(V0),WN − 1

)
 (G1,G2) (B.6)
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on B
(
Z ×

(
0, λ̄

))
, where (G1,G2) is a Gaussian process, and so

√
N {ΓN(V0)− Γ(V0)} =

√
N
{

Γ̃N(V0)− Γ(V0)
}
− Γ(V0)

√
N {WN − 1}+ oP (1)

 G := G1 − Γ(V0)G2. (B.7)

In particular, ‖ΓN(V0)− Γ(V0)‖∞ = OP

(
1/
√
N
)
. We conclude from Theorem A.1 that ‖VN −

V0‖∞ = Op(1/
√
N).

To show the second part, we apply Theorem A.2. Weak convergence was derived above
and it is easily seen that the influence function of ΓN(V0) takes the form given in eq. (5.7)
and so the Gaussian process G (z, λ) in eq. (B.7) has covariance kernel given in (5.6). The
Frechet differential dV 7→ ∇ΓN(VN) [dV ] was derived in (4.14). It is a linear operator with
‖∇ΓN(VN) [dV ]‖ ≤ β ‖dV ‖ and so dV 7→ {I −∇ΓN(VN)} [dV ] has a well-defined continuous
inverse. Thus, what remains is to verify (iv) of Theorem A.2. This is done by showing uniform
convergence of dV 7→ ∇Γ̃N(V0) [dV ] over B

(
Z ×

(
0, λ̄

)
× ∂V

)
. But

∇Γ̃N(V0) [dV ] (z) = β

N

N∑

i=1

∑

d∈D
Ġd,λ (uψ (Ui; z) + βVψ,0 (Ui; z, λ)) dVψ (Ui; z, λ, d)wψ (Ui; z)(B.8)

where Vψ (U ; z, λ, d) ∈ ∂Vψ with

∂Vψ =
{
U 7→ dV (ψZ (U ; z) , λ)| (z, λ, dV ) ∈ Z ×

(
0, λ̄

)
× ∂V

}

which is Glivenko-Cantelli since ∂V and {U 7→ ψZ (U ; z)| z ∈ Z} both have this property. Since
G ′ is also Glivenko-Cantelli, it now follows from Theorem 3 in van der Vaart and Wellner (2000)
that G ′ · ∂Vψ is Glivenko-Cantelli as well which yields the desired result.

Proof of Theorem 3. To show ‖VN − V0‖∞ = OP

(
1/
√
N
)
, we verify the conditions of part (i)

in Theorem B.1. First observe that V0(z, λ) is Lipschitz in (z, λ), c.f. Theorem 1, and that
r 7→ Gλ (r) is also Lipschitz uniformly in λ ∈ (0, λ̄). Next, we show that Gλ (r) is also Lispchitz
w.r.t. λ uniformly in r by verifying that ∂Gλ (r) / (∂λ) is bounded uniformly in λ ∈ (0, λ̄):
Write

Gλ (r) = λ log

∑

d∈D
exp

(
r (d)
λ

)
 = max

d∈D
r (d) + λ log


∑

d∈D
exp

(
r̄ (d)
λ

)
 ,

where r̄ (d) = r (d)−maxd∈D r(d) ≤ 0, d ∈ D, to obtain

Ġ
(λ)
λ (r) = ∂Gλ (r)

∂λ
= log


∑

d∈D
exp

(
r̄ (d)
λ

)
−

∑
d∈D exp

(
r̄(d)
λ

)
r̄(d)
λ

∑
d∈D exp

(
r̄(d)
λ

) . (B.9)

Since 1 ≤ ∑
d∈D exp

(
r̄(d)
λ

)
≤ D and −De−1 ≤ ∑

d∈D exp
(
r̄(d)
λ

)
r̄(d)
λ
≤ 0 for all λ > 0 and all
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r ∈ RD, we conclude that
∣∣∣Ġ(λ)

λ (r)
∣∣∣ ≤ log (D) +De−1 and so . Next,

|Gλ (uψ(U ; z) + βV0 (ψZ (U, z) , λ))−Gλ′ (uψ(U ; z′) + βV0 (ψZ (U, z′) , λ′))|
≤ |Gλ (uψ(U ; z) + βV0 (ψZ (U, z) , λ))−Gλ′ (uψ(U ; z) + βV0 (ψZ (U, z) , λ))|

+ |Gλ′ (uψ(U ; z) + βV0 (ψZ (U, z) , λ))−Gλ′ (uψ(U ; z′) + βV0 (ψZ (U, z′) , λ′))|
≤ C {|λ− λ′|+ ‖uψ(U ; z)− uψ(U ; z′)‖+ ‖V0 (ψZ (U, z) , λ)− V0 (ψZ (U, z′) , λ′)‖} ,

and it now follows that under Assumption 2 together with the Lipschitz property of V0 that G
as defined in eq. (B.2) is Type IV class under PU with index 2 according to the definition on
p. 2278 in Andrews (1994) which yields the first part of the theorem.

Next, we analyze ∂VN/ (∂zj), j = 1, ..., dZ . Since supz∈Z
∣∣∣
∑N
i=1w (Si (z, d) |z, d) /N − 1

∣∣∣ =
OP

(
1/
√
N
)
, we replace wN,i (z, d) by wψ (Ui; z, d) /N in the following. Now, taking derivatives

w.r.t. zj, j = 1, ..., dZ , on both sides of eq. (4.1),

∂VN (z, λ)
∂zj

= ∇ΓN(VN)
[
∂VN
∂zj

]
(z, λ) + Γ(z)

N,j(VN) (z, λ) , (B.10)

where ∇ΓN was defined in (4.14) and

Γ̇(z)
N,j(VN) (z, λ, d) = 1

N

N∑

i=1

∑

d∈D
Ġ

(r)
λ,d (uψ (Ui; z, d) + βVψ,N (Ui; z, λ)) ∂uψ (Ui; z, d)

∂zj
wψ (Ui; z)

+ 1
N

N∑

i=1
Gλ (uψ (Ui, d) + βVψ,N (Ui; z, λ)) ∂wψ (Ui; z)

∂zj
.

where Ġ(r)
λ,d(r) was defined in (4.12). Similarly,

∂VN (z, λ)
∂λ

= ∇ΓN(VN)
[
∂VN
∂λ

]
(z, λ) + Γ̇(λ)

N,j(VN) (z, λ) , (B.11)

where

Γ̇(λ)
N,j(VN) (z, λ, d) = 1

N

N∑

i=1
Ġ

(λ)
λ (uψ (Ui; z, d) + βVψ,N (Ui; z, λ))wψ (Ui; z) ,

and

Ġ
(λ)
λ (r) = log


∑

d∈D
exp

(
r (d)
λ

)
−

∑
d∈D exp

(
r(d)
λ

)
r(d)
λ

∑
d∈D exp

(
r(d)
λ

) (B.12)

The mapping dV 7→ ∇ΓN(VN) [dV ] is a bounded linear operator with ‖∇ΓN(VN) [dV ]‖ ≤
β ‖dV ‖ and so

∂VN (z, λ)
∂zj

= {I −∇ΓN(VN)}−1
[
Γ̇(z)
N,j(VN)

]
(z, λ) .
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Thus,
∥∥∥∥∥
∂VN
∂zj

∥∥∥∥∥
∞

=
∥∥∥{I −∇ΓN(VN)}−1

[
Γ(z)
N,j(VN)

]∥∥∥
∞
≤
∥∥∥Γ(z)

N,j(VN)
∥∥∥
∞

1− β ,

where,

∥∥∥Γ(z)
N,j(VN)

∥∥∥
∞
≤ 1

N

N∑

i=1

∥∥∥∥∥
∂uψ (Ui; ·)

∂zj

∥∥∥∥∥
∞
‖wψ (Ui; ·)‖∞

+ 1
N

N∑

i=1

{
‖uψ (Ui; ·)‖∞ + β ‖VN‖∞

} ∥∥∥∥∥
∂wψ (Ui; ·)

∂zj

∥∥∥∥∥
∞
.

We know ‖VN‖∞ →P ‖V ‖∞ and, under Assumption 2, we can appeal to the ULLN to obtain

1
N

N∑

i=1

∥∥∥∥∥
∂uψ (Ui; ·)

∂zj

∥∥∥∥∥
∞
‖wψ (Ui; ·)‖∞ →P E

[∥∥∥∥∥
∂uψ (U ; ·)

∂zj

∥∥∥∥∥
∞
‖wψ (U ; ·)‖∞

]
,

1
N

N∑

i=1
‖uψ (Ui; ·)‖∞

∥∥∥∥∥
∂wψ (Ui; ·)

∂zj

∥∥∥∥∥
∞
→P E

[
‖uψ (U ; ·)‖∞

∥∥∥∥∥
∂wψ (U ; ·)

∂zj

∥∥∥∥∥
∞

]
.

We conclude that
∥∥∥Γ(z)

N,j(VN)
∥∥∥
∞

and therefore also ‖∂VN/ (∂zj)‖∞ are bounded w.p.a.1. Simi-
larly, it follows that ‖∂VN/ (∂λ)‖∞ is bounded w.p.a.1. and so VN ∈ C1

r

(
Z ×

(
0, λ̄

))
w.p.a.1

for some fixed r <∞.
Finally, observe that dV 7→ ΨN,j (dV ) (z, λ) = ∇ΓN(VN) [dV ] (z, λ) + Γ(z)

N,j(VN) (z, λ) is a
contraction mapping on B

(
Z ×

[
0, λ̄

])D
and so we can apply Theorem A.1. First, we expand

each of the two terms w.r.t. VN ,

∇ΓN(VN) [dV ] (z;λ)−∇ΓN(V0) [dV ] (z;λ)

= β
N∑

i=1

∑

d1,d2∈D
G̈

(r)
λ,d1,d2

(
uψ (Ui; z) + βV̄ψ,N (Ui; z, λ)

)
{Vψ,N (Ui; z, λ, d2)− Vψ,0 (Ui; z, λ, d)}

× dV (Ui; z, λ, d1)wψ (Ui; z) ,

where G̈(r)
λ,d1,d2(r) = ∂2Gλ(r)

∂r(d1)∂r(d1) . It is easily checked that
∣∣∣G̈(r)

λ,d1,d2(r)
∣∣∣ ≤ C/λ for some C < ∞

and so the right hand side in the above equation is bounded by C/λ ‖VN − V0‖∞ ‖dV ‖∞ =
OP

(√
N/λ

)
for any given dV ∈ B

(
Z ×

[
0, λ̄

])D
. By similar arguments, we can show that∥∥∥Γ̇(z)

N,j(VN)− Γ̇(z)
N,j(V0)

∥∥∥
∞

= OP

(√
N/λ

)
and

∥∥∥Γ̇(λ)
N,j(VN)− Γ̇(λ)

N,j(V0)
∥∥∥
∞

= OP

(√
N/λ

)
. Theorem

A.1 now yields the second part of the theorem.

Proof of Theorem 4. We verify the conditions in part (ii) of Theorem B.1 with ∂V = C1
r (Z)D

and r <∞ given in Theorem 3. First, by arguments similar to the ones in the analysis of G in
the proof of Theorem 3, G ′ is Glivenko-Cantelli due to the Lipschitz property of V0 (ψZ (U ; z) , λ)
and the other components entering the function set under Assumption 2. Second, C1

r (Z)D has
finite Bracketing number according to Theorem 2.7.1 in van der Vaart and Wellner (1996) and
so is also Glivenko-Cantelli.

The rate result is an immediate consequence of Theorem A.1 together with Assumption
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3. For the weak convergence result, we use the decomposition (5.8) where
∥∥∥V̂N − VN

∥∥∥
∞

=
Op(ρΠ,K) = oP

(
1/
√
N
)
while the second term converges weakly according to Theorem 4.

C Additional numerical details for sieve method

Chebyshev basis functions

Chebyshev polynomials of the first kind have well-known good properties for approximating
functions on bounded intervals. Recall that Chebyshev polynomials are defined on [−1, 1]. We
then choose −∞ < zmin < zmax <∞ and define the kth basis function as follows for any z ∈ R:

Bc,k(z) =





cos ((k − 1) arccos(T (z))) , |T (z)| ≤ 1

(sign(T (z)))k, |T (z)| > 1
,

where T (z) = 2 z−zmin

zmax−zmin − 1 maps z into the interval [−1, 1]. In particular, the basis functions
are “truncated” and are set to one outside the interval [zmin, zmax]. This is done to avoid any
erratic extrapolation. We then choose the grid points z1, ..., zM in (4.7) as the Chebyshev nodes
in order to minimize the presence of Runge’s phenomenon. Thus, M = K in this case.

B-Splines

We use cardinal B(asis)-splines to form our B-spline spaces, so they are represented by a knot
vector with equidistant entries (0, 1

M+1 ,
2

M+1 , . . . ,
M
M+1 , 1), and the Cox-de Boor recursion

B̄i,0(z) =





1 if ti ≤ z < ti+1

0 otherwise

B̄i,k(z) = z − ti
ti+k − ti

B̄i,k−1(z) + ti+k+1 − z
ti+k+1 − ti+1

B̄i+1,k−1(z).

For interpolation purposes we use the so-called Universal (Parameters) Method by Tjahjowidodo
et al. (2017). This amounts to choosing the M grid points as the unique maximizers of all B-
splines of degree k ≥ 1, or any point if k = 0 in which case we set it to the first K elements of
the knot vector. The above are defined on the unit interval [0, 1] and so the final basis functions
are chosen as

Bc,k(z) =




B̄k(T (z)) 0 ≤ T (z) ≤ 1

(sign(T (z))) otherwise
.

where now T (z) = z−zmin

zmax−zmin .
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Table 2: Coefficients on tensor product Chebyshev basis functions in the 2D model of engine
replacement for K = J2 = 25, N = 200.

J1\J2 1 2 3 4 5
1 -38.4713 -4.4754 1.6176 -0.256420 -0.064960
2 -4.4754 1.9662e-14 -6.2341e-15 -1.1318e-15 2.5392e-15
3 1.6176 7.2256e-15 5.6179e-14 -2.0548e-14 -3.3049e-15
4 -0.2564 -1.0110e-14 -8.8673e-15 7.5672e-15 -2.9838e-15
5 -0.0649 4.0869e-15 -1.5251e-14 3.4571e-15 1.4218e-15

Table 3: Coefficients on tensor product 2nd order B-Spline basis functions in the 2D model of
engine replacement for K = J2 = 25, N = 200.

J1\J2 1 2 3 4 5
1 -21.9800 -27.1194 -30.0583 -31.1025 -31.506
2 -27.1194 -32.2589 -35.1977 -36.2419 -36.6455
3 -30.0583 -35.1977 -38.1366 -39.1808 -39.5844
4 -31.1025 -36.2419 -39.1808 -40.2250 -40.6285
5 -31.5060 -36.6455 -39.5844 -40.6285 -41.0321

Table 4: Coefficients on the ten basis functions, and their products, upon convergence with
K = 502.

J1\J2 1 2 3 4 5 6 7 8 9 10
1 -52.200 -5.070 2.700 -1.170 0.478 -0.145 -0.006 0.038 -0.024 0.007
2 -5.070 -1.560 0.135 0.225 -0.057 -0.023 0.013 -0.006 0.004 0.001
3 2.700 0.135 -0.176 0.032 0.046 -0.021 -0.004 0.005 -0.002 0.001
4 -1.170 0.225 0.032 -0.087 0.019 0.019 -0.012 0.002 0.001 -0.001
5 0.478 -0.057 0.046 0.019 -0.038 0.010 0.009 -0.008 0.002 0.000
6 -0.145 -0.023 -0.021 0.019 0.010 -0.018 0.005 0.005 -0.004 0.002
7 -0.006 0.013 -0.004 -0.012 0.009 0.005 -0.009 0.003 0.002 -0.003
8 0.038 -0.006 0.005 0.002 -0.008 0.005 0.003 -0.005 0.002 0.001
9 -0.024 0.004 -0.002 0.001 0.002 -0.004 0.002 0.002 -0.003 0.001
10 0.007 0.001 0.001 -0.001 0.0002 0.002 -0.003 0.001 0.001 -0.002
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Student Choices, Incentives, and Labor Markets
Outcomes: The Case of Delayed Graduation

Bjørn Bjørnsson Meyer∗

Patrick Kofod Mogensen∗

Abstract

In this paper, we set up a dynamic choice model describing how various pecu-
niary and non-pecuniary incentives influence university students’ decisions on part-
time work, dropout, and delayed graduation. We estimate the model using Danish
register microdata combined with administrative data from the country’s largest uni-
versity. Counterfactual simulations using the estimated model show that: (i) About
half of the average delay in time-to-graduation can be explained by students following
economic incentives to prepare for the labor market with work experience. The other
half is due to a range of factors, such as income through part-time work and grants
and the cost of effort for heavy course load. (ii) Cutting financial aid with one year
reduces average time-to-graduation by 0.3 year, but also increases dropout.

∗Department of Economics, University of Copenhagen
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1 Introduction
Over the last couple of decades, there has been a significant expansion of post-secondary
education in developed countries.1 However, it has also become clear that the modern
university system faces significant challenges. It has been stated that the university sector is
in a completion crisis and that many institutions suffer from the four-year myth, meaning that
postponing graduation is now more likely than not. Internationally, it is a widespread issue
that too few students end up graduating, and that very few students graduate on time. Only
60 pct. earn a degree within eight years if we look at U.S. four-year bachelor’s programs, and
the average delay for graduates is 0.9 years.2 Despite substantial institutional differences,
such as free tuition and universal financial aid, the Danish university sector shows similar
patterns in completion and delays. Only 70 pct. of Danish university students graduate in
a three-year bachelor’s program within five years, and the average time-to-graduation for a
bachelor’s plus master’s degree is around six years instead of the expected five years.3 Given
the expected economic returns to post-secondary education, the typical view is that dropout
and delayed graduation implies large public and individual costs.4 Costs in terms of foregone
earnings from high productivity workers and direct costs at the universities. This issue is
a frequent topic in the policy debate on how to improve university education. Yet, there is
little evidence on why students do not graduate on time and how various policy changes will
affect student behavior.

In this paper, we develop an empirical dynamic model of student choices regarding part-
time work, dropout, and course progression to study the process of university enrollment,
and as a consequence, time-to-graduation. We construct our dataset from administrative
records from the largest university in Denmark, University of Copenhagen (UCPH), coupled
with individual register tax data on work hours and income. In particular, our unique
data enables us to observe and model the sequential joint decision of study and part-time
work intensity by semester as an optimal control problem where the utility maximization
includes both life as a student and the income process after leaving university. In our model,
part-time work is both a source of income and human capital investment. In contrast to
existing studies, we explicitly account for the tradeoff between finishing on-time or later with
more work experience and better grades. In our empirical framework, this channel shows to
be important for graduating students. Since our model directly targets study intensity, it

1See Goldin and Katz (2009) and Aina et al. (2018).
2Complete College America (2014) and Planty and Hussar (2018) First time enrolled students in non-profit

or public four-year institutions.
3UFM (2018a), UFM (2018b), and Statistics Denmark (2019).
4See among others, the handbook chapter by Deere and Vesovic (2006)
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enables us to do policy simulations and evaluate the impact on time-to-graduation.
Based on our unique data, we first provide new descriptive insights on several key fac-

tors that are relevant for university enrollments and labor market outcomes. In addition to
postponed graduation and high dropout rates, we document the following stylized facts: i)
Students, who exit without a degree, have fewer passed courses and lower grades than their
peers. ii) The chance of passing courses and getting higher grades is better for students
enrolled in fewer courses, while there is little correlation between work hours and academic
performance. iii) A gradual transition from university to the labor market with fewer credits,
better grades, and more part-time work in late semesters. iv) Graduates experience signif-
icant income premiums compared to dropouts and graduates with higher grades and more
work experience have more success in the labor market.

We incorporate all of the above features in our dynamic discrete choice model of part-
time work and study intensity. The main building blocks are: i) Forward-looking students
considering both future (dis)utility at university from work, courses, and grants, and utility
from income after enrollment. ii) Labor market expectations depend on degree attainment,
grades, and work experience while at university. iii) The increasing disutility of more work
and study intensity.

Previous models like Arcidiacono et al. (2016) and Stinebrickner and Stinebrickner (2012,
2014) have quite parsimonious choice sets without work or study intensity choices.5 Our data
makes it possible to develop a more detailed model considering the tradeoffs between grades,
part-time work, course progression, and labor market outcomes. In particular, we model
course progression and delayed graduation explicitly. This policy dimension is increasingly
relevant as there has been a substantial decline in on-time degree completion over time,
see among others Turner (2004) and Bound et al. (2010). Existing models struggle to ex-
plain why students, despite the substantial economic incentives, delay completion. The
existing literature (Lazear (1977), Kodde and Ritzen (1984), Oosterbeek and Van Ophem
(2000), Carneiro et al. (2003), and more) tends to explain education beyond the seemingly
income-maximizing level by non-pecuniary consumption value. In our model, we include the
investment value of part-time work, as suggested by Ruhm (1997), Light (1999), and Scott-
Clayton (2012), and a quantity-quality tradeoff in study intensity. Taking these channels
into account, we find that a substantial part of the delay is due to an investment in human
capital through work experience and better grades.

We show that the model can reproduce a distribution of time-to-graduation similar to
the empirical one in simulations with the estimated parameters. Furthermore, the simulated

5The recent paper Joensen and Mattana (2017) uses Swedish data and model the part-time work decision.
Their focus is on loan taking, and the data does not include grades or choice of study intensity.
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choices are in line with the observed patterns of work hours and credits throughout the
enrollment. We show by counterfactual simulations in the empirical framework that, i)
About half of the average delay in time-to-graduation can be explained by the economic
incentives to accumulate human capital for the labor market through part-time work. The
remaining delay is due to various factors: the possibilities of income through part-time work
and grants and the increasing cost of effort for credits, combined with the risk of failing exams
and getting low grades when the course load is high. ii) Cutting financial aid with one reduces
average time-to-graduation by 0.3 year but also increases dropout significantly. The first
result is important since it reflects that a considerable part of the average delay is explained
by students maximizing expectations of post-graduation income. This fact nuances the view
that optimal policy leads to zero delayed graduation. In this light, it might be optimal to let
students be enrolled longer and instead improve on academics and work experience. The fact
that students can receive financial aid longer than on-time-graduation could be the primary
explanation of why students postpone graduation. But we find that financial aid cuts have a
somewhat limited scope as an instrument to reduce time-to-graduation, while it still imposes
a possibly unintended consequence of more dropout. This is also an important contribution,
as existing more parsimonious models would not lead to the same results as we include more
elaborate channels for human capital accumulation.

The rest of the paper is organized as follows. Section 2 describes the institutional setting
and data. Section 3 lays out the model. Section 4 show estimation results and model fit.
Section 5 discusses various policy simulations based on the estimated model. Finally, section
6 concludes with some final remarks.

2 Institutional Setting and Data
In this section, we will first provide an overview of the students enrolled at UCPH, the
faculty organization, tuition and subsidy structure, part-time work prevalence, and study
progression. Then, we will take a closer look at some descriptive statistics and stylized facts
that we find in the data and that our model should be able to capture.

2.1 Institutional Setting

UCPH has around forty thousand students and is the largest, and most selective in terms of
student intake, of the eight Danish universities. A year of full-time studies corresponds to
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60 credits. A bachelor’s degree consists of 180 credits and a master’s degree of 120 credits.6

This means that the normed time-to-graduation of a bachelor’s plus master’s degree is five
years.

Nonetheless, the rules regarding progression have been very flexible in our period, 2011-
2015. To maintain enrollment in a bachelor’s program, students were required to pass at least
60 credits within the first two years. If a student failed to meet this requirement, they could
apply for an exception. Apart from this rule, the rules would vary between departments.
All in all, there was a significant margin for part-time studies or even breaks for extended
periods.

Programs at UCPH are field-specific from the first semester, implying that change of
field requires dropout and re-enrollment in most cases. UCPH is organized in six faculties:
Health, Social Science, Science, Humanities, Law, and Theology.7 Faculties (except Law
and Theology) are divided into smaller departments, where some departments offer several
bachelor’s and master’s programs. In total, UCPH offers 73 bachelor’s programs and 113
master’s programs. The vast majority, 90.5 pct., of students who graduate with a bachelor’s
degree from UCPH, will also continue in a master’s program at the same institution. Panel a)
in Figure 1 shows how students accumulate credits and move towards graduation of bachelor’s
and master’s degrees. Students who will graduate with a master’s degree typically attain
their bachelor’s degrees in 6th and 7th semester and master’s degrees between 10th and 14th
semester. In this paper, we combine bachelor’s and master’s enrollments into one.

Programs typically initiate in the fall semester. The fall semester covers September
to January and the spring semester February to June. Retake of spring semester exams
often happens in August, and summer school courses are offered in July and August. For
this reason, we include July and August in the spring semester, making it two months
longer than the fall semester. We place courses in semesters by date of examination (see
appendix A.1). A passed exam can either be passed in pass/no-pass grading or the grade
2 or above.8 In general, grades are based on final examinations with no participation or
midterm components. Most courses are 5, 7.5, or 10 credits.

Part-time jobs are prevalent among students at UCPH, both as an additional income
source and viewed as important in terms of career prospects. For example, Klintefelt (2018)
shows that part-time work correlates with better job opportunities. Work hours are typically
spread out over the whole year, and few students engage in short term professional internships

6Like most European universities, UCPH follows the Bologna convention for program lengths and use
credits measured in ECTS points, see European Union (2015).

7Theology is small and will henceforth be included in Humanities
8The Danish grading scale is usually normally distributed around 7, and includes the following marks

with their letter grade conversions: 12(A), 10(B), 7(C), 4(D), 2(E), 00(Fx), −03(F ).
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Table 1: Summary Statistics

Individual level: (n=24,140) Mean SD Semester level: (n=125,265) Mean SD
Female 0.60 0.49 Registered credits 23.78 12.98
Age at entry 22.19 5.12 Passed credits 20.80 13.05
High school GPA 8.27 2.01 Semester GPA 7.87 2.70
Health 0.07 0.26 Hours per semester 199.48 232.35
Humanities 0.34 0.47 Hourly wage 117.11 107.21
Law 0.15 0.36
Science 0.25 0.43
Social Science 0.18 0.38

Note: Semester GPA is the weighted average of grades a student receives in a semester. In about 25 pct of
semesters, the student does not pass any course or receive only a ”passed” mark. The semester GPA variable
is missing in these cases.

during the summer break. We observe hours worked and income monthly.
Tuition is free, and all students receive monthly financial aid amounting to DKK 5900

(USD 9839). In our sample period, students could receive financial aid for one additional
year of enrollment on top of the program’s normed time-to-graduation. Due to universal
grants and no tuition fees, student loans play a relatively small role in Denmark.10

Our dataset contains 151,000 observations from spring 2011 to spring 2015, covering
29,200 students. We describe how we construct the dataset in appendix A.1. Table 1 shows
that 60 pct. of UCPH students are female, and the average age first semester is 22.2 years.
On average, students register 24 credits per semester, but only pass close to 21. On average,
they work 199 hours per semester at an average wage of DKK 117/hour. This means that
the study grant equals roughly 300 hours of work per semester.

2.2 Stylized Facts

We will now proceed to present six key stylized facts about study dynamics at UCPH. These
findings suggest that there is important interactions between study intensity, examinations
and finally labor market outcomes though the channels of human capital measured by degree
attainment, grades and work experience.

1) Delayed graduation. Few students at UCPH finish on time in 10 semesters. Average
time-to-graduation across all faculties is 12.7 semesters. As seen in panel b) in Figure 1 the
most common time-to-graduation is 12 semesters.

9Exchange rate: 6 DKK = 1 USD
10Only 23 pct. of bachelor’s students take a low-interest government loan in a given year. The average

loan is only DKK 2200 per month, see UFM (2019).
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2) Passing courses and grades. Controlling for previous academic performance the chance
of passing courses and getting higher grades is larger for students enrolled in fewer courses,
while there is little correlation between work hours and academic performance. The vertical
distance between the lines in panel d) shows that there is a substantial gap between the
amount credits students register and end up passing. See section 4.1 for more details and
regressions.

3) Dropout. 33 pct. drop out within the first four years in a bachelor’s program. 12 pct.
of bachelor’s graduates choose to exit instead of enrolling in a master’s program. Dropout
rates are considerably lower at the master’s level where only 6 pct. drop out within four
years of enrollment. Panel c) shows dropout happens throughout the semesters, but at a
falling rate. Dropout rates are lowest around the timing of bachelor’s graduation. Another
take away is that the dropout rate increases from 1st to 2nd semester. This is in line with the
idea that students respond to results from the first examinations in the end of 1st semester.
Panels g) and h) show that dropouts are doing worse than average both in terms of grades
and passing courses. The latter is also most predominant in the earlier semesters.

4) A gradual transition from university to the labor market. Credit progression slows
down, but work intensity and GPA goes up over the enrollment duration. Panel d) shows
decreasing credit progression over the enrollment and a seasonality pattern with more courses
in the longer spring/summer periods. The relatively stable distance between the lines shows
that the slowdown in progression is more due to fewer registered credits than more failed
exams. The very last semesters is an exception to this as students tend to spend extra
time on thesis writing. Panels e) and f) shows that the trend in work hours and GPA is
opposite to credits. The sharpest increase (decrease) in work hours (credits) happens around
the semesters where students progress to master’s programs. There is some selection in the
graphs as dropout happens throughout the enrollment and graduation is from semester 10
and onwards. But selection is not the main driver in these trends. Students who continue
in master’s programs experience an average slowdown of about six credits per semester
compared to their bachelor’s semesters. And students see an average increase in GPA of 0.2
grade points from their 6th to 10th semester.

5) Graduates see large income premiums. Figure 2 shows income profiles in general follows
a reversed u-shape in tenure with income peaking between 25 and 30 years of experience.
Students who drop out without a degree have around 40 pct. lower life time income despite
their possibility to attain a degree at a later point in life. Earnings of students who leave
UCPH with a bachelor’s degree will eventually almost catch up to those of graduates with
master’s degrees. Earnings are substantially lower in the first 5 years or so reflecting the
fact that many dropouts enters another educational program shortly after. In the following
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years until earnings peak bachelor’s seems to be about 5 years behind master’s in terms of
earnings. We see substantially heterogeneity across UCPH faculties for graduates but not
so much for non degree dropouts. Relative premiums for degrees do also vary substantially.
Faculty specific profiles are shown in Figure A.2.

6) Graduates with higher grades and more work experience earn more. There is a sizable
and significant positive correlation between grades and work experience from university and
later income and employment chances. Figure 3 shows regression coefficients on both margins
the first six years out of university for master’s graduates. See section 4.2 for estimation
details. The effect on employment is downward slopping over time while the effect on income
is stable. In the first year after graduation one grade point higher GPA corresponds to 7.6
pct. higher income and 2.0 pp. higher probability of being employed. Similarly, 100 hours
additional student work experience corresponds to 1.7 pct. higher income and and 0.8 pp.
higher probability of being employed.
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Figure 1: Enrollment Dynamics
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Note: a) Degree attainment over time for who complete a master’s. Avg. accumulated credits on right axis.
b) Bachelor’s and master’s degree combined to ten semesters normed graduation. c) Includes both early
terminations of programs and bachelor’s graduates who does not continue towards a master’s. d) Enrolled
and realized course credits. c)/d) The distribution of credits and hours is shown in appendix Figure A.1
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between early terminating students and the faculty cohort averages in GPA and accumulated credits.
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Figure 2: Income Profiles
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Figure 3: Grades and Work Experience Post-graduation
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3 A New Model of Study Progression
Our model of study progression includes both pecuniary and non-pecuniary incentives for
student decisions to match the empirical findings from the section above. We emphasize the
semester structure of choices and outcomes at university. The timeline of the model begins
when students enroll at UCPH in a specific faculty at the university. This means that we do
not model the decision to enroll or field choice. Students will then make choices regarding
course enrollment and work hours every semester until they graduate or decide to drop out.
The labor market is an absorbing state meaning that we do not consider re-enrollment in the
model.11 The life-time utility of students is split into two sequences of periods: a sequence of
semesters enrolled at university followed by a sequence of years in the labor market. When
a student enters the labor market, they take no further actions and receive labor market
income according to their accumulated human capital and observable heterogeneity until
retirement.

3.1 Dynamic Structure

Students enroll in university at age A0 and stay there for a maximum number of semesters
denoted TS. At TS students will automatically enter the labor market with or without a
degree. We set the number of semesters to 17 in the solutions used for estimation.12 The
student will receive labor market income from entry until a fixed retirement age, Amax = 60.
A student that leaves university after ts semesters has Amax − ts/2 − A0 years left in the
labor market. We include the time after the student exits university to be able to model
the expected wage profiles of people with different characteristics when they leave university.
The fixed retirement age means that students who spend additional years at university forgo
years with labor market income. We abstract from modeling any saving or credit behavior.

Since the full model includes a sequence of student semesters followed by a sequence of
labor market years, we need to define the sequential choice problems, or Bellman equations,
for each of these cases. The model is solved recursively, but we present the equations in the
order that the students face them. The yearly discount factor β is set to 0.95 throughout
the paper. Since our observations during enrollment come from semesters of varying length
(seven and five months) we use differentiated values of β to secure a consistent discount
factor. This means that the discount factor is semester dependent and denoted βt. For a
spring semester, it is 0.957/12 and for a fall semester, it is 0.955/12.

11Potential earning gains from graduating later in life is captured in the income expectations for dropouts.
12In the data less than 2 pct. are enrolled longer than 17 semesters.
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3.1.1 Study Progression

Students begin their education with initial conditions that are their age, gender, high school
GPA, and faculty of enrollment. In each period they decide whether to continue their
studies or drop out. We start by describing the student’s problem given continued studies.
Given continued enrollment, the student has to choose their study and work intensities. The
credit choice is modeled as a target number of credits and is denoted c∗

t . At the end of the
semester, the exams determine how many points the students accumulate. We denote the
realized credit accumulation ct such that c∗

t − ct represents the number of failed credits. The
stochastic process that models target versus realized credits is an ordered logit and will be
described below. The work choice is given as the number of hours per month, h, they want
to work. To make the model computational feasible we bin both credits and work choices
into a reasonable sized discrete choice set of (c∗, h) pairs. We use 6 equally spaced bins for
credits ranging from 0 to 37.5 (full-time equals 30) and three levels of work hours, {none,
low, high}.13 The high-level structure of the enrolled student’s problem is then given by

vs(C,G,H,Z, ε, t) = max
c∗, h

[
us(t, c∗, h) + ε(s, c∗, h) + βtE (Vs(C ′, H ′, Z, ε′, t+ 1))

]
(1)

where ′ denotes next period values of a variable. The variables in the equation are: credit
stock (C), GPA level (G), stock of accumulated work hours (H), initial conditions (Z),
and semester index (t). The taste shock vector (ε) has a component for each of the discrete
choice combinations. We assume that these are IID extreme value type I random variables.14

We assume conditional independence as is usual in the literature, see Rust (1987, 1988).
Additionally, us is the per period utility function for students. The initial conditions, Z,
does not enter the instantaneos utility, but they affect the expectation operator through the
laws of motion of states as we show below.

Once the student reaches 270 credits they have to write their master’s thesis. In principle,
this implies that students can choose between 0 (not writing their thesis this semester) or 30
(actively writing their thesis) credits. However, in the data we do not always observe that
student sign their thesis contracts at the beginning of semesters. Therefore, it is difficult to
match the data to a credit target for a student in our model. As a result, we deviate from
the rest of the model by simply assuming they are perpetually enrolled to write their thesis
until they drop out or graduate. They still accumulate work hours towards their human

13Low (high) is roughly 30 (60) work hours per month. See A.2 for more details.
14This implies the usual multinomial logit models, but it can be relaxed to nested models where study/work

choices can be in a separate nest from dropout. See A.6.
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capital stock, but the credit target is simply fixed at 30 credits.
If the student exits university, there are no more choices. The value of dropping out is

captured by the following expression

vd(H,Z, ε, t) = α + ε(d) + βtVd(H,Z, t+ 1) (2)

where α is effectively a dropout intercept that captures the utility above and beyond the
taste shock and expected utility of future income streams, Vd. This could include the option
value of re-enrolling in a better student-field combination for example. We get back to the
Vd calculation below.

We can collect the two choice specific value functions, vs and vd, in the value function in
the following way, where the outer max represents the dropout decision

Vs(C,G,H,Z, ε, t | C < 300) = max
{
vs(C,G,H,Z, ε, t), vd

}
(3)

We condition on C < 300 because once the accumulated credits reach 300, the student
succesfully exits university with their degree.

3.1.2 Labor Market

When the student enters the labor market there are no choices. The student will automat-
ically enter the labor by graduation with a master’s degree when Ct = 300 or if the limit
for enrollment, TS, is reached. Otherwise, the student can decide to drop out and enter the
labor market at any point in time (with or without a bachelor’s degree). We denote the age
of the student in the time of exit as Ae. Since there are no choices in the labor market, the
value function at the first period in the labor market, Ve, is:

Ve(C,G,H,Z, t) =
Amax∑

a=Ae

E(βaum(Wa(C,G,H,Z))) (4)

The utility of money (um) is introduced to add decreasing marginal utility of money in the
model. Specifically, we chose um(x) =

√
x.15 To calculate the earnings profile W , we estimate

a set of income regressions conditional on employment, and a set of logistic regressions on
the employment probability for the first six years in the labor market. From the seventh
year, we extrapolate with faculty-specific income growth rates. This process is described in
more detail in the results section.

15This could be another function. We leave this for further research.
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3.2 State Space

The state space consists of the following states: accumulated credits (C), current GPA (G),
student work experience (H), and an index (t) for the number of semesters the student has
been enrolled in. The first three play a role in the transition rules and the final wage the
graduates can expect, and the index allows us to model seasonality of the semesters, and to
limit the number of periods the students can get their universal study grants.

All states are discrete besides GPA. We model GPA as a continuous state, mostly for
practical reasons. Grades and credit increments are naturally discrete, but the number of
possible GPAs given a grading scale and the number of credits the student can accumulate
per period would give rise to an extremely large state space, because the actual GPA is a
weighted average of several levels of credits and semester grades.16

3.2.1 State Transitions

Credits: The accumulation of passed credits is straightforward:

Ct+1 = Ct + ct (5)

However, to form expectations about this accumulation we need a model of ct’s realizations
given choices and states. Credit transitions are modeled as ordered logits with a separate
regression for each level of registered credits. Hence students can reach no more than their
target c∗

t , but there is a risk of passing fewer credits from failing exams. The regressions
include work hours during the semester, start of period GPA, and a vector of student’s
characteristics as covariates. If students choose a target of zero, they trivially accumulate
zero credits in that period. Degree attainment is a simple function of accumulated credits
as students become bachelor’s when they reach 180 credits and masters with 300 credits.

Grades: Students receive grades each semester with passed credits. These are combined
with their current GPA to form next semester’s GPA. The law of motion for GPA given the
semester inventions is:

Gt+1 = (Gt · Ct + gt · ct)/Ct+1, (6)

where gt is the sum of grades divided by passed credits in the current semester. We see the
increasingly persistent nature of GPA because ct becomes relatively smaller compared to Ct
as the students pass more and more courses. Note that gt and ct are stochastic. The process
of ct is described above and we model gt using an ordered logit of possible per-semester GPAs

16We could also limit (discretize) the number of GPA states in each period as well, but we are concerned
that this would make it hard to account for the effects of potential behavior in terms of lowering course
registrations to do better per course.
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(20 bins of half a grade point) including work hours and registered credits in the semester
and a vector of students characteristics as covariates.

Since the GPA state only has discrete increments (by the combination of grades and
realized credits), we could choose to keep this state discrete as well. However, the total
number of combinations of realized credits and per semester grades quickly explodes, and
for this reason, we model it as a continuous state.17 We handle this continuous state by
piecewise linear interpolation.

Work experience: Work experience is accumulated only after the 180’th credit has been
accumulated. This is to emphasize the importance of the jobs students have during the
master’s degree. Empirically, we see that work experience accumulated during the master’s
enrollment has a larger effect on labor market outcomes. For computational reasons, we avoid
counting bachelor’s experience as an additional state. This means that Ht = 0 whenever
Ct < 180. For Ct ≥ 180 we have:

Ht+1 = Ht + ht (7)

Alternative specifications are possible, among others: two types of human capital, con-
tinuously deprecating human capital, and stochastic increments (or decrements).18 While
different accumulation modeling strategies might add more flexibility or be more appropri-
ate, they also increase the computational burden of the estimation. We leave this for further
research.

3.3 The Utility of Being a Student

A large motivation for being a student is the expectation of higher wages upon graduation.
However, since we model the dynamic progression, we also have to specify the instantaneous
utility a student derives during each semester. This is a function of the current states and
the discrete choices made. The total instantaneous utility U can be decomposed into a base
component u and an element of the taste shock vector ε given by the discrete choice. Starting
with the case where the student decides to study, we have:

us(t, c∗
t , ht) = um(grant(t) + y(t, ht)) + ℓ(c∗

t , ht), (8)

where grant(t) is the study grant, y(ht) is the income from working while studying, ℓ(c∗
t , ht)

is non-monetary utility from being a student, and um is the square root as described above
17Alternatively we could model a discrete Markov chain of several GPAs, but this blur the effect of the

choices on future GPAs, and it complicates modeling sticky grades due to an increasing stock of credits.
18By stochastic decrements to H we mean discrete deprecation at some probability.
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to be the utility of money. In detail, we have that:

grant(t) = G× It≤12 ×m(t), (9)

where G is the level of the subsidy per month, It≤12 is an index function that is one for
the first twelve semesters and zero after that. In the data G = DKK 5900. The number of
periods with eligibility for the subsidy is 12 in the data, but will be varied in the counter
factual simulations. The function m(t) scales the total amount according to the semesters
such that uneven t’s are fall semesters with 5 months, and even t’s are spring semesters with
7 months. For wage income the students earn a wage proportional to their work hours:

y(t, ht) = m(t) × ht × w, (10)

where ht is the chosen amount of semester work hours, and w is the hourly wage. We use
the median student wage calculated per faculty in the sample as a fixed parameter.19 Across
faculties, this amounts to somewhere between DKK 110 and 130.20

Lastly, the non-monetary utility consists of an intercept ℓ for university enrollment and
power penalties for course load and work hours (both per month):

ℓ(c∗
t , ht) = ℓ− ℓc(c∗

t/m(t))ϕc − ℓwh
ϕw
t (11)

The power functions allow for increasing marginal disutility of work and study effort, such
that the last 7.5 credits are much harder to cope with mentally than the first 7.5, and
that full-time work is much harder than part-time. We divide by length of the semester
to accommodate for more time in spring semesters to study and pass courses. Notice, that
students receive a quite generous subsidy. Depending on the faculty, monthly earnings are
between DKK 3300 and 3900 for the low choice of hours (30) at the median wage. Which
makes the subsidy 60 pct. of the total monthly income. If the student chooses the high
amount of hours (60) the subsidy is still 40% of the total income.

3.4 Incentives and Mechanisms

In this section, we will describe some of the most important incentives students face in our
model and how these mechanisms can lead to different behavior. The model is designed to

19We do not consider institutional earning restrictions for grant receivers since appendix A.5 shows that
these are non-binding for most students.

20We could input their actual wage, or set up a model for wage offers. This would add another continuous
state to the model, and is outside of the scope for the current analysis.
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have multiple sources for prolonged enrollment, to let the data inform us on the relative
importance of different channels.

Stochatic delay. Students are free to choose how many credits they register for, but are
not guaranteed to pass them all. This means that if students sign up for 30 credits they will
be delayed with high probability due to the significant chance of failing courses. How long
depends on the demographics of the student and the realized grades. It is of course possible
to register for 37.5 credits per semester, but that potentially places a very large disutility
cost on the student - depending on the estimated parameter in the power function.

Consumption value and grant income. Policymakers sometimes emphasize that students
simply stay because being a student is fun and attractive in and of itself. The student simply
enjoys being enrolled, living the life of a university student. Working and studying a lot might
subtract from this enjoyment that we’ll refer to as the consumption value of enrollment. This
is related to and possibly reinforced by, the generous student grant available to all full-time
students. It’s hard to quantify and identify consumption value in a model such as ours since
it will end up consisting of many unobserved components, and all of them are not positive.
Negative inherent features could be the stress of having to perform, balancing studies and
work (above and beyond the actual work and study hours), and so on. However, the grant
income enters directly in the model, and we can investigate the channel in counterfactual
simulations.

Improving labor market outcomes by better grades and work experience. Another reason
that students might rationally delay their graduation is to directly improve their grades and
accumulated work experience. To balance the total disutility of effort per semester, the
students might lower their registered credits to make room for more work, but they might
also attend fewer classes to increase the likelihood of higher grades per course. Though it
should be noted that more work hours do lower the probability of passing courses, and this
might delay graduation too much.

Transition into the post-university labor market. The end goal is of course to finish
the education and transition into the labor market outside of student work. Since we have
already documented that there is a significant premium to both bachelor’s and master’s
degrees, it is expected that students would want to balance the positive effects of more work
experience with fewer years on the labor market before retirement, and so on. This means
that it is likely not optimal to accumulate work experience indefinitely because it also lowers
the possibility of passing courses even if the student registers for the 30 credits they are
expected to register for.

For dropout, there are a few channels that are relevant to consider.
Bad outlooks. The attractiveness of dropout compared to the different study choices
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is closely related to outlooks. Grades, credit stocks, work intensity, and study intensity
are connected through the transition probabilities from period to period, and ultimately
these help determine the returns to graduating in the end. A student who has stayed for
three semesters but has had low realized grades and has failed many classes may then find
themselves in a situation where graduation is still feasible, but it might require working very
little (and accumulating very little work experience) and still result in a bad GPA, and so
forth. Then, it might be better to drop out already in the third semester due to the low
expected value of staying.

Exit with a bachelor’s degree. The income prospects for exiting with a bachelor’s degree
compared to no degree or a master’s varies between faculties. In some cases, there will be a
bigger incentive to stay even if a student fails more classes than expected because they don’t
have to go for the full 300 points. We might then expect to see fewer exits just before the
180 credits required for a bachelor’s degree is accumulated, and a spike just after.

Unobserved preferences and field matches. Students might not have a clear picture of
the academic contents of a law degree versus a social science degree versus a physics degree.
They might have some idea, but it’s probably not too accurate. This means that we might
observe people dropping out because their chosen field just doesn’t fit their preferences after
all. We don’t model this beyond including a taste shock. However, it is clear that the
taste shock also picks up things like mental stress, car accidents, and all the other things
that might make students drop out even if all the features of the model tells us they should
continue.

Learning. Our model contains learning about students’ academic ability through the
realization of grades that accumulate to their GPA. Students with a better high school GPA
or a better GPA from previous semesters expect to do better in future courses both regarding
the chance of passing and the grades received. Dynamic realizations of grades can change
the outlook students are facing and hence the decision to drop out. This mechanism can be
one explanation for students staying enrolled in some semesters before dropping out.

These are all potential explanations and channels that we will allow for in the model and
investigate empirically.

3.5 Model Solution and Parameter Estimation

We solve the model using backward induction from the last period of studies. All choices are
discrete, the maximization part is trivial - though the discrete state space is large, so each
semester does take some time to solve.

We estimate parameters by maximum likelihood. A model with intended course progres-
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sion, work intensity and drop out at the semester level would in many cases require simulated
methods of moments, but since we have detailed data on student behavior, we are able to
more directly match observed, individual choices with model predictions in terms of choice
probabilities through maximum likelihood. We assume the shocks are extreme value type I.
This means that we use the framework of Rust (1987), see A.6 for details.

With choice probabilities at hand, we can form the likelihood of observing the data. This
simply amounts to summing up the log of the choice probabilities at the observed data. A
less simple task is finding the estimates. In nonlinear estimation, it can sometimes be tricky
to find initial parameters to start the optimization routine from, because some calculations
can underflow if parameters are too far from those that generate patterns that roughly match
data. We were able to generate initial values for our local searches using Adaptive Particle
Swarm Optimization introduced in Yu and Guo (2013). For the local searches, we use a
trust region method as described in Nocedal, Jorge and Wright (2006) and implemented in
Mogensen and Riseth (2018). We use automatic differentiation (AD) to obtain gradients and
Hessians. Specifically, we use the implementation of a forward mode automatic differentiation
scheme developed in Revels et al. (2016). Having the Hessian available is helpful in both
estimation and inference. The alternative is to use something like BFGS or BHHH. BFGS is
popular in optimization, but in general, the inverse Hessian approximation can be very far
from the true inverse Hessian, and the BHHH approximation is only valid near the maximum
likelihood estimates.

4 Estimation Results
We can estimate the model sequentially by assuming the absence of type-specific unobserved
heterogeneity and serially uncorrelated taste shocks. We use a two-stage approach. See
Arcidiacono (2004) and Arcidiacono et al. (2016) for an application in our context, or Aguir-
regabiria and Mira (2010) for a more general survey. In the first stage, we estimate the
parameters from the credit, grade, and income equations, (η, σI , π, ψ, δ). The second stage
is devoted to the estimation of the flow utility parameters and option value from dropout,
(ℓc, ℓe, ℓw, ϕe, ϕw, α) by maximum likelihood, taking as given the first-stage estimates.

4.1 Academic Environment

Course progression: For each non-zero choice of course credit commitment, c∗, there is a
risk of passing fewer credits. We model the passing probabilities by separate ordered logistic
regressions for each credit level conditioning on student characteristics, GPA, and current
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work hours. This secures that we get probabilities of passing less than registered credits for
all possible student choices.

The left column of Table 2 shows the coefficients from the regression where c∗ = 30 and
Table A.3 in the appendix shows all levels of registered credits. In general, we find that the
risk of not passing is lower for lower levels of registered credits. We also see that students
with a high GPA are more inclined to pass all the credits they register. The coefficient
on work hours is negative for all levels and tends to be larger for more registered credits.
Nonetheless, coefficients are so small that the impact on passing probabilities is almost zero.

Some examples of predicted passing probabilities are: A male student with a 7.0 GPA
registering for 15 credits has a 79 pct. chance of passing all credits. When registering 30
credits, the probability drops to 59 pct. For a student with a 12.0 GPA, the probabilities
are 95 and 86 pct. respectively.

Grades: The relevant transition probabilities for the law of motion for the GPA in section
3.2.1 is the realizations of grades each semester, g. We discretize g into 20 bins of half a grade
point from 2 to 12. We model the realization of grades with a similar ordered logit, as in the
section.21 The right column of Table 2 shows coefficients. The coefficient for work hours is
slightly positive but too small for work hours to have any real effect on grade probabilities.

4.2 Labor Market

To obtain the expected income profile (Wa) used in (4), we estimate equations both for
earnings and the probability of employment by years of tenure using students exiting UCPH
from 2011 to 2016.

Years of experience in the labor market is denoted a, faculty of study is k, and no degree,
bachelor’s and master’s are indicators of degree attainment. A bar denotes the final values
of a variable in the last semester at university. The earnings margin is estimated in the
following linear log-income equation (conditional on positive earnings in the given year):

log(Ya) =η0,a,k + Zη1,a + master’s × (η2,aḠ+ η3anH̄) + bachelor’s × (η4,a,k + η5,aḠ+ η6,aH̄)
+ no degree × η7,a,k + ua, (12)

where ua ∼ N(0, σYa I). There is no work experience term for students without a bachelor’s
as they have zero accumulated master’s experience per definition.

Equations for the employment margin are estimated using logistic regressions with the
21In the model, students also need a GPA or expectation of a GPA when they enter university. We use

the expected first semester GPA from an ordered logit with high school GPA, gender, and faculty of study
as covariates.
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Table 2: Course Results

(1) Credits (2) Grades
Est. SE Est. SE

Registered credits -0.020 0.001
GPAt−1 0.333 0.007 0.488 0.004
Work hours (10s) -0.003 0.001 0.006 0.000

Controls:
Female 0.377 0.022 0.033 0.013
High school GPA 0.134 0.007 0.158 0.004
Spring 0.527 0.023 0.007 0.013
Humanities -0.102 0.043 0.390 0.024
Law 0.143 0.045 0.557 0.025
Science -0.375 0.041 0.451 0.024
Social Science -0.036 0.048 0.305 0.026
N 63,726 93,822

Note: Ordered logistic regressions. The unit of observation
is semesters. Work hours are within the same semester as the
course registrations. (1) Results when 30 credits are registered.
Registered credits are not included as a covariate as there is a
separate regression for each level. (2) Average semester grade
is discretized into bins with increments of 0.5 grade points.
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same right-hand side variables as in (12). Table 3 shows the results for the first year out of
university.

GPA and work hours are significant and positive on both the employment and income
margin. One grade point higher GPA (standard deviation of 1.65 grade points) corresponds
to 7.6 pct. higher income and 2.0 pp. higher chance of being employed. Similarly, 100 hours
(standard deviation of 1164 hours) additional student work experience corresponds to 1.7
pct. higher income and 0.8 pp. higher probability of being employed.

The results show that the highest income and employment chances are for Health grad-
uates and the lowest for Humanities (same pattern as in Figure A.2). The mainly positive
coefficients of bachelor’s and no degree interactions with faculties cannot be interpreted as
better labor market expectations without including the varying effects of work hours and
GPA.

Figure 3 showed the GPA and work hours coefficients plotted for the first six years after
graduation. The coefficient of GPA is decreasing over time. The coefficient of work hours is
dropping the first few years, but later the size is more persistent. Since the high-intensity
choice of work is 60 hours per month, master’s students can accumulate a large stock of
hours in the model. Combined with the persistent effect of work hours on the income profile,
this makes work experience much more important than grades in this part of the model.

The coefficients obtained are used to calculate the earnings expectation. Letting Pa

denote the probability of being employed in a given year. We assume conditional indepen-
dence22 between Pn and Yn and use the field-specific growth rates shown in Figure A.2 to
extrapolate after the first six years in the labor market:

E[Wa] = PaE[Ya] = 1
1 + exp(−xηPa)exp(xηYa + σ2

Y /2) (13)

For a > 6 :
E[Wa] = P6̄E[Y6̄]πa,k, (14)

where πa,k is the field-specific time trends including the employment margin where observed
income is zero.

22This approximation of the income process is also used in Arcidiacono (2004).
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Table 3: Labor market - First-year-out

(1) log Income (2) Employed
Est. SE Est. SE

Baseline (master’s degree)
Health 11.938 0.106 0.141 0.029
Humanities 11.166 0.112 0.037 0.029
Law 11.784 0.105 0.102 0.03
Science 11.420 0.110 0.069 0.03
Social Science 11.608 0.111 0.075 0.031

Masters degree interactions
Accumulated work hours (100s) 0.017 0.001 0.008 0.001
GPA 0.076 0.007 0.020 0.003

Bachelor’s degree interactions
Health -0.610 0.219 0.082 0.045
Humanities 0.871 0.192 0.119 0.035
Law 0.271 0.227 0.016 0.044
Science 0.682 0.196 0.064 0.036
Social Science 0.455 0.199 0.079 0.038
Accumulated work hours (100s) 0.022 0.002 0.007 0.001
GPA -0.030 0.018 -0.001 0.003

No degree interactions
Health -0.810 0.129 0.065 0.031
Humanities 0.774 0.125 0.107 0.026
Law 0.282 0.138 0.046 0.029
Science 0.548 0.126 0.073 0.026
Social Science 0.381 0.139 0.072 0.029

Controls
Female -0.112 0.020 0.002 0.005
High school GPA -0.006 0.007 0.001 0.001
Age 0.012 0.003 -0.003 0.000

Residual MSE 1.180
N 12,763 14,366
R2 0.269
Note: Graduates from 2011 and onwards. Employed if income > 0. Right col-

umn is a logistic regression. First-year-out is Jan 1st through Dec 31st the year
after graduation. We also control for month of exit to avoid tenure effects for
students exiting early in the year. Work hours are accumulated while enrolled
at master’s level. Work hours from before 2008 imputed from earnings data.
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4.3 Estimating Utility Parameters

We find that there is quite some heterogeneity in the student behavior between faculties,
see appendix A.3. Some of this is arguably due to faculty specific heterogeneity we already
include in various parts of the model, such as the academic environment and labor market
expectations. Nonetheless, we also find it plausible that utility coefficients also vary between
faculties, and even between programs within the same faculty. This could be due to more
difficult courses making it more costly to take credits or better opportunities for enjoyable
part-time jobs in some programs.

To be able to fit this dimension of heterogeneity, we estimate faculty-specific utility
coefficients. We have limited our model estimation to the faculties of Law and Social Science.
All students at the Faculty of Law are in the same program, making it the most homogeneous
faculty. Furthermore, there is a well-defined path from a bachelor’s in law to a master’s in law
and finally, a close link to a specific profession. On the other hand, Faculty of Social Science
includes a range of different programs such as economics, anthropology, and psychology.
Here course content, teaching, and the following labor markets vary widely. On average
social science students have a one point higher high school GPA. Law students tend to have
more part-time work, shorter time-to-gradation, and better labor market outlooks than social
science students and the UCPH average (see appendix A.3).

Table 4 shows the model estimates. The estimates of ℓc and ℓw are positive, which is
in line with our expectation that study effort and work effort are indeed disutilities. They
enter with negative signs in the utility functions, so higher effort in terms of credits and
work hours means more disutility. The exponents are somewhere around the quadratic case
with the work exponent slightly above for Social Science (at 2.34), and the study exponent
slightly below for Law (at 1.64). The cost of work hours is higher for Social Science as
both parameters exceed their Law counterparts. For credits, it is more ambiguous since ℓc
is largest for Social Science, but the curvature parameter ϕc is largest for Law.

The semester utility intercepts, ℓ, are estimated to be negative and close to each other.
We have to keep in mind here that this is above and beyond the utility from grant and wage
income. The dropout intercepts, α, are positive and somewhat larger for Social Science. This
indicates that there are advantages to dropping out that are not captured in our pecuniary
dropout value given by the wage equation only.

4.4 Model Fit

Given the parameter estimates in Table 4, we now examine how well the model is able to
replicate the trends in data. Figure 4 shows our model simulation overlayed with the data.
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Table 4: Utility Coefficients

Social Science Law
Intercepts:
ℓ -0.43 -0.39
α 0.69 0.40
Credit parameters:
ℓc 0.04 0.08
ϕc 1.96 1.64
Work hours parameters:
ℓw 4.45 3.39
ϕw 2.34 1.94

Note: Parameters are estimated separately but use the
same first stage estimations.

In general, the model predicts the trends in data fairly well. We get a similar shape of
time-to-graduation distribution with a mean very close to the data. In terms of registered
and passed credits, we see more credits in longer spring semesters, a relative constant credit
failing rate, and a slow down in intensity around the shift to master’s programs (driven by
incentives invest in work experience) all in conjecture with the data. Despite a too large
acceleration during the transition into master’s semesters, we are reasonably close to the
average choice of work hours.

However, the model is somewhat limited in its ability to replicate the dynamic pattern
of dropout. We simulate too high dropout rates early and late in the enrollment and almost
zero dropouts in the middle. The high dropout rate in the first semester can be interpreted as
students being too sure about future outcomes early in our model. An explanation for this is
that dropout, in many cases, is driven by other reasons than pure labor market expectations.
As already mentioned earlier, Stinebrickner and Stinebrickner (2014) find that students
updating labor market expectations can only account for 22.5 pct of the observed dropout
leaving lots of space for explanations like changing preferences and interests throughout the
enrollment.

5 Counterfactual Simulations
Given that the model matches the data reasonably well, we can use it to do two counterfactual
simulations.

(I): No human capital investment in work experience. In this simulation we ask the ques-
tion, how much of delayed in time-to-graduation can be explained by students postponing
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Figure 4: Model Fit - Faculty of Law
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Note: Simulation with model parameters of students at the Faculty of Law. b) Solid lines are registered
credits. Dashed are passed credits. See the model fit for the Social Science faculty in Figure A.3 in the
appendix.

with the aim of improving labor market outcomes by work experience? We impose this on
the model by setting all work experience at graduation to the mean amount of hours stu-
dents graduate within the sample. This means that choices during enrollment do not affect
work experience but students still earn income from part-time work. The results can be seen
in column (I) in Table 5. The average time-to-graduation effect is a reduction of 1.4 (1.3)
semesters for Social science (Law). This means that they delay (excess of ten semesters) is
reduced by 53-59 pct. Hence, our results indicate that a significant part of the delay is due
to rational human capital accumulation on the students’ side. We do notice a significant
decrease in drop out behavior as well. In that regard, we should keep in mind that by not
having to earn the work experience, we are saving the students from a lot of work effort
disutility. This means that the students who would choose to drop out in the baseline now
have a much more attractive (and unrealistic) path from an unfortunate state realization to
graduation.

(II): Reduction in financial aid. One persistent policy proposal in the debate is to reduce
the time students are eligible to receive financial aid. In the baseline model and the data,
students can receive grants for six years. In this counterfactual simulation, we reduce this
period by one year, corresponding to the normed time of a bachelor’s plus master’s degree.
The results can be seen in column (II). The effect on average time-to-graduation is a reduction
by 0.7 (0.6) semesters for Social science (Law) or a relative reduction of the delay by 27 pct.
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Table 5: Counterfactuals

Baseline (I) (II)
Law:
Time-to-graduation 12.2 10.9 11.6
Exit w/o. masters degree (pct.) 15.5 0.5 25.0

Social science:
Time-to-graduation 12.6 11.2 11.9
Exit w/o. masters degree (pct.) 26.5 0.4 35.4

Note: Baseline is calculated on a dataset simulated with the fit-
ted model parameters. (I) and (II) are calculated on counterfactual
datasets.

for both faculties. However, we also see 8.9-9.5 pp. more students are exiting without a
master’s degree.

6 Concluding Remarks
Large extensions in time-to-graduation for university degrees persist in most developed coun-
tries, including Denmark. To unfold the incentives and choices resulting in delays, we use
a novel dataset and estimate a dynamic model of students’ choices regarding course load,
part-time work, and dropout. We model the dimension of choosing course load directly and
use more refined channels of human capital formation through work experience and grades,
which has not been included in previous models in the literature. Our model is able to
capture quite a lot of the observed variation in the actual study behavior with a relatively
parsimonious utility specification without unobserved heterogeneity.

Our first main result is, that about half of the delay to graduation can be explained by
students choosing to prolong enrollment and accumulate more human capital through part-
time work experience. This finding brings nuance to the debate about delayed graduation.
Even with the narrow goal of university policy to maximize university students’ lifetime
earnings, it can be the case that optimal time-to-graduation is longer than the normed five
years. Hence, future policy should take these dynamics into account and be specific about
the end goals like cutting direct costs of tuition and financial aid, or maximizing labor market
outcomes for students.

Our second main result is, that cutting financial aid by one year reduces time-to-graduation
by one-third of a year. The reduced pass-through of aid cuts highlights that other factors such
as failing exams, part-time work, grades, and cost of effort are also important explanations of
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delays. The overall tradeoff in terms of reducing financial aid is whether negative effects like
more dropout and fewer applicants outweigh the reduction in costs and time-to-graduation.
In the data and the model, dropout mostly occurs and increases among students with worse
academic performance and hence worse academic and labor market outlook. Hence, it would
be necessary to investigate this heterogeneity further in the model to make statements about
the labor market costs of forgone earnings for these individuals. Before venturing into such
an analysis, we believe the model would benefit from being extended with more student
heterogeneity in the following two directions. First, adding Bayesian learning for students
about their unobserved academic ability would make the learning process more realistic, and
could imply that more students with bad academic realizations would update expectations
downwards and drop out. Secondly, our model could be improved with a more general form
of unobserved heterogeneity in student ability and preferences. In particular, adding het-
erogeneity, potentially tied to student characteristics, in students’ costs of effort for course
load seems relevant.

An additional danger, policy should account for, is that more drop out among worse-
performing students reflects incoming students’ academic preparation, and more inequality
in educational attainment is a potential consequence.
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A Appendix

A.1 UCPH Data

Data from UCPH is merged by social security number to population registers at Statistics
Denmark. We use tax data based registers (IND,E-indkomst) on income and hours worked
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per month, demographics (BEF), and educational registers (UDDA,UDG) for high school
GPA and cross-checking UCPH enrollments.

We have data from UCPH from fall 2011 and onwards. In our main sample, we exclude
all semester observations where students are affected by the Study Progress Reform, which
mandated full-time study intensity. This means semesters from fall 2014 for entering students
and fall 2015 for all students. Age, gender, and high school GPAs are merged from DST’s
population registers (BEF and UDG). There is almost complete coverage for the demographic
variables, but high school grades are missing for all students without a regular Danish high
school examination, namely international students. We furthermore restrict our sample in
several dimensions. The sample restrictions are described in Table A.1.

The majority of courses at UCPH last half or whole semesters. Some programs allow
for a two-semester master’s thesis. We divide these over two semesters. We place courses in
semesters by date of examination. A course with an examination within the first month of a
semester is counted towards the previous semester, as it will most likely be a re-examination.
Students were allowed to change course registrations early in the semesters, but we only
consider final subscriptions. Once exam registrations are locked, not passing an exam results
in a ”missed try” of which students have a maximum of three per course. Numerical grades
count towards the GPA, which is weighted by course credits.

We place exits in semesters by the registered date. If the exit date is within the first
month of a semester, we replace the exit decision in the previous semester. If an exit date
occurs in a semester where course credits also are passed, we replace it in the following
semester.

A.2 Binning Credits and Work Hours

To reduce the state space and the number of choices in each period, we bin credits and work
hours. In the actual data, there’s a wide variety of ways you can choose combinations of
courses with varying credit size. Some write extended essays for half a point, some courses
are more comprehensive and count for ten or even 20 credits. The combinations of these
many, unequally spaced bins give rise to an enormous state space, especially in the later
semesters where courses from many semesters are accumulated. Therefore we use an equal
spacing of 7.5 credit points per semester: 0.0, 7.5, 15, 22.5, 30, and 37.5. These choices
are representative in the sense that most common sizes of courses (and thesis projects) are
dividable with 7.5. We allow for more than 30 points (full-time studies), as this is also
possible with either an extra regular course or a summer school course in spring semesters.
Alternative numbers are binned to the closest value up or down. The binned state space of
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Table A.1: Sample Size

Sample restriction unique IDs
i) Pre-reform semesters (fall 2011-spring 2015) 63298
ii) Not enrolled before 09/01/2000 58694
iii) No overlapping enrollments 56052
iv) No shorter or longer programs 46227
v) No spring semester enrollments 45629
vi) No transfer or reentrying students 40368
vii) No unexplained graduation stocks 36108
viii) High school GPA in register 31333

Note: ii) Excluding some students with very long passive enrollments. iii)
Students with simultaneous enrollments in different programs are excluded.
iv) Some programs have other credit requirements for graduation. Notably,
shorter professional programs and the longer master’s degree in medicine v)
Having enrollments in both spring and fall makes the model more computa-
tionally demanding. vi) Excluding all students with transferred credits from
previous enrollments at UCPH or other universities. Re-enrollment in the same
program can disappear in the UCPH data. Hence we cross-check with DST’s
education register (UDDA). We include enrollments where a bachelor’s gradu-
ate continues in a master’s program within a year. vi) Excluding students who
graduate with a different credit stock than expected. iv)-vi) could potentially
be incorporated in the sample and model setup.

accumulated passed credits is all increments of 7.5 from 0 to 300. We bin the actual credit
stock in each semester to the closest value up or down.

We limit students to not enroll in more credits than they have left plus one increment
and make this change this in the dataset too.

We also bin the distribution of work hours. We bin to a three-point distribution consisting
of zero hours and low/high-intensity part time employment. High (low) corresponds to 60
(30) 60 hours per month. Positive work hours per month are binned to the closest value
up or down. The accumulated work experience is the sum of the binned work hours choices
each semester corrected for the length of the semesters (this is procedure is chosen for
computational reasons).

Figure A.1 shows the distributions of work and credits per semester in the dataset before
and after implementation of the described binning procedure.

A.3 Faculty Heterogeneity

Figure A.2 shows the income profiles for students exiting with a master’s, bachelor’s, and
without a degree split by faculties all five faculties.

Table A.2 shows summary statistics for the faculties Social Science and Law separately.
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Figure A.1: Bins of Choice Space
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Note: Credits in the left panel are all observed levels. Hours per month in the right panel is a histogram
with 140 bins.

Table A.2: Summary Statistics by Faculty

Social Science Law
(n=4,345) (n=3,621)
Mean SD Mean SD

Individual-level:
Female 0.58 0.49 0.61 0.49
Age at entry 21.17 3.25 21.32 4.00
High school GPA 9.69 1.52 8.49 1.50
Semester-level:
Registered credits 24.12 12.61 25.74 12.35
Passed credits 21.99 12.62 22.46 12.85
Semester GPA 8.33 2.57 7.52 2.58
Hours per semester 216.27 229.76 266.38 247.01
Hourly wage 122.74 104.03 129.31 89.55
Note: Semester GPA is the weighted average of grades a student

receive in a semester. In about 25 pct of semesters, the student
does not pass any course or receive only a ”passed” mark. Semester
GPA is missing in these cases.

Social science students enter with a higher high school GPA and also receive higher grades
at university. Law students register and pass more credits, and they work more hours at a
higher wage.

Figure A.3 shows the data and model simulation for the Social Science faculty separate.
The model fit is similar in quality to the Faculty of Law fit. Again, the timing of the
dropout is different in the model fit. Social Science students have a peak in dropout in the
7th semester after attaining a bachelor’s degree. In the model, they stay enrolled longer
until they attain a bachelor’s degree and choose to exit.
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Figure A.2: Income Profiles by Faculties
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to be combined programs) since 1994. Hence, average income after 21 years of tenure is extrapolated with
growth rates from master’s graduates.
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Figure A.3: Model Fit - Social Science
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Note: Simulation with model parameters of students at the Faculty of Law. b) Solid lines are registered
credits. Dashed are passed credits.

A.4 Ordered Logits for Passed Credits

In the estimation p0, ..., pj, ..., pc∗ are the passing probabilities for each credit level,e, equal
to or below the registered level c∗. p0 is the probability of passing zero credits. A latent
index variable is given with u being standard logistic:

y∗ = x′ξ + u (15)

The passed credit level is then given by the latent index and cutoff values, λ:

e = j if λj−1 < y∗ ≤ λj (16)

Where λ−1 = −∞ and λc∗ = ∞. Passing probabilities of each level is given by:

pj = F (λj − x′ξ) − F (λj−1 − x′ξ) (17)

Since we have seven possible levels for c∗ we estimate six ordered logits (the zero credit choice
is trivial). We estimate the ξ and cut-off λ’s by maximum likelihood. For each level of c∗

passing probabilities are predicted for each individual by:

p̂j = F (λ̂j − x′ξ̂) − F (λ̂j−1 − x′ξ̂) (18)

92



Table A.3: Passed Credits

7.5 ECTS 15 ECTS 22.5 ECTS 30 ECTS 37.5 ECTS

Est. SE Est. SE Est. SE Est. SE Est. SE

Female 0.394 0.071 0.417 0.050 0.469 0.040 0.377 0.022 0.326 0.036
High school GPA 0.017 0.022 0.045 0.015 0.062 0.013 0.134 0.007 0.091 0.011
GPAt−1 0.364 0.023 0.330 0.015 0.373 0.013 0.333 0.007 0.288 0.010
Work hours (100s) -0.009 0.014 -0.028 0.011 -0.031 0.010 -0.033 0.006 -0.020 0.009
Spring -0.094 0.072 0.010 0.052 0.333 0.041 0.527 0.023 0.791 0.039
Humanities -1.348 0.145 -0.099 0.102 -0.602 0.085 -0.102 0.043 -0.625 0.065
Law -0.297 0.130 -0.222 0.124 0.090 0.076 0.143 0.045 0.306 0.067
Science -0.785 0.130 -0.588 0.102 -0.553 0.075 -0.375 0.041 -0.365 0.062
Social Science -0.410 0.143 -0.244 0.116 0.158 0.079 -0.036 0.048 -0.018 0.068
λ1 -1.125 0.183 0.709 0.138 0.537 0.111 0.147 0.066 -0.377 0.104
λ2 1.315 0.138 1.563 0.110 0.671 0.064 0.230 0.100
λ3 2.200 0.111 1.400 0.064 0.915 0.098
λ4 2.150 0.064 1.673 0.098
λ5 2.579 0.100
N 4,838 10,658 14,851 63,726 14,906
Note: Ordered logistic regressions. The unit of observation is semesters. Work hours are within the same

semester as the course registrations.

See Table A.3 for estimation results.

A.5 Study Subsidy Limit

There is a limit to how much income students are allowed to have while receiving the study
subsidy (SU). If yearly income is above DKK 148,500 the excess income is deducted in the
subsidy at the end of the year. In the model, we ignore this limit as it is only binding for a
few students, and we do not see clear bunching close to the limit in Figure A.4.

A.6 Choice Probabilities

By assuming ϵ in section 3.1.1 is iid extreme value type I23 with location parameter µ = 0
and scale parameter δ we get a very simple expression for the integrated value function:

IV (s) = δ ·

γ + log




J∑

j=1
exp

(
va(s)
δ

)


 (19)

In this setup, all choices enter equally in the stochastic dimension. This has the benefit that
it’s very simple to solve and estimate. It has the disadvantage that the similar choices do
not have a positive correlation between alternatives. For all choice pairs (i, j) we have that

23CDF: G(ϵa) = exp
(
− exp

(
− −ϵa

σ

))
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Figure A.4: Study Subsidy Limit
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Note: Income distribution for UCPH students in 2015.

corr(ϵi, ϵj) = 0. This can sometimes be a very restrictive assumption. If we want to allow for
corr(ϵi, ϵj) ̸= 0 we cannot define the stochastic nature of the shocks individually. Instead,
we specify a multivariate distribution for the shock vector according to

G(ϵ) = exp


−

R∑

r=1


∑

a∈Pr

exp(− ϵa
σr

)



σr

δ

 (20)

and get the nested logit model. In the expression, we introduce partitions Pr, of which there
are R. These are the nest specific choice sets. Each partition has a parameter δ > σr > 0,
which is a measure of the degree of independence in unobserved utility among the alternatives
in nest r. The integrated value function looks slightly different under this distributional
assumption

IVn(s) = δ ·


γ + log



R∑

r=1


∑

a∈Pr

exp
(
va
σr

)


σr

δ




 (21)
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In our case, we have two partitions, where the last P2, has just one element. Then we get

IV(s) = δ ·

γ + log


∑

a∈P1

exp
(
va
σ1

)σ1
δ +

∑

a∈P2

exp
(
va
σ2

)σ2
δ




 (22)

= δ ·

γ + log


∑
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)σ1
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γ + log
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)


 (24)

Setting δ = 1 and letting the with-in first partition correlation go to zero (by letting σ1 → δ)
we get:

lim
σ1→δ

IV(s) = IV (s) (25)

of the extreme value type I assumption.
Under the nested logit assumptions, we can write up the conditional choice probabilities

in closed form. The probability of choosing a specific choice is generally the product of the
probability of choosing the choice within its nest times the probability of choosing the nest.

P (exit|s) = 1 × exp(v(exit, s))

exp(v(exit, s)) +
[∑

j∈Astudy

(
exp(v(c∗

j ,wj ,s))
σ

)]σ/δ (26)

P (c∗, w|s) =
exp

(
v(c∗,w,s)

σ

)

∑
j∈Astudy exp

(
v(c∗

j ,wj ,s)
σ

) × (1 − P (exit|s)) (27)

where we use σ to denote the only nest’s weight, since the exit weight disappears from
all expressions.
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Chapter 3
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Methods for Directional Dynamic
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Equilibrium Conditions and Solution Methods for

Directional Dynamic Oligopoly Games

Patrick Kofod Mogensen

Abstract

In this paper, I derive equilibrium conditions for sub-stages in directional dynamic

games with different model specifications in terms of number of actions, number of

players, and exogenous (non-)directional states. I show how to use these to solve for

all Markov Perfect Equilibria using Recursive Lexicographical Search. I add to the

existing literature by deriving the needed equilibrium conditions needed to solve these

games, and provide details on how to solve the sub-stages. I show how to solve the

system of multivariate polynomial equations in complete information games using all-

solution methods and propose a way to solve the more complex system of equations

using interval arithmetic in incomplete information versions of some of the games.

Full solution methods are important if the aim is to characterize the potential market

configurations that can obtain, or if the goal is to estimate structural parameters in a

model of dynamic, strategic interaction.

1 Introduction

Solving and estimating dynamic games is an active and important field of research. For

example, most cases in industrial organization require some form of strategic interaction to

be realistic. Estimation is possible to some extent, but the presence of multiple equilibria

causes problems. Even if the only objective is to solve and analyze a given model, it’s required

to have robust tools, such that all possible types of equilibria are found with certainty. For

an empirically relevant type of model called directional, dynamic games (DDGs) Iskhakov

et al. (2015) introduced a method for using the structure in the models to search for all

equilibria. If the so-called sub-stages which are relatively small problems embedded in the

overall problem can be solved, then the full model can also be solved systematically.

In this paper, I extend the analysis of directional, dynamic games (DDGs) by deriv-

ing equilibrium conditions for multinomial, multiplayer, and exogenous non-directional state
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DDGs. Expressions that enables the solution of all sub-stages are derived, and I provide all

the steps necessary to solve a complete and incomplete information version of the extensions.

In Iskhakov et al. (2015), Iskhakov et al. (2018), Iskhakov et al. (2020) they provide some

approaches to solving their sub-stages. Their approach is details and driven by the structure,

but may also be hard to implement correctly for many researchers due to the combination of

several techniques and methods. I suggest to use two general-purpose root-finding methods

that are appropriate to find the solutions of the sub-stages.

The point of departure for this paper is Iskhakov et al. (2015) who developed a full

solution method for DDGs. There are two requirements: the states must be directional,

and it must be possible to solve what they call sub-stages of the over-all game. This opens

up to completely solving such games to study different market structures and can also be

helpful in NFXP (Rust (1987); John (1988); Rust et al. (1994); Iskhakov et al. (2020)) style

estimation procedures. They provide a specific example of such a game and show how each

sub-stage can be solved using nothing more than a few derivations of corner cases mixed with

solving second-order polynomials. They can solve their complete information sub-stages using

the formula for second-order polynomial roots, and they use a second-order best response

solution method for their incomplete information sub-stages. Since the equilibrium conditions

in this paper can involve higher-order, multivariate polynomials I contribute to thntere RLS

literature by suggesting a different strategy based on homotopy methods, and I propose a

less convoluted method of solving the incomplete information sub-stage equations.

Neither this paper nor Iskhakov et al. (2015) is the first to recognize the polynomial, or

near-polynomial, structure in games. Two important contributions to applying full-solution

methods for games whose equilibrium conditions reduce to polynomial equations are Datta

(2010) and Judd et al. (2012). The former suggests using methods based on Gröbner bases

and the latter suggests all-solution homotopy continuation methods. This paper places itself

in that literature by using similar methods and software to suggest an approachable way

to solve sub-stages in RLS. Iskhakov et al. (2015, 2018) use a second-order best reponse

method that works for their binary choice duopoly game with incomplete information and

their complete information games reduce to second-order polynomialsi. I suggest the use

of interval arithmetic to solve the equations in the incomplete information case where the

conditions are not systems of multivariate polynomials, and either interval methods or all-

solution homotopy continuation methods in the complete information case.1

This paper proceeds as follows. In section 2 the introduce the model class, in section 3

I present the equilibrium conditions and discuss the steps needed to solve the complete and

1An earlier version of this paper used Gröbner bases but without the need for parametric systems, the cost

of symbolic operations seems to be prohibitive for complicated models with high order polynomial systems.
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incomplete versions of the game, in section 4 I discuss the numerical tools I will use to solve

the sub-stages, in section 5 I find equilibria in some example models, and finally section 6

concludes.

2 A Class of Dynamic Directional Games

In this section, I present the class of games I characterize equilibrium conditions for. The

notation and assumptions follows descriptions like Rust et al. (1994); Aguirregabiria and

Mira (2010) for single agent models.

Assumption 1 (Finite players) There is a finite number of players indexed 1, 2, . . . ,N .

The assumption is practical. As will be shown, there is at least one equation per player

in the equilibrium conditions. Solving an infinite-dimensional system of equations might

have theoretical importance, but it is only possible in special cases. Do note, that it is not

necessarily a given in all games that the number of players is finite. For example, in the

platform game in Dubé et al. (2010) there is a continuum of agents in a game that otherwise

fits the setup in this paper.

Assumption 2 (Partially Directional State Space) The state space, S, can be parti-

tioned as a directional part D, a non-directional part X , and the shocks E(d, x). Lower case

letters s, d, x, and ε denote elements of S, D, X , and E. D and X are discrete and finite,

and X is allowed to be empty, and E(d, x) ⊆ E1(d, x)× . . .× EN (d, x).

The directional part of the state space is essential to the approach in Iskhakov et al. (2015)

and essentially means that those states can only move in one direction. This is essential to

the recursive strategy.

Assumption 3 (Incomplete Information) Player i observe their shocks, εi ∈ Ei, to choice

specific payoffs, but only know the distribution of the other players’ shocks {εj}j 6=i. All direc-

tional, d ∈ D, and non-directional states, x ∈ X , are known to all players.

Assumption 4 (Complete Information) All players observe all shocks, {εi}Ni=1 where

εi ∈ Ei. All directional, d ∈ D, and non-directional states, x ∈ X , are known to all players.

The two previous assumptions are mutually exclusive. When I mention incomplete informa-

tion games here and below I refer to models where there are shocks present in the model.

Complete information games are games where the shock space is the empty set.
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Assumption 5 (Discrete and finite actions) The action space for each player in each

state, Ai(d, x), is discrete, and finite, and the Ji(d, x) elements in each action set are enu-

merated 1, . . . , Ji(d, x).

Notice, that the number of choices is allowed to depend on the state the agents are in. Actions

affect expected payoffs and transition probabilities from current (d, x) to future (d′, x′). They

affect payoffs through state transitions within the period, shock realizations and economic

consequences of actions such as investment costs, fixed costs, and revenue. To describe the

strategic behavior of the agents I introduce the stationary Markov behavior strategies or just

strategy for short2

Definition 1 (Strategies) A strategy σi(s) is represented by a vector

(
p1i (s), p

2
i (s), . . . , p

Ji(d,x)
i (s)

)

that defines a categorical distribution. Under strategy σi(s) agent i plays action j with prob-

ability pji (s) and only depends on the current state s.

Given the environment described by the states each player seeks to maximize expected,

discounted profits, as seen from the initial period. We will assume an infite horizon and then

the solution to the utility maximization problem for player i is given by the using Bellman’s

principle of optimality that gives us the recursive expression

Vi(s) = max
ai∈Ai(s)

{
Ui(d, x, ai |σ−i(s)) + εi(ai) + β

∫
Vi(st+1)dFi(s

′|s, ai, σ−i(s)))
}
, (1)

where ai is the optimal policy or best response for player i to the environment and the belief

about other players strategies,. Here, U(d, x, ai |σ−i(s)) is the expected instantaneous utility

because each player is uncertain about the actions of the other players and potentially also

the immediate outcomes of their own actions. Agent i will generally not know the actions of

the other players and their own actions might only control their environment in a stochastic

way. For example, if the choice is to build a new factory this period they might not be

guaranteed to get a permit. If they don’t get a permit they won’t have building costs this

period. This means that solving the games amounts to solving the Bellman equations for

all players at once. I will assume that the shock space E is continuous which is why the

expectation is expressed as an integral. In the single agent literature the Bellman equation

is a contraction mapping. When seen as a system of equations the mapping that evaluates

the system for some candidate value function vector will generally not be a contraction.

2See (Doraszelski and Escobar, 2010, page 8) or (Iskhakov et al., 2015, page 7))
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This framework puts a restriction on the types of equilibria and defines what we mean

by a best-response. A best-response is a solution conditional on the strategies of the other

players to the problem in eq. (1). We return to the equilibrium concept below.

Assumption 6 (Conditional Independence) The transistion probability function, πS, de-

noting the probabilities of s transitioning to a state s′ next period satiesfies a conditional

independence property

πSi (s′|s, a) = πD,Xi (d′, x′|d, x, a, σ−i)πE(e′|e, a). (2)

The conditonal independence assumption allows us to separately evaluate the integral for the

choice specific shocks ε and the other states. Further simplification comes from the following

assumption.

Assumption 7 (Logit) The shocks are iid, across players, time and choices, extreme value

type I distributed with adjusted scale parameter η and a mean of 0.3 This implies that

Ei(d, x) ⊆ RJi(d,x).

The power of this assumption with the additive structure of the shocks above is that the

integrated value function for each player

IVi(d, x) ≡
∫
Vi(d, x, εi) dG(εi) (3)

fully characterizes the solution of the original model given the assumptions of G which the

cummulative density function of the shocks and that I can find a simple expression for it.

The function can be found as the unique solution to the integrated Bellman equations that

can be shown to have the simple form of

IVi(d, x) = η log



Ji(d,x)∑

j=1

exp

(
vji (d, x)

η

)
 (4)

where the choice specific value functions vji are defined as

vji (d, x) = Ui(d, x, ai |σ−j(s)) + βi
∑

d′∈D

∑

x′∈X
IVi(d

′, x′)πD,Xi (d′, x′|d, x, ai, σ−i) (5)

3In other words, the location parameter is −σγ with γ being the Euler-Mascheroni constant. This means

that the mode is not zero, but for this distribution it’s impossible to have both. If a location parameter of 0

is preferred, then the integrated value function simply changes to IV (d, x) = σ(γ + log
∑

expu). Since the

mean is now positive, the specific solutions might shift slightly, depending on the scale parameter used.
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Notice, that not all d′ ∈ D will be feasible from all current d, but this is taken care off by

assigning zero probability to such transitions. This gives a very simple expression for the

conditional choice probabilities

pki (x) = Pri(a = k|x) =
exp

(
vki (d,x)

η

)

∑Ji(d,x)
l=1 exp

(
vli(d,x)

η

) . (6)

I now return to define what equilibrium concept I’m going to use. The models I will present

fit in to the RLS framework. The authors define their equilbrium concept in Iskhakov et al.

(2015)[Definition 1] to be stationary Markov Perfect Equilibria. More further discussion, see

Doraszelski and Pakes (2007), Doraszelski and Escobar (2010) on MPEs in dynamic industrial

organization.

Definition 2 Markov Perfect Equilibrum A Markov Perfect Equilibrium is a set of integrated

value functions {IVi(d, x)}Ni=1 also defined for all states of the game that solve Equation 4 as

well as the optimal policies given by the set of strategy functions {σi(s)}Ni=1 with consistent

beliefs for all players for all s ∈ S.

I have now described most of the requirements I will impose in the derivation of the equilib-

rium conditions in this paper. Since I am going to be solving the equilibrium conditions in

the choice probability space, it is useful to write the Bellman equation slightly differently.

Assumption 8 (Expected utility) The expected utility is assumed to be of the following

form

Ui(d, x, ai|σ−i) =
∑

α∈A(d)

[(∏

j 6=i
σj(d, x)

)
ui(d, x, a)

]
(7)

where A(d) ≡ A1(d)× . . .×Ai−1(d)×{ai}×Ai+1(d)× . . .×AN (d) such that a is a realized

action for all players.

since I pass in the realized actions a into ui(d, x, a) there is still room to model ui(d, x, a) as

expected utility given the actions. This expectation then represents something like stochastic

costs given a choice. Since x’s are exogenous, we can write

πD,X (d′, x′|d, x, ai, σ−i) = πD(d′|d, ai, σ−i)πX (x′|x) (8)

which totally decouples the transition probabilities.4 Since I’m looking at the transition

probabilities as seen from agent i the effect of the actions of the other players are only valid

4Given the derivations in the rest of the paper it is clear that it is possible to have a more complicated

structure here. Maybe some exogenous states are only present in some directional states such that πX (x′|x, d)

may be more appropriate, but we don’t do that here.
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up to the belief over other players’ strategies. To that end, I introduce πA that defines the

probability of d transitioning into d′ given all the actions, not strategies.

πD(d′|d, ai, σ−i) =
∑

a∈A

(∏

k 6=i
σakk (d, x)πA(d′|d, a)

)
(9)

or in words: seen from player i’s point of view, the transition probability given their belief over

the other players strategies is found by evaluating the sum of (d′|d)-transition probabilities

given the complete action vector a weighted by probability of each action occuring given the

belief of σ−i. Then, I can write our choice specific value functions as

vji (d, x) =
∑

d′∈D

∑

a∈A

(∏

k 6=i
σakk (d, x)πA(d′|d, a)

)[
ui(d, x, a) + βi

∑

x′∈X
IVi(d

′, x′)πX (x′|x)

]
(10)

This formulation is useful when πA(d′|d, a) is degenerate in the sense that a pair (d, a)

uniquely and deterministically determines d′.

2.1 Structure of the directional space

As mentioned above, the RLS theory and algorithm were laid out in Iskhakov et al. (2015)

who explain in great detail how to implement and devise the overall iterative scheme that

ensures that sub-stage equilibriums are efficiently and exhaustively checked in ways they can

produce the equilibria for dynamic directional games. To do this they introduce equilibrium

selection strings, variable metric arithmetic, and many more concepts that make it possible to

write up a program the solves the full game. However, the most important part for this paper

is the fact that if you recurse in the opposite direction of the directionality of the game, you

can partition the game into sub-stages ordered according to the progression of the directional

state variables. Within a sub-stage time is allowed to advance but all directional stages are

kept constant. The procedure is a multivariate version of backwards induction because there

can be more than one directional state. Typically, there will at least be one directional state

variable per agent. Solving from the back like this means that I can keep track of the effect of

choosing different equilibria in different sub-stages, and it also means that all value functions

I need to solve a sub-stage, besides the value functions for the state(s) in that sub-stage, are

known. This gives enough structure to derive the equilibrium conditions I will show below.

In subsection 2.2 I provide an example of how the stages can be structured that will provide

an intuitive understanding of what a sub-stage is.

To fix ideas, I look at games where the state transitions have a particular form given the

actions. The directional part of the state space, D, can be seen as a vector of state indices
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for each player:

d = (d1, d2, . . . , di, . . . , dN )

If the actual choices of each player is given as a = (a1, a2, . . . , aN ) then player i has to use the

following transition probabilities when taking the strategies of the other players into account

πi(d
′, x′|d, x, ai, σ−i) = πDi (d′|d, ai, σ−i) · πX (x′|d, x) (11)

πDi (d′|d, ai, σ−i) =
N∏

n=1

πDi (d′n|d, ai, σ−i) (12)

πDi (dj + k − 1|d, ai, σ−i) = σkj (d), j 6= i (13)

πDi (di + k − 1|d, ai = k, σ−i) = 1 (14)

πDi (di + k − 1|d, ai 6= k, σ−i) = 0 (15)

Such that the choice index indicates the increments of the state values. These values can be

thought of as indices to a categorical state or an actual count variable. The transitions are

then deterministically determined by each player’s choice. Any player i knows that player

j directly controls d′j through their actions, but they only have beliefs of their behavior

strategies. They can only determine d′i with certainty. This means that d′ = d + a− 1 such

that I get

vji (d, x) =
∑

a∈A

(∏

j 6=i
σj(d, x)

)[
ui(d, x, a) + βi

∑

x′∈X
IVi(d+ a− 1, x′)πX (x′|x)

]
(16)

=
∑

a∈A

(∏

j 6=i
σj(d, x)

)
τi(d, x, a) (17)

τi(d, x, a) =

[
ui(d, x, a) + βi

∑

x′∈X
IVi(d+ a− 1, x′)πX (x′|x)

]
(18)

where τi is the choice specific value function taking all actions as given, not just that of player

i.

For a two player game with binary choice and no non-directional states, this reduces to

vj1(d, x) = σ1
2(d)τ1(d, x, (j, 1)) + σ2

2(d)τ1(d, x, (j, 2))

vj2(d, x) = σ1
1(d)τ2(d, x, (1, j)) + σ2

1(d)τ2(d, x, (2, j)).

This form is not essential for the derivation method. If different rules were given some of

the summations involved in expressing the expectations over the possible future states would

become more complicated, but the form of the resulting equilibrium conditions would keep

its overall properties. To avoid clutter in the main text I stick to transition structure from
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Equation 15 above because it fits the example model, but I provide some details for the more

general model in Appendix F. This extended model would handle the uncertain investments

for example, and could be applied if zoning laws made it uncertain if the fast food chains

in this paper’s example section would be sure whether a decision to open a new restaurant

would materialize or not. Though, it only works if there is at least one choice that leads to

a certain movement from the current directional state to a different one.

In fig. 1 I show some different types of restrictions on the geometry of the directional state

space. If there are two firms with an endogenous state associated with each, and there is

simply an upper limit to this state’s value, then the state space is as in the first panel. This

is the case in our expansion model I will present below. In the second panel, there is a model

where the restriction is put on the collection of states. For example, if a market can only

support five fast-food restaurants, but each restaurant would be able to open ten each, the

state space would look like this. It could also be a mix, as shown in the third panel. Here,

each firm can support four restaurants, but there can be no more than six restaurants in

total for institutional reasons. Depending on the specific game these restrictions can impact

the presence of multiple equilibria. We also clearly see how the directional structure leads

to the possibility of dividing the game into sub-stages represented by each dot. Once a state

represented as a dot has been solved for, I can solve the dot to the west and south. Then

with those three solutions in hand, I can solve the south-west dot.

The point of showing these is to identify some common cases. Of course, there may be

models that deviate from this pattern, but a lot of the structure from the exposition here is

re-useable. The following enumeration of the different types of states borrows from Iskhakov

et al. (2015). Whenever neither player can advance their endogenous state by taking an

action, I call it a corner state. These are colored blue in fig. 1.

Definition 3 (Corner state) A corner state is a state where all endogenous directional

states are in their absorbing state.

It could just as well be decreasing depending on the application. Another kind of state is the

edge state. These were red or orange in fig. 1.

Definition 4 (Edge state) An edge state is a state where at least one endogenous, direc-

tional state is absorbing, and at least one endogenous, directional state is not.

In fig. 1 only the first and last panel had both of the types of states introduced so far.

The second does not have any edge states. The last type of state I will explicitly denote is

the interior state. In fig. 1 these are shown as black dots.
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Figure 1: Three posibilites (left to right): cap on each state, cap on sum of states, and a mix

of the two.
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Definition 5 (Interior state) An interior state is a state where at least two directional

states are not in their absorbing state.

This means that there is still room for movement in more than one directional state. Unless

the actions of the player have consequences to the other players beyond changing states,

the interior states are those that can have actual strategic behavior and multiple equilibria.

This is because several players can affect state transitions. If only one player can affect state

transitions this is the usual single-agent situation. If there are more than two players in total

this could be the case where one player is in an absorbing state, but the other two are still

actively trying to affect their situation.

2.2 Expansion Game

We now present a model of market expansion where two firms operate in a market and

have to choose to open a new store or not each period. The model is heavily inspired by

Aguirregabiria et al. (2009) which builds on Toivanen et al. (2005). To begin with, I ignore

the macro market state dynamics, but later I allow for the inclusion of exogenous states. It

can easily be extended to multiple openings per period and multiple agents, as will shown.

Time is discrete, and there is a maximum number of stores each firm wants to have, or are

allowed to have, in a given market, d̄j for j ∈ 1, 2. The directional state space is then

D = {(d1, d2) ∈ Z2 | 0 ≤ dj ≤ d̄j, j ∈ {1, 2}} (19)

The feasible state transitions are illustrated in fig. 2. All orange arrows are state evolutions

where only firm 1 opens a store, the black arrows indicate co-movement, and the red arrows

represent only firm 2 opening a store. The purple dot is the absorbing state, the orange dots

are where only firm 2 is in its absorbing state, and similar for the red dots and firm 1. The

black dots are states where both firms can expand. It is impossible to close a store in this

model. Toivanen et al. (2005) motivate this by the fact that exits a very rare phenomenon

in their data.

We will now describe how the stages are ordered. The key to the approach is to start

from the back. Much like regular backwards induction you first look at the last interaction,

then the second last, and so on back to the very first interaction in the game. In this model,

the recursion starts at the absorbing state (4, 4) with D = 4 + 4 = 8 stores. The previous

stage is where D = 4 + 4 − 1 = 7, which is the red dot just below, (4, 3), and the orange

dot to the left, (3, 4), of the absorbing state. The third last stage consists of dots on the

line connecting (4, 2) and (2, 4), and so we continue all the way back to (0, 0). I will come

back to this when solving the incomplete information game but I’m calling this an expansion
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Figure 2: Illustration of D in the expansion game.

game because the interesting part of the dynamics is the evolution of the directional state:

the number restaurants. In what might be called an entry game, the more interesting thing

would be whether an agent was present with a firm in a market or not. This would reduce our

state space significantly, but in such a model directionality might not be the best modeling

choice, because entry models are often entry/exit models. In such a model, alternative costs

are very important. If an agent doesn’t enter a fast food market, they might invest their

money elsewhere and get an expected return. In the model presented here, the reference

profits are simply zero, so the incentive to move out of states with zero elements will be very

strong.

To have a chance of solving this model, we have to describe the fundamentals of the model.

The firms discount the future according to the discount factors β1 and β2 respectively. In

each state of each stage, the two firms engage in static Cournot competition. Assume that

the marginal cost, MCj, is given by

MCj = cj − e · (dj + aj − 1), (20)

where aj is the choice of opening another store (aj = 1) or not (aj = 0), and dj is the number

of stores at the beginning of the period. The inverse demand is given by

pt = b0 −
b1
xt
Qt, (21)

where Qt is aggregate output, xt is an exogenous market state, and pt is the product price.

We assume xt to be fixed at x̄ in the following. This is a slight simplification relative to

Aguirregabiria et al. (2009), and I discuss the implications of relaxing this assumption in
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subsection 3.3. Solving the Cournot model, I get the variable profits each period to be5

V Pj =
x̄

b1

(
b0 +MC−j − 2MCj

3

)2

. (22)

In addition to this variable cost, there is an overall fixed cost of being in the market, and a

fixed cost that depends on the number of stores the firm has in the market. The former can

be thought of as market specific logistics investments and marketing, and the latter can be

thought of as fixed costs comming from specific stores. The functional form is

FC(d, aj) = θFC1 · 1{dj + aj − 1 > 0}+ θFC2 · (dj + aj − 1) + θFC3 · (dj + aj − 1)2 (23)

The total instantaneous profits given actions are then

Πj(d, aj, a−j) = V Pj(d, aj, a−j) + FC(d, aj). (24)

The expected profits are simply the profits implied by different actions multiplied by their

respective probabilities given the strategy of the other player plus an extreme value type 1

shock with scale parameter η.

3 The solutions

With a model class in hand and a specific model to motivate examples, we look at sub-stage

solutions for some different types of games. They will differ by the number of actions, the

state space structure, as well as the number of players. We start with the simplest binary

duopoly game without exogenous states. Then we extend and generalize this case to that of

a multivariate model, a case with non-directional exogenous states, and the case with more

than two players. Further extensions and combinations of the different features are possible.

However, in this paper the goal is to make the steps sufficiently clear, that it is straight

forward to derive the equilibrium conditions for similar models. This could be models with

different transition structure or models with sequentially played directional games combined

into one. For example, the model in Iskhakov et al. (2018) also derived the equilibrium

conditions for the binary choice duopoly game with alternating moves, which turns out to

lead to even simpler conditions than the ones below, because the expected value functions

are less complicated to evaluate. One one player can affect their own directional state per

turn.6

5In the reference model there appears to be a missing factor of 2 on the firm’s own marginal cost and the

variable profits expression is not consistent with the demand function. The inverse demand function is used

instead to give an expression that’s consistent with the multiplicative term outside of the parentheses.
6They are actually even able to show that there can be a unique equilibrium of the entire game if the

game-wide technology state in their model evolves deterministically.
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Common for all sub-classes of models we will solve are, that they start from the equilib-

rium conditions that all choice probabilities are given by the choice probability equations.

This might seem like a stupid idea, because I mentioned earlier that each agent’s solution is

fully characterized by their integrated value function. The system of Bellman equations for

a given sub-stage then has one equation per agent if there are no exogenous states or |X (d)|
equations per agent if there are. If we solve it in the choice probability space we now have

Ji(d) − 1 times as many. The last probability is given residually. The problem with value

functions is that the system can have many solutions and that the fixed point problem is

solved in unconstrained variables. If we solve it in the choice probability space instead our

variables of interest are on a compact set and in section 4 I explain how this can be exploited

to solve for all equilibria. The complete information games are especially convenient, as they

are systems of multivariate polynomials for which there are robust algebraic and numerical

all-solution methods. The general approach to deriving the conditions are explained in Ap-

pendix A. In the corner and edge states only one player can choose and action, so we solve

the problem in value function space.

3.1 Binary duopoly game

In the binary duopoly game, each player has the choice of opening a new store or not. If

their states are absorbing their choice set is empty. To solve the game we need equilibrium

conditions for the binary duopoly game. I first need to solve the corner states. Sometimes

it’s easier to always give all players the full choice set, even in the absorbing state as in

Aguirregabiria et al. (2009). The value in such a state where both agents have a choice but

they are in their absorbing state, d̄ =
(
d̄1, d̄2

)
, is

IVi(d̄) = η log

(
exp

(
v1i (d̄)

η

)
+ exp

(
v2i (d̄)

η

))
⇔

IVi(d̄) =
η log(2) + Πi(d̄, 1, 1)

1− βi
This is simply the usual infinitely discounted profits, but with the addition of η log(2). This

is the expected value of the shock given optimal behavior. It is well-known from the CCP

literature, see for example Hotz and Miller (1993); Aguirregabiria and Mira (2002). There,

the expression is − log(p11), which is in line with our expression, as they have a unit scale

parameter, and the optimal choice probability is obviously 0.5. Since profit is the same no

matter the choice, it is possible for the agent to simply choose the choice with the biggest

shock in a given realization.

The choice probability of 0.5 follows directly from the conditional choice probability for-
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mula and this feature is inherent to the class of models. With the taste shocks, we’re not

talking about mixed strategies, but rather so-called behavioral strategies. This is because all

taste shocks are known to each agent. As a result, we could not have ”mixing” strategies of

0.3 in the corner state(s) in this model. They will mechanically be 0.5 or else the agent will

fail to take advantage of the taste shock arbitrage.

Alternatively, we give only agents a choice of doing nothing and get

IVi(s̄) = η log

(
exp

(
Πi(d̄, 1, 1) + βiIVi(d̄)

η

))

IVi(s̄) =
Πi(d̄)

1− βi
which is the discounted stream of infinite profits an agent gets in the corner. We have not

removed the taste shocks, but since it has mean zero, and there is no way to avoid bad shocks,

they don’t enter the discounted profits. We’ve solved the corner states.

In the edge states, one player has no choice but the other player can still decide to

increment their state. The solution then changes, even for the playing who’s constrained.

Say player 1 is in the absorbing state then de1 = (d̄1, d2) and

IV1(d
e
1) = η log

(
exp

(
p12(d

e
1)(Π1(d

e
1, 1, 1) + β1IV1(d

e
1)) + p22(d

e
1)τ1(d

e
1, 1, 2)

η

))
(25)

= p12(d
e
1)(Π1(d

e
1, 1, 1) + β1IV1(d

e
1)) + p22(d

e
1)τ1(d

e
1, 1, 2)⇔ (26)

IV1(d
e
1) =

p12(d
e
1)Π1(d

e
1, 1, 1) + p22(d

e
1)τ1(d

e
1, 1, 2)

1− p12(de1)β1
(27)

We see the value of waiting is much like before, but now there’s a chance to move out of the

current state. This can be seen in the numerator, but also in the denominator. It is not only

1 − β1, but there is a correction for the chance that we will stay in de1. If the probability is

very high, then it’s close to the infinite stream. If it is low, then we will probably just get

the profits and continuation value from the other possible state, and the denominator is just

1. This correction is of course the choice probability that the other player chooses to stay in

their current state.

The solution for player one depends on a choice probability of player 2: p12(d
e
1). From

player two’s perspective, this is just a normal single agent dynamic programming problem

with an infinite horizon. The solution is found following the literature on single agent models

by solving the following fixed point problem:

Γ(IV2(d
e
1)) = η log

(
exp

(
Π2(d

e
1, 1, 1) + β2IV2(d

e
1)

η

)
+ exp

(
τ2(d

e
1, 1, 2)

η

))
(28)
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and Γ(v) is a contraction and we can safely use function iteration or Newton’s method.7 We

can of course also use any other root-finding algorithm. From the fixed-point we can find the

probabilities, and then we have the solution. If player two is constrained and player one is

not, then we can simply flip indices, introduce de2 = (d1, d̄2), and get

IV2(d
e
2) =

p11(d
e
2)Π2(d

e
2, 1, 1) + p21(d

e
2)τ2(d

e
2, 2, 1)

1− p11(de2)β2
(29)

IV1(d
e
2) = η log

(
exp

(
Π1(d

e
2, 1, 1) + β1IV1(d

e
2)

η

)
+ exp

(
τ1(d

e
2, 2, 1)

η

))
(30)

So there is only one equilibrium in the corner state and in the edge states. This is not

surprising either, since the edges are single agent dynamic programming problems. In the

edge cases we can use the complete information solution as the starting value for the value

function search. As suggested earlier, the real interesting situation comes from interior states.

In the interior states, we get a coupled system of Bellman equations expressed by the

Bellman operators

IV1(d) = η log
[

exp

(
p12(d) (Π1(d, 1, 1) + β1V1(d)) + p22(d)τ1(d, 1, 2)

η

)
+ (31)

exp

(
p12(d)τ1(d, 2, 1) + p22(d)τi(d, 2, 2)

η

)]
(32)

IV2(d) = η log
[

exp

(
p11(s) (Π2(d, 1, 1) + β2V2(d)) + p21(d)τ2(d, 2, 1)

η

)
+ (33)

exp

(
p11(d)τ2(d, 1, 2) + p21(d)τ2(d, 2, 2)

η

)]
(34)

If we consider the right hand sides as functions of IV1 and IV2 respectively, they are con-

tractions given p12(d) in the first line and the second line is a contraction given a p11(d). The

system as a hwole is generally not a contraction. Then, fixed point iterations cannot gen-

erally find all equilibria. Luckily, I can take advantage of the content of Appendix A, and

get expressions that characterize the solution of the system. In Appendix B I show that the

coupled Bellman equations can be solved in the space of choice probabilities by solving the

following system

0 = K1
1 − η log

(
p11(d)

1− p11(d)

)
+
(
K2

1 − β1η log
[
1− p11(d)

])
p12(d) +K3

1p
2
2(d)2 (35)

0 = K1
2 − η log

(
p12(d)

1− p12(d)

)
+
(
K2

2 − β2η log
[
1− p12(d)

])
p11(d) +K3

2p
2
1(d)2 (36)

7The contractive properties follows from the single agent nature of these states since player one has no

actions to take.
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with the following constants

K1
1 ≡ [τ1(d, 1, 2)− τ1(d, 2, 2)]

K1
2 ≡ [τ2(d, 2, 1)− τ2(d, 2, 2)]

K2
1 ≡

[
Π1(d, 1, 1) + τ1(d, 2, 2)− τ1(d, 2, 1)− τ1(d, 1, 2)

]
+ β1τ1(d, 2, 2)

K2
2 ≡

[
Π2(d, 1, 1) + τ2(d, 2, 2)− τ2(d, 1, 2)− τ2(d, 2, 1)

]
+ β2τ2(d, 2, 2)

K3
1 ≡ β1 (τ1(d, 2, 1)− τ1(d, 2, 2))

K3
2 ≡ β2 (τ2(d, 1, 2)− τ2(d, 2, 2))

This gives us a system of two equations in two unknowns. These equations are sufficient to

find the interior solutions for the strategies, and depend only on things we know once we

reach the sub-stage that contains d.

3.1.1 Complete information

The complete information case obtains, as we let η →+ 0. In corner cases we get that

IV1(d̄) =
Π1(d̄)

1− β1
(37)

IV2(d̄) =
Π2(d̄)

1− β2
(38)

where Πi(d̄) is the profits pertaining to whatever choice we have chosen to be standard in the

corner state. If it is really important to have two choices here, then it is simply the larger of

the two entering the numerator, and if there’s a tie, a tie-breaking rule must be applied. In

the player 1 edge cases, we get

IV1(d) =
p11(d)Π1(d, 1, 1) + p12(d)τ1(d, 1, 2)

1− p12(d)β1
(39)

IV2(d) = max

{
Π2(d, 1, 1)

1− β2
, τ2(d, 1, 2)

}
(40)

For player 2’s edge cases, we get

IV1(d) = max

{
Π1(d, 1, 1)

1− β1
, τ1(d, 2, 1)

}
(41)

IV2(d) =
p11(d)Π2(d, 1, 1) + p21(d)τ2(d, 2, 1)

1− p11(d)β2
. (42)

Now, we need to solve the case where there can potentially be several equilibria. To solve

the interior points, we have to solve systems of polynomials. Luckily, they are very simple in

114



the binary case:

0 =τ1(d, 1, 2)− τ1(d, 2, 2)+

[Π1(d, 1, 1)− τ1(d, 2, 1)− τ1(d, 1, 2) + (1 + β1)τ1(d, 2, 2)] p12(d)+

β1 [τ1(d, 2, 1)− τ1(d, 2, 2)] p12(d)2

0 =τ2(d, 2, 1)− τ2(d, 2, 2)+

[Π2(d, 1, 1)− τ2(d, 1, 2)− τ2(d, 2, 1) + (1 + β2)τ2(d, 2, 2)] p11(d)+

β2 [τ2(d, 1, 2)− τ2(d, 2, 2)] p11(d)2

We can solve each equation by itself, and look for solutions in the unit square. This is simple

application of the usual formula for the roots of a second-order polynomial. However, we

could also use the methods in section 4.

That was the mixed strategies. In the complete information case, we also have pure

strategies to consider. These might be a bit more tedious to find, but essentially there can

only be four possible solutions: (p11, p
1
2) ∈ {(0, 1), (1, 0), (0, 0), (1, 1)}. Say p12 = 0 such that

action 1 is certain. Then we get

v11(d) = Π(d, 1, 2) + βIV ((d1, d2 + 1)) (43)

v21(d) = Π(d, 2, 2) + βIV ((d1 + 1, d1 + 1)) (44)

Everything here is known, so we can simply calculate the best response of player 1 to player

two playing p12 = 0:

(p11)
∗(p12 = 0) =





1 if v11(d) ≥ v21(d)

0 if v21(d) > v11(s)
(45)

similarly for player 2

(p12)
∗(p11 = 0) =





1 if v12(s) ≥ v22(s)

0 if v22(d) > v12(s)
(46)

This tells us that we can easily verify if (p11, p
1
2) ∈ {(0, 0), (0, 1), (1, 0)} is a solution. The pair

(p11, p
1
2) = (1, 1) is a solution if:

Π1(d, 1, 1)

1− β1
> τ1(d, 2, 1) (47)

Π2(d, 1, 1)

1− β2
> τ2(d, 1, 2) (48)

This gives us a quite easy way to look for pure strategy equilibria.

The procedure for the complete information game is now complete. It will cycle through

all sub-stages, looking for pure strategy and mixed strategy equilibria in all sub-stages.
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3.2 Multinomial duopoly game

Binary games are popular and I showed that the simple choice structure can simplify the

solution a lot. In this section, I show that the same type of equilibrium conditions emerges

multinomial case and that I can use the same strategy to find them.

In this section, Ai(d) can contain more than two elements. In all states where there are

only two choices, we can simply use the conditions from the previous section. If there are

three or more, we will need to derive new conditions. We only have Ji(d)−1 free probabilities

for each player due to the unit sum restriction, and we write pJi (d) ≡ 1 − Σp
−Ji(d)
i , where

Σp
−Ji(d)
i =

∑Ji(d)−1
j=1 pji .

The structure of the equilibrium conditions is familiar, but this time the solution is

characterized by system of NE =
∑N

i=1(Ji(d) − 1) equations in NE unknowns: the sum of

Ji(d) − 1 free probabilities across all players. There are potentially also many more terms.

Define Ĵi ≡ Ji(d) for compactness. In Appendix C I derive the equilibrium conditions and

the constant definitions can also be found there. There is one condition for each player with

the following form

0 = L1
1 − η log

(
p11(d)

pĴ11 (d)

)

+
(
L2
1 − β1η log

(
pĴ11

))
p12(d) + β1p

1
2(d)

Ĵ2−1∑

k=1

L3,k
1 pk2(d) +

Ĵ2−1∑

k=2

L4,k
1 pk2(d) (49)

0 = L1
2 − η log

(
p12(d)

pĴ22 (d)

)

+
(
L2
2 − β2η log

(
pĴ22

))
p11(d) + β2p

1
1(d)

Ĵ1−1∑

k=1

L3,k
2 pk1(d) +

Ĵ1−1∑

k=2

L4,k
2 pk1(d) (50)

Again, the goal here was to express the behavior strategies as functions of things that are

known at this sub-stage. The remaining equilibrium equations indexed j1 ∈ {2, . . . J1(d)−1}
and j2 ∈ {2, . . . , J2(d)− 1} are

0 = L5
1 − η log

(
pj11 (d)

pĴ11 (d)

)
+

Ĵ2−1∑

k=1

L6,k
1 pk2(d) (51)

0 = L5
2 − η log

(
pj22 (d)

pĴ22 (d)

)
+

Ĵ2−1∑

k=1

L6,k
2 pk1(d) (52)

(53)

These are much simpler and the products between strategy elements are of lower order. This

is because they are derived from equilibrium conditions that characterize actions that force
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at least one element in d to transition. Of course, (p11(d), p12(d)) still enter, so we cannot solve

them independently of the first more complicated set of equations.

In many practical examples, we expect Ji(d) to be relatively small. Increased compu-

tational cost of course comes with the explicit advantage that we can consider much more

complicated interactions between agents. More choices add the complexity and flexibility

copmared to the binomial models. Being able to add more nuance than ”build/don’t build”,

”enter/don’t enter”, ”invest/don’t invest” can the usefulness of these models in an empirical

context.

3.2.1 Complete information

This case is more complicated than before. Specifically, none of the equations are simple

second-order polynomials in a single choice probability for any player. Rather, we have a

second-order multivariate polynomials. However, it is still true that the deterministic model

can be solved completely with the methods we will see later. All that is needed is that we have

a system of polynomials, and the limiting system is exactly that. Besides the mixed strategy

equilibria, we have to find the pure strategy equilibria. The procedure is the same as in the

duopoly case. This time there are many more cases, so there is a curse of dimensionality

in this part of the solution approach, but this part in negligible as it only requires simple

comparisons.

3.3 Binary duopoly game with non-directional exogenous states

An interesting extension is to include non-directional exogenous states. Things like market

activity states (GDP growth, unemployment, inflation, and so on) is very relevant for industry

dynamics, and failing to account for them might give inaccurate conclusions about market

dynamics. As for the other extensions presented here, the approach is more or less the same,

but the multiple states per sub-stage do come with a complication. In Iskhakov et al. (2018)

they actually have a non-directional exogenous state in their alternating move game: the

indicator for whose turn it is. The expressions end up very simple because on player has the

empty set as their action space each turn. Here, we do not impose the same restriction which

adds some complications in terms of having a chance of staying in the same directional state

from one turn to the next but having the non-directional exogenous state changing.

In fig. 3 we see a simple state space with an exogenous non-directional state x that takes

values in X = {x1, x2}, and a directional state s that takes values in D = {d1, d2, d3}. Here,

we need to take into consideration, that we can stay in a directional state for several periods,

but the non-directional state can change. Black arrows are cases where there are only non-
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d

x

d1 d2 d3

x2

x1

Figure 3: A simple state space with a directional state, d ∈ D, and non-directional state,

x ∈ X .

directional moves, and red arrows show moves of directional character. We see that both the

directional transitions today as well as the non-directional transitions have to be considered

in each sub-stage.

This time around we have 2×|X | free strategy probabilities. I derive them in Appendix E

where the constant definitions can also be found. For x ∈ X they are

0 = Q1
1 −

log [p11(d, x)]

1− log [p11(d, x)]
+

[
Q2

1 − β1η
∑

x′∈X
πX (x′|x) log

[
p21(d, x

′)
]
]
p12(d, x)

+ p12(d, x)
∑

x′∈X
p12(d, x

′)Q3,x′
1 (54)

0 = Q1
2 −

log [p12(d, x)]

1− log [p12(d, x)]
+

[
Q2

2 − β2η
∑

x′∈X
πX (x′|x) log

[
p22(d, x

′)
]
]
p11(d, x)

+ p11(d, x)
∑

x′∈X
p11(d, x

′)Q3,x′
2 (55)

(56)

Once again we’re in a multivariate polynomial case as η goes to zero.

3.3.1 Complete information case

Given the description above, it is quite easy to solve the corner states, although we need to

find a value function per x ∈ X . The value functions are given by the following expression

∀x ∈ X : IVi(d, x) = Πi(d, x, 1, 1) + βi
∑

x′∈|X|
π(x′|d, x)IVi(d, x

′) (57)

118



(s1, x)

s2

s21

s22

(s11, x1) (s11, x2) (s11, x3) (s12, x1) (s12, x2) (s12, x3)

Figure 4: A partial view of the state space of the expansion game with non-directional

exogenous states.

Let IVi be the IVi(x)’s stacked in a vector, and similarly for Π, and let F be the transition

matrix for the non-directional state, then we can write the above as

IVi = Π + βiF IVi (58)

so we can write

IVi = (I − βiF )−1Π (59)

The edge states are solved much like in the binary duopoly. Of course, we also have a

vector of value functions to find here. For player 1 at the edge where d1 = d̄1 we have the

following at a given x ∈ X

∀x ∈ X : IV1(d
e
1, x) = p12(d

e
1, x)τ̂1(d

e
1, x, 1, 1) + p22(d

e
1, x))τ̂1(d

e
1, x, 1, 2) (60)

if we use ∗ to denote the Hadamard product, we can re-write the above to vector-matrix

notation as before we have for x ∈ X

IV1(d
e
1, x) = p12(d

e
1, x)Π1(d

e
1, x, 1, 1) + p12(d

e
1, x)β1

∑

x′∈X
π(x′|d, x)IV1(d

e
1, x
′) + p12(x)τ̂(d, x, 1, 2)⇔

IV1(d
e
1) = P 1

2 (de1) ∗ Π1(d, 1, 1) + (~1− P 1
2 (de1)) ∗ τ̂(de1, 1, 2) + β1P

1
2 (de1) ∗ F IV1(d

e
1)⇔

IV1(d
e
1) = (I − β1P 1

2 (de1) ∗ F )−1(P 1
2 ∗ Π1(d

e
1, 1, 1) + (~1− P 1

2 (de1)) ∗ τ̂(de1, 1, 2)) (61)

where ~1 is an appropriately dimensioned vector of ones, and P j
i (d) is a vector for subject i

of choice probabilities for choice j across all x ∈ X . As before, we need to find P 1
2 (d) to
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calculate this, but everything else is known. For player 2 at this edge, we get the Bellman

equation

IV2(d
e
1) = max

(
Π(de1, 1, 1) + β2F IV2(d

e
1),Π(de1, 1, 2) + β2F IV2((d̄1, d2 + 1))

)
(62)

again in vector-matrix notation. We have to resort to some fixed-point scheme, and value

function iterations works because this is a single agent model as in the other cases.

With the corner and edges solved, we are ready to consider the interior sub-stages. These

are more complicated, as we have 4|X | different cases to check for pure strategies, four per

exogenous state, as well as the mixed strategy equilibria from the system of polynomials.

This can potentially be a lot of cases, but luckily each case is relatively cheap to check.

All that has to be done is to loop through all the possible pure strategies, calculate the

value conditional on those strategies, and compare to find the best responses. The above

description and associated examples hopefully show that solving directional games exogenous

non-directional states is certainly possible, and practically feasible. Some of the details are

significantly different from the simpler cases, but there is nothing so complicated it cannot

be handled using some algebra, and knowledge of the model.

3.4 Binary triopoly game

The last of the extensions we will see is the oligopoly version that goes beyond simply

duopoly. For three players with binary choice, we get three equations in three unknowns.

The derivations for the interior solutions are in Appendix D where the constant definitions

can also be found. The basic structure is again the same, and the resulting equations are:

0 = M1
1 − η log

[
p11(d)

1− p11(d)

]
+ p12(d)M2

1 + p13(d)M3
1 +

[
M4

1 − β1η log
[
p21(d)

]]
p12(d)p13(d) (63)

+M5
1p

1
2(d)2p13(d) +M6

1p
1
2(d)p13(d)2 +M7

1p
1
2(d)2p13(d)2 (64)

0 = M1
2 − η log

[
p12(d)

1− p12(d)

]
+ p11(d)M2

2 + p13(d)M3
2 +

[
M4

2 − β1η log
[
p22(d)

]]
p11(d)p13(d) (65)

+M5
2p

1
1(d)2p13(d) +M6

2p
1
1(d)p13(d)2 +M7

2p
1
1(d)2p13(d)2 (66)

0 = M1
3 − η log

[
p13(d)

1− p23(d)

]
+ p12(d)M2

1 + p11(d)M3
3 +

[
M4

3 − β3η log
[
p23(d)

]]
p11(d)p12(d) (67)

+M5
3p

1
2(d)2p11(d) +M6

3p
1
2(d)p11(d)2 +M7

3p
1
2(d)2p11(d)2 (68)

These are only the interior equilibrium conditions. What about the corners and edge states?

We could repeat everything, but luckily we’ve done most of the work already. If all players

are at terminal directional nodes, then we’re in a corner state. If we are in an edge state
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where one player is at a terminal directional node, then the remaining two players simply

play a ”two-player” interior game. If two players are at terminal nodes, the remaining player

is simply in a situation like the ”two-player” edge game. Else, we’re at an interior sub-stage,

and we’ve just seen how to find equilibria there.

It is quite interesting that a three-player game in this class has such simple equilibrium

conditions. Many empirical models of interactions between firms can be greatly enhanced

if there can be more than two players in the game. The results here are for three players,

but there is no reason why we couldn’t solve the general case as in the multinomial choices

duopoly. The expressions would only become messier.

4 Solving the equilibrium conditions

In this section, we will introduce the specific methods that we will use to find the non-pure

strategies. For the complete information games, we will use homotopy methods for systems

of polynomial equations. In this case, we exploit structure to get a stable algorithm. For

the incomplete information games, we will use interval arithmetic. In this case, there is

no exploitable structure since the systems are only almost polynomials - logarithmic terms

appear in the coefficients.

4.1 Systems of multivariate polynomial equations

Homotopy continuation methods are based around sequentially solving H(x, t) for x given a

t, where H is called a homotopy. In our case it allows us to solve our system of multivariate

polynomials equations F by first solving another system G that is related to F in some

way. We choose G such that it is easy to solve and exploit that our homotopy will have the

property that

H(x, 1) = G(x)

H(x, 0) = F (x).

One choice of homotopy is then obviously

H(x, t) = (1− t)tF (x) + (t)G(x),

but others exist. The system G is called a start system, as is supposed to be easy to solve

such that the homotopy continuation method can follow the path of solutions starting from

those of G to those of F . Since our systems are not too large and not too sparse we use the
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total degree start system. This means that G has the form of:

G(x) = (xd11 − a1, xd22 − a2, . . . , xdnn − an)

where di is the degree of the ith polynomial of F and ai is a random number. The solutions

to this starting system is trivial but allows us to slowly move towards the solutions of F . By

adjusting t in small increments, we can ensure that we have good starting values for each

t. However, we would always wish to take as large steps as possible to save time spent.

Predictor-corrector steps allow us to adjust the solver efficiently along the continuation path.

Homotopy continuation methods are numerical in nature, but for some classes of systems,

they can be very efficient and accurate. Systems of polynomial equations are such an example.

Nonetheless, any application needs to use a high-quality implementation, so I will use the

HomotopyContinuation.jl package described in Breiding and Timme (2018) for the Julia

Programming Language (Bezanson et al. (2017)).8

Gröbner bases methods: advantages are symbolic and parametric. Potentially you could

trace out the solutions to a parametric family of solutions.

4.2 Interval root-finding methods

The homotopy methods may be less reliable for systems that are not polynomials and sys-

tems that do not have the structure we can exploit. An interesting alternative to consider

is then interval arithmetic methods. An introduction to the methods, in general, can be

found in Moore et al. (2009) and a brief introduction to the content and history of the IEEE

1788-2015 Standard for Interval Arithmetic can be found in Revol (2017) and Kubica (2019).

The latter also covers relevant software and libraries. The lack of a standard before 2015

has probably meant that these methods are less widespread, as several edge-cases were im-

plemented differently in different libraries which means that the user has to be more careful

when interpreting the results.

Software such as INTLAB (Rump (1999)) for Matlab has been available for many years.

Nonetheless, adoption in economics and also other disciplines. In economics some applications

of these techniques exist, but most are using only interval arithmetics for validated numerics,

see Barker and Rocco S (2011), Choobineh and Behrens (1993), and Jerrell (1997b). For

economists using interval methods for optimization see Jerrell (1997a). Most of these papers

are from the 1990s which saw a renewed interest in the methods, but software was less readily

8Other libraries exist, but HomotopyContinuation.jl has the clear advantage that it was written in a

performant high-level language which means it’s flexible and also easy to use without sacrificing speed. An

earlier version of this paper used an interface to PHCPack Verschelde (1999).
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available, and as mentioned this was before the IEEE standard was defined. For a modern

implementation of the interval arithmetic and root-finding methods we, use the JuliaIntervals

suite of software to work with intervals.

Since this paper is not about implementing new interval methods we will not give a

complete treatment of the subject here, but to fix ideas we will introduce the basic concepts

of interval numbers, arithmetic and function evaluation. Interval arithmetic works with the

real, closed intervals X = [x, x] where x and x are real numbers. A vector of intervals,

V = (X1, X2, . . . , Xn) is called a box because it generalizes the geometric concept of an

interval (1D) to a rectangle (2D) and beyond. Interval arithmetic is then defined by the

usual operations such as addition, subtraction, multiplication and division:

X + Y = [x + y, y + x] (69)

X − Y = [x− y, x− y] (70)

X · Y = [min(x · y, x · y, x · y, x · y),max(x · y, x · y, x · y, x · y)] (71)

X/Y = [x, x] · [1/y, 1/y] if y, y 6= 0 (72)

with proper edge-case handling when the divisor contains 0. See the IEEE standard for

all the rules that have been agreed upon in terms of arithmetic edge-cases. Since we’re

going to be solving systems of non-linear equations it is interesting what it means to apply

a function to an interval. For monotonically increasing functions with real domains we can

define corresponding interval functions quite easily. If f : R → R, then the corresponding

interval function fi is defined as

f([x, x]) = [f(x), f(x)] (73)

and monotonically decreasing functions are handled using the additive inverse implied by

the rules above. When passing intervals through functions composed of several functions we

simply apply the functions in turn. Periodic functions such as many trigonometric functions

are handled by explicitly using information about the location of critical points, and general

functions can be handled by Taylor expansions. However, we will only use polynomials and

logarithmic functions in this paper, and the functions involved are standard in the litterature

and software considered. Below we will need a function that calculates the central element

in an interval:

mid(X) =
(x + x)

2

with details regarding the handling of extended reals found in (IEEE, 2015, p. 64)

To solve interval root finding problems we need methods beyond rules for doing arithmetic

and evaluations. To start looking for solutions the user has to provide an initial box. There
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are two possibilities here. Either the box contains no solution or it contains at least one

solution. If it contains no solution we would like to know, and if it contains solutions we

would like to find them all. For multivariate root-finding, we can use the Krawczyk method

which has Newton’s method for intervals as a special case. One step in the iterative procedure

starting from an initial box X0 and where Xk is the box we want to apply the iterative

procedure to is defined as:

K(X) = y − Y · f(y) + (I − Y · F ′(X)) · (X − y) (74)

Xk+1 = K(Xk) ∩Xk (75)

where Y is some non-singular real matrix that approximates the inverse of the Jacobian

evaluated at mid(X), y is some real vector inside the box X. Newton’s method obtains from

this method by setting Y equal to the actual inverse Jacobian. The vector y is can be set to

mid(X) but doesn’t have to. If the resulting Xk+1 contains multiple disjoint boxes we must

then apply K(·) to each of them. Superficially, one might think that an alternative is then

just to multi-start a lot of Newton’s method solves. A major difference is that the interval

method is quite systematically removing large regions of the domain where roots can lie, and

as soon as it is clear that some region cannot have a flip of the sign, that box is removed from

the next iterate K(Xk) ∩Xk. In a multi-start regime, we would have to start a lot of local

solves and observe them either failing or converging to the same roots. However, since the

basin of attraction can be arbitrarily small or have irregular contours it’s not a very robust

method and certainly expensive. Notice, that the Jacobian is evaluated at a regular real

vector, not a box. As always, it can be calculated by hand, but we use the forward mode

automatic differentiation as implemented in Revels et al. (2016).

Once we obtain a collection of intervals as the solution we can check if they all contain a

unique solution. It turns out that there is a relatively easy check that can be made. Rump

(1980) showed that if N(X) ⊂ X for Newton’s method and K(x) ⊂ X for Krawczyk’s method

then there is a unique solution in X. The surprising implication is that upon successful

convergence, we get a collection of intervals that are mathematically proven to be intervals

that bound only unique solutions. The methods also do not exclude any roots from iteration

to iteration, so we will also know that it is all of them. Now, this is of course constrained

by the fact that we must only use functions that we can evaluate at intervals, and we still

need sufficient precision to make all the calculations involved. However, if there are numerical

issues with something like the log function near 0 it is possible to switch to multiple-precission

arithmetic in Julia by using the provided BigFloat number type that wraps MPFR (Fousse

et al. (2007)). Increasing the precision of the arithmetic of course increases the runtime of

the root-finding procedure.
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5 Examples

In this section, I present some illustrations of actual solutions to some of the variants of the

game. In dynamic gamees there can often be many Markov Perfect Equilibria. The goal

here is to find them all. We need to find them all because one randomly chosen equilibrium

might not represent the set of all equilibria in terms of profit distribution and so on. If the

researcher would want to use the maximum likelihood method to estimate parameters they

need the solutions to construct the likelihood of observing the data. However, the many

equilibria does not have to be very different in their market structure or profit distribution

as can be seen from the discussion in Iskhakov et al. (2018). Throughout, I use the same

set of parameters such that the models are quite comparable. The outcomes might of course

be quite different between multinomial duopoly and binary triopoly.9 I provide more details

for the binary duopoly than the rest. In the interst of space not all versions will have the

same level of details, but to provide a reference point to understand the examples with fewer

details the first example will be relatively detailed.

The solution methods described in the previous section can both be used to solve the

complete information games. I have only seen them finding the same equilibria which is

encouraging in terms of robustness of the suggested methods. I do not do a thorough bench-

mark here, but do provide a few comparisons. For the incomplete information game, the

log’s in the equilibrium conditions provide some issues for the more complicated models. It

is apparently hard to exclude many regions that clearly do not represent equilibria as seen

from then large residual values when evaluating the system at the midpoints. The inability

to exclude these irrelevant regions made it prohibitive to use this method beyond the binary

duopoly case that did not appear to have these issues.

5.1 Binary duopoly

5.2 Complete information

Let us consider a case where there are two players. In the complete information version of

the game solution in the corner state d̄ = (3, 3) is

IV1(d̄) =
Π1(d̄)

1− β1
= 340.56 (76)

IV2(d̄) =
Π2(d̄)

1− β2
= 340.56 (77)

9The following model parameters are used j ∈ {1, 2}: d̄j = 3, βj = 0.95 x̄ = 1.60, b0 = 5.0, b1 = 0.3,

cj = 0.6, e = 0.1, FC1 = 1.5, FC2 = 0.1, FC3 = 0.2.
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Since there are no choices, there can only be one equilibrium. Then, I can either solve all

the states where
∑

i di = 5, or solve the edges. I solve the edges because they require the

same steps to be solved. First, solve along d = (d1, 3) and then along d = (3, d2). There can

only be one equilbrium in each state and the solution is for both players to keep opening

restaurants along the edges. This increases their own profits, and decreases the profits of the

other player. Looking at the integrated values, we get

IV1(3, 3) = 340.56 IV2(3, 3) = 340.56

IV1(2, 3) = 340.56 IV2(2, 3) = 340.56 p11(2, 3) = 0

IV1(1, 3) = 340.29 IV2(1, 3) = 341.27 p11(1, 3) = 0

IV1(0, 3) = 339.66 IV2(0, 3) = 342.67 p11(0, 3) = 0

IV1(3, 2) = 340.56 IV2(3, 2) = 340.56 p12(3, 2) = 0

IV1(3, 1) = 341.27 IV2(3, 1) = 340.29 p12(3, 1) = 0

IV1(3, 0) = 342.67 IV2(3, 0) = 339.66 p12(3, 0) = 0

The last state on each edge has the same continuation value as the corner because it is possible

to instantly transision to the absorbing situation since there is no lag in construction.

The next step is to solve the interior states, starting with d = (2, 2) which is possible

because we have solutions for {(3, 3), (2, 3), (3, 2)}. Here, we have two pure strategy equilibria:

either both expand or neither expand. If one player allows the other player to expand first,

they essentially get a period with very low profits only for them to have the optimal choice

of expanding in the next period. So either both expand right away, or they don’t. However,

if we look at the solutions coming out of the homotopy continuation solution, we see that

there is also a mixed strategy. Appendix G shows how to specifically solve this case and the

output it generates. The system has four real solutions

∗(p11(2, 2), p12(2, 2)) = (0.658, 0.658) (p11(2, 2), p12(2, 2) = (0.658,−0.623)

(p11(2, 2), p12(2, 2)) = (−0.623,−0.658) (p11(2, 2), p12(2, 2) = (−0.623, 0.658)

Obviously, only one of these are feasible. This gives us three equilibria in this sub-stage, and

from here on I the algorithm in Iskhakov et al. (2015) to exhaustively search for equilbria.

It turn out, that if the players either both expand or play a mixed expansion strategy, then

there are also three equilibria in the d = (1, 1) state, but if the two players agree on not

expanding in d = (2, 2), then the only equilbrium in the d = (1, 1) sub-stage is to expand

into d = (2, 2) and stay there for a higher continuation value than they would have gotten if

they ended up in d = (3, 3). In total, there are 7 equilibria in this game. Below I show the
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first equilibrium found

IV1 :

d1 \ d2 0 1 2 3

0 348.0 348.0 344.0 339.4

1 348.0 347.9 344.4 340.3

2 345.3 344.4 341.2 340.6

3 342.7 341.3 340.6 340.6

p11 :

d1 \ d2 0 1 2 3

0 0.00 0.00 0.00 0.00

1 1.00 0.86 0.00 0.00

2 1.00 1.00 0.66 0.00

3 − − − −

IV2 :

d1 \ d2 0 1 2 3

0 348.0 348.0 345.3 342.7

1 348.0 347.9 344.4 341.3

2 344.0 344.4 334.2 340.6

3 339.4 340.3 340.6 340.6

p12 :

d1 \ d2 0 1 2 3

0 0.00 1.00 1.00 −
1 0.00 0.86 1.00 −
2 0.00 0.00 0.66 −
3 0.00 0.00 0.00 −

nEQ :

d1 \ d2 0 1 2 3

0 1 1 1 1

1 1 3 1 1

2 1 1 3 1

3 1 1 1 1

Where nEQ denotes the number of found equilibria at each sub-stage. For the case where the

don’t expand action is chosen by each player in d = (2, 2) we get

IV1 :

d1 \ d2 0 1 2 3

0 348.7 348.0 348.0 339.4

1 349.4 348.7 348.7 340.3

2 349.4 348.7 348.7 340.6

3 342.7 341.3 340.6 340.6

p11 :

d1 \ d2 0 1 2 3

0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.0 0.0

2 1.0 1.0 1.0 0.0

3 − − − −

IV2 :

d1 \ d2 0 1 2 3

0 348.7 349.4 349.4 342.7

1 348.0 348.7 348.7 341.3

2 348.0 348.7 348.7 340.6

3 339.4 340.3 340.6 340.6

p12 :

d1 \ d2 0 1 2 3

0 0.0 0.0 1.0 −
1 0.0 0.0 1.0 −
2 0.0 0.0 1.0 −
3 0.0 0.0 0.0 −

nEQ :

d1 \ d2 0 1 2 3

0 1 1 1 1

1 1 1 1 1

2 1 1 3 1

3 1 1 1 1
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It is clear that in this equilibrium, the players specifically target the appropriate actions to

eventually reach (2, 2) and stay there.

5.3 Incomplete information

We solve the binary duopoly game using interval methods as described above. We set η = 0.64

to set it a some value, and loop through the states in the same way as above. The corner

and edge states are described in section 3. As it turns out, there are only two solutions in

this incomplete information game, or smoothed game. The first one can still be fully listed

in this binary duopoly game and is

IV1 :

d1 \ d2 0 1 2 3

0 361.6 361.6 356.6 340.1

1 361.6 359.4 354.9 341.0

2 357.7 354.6 350.5 341.2

3 344.0 342.7 341.6 340.6

p11 :

d1 \ d2 0 1 2 3

0 4 · 10−11 3 · 10−13 1 · 10−12 3 · 10−12

1 0.9977 0.6749 0.3156 0.2351

2 0.9999 0.9994 0.6273 0.6201

3 − − − −

IV2 :

d1 \ d2 0 1 2 3

0 361.6 361.6 357.7 344.0

1 361.6 359.4 354.6 342.7

2 356.6 354.9 350.5 341.6

3 340.1 341.0 341.2 340.6

p12 :

d1 \ d2 0 1 2 3

0 4 · 10−11 0.9977 0.9999 −
1 3 · 10−13 0.6749 0.9994 −
2 1 · 10−12 0.3156 0.6273 −
3 3 · 10−11 0.2351 0.6201 −

nEQ :

d1 \ d2 0 1 2 3

0 1 1 1 1

1 1 1 1 1

2 1 1 2 1

3 1 1 1 1
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the second one is

IV1 :

d1 \ d2 0 1 2 3

0 360.0 360.0 348.0 339.4

1 360.0 357.7 348.7 340.3

2 355.3 352.0 348.7 340.6

3 344.0 342.7 340.6 340.6

p11 :

d1 \ d2 0 1 2 3

0 4 · 10−11 8 · 10−13 1 · 10−12 3 · 10−12

1 0.9993 0.7265 0.4085 0.2351

2 0.9999 0.9994 0.6273 0.6201

3 − − − −

IV2 :

d1 \ d2 0 1 2 3

0 348.7 349.4 349.4 342.7

1 348.0 348.7 348.7 341.3

2 348.0 348.7 348.7 340.6

3 339.4 340.3 340.6 340.6

p12 :

d1 \ d2 0 1 2 3

0 4 · 10−11 0.9993 0.9999 −
1 8 · 10−13 0.7265 0.9994 −
2 1 · 10−12 0.4085 0.6273 −
3 3 · 10−12 0.2351 0.6201 −

nEQ :

d1 \ d2 0 1 2 3

0 1 1 1 1

1 1 1 1 1

2 1 1 2 1

3 1 1 1 1

Some of the choice probabilities are very close to pure strategies. If no stores are open, it’s

obviously a good idea to open, because the alternative is zero profits forever. For an agent

to choose not to open, they’d have to draw a very significant taste shock to the action of not

expanding, and there are choice probabilities on the order og 10−13 as a result. As mentioned

in the introduction of the model, they reveal that our model is lacking a separate entry phase

where this two player market begins to exist. Conditional on existing, it is simply profitable

to open a restaurant. In the real world, there would of course be alternative investments

to consider such as opening a bar, cafe or investing the money in stocks. We’ve implicitly

assumed that the profits are net these alternative costs. It is possible to solve the model from

d = (4, 4) back to d = (1, 1) if these dynamics are irrelevant since our model is restricted the

way it is.

5.4 Multinomial duopoly

To allow for a more general action set structure, it is possible to allow the agents to open

more than one restaurant per period. I now take the same model and change the action sets
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to be

Ai(d)





{1} if di = d̄i

{1, 2} if di = d̄1 − 1

{1, 2, 3} if di ≤ d̄i − 2

(78)

The corner should then be the same and the two first edge states in either player’s direction,

but from there on the equilibria might change. The instantaneous profits have not changed

from the previous game, but since players can now move faster forwards in the state space

more complex competition can arise. It is indeed the case. It’s also way out of question to

list all equlibria this time around, because there are 85 of them. They are again found using

RLS. As in the binary game the diagonal states are attractive, and with new possible actions,

there are new ways of getting to them.

(p11, p
2
1) :

d1 \ d2 0 1 2 3

0 (0.00, 1.00) (0.00, 1.00) (0.00, 0.00) (0.00, 0.00)

1 (1.00, 0.00) (1.00, 0.00) (0.00, 1.00) (0.00, 0.00)

2 (1.00, 0.00) (1.00, 0.00) (0.66, 0.34) (0.00, 1.00)

3 − − − −

(p12, p
2
2) :

d1 \ d2 0 1 2 3

0 (0.00, 1.00) (1.00, 0.00) (1.00, 0.00) −
1 (0.00, 1.00) (1.00, 0.00) (1.00, 0.00) −
2 (0.00, 0.00) (0.00, 1.00) (0.66, 0.34) −
3 (0.00, 0.00) (0.00, 0.00) (0.00, 1.00) −

where p3j is residually determined. The players move to and stay in d = (1, 1) for a low output

high profit strategy if started at d = (0, 0), but if for some reason the model time had started

in d = (2, 1) for example, they would move to d = (2, 2) and stay there until one of the

mixing actions move them towards the edge or the corner. Comparing the value functions

below to the binary duopoly case, we see that it is now possible to acchieve a higher value

in a state like d = (3, 1) for player two, because they can now move directly to the corner.

We also see that there are significantly more equilibria found in the different states when the
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first equilibrium is solved for.

IV1 :

d1 \ d2 0 1 2 3

0 349.1 349.1 344.4 341.3

1 349.1 349.1 344.4 340.6

2 344.4 344.4 344.2 340.6

3 341.3 340.6 340.6 340.6

(p11, p
2
1) :

d1 \ d2 0 1 2 3

0 (0.0, 1.0) (0.0, 1.0) (0.0, 0.0) (0.0, 0.0)

1 () 0.7265 0.4085 0.2351

2 0.9999 0.9994 0.6273 0.6201

3 − − − −

IV2 :

d1 \ d2 0 1 2 3

0 349.1 349.1 344.4 341.3

1 349.1 349.1 344.4 340.6

2 344.4 344.4 344.1 340.6

3 340.3 340.6 340.6 340.6

p12 :

d1 \ d2 0 1 2 3

0 4 · 10−11 0.9993 0.9999 −
1 8 · 10−13 0.7265 0.9994 −
2 1 · 10−12 0.4085 0.6273 −
3 3 · 10−12 0.2351 0.6201 −

nEQ :

d1 \ d2 0 1 2 3

0 2 2 1 1

1 2 3 2 1

2 1 2 3 1

3 1 1 1 1

Of course, it would be all for nothing, if there were no interior states with three actions

that had mixed equilibria. The 28th equilibrium found is an example with mixed equilibria in

the conditions presented for the multinomial duopoly case. A manually written out example

of solving for the equilibrium is found in Appendix G using homotopy continuation and

Krawczyk’s method. There were four solutions, but only one in the unit box. Krawczyk’s

method was about five times faster here.

5.5 Triopoly game

The equilibria become more unweildly with three players, but I will quickly discuss the results.

First, the instantaneous profits has to be adapted to the three player situation. We use the

following expression that comes from solving the N -player quantity setter game

V Pi =
x̄

b1

(
b0 +

∑
j 6=iMCj −NMCi

N + 1

)2

(79)

With this expression in hand, we can calculate all quantities needed to setup and solve the

equilibrium conditions in the mixed and pure cases. This time we have a corner, edges,

interior states where on player is in an absorbing state, and proper interior states. In the

proper interior states, there are potentially 16 solutions to the equilibrium conditions. Some

of those can be complex, and some of the real solutions might again not be in our domain.
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If we look at the sub-stage game played when d = (1, 1, 1) for the 343th equilibrium found,

we see that the system has 16 solutions, of which only 8 are real

(p11, p
1
2, p

1
3) = (0.141, 0.119, 0.075)

In addition to this sub-stage equilibrium, there are three pure strategies: (p11, p
1
2, p

1
3) =

(0.0, 1.0, 1.0), (p11, p
1
2, p

1
3) = (1.0, 0.0, 1.0), and (p11, p

1
2, p

1
3) = (1.0, 1.0, 0.0). The third player

adds something interesting to the equilibria compared to the other cases. First, so far the

diagonal has been the place to agree on a strategy. Since cost structures are equal between

players the equilibria had matching strategies on the diagonal.10 Now, there’s a mixed equi-

librium with quite different strategy probabilities and the pure strategies in this particular

equilibrium has one player staying behind and the others expanding. Again, Appendix G

shows the specific example of calculating the mixed sub-stage equilbrium. In this game, a

total of 51793 equilibria were found. The homotopy continuation method was 2-3 times faster

than Krawczyk here.

6 Conclusion

Empirical industrial organization is full of dynamic, strategic interaction. Firms compete

through investments, marketing campaigns, price setting, patent races, and more. These

models can be hard or impossible to solve analytically. However, for a class of dynamic,

directional games we can. As I show in this paper, it is possible to extend the analysis from

the binary duopoly to multi-player, multi-action games, even with non-directional states.

Both finite and infinite horizon models can be solved, though only the infinite horizon case

was shown here.

The equations and solutions given in this paper are straight forward to implement. The

homotopy continuation methods for multivariate polynomial systems as well as interval meth-

ods and validated numerics were used to solve the complete information games. It will require

more benchmarking to find out which method is most appropriate, or in which situations one

is preferred over the other. Interval methods successfully solved the binary duopoly games,

but more research is needed to come up with a better way of handling the exclusion of edges

of the hyperbox that contain no equilibria. The fact that log diverges as the choice proba-

bilities go to zero can simply makes it hard for these methods to converge to a set of unique

solutions in reasonable time. It may be possible to come up with better handling of this

problem with divergence at the border but that is left for future research to construct more

robust and efficient ways of solving incomplete information, directional, dynamic games.

10Note, this is of course not a theorem and a proof but only what’s been observed.
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In this paper I provided clear instructions on how to solve specific model configurations

and provided the derivations and steps directlyin the text and appendices. Hopefully, this

makes it easier for researchers to derive the exact systems of equations needed for other

directional games that might have slightly different structure. The different cases were derived

indepently to highlight that special transition structure can make the equilirium conditions

more or less complicated to derive and express. The full general model can in principle be

expressed explicitly, but at the expense of legibility which itself carries a risk of bugs in

implementations and derivations.
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A The Structure

There is certain structure in our equations that allow us to quite generally derive equilibrium

conditions for our models. The structure comes from the multinomial logit structure that

allows us to come up with important equations that can be manipulated into equations of

unknown choice probabilities
{
{P j

i (d, x)}Ji(d,x)j=1

}N
i=1

. In principle, I could have solved the

conditions in the original IVi(d, x)Ni=1 space, but the advantage of the choice probabilities

is that they are bounded between 0 and 1 and the equations that arise from my equation

mangling ends up being multivariate polynomials in the complete information case and some-

thing close to it in the incomplete information case. So the problem goes from a system of

Bellman equations that is not a contraction as a system to a system of bounded variables

with specific structure. This is the approach followed in Iskhakov et al. (2015, 2018) for

their specific model structure. In this paper I will derive the conditions taking a departure

in the integrated value function because I find it very convenient. There are two important
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relations I need. In the following, define Ĵi ≡ Ji(d, x). First, I will use that

pji (d, x) =
exp vji (d, x)/η

∑Ĵ
k=1 exp vki (d, x)/η

· exp vĴi (d, x)/η

exp vĴi (d, x)/η

=
exp vĴi (d, x)/η

∑Ĵ
k=1 exp vki (d, x)/η

· exp vji (d, x)/η

exp vĴi (d, x)/η

pji (d, x) = pĴi (d, x)
exp vji (d, x)/η

exp vĴi (d, x)/η
⇔

log pji (d, x)− log pĴi (d, x) =
vji (d, x)

η
− vĴi (d, x)

η
(80)

The reason why I expand it using the Ĵith is that in the model I present this choice will

guarantee movement out of the directional part of the state d. The unknowns will then be

the first Ĵi − 1 choice probabilities for each possible x, and apply the simplex restriction

to obtain pĴii (d, x)’s. This means that vĴii (d, x) is guaranteed not to include the unknown

IVi(d, x), but only known IVi’s for directional states I’ve already solved for when (d, x) is

reached in the stage recursion. We also note that vji (d, x) may contain IVi(d, x) but other

than that the only things it contain are known IVi’s and unknown choice probabilities for

all players for this state, (d, x). Then, I just need to get rid of IVi(d, x) to reach our goal of

only solving equations defined by choice probabilities. To do that I use the fact that

IVi(d, x) = η log




Ĵ∑

j=1

exp

(
vji (d, x)

η

)


= η log






Ĵ∑

j=1

exp

(
vji (d, x)

η

)


exp
(
vJi (d,x)

η

)

exp
(
vJi (d,x)

η

)




= η log



(
v
Ji(d,x)
i (d, x)

η

)


Ĵ∑

j=1

exp

(
vji (d, x)

η

)
 1

exp
(
vJi (d,x)

η

)




= η



(
v
Ji(d,x)
i (d, x)

η

)
+ log






Ĵ∑

j=1

exp

(
vji (d, x)

η

)
 1

exp
(
vJi (d,x)

η

)






= η

((
v
Ji(d,x)
i (d, x)

η

)
+ log

[(
p
Ji(d,x)
i (d, x)

)−1]
)

= v
Ji(d,x)
i (d, x)− η log

[
p
Ji(d,x)
i (d, x)

]
(81)

With these definitons in hand I can take the first Ji(d, x)− 1 choice probability equations for

each player and use them as the equilibrium conditions. We write them in the eq. (80) form

and apply eq. (81) where needed.
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B Equilibrium conditions for the binary duopoly

Here I show how to derive the alternative equilibrium conditions for the binary duopoly game.

Let us see how. We have

v11(d) = p12(d)Π1(d, 1, 1) + p22(d)Π1(d, 1, 2) + β1
(
p12(d)IV1(d) + p22(d)IV1((d1, d2 + 1))

)

= τ1(d, 1, 2) + p12(d) [Π1(d, 1, 1)− τ1(d, 1, 2)] + p12(d)β1IV1(d)

v21(d) = p12(d)Π1(d, 2, 1) + p22(d)Π1(d, 2, 2) + β1
(
p12(d)IV1((d1 + 1, d2)) + p22(d)IV1(d+ 1)

)

= τ1(d, 2, 2) + p12(d) [τ1(d, 2, 1)− τ1(d, 2, 2)] (82)

as well as eq. (80). This gives us

0 = v11(d)− η log

(
p11(d)

p21(d)

)
− v21(d)

= K1
1 − η log

(
p11(d)

p21(d)

)
+ K̃2

1p
1
2(d) + p22(d)β1IV1(d) (83)

K1
1 ≡ [τ1(d, 1, 2)− τ1(d, 2, 2)] (84)

K̃2
1 ≡

[
Π1(d, 1, 1) + τ1(d, 2, 2)− τ1(d, 2, 1)− τ1(d, 1, 2)

]
(85)

As p12(s) enters v11(d) linearly (remember p22(d) = 1 − p12), and all unknowns but p12 and p22

have been eliminated, it should be obvious by now that it’s heading towards a system of two

equations in two unknowns, and, looking at eq. (83), that they are going to be something

close to a system of polynomials. Looking at eq. (82) and eq. (81) I get the following

p12(d)β1IV1(d) = p12(d)β1
(
τ1(d, 2, 2) + p12(d) [τ1(d, 2, 1)− τ1(d, 2, 2)]− η log

[
p21(d)

])

substituting this back into eq. (83) I get

0 = K1
1 − η log

(
p11(d)

1− p11(d)

)
+
(
K2

1 − β1η log
[
1− p11(d)

])
p12(d) +K3

1p
2
2(d)2 (86)

K1
1 ≡ [τ1(d, 1, 2)− τ1(d, 2, 2)]

K2
1 ≡

[
Π1(d, 1, 1) + τ1(d, 2, 2)− τ1(d, 2, 1)− τ1(d, 1, 2)

]
+ β1τ1(d, 2, 2)

K3
1 ≡ β1 (τ1(d, 2, 1)− τ1(d, 2, 2))

and starting from player 2 value functions I get

0 = K1
2 − η log

(
p12(d)

1− p12(d)

)
+
(
K2

2 − β2η log
[
1− p12(d)

])
p11(d) +K3

2p
2
1(d)2 (87)

K1
2 ≡ [τ2(d, 2, 1)− τ2(d, 2, 2)]

K2
2 ≡

[
Π2(d, 1, 1) + τ2(d, 2, 2)− τ2(d, 1, 2)− τ2(d, 2, 1)

]
+ β2τ2(d, 2, 2)

K3
2 ≡ β2 (τ2(d, 1, 2)− τ2(d, 2, 2))

138



This completes the derivation of the equilibrium conditions in the binomial duopoly.

C Equilibrium conditions for the multinomial duopoly

In this appendix I derive the multinomial choice case. Again, I start from vj1(d) and relate it

to vĴ11 (d) where Ĵi ≡ Ji(d). Then

v11(d) = p12(d)Π1(d, 1, 1) +

Ĵ2−1∑

k=2

pk2Π(d, 1, k) + (1− p−Ĵ22 (d))Π1(d, 1, Ĵ2)

+ β1

[
p12(d)IV1(d) +

Ĵ2−1∑

k=2

pk2IV1((d1, d2 + k − 1)

+
(

1− p−Ĵ22 (d)
)
IV1((d1, d2 + Ĵ2 − 1))

]

= τi(d, 1, Ĵ2) + p12(d)
(

Π1(d, 1, 1)− τ1(d, 1, Ĵ2)
)

+ β1p
1
2(d)IV1(d)

+

Ĵ2−1∑

k=2

pk2

(
τ1(d, 1, k)− τ1(d, 1, Ĵ2)

)
(88)

and for 1 < j ≤ J1(d)

vj1(d) =

Ĵ2−1∑

k=1

pk2(d)Π(d, j, k) + (1− p−Ĵ22 (d))Π1(d, j, Ĵ2)

+ β1

[ Ĵ2−1∑

k=1

pk2(d)IV1((d1 + j − 1, d2 + k − 1)

+
(

1− p−Ĵ22 (d)
)
IV1((d1 + j − 1, d2 + Ĵ2 − 1))

]
(89)

= τ1(d, j, Ĵ2) +

Ĵ2−1∑

k=1

pk2(d)
(
τ1(d, j, k)− τ1(d, j, Ĵ2)

)
(90)
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where eq. (88) is the same as in the binary duopoly case if Ĵ1(d) = 2. First, simplify the first

equation

0 = v11(d)− vĴ1 (d)− η log

(
p11(d)

pĴ11 (d)

)
(91)

=
[
τi(d, 1, Ĵ2) + p12(d)

(
Π1(d, 1, 1)− τ1(d, 1, Ĵ2)

)
+ β1p

1
2(d)IV1(d)

+

Ĵ2−1∑

k=2

pk2

(
τ1(d, 1, k)− τ1(d, 1, Ĵ2)

) ]

−
[
τ1(d, Ĵ1, Ĵ2) +

Ĵ2−1∑

k=1

pk2(d)
(
τ1(d, Ĵ1, k)− τ1(d, Ĵ1, Ĵ2)

) ]

− η log

(
p11(d)

pĴ11 (d)

)
(92)

from which I get the first equilibrium equation for player 1

0 = L1
1 − η log

(
p11(d)

pĴ11 (d)

)
+
(
L2
1 − β1η log

(
pĴ11

))
p12(d)

+ p12(d)

Ĵ2−1∑

k=1

L3,k
1 pk2(d) +

Ĵ2−1∑

k=2

L4,k
1 pk2(d) (93)

L1
1 ≡

[
τ1(d, 1, Ĵ2)− τ1(d, Ĵ1, Ĵ2)

]
(94)

L2
1 ≡

[
Π1(d, 1, 1)− τ1(d, 1, Ĵ2)− τ1(d, Ĵ1, 1) + τ1(d, Ĵ1, Ĵ2)

]
+ β1τ1(d, Ĵ1, Ĵ2) (95)

L3,k
1 ≡ β1

[
τ1(d, Ĵ1, k)− τ1(d, Ĵ1, Ĵ2)

]
(96)

L4,k
1 ≡

[
τ1(d, 1, k)− τ1(d, 1, Ĵ2)− τ1(d, Ĵ1, k) + τ1(d, Ĵ1, Ĵ2)

]
(97)

which again is the binary solution with an added term. The player 2 solution is

0 = L1
2 − η log

(
p12(d)

pĴ22 (d)

)
+
(
L2
2 − β2η log

(
pĴ22

))
p11(d)

+ p11(d)

Ĵ1−1∑

k=1

L3,k
2 pk1(d) +

Ĵ1−1∑

k=2

L4,k
2 pk1(d) (98)

L1
2 ≡

[
τ2(d, Ĵ1, 1)− τ2(d, Ĵ1, Ĵ2)

]
(99)

L2
2 ≡

[
Π2(d, 1, 1)− τ2(d, Ĵ1, 1)− τ2(d, 1, Ĵ2) + τ2(d, Ĵ1, Ĵ2)

]
+ β2τ2(d, Ĵ1, Ĵ2) (100)

L3,k
2 ≡ β2

[
τ2(d, k, Ĵ2)− τ2(d, Ĵ1, Ĵ2)

]
(101)

L4,k
2 ≡

[
τ2(d, k, 1)− τ2(d, Ĵ1, 1)− τ2(d, k, Ĵ2) + τ2(d, Ĵ1, Ĵ2)

]
(102)
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The equation for the remaining equilibrium conditions are given by

0 = vj1(d)− vĴ1 (d)− η log

(
pj1(d)

pĴ11 (d)

)
(103)

=
[
τ1(d, j, Ĵ2) +

Ĵ2−1∑

k=1

pk2(d)
(
τ1(d, j, k)− τ1(d, j, Ĵ2)

) ]

−
[
τ1(d, Ĵ1, Ĵ2) +

Ĵ2−1∑

k=1

pk2(d)
(
τ1(d, Ĵ1, k)− τ1(d, Ĵ1, Ĵ2)

) ]

− η log

(
pj1(d)

pĴ11 (d)

)
(104)

from which I get the simpler equations for j1 ∈ 2, . . . , J(d)1 − 1

0 = L5
1 − η log

(
pj11 (d)

pĴ11 (d)

)
+

Ĵ2−1∑

k=1

L6,k
1 pk2(d) (105)

L5
1 ≡

[
τ1(d, j1, Ĵ2)− τ1(d, Ĵ1, Ĵ2)

]
(106)

L6,k
1 ≡

[
τ1(d, j1, k)− τ1(d, j1, Ĵ2)− τ1(d, Ĵ1, k) + τ1(d, Ĵ1, Ĵ2)

]
(107)

These are simpler than the first one, because as soon as player one choses an action indexed

larger than 1, it is impossible to stay in the current state next period. For completeness, the

equations for player 2 for j2 ∈ 2, . . . , J(d)2 − 1 are

0 = L5
2 − η log

(
pj22 (d)

pĴ22 (d)

)
+

Ĵ2−1∑

k=1

L6,k
2 pk1(d) (108)

L5
2 ≡

[
τ1(d, Ĵ1, j2)− τ2(d, Ĵ1, Ĵ2)

]
(109)

L6,k
2 ≡

[
τ2(d, k, j2)− τ2(d, Ĵ1, j2)− τ2(d, k, Ĵ2) + τ2(d, Ĵ1, Ĵ2)

]
(110)

This completes the derivation of the equilibrium conditions in the multinomial duopoly.
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D Equilibrium conditions for the binary triopoly

As above, I start from the individual choice specific value functions because they enter the

re-written equilirium conditions.

v11(d) = p12(d)p13(d)Π1(d, 1, 1, 1) + p12(d)p13(d)β1IV (d) + p12(d)(1− p13(d))τ1(d, 1, 1, 2) (111)

+ (1− p12(d))p13(d)τ1(d, 1, 2, 1) + (1− p12(d))(1− p13(d))τ1(d, 1, 2, 2) (112)

= p12(d)p13(d) [Π1(d, 1, 1, 1)− τ1(d, 1, 1, 2)− τ1(d, 1, 2, 1)− τ1(d, 1, 2, 2)] (113)

+ p12(d) [τ1(d, 1, 1, 2)− τ1(d, 1, 2, 2)] + p13(d) [τ1(d, 1, 2, 1)− τ1(d, 1, 2, 2)] (114)

+ τ1(d, 1, 2, 2) + p12(d)p13(d)β1IV (d) (115)

v21(d) = p12(d)p13(d)τ1(d, 2, 1, 1) + p12(d)(1− p13(d))τ1(d, 2, 1, 2) (116)

+ (1− p12(d))p13(d)τ1(d, 2, 2, 1) + (1− p12(d))(1− p13(d))τ1(d, 2, 2, 2) (117)

= p12(d)p13(d) [τ1(d, 2, 1, 1)− τ1(d, 2, 1, 2)− τ1(d, 2, 2, 1)− τ1(d, 2, 2, 2)] (118)

+ p12(d) [τ1(d, 2, 1, 2)− τ1(d, 2, 2, 2)] + p13(d) [τ1(d, 2, 2, 1)− τ1(d, 2, 2, 2)] (119)

+ τ1(d, 2, 2, 2) (120)

And using eq. (80)

0 = v11(d)− v21(d)− η log

[
p11(d)

1− p11(d)

]

= M1
1 − η log

[
p11(d)

1− p21(d)

]
+ p12(d)M2

1 + p13(d)M3
1 + p12(d)p13(d)M4

1 + p12(d)p13(d)β1IV (d)

M1
1 ≡ [τ1(d, 1, 2, 2)− τ1(d, 2, 2, 2)]

M2
1 ≡ [τ1(d, 1, 1, 2)− τ1(d, 1, 2, 2)− τ1(d, 2, 1, 2) + τ1(d, 2, 2, 2)]

M3
1 ≡ [τ1(d, 1, 2, 1)− τ1(d, 1, 2, 2)− τ1(d, 2, 2, 1) + τ1(d, 2, 2, 2)]

M̃4
1 ≡

[
Π1(d, 1, 1, 1)− τ1(d, 1, 1, 2)− τ1(d, 1, 2, 1)− τ1(d, 1, 2, 2)

− τ1(d, 2, 1, 1) + τ1(d, 2, 1, 2) + τ1(d, 2, 2, 1) + τ1(d, 2, 2, 2)
]
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and using eq. (81) I get

0 = M1
1 − η log

[
p11(d)

1− p11(d)

]
+M2

1p
1
2(d) +M3

1p
1
3(d) +

[
M4

1 − β1η log
[
p21(d)

]]
p12(d)p13(d)

+M5
1p

1
2(d)2p13(d) +M6

1p
1
2(d)p13(d)2 +M7

1p
1
2(d)2p13(d)2

M1
1 ≡ [τ1(d, 1, 2, 2)− τ1(d, 2, 2, 2)]

M2
1 ≡ [τ1(d, 1, 1, 2)− τ1(d, 1, 2, 2)− τ1(d, 2, 1, 2) + τ1(d, 2, 2, 2)]

M3
1 ≡ [τ1(d, 1, 2, 1)− τ1(d, 1, 2, 2)− τ1(d, 2, 2, 1) + τ1(d, 2, 2, 2)]

M4
1 ≡

[
Π1(d, 1, 1, 1)− τ1(d, 1, 1, 2)− τ1(d, 1, 2, 1)− τ1(d, 1, 2, 2)

− τ1(d, 2, 1, 1) + τ1(d, 2, 1, 2) + τ1(d, 2, 2, 1) + (1 + β1)τ1(d, 2, 2, 2)
]

M5
1 ≡ β1 [τ1(d, 2, 1, 2)− τ1(d, 2, 2, 2)]

M6
1 ≡ β1 [τ1(d, 2, 2, 1)− τ1(d, 2, 2, 2)]

M7
1 ≡ β1 [τ1(d, 2, 1, 1)− τ1(d, 2, 1, 2)− τ1(d, 2, 2, 1)− τ1(d, 2, 2, 2)]

and for player 2

0 = M1
2 − η log

[
p12(d)

1− p12(d)

]
+M2

2p
1
1(d) +M3

2p
1
3(d) +

[
M4

2 − β1η log
[
p22(d)

]]
p11(d)p13(d)

+M5
2p

1
1(d)2p13(d) +M6

2p
1
1(d)p13(d)2 +M7

2p
1
1(d)2p13(d)2

M1
2 ≡ [τ2(d, 2, 1, 2)− τ2(d, 2, 2, 2)]

M2
2 ≡ [τ2(d, 1, 1, 2)− τ2(d, 2, 1, 2)− τ2(d, 1, 2, 2) + τ2(d, 2, 2, 2)]

M3
2 ≡ [τ2(d, 2, 1, 1)− τ2(d, 2, 1, 2)− τ2(d, 2, 2, 1) + τ2(d, 2, 2, 2)]

M4
2 ≡

[
Π2(d, 1, 1, 1)− τ2(d, 1, 1, 2)− τ2(d, 2, 1, 1)− τ2(d, 2, 1, 2)

− τ2(d, 1, 2, 1) + τ2(d, 1, 2, 2) + τ2(d, 2, 2, 1) + (1 + β2)τ2(d, 2, 2, 2)
]

M5
2 ≡ β2 [τ2(d, 1, 2, 2)− τ2(d, 2, 2, 2)]

M6
2 ≡ β2 [τ2(d, 2, 2, 1)− τ2(d, 2, 2, 2)]

M7
2 ≡ β2 [τ2(d, 1, 2, 1)− τ2(d, 1, 2, 2)− τ2(d, 2, 2, 1)− τ2(d, 2, 2, 2)]
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and for player 3

0 = M1
3 − η log

[
p13(d)

1− p23(d)

]
+M2

1p
1
2(d) +M3

3p
1
1(d) +

[
M4

3 − β3η log
[
p23(d)

]]
p11(d)p12(d)

+M5
3p

1
2(d)2p11(d) +M6

3p
1
2(d)p11(d)2 +M7

3p
1
2(d)2p11(d)2

M1
3 ≡ [τ3(d, 2, 2, 1)− τ3(d, 2, 2, 2)]

M2
3 ≡ [τ3(d, 2, 1, 1)− τ3(d, 2, 2, 1)− τ3(d, 2, 1, 2) + τ3(d, 2, 2, 2)]

M3
3 ≡ [τ3(d, 1, 2, 1)− τ3(d, 2, 2, 1)− τ3(d, 1, 2, 2) + τ3(d, 2, 2, 2)]

M4
3 ≡

[
Π3(d, 1, 1, 1)− τ3(d, 2, 1, 1)− τ3(d, 1, 2, 1)− τ3(d, 2, 2, 1)

− τ3(d, 1, 1, 2) + τ3(d, 2, 1, 2) + τ3(d, 1, 2, 2) + (1 + β3)τ3(d, 2, 2, 2)
]

M5
3 ≡ β3 [τ3(d, 2, 1, 2)− τ3(d, 2, 2, 2)]

M6
3 ≡ β3 [τ3(d, 1, 2, 2)− τ3(d, 2, 2, 2)]

M7
3 ≡ β3 [τ3(d, 1, 1, 2)− τ3(d, 2, 1, 2)− τ3(d, 1, 2, 2)− τ3(d, 2, 2, 2)]

This completes the derivation of the equilibrium conditions in the binomial triopoly and it’s

still the multivariate polynomial system case in the complete information game.

E Equilibrium conditions for binary duopoly with ex-

ogenous non-directional states

For the model with exogenous non-directional states there is a non-empty X . Once again, I

need to set up the equilibrium conditions from the re-written choice probabilities. We still

get equations for the first Ji(d, x)− 1 choices, but since I need to solve for all non-directional

states at once each sub-stages will have (Ji(d, x) − 1) × |X | equations and unknowns. For
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x ∈ X (d) we get

0 = v11(d, x)− v21(d, x)− η log [p11(d, x)]

log [p21(d, x)]

=

[
p12(d, x)

[
Π1(d, x, 1, 1) + β1

∑

x′∈X
πX (x′|x)IV (d, x′, 1, 1)

]
+ (1− p12(d, x))τ1(d, x, 1, 2)

]

−
[
p12(d, x) [τ(d, x, 2, 1)− τ(d, x, 2, 2)] + τ(d, x, 2, 2)

]

− η log [p11(d, x)]

log [p21(d, x)]

= Q1
1 − η

log [p11(d, x)]

log [p21(d, x)]
+ Q̃2

1p
1
2(d, x) +

[
p12(d, x)

[
β1
∑

x′∈X
πX (x′|x)IV (d, x′, 1, 1)

]]

Q1
1 ≡ [τ(d, x, 1, 2)− τ1(d, x, 2, 2)]

Q̃2
1 ≡

[
Π1(d, x, 1, 1) + τ1(d, x, 2, 2)− τ1(d, x, 1, 2)− τ1(d, x, 2, 1)

]

and apply eq. (81)

0 = Q1
1 − η

log [p11(d, x)]

1− log [p11(d, x)]
+ Q̃2

1p
1
2(d, x) +

[
p12(d, x)

[
β1
∑

x′∈X
πX (x′|x)IV (d, x′, 1, 1)

]]

= Q1
1 − η

log [p11(d, x)]

log [1− p11(d, x)]
+

[
Q̃2

1 − β1η
∑

x′∈X
πX (x′|x) log

[
p21(d, x

′)
]
]
p12(d, x)

+

[
p12(d, x)

[
β1
∑

x′∈X
πX (x′|x)

[
p12(d, x

′)(τ1(d, x
′, 2, 1)− τ1(d, x′, 2, 2)) + τ1(d, x

′, 2, 2)
]]]

= Q1
1 − η

log [p11(d, x)]

1− log [p11(d, x)]
+

[
Q2

1 − β1η
∑

x′∈X
πX (x′|x) log

[
p21(d, x

′)
]
]
p12(d, x)

+ p12(d, x)
∑

x′∈X
p12(d, x

′)Q3,j
1

Q1
1 ≡ [τ(d, x, 1, 2)− τ1(d, x, 2, 2)]

Q2
1 ≡

[
Π1(d, x, 1, 1) + τ1(d, x, 2, 2)− τ1(d, x, 1, 2)− τ1(d, x, 2, 1)

]

+ β1
∑

x′∈X
πX (x′|x)τ1(d, x

′, 2, 2)

Q3,j
1 ≡ β1π

X (x′|x)(τ1(d, x
′, 2, 1)− τ1(d, x′, 2, 2))
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and likewise for player 2

0 = Q1
2 − η

log [p12(d, x)]

1− log [p12(d, x)]
+

[
Q2

2 − β2η
∑

x′∈X
πX (x′|x) log

[
p22(d, x

′)
]
]
p11(d, x)

+ p11(d, x)
∑

x′∈X
p11(d, x

′)Q3,j
2

Q1
2 ≡ [τ(d, x, 2, 1)− τ2(d, x, 2, 2)]

Q2
2 ≡

[
Π2(d, x, 1, 1) + τ2(d, x, 2, 2)− τ2(d, x, 2, 1)− τ2(d, x, 1, 2)

]

+ β2
∑

x′∈X
πX (x′|x)τ2(d, x

′, 2, 2)

Q3,j
2 ≡ β2π

X (x′|x)(τ2(d, x
′, 1, 2)− τ2(d, x′, 2, 2))

This completes the derivation of the equilibrium conditions in the binomial duopoly with

exogenous states.

F Equilibrium conditions for a model with actions as

distributions over future states

If the deterministic transitions used in this paper’s example is not sufficiently flexible to

model some strategic interaction, it might be necessary to allow for stochastic transitions.

In the main text an example is mentioned where the di + ai transition is inteded from the

agent’s side but there are outside forces that might make the expansion fail. Then some

probabilities have to be assigned to the different transitions di → d′i or maybe even the full

vector of d′’s. Here, I will explain why such models will also exhibit the same structure in

the equilibrium conditions as the simpler models.

The model structure with polynomial terms of choice probabilities with some coefficients

including log’s comes from separating out the IVi(d) terms in the choice specific value func-

tions as shown in Appendix A and any of the game specific appendices. In this more compli-

cated setup, the structure from Appendix A still apply, so the question is if there’s anything

in the choice specific value functions that might get in our way.

vji (d, x) =
∑

d′∈D

[∑

a∈A

(∏

k 6=i
σakk π

A(d′|d, a)

)[
ui(d, x, a) + βi

∑

x′∈X
IVi(d

′, x′)πX (x′|x)

]]

Now, written like this, it’s quite obvious what needs to be done. Take the current directional
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state d outside of the first sum.

vji (d, x) =
∑

a∈A

(∏

k 6=i
σakk π

A(d|d, a)

)[
ui(d, x, a) + βi

∑

x′∈X
IVi(d, x

′)πX (x′|x)

]
+

∑

d′∈D\d

[∑

a∈A

(∏

k 6=i
σakk π

A(d′|d, a)

)[
ui(d, x, a) + βi

∑

x′∈X
IVi(d

′, x′)πX (x′|x)

]]

Using the substitution where we replace for σ
Jk(d)
k ’s with one minus the rest of the strategy

probabilities and substituting in for IV (d, x) we will again get multiplications of the exact

same kind as in the examples in this paper. However, if many choices can lead to d and if

these transition rules are not sparse, then there are clearly many terms to multiply together,

and the result would be polynomials of quite high order. It’s also clear that at least one

choice has to imply a certain movement in the directional state or else the current value

function cannot be substituted away.

G Code snippets for mixed interior equilibria

G.1 Binary duopoly

In the binary duopoly game there can be mixed equilibria in the interior states. In the main

text I refer to this appendix for the example of solving for mixed equilibria in the d = (2, 2)

state. A written out example of that, taking the constants given in Appendix B for given, is

using HomotopyContinuation

K11, K12, K13 = -0.2748148148148175, -0.02370370370368846, 0.6699259259259406

K21, K22, K23 = -0.2748148148148175, -0.02370370370368846, 0.6699259259259406)

@var p1, p2

F = System([K11 + K12*p2 + K13*p2^2,

K21 + K22*p1 + K23*p1^2],

variables = [p1, p2])

sol = solve(F)

which prints

Result with 4 solutions

=======================
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� 4 paths tracked

� 4 non-singular solutions (4 real)

� random_seed: 0x58a0964e

� start_system: :polyhedral

the real solutions can be grabbed with

julia> real_solutions(sol)

4-element Array{Array{Float64,1},1}:

[0.6584172034074091, 0.6584172034074091]

[0.6584172034074091, -0.6230346293251682]

[-0.6230346293251682, 0.6584172034074091]

[-0.6230346293251682, -0.6230346293251682]

which only have one feasible solution to our bounded problem. We can compare this to the

solutions found using interval arithmetic.

using IntervalRootFinding, IntervalArithmetic

using StaticArrays

function f(Ps)

P1, P2 = Ps

K11, K12, K13 = -0.2748148148148175, -0.02370370370368846, 0.6699259259259406

K21, K22, K23 = -0.2748148148148175, -0.02370370370368846, 0.6699259259259406

return SVector{2}([K11 + K12*P2 + K13*P2^2,

K21 + K22*P1 + K23*P1^2])

end

int01 = interval(0.0, 1.0)

rts = roots(f, int01 Ö int01, Krawczyk, 1e-12)

Which prints

1-element Array{Root{IntervalBox{2,Float64}},1}:

Root([0.658417, 0.658418] Ö [0.658417, 0.658418], :unique)

So the two methods agree, and the interval method which is well-defined on the full box in

the complete information game, and it does verify that the solution is indeed unique in the

148



unit box. The intervals look large, but the printing is not true to the specific values. It

rounds up to show that the values are different. We can query the exact bounds

julia> rts[1].interval[1].lo

0.6584172034074088

julia> rts[1].interval[1].hi

0.6584172034074093

As described in section 3, the status of ”:unique” means that it’s mathematically sure, given

the functions involved in the system of equations, that there is only one unique root between

those two floating point values.

G.2 Multinomial duopoly

julia> K11, K12, K13k, K14k = -0.9022222222222354, -0.09481481481481069,

[1.3511111111111063, 0.6699259259259406], [5.6183131848704875,

-0.047407407407433766]

(-0.9022222222222354, -0.09481481481481069, [1.3511111111111063,

0.6699259259259406],

[5.6183131848704875, -0.047407407407433766])

julia> K21, K22, K23k, K24k = -0.9022222222222354, -0.09481481481481069,

[1.3511111111111063, 0.6699259259259406], [5.6183131848704875,

-0.047407407407433766]

(-0.9022222222222354, -0.09481481481481069, [1.3511111111111063,

0.6699259259259406], [5.6183131848704875, -0.047407407407433766])

julia> K15, K16k = -0.2748148148148175, [-0.04740740740737692,

3.417860807145871]

(-0.2748148148148175, [-0.04740740740737692, 3.417860807145871])

julia> K25, K26k = -0.2748148148148175, [-0.04740740740737692,

3.417860807145871]

(-0.2748148148148175, [-0.04740740740737692, 3.417860807145871])

julia> @var p11, p12, p21, p22
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(p11, p12, p21, p22)

julia> F = System([K11 + K12*p21 + K13k[1]*p21^2 + K13k[2]*p21*p22

+ K14k[2]*p22,

K21 + K22*p11 + K23k[1]*p11^2 + K23k[2]*p11*p12

+ K24k[2]*p12,

K15 + K16k[1]*p21 + K16k[2]*p22,

K25 + K26k[1]*p11 + K26k[2]*p12],

variables = [p11, p12, p21, p22])

System of length 4

4 variables: p11, p12, p21, p22

-0.902222222222235 - 0.0948148148148107*p21 - 0.0474074074074338*p22

+ 0.669925925925941*p21*p22 + 1.35111111111111*p21^2

-0.902222222222235 - 0.0948148148148107*p11 - 0.0474074074074338*p12

+ 0.669925925925941*p11*p12 + 1.35111111111111*p11^2

-0.274814814814818 - 0.0474074074073769*p21 + 3.41786080714587*p22

-0.274814814814818 - 0.0474074074073769*p11 + 3.41786080714587*p12

julia> sol = solve(F)

Result with 4 solutions

=======================

� 4 paths tracked

� 4 non-singular solutions (4 real)

� random_seed: 0x1a96f301

� start_system: :polyhedral

julia> realsol = real_solutions(sol)

4-element Array{Array{Float64,1},1}:

[0.83152596361697, 0.09193917560505489, -0.8009419096814003,

0.0692960447358559]

[-0.8009419096814003, 0.0692960447358559, -0.8009419096814003,

0.0692960447358559]

[0.83152596361697, 0.09193917560505489, 0.83152596361697,

0.09193917560505489]
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[-0.8009419096814003, 0.0692960447358559, 0.83152596361697,

0.09193917560505489]

I could also have used the interval arithmetic solution method here.

julia> using IntervalRootFinding, IntervalArithmetic

julia> using StaticArrays

julia> function f(Ps)

p11, p12, p21, p22 = Ps

return SVector{4}([K11 + K12*p21 + K13k[1]*p21^2 +

K13k[2]*p21*p22 + K14k[2]*p22,

K21 + K22*p11 + K23k[1]*p11^2 +

K23k[2]*p11*p12 + K24k[2]*p12,

K15 + K16k[1]*p21 + K16k[2]*p22,

K25 + K26k[1]*p11 + K26k[2]*p12])

end

f (generic function with 1 method)

julia> int01 = interval(0.0, 1.0)

[0, 1]

julia> rts = roots(f, int01 Ö int01 Ö int01 Ö int01, Krawczyk, 1e-12)

1-element Array{Root{IntervalBox{4,Float64}},1}:

Root([0.831525, 0.831526] Ö [0.0919391, 0.0919392] Ö

[0.831525, 0.831526] Ö [0.0919391, 0.0919392], :unique)

and again there are no ”:unknown” boxes, so I know that this is the only solution.

Above, it can be seen that the homotopy method traced four paths. This is because that

method will try to find all solutions even complex ones. The Krawczyk method on the other

hand only looks for solutions in the unit box. Either it concludes there are no solutions or it

finds the ones that are there. I timed the two solution methods against each other here, and

the interval method is consistently five times faster than the homotopy based method.

G.3 Binary triopoly game
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julia> K1 = [4.937499999999915, -26.411791666666517, -25.93851091487278,

16.797177581539586, 20.27062499999995, 20.27062499999995, -325.27920833333314]

7-element Array{Float64,1}:

4.937499999999915

-26.411791666666517

-25.93851091487278

16.797177581539586

20.27062499999995

20.27062499999995

-325.27920833333314

julia> K2 = [4.937499999999915, -26.411791666666517, -20.967499999999944,

31.960855227177035, 20.27062499999995, 20.27062499999995, -344.4071624658179]

7-element Array{Float64,1}:

4.937499999999915

-26.411791666666517

-20.967499999999944

31.960855227177035

20.27062499999995

20.27062499999995

-344.4071624658179

julia> K3 = [4.937499999999915, -13.937499999999972, -25.938521374040192,

24.593521374040392, 4.690624999999919, 20.27062499999995, -344.5363020833331]

7-element Array{Float64,1}:

4.937499999999915

-13.937499999999972

-25.938521374040192

24.593521374040392

4.690624999999919

20.27062499999995

-344.5363020833331

julia> @var p1, p2, p3

(p1, p2, p3)
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julia> F = System([K1[1] + K1[2]*p2 + K1[3]*p3 + K1[4]*p2*p3 +

K1[5]*p2^2*p3+K1[6]*p2*p3^2+K1[7]*p2^2*p3^2,

K2[1] + K2[2]*p1 + K2[3]*p3 + K2[4]*p1*p3 +

K2[5]*p1^2*p3+K2[6]*p1*p3^2+K2[7]*p1^2*p3^2,

K3[1] + K3[2]*p2 + K3[3]*p1 + K3[4]*p2*p1 +

K3[5]*p2^2*p1+K3[6]*p2*p1^2+K3[7]*p2^2*p1^2],

variables = [p1, p2, p3])

System of length 3

3 variables: p1, p2, p3

4.93749999999991 - 26.4117916666665*p2 - 25.9385109148728*p3 +

16.7971775815396*p2*p3 + 20.2706249999999*p2*p3^2 +

20.2706249999999*p2^2*p3 - 325.279208333333*p2^2*p3^2

4.93749999999991 - 26.4117916666665*p1 - 20.9674999999999*p3 +

31.960855227177*p1*p3 + 20.2706249999999*p1*p3^2 +

20.2706249999999*p1^2*p3 - 344.407162465818*p1^2*p3^2

4.93749999999991 - 25.9385213740402*p1 - 13.9375*p2 +

24.5935213740404*p2*p1 + 20.2706249999999*p2*p1^2 +

4.69062499999992*p2^2*p1 - 344.536302083333*p2^2*p1^2

julia> sol = solve(F)

Result with 16 solutions

========================

� 16 paths tracked

� 16 non-singular solutions (8 real)

� random_seed: 0xb313dfc7

� start_system: :polyhedral

julia> realsol = real_solutions(sol)

8-element Array{Array{Float64,1},1}:

[0.08520268977076134, -5.789199190641236, 0.1475539199235848]

[-0.5423171911842847, -0.5424548482872174, -0.5824899074436278]

[0.12664377011175382, 0.14723459253738377, -5.707019344120354]

[0.21995808549142704, -0.3368657588112441, -0.9894437822983965]

[-0.6920881397646398, 0.3110406973707669, -0.46525727631097363]
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[-0.46623443795206726, -0.6255951510600032, 0.30272717141718847]

[-18.070381007815104, 0.09775486255470776, 0.09728966706072086]

[0.14054404801015058, 0.11946449646162163, 0.07485594415537336]

julia> using IntervalRootFinding, IntervalArithmetic

julia> using StaticArrays

julia> function f(Ps)

p1, p2, p3 = Ps

return SVector{3}([K1[1] + K1[2]*p2 + K1[3]*p3 +

K1[4]*p2*p3 + K1[5]*p2^2*p3+K1[6]*p2*p3^2+K1[7]*p2^2*p3^2,

K2[1] + K2[2]*p1 + K2[3]*p3 +

K2[4]*p1*p3 + K2[5]*p1^2*p3+K2[6]*p1*p3^2+K2[7]*p1^2*p3^2,

K3[1] + K3[2]*p2 + K3[3]*p1 +

K3[4]*p2*p1 + K3[5]*p2^2*p1+K3[6]*p2*p1^2+K3[7]*p2^2*p1^2])

end

f (generic function with 1 method)

julia> int01 = interval(0.0, 1.0)

[0, 1]

rts = roots(f, int01 Ö int01 Ö int01, Krawczyk, 1e-12)

Timing these runs HomotopyContinuations.jl comes out faster by a factor of around 2-3x.
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