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Abstract

This paper estimates a dynamic model of store adjustments in product variety that con-

siders multiproduct service technology to evaluate the impact of entry regulations on

variety and long-run profits in Swedish retail. Using rich data on stores and product cat-

egories, we find that more liberal entry regulation increases productivity and decreases

the adjustment costs of variety. Counterfactual simulations of modest liberalizations of

entry incentivize incumbents to offer more product categories to consumers while in-

creasing efficiency and long-run profits. Regional differences are reduced as consumers

and incumbents obtain more benefits in markets with restrictive regulation. Generous

liberalizations of entry induce net exit of product categories and harm incumbents in

markets with limited demand.
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1 Introduction

An important goal of policymakers is to ensure that consumers enjoy broad access to

products and services regardless of where they live. To this end, the appropriate de-

sign of entry regulations has been widely debated among policymakers and academics.1

The choice of product variety is endogenous, where firms trade off short-run costs and

long-run benefits.2 The extent to which there is too much or too little product variety

as a result of entry regulations is theoretically ambiguous and can only be assessed by

empirical work. Yet, there is remarkably little research on the incentives for product

repositioning and adjustment in inputs after regulatory changes, particularly for service

industries characterized by economies of scale and scope.

In this paper, we estimate a dynamic model of store adjustments in product variety

and inputs to evaluate the impact of entry regulations on variety and long-run prof-

its. The model builds on a multiproduct service technology, endogenizes stores’ product

variety decisions, and quantifies the long-run store benefits of expanding variety. The

model is estimated using rich Swedish retail data on product categories, stores and entry

regulations across local markets for the period 2003-2009. Then, we use counterfactual

analysis to examine the dynamic response to alternative regulatory regimes that encour-

age product variety in markets with restrictive regulation or in rural locations.3 This

conveys knowledge for designing policy tools to improve variety and employment and to

equate living conditions across regions, being highly prioritized among policymakers.

Entry regulations and government subsidies are common in OECD countries, but

the design and stringency differ across countries.4 According to the Swedish Plan and

Building Act (PBL), all stores are subject to the regulation, and each municipality has

the power to make land-use decisions. Local authorities typically require each store

to complete a formal application when seeking entry. The application is approved or

rejected after the potential consequences of entry on factors such as market shares and

product variety have been evaluated. Rarely are all applications approved in Sweden.

We follow the previous literature and use the number of approved PBL applications

divided by population density to measure regulatory stringency and provide solutions

1See, for example, European Competition Network (2011), European Commission (2012) and the
survey of regulations in retail conducted by Pozzi and Schivardi (2016).

2We measure product variety as the number of product categories when there is no data on all
products in a category (i.e., the range of products in a category). The marketing literature often uses
rich product data and refers to variety as a product mix consisting of multiple product lines (categories).
The number of product lines refers to product width, whereas the number of products in a product line
refers to product depth (range). The sum of product depth across all firm’s product lines defines product
length, which can be used to measure product variety when data allows.

3Rural and urban markets are defined by population. Markets with restrictive and liberal entry
regulation are defined by the stringency of regulation.

4Countries like the United States have more flexible zoning laws, while the United Kingdom and
France explicitly regulate large entrants.
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to endogeneity concerns.

Our model captures a new mechanism behind the dynamic effects of regulations,

recognizing retailers’ incentives for repositioning inputs and innovating to offer more

products to sell. The novelty of our dynamic framework is that we model economies of

scope and store input allocation and consider the adjustment costs related to offering

product variety. Fiercer competition caused by more liberal regulations increases firms’

incentives to run efficient operations by investing in new technology and adjusting their

inputs.5 We allow entry regulations to influence future productivity and adjustment

costs related to offering product variety.6 Higher productivity and lower adjustment

costs related to offering variety create incentives for stores to introduce new products.

Economies of scope make it cheaper to sell many product categories together than sell-

ing them separately and can arise from cross-selling products using the same employees

and systems (machinery and equipment) or business sharing centralized functions such

as finance and marketing. New products are introduced if the expected long-run gains

are higher than the cost of adding variety, implying that new products do not merely

cannibalize sales from existing products. The magnitude of the induced changes from

more liberal entry regulation on the number of product categories (extensive margin),

sales per category (intensive margin), productivity and long-run store profits can only

be determined through empirical work.

Product-level data connected to a census are rarely available for service industries.

We access such data and use product categories to measure product variety at the store

level. Facts in our data guide the formal model. Stores frequently adjust their products.

There is substantial variation in product categories and simple performance measures

such as labor productivity within and between stores over time. Reduced-form regres-

sions show that more liberal regulation is associated with more product categories and

improved store performance measures. More liberal regulation is also associated with

a larger sales increase among a store’s bottom-selling categories than among top-selling

categories.

In the dynamic model, stores choose product categories, labor, inventory and in-

vestment in technology based on store-specific supply and demand primitives and char-

acteristics of the local market (e.g., Jovanovic, 1982; Hopenhayn, 1992; Ericson and

Pakes, 1995). First, we recover store revenue productivity and demand shocks affecting

product-category sales and market shares using multiproduct technology and a control

function estimator at the product-category level relying on input demand for labor and

5See, e.g., Joskow and Rose (1989), Bertrand and Kramarz (2002), Suzuki (2013), Turner et al.
(2014), Pozzi and Schivardi (2016), Maican and Orth (2018).

6The empirical literature often find positive effects of stronger competition on productivity due
to external factors such as trade liberalization and less restrictive regulation, e.g., De Loecker (2011),
Syverson (2011), Maican and Orth (2015), Maican and Orth (2017), and Backus (2020).
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inventory.7 Demand shocks can be associated with consumers’ quality of the shopping

experience and other demand factors that affect store sales and market share, and their

evolution is not under the store’s control. We discuss identification in detail and provide

Monte Carlo simulations. Second, we solve the store’s dynamic optimization problem

and identify the adjustment costs of product categories by matching the observed data

with the prediction of the model. Third, counterfactual simulations solve for the optimal

number of product categories and sales per category and quantify the long-run benefit

of variety under alternative regulations and government subsidies.

This study is, to the best of our knowledge, the first empirical research that analyzes

how regulations affect stores’ incentives to offer product variety using a single-agent dy-

namic framework where economies of scope are embedded in multiproduct technology.

Early work by Baumol et al. (1982) models the cost side to understand variety. While

early work on product differentiation imposed restrictive assumptions, the demand lit-

erature employs rich modeling of consumer behavior to understand market performance

with multiproduct firms.8 Prices restrict demand in terms of quantity, while purchasing

costs related to traveling and waiting in checkout lines limit demand in terms of product

variety (Bronnenberg, 2015). Stores reduce purchasing costs and provide more conve-

nience by increasing shopping quality, which increases fixed costs and mitigates variety.

Entry papers consider that firms pay a fixed cost to increase variety, but this does not

fully explain why service firms offer multiple products (Bailey and Friedlaend, 1982).

In this paper, we demonstrate the incentives for product repositioning after regulatory

changes using a dynamic framework of multiproduct technology and considering demand

shocks in a local market environment.

This paper differs from previous literature in that our framework endogenizes store

decisions over product variety by integrating multiproduct technology into a fully dy-

namic model with adjustment costs related to offering product variety. The proposed

multiproduct technology used by stores to generate sales is transparent over the aggre-

gation across products and the rate of substitution between products and is consistent

with stores’ profit maximization behavior, as discussed in the early theoretical literature

on production technology (Hicks, 1946; Mundlak, 1964; Fuss and McFadden, 1978). We

provide an empirical tractable model that adds to previous research on entry regulations

7See Olley and Pakes (1996), Doraszelski and Jaumandreu (2013), Maican and Orth (2017), and
Kumar and Zhang (2019). Kumar and Zhang (2019) use the cost of goods to recover the distribution
of demand shocks in manufacturing, but do not model the firm’s product variety or recover a demand
shock for each firm.

8Early models of product differentiation assumed that firms produce a single product and variety
reduced to the number of firms (Spence, 1976; Dixit and Stiglitz, 1977; Mankiw and Whinston, 1986).
The demand literature uses rich modeling of consumer behavior, but it does not model how firms use
their internal resources to offer variety. For example, Anderson and De Palma (1992), Verboven (1996)
and Anderson and De Palma (2006) present theoretical nested demand frameworks where consumers
first decide on the firm, then which product and how much to buy.
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and firm performance using strategic interactions where the computational burden lim-

its the degree of product differentiation (e.g., Suzuki, 2013; Fan and Xiao, 2015; Maican

and Orth, 2018). The paper also links to the scarce literature on variety responses to

regulatory changes that stress the demand side and to recent work that uses dynamic

structural models to examine the firm’s response to industry policies (e.g., Ryan, 2012;

Sweeting, 2013; Fowlie et al., 2016; Barwick et al., 2018). Stores in our model respond

differently to changes in regulations and a store’s market share is determined by its

own product variety and that of rivals in local markets. In this regard, the paper also

connects to the literature on competition and variety that typically finds a positive re-

lationship but without considering the allocation of inputs explicitly.9

We also contribute to the literature on productivity and multiproduct technology,

which often relies on exogenous product variety and ignores the dynamic aspects of

adjusting variety. In particular, we contribute to recent work on multiproduct firms

and productivity in manufacturing using data on sales and physical quantities (e.g.,

De Loecker et al., 2016; Dhyne et al., 2017). Our model adapts several features typical

for services that should affect the response to regulatory changes. Retailers frequently

change product variety using the same technology and utilizing economies of scale and

scope. The nature of services makes it difficult to measure physical quantities and prices,

and to aggregate across products, complicating the definition of technical productivity

(Oi, 1992). We add to the understanding of revenue productivity dynamics in services

by recovering two store-level unobservables and their relationship as in Maican and Orth

(2021), which do not model endogeneity of store variety, adjustment costs of variety and

the effect of regulation.

The results of the structural model show that entry regulations are a key determinant

of stores’ optimal product variety. The median adjustment cost of product categories is

29 percent higher in markets with restrictive rather than liberal regulation. Stores lo-

cated in restrictive markets have the highest dispersion in the long-run benefit of adding

one more product category. The median benefit is approximately 1 percent lower in

restrictive than in liberal markets. The median benefit of adding variety is 2 percent

lower for stores located in rural rather than urban markets, reflecting less variety to

consumers in rural areas.

Counterfactual policy experiments show that more liberal entry regulation forces in-

cumbents to reallocate inputs and reposition product variety, which increases product-

category entry rates. Modest liberalization of entry regulation increases incumbents’

long-run profits due to productivity advances, lower adjustment costs and modified

product categories. The improvements among incumbents as well as product-category

9See also Ellickson (2007), Watson (2009), Ren et al. (2011), Basker et al. (2012), Bronnenberg and
Ellickson (2015), Hortacsu and Syverson (2015), Berry et al. (2019), Hsieh and Rossi-Hansberg (2019),
and Maican and Orth (2021).
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benefits for consumers are greatest in markets with restrictive regulation. Consequently,

such a regulatory regime adequately reduces regional differences. Simulations of dou-

bling the number of accepted PBL applications show high product-category entry rates

but even higher product-category exit rates in markets with limited demand. Although

incumbents are incentivized to improve their operations, it cannot outweigh the loss in

sales from intense competitive pressure, implying that long-run profits decrease. Coun-

terfactuals show that a cost subsidy to stores utilizing economies of scope can ensure

product variety in rural markets but that the governmental cost can be high.

Section 2 presents the entry regulations, data and reduced-form evidence. Section 3

presents the dynamic model and empirical framework. Section 4 discusses the empirical

results and Section 5 the counterfactual experiments. Section 6 summarizes the paper.

In several places we refer to an online Appendix.

2 Swedish retail trade and entry regulations

The goal of policymakers is to ensure that all individuals in society have access to a

wide variety of products at low prices and in stores within a reasonable geographic dis-

tance. To reach this goal, most OECD countries empower local governments to make

decisions regarding the entry of new stores. The Swedish Plan and Building Act [PBL]

regulates the use of land, water and buildings. The regulation contains a comprehensive

plan that covers and guides the use of the entire municipality and detailed develop-

ment plans that cover only a fraction of the municipality. The detailed development

plans divide municipalities into smaller areas for which limits on use and design are set,

i.e., construction rights for real estate and whether areas can be used for workplaces,

housing, schools, parks, etc. Entering a new store requires that the PBL admits op-

erations of retail activities in the geographic area where the store wants to enter. A

formal application needs to be sent to the municipal government that is supposed to

evaluate consequences on prices, accessibility of store types and products for different

consumer groups, traffic, broader environmental issues, etc. The local government can

accept or reject an application. Because the Swedish regulation is typical for many other

countries, our application to Sweden is relevant and offers broad implications for other

countries (Pozzi and Schivardi, 2016). Appendix D provides an extensive discussion on

PBL in Sweden.

Regional development policies. Regional subsidies are alternative policy tools em-

ployed to encourage stores to provide a wide variety of products. In 2001, the Swedish

government announced a new regional development policy designed to maintain a sus-

tainable service level in all parts of Sweden (the bill 2001/02:4 A policy for growth and
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viability for the whole country). One of the programs embedded in the policy was Stores

in the countryside. The aim of the program was to improve stores in rural areas by

implementing store performance actions, such as store refitting, improving the distri-

bution of products and technical equipment, and modernizing inventory, and assigning

mentors to enhance communication between store managers and local authorities. In

2015, the Swedish government announced The Rural Development Programme [RDP].

The RDP contains support and compensation for municipalities to achieve objectives,

such as a balanced territorial development of rural economies and communities as well

as improved quality of life. The RDP aims to make it easier to live and operate busi-

nesses in rural areas by investing in local services and technologies (e.g., broadband).

The RDP emphasizes the importance of retail stores, as they also provide numerous

other utilities, such as postal services. The stringency of entry regulations is crucial for

achieving the goals of RDP because investments in infrastructure and access to services

are involved in entry regulations in great detail.

Local markets. Sweden consists of 290 municipalities that make decisions regard-

ing entry regulations and regional development policies. Following previous studies on

Swedish retail and considering the fact that municipal governments decide over entry and

regional development programs, here, a municipality refers to a local market (Maican

and Orth, 2015, Maican and Orth, 2018).10 We classify municipality in market types.

The first classification rests on the stringency of entry regulations. Markets with regu-

latory stringency below the median value are defined as restrictive; otherwise they are

defined as liberal. The second classification is rural or urban markets. Markets with less

than 10,000 inhabitants are defined as rural; otherwise they are defined as urban. The

restrictive and liberal markets are defined on the potential competitive pressure from

entrants, whereas the rural and urban markets are defined based on potential demand

capabilities. Because entry regulations affect all types of markets and regional programs

target rural markets, our market types are crucial for understanding the development

of local markets under numerous policy changes.

Data. The empirical application focuses on the three-digit industry, Retail sale of new

goods in specialized stores (Swedish National Industry (SNI) code 524). This retail sector

includes the following subsectors at the five-digit SNI: clothing; furniture and lighting

equipment; electrical household appliances and radio and television goods; hardware,

paints and glass; books, newspapers and stationery; and other specialized stores.

We use three data sets provided by Statistics Sweden and the Swedish Mapping,

Cadastral and Land Registration Authority (SMA). The first data set covers detailed

annual information on all retail firms in Sweden (census) during the period 2000 to 2010.

10A municipality consists of one or more localities. Statistics Sweden [SCB] also defines trade areas
for retailers based of the number and the size of retailers, i.e., to have at least five retail trade stores or
four retail trade stores that have together having at least 100 employees (SCB, 2015).

6



The data contain financial statistics of input and output measures: sales, value-added,

the number of employees, capital stock, inventories, cost of products bought, investment,

etc. Inventories capture the value of products held in stock in the end of each year and

are taken from book values (accounting data). The cost of products bought measures

store’s cost of buying products from the wholesaler. The cost of products bought and

inventories both rely on the input prices of goods, i.e., they are based on what stores

pay to the wholesaler. In other words, sales and value-added are measured in output

prices, whereas the cost of products bought and inventories are measured in input prices.

Because of difficulties in measuring quantity units in retailing arising from the nature

and complexity of the product assortments, quantity measures of output and inventories

are not available.

Our second data set includes information on approximately 1,100 stores per year

and covers store-level data on all product categories and their yearly sales from 2003 to

2009. Unique identification codes allow us to perfectly match the product categories to

the stores. The product categories have 6-8 digit codes assigned, which define categories

such as clothes for women, clothes for men, and clothes for children.11 The number of

product categories is our measure of product variety in a store. That is, the number of

product categories captures the extensive margin of product variety in a store. Data on

sales per product category capture the intensive margin of product lines (range) inside a

category. Most importantly, the combination of the two data sets allows us to compute

product market shares inside a store and a store’s market share in a geographic market

(municipality), which provides rich information on the local market structure.

The third data set contains data on the number of applications approved by local

authorities for each municipality and year (SMA). This data set also includes appli-

cations to alter land-use plans and the total number of existing land-use plans. We

follow previous literature on land use and entry regulations and define the stringency

of regulation in local markets as the number of approved PBL applications divided by

the population density (Bertrand and Kramarz, 2002; Suzuki, 2013; Turner et al., 2014;

Pozzi and Schivardi, 2016; Maican and Orth, 2018).12

Descriptive statistics and stylized facts. Table 1 shows that there is an aggregate

increase in sales, value-added, the average number of product categories, investments,

and labor over time. From 2005 to 2009, sales increased by 36 percent, investments

by 53 percent and the number of employees by 21 percent. An average store has ap-

proximately 4 product categories. The number of product categories varies between 1

11The product data set follows a similar classification system to the one used for the sample data
collected on prices and quantities in manufacturing. The complexity of measuring physical quantities
and aggregating across products makes it difficult to define an annual price index for a product category.

12Municipalities with a nonsocialist majority approve more PBL applications. The correlation be-
tween nonsocialist seats and the number of approved PBL applications in local markets is 0.6.
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and 17 in our sample. Our regulation measure, i.e., the average number of approved

PBL-applications over population density, increased from 0.23 to 0.29 during our study

period. That is, an increase from 23 to 29 approved applications per 100 square kilome-

ters. That more approvals are associated with fiercer competition is confirmed by the

negative correlations over time between sales per product category and our regulation

measure.

Retailers often adjust their product categories to improve the store’s competitive-

ness and adapt to the local market environment. Product repositioning is more frequent

in retail than in manufacturing because retailers employ the same technology to sell a

different set of product categories. In our sample, we observe adjustments in product

categories in 52 percent of store-year observations, a result also confirmed by the median

number of years a store adjusts product categories that is approximately half of the total

number of years in the sample. Nevertheless, the mean of cumulated yearly adjustments

of the number of product categories is positive (i.e., product variety increases over time).

Yearly adjustments in the store’s number of product categories between t−1 and t vary

considerably. The interquartile range of yearly changes in the store’s number of product

categories is 2. We also find substantial variation in the yearly changes in the number

of product categories across five-digit subsectors, i.e., the median of the five-digit in-

terquartile range is 1, and the maximum is 3.

Figure 1 presents box-plot charts showing the distributions of store performance

measures before and after the acceptance of new PBL applications. We measure store

performance by labor productivity (log of sales per employee), market share, and inven-

tory performance (the log of sales per average inventory and the log of cost of goods

sold over average inventory). Median labor and inventory productivity is higher, whereas

median market share is lower after acceptance of new PBL applications. This suggests

a positive relationship between increasing competition from more liberal regulation and

store performance, in line with previous literature. It also suggests that we have to

control for entry regulation when developing more sophisticated measures of store per-

formance such as total factor productivity.

The box plots in Figure 2 show that the median store has more product categories

and higher sales per product category after the acceptance of new PBL applications.

Consumers benefit from more product variety, and incumbents benefit from higher sales

per product category in markets with more liberal regulation. However, the drivers of

these patterns are unclear without a modeling framework.

Reduced-form regressions show that acceptance of new PBL applications is asso-

ciated with changes in the number of product categories and the distribution of sales

across product categories in a store. To measure store diversification in terms of sales,

we compute the entropy measure for each store j based on the market share of each

8



product category i sold by the store, Ejt =
∑

imsijtln(msijt) (Bernard et al., 2011).

A store that focuses on top sales categories has a large entropy. Table 2 shows that

new PBL applications increase the number of product categories and decrease the en-

tropy of product sales. On average, stores in markets with new applications accepted

have approximately 5 percent more product categories and 7 percent lower product-sales

entropy. This is suggestive evidence that regulatory changes are associated with adjust-

ments in product variety.

To investigate the dynamic effects of entry regulations on the number of product

categories and sales entropy, we use AR(1) reduced-form regressions that include year,

subsector, and local market fixed effects (i.e. ∆zjmt = αzzjmt−1 +αrrmt−1 +fs + ft +

fm+ujmt).
13 Table 3 shows that one additional PBL per population density increases the

number of product categories in stores by 4.7 percent and decreases stores’ product-sales

entropy by 5.2 percent. The average persistence in the number of product categories

and sales entropy are approximately 60 and 63 percent, respectively.

Our results are robust to considering the endogeneity of the entry regulation mea-

sure. Specifications (3), (6) and (9) in Table 3 control for the possible endogeneity of

entry regulation using an instrumental variable approach. We use three instruments

based on previous literature: the share of nonsocialist seats in the local government

(Maican and Orth, 2015, Pozzi and Schivardi, 2016), the number of approved applica-

tions in the neighboring municipalities, and one internal instrument based on exogenous

variables to stores (e.g., income and income squared) (see Lewbel, 2012 for a discussion

on internal instruments). The first instrument relies on nonsocialist local governments

being more positive for entry. To be an effective instrument for entry regulation, the

share of nonsocialist seats should not be related to local market demand. This instru-

ment raises the following concerns. First, the outcomes of elections might be influenced

by economic conditions. Political business cycles can only affect our results if there is

a substantial ability to predict future demand shocks when politicians are elected. The

second concern is that political preferences might capture local policies other than entry

regulations. In Sweden, PBL is rather exceptional because it enables local politicians

to play a key role. Furthermore, in our context, the number of PBLs in other markets

is an appropriate instrument if it reflects common trends or demand shocks that are

specific only to entry regulations. Although the proposed instruments are not perfect,

we believe that they are the best instruments, given previous work and the available

data.

The results of the Sargan test shows that the overidentifying restrictions are valid,

i.e., the test fails to reject the null hypothesis that the instruments are uncorrelated

13z is one of the following variables: the number of product categories, the logarithm of the number
of product categories, and sales entropy.

9



with the remaining shocks. We also report the partial F-test, as suggested by Staiger

and Stock (1997). The statistically significant F-tests show that the instruments are not

weakly correlated with the entry regulation measure.

3 A model of multiproduct service technology and entry

regulations in retail

We consider a retail sector where all stores focus on a well-defined service activity (e.g.,

selling apparel or selling shoes). Based on the observed information at the beginning

of period t, stores choose product categories, inventory adjustments, labor, and invest-

ments in technology to generate sales. First, we introduce a multiproduct technology

and discuss its theoretical foundations. Second, we construct a product-category sales-

generating function and recover two store-specific unobservables for the researcher (i.e.,

revenue productivity and demand shocks). Although we measure product variety by the

number of product categories in a store, our model can allow for modeling of individual

product-level data linked to a census if available. Third, we model and solve the store’s

dynamic optimization problem, highlighting the dynamic role of entry regulations and

adjustment costs for incumbents’ endogenous decisions on product variety.

3.1 Multiproduct service technology in retail

Retailers offer multiple products and services to consumers. The existence of economies

of scale and scope is the main determinant of the existence of multiple products at the

firm/store level (Panzar and Willig, 1981; Bailey and Friedlaend, 1982). The multi-

product characteristic creates difficulties in aggregating the service output when there

is not a single value function because the composite service output of a store depends

on other things, including prices. In addition, the productivity of resources in a product

or service is not independent of the level of services in other products in retail.

ASSUMPTION 1: The multiproduct service-generating function of a retailer can

be written as an implicit function, which can be described by the transcendental function

that generalizes the Cobb-Douglas function (Mundlak, 1963; Mundlak, 1964):

F (Q,V) = G(Q)−H(V) = 0 (1)

where G(Q) = Qα̃1
1 ×· · ·×Q

α̃np
np exp(γ̃1Q1+· · ·+γ̃npQnp); H(V) = V β̃1

1 ×· · ·×V β̃m
m exp(ω̃);

Q is the vector of service output (i.e., product categories in our case); Qi is the i-th

service output of the store (i.e., quantity of product category i), i = {1, · · · , np}; Ve is the

e-th service input of the store (e.g., labor, capital, inventories), e = {1, · · · ,m}; and ω̃ is
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the retailer’s technical productivity (i.e., quantity-based total factor productivity).14 As

we discuss below, parameters α̃1, · · · , α̃np and γ̃1, · · · , γ̃np define the production frontier

and affect product-product and product-input substitutions, playing a key role in profit

maximization, and β̃1, · · · , β̃m affect product-input and input-input substitutions.

In the following, we use i to index the service outputs (product categories) and

e to index the inputs. The assumption regarding the transformation function G(Q) −

H(V) = 0 is known as the separability property, and it has key implications in empirical

applications. First, this assumption implies that almost always the retailers sell the

product categories jointly. That is, the product categories cannot be sold separately

using a sales technology for each product category (nonjoint sales). Second, it can be

shown that a necessary and sufficient condition for separability is that the total cost

function is multiplicatively separable (in quantity and input prices), which implies that

the ratio of two marginal costs is independent of input prices (Hall, 1973).15 Under

competitive equilibrium, this implies that product-category price ratios depend on the

product-category mix. Third, a necessary and sufficient condition for nonjointness is

that the total cost of selling all product categories is the sum of the cost of selling each

product category separately. Therefore, nonjointness in sales technology is restrictive

in retail because economies of scale and scope are not modeled explicitly (Panzar and

Willig, 1981). Furthermore, it also implies that marginal cost ratios are independent of

the product-category mix.

In empirical applications, the theoretical results of the multiproduct service function

related to profit maximization play a crucial role in the identification of sales technology.

For example, productivity is typically defined as aggregate output over aggregate inputs;

that is, the output and input coefficients α̃i and β̃j affect the productivity measure. For

simplicity of exposition of the multiproduct technology, we assume that the prices are

given and focus on no adjustment cost in inputs. We relax this assumption in the

empirical setting, which allows for dynamic inputs such as capital stock and inventories.

The static profit maximization problem at the store level is given by

maxV Π = P′Q−W′V

F (Q,V) = 0
(2)

where P and W are vectors of output and input prices, respectively.

In the case of two inputs and two outputs, Mundlak (1964) shows the restrictions

on the coefficients of transcendental multiproduct functions that are required to satisfy

14See Hicks (1946) for an early discussion on the general implicit production function. By introducing
the exponential term in G(·), we destroy homogeneity of H(·), but allow for inflexion points in the
function (Halter et al., 1957).

15Hall (1973) proposes a multiproduct cost function specification where separability and nonjointness
are introduced as parametric restrictions.
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the static profit maximization conditions. We provide a general result and show that

these restrictions are valid when there are more than two outputs and inputs. A reader

not interested in theoretical details can move directly to Section 3.2.

THEOREM 1: Consider a general service-generating function F (Q,V) = G(Q)−

H(V) = 0, where G(Q) = Qα̃1
1 × · · · × Q

α̃np
np exp(γ̃1Q1 + · · · + γ̃npQnp); H(V) =

V β̃1
1 × · · · × V β̃m

m exp(ω̃). If the parameters satisfy the following conditions: (a) α̃i < 0

and γ̃i > 0 for all i = {1, · · · , np}; (b) β̃e > 0 for all e = {1, · · · ,m}, then the conditions

for profit maximization are satisfied.

PROOF: The main idea of the proof is that the sign of the determinant of the bordered

Hessian matrix of the optimization problem (2) should satisfy the second-order require-

ment for profit maximization. The proof and an additional discussion are provided in

the Appendix A for individuals interested in the technical details.�

The introduction of the γ̃i parameters plays a key role in understanding the proper-

ties of the multiproduct function and their empirical implications. For certain values of

γ̃i, the service output is sold at the minimum cost and the optimal inputs yield minimum

revenues. In the multiproduct case, we want to avoid these situations (saddle points).

Proposition 1 describes these cases.

PROPOSITION 1: If the service function is simple Cobb-Douglas in outputs

(γ̃i = 0 for all i) and inputs and the first-order conditions are satisfied, then the op-

timal service quantity Q∗ is sold at the minimum cost and any inputs V∗ yield min-

imum revenues. The profit π(Q∗, V ∗) at the point (Q∗, V ∗) is a saddle point, i.e.,

π(Q∗, V ) ≤ π(Q∗, V ∗) ≤ π(Q,V ∗).

PROOF: The proof uses the sign of the determinant of the Hessian matrix. For the full

proof and an additional discussion, we refer readers interested in the technical details

to Appendix A (see also Mundlak, 1964).�

A direct consequence of Proposition 1 is that when the inputs V produce minimum

revenues and the first-order conditions are satisfied, then the profit can be maximized

by a selection of product categories, i.e., a corner solution. This problem does not exist

in the case of a single output (i.e., product category). The condition α̃i < 0 and γ̃i > 0

for all i is not the only second-order condition for profit maximization.16 Another key

aspect of a multiproduct technology is that the sign of the parameters γ̃i determines the

sign of the product category (factor) substitution (see Appendix A). The marginal rate

of substitution for γ̃i = 0 implies that the product-product marginal rate of substitution

is a convex function. This function is concave when γ̃i > 0, which has key implications

in empirical applications that allow for economies of scope.

Aggregation and the role of sales. To write the service-generating function at the

16It is important to note that the result in Theorem 1 holds when some α̃i are positive (not all)
and, in this case, the corresponding γ̃i can be set to zero, which can be useful to reduce the number of
parameters to be estimated.
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product-category level, we need to normalize one parameter to one, say the i-th out-

put, which can be done by raising the service function to the power of −α̃i. In this

case, the resulting parameters of product categories other than i will have a reverse sign

when α̃i is negative. When the quantity is not observed, we want to set the weights

γi to obtain a meaningful interpretation of the aggregation across the store’s product-

category mix. As suggested in Mundlak (1964), we consider γ̃i = α̃yPi, where Pi is the

price index of product category i (price of a representative basket), which yields the

product-category sales and reduces the number of parameters to be estimated. Thus,
∑np

i=1 γ̃iQi = α̃y
∑np

i=1 PiQi = α̃yY , which is total store-level sales Y multiplied by α̃y,

and it has a meaningful interpretation. The store’s total sales thus play a key role in

the relationship between inputs and product categories for the multiproduct service-

generating function because it drives substitution between product categories. We use

this result from the transcendental production functions to write a product-category

sales-generating function that accounts for sales of other products.

3.2 Empirical framework: Multiproduct sales-generating function

We start the empirical framework by modeling a multiproduct sales-generating function

accounting for local entry regulations. Without loss of generality, we write the model

at the product-category level using the simplest demand setting. If one accesses data

on product categories and products inside a category, one can derive product-level sales

accounting for the nested structure.

ASSUMPTION 2: All stores use the same service technology to sell their product

categories, and this technology does not depend on the product.

Based on transcendental technology (1), the multiproduct service-generating func-

tion of store j in logs is given by

npj
∑

i=1

α̃iqijt + α̃yYjt = β̃lljt + β̃kkjt + β̃aajt + ω̃jt + ũpjt, (3)

where qijt is the logarithm of the quantity of product category i sold by store j in

period t, Yjt represents the total sales of store j in period t, ljt is the logarithm of the

number employees, kjt is the logarithm of capital stock, ajt is the logarithm of the sum

between the inventory level in the beginning of period t (njt) and the products bought

during the period t, and ũpjt are the remaining service output shocks.17 Assumption 2

allows us to reduce the number of parameters to be estimated in empirical applications.

With sufficient data for all product categories across markets over a long period of time,

assumption 2 can be relaxed to allow separate technologies for each product. Because

17We follow the common notation of capital letters for levels and small letters for logs.
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each store is unique in our data, we omit the local market index m if the store index j

is present and refer to store j in market m.

In a multiproduct setting, the sales technology possibilities requires aggregation over

the different products. We need product prices to use product sales to aggregate over

products. In many data sets, product-level prices are commonly not observed for all

products; therefore, researchers have used the equilibrium price from a demand equation

to model sales. A product category consists of physical products and store-specific

services associated with each product. Two stores that sell product categories having

the same label (e.g., furniture for kitchen) do not sell exactly the same products in our

model. Even if stores sell the same product brands in a category, it is unlikely that

they offer the same purchase service to consumers for each product. In our model,

the total number of product categories across stores in a local market is the choice set

of a consumer. For simplicity of exposition, we assume that consumers have constant

elasticity of substitution (CES) preferences over differentiated product categories. As in

our data and many empirical settings, the researcher observes product information only

for a sample of stores and total sales for all stores in local markets. The set of product

categories from stores with the same service activity in a local market for which the

researcher does not have product information defines the consumer’s outside option.

The consumer’s decision is how much to purchase of each product category from

stores with product information available and from the outside option. The link between

a CES demand system and a discrete choice demand system is used to write the consumer

choice probability equation consistent with CES preferences18

qijt − qot = x′

ijtβx + σaajt − σpijt + µ̃ijt, (4)

where pijt is the logarithm of the price of product category i in store j; xijt represents

the observed determinants of the intensive and extensive margins of the utility function

when the consumers buy the product category i from store j, σ is the elasticity of

substitution, µ̃ijt represents the unobserved product characteristics at the store level,

for example, the quality of the shopping experience attached to product i in store j, and

qot is the outside option quantity.19 The presence of ajt in a demand equation captures

the fact that consumers prefer stores with products in stock.

Multiplying the price pijt from (4) by the output weights (elasticities) α̃i, summing up

over the number of products, and using the result in (3), we obtain the sales-generating

18See, e.g., Anderson et al. (1987), Anderson and De Palma (2006), and Dube et al. (2020). Dube
et al. (2020) provide an extensive discussion on the link between CES and discrete choice demand
approaches. The demand system is similar to the logit discrete choice system based on unit demand,
but the logarithm of price is used. A nested demand framework can be integrated, but the form of the
sales-generating function will include more terms.

19σ is globally identified for the set of products with positive individual choice probabilities because
this system satisfies the connected substitutes condition provided by Berry et al. (2013) and is invertible.
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function at the store level that is used to obtain the sales for product i, yijt

yijt = −αyy−ijt + βlljt + βkkjt + βaajt + βqyot + x′

jtβx + ωjt + µjt + upijt, (5)

where y−ijt is the logarithm of sales of product categories other than i, yot measures the

sales of the outside option, xjt sums all observed characteristics at the store and market

levels, and upijt represents i.i.d. remaining shocks to sales that are mean-independent

of all control variables and store inputs. We show the derivation of equation (5) in

Appendix B.20 In the empirical implementation, sales yot measures the sales of prod-

uct categories by stores that belong to the same five-digit subsector for which we do

not have product information in the local market m.21 We include only local market

variables in xjt (e.g., population, population density, and income) and therefore use

the notation xmt instead of xjt in what follows. The observed and unobserved product

characteristics are aggregated at the store level using α̃i as weights. The variable µjt

is the weighed sum of all product demand shocks µijt at the store level. Each store

observes the demand shocks µjt when making input decisions, but their evolution is not

under the store’s control. Demand shocks related to product quality, location, checkout

speed, the courteousness of store employees, parking, bagging services, cleanliness, etc.

are part of µjt. In other words, demand shocks µjt include factors related to customer

satisfaction and the quality of shopping in store j in period t.

The multiproduct sales-generating function (5) differs from a single product function

by controlling for the impact of “competition” inside the store, which is represented by

the effect of sales of other product categories on the sales of a product category in a

store. By using the sales of different products in equation (5), we reduce the number

of parameters to be estimated for multiproduct technology and obtain information on

economies of scope. Therefore, we estimate only the coefficient of sales of products

other than product i in store j (αy) and not all coefficients αi, i = {1, · · · , npj}. The

coefficient αy plays a key role in both the persistence in and level of productivity. The

input coefficients in the multiproduct sales-generating function (5), i.e., βl, βk, βa, βq,

are functions of the elasticity of substitution σ and are similar to the aggregate sales-

generating function at the store (firm) level, which allows us to compare them with the

estimates for a single-output technology.22 In service industries, it is difficult to define

20The equation (5) is derived by rewriting the linear sum of product category sales
∑npjt

i=1

[

α̃iyijt +
(

1− 1
σ

)

α̃yYijt

]

≡ αiyijt + αyy−ijt and normalizing αi = 1.
21If the outside option is “do not buy,” yot represents total sales in market m (aggregate sales). We

show in Appendix B how to derive yot using the price equation and multiproduct technology.
22The coefficients of the multiproduct sales technology are functions of σ, i.e., βq = 1/σ, βl =

β̃l(1−1/σ), βk = β̃k(1−1/σ) and βa = βa(1−1/σ). Parameters σa and β̃a are included in βa, and they
cannot be separately identified. Thus, we will not be able to identify separately the effect on inventory
on supply and demand, that is, we identify the net effect through βa (see the identification section and
Appendix B).
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a clean measure of technical productivity due to the complexity of measuring output

and economies of scale and scope (Oi, 1992). Estimating only one coefficient for the

other product categories (αy) when controlling for prices has a cost – we cannot obtain

a clean measure of technical productivity ω̃jt because the coefficients of labor, capital

and inventories include demand shocks even if we control for the elasticity of substitu-

tion. Therefore, the variable ωjt ≡ (1 − 1/σ)ω̃jt measures revenue (sales) productivity.

We simply refer to ωjt as store productivity in what follows. The productivity measure

ωjt might include sales shocks due to approximations in (5), but all these sales shocks

are different from demand shocks µjt that affect consumer preferences for product cate-

gories in a store. Nevertheless, productivity shocks ωjt can be separated from the store’s

demand shocks µjt, which are part of the demand and affect store market share.

A few aspects about the multiproduct sales-generating function should be noted.

First, store productivity and demand shocks affect sales, and they are not observed by

the researcher but are observed by stores when decisions are made. Second, the mul-

tiproduct setting in Section 3.1 requires a positive αy for static profit maximization to

hold. This condition also holds in a dynamic setting because a policy function (input

choice) should be optimal in each period.23 Therefore, we now discuss the store’s dy-

namic optimization problem and store’s decisions that are used to recover ωjt and µjt.

Stores’ decisions. Stores compete in the product market and collect their payoffs. At

the beginning of each time period, the incumbents decide whether to exit or continue to

operate in the local market. Stores are assumed to know the scrap value they will receive

upon exit δ prior to making exit and investment decisions.24 If the store continues, it

chooses the optimal levels of labor l (the number of employees), investment i, product

variety np (the number of product categories), products bought from the wholesaler and

inventory a. Store j maximizes the discounted expected value of future net cash flows

using the Bellman equation:

V (sjt) = max

{

δ, max
npjt,ajt,ljt,ijt

[π(sjt;npjt, ajt, ljt, ijt)− cl(ljt)

−cn(npjt, ajt, rmt)− ci(ijt, kjt) + βE[V (sjt+1)|Fjt]]} ,

(6)

where sjt = (ωjt, µjt, kjt, njt, npjt−1, wjt, yot,xmt, rmt); rmt measures the entry regula-

tion in local market m in period t; wjt is the logarithm of average wage at store j;

π(sjt) is the profit function that is increasing in ωjt, µjt, and kjt; cl(ljt) is the labor cost;

and cn(npjt, ajt, rmt) is the adjustment costs in product variety, which is increasing in

inventory at the beginning of period njt and is affected by regulation rmt (Joskow and

23Notably, the sign conditions on the first and the second derivatives that are used to prove Theorem
1 and Proposition 1 remain the same in a dynamic setting.

24The exit decision is included in the model to control for possible selection bias. However, we do
not explicitly model the exit rule in the empirical application because we have fewer exits in our data.
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Rose, 1989; Maican and Orth, 2018). For example, a more restrictive entry regulation

increases stores’ operating costs as a result of an increase in the fixed costs due to, for

example, more expensive location or building costs, which affect stores’ adjustment costs

(see Section 3.3). Furthermore, ci(ijt, kjt) is the investment cost of new capital (equip-

ment), which is increasing in investment ijt and decreasing in current capital stock kjt

for each fixed ijt (Pakes, 1994);
25 β is a store’s discount factor; and Fjt represents the

information available at time t. Inventory holdings and investments in technology have

dynamic implications due to adjustment costs, and both ωjt and µjt are important for

such adjustments.

The solution to a store’s maximization problem (6) yields the optimal policy func-

tions for the number of products npjt = ñpt(sjt), the sum of the store’s inventories at the

beginning of the period and the cost of products purchased ajt = ãt(sjt), investments in

technology ijt = ĩt(sjt), and exit χjt+1 = χ̃t(sjt).
26 We assume that labor ljt = l̃jt(sjt),

which is part of profits π(·), is chosen to maximize short-run profits (Levinsohn and

Petrin, 2003; Doraszelski and Jaumandreu, 2013; Maican and Orth, 2015; Maican and

Orth, 2017).27

ASSUMPTION 3: The store information set Fjt includes only current and past in-

formation on productivity, demand shocks, product variety in the previous period, input

prices, and local market characteristics (not future values), for example, {ωjτ , µjτ , npjτ−1,

wjτ , kjτ , njτ , yoτ ,xmτ , rmτ}
t
τ=0. The remaining service output shocks upijt satisfy E[upijt|

Fjt] = 0.

ASSUMPTION 4: Store productivity and demand shocks follow two first-order

Markov processes: (i) an endogenous process: Pω(ωjt|ωjt−1, µjt−1, rmt−1), where rmt−1

measures regulation in local market m in period t−1, (ii) an exogenous process: Pµ(µjt|

µjt−1), and (iii) the distributions Pω(·) and Pµ(·) are stochastically increasing in ω and

µ, and they are known to stores.

Assumption 3 states that stores know their productivity ωjt, demand shocks µjt,

and local market conditions when they make decisions regarding their inputs, inventory,

investments, and exit. Assumption 4 states that the demand shocks µjt are correlated

over time according to a first-order Markov process

µjt = hµt (µjt−1;γ
µ) + ηjt, (7)

25In the empirical implementation, the main focus is on the adjustment cost in product variety.
Therefore, to decrease computational complexity, we do not estimate adjustment costs in technology
stock and labor.

26The exit rule χjt depends on the threshold productivity ωmt, which is a function of all state variables
except store productivity (Olley and Pakes, 1996). A store continues (χjt = 1) if its productivity is larger
than the local market threshold (ωjt > ωmt).

27If labor has dynamic implications (e.g., in the case of labor adjustment costs), then labor in the
previous period is part of the state space, and the optimal policy function for labor ljt = l̃t(sjt) is
derived from solving the dynamic optimization problem (6).
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where hµt (·) is an approximation of the conditional expectation and ηjt are shocks that

are mean-independent of all information known at t− 1.

Store productivity ωjt follows an endogenous first-order Markov process where pro-

ductivity, previous demand shocks, and entry regulation affect future productivity:

ωjt = hωt (ωjt−1, µjt−1, rmt−1;γ
ω) + ξjt, (8)

where hωt (·) is an approximation of the conditional expectation and ξjt are shocks to

productivity that are mean-independent of all information known at t− 1.28 Stores can

improve productivity after more intense competition from a less restrictive entry regula-

tion and by using demand shocks. To survive fiercer competition after entry, incumbents

improve productivity by learning practices from entrants (external learning). Stores can

also use information about previous demand shocks, capturing why consumers choose

a store, to improve productivity. For example, rearranging the products on the shelves

such that consumers have faster access improves the store’s efficiency in allocating re-

sources.

ASSUMPTION 5: Capital stock is a dynamic input that accumulates according to

Kjt+1 = (1 − δK)Kjt + Ijt, where δK is the depreciation rate. The investment level Ijt

is chosen in period t and affects the firm in period t+ 1. The inventory level in period

t+1 evolves according to Njt+1 = Ñt(Ajt, Yjt), where Ajt is the adjusted inventory, i.e.,

the inventories in the beginning of period Njt adjusted by the products bought in period

t. The function Ñt(·) is increasing in Ajt and decreasing in Yjt.
29

Inventory affects stores’ service output because high inventory is costly to keep in

stock and low inventory reduces consumers’ choices. Products bought from wholesalers

are an input that together with inventory at the beginning of period t (i.e., Ajt) lead to

inventory levels in the beginning of period t+1 after realization of sales in period t (i.e.,

Njt+1). Stores with high µjt increase their products bought from wholesalers. However,

this also leads to a drop in inventories at the beginning of the next year because of the

unexpected increase in sales. In other words, there is a distinction between how µjt

affects current inventories and products bought from the wholesaler and the realization

of inventories at the end of the year/start of next year.30

28It is straightforward to control for selection as in Olley and Pakes’ (1996) framework by adding
Pjt as an additional variable of hω

t (·) function, where Pjt are predicted survival probabilities of being
in the data in period t, conditional on the information in t− 1, Pjt = Pr(χjt = 1|Fjt−1). The Markov
process (8) implies that store productivity should shift, and stores that cannot improve productivity
have to exit.

29If the variables are measured in physical units, inventory level in period t+ 1 evolves according to
Njt+1 = Ajt − Yjt.

30Cachon and Olivares (2010) argue that differences in store level inventory can arise because of
differences in demand and competition. Lower margins decrease inventories, while a large choice set for
consumers raises inventories. In addition, service production in the store can also drive differences in
inventory across stores.
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We now turn to the assumptions on the policy functions (input demand functions)

that are required to recover productivity ωjt and demand shocks µjt.

ASSUMPTION 6: The labor demand function ljt = l̃t(sjt) is strictly increasing in

ωjt. The store’s input product function ajt = ãt(sjt) is strictly increasing in demand

shocks µjt. The store productivity ωjt and demand shocks µjt are part of the state space,

i.e., ωjt, µjt ∈ sjt, and the multivariate function (l̃jt, ãjt) is a bijection onto (ωjt, µjt).

Assumption 6 is not restrictive and likely holds in many data sets. The most im-

portant assumption for a policy function to be consistent with the Bellman equation

is to be strictly monotonic in the state variables. First, that productivity is increasing

in labor can be shown when using Cobb-Douglas technology (Doraszelski and Jauman-

dreu, 2013; Maican and Orth, 2015; Maican and Orth, 2017).31 This characteristic

implies that more productive stores do not have disproportionately higher markups

than less productive stores. In addition, the fact that the inventory demand function is

increasing in demand shocks received by stores is valid in retail markets. Maican and

Orth (2017) show that an input demand function is strictly increasing in productivity

under imperfect competition when the marginal product of the input is increasing in

productivity, which is fully consistent with store profit maximization behavior. Sec-

ond, in our case with two unobservables, the invertibility implies solving systems of

nonlinear equations. A key condition for invertibility is that the determinant of the

Jacobian is not zero. This condition is satisfied when productivity and demand shocks

have different impacts on labor and inventory and the relative impact is not the same

(∂l̃/∂ω)/(∂l̃/∂µ) 6= (∂ã/∂ω)/(∂ã/∂µ). This requirement is not restrictive and can be

empirically tested using the estimated policy functions (see Section 4). Appendix C

discusses in greater detail the invertibility of the system of equations in our model.

Market share index function. Following the recent developments from the produc-

tion function literature to control for unobservables, we use an output index function

and an input process to recover the demand shocks µjt (Ackerberg et al., 2007). Store

demand shocks µjt are defined as a weighted sum of product category-specific demand

shocks of store j from the demand system (4) and include information that affects con-

sumers’ store choice and the store’s market share. Most importantly, the aggregation

weights in µjt arise from the multiproduct service technology (1). Thus, the store’s

market share is an informative output for the index function, which is computed using

product-category sales that are affected by demand shocks. We use inventory before

sales, as it contains information about µjt, as input demand. A complication of using

a store-level aggregate demand system, where consumers obtain utility from choosing a

store, is the need for price data and defining a basket of products to calculate a price in-

31This assumption holds in our case because the transcendental technology is a generalization of
Cobb-Douglas, that is, it has Cobb-Douglas technology in inputs but not in outputs.
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dex consistent with the multiproduct service technology.32 Indeed, we rely on all stores

in five-digit service industries for which price data are scant. Even though one would

access price data, it is difficult to define an annual price index, given that labor and

capital are observed yearly.

To be consistent with multiproduct sales, the index function needs to satisfy the

following properties. First, it aggregates stores’ category sales from the multiproduct

sales function in the output index τjt and is informative about store demand and is

consistent with aggregate demand in a local market (i.e., it includes µjt). Second, to

help identification the index function allows µjt to appear additively. The main aim of

the index function is to identify µjt separately from ωjt and not to infer, e.g., changes

in price elasticities due to repositioning in product categories. Third, the index func-

tion together with multiproduct sales enables us to compute sales in the outside option

and therefore total sales in a local market after changes in the local environment. We

consider the output of an index function with store and market characteristics δjt (that

can include xmt) and µjt as arguments

τjt = τt(δjt;ρ) + µjt + νjt, (9)

where the output index τjt = ln(msjt)− ln(ms0t) is the ratio of the store market share

and the market share of the outside option, msjt is the market share of store j in local

market m in period t computed at the five-digit industry sector level using sales, ms0t is

the outside option, i.e., the market share of other stores in market m computed at the

five-digit industry sector level (we have the same outside option as in equation (5), but

here we use a share-based measure), and νjt is an error term that is mean-independent

of all controls. In the empirical implementation, we choose a simple linear specification

for τt(·), i.e., τt(δjt;ρ) = ρnpnpjt+ρinc,1incmt+ρinc,2inc
2
mt, where incmt is the logarithm

of the average income in the local market.

We now explain the importance of the market share index function and its link

to multiproduct sales technology. First, services frequently rely on sales that depend

on both demand and supply to measure output. In our model, sales depend on both

the store’s demand shocks µjt and productivity ωjt, whereas a store’s market share in-

dex function depends only on µjt. To guarantee consistency and identification of our

model, the demand shocks µjt connect the market share index function (9) and the

sales-generating function (5). Because the sales-generating function (5) controls for cap-

ital stock kjt and inventory ajt, they are not part of µjt, and we do not need to control

32As in a nested-logit model, we can use the demand system and derive the probability of choosing
store j as a function of pijt and µijt using the conditional choice probability. However, this is not helpful
in the identification because pijt and µijt are not observed.
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for them in the market share index function.33 The number of product categories npjt

affects ajt, which includes additional information such as the volume of each product,

and products are aggregated based on monetary value.

Second, supply-side weights included in µjt and remaining shocks νjt restrict us from

relying on nonparametric inversion from the discrete choice literature to recover µjt. Al-

though the market share index function (9) is not a logit demand specification, being a

function of npjt and νjt but not the price, it is useful for understanding store local mar-

ket demand. The market share index function uses the same output as a logit demand

consistent with CES assumptions. The reason is that market share captures information

about local market demand and enables a simple expression from the logarithm of store

sales and the outside option.34

Third, we obtain a joint system of equations from the multiproduct sales equation

and the market share index function allowing solution using the nested fixed-point algo-

rithm. We have two systems of equations: sales per product category at the store level

(equation (5)) and the store local market share (equation (9)). Using recovered demand

shocks, we solve the joint systems of equations to obtain sales per product category and

the outside option local market sales (total sales) following policy interventions that

affect stores’ primitives.35

Numerical implementation. We describe how the estimated model can be used to

compute changes in sales per product category and sales of stores in the outside op-

tion (yot) after policy changes. A numerical implementation of the model also helps

improve the understanding of the integration of different parts of the model. For

simplicity of exposition, we assume to have only one store (j = 1) for which we ob-

serve the number of product categories and have recovered productivity and demand

shocks by estimating the model. The multiproduct sales equation can be written as

yi1t = −αyy−i1t + (1/σ)yot + T1t + µ1t, where term T1t groups all store characteristics

(labor, capital, inventory, productivity, and market characteristics) that are in equa-

tion (5), and i = {1, · · · , np1} indexes the product categories of the store. The market

share index equation can be written as ln(
∑np1

i=1 exp(yi1t)) − ln(yot) = δ1tρ + µ1t. We

start with an initial value for yot denoted by y
(0)
ot . Then, we use the multiproduct equa-

33Even if we control for capital stock kjt and inventory ajt in the market share index equation, we
cannot separately identify their effects on demand and supply; i.e., we identify the net effect. Appendix
B presents a short discussion of identification of βa.

34The ratio of market shares of two stores depends on the number of product categories they offer
and demand shocks. Because store-specific demand shocks depend on the product-category mix, the
market share ratio changes if one of the stores alters its product-category mix without changing the
number of product categories. Nevertheless, one way to avoid the IIA problem specific to logit models
in equation (9) is to group product categories by a store characteristic and rewrite equations (4) and
(9) in a nested-logit form. However, this is beyond the aim of this paper.

35The market share index function is not useful in counterfactuals if we assume that the outside
option sales are unaffected by changes in the local environment. Therefore, the index function is used
only in identification to recover demand shocks µjt.
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tion to compute sales per product category y
(0)
i1t using the fixed-point algorithm to solve

the multiproduct sales system of equations (the number of equations is given by the

number of categories). The computed sales per product category y
(0)
i1t are used to ob-

tain the next sales of the outside option y
(1)
ot , which are used to compute next period’s

sales per product category y
(1)
i1t . We repeat this process until ‖y

(n+1)
i1t − y

(n)
i1t ‖ < tol and

‖y
(n+1)
ot − y

(n)
ot ‖ < tol, where tol is a numerical tolerance level, and n is the number of

iterations. The same algorithm is applied if there are many stores in a market for which

we observe their product categories.36

Equilibrium. Local and sectorial policies affect stores’ costs, inventory, investment in

technology, labor and exit. We assume that these policies are unexpected and perma-

nent once they are implemented.

ASSUMPTION 7: The equilibrium in the industry is stationary and is given by the

Markov Perfect Equilibrium [MPE], which includes the policies ñpt(sjt), ãt(sjt), l̃t(sjt),

ĩt(sjt), χ̃t(sjt) and the value function V (sjt) that are consistent with stores’ optimization

problem (6).

Thus, to form expectations, stores use the optimal policies. The MPE equilibrium

implies that the state variables satisfy the Markov property before and after a change

in regulation or another policy. Conditional on the state variables, the stationarity of

the equilibrium implies that the value functions are not indexed by time.

3.2.1 Identification and estimation

The identification and estimation of the sales-generating function, including the Markov

processes for ωjt and µjt, are based on the well-established two-step methods in the

production function literature. Identification comes from a system of equations (mul-

tiproduct sales and market share) and two unobservables (productivity and demand

shocks), where one of the unobservables is part of only one equation. Two control func-

tions based on the store’s optimal policy functions are used to proxy for ωjt and µjt.
37

We estimate βl, βk, βa, αy, σ, ρnp, ρinc,1, ρinc,2, γ
ω, and γµ together using a modi-

fied Olley and Pakes (1996) (OP) two-step estimator that includes product information

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi

et al., 2020). Compared to OP, we have two unobservables to recover, and we show

how the market share index function helps to recover demand shocks µjt separate from

productivity ωjt and ensures the identification of the model.38 In our retail setting, the

36The simulations demonstrate a fast convergence of the algorithm. The authors provide results of
Monte Carlo simulations in Julia upon request for a large number of products and stores.

37Ackerberg et al. (2007) (Section 2.4) and Matzkin (2008) discuss the core of identification of such
system of equations.

38Maican et al. (2020) estimate impact of R&D investments on domestic and foreign sales in Sweden.
Using a single product function setting and a system of two equations (domestic and export sales), they
recover domestic and foreign revenue productivities from investment demand and the number of export
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dynamics of store productivity are more complex, since productivity is affected by both

demand shocks and local entry regulations.

Recovering productivity and demand shocks. The general labor demand and

inventory functions that arise from the stores’ optimization problem (6) are

ljt = l̃t(ωjt, µjt, kjt, njt, wjt, yot,xmt, rmt)

ajt = ãt(ωjt, µjt, kjt, njt, wjt, yot,xmt, rmt)

To back out ωjt and µjt, assumption 6 must hold; i.e., the functions l̃t(·) and ãt(·) must

be strictly monotonic in ωjt and µjt, which holds under mild regularity conditions on

the dynamic programming problem (6).39 Stores react to high demand shocks µjt by

increasing inventories without changing product categories (i.e., higher love-for-variety),

which implies more inventory. Technological advances in the store can benefit the ex-

isting number of product categories through faster product lines and a higher frequency

of turnover (Holmes, 2001). Higher productivity also creates incentives for stores to in-

crease their product variety and store size. By inverting these policy functions to solve

for ωjt and µjt, we obtain

ωjt = f1
t (ljt, kjt, njt, wjt, ajt, yot,xmt, rmt)

µjt = f2
t (ljt, kjt, njt, wjt, ajt, yot,xmt, rmt),

(10)

which yields that the productivity and exogenous shocks are nonparametric functions

of the observed variables in the state space and the controls.

The estimation of the sales-generating function (5) and the market share index equa-

tion (9) is done together in two steps. In the first step, we construct measures of pro-

ductivity ωjt and demand shocks µjt as functions of the structural parameters that do

not include the remaining shocks upijt and νjt. To do this, we use equations (5) and (9)

and the solution of the system of nonparametric policy functions given by (10).

By substituting the nonparametric inversion f2
t (ljt, kjt, njt, wjt, ajt, yot,xmt, rmt) for

µjt in (9) and considering that the number of product categories npjt is also a function of

the store state variables (a policy function of the store optimization problem), the market

share equation can be written as ln(msjt) − ln(ms0t) = bt(ljt, kjt, njt, wjt, ajt, yot,xmt,

rmt)+νjt, which can be estimated using ordinary least squares (OLS) and a polynomial

expansion of order two in ljt, kjt, njt, wjt, ajt, yot, xmt, rmt to approximate function

bt(·).
40 Therefore, we obtain an estimate of bt(·), denoted b̂t, which is the predicted

ln(msjt) − ln(ms0t). This allows us to write demand shocks µjt as a parametric func-

destinations functions.
39See Appendix C, Pakes (1994).
40A polynomial expansion of order three shows no improvement in the estimation of the first stage.

Other approximations can be used, such as b-splines, for example.
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tion: µjt = b̂jt− ρnpnpjt− ρinc,1incmt− ρinc,2inc
2
mt, which will be treated as an input in

the multioutput sales-generating function (5).

In the second step, by substituting µjt (predicted) and ωjt into (5), the sales-

generating function becomes

yijt = −αyy−ijt + φt(ljt, kjt, njt, wjt, ajt, yot,xmt, rmt) + upijt, (11)

where φt(·) = βlljt + βkkjt + βaajt + βqyot + x′

mtβx + ωjt + µjt. The function φt(·)

can be approximated using a polynomial expansion of order two in its arguments. The

estimation of (11) yields an estimate of service output without service output shocks

upijt, which gives us φ̂t, which is used to obtain store productivity ωjt as a function of the

parameters, ωjt = φ̂jt−βlljt−βkkjt−βaajt−βqyot−x′

mtβx− b̂jt+ρnpnpjt+ρinc,1incmt+

ρinc,2inc
2
mt.

Then, we rewrite the sales and market share equations using parametric forms of

productivity ωjt and demand shocks µjt and Markov processes

yijt = −αyy−ijt + βlljt + βkkjt + βaajt + βqyot + x′

mtβx + b̂jt − ρnpnpjt

−ρinc,1incmt − ρinc,2inc
2
mt + hω(φ̂jt−1 − βlljt−1 − βkkjt−1 − βaajt−1

−βqyot−1 − x′

mt−1βx − b̂jt−1 + ρnpnpjt−1 + ρinc,1incmt−1

+ρinc,2inc
2
mt−1, b̂jt−1 − ρnpnpjt−1 − ρinc,1incmt−1 − ρinc,2inc

2
mt−1,

rmt−1) + ξjt + upijt

(12)

ln(msjt)− ln(ms0t) = ρnpnpjt + ρinc,1incmt + ρinc,2inc
2
mt + hµ(b̂jt−1

−ρnpnpjt−1 − ρinc,1incmt−1 − ρinc,2inc
2
mt−1)

+ηjt + νjt.

(13)

The parameters of the multiproduct sales function (12) and market share equation (13)

are identified using moment conditions on the remaining shocks in these equations,

ξjt + upijt and ηjt + νjt.

Estimation. In the empirical implementation, we approximate the functions hω(·) and

hµ(·) in the Markov processes of ωjt and µjt by polynomials. The estimated Markov

processes are:

ωjt = γω0 + γω1 ωjt−1 + γω2 (ωjt−1)
2 + γω3 (ωjt−1)

3 + γω4 µjt−1 + γω5 rmt−1

+γω6 ωjt−1 × µjt−1 + γω7 rmt−1 × ωjt−1 + γω8 rmt−1 × µjt−1 + ξjt
(14)

µjt = γµ0 + γµ1 µjt−1 + γµ2 (µjt−1)
2 + γµ3 (µjt−1)

3 + ηjt (15)

We denote by θ the vector of parameters to be estimated, θ = (βl, βk, βa, αy, σ,

βx, ρnp, ρinc,1, ρinc,2, γ
ω, γµ). Productivity ωjt and µjt are functions of θ. We can
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identify θ coefficients using moment conditions based on (ξjt + upijt) and (ηjt + νjt) and

the generalized method of moments (GMM) estimator. The identification uses that the

current shocks are conditionally independent from information in t− 1, Fjt−1.
41 Thus,

to identify θ we use the moment conditions E[ξjt + upijt| y−ijt−1, ljt−1, kjt−1, ajt−1,

xmt−1] = 0 and E[ηjt + νjt|npjt−1, incmt−1, inc
2
jt−1] = 0. The parameters βl, βk, and βa

are identified using ljt−1, kjt−1, and ajt−1 as instruments. Thus, we use that the current

remaining productivity and sales shocks are not correlated with previous inputs to form

moment conditions.

To identify the economies of scope parameter αy, we use y−ijt−1 as an instrument,

which requires that the previous output is not correlated with current remaining sales

and productivity shocks. Monte Carlo experiments discussed below show the robustness

of the identification of the scope parameter αy using previous output.42 That previous

local market characteristics xmt−1 are not correlated with current sales and productiv-

ity shocks allows us to identify βx.
43 To identify the coefficients of the market share

equation, we use that (ηjt+νjt) are not correlated with the previous number of product

categories and income. The Markov process parameters γω and γµ are identified using

the corresponding polynomial terms in equations (14) and (15) as instruments.

The parameters θ are estimated by minimizing the GMM objective function

min
β

QN =

[

1

N
W

′

v(θ)

]′

A

[

1

N
W

′

v(θ)

]

, (16)

where vjt = (uijt+ξjt, νjt+ηjt)
′, W is the matrix of instruments, and A is the weighting

matrix defined as A =
[

1
NW

′

v(β)v
′

(β)W
]

−1
. Standard errors are computed according

to Ackerberg et al. (2012).44

Monte Carlo simulations. We provide Monte Carlo simulations to show the identi-

fication of multioutput technology with two inputs labor and capital using the control

function approach.45 We also discuss the bias of labor and capital coefficients of a single-

output technology when the true data generating process (DGP) of total output is a

multiproduct technology.

The multiproduct technology is estimated at the product level assuming the same

41Ackerberg et al. (2007) and Wooldridge (2009) discuss the use of previous variables as instruments
in a two-step control function approach when estimating production technologies. As Ackerberg et al.
(2015) discuss in Section IV(i), there are many ways to estimate an Olley and Pakes’ framework based
on second step moments. Most important, stronger assumptions can lead to more precise estimates. Our
empirical results remain robust using moment conditions based on ξjt and ηjt to identify parameters βl,
βk, βa, βx, βq , ρnp, ρinc,1, and ρinc,2 in the empirical application.

42In the next subsection, we also discuss an alternative estimator that is computationally more
demanding.

43In general, xmt can also be used as instruments because market characteristics are exogenous.
44Bootstrapping might not be the best choice when the underlying model is more complicated.
45We present a short summary based on the results in Maican and Orth (2019).
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production technology across products.46 We focus on a simple specification and as-

sume perfect competition; therefore, we choose yijt = αyy−ijt+ βlljt + βkkjt+ωjt+ ujt.

We consider 1,000 stores and set βl = 0.6, βk = 0.4, and αy = −0.85. Most of our

simulation settings are similar to those used by the previous literature on production

functions (e.g. Van Biesebroeck, 2007; Ackerberg et al., 2015). Productivity follows an

AR(1) process (ωjt = ρωjt−1+ξjt) with persistence ρ = 0.7. Productivity is simulated to

have constant variance over time (standard deviation 0.3). Wages wjt follow an AR(1)

process with persistence ρw = 0.3 and are simulated to have constant variance over time

(standard deviation 0.3). Labor is simulated using the first-order condition of static

profit maximization. Capital stock is constructed using the perpetual inventory method

Kjt = (1 − 0.2)Kjt−1 + Ijt−1.
47 The number of years (periods) is 10, and all variables

are used in the steady state.48

To estimate αy, βl and βk, we use a two-step estimator with labor demand as a proxy

for store productivity (Olley and Pakes, 1996; Doraszelski and Jaumandreu, 2013; Acker-

berg et al., 2015). The identification of (αy, βl, βk) is based on the moment conditions

E[ξjt|y−ijt−1, ljt−1, kjt] = 0 and GMM estimator. Table B.1 in Appendix B shows the

estimates of the single- and multioutput technology based on 1,000 Monte Carlo simula-

tions. For the multiproduct technology, each store has three products, and their outputs

are obtained by solving the nonlinear system of equations for each store in each period.

The findings in Table B.1 show that we identify the parameters without bias when the

DGPs are the true ones (single- and multiproduct DGPs) even if the estimation uses

nonparametric labor demand and the data are generated using parametric labor de-

mand.

Table B.2 in Appendix B shows the bias in the labor and capital coefficients of a

single-output technology when the true DGP is a multi-output technology with three

products. The results show a downward biased labor coefficient (decrease from 0.6 to

0.49) and an upward biased capital coefficient (an increase from 0.4 to 0.542). These

biases that translate into a large productivity bias are generated by the omission of the

tradeoff between producing one product or different products with the same resources

that affect the aggregate output. In a multiproduct setting, the productivity difference

between two stores using the same inputs is generated by the choice of product mix.

46Again, this can be relaxed in an empirical setting.
47Investment is simulated based on a policy function that is increasing the in store’s state variables,

i.e., ijt = 0.2+0.3ωjt+0.1kjt. For robustness, we have used a nonlinear specification ijt = 0.2+0.3ωjt+
0.1kjt + 0.01ω2

jt + 0.01k2jt − 0.004ω3
jt − 0.006k3jt. However, because there are no substantial changes in

the main findings, we show the results with the linear specification.
48We consider 100 warm-up simulations before simulating the data sets.
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3.2.2 Discussion and extensions

Alternative identification for economies of scope parameter. There is an alter-

native identification strategy for the scope parameter αy that fully endogenizes product-

category sales in the estimation. That is, we can solve the system of output equations

for each store instead of using the previous output of other product categories as an in-

strument. This is similar to the counterfactual experiments where we solve the system of

output equations for each store. However, this estimator is computationally demanding

because it requires to solve the system of equations for each store-year observation and

a new set of model parameters using fixed-point iteration. Monte Carlo experiments

show no main advantages of this alternative estimator over the above IV identification

strategy when stores use the same sales technology for their product categories.

Endogeneity of regulation. Because stores cannot influence or form expectations

about the future stringency of regulation, we follow a two-step estimation procedure to

alleviate endogeneity concerns regarding regulation. Our estimation takes into account

possible endogeneity of the regulation measure. We model the structure of supply and

demand shocks and use many exogenous local market characteristics as controls in the

first stage. Entry regulation is exogenous in the productivity process such that indi-

vidual stores do not affect the outcome of regulation or form expectations about the

stringency of future regulation. The nature of the semiparametric model helps address

the possible endogeneity of regulation on productivity. Removing the effect of local

market characteristics from the sum of demand and production shocks in the first step

reduces endogeneity concerns when estimating the productivity process. If productiv-

ity shocks ξjt are correlated with the previous stringency of regulation, we can identify

the coefficient of rmt−1 by using an instrument. Our instrument needs to be correlated

with regulatory stringency but be unrelated to shocks in productivity ξjt. In the data

section, we discuss the endogeneity of entry regulation using the instrumental variable

(IV) approach and three instruments (Table 3).

Alternative demand specification. Our main empirical results are not driven by

the demand assumption (the general form of sales-generating function remains the same

when allowing for nests) and are supported by various simple descriptives and reduced-

form specifications (see Section 2).

The simple demand approach in Section 3.2 has a key benefit: CES preferences gen-

erate the same demands as would be obtained from aggregating many consumers who

make discrete choices over in what store to shop. On the other hand, CES preferences

impose a specific structure on demand, which is restrictive. Nevertheless, our model is

rich on the supply side and the form of our multiproduct sales-generating function (5)

is also consistent with a demand specification that allows for rich substitution patterns,

e.g., a constant expenditure specification in an aggregate nested logit model where price
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enters in log form. This is because in a constant expenditure specification, we use the

volume of sales for each product category, which allows us to aggregate products when

using the multiproduct function (3).49 In a nested demand model, consumers choose

stores and then products within a store. In this case, the output and input parameters

depend on the nest(s) parameter(s) and the scope parameter αy includes information

about product correlation in the nests at the store level. We use the simple CES speci-

fication in the estimation because we do not focus on a specific product category in the

empirical application (e.g., yogurt) and we have high heterogeneity on supply side in

the data.

The relationship with other multiproduct estimators. Our model uses product

output shares and store inputs from the data. There are also alternative estimators that

estimate and use input shares to study multiproduct. In contrast to many alternative

estimators of multiproduct, we explicitly model economies of scope into the technology

and endogenize the number of products. Our model is closely related to De Loecker

et al. (2016) even if their method estimates input shares to construct single product

technology. As in De Loecker et al. (2016), we have separability in inputs and outputs

in the production technology and model firm/store productivity and not product-firm

productivity.50 In the retail context, it is difficult to define a meaningful measure of

product-store productivity. Using the aggregation over inputs and outputs, Maican and

Orth (2019) show that there is a direct relationship between the input shares from a

Cobb-Douglas technology at the product level and output shares of transcendental tech-

nology. The relationship exists because both technologies use firm/store productivity,

and there is no need to aggregate product productivity to the firm level.

Separating input allocations per product can be difficult in service industries. For

example, different machinery and equipment are used to carry or to store different

product categories in the same time to increase efficiency. In the multiproduct case, a

service technology function consistent with profit maximization implies aggregation over

physical products, and this is restrictive for many data sets due to large heterogeneity

(especially in retailing). The service sector is characterized only by multiproduct and,

in many cases, it is also difficult to measure physical product. Splitting all inputs is not

entirely consistent with economies of scale and scope in retail. Since our focus is on entry

regulations and economies of scope and not recovering product markups, transcendental

technology that uses observed output shares is preferable; it does not require additional

assumptions to recover input shares (not observed in the data).

49All technical derivations are available from authors upon request. A constant expenditure specifi-
cation allows consumers to buy more than one product (Verboven, 1996).

50See also Valmari (2016), Dhyne et al. (2017), and Orr (2018).
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3.3 Estimation of the dynamic model

This subsection discusses the estimation of the dynamic model that is used to compute

the optimal number of product categories and long-run profits after changes in entry

regulations or other changes in the local business environment.

Regulation and adjustment costs of product variety. Entry regulations affect

stores’ operating costs. A more restrictive regulation can increase stores’ operating

costs through higher fixed costs (e.g., expensive location or building costs) (Joskow and

Rose, 1989; Maican and Orth, 2018). In markets with fewer stores, the cost of logistics

can increase and product differentiation decreases. Consumers in these markets need to

travel longer distances and can compensate for the longer traveling time by spending

less time in a store. Therefore, entry regulations impact the adjustment costs in product

variety (and inventory) through both demand and supply channels.

We assume that stores have quadratic adjustment costs in product categories (mil-

lions SEK):

cn(npjt, ajt, rmt;ϕ) = ϕ1npjt + ϕ2np
2
jt + ϕ3exp(ajt)

2 + ϕ4exp(ajt)npjt

+ϕ5npjtrmt + ϕ6exp(ajt)rmt

(17)

The marginal effect of more liberal entry regulation (i.e., an increase in rmt) on ad-

justment costs in variety depends on the store’s number of product categories and size

of inventory demand ajt. A change in entry regulations affects the store’s cost and its

productivity and, therefore, the number of product categories and sales.

To reduce the computational complexity, we do not model the adjustment costs of

labor and investment in the empirical application. Thus, the store’s value function is

given by the following Bellman equation

V (sjt) = max
npjt,ajt

{πjt(sjt;npjt, ajt, ljt)− cn(npjt, ajt, rmt;ϕ)

+βE[V (sjt+1)|Fjt]} ,
(18)

where πjt(sjt) measures the variables profits and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6), are the

parameters to be estimated in the dynamic stage using value function approximation

and simulation (Ryan, 2012; Sweeting, 2013; Barwick et al., 2018; Maican, 2019).

We approximate the value function V using radial basis function networks (RBFN),

i.e., V (sjt) = bs(sjt)κ, where bs(·) are the basis functions (Mai-Duy and Tran-Cong,

2003; Sutton and Barto, 2018). This allows us to rewrite the Bellman equation as

V (sjt;κ) = max
npjt,ajt

{πjt(sjt;npjt, ajt, ljt)− cn(npjt, ajt, rmt;ϕ)

+βE[V (sjt+1;κ)|Fjt]} .
(19)
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For each set of cost parameters ϕ, we use the linearity property of the value function

approximation to find the approximation parameters κ such that the Bellman equation

holds. We use the RBFN approximation to find the optimal policies using the state

variables in t and t+1. The estimation of multiproduct technology gives the transitions

for productivity and demand shocks. The inventory at the end of the period (i.e., be-

ginning of next period) is estimated using a b-splines approximation in ajt and yjt.
51

To compute total store-level sales using our model, we need to solve a system of

nonlinear equations (for each store), which is given by the multiproduct technology.

This system of equations has a unique solution and is solved using fixed-point iteration

(Maican and Orth, 2019). The store’s total sales are a function of the number of product

categories. Net profits π(·) are computed as sales minus labor cost.

Estimation. Given an initial estimate of ϕ and approximation parameters κ, we solve

the first-order condition in the Bellman equation (19) to find the optimal number of

product categories npjt and inventory ajt at each state. Then, new value function

approximation parameters κ are found by solving the Bellman equation. The cost pa-

rameters are estimated using the method of indirect inference (Gourieroux and Monfort,

1996; Li, 2010). The estimator matches the percentiles of the observed number of prod-

uct categories (npjt) and inventory (ajt) distributions Px (x = [.05, .10, .15, · · · , .95])

with percentiles generated by the policy functions from the model (i.e., solving the sys-

tem of first-order conditions). We denote the vector moments generated by the model

as P̃(ϕ), which depend on the structural parameters, and P as the corresponding vector

of data moments. The criterion function minimizes the distance between the moments

P̃(ϕ) and P

J(ϕ) = [P− P̃(ϕ)]′W [P− P̃(ϕ)], (20)

where W is a weighting matrix.52 The cost function coefficients are identified by match-

ing the observed and predicted percentiles of the distribution of npjt and ajt.
53 The

standard errors are computed using subsampling.

51We assume that changes in the stringency of regulation do not affect the structural form of this
relationship. However, regulation affects the variables of this function, ajt and yjt.

52The identity matrix is used in the empirical setting.
53The cost parameters can also be estimated using the inequality estimator that uses alternative

policy a′(sjt) = â(sjt)+ψ
a, np′(sjt) = n̂p(sjt)+ψ

np, where ψa ∼ N(0, 1) and ψnp ∼ {−1, 1} (see Bajari
et al., 2007). Let c be any combination of (sjt, a

′

jt, np
′

jt), and define m(c;κ,ϕ) = V (sjt;κ,ϕ, ajt, npjt)−
V (sjt;κ,ϕ, a

′

jt, np
′

jt). We denote by m̂Ns(c;κ,ϕ) a simulator of m(c;κ,ϕ) evaluated at the estimated
policy functions, where Ns is the number of simulations. The inequality estimator minimizes minϕ INI

=
1

NI

∑NI

k=1 1 {m̂Ns(c;κ,ϕ) < 0} m̂Ns(c;κ,ϕ)2, where NI is the number of inequalities.
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4 Results

First, we discuss estimates of the multiproduct sales-generating function and the evo-

lution of revenue productivity and demand shocks. We then focus on the role of en-

try regulations and discuss the determinants of the number of product categories and

product-category sales competition in a store, followed by adjustment costs of variety,

long-run profits and store benefits of adding products in different market types.

Sales-generating function estimates. Table 4 shows the estimates of the multiprod-

uct sales-generating function in equation (5) by the OLS estimator and the nonpara-

metric two-step estimator presented in Section 3.2.54 The estimated coefficients of labor

and inventories decrease from 0.786 (OLS) to 0.571 and from 1.037 (OLS) to 0.411,

respectively, using the two-step estimator. The coefficient of capital increases, i.e., it

is 0.061 (OLS) and 0.289 (the two-step estimator). These changes in the estimated co-

efficients are in line with the production function literature following Olley and Pakes

(1996), which suggests an upper bias for the coefficients of labor and inventories when

omitting to control for the correlation between inputs and productivity.

The estimates are consistent with the profit maximization behavior of multiproduct

firms/stores because sales of a product category decrease when sales of other product

categories increase (Mundlak, 1964). On average, a one percent increase in sales of other

products decreases sales of a product category by 0.865 percent, suggesting relatively

fierce competition for sales space in a store. The magnitude of the coefficient of the

other product categories (αy) is key for the productivity measure as it influences the

input coefficients (labor, capital, inventories). The estimated elasticity of demand for

product substitution is 3.480, which is in line with previous literature.

Stores in large and densely populated markets sell more per product category. The

number of product categories and income have a positive impact on consumers’ utility

function and, therefore, on stores’ market share. That consumers benefit from more

product categories is consistent with previous literature, i.e., love-for-variety. On aver-

age, a store with a 30 percent market share gains 5 percent market share by adding one

more product category.

Entry regulations and store primitives. Table 5 shows the estimates of the pro-

cesses for productivity ωjt and demand shocks µjt, i.e., equations (14) and (15). We

reject the null hypothesis that the coefficients of demand shocks µjt in the productiv-

ity process equal zero (p-value=0.000). More liberal entry regulation has a positive

impact on productivity, i.e., one more approval increases productivity by on average

54The two-step estimated coefficients are adjusted for the elasticity of substitution σ and the co-
efficient of other product categories α̃y to allow for comparisons across specifications. The two-step
estimator controls for the endogeneity of store input choices and entry regulation, and allows to identify
two shocks separately.
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0.120 percent.55 However, the impact of entry regulations on productivity is decreasing

in productivity and demand shocks. This implies high heterogeneity in stores’ future

productivity due to changes in regulation, which affects the long-run profits.

Demand shocks also have a positive impact on future revenue productivity, and the

impact is increasing in productivity. A one percent increase in µjt raises productivity

by on average 0.018 percent (see also Maican and Orth, 2021). We expect stores to

learn from demand to improve future productivity in services where demand shocks af-

fect inventory management, input choices and product variety that lead to productivity

advances.

A key factor that drives the dynamics in productivity and demand shocks is per-

sistence. The average persistence of the productivity process (0.869) is lower than the

persistence of the store’s demand shocks (0.943) (Table 5). The size of the persistence

in productivity is similar to previous literature.56

Figure 3 presents box plots of the empirical distributions of revenue productivity and

demand shocks for stores in different product-category quartiles in restrictive and liberal

markets. First, the median revenue productivity ωjt and demand shocks µjt are higher

in liberal markets than in restrictive markets. Second, stores with higher productivity

offer more product categories. Third, the interquartile range of demand shocks is lower

in liberal than in restrictive markets for stores below the 75th percentile of the prod-

uct category. Taken together, there is substantial heterogeneity in store-level primitives

across stores and market types.

Entry regulations and product variety. Table 6 shows reduced-form evidence of the

effect of productivity, demand shocks, investment and capital on the number of product

categories and product-category competition for store sale space (product Herfindahl-

Hirschman Index HHI) in restrictive and liberal markets.57

An increase in productivity intensifies competition for product space inside a store

(lower HHI). The effect of productivity on product-category competition is decreasing

in productivity and demand shocks in restrictive markets, whereas the reverse holds in

liberal markets. Magnitudes are larger in liberal than restrictive markets. Stores with

high demand shocks µjt have less intense competition between product categories (higher

HHI) in both liberal and restrictive markets. However, the impact of demand shocks

is increasing (decreasing) in productivity in restrictive (liberal) markets. This implies

55The average is computed based on the observed population density, where the largest marginal effect
is approximately 9 percent (the standard deviation is 0.943). Based on an earlier study period (1996-
2002) and no information on products and inventories, Maican and Orth (2015) also find a positive effect
of more liberal entry regulations in different retail industries (with marginal effects up to 10 percent).

56See, e.g., Doraszelski and Jaumandreu (2013), Maican and Orth (2017).
57The OLS estimator is used for the HHI specification, and a quasi-Poisson estimator is used for the

number of product categories. Both specifications include additional store controls and fixed effects for
the local market, five-digit industries, and year. Sales at the product category are used to compute HHI
inside store.
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that product-category competition is less fierce if stores with high demand shocks in

restrictive markets have high productivity.

Productivity gains raise product categories with larger magnitudes in liberal than

restrictive markets. Stores in restrictive markets thus require larger productivity gains

to obtain the same product-category increase as in liberal markets. Stores with high

demand shocks offer fewer product categories, suggesting that stores reallocate resources

from providing variety to decrease purchasing costs (e.g., providing shopping quality),

in line with Bronnenberg (2015).

Table 7 presents the determinants of unique product categories in local markets. In

other words, we aggregate the store-level information to the market level and analyze

what drives product variety across markets. Markets with high median productivity

have a larger unique number of product categories, with magnitudes being larger in

liberal than in restrictive markets. Moreover, markets with high demand shocks have

fewer product categories.

Our findings suggest substantial heterogeneity in the impact of productivity and

demand shocks in restrictive and liberal markets. This heterogeneity enables us to

understand drivers behind differences in variety across market types and is useful for

designing policies that equate regional discrepancies.

Dynamic model estimates. The dynamic model is estimated using the indirect infer-

ence estimator. The value function is approximated using radial basis function networks,

which provide a robust approximation of complex functions and their derivatives, such

as the value function for a large state space with continuous variables (Mai-Duy and

Tran-Cong, 2003; Sutton and Barto, 2018). We have to find the two optimal actions npjt

and ajt by solving the dynamic model. The vector with the store’s optimal actions is

a solution of the system of equations constructed from the first-order conditions, which

include the value function derivatives.

The results in Table 8 (Panel A) show that more liberal regulation decreases the

adjustment costs of product categories. The decrease is larger for stores with many

product categories (coefficients of the terms exp(ajt)× rmt and npjt× rmt are negative),

reflecting that stores with many product categories benefit more from the marginal cost

reduction following more liberal regulation. The coefficient of the term np2jt is positive,

implying decreasing returns to scale in the number of product categories in line with

previous literature (e.g., Draganska and Jain, 2005). Last, stores with high demand for

inventory before sales have higher marginal product-category adjustment costs. These

findings speak to the fact that stores tradeoff the marginal adjustment cost of product

categories with the long-run benefits.

The estimated dynamic model accurately predicts the number of product categories

and inventory (Table 8, Panel B). This is because we allow for high heterogeneity in the
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adjustment cost of product categories. The mean of the value function (the long-run

profits) is 232.6 M SEK. The median of the ratio between the long-run and short-run

profits is 19.7 (Table 8, Panel C). In addition, the results show low errors in approxi-

mating the value function (median 3.6E-5), which ensures consistency of the estimation

of the dynamic model.

Long-run profits and the benefits of variety. Table 9 shows incumbents’ long-

run profits, adjustment costs, and benefits of adding one more product category. We

present results by policy-relevant market types for entry regulations and regional pro-

grams: rural, urban, restrictive and liberal markets. First, the median long-run profits

in restrictive markets are approximately 38 percent higher than those in liberal markets,

emphasizing that competition drives profitability differences between markets with con-

trasting regulations. The median long-run profits in urban markets are approximately

70 percent higher than those in rural markets. The difference in long-run profits between

a store in the 90th percentile and the 10th percentile is over 250 M SEK in restrictive

and rural markets, which is larger than in liberal and urban markets.

Second, the median adjustment cost of product categories is 29 percent higher in

restrictive than in liberal markets. Urban markets have about 16 percent higher adjust-

ment cost of product variety than rural markets. A store in the 90th percentile has 6.5-7

M SEK higher adjustment cost than a store in the 10th percentile. Restrictive markets

have the largest dispersion in the adjustment costs related to offering product variety.

Third, by solving the store’s dynamic optimization problem, we compute the increase

in long-run profits from one more product category, i.e., the incumbent’s long-run bene-

fit from offering an additional product category for sale. Table 9 shows that the median

benefit of increasing product categories is approximately 0.74 M SEK. The median bene-

fit of adding variety is 1 percent lower in restrictive markets than in liberal markets. The

median benefit of adding variety is 2 percent lower in rural rather than urban markets,

reflecting less variety to consumers in rural areas. Stores located in restrictive markets

have the highest dispersion in the long-run benefit of adding one more product category.

For example, the long-run benefits for the store in the 90th percentile are approximately

1 M SEK higher than those in the 10th percentile. Variation in the benefit of adding

variety across incumbents in different market types is a crucial component when we

examine counterfactual regulatory designs and government subsidies.
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5 Policy evaluation: More liberal entry regulation and

cost subsidies

We use the estimated model to compute four counterfactual policy experiments. The

first three counterfactuals increase competitive pressure from more liberal entry regu-

lation: one additional PBL approval in all markets (CF1), a 35 percent increase in the

number of PBL approvals (CF2), and doubling the number of PBL approvals (CF3).

Understanding the consequences of these regulatory regimes is highly relevant for policy-

makers who decide on PBL applications in local markets. The regulation policies use all

channels through which entry regulations impact stores in our model, i.e., more liberal

regulation reduces the adjustment cost of variety and improves future productivity that

changes benefits from repositioning. Store’s optimal repositioning balances changes in

the marginal adjustment costs and changes in expected discounted future benefits from

repositioning given the productivity improvements.

The fourth counterfactual (CF4) evaluates a cost subsidy that yields zero marginal

cost of adding product categories. This experiment mimics existing subsidies to incum-

bents in rural areas provided by the Swedish government (Section 2). We subsidize

adjustment costs today without incentivizing stores to improve future productivity.58

We contrast the subsidy in CF4 with the generous liberalization of entry in CF3 as they

are cost equivalent at the industry level. For comparison, we also discuss two additional

cost subsidy designs in Appendix E.

We compare store-level outcomes before and after hypothetical changes in entry reg-

ulations and cost subsidies in local markets. To compute the outcomes of a hypothetical

change, we use the underlying primitives of the dynamic model and the estimated evo-

lution of the state variables (i.e., productivity and demand shocks) to solve for the in-

cumbents’ number of product categories, sales per product category, and value function

(i.e., long-run profits) using the Bellman equation. We report the average and standard

deviation of changes in the incumbent’s number of product categories (i.e., extensive

margin), sales per product categories (i.e., intensive margin), store-level sales, inventory

before sales, and the value function. We also report the share of stores that adjust their

number of product categories and product-category entry and exit rates at the store

58The incumbents’ short- and long-run profits are affected through changes in adjustment costs, which
also impact sales because stores reposition in product categories and inventory. The implementation
of an alternative policy changes the price equilibrium, which affects stores’ optimal decisions (product
variety and inventory). In our model, the new optimal equilibrium includes changes in price equilibrium
due to a policy change. Without modeling regulation, the adjustment costs with product variety and
solving store’s dynamic optimization problem, Maican and Orth (2021) evaluate changes in product
variety from investment subsidies on technology and mentoring support using a similar multiproduct
sales-generating function.
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level.59 The results are presented for the four market types: rural, urban, restrictive

and liberal markets. We particularly focus on markets with restrictive regulation and

in rural locations, as a goal for policymakers is to equate conditions across geographic

regions.60

More liberal entry regulation. The results from one additional PBL application in

Table 10 (Panel A) show increasing repositioning in product categories among incum-

bents. Most repositioning occurs among incumbents in rural and restrictive markets

(approximately 17 percent). Product-category entry rates are higher than exit rates in

all markets. Product entry rates are on average 4 percent in restrictive markets, which

is 2 percentage points higher than product exit rates. The difference between entry

and exit rates is one percentage point in rural markets, where inventory before sales

increases the most (6 percent). Product repositioning and new input choices, including

inventory, increase the intensive product-category margin. The average increase in sales

per product category is 6 percent in restrictive markets and 8 percent in rural markets.

Stronger competitive pressure increases incumbents’ future productivity and decreases

product adjustment costs that, together with changes in product categories and inven-

tory, result in higher long-run profits (value function). The average increase in the value

function is 2-10 percent (10 percent in rural markets, 2 percent in urban markets, and

3-4 percent in restrictive and liberal markets). These findings suggest that incumbents

benefit in the long run from one additional PBL application. Incumbents can learn the

best practices from new entrants, which can encourage agglomeration economies and

attract consumers to the local area.61

The findings from a 35 percent increase in approved PBL applications in CF2 are

consistent with those in CF1 (Table 10, Panel B). Higher competitive pressure on in-

cumbents in CF2 than in CF1 generates more entry and exit in product categories.

Over 20 percent of all stores in restrictive markets adjust their product-category mix,

which is 3 percentage points more than in CF1. Product entry rates increase the most

in markets with restrictive regulation (on average 5 percent). There is net entry of

product categories and an average increase in incumbents’ long-run profits in restrictive

markets. In contrast, there is net exit of product categories and an average decrease in

the incumbent’s long-run profits in rural markets. These findings suggest that there is

59Although data limitations hinder us from directly computing consumer welfare, the number of
product categories npjt and part of demand shocks µjt associated with quality of shopping experience
drive consumer surplus (Anderson et al., 1987; Anderson and De Palma, 2006). We also do not compute
the change in total welfare, though total welfare gains come from changes in store surplus (profits) and
consumer benefits of accessing a wider product variety that are provided by the dynamic model.

60See Section 2 for details. Rural and urban markets are defined based on the total population.
Restrictive markets are those with below median PBL approvals per population density, and liberal
otherwise.

61If we add uncertainty in demand shocks together with a more liberal regulation in CF1, more stores
adjust product-categories, entry rates increase whereas sales per product-category increase less.
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room for more entry in restrictive markets. Consumers and incumbents in rural markets

with limited demand are punished when competition increases substantially.

A doubling of the number of PBL approvals in CF3 makes incumbents worse off

(Table 10, Panel C). There is net entry of product categories in restrictive markets,

whereas there is net exit in rural markets. Consumers in restrictive markets thus bene-

fit from more products. Inventory adjusts to a larger extent, and incumbents keep more

products in stock when competitive pressure is high. Generous liberalization decreases

incumbents’ long-run profits for all market types. Although such liberalization promotes

productivity and decreases the adjustment costs of variety, it cannot compensate for the

loss in future sales to new rivals. Intense competition thus reduces firm value. Incum-

bents in rural and restrictive markets are harmed the most under this policy design. For

example, on average, the long-run profits decrease by 22 percent in rural markets and

by 15 percent in restrictive markets. The reduction for incumbents in urban and liberal

markets is approximately half.

Cost subsidy. The last experiment CF4 that subsidizes the marginal adjustment cost

of product categories sets the coefficient of the squared adjustment costs ϕ2 in equation

(17) to zero. This implies that the marginal adjustment cost difference between two

stores is explained only by differences in inventory levels and the stringency of regu-

lation. Table 10 (Panel D) shows that over 20 percent of stores adjust their product

categories in rural and restrictive markets, which is approximately 3 percentage points

more than in CF3. The product entry rates are also substantially higher, on average

approximately 6 percent in rural and restrictive markets. Rural incumbents gain long-

run profits (by 24 percent, on average) as a result of a better product-category mix and

lower adjustment costs. The same holds for the other market types, but the magnitudes

are lower. Consumers are better off by accessing more variety, especially in rural and

restrictive markets. This experiment shows that a reduction in ‘diseconomies of scope‘ is

relatively favorable for variety in markets where variety is sparser to begin with. When

implementing such cost subsidies, however, the value of the reduction in differences in

product variety across regions has to be weighted against the costs the government must

pay, which can be high.

6 Conclusions

This paper assesses the impact of entry regulations on firms’ incentives to adjust the

product variety offered to consumers. An essential goal for policymakers is to ensure

that consumers enjoy broad access to products and services regardless of where they

live. The appropriate design of entry regulations and other policy tools to foster variety

in local markets, such as subsidies, has been widely debated among policymakers and

academics. However, remarkably little attention has been paid to the impact of entry
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regulations on retailers’ repositioning of input resources and product variety.

We use a dynamic model of store adjustment in product categories and rich data

to evaluate the long-run impact of different regulatory regimes in Swedish retail. The

framework models economies of scale and scope in terms of offering multiple products

and allows entry regulations to influence store productivity and the adjustment costs

of product categories using information on stores’ inputs and the local market environ-

ment. This research takes a first step towards understanding the role of entry regulations

in shifting stores’ incentives to offer product variety to consumers (i.e., more product

categories), focusing on stores’ reallocation of resources. We pay attention to rural and

restrictively regulated markets that raise policy concerns to equate living conditions

across geographic regions.

The empirical findings show that more liberal regulation decreases the adjustment

cost of variety, increases productivity and spurs product-category repositioning. The

median adjustment costs in product categories in restrictive markets is approximately

29 percent higher than those in liberal markets. Stores in restrictive markets have the

largest dispersion in the long-run benefits of adding an additional product category.

Stores in rural markets have the lowest benefit of adding variety, reflecting sparse vari-

ety in those markets.

Counterfactual policy experiments show that more liberal regulation of entry in-

creases the number of product categories, especially in restrictive markets. A modest

liberalization of entry increases incumbents’ long-run profits as a result of productivity

advances, lower adjustment costs and modified product-categories. The gains to con-

sumers and incumbents are greatest in markets with restrictive regulation, implying a

reduction in regional differences. A generous deregulation implies net exit of product

categories in markets with limited demand and decreases long-run profits in all market

types. A subsidy per product category for stores that utilize economies of scope induces

high product-category entry rates. The policy is accurate from the point of view that

variety increases relatively more in rural and restrictive markets than in urban and lib-

eral markets. The cost for the government, which can be high for such policy, must

be weighted against the value of equating differences across regions. Such subsidies are

of interest to policymakers who want to equalize regional differences, as incumbents in

rural and restrictive markets add relatively more product categories than incumbents in

urban and liberal markets.

The dynamic framework with multiproduct technology can provide rich insights into

changes in firms’ behavior and the tradeoff between short-run costs and long-run bene-

fits from various policies that aim to improve the product variety offered to consumers

and ensure that the quality of life across regional areas is equitable.
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Table 1: Descriptive statistics

Year Sales Value Investment No. of Mean no. of Mean of no. Corr. sales per product
added employees product of PBL and no. of PBL

categories applications per applications per
at store level population density population density

2004 80.454 17.518 1.286 31,424 3.101 0.228 -0.020
2005 97.144 22.358 1.531 39,468 4.514 0.263 -0.005
2006 103.116 23.448 1.796 38,640 4.151 0.253 -0.004
2007 147.852 30.497 2.466 47,104 4.399 0.289 -0.020
2008 130.613 26.427 2.528 49,130 4.185 0.285 -0.040
2009 131.826 27.123 2.335 47,940 4.223 0.234 -0.019
NOTE: Sales (excl. VAT), value added, inventories (includes products bought), investment are measured in
billions of 2000 SEK (1 USD= 7.3 SEK, 1 EUR= 9.3 SEK). Number of employees is measured in thousands.
Sales per product category are computed at store level.
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Figure 1: Store performance distributions before and after acceptance of new PBL
applications

Table 2: The impact of accepted PBL applications on stores’ product variety

No. of products Log of no. Product sales
of products entropy

(1) (2) (3)
New applications accepted 0.344 0.047 -0.069

(0.150) (0.020) (0.029)

Year fixed-effect Yes Yes Yes
Subsector fixed-effect Yes Yes Yes
Adjusted R2 0.236 0.204 0.242
NOTE: The independent variable is a dummy variable that takes the value one if there are
new applications accepted in a local market. Clustered standard errors are in parentheses.
Entropy measures store diversification in sales and is computed for each store j based on
market share of each product category i inside store, i.e., Ejt =

∑

i msijtln(msijt) (Bernard
et al., 2011).
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Figure 2: Multiproduct store’s indicators before and after acceptance of new PBL applications

Table 3: The impact of entry regulation on the dynamics of stores’ product variety

Change in Change in log Change in product
no. of products of no. of products sales entropy

(1) (2) (3) (4) (5) (6) (7) (8) (9)
No. of products in t− 1 -0.396 -0.400

(0.053) (0.014)
Log of no. of products in t−1 -0.524 -0.526

(0.034) (0.013)
Product sales entropy in t−1 -0.372 -0.376

(0.013) (0.014)
Entry regulation in t − 1 0.529 0.310 0.688 0.091 0.047 0.101 -0.071 -0.052 -0.170

(0.241) (0.174) (0.289) (0.040) (0.022) (0.051) (0.034) (0.030) (0.053)

Year fixed-effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
Market fixed-effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
Subsector fixed-effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.193 0.381 0.132 0.455 0.119 0.305
F-test (weak IV) 237.698 218.022 265.208
Sargan test (p-value) 0.230 0.094 0.961
NOTE: Clustered standard errors are in parentheses. Entropy measures store diversification in sales and is computed for
each store j based on market share of each product category i inside store, i.e., Ejt =

∑

i msijtln(msijt) (Bernard et al.,
2011). The IV regressions use three instruments, i.e., the share of non-socialist seats in the local market, the number of
approved applications in the neighboring municipalities, and one internal instrument exogenous variable (e.g., income and
income squared) (see Lewbel, 2012).
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Table 4: Estimation of multiproduct sales-generating function

OLS Two-step estimation
Estimate Std. Estimate Std.

Log no. of employees 0.784 0.035 0.571 0.033
Log of capital 0.061 0.029 0.289 0.036
Log of inventory 1.037 0.021 0.411 0.054
Log of sales of other products -0.896 0.009 -0.857 0.061

Log of sales outside option -0.005 0.006 0.287 0.043
Log of population 0.014 0.022 0.176 0.032
Log of pop. density 0.018 0.016 0.697 0.032

Coef. of no. of products (ρnp) 0.213 0.096
Log of income 38.120 13.360 0.289 0.058
Log of income squared -3.620 1.257 0.043 0.058

Elasticity of substitution 3.480

Year fixed-effect Yes Yes
Subsector fixed-effect Yes Yes
R-squared 0.558
No. of obs. 16,759 16,759
NOTE: The dependent variable is the log of sales of a product category at the store
level. Labor is measured as the number of full-time adjusted employees. Sales of
other product categories are measured at the store level. Sales of outside option
measures total sales of the other products of all other five-digit SNI codes at the
local market. OLS regression controls for the current impact of entry regulation.
OLS refers to ordinary least squares regression. Two-step estimation refers to the
estimation method presented in Section 3. Reported standard errors (in parenthe-
ses) are computed using Ackerberg et al. (2012).
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Table 5: Estimation of structural parameters: Productivity and demand shock processes

Productivity (ωt) process Demand shocks (µt) process
Estimate Std. Estimate Std.

Productivity (ωt−1) 0.846 0.013 Demand shock (µt−1) 0.987 0.018
Productivity squared (ω2

t−1) 0.025 0.006 Demand shock squared (µ2
t−1) -0.012 0.004

Productivity cubic (ω3
t−1) -0.002 0.001 Demand shock cubic (µ3

t−1) -0.0006 0.0002

Demand shock (µt−1) 0.025 0.004
Prod.*Demand. shock (ωt−1 × µt−1) 0.011 0.002

Entry regulation (rt−1) 0.122 0.036
Prod.*Entry reg. (ωt−1 × rt−1) -0.026 0.011
Dem. sh.*Entry reg. (µt−1 × rt−1) -0.028 0.006

Year fixed-effects Yes Year fixed-effects Yes
Sub-sector fixed-effects Yes Year fixed-effects Yes
Adjusted R-squared 0.873 Adjusted R-squared 0.686

Coefficients of ωt−1 terms are zero F-test p-value
1749.183 0.000

Coefficients of µt−1 terms are zero F-test p-value
23.601 0.000

Coefficients of rt−1 terms are zero F-test p-value
7.599 0.000

Persistence (dωt/dωt−1) 0.869 Persistence (dµt/dµt−1) 0.943
Effect of demand shock (dωt/dµt−1) 0.025
Effect of entry regulation (dωt/drt−1) 0.077
NOTE: Productivity is estimated using the two-step estimation method in Section 3. The mean values are presented
for the marginal effects.
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Figure 3: The relationship between the number of product categories, productivity, and
demand shocks
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Table 6: Determinants of product categories at the store level

HHI product categories No. of product categories
Restrictive Liberal Restrictive Liberal
Est. Std. Est. Std. Est. Std. Est. Std.

Productivity (ωt) -0.1131 0.0225 -0.1870 0.0429 0.3810 0.0468 0.6226 0.0693
Productivity squared (ω2

t ) 0.0039 0.0040 0.0125 0.0102 -0.0406 0.0148 -0.0616 0.0136
Demand shocks (µt) 0.1024 0.0127 0.1098 0.0223 -0.3574 0.0236 -0.3993 0.0390
Demand shocks squared (µ2

t ) -0.0041 0.0005 -0.0057 0.0011 0.0165 0.0016 0.0208 0.0020
Prod.× Demand sh. (ωt × µt) 0.0081 0.0025 -0.0020 0.0032 -0.0064 0.0094 0.0087 0.0046
Log of capital stock (kt−1) -0.0404 0.0089 -0.0494 0.0151 0.0926 0.0263 0.1259 0.0294
Log of investments (it−1) -0.0043 0.0052 0.0075 0.0058 0.0388 0.0109 0.0052 0.0135

Other store/market controls Yes Yes Yes Yes
Sector fixed-effects Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes
Market fixed-effects Yes Yes Yes Yes
Adj. R2 0.5404 0.6040
NOTE: All regressions include an intercept. OLS estimator is used for HHI regressions, where the dependent variable, i.e
HHI, is computed based on sales product categories. Quasi-Poisson estimator is used for the number of product categories
regressions. Additional store and market controls include: inventories, wages, population, population density, income.
Standard errors are clustered at sector level.

Table 7: Determinants of the number of unique product categories in local markets

Restrictive markets Liberal markets
Est. Std. Est. Std.

Productivity (ωt) 0.2212 0.0447 0.3008 0.0378
Productivity squared (ω2

t ) -0.0164 0.0097 -0.0167 0.0129
Demand shocks (µt) -0.2298 0.0288 -0.2827 0.0323
Demand shocks squared (µ2

t ) 0.0114 0.0018 0.0149 0.0018
Log of capital stock (kt−1) 0.0809 0.0164 0.1110 0.0203
Log of investments (it−1) 0.0386 0.0127 0.0060 0.0107

Sector fixed-effects Yes Yes
Year fixed-effects Yes Yes
Market fixed-effects Yes Yes
Adj. R2 0.5554 0.4024
NOTE: Dependent variable is the log of unique number of product categories
at local market and sector level. Controls include median values at the local
market, sector and year level. OLS estimator is used. All regressions include
an intercept, and additional market controls (median values), i.e., population,
population density, and income. Standard errors are clustered at market level.

49



Table 8: Estimation of dynamic parameters

Panel A: Estimation of adjustment cost in product variety
Estimate Std.

No. of product categories (npjt) 0.1109 0.0347
No. of product categories squared (np2jt) 0.1018 0.0095

Inventory before sales squared(exp(ajt)
2) 0.0017 0.0006

No. of product categ. × Inv. before sales (npjt × exp(ajt)) 0.0993 0.0461
No. of product categ. × Regulation (npjt × rmt) -0.1029 0.0378
Inv. before sales × Regulation (exp(ajt)× rmt) -0.3119 0.0946

Panel B: Model prediction
Observed Predicted

No. product categories
Mean 3.8748 3.9963
Std. 1.7494 1.6907
Log of inventory before sales
Mean 2.2143 2.0001
Std. 0.9656 1.1520

Panel C: Value function approximation
Value function
Mean 232.5870
Std. 301.8850
Median value function over net profits 19.6521
Median approximation error -2.3420E-5
NOTE: Standard errors are computed using subsampling.

Table 9: Stores’ long-run profits and the benefits of increasing product variety by market type

Type of market
Rural Urban Restrictive Liberal

Q50 IQR Q50 IQR Q50 IQR Q50 IQR
Value function 121.7120 262.4670 206.9500 230.7650 206.1960 250.0120 181.6170 239.2370
Adjustment cost 2.5182 6.9690 2.9221 7.3515 3.1343 7.6116 2.4381 6.5205
Marginal benef. of variety 0.7498 0.8949 0.7353 0.9402 0.7333 0.9452 0.7376 0.9046
NOTE: Figures are in thousand SEK. IQR = Q90 −Q10. Q10, Q50, and Q90 are 10th, median, and 90th percentile.
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Table 10: Counterfactual experiments: More liberal entry regulation and cost subsidies

Type of market
Rural Urban Restrictive Liberal

Mean Std Mean Std Mean Std Mean Std
Panel A: CF1 - One more approved PBL application in all markets
Share of stores with product adjust. 0.1677 0.1543 0.1692 0.1444
Product category entry rate 0.0287 0.1160 0.0336 0.1759 0.0417 0.2145 0.0238 0.0983
Product category exit rate 0.0243 0.0924 0.0211 0.0813 0.0235 0.0858 0.0198 0.0809
Inventory before sales 0.0607 0.2866 0.0127 0.1535 0.0090 0.1788 0.0334 0.1905
Sales 0.0212 0.1336 0.0114 0.1872 0.0094 0.2094 0.0168 0.1422
Sales per product 0.0892 0.9298 0.0507 0.7504 0.0644 0.9253 0.0508 0.6158
Adjustment cost -0.0300 0.2161 0.0008 0.2437 0.0123 0.2527 -0.0215 0.2241
Value function 0.1008 0.7740 0.0217 0.1273 0.0319 0.4178 0.0396 0.2586
Panel B: CF2 - An increase in approved PBL applications by 35 percent
Share of stores with product adjust. 0.1538 0.1857 0.2097 0.1510
Product category entry rate 0.0245 0.1295 0.0394 0.1746 0.0518 0.2156 0.0220 0.0980
Product category exit rate 0.0274 0.0977 0.0291 0.1030 0.0332 0.1122 0.0245 0.0909
Inventory before sales 0.0654 0.2110 0.0510 0.1867 0.0294 0.2003 0.0774 0.1784
Sales 0.0270 0.1195 0.0436 0.2555 0.0327 0.2749 0.0487 0.1941
Sales per product 0.1095 0.9708 0.1305 1.0543 0.1450 1.2389 0.1090 0.7962
Adjustment cost -0.0329 0.2280 -0.0125 0.3203 0.0382 0.3315 -0.0696 0.2692
Value function -0.0372 0.3818 0.0876 0.3646 0.0610 0.3793 0.0713 0.3618
Panel C: CF3 - Double the number of approved PBL applications
Share of stores with product adjust. 0.1825 0.1965 0.2068 0.1816
Product category entry rate 0.0165 0.0691 0.0350 0.1818 0.0434 0.2178 0.0205 0.0960
Product category exit rate 0.0307 0.0964 0.0315 0.0989 0.0346 0.1100 0.0281 0.0854
Inventory before sales 0.1798 0.4441 0.1113 0.2602 0.0379 0.1819 0.2069 0.3632
Sales 0.0509 0.1371 0.0622 0.2209 0.0323 0.2662 0.0881 0.1243
Sales per product 0.0836 0.2071 0.1366 0.9402 0.1435 1.2089 0.1121 0.1782
Adjustment cost -0.1103 0.2695 -0.0855 0.3012 0.0025 0.2697 -0.1812 0.2932
Value function -0.2208 0.6138 -0.0920 0.3350 -0.1521 0.4093 -0.0749 0.3822
Panel D: CF4 - Cost subsidy per product-category that varies with the number of product categories
Share of stores with product adjust. 0.2048 0.2069 0.2321 0.1811
Product category entry rate 0.0598 0.2078 0.0472 0.1712 0.0627 0.2100 0.0361 0.1382
Product category exit rate 0.0147 0.0629 0.0222 0.089 0.0234 0.0928 0.0184 0.0766
Inventory before sales 0.0038 0.1322 0.0066 0.1384 0.0123 0.1676 -0.0002 0.0978
Sales 0.0137 0.0792 0.0177 0.1934 0.0214 0.1986 0.0127 0.1564
Sales per product -0.0101 0.1218 0.0602 0.842 0.0655 0.9409 0.0303 0.5405
Adjustment cost -0.3438 0.273 -0.2825 0.5536 -0.2765 0.278 -0.3099 0.6746
Value function 0.2446 0.9803 0.0185 0.4633 0.0569 0.6164 0.0593 0.5694
NOTE: Figures represent growth changes. The counterfactuals CF3 and CF4 are cost equivalent at the industry level.
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Online Appendix: Entry Regulations and Product

Variety in Retail

Florin Maican and Matilda Orth1

Appendix A: General properties of the multiproduct ser-

vice function

To simplify the notation, we omit the index of the firm and period and denote the group

the store service inputs into the vector V. For example, in our empirical implementation

V = (L,K,A). We consider the general service generating function, i.e.,

F (Q,V) = G(Q)−H(V) = 0 (1-a)

where G(Q) = Qα̃1
1 ×· · ·×Q

α̃np
np exp(γ̃1Q1+· · ·+γ̃npQnp); H(V) = V β̃1

1 ×· · ·×V β̃m
m exp(ω̃);

Q is the vector of service output; Qi is the i-th service output of the store, (i = 1, np);

and Vj is the j-th service input of the store, (j = 1,m). In what follows, we use the i to

index the service outputs and j to index the inputs.

Assuming that the prices are given, the Lagrangean function of the profit maximiza-

tion at the store level is given by

max
V

L = P′Q−W′V− λF (Q,V), (2-a)

where P and W are the vectors of output and input prices, respectively. The first-order

conditions (FOC) under competition are

Pi − λFi = 0, i = 1, np

Wj + λFj = 0, j = 1,m
(3-a)

where Fi = ∂F/∂Qi and Fj = ∂F/∂Vj . The FOC (3-a) conditions imply that sign(λ) =

sign(Fi) and sign(λ) = −sign(Fj). The derivatives of the implicit function with respect

1University of Gothenburg, Center for Economic Policy Research (CEPR), and Research Institute
of Industrial Economics (IFN), E-mail: maicanfg@gmail.com; and

Research Institute of Industrial Economics (IFN), Box 55665, SE-102 15, Stockholm, Sweden, Phone
+46-8-665 4531, E-mail: matilda.orth@ifn.se
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to inputs and outputs, i.e. Fi and Fj are

Fi = G(Q)
(

α̃i

Qi
+ γ̃i

)

, i = 1, np

Fj = −H(V)
β̃j

Vj
, j = 1,m

(4-a)

The cross derivatives of the Lagrangean are the following: ∂2
L/∂2λ = 0; ∂2

L/∂λ∂Qi =

−Fi; ∂
2
L/∂λ∂Vj = −Fj ; ∂

2
L/∂Qi∂Qi′ = −λFii′ ; ∂

2
L/∂Vj∂Vj′ = −λFjj′; and ∂2

L/∂Qi∂Vj =

−λFij . The determinant of the bordered Hessian matrix DL is given by

DL =

∣

∣

∣

∣

∣

∣

∣

∣

∂2L
∂λ∂λ

∂2L
∂λ∂Qi

∂2L
∂λ∂Vj

∂2L
∂Qi∂λ

∂2L
∂Qi∂Qi

∂2L
∂Qi∂Vj

∂2L
∂Vj∂λ

∂2L
∂Vj∂Qi

∂2L
∂Vj∂Vj′

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

0 −Fi −Fj

−Fi −λFii′ −λFij

−Fj −λFji′ −λFjj′

∣

∣

∣

∣

∣

∣

∣

, (5-a)

where the cross derivatives of elements of the block matrices of the determinant of the

hessian matrix are the following

Product-product: Fii =
F 2
i

G(Q) −G(Q) α̃i

Q2
i

, i = 1, np

Product-product: Fii′ =
FiFi′

G(Q) , i 6= i′ i, i′ = 1, np

Input-input: Fjj = −
F 2
j

H(V) +H(V)
β̃j

V 2
j

, j = 1,m

Input-input: Fjj′ = −
FjFj′

H(V) , j 6= j′ j, j′ = 1,m

Product-input: Fij = 0, i = 1, np, j = 1,m.

(6-a)

The second-order condition of the profit maximization requires the sign of the deter-

minant of the bordered Hessian matrix DL is (−1)np+m. To proof this, we rewrite the

determinant DL as

DL =

∣

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

∣

, (7-a)

where A = 0 (1 × 1 matrix); B = [−Fi,−Fj]
T (1 × (np + m)); C = [−Fi,−Fj]

((np+m)× 1); and

D =

[

−λFii′ 0

0 −λFjj′

]

.

Using Schur complement decomposition, we have that

DL = det(D)det(A −BD−1C). (8-a)

Because the matrix D is diagonal, its inverse is given by

D−1 = (−λ)−1

[

F−1
ii′ 0

0 F−1
jj′

]

, (9-a)
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and the determinant of D is

det(D) = (−1)−(np+m)(λ)−(np+m)det(Fii′)det(Fjj′). (10-a)

The product BD−1C can be rewritten as

BD−1C = −λ−1[FT
i F

−1
ii′ Fi + FT

j F
−1
jj′Fj]. (11-a)

Therefore,

det(A−BD−1C) = (λ)−1[FT
i F

−1
ii′ Fi + FT

j F
−1
jj′Fj]. (12-a)

Thus, the determinant of the bordered Hessian matrix is given by

DL = (−1)−(np+m)(λ)−(np+m+1)det(Fii′)det(Fjj′)[F
T
i F

−1
ii′ Fi + FT

j F
−1
jj′Fj ]. (13-a)

The block matrices Fii′ and Fjj′ have important properties that can be used to compute

their inverse and the determinant. The matrices Fii′ and Fjj′ can be written as

Fii′ =









F1F1
G(Q) · · ·

F1Fnp

G(Q)
...

. . .
...

FnpF1

G(Q) · · ·
FnpFnp

G(Q)









+









− α̃1

Q2
1
G(Q) · · · 0

...
. . .

...

0 · · · −
α̃np

Q2
np
G(Q)









and

Fjj′ =









− F1F1
H(V) · · · −F1Fm

H(V)
...

. . .
...

−FmF1
H(V) · · · −

FmFnp

H(V)









+











β̃1

V 2
1
H(V) · · · 0

...
. . .

...

0 · · · β̃m

V 2
m
H(V)











.
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We introduce new notations for the vectors of derivatives in outputs and inputs, i.e.,

uT
i =

[

−F1

G(Q)
1
2
, · · · ,

−Fnp

G(Q)
1
2

]

uT
j =

[

−F1

H(V)
1
2
, · · · , −Fm

H(V)
1
2

]

vT
j =

[

F1

H(V)
1
2
, · · · , Fm

H(V)
1
2

]

F̃ii′ =









− α̃1

Q2
1
G(Q) · · · 0

...
. . .

...

0 · · · −
α̃np

Q2
np
G(Q)









F̃jj′ =











β̃1

V 2
1
H(V) · · · 0

...
. . .

...

0 · · · β̃m

V 2
m
H(V)











.

The cross-derivative matrices Fii′ and Fjj′ can be decomposed as

Fii′ = F̃ii′ + uiu
T
i

Fjj′ = F̃jj′ + ujv
T
j .

(14-a)

Based on these decompositions, we can compute the inverses and the determinants of

Fii′ and Fjj′ using Sherman-Morrison formula, i.e.,

(F̃ii′ + uiu
T
i )

−1 = F̃−1
ii′ −

F̃−1
ii′ uiu

T
i F̃

−1
ii′

1 + uT
i F̃

−1
ii′ ui

(15-a)

(F̃jj′ + ujv
T
i )

−1 = F̃−1
jj′ −

F̃−1
jj′ujv

T
j F̃

−1
jj′

1 + vT
j F̃

−1
jj′uj

(16-a)

det(F̃ii′ + uiu
T
i ) = (1 + uT

i F̃
−1
ii′ ui)det(F̃ii′) (17-a)

det(F̃jj′ + ujv
T
j ) = (1 + uT

j F̃
−1
jj′uj)det(F̃jj′). (18-a)
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The inverse of the diagonal matrices F̃ii′ and F̃jj′ are given by

F̃−1
ii′ =











−
Q2

1
α̃1G(Q) · · · 0
...

. . .
...

0 · · · −
Q2

np

α̃npG(Q)











(19-a)

F̃−1
jj′ =











V 2
1

β̃1H(V)
· · · 0

...
. . .

...

0 · · · V 2
m

β̃mH(V)











. (20-a)

We use Sherman-Morrison formula to evaluate the terms FT
i F

−1
ii′ Fi and FT

j F
−1
jj′Fj, i.e.,

FT
i F

−1
ii′ Fi = G(Q)

1
2uT

i

(

F̃−1
ii′ −

F̃
−1
ii′

uiu
T
i F̃

−1
ii′

1+uT
i F̃

−1
ii′

ui

)

uiG(Q)
1
2

= G(Q)
uT
i F̃

−1
ii′

ui

1+uT
i F̃

−1
ii′

ui

(21-a)

FT
j F

−1
jj′Fj = −H(V)

1
2vT

j

(

F̃−1
jj′ −

F̃
−1
jj′

ujv
T
j F̃

−1
jj′

1+vT
j F̃

−1
jj′

uj

)

ujH(V)
1
2

= −H(V)
vT
j F̃

−1
jj′

uj

1+vT
j F̃

−1
jj′

uj
.

(22-a)

The terms uT
i F̃

−1
ii′ ui and vT

j F̃
−1
jj′uj can be computed as follows:

uT
i F̃

−1
ii′ ui =

[

−F1

G(Q)
1
2
, · · · ,

−Fnp

G(Q)
1
2

]











−
Q2

1
α̃1G(Q) · · · 0
...

. . .
...

0 · · · −
Q2

np

α̃npG(Q)





















−F1

G(Q)
1
2

...
−Fnp

G(Q)
1
2











= −
∑np

i=1
1
α̃i

F 2
i Q

2
i

G(Q)2

vT
j F̃

−1
jj′uj =

[

F1

H(V)
1
2
, · · · , Fm

H(V)
1
2

]











V 2
1

β̃1H(V)
· · · 0

...
. . .

...

0 · · · V 2
m

β̃npH(V)





















−F1

H(V)
1
2

...
−Fm

H(V)
1
2











= −
∑m

j=1
1
β̃j

F 2
j V

2
j

H(V)2
.
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Therefore, we have

FT
i F

−1
ii′ Fi = G(Q)

−

∑np
i=1

1
α̃i

F2
i Q2

i
G(Q)2

1−
∑np

i=1
1
α̃i

F2
i
Q2
i

G(Q)2

FT
j F

−1
jj′Fj = H(V)

−

∑m
j=1

1
β̃j

F2
j V 2

j

H(V)2

1−
∑m

j=1
1
β̃j

F2
j
V 2
j

H(V)2

(23-a)

The next step is to compute the determinants of Fii′ and Fjj′, i.e.,

det(Fii′) = (1 + uT
i F̃

−1
ii′ ui)det(F̃ii′)

=
(

1−
∑np

i=1
1
α̃i

F 2
i Q

2
i

G(Q)2

)

∏np
i=1

−α̃i

Q2
i

G(Q)
(24-a)

det(Fjj′) = (1 + vT
j F̃

−1
jj′uj)det(F̃ii′)

=

(

1−
∑m

j=1
1
β̃j

F 2
j V

2
j

H(V)2

)

∏m
j=1

β̃j

V 2
j

H(V).
(25-a)

Replacing expressions (10-a), (12-a), (23-a), (24-a), and (25-a) in (8-a), we have

DL = λ(−λ)−(np+m+2)
(

1−
∑np

i=1
1
α̃i

F 2
i Q

2
i

G(Q)2

)(

∏np
i=1

−α̃i

Q2
i

G(Q)
)

×

(

1−
∑m

j=1
1
β̃j

F 2
j V

2
j

H(V)2

)(

∏m
j=1

β̃j

V 2
j

H(V)

)

×



G(Q)
−

∑np
i=1

1
α̃i

F2
i Q2

i
G(Q)2

1−
∑np

i=1
1
α̃i

F2
i
Q2
i

G(Q)2

−H(V)
−

∑m
j=1

1
β̃j

F2
j V 2

j

H(V)2

1−
∑m

j=1
1
β̃j

F2
j
V 2
j

H(V)2



 ,

(26-a)

where
F 2
i Q

2
i

G(Q)2
= (α̃i + γ̃iQi)

2 and
F 2
j V

2
j

H(V)2
= β̃2

j . We simplify the expression of DL by

introducing new notations for each term, i.e.,

T1 =
(

1−
∑np

i=1
1
α̃i

F 2
i Q

2
i

G(Q)2

)

T2 =
(

∏np
i=1

−α̃i

Q2
i

G(Q)
)

T3 =

(

1−
∑m

j=1
1
β̃j

F 2
j V

2
j

H(V)2

)

T4 =

(

∏m
j=1

β̃j

V 2
j

H(V)

)

T5 =



G(Q)
−

∑np
i=1

1
α̃i

F2
i Q2

i
G(Q)2

1−
∑np

i=1
1
α̃i

F2
i
Q2
i

G(Q)2

−H(V)
−

∑m
j=1

1
β̃j

F2
j V 2

j

H(V)2

1−
∑m

j=1
1
β̃j

F2
j
V 2
j

H(V)2





=



− G(Q)

1−
∑np

i=1
1
α̃i

F2
i
Q2
i

G(Q)2

+ H(V)

1−
∑m

j=1
1
β̃j

F2
j
V 2
j

H(V)2





Lemma 1: In general case of transcendental service production function with np

outputs and m inputs, the determinant of the bordered Hessian matrix of the profit
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maximization problem is given by

DL = (−1)(np+m)(λ)−(np+m+1)T1T2T3T4T5. (27-a)

PROOF:

This finding results directly from equation (26-a).�

In what follows, we provide a general result on the restrictions of the coefficients of

transcendental multiproduct functions that are required to satisfy the profit maximiza-

tion conditions. This result is a generalization of Mundlak’s (1964) result in the case of

two outputs – two factor inputs.

Theorem 1: Consider a general service generating function

F (Q,V) = G(Q)−H(V) = 0 (28-a)

where G(Q) = Qα̃1
1 ×· · ·×Q

α̃np
np exp(γ̃1Q1+· · ·+γ̃npQnp); H(V) = V β̃1

1 ×· · ·×V β̃m
m exp(ω̃);

Qi is the i-th service output of the store, (i = 1, np); Vj is the j-th service input of the

store, (j = 1,m). If the parameters satisfy the following conditions

(a) α̃i < 0 for all i = 1, np;

(b) β̃i > 0 for all j = 1,m,

then the condition for profit maximization are satisfied.

PROOF:

We consider λ > 0 and an increasing returns to scales industry, i.e.,
∑np

i=1 β̃j ≥ 1. We

assume λ > 0 and, the first-order conditions for maximizing profit imply that Fi > 0

and Fj < 0, i.e.,
(

α̃i

Qi
+ γ̃i

)

> 0, i = 1, np (29-a)

β̃j
Vj

> 0, j = 1,m. (30-a)

In other words, we need to have

γ̃i >

∣

∣

∣

∣

α̃i

Qi

∣

∣

∣

∣

, i = 1, np (31-a)

β̃j > 0, j = 1,m. (32-a)

The first order condition (31-a) excludes the possibility that γ̃i = 0 for all i.2 This

2If γ̃i = 0 for all i then α̃i > 0 for all i (see Proposition 1).
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implies that T1 > 0, T2 > 0, T4 > 0. The term T5 < 0, because T3 < 0 and T2 > 0,

i.e., T5 is a sum of two negative numbers. Therefore, the sign of determinant of the

bordered Hessian matrix DL is (−1)np+m, which is the second order requirement for

profit maximization.�

Proposition 1: If the service function is simple Cobb-Douglas in outputs (γ̃i = 0

for all i) and inputs and the first-order conditions are satisfied, then optimal service

quantity Q∗ is sold at the minimum cost and any inputs V∗ yield minimum revenues.

The profit π(Q∗, V ∗) at the point (Q∗, V ∗) is a saddle point

π(Q∗, V ) ≤ π(Q∗, V ∗) ≤ π(Q,V ∗).

PROOF:

If γ̃i = 0 for all i, then from the first-order condition (29-a) we have that α̃i > 0 for all

i. In this case, sign(T2) = (−1)np, and the sign(DL) is different from (−1)1 (condition

for minimum) and (−1)(np+m) (condition for maximum).�

A direct consequence of the Proposition 1 is that when the inputs V produce min-

imum revenues and the first-order conditions are satisfied then the profit can be max-

imized by a selection of products, i.e., a corner solution. This problem does not exists

in the case of single product.

Proposition 2: The condition α̃i < 0 and γ̃i > 0 for all i is not the only second order

condition for profit maximization.

PROOF:

This result is also a direct consequence of Theorem 1. It is important to note that the

result in Theorem 1 holds some α̃i can be positive and, in this case, the corresponding

γ̃i can be set to zero, which can be useful to reduce the number of parameters.�

Ve

Qi

(a) Ve

Ve′

(b) Qi′

Qi

A

B(c)

Figure A.1: Marginal rate of product (factor) substitution

Product (factor) substitution. Using the total differentiation of the service-generating
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function, we can obtain the marginal rate of product (factor) substitution, i.e.,

Product-factor: dQi

dVe
= −Fe

Fi
> 0

Factor-factor:
dVe′

dVe
= − Fe

Fe′
< 0

Product-Product : dQi

dQe′
= −

Fi′

Fi
< 0.

(33-a)

To evaluate convexity of the different marginal rate of substitution, we compute the

second derivatives, i.e.,

Product-factor: d2Qi

dV 2
j

= −
Fjj

Fi

Factor-factor:
d2Vj′

dV 2
j

= −
Fjj

Fj′
+

FjFj′j

F 2
j′

Product-Product : d2Qi

dQ2
i′
= −

Fi′i′

F 2
i

+
Fii′

Fi′
,

(34-a)

where
Fjj =

H(V)
V 2
j

β̃j(1− β̃j)

Fi = G(Q)
(

α̃i

Qi
+ γ̃i

)

Fjj

Fj′
=

Vj′

Vj

β̃j

β̃j′
(β̃j − 1)

FjFj′j

F 2
j′

=
β̃2
j

V 2
j

1
β̃j′

−
Fi′i′

F 2
i

+
Fii′

Fi′
= G(Q)

α̃i′

Qi′

1
(

α̃i
Qi

+γ̃i
) .

(35-a)

In the case of Cobb-Douglas in inputs 0 < β̃j < 1,

Product-factor: d2Qi

dV 2
j

< 0

Factor-factor:
d2Vj′

dV 2
j

> 0,
(36-a)

which implies that product-factor rate of substitution is a concave function (Figure

A.1.(a)), factor-factor rate of substitution is convex (Figure A.1.(b)). The properties of

the product-product rate of substitution depends on γ̃i, i.e.,

d2Qi

dQ2
i′

= G(Q)
α̃i′

Qi′

1
(

α̃i

Qi
+ γ̃i

) . (37-a)

If γ̃i = 0 then from the first order condition we have α̃i > 0, which yields d2Qi/dQ
2
i′ > 0.

Therefore, γ̃i = 0 implies that product-product rate of substitution is a convex function

(Figure A.1.(c)). If γ̃i > 0 then from the first order condition we have α̃i < 0, which

yields d2Qi/dQ
2
i′ < 0. In this case, product-product rate of substitution is a concave

function (AB curve in Figure A.1.(c)).
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Appendix B: Sales-generating function

This appendix presents the derivation of the sales-generating function using the mul-

tiproduct service technology and a demand system. The main aim is to develop a

multiproduct sales function and identify its parameters. Separately identifying the co-

efficients of production technology and demand without price data is beyond the scope

of this paper.

The multiproduct service technology is given by

npjt
∑

i=1

α̃iqijt + α̃yYjt = β̃lljt + β̃kkjt + β̃aajt + ω̃jt + ũpjt, (38-a)

where qijt is the logarithm of quantity of product category i sold by store j in period t,

Yjt denotes total sales of store j in period t, ljt is the logarithm of the number employees,

kjt is the logarithm of capital stock, ajt is the logarithm of the sum of the inventory level

in the beginning of period t (njt) and the products bought during period t, and ũpjt are

i.i.d. remaining service output shocks. Variable npjt denotes the number of products

(categories) of store j.3

We use a CES demand system to obtain an expression for the logarithm of the price

of product category i (pijt), i.e., pijt = − 1
σ (qijt−q0t)+x′

ijt
β̃x

σ + σa

σ ajt+
1
σ µ̃ijt. Multiplying

the logarithm of price by α̃i and summing up over store j’s product categories, we obtain

the following expression:

npjt
∑

i=1

α̃ipijt = −
1

σ

npjt
∑

i=1

α̃iqijt +
1

σ

npjt
∑

i=1

α̃iq0t +

npjt
∑

i=1

α̃ix
′

ijt

β̃x

σ
+

σa
σ

npjt
∑

i=1

α̃iajt +
1

σ

npjt
∑

i=1

α̃iµ̃ijt.

(39-a)

The logarithm of sales per product category is yijt = qijt + pijt. To obtain an ex-

pression for sales per product category, we sum up the expressions (38-a) and (39-a),

i.e.,
∑npjt

i=1 [α̃iyijt +
(

1− 1
σ

)

α̃yYjt] =
(

1− 1
σ

)

[β̃lljt + β̃kkjt + β̃aajt] +
1
σ

∑npjt
i=1 [α̃iq0t] +

∑npjt
i=1 [α̃ix

′

ijt
β̃x

σ ] + σa

σ

∑npjt
i=1 [α̃i]ajt +

1
σ

∑npjt
i=1 α̃iµ̃ijt + (1− 1

σ )ω̃jt + (1− 1
σ )ũ

p
jt. The loga-

rithm of the aggregate quantity of the outside option q0t can be written as q0t = c̃ijqi0t,

where c̃ij > 1 and qi0t is the logarithm of the quantity of product category i that is sold

by stores in the outside option.4 Thus, we can write
∑npjt

i=1 [α̃iq0t] =
∑npjt

i=1 [α̃ic̃ijqi0t]. Us-

ing qi0t = yi0t − pi0t, we obtain
∑npjt

i=1 [α̃iq0t] =
∑npjt

i=1 [α̃ic̃ij(yi0t − pi0t)]. Because c̃ij > 1,

there exist sij < 1 and cj > 1 such that
∑npjt

i=1 α̃ic̃ij = cj and
∑npjt

i=1 sij = 1. Therefore,

we obtain
∑npjt

i=1 [α̃iq0t] = cj(
∑npjt

i=1 sijyi0t−
∑npjt

i=1 sijpi0t) = cj(ỹ0jt− p̃0jt) = cjy0jt ≡ yot,

where ỹ0jt are weighted sales of product categories of store j that are sold in the outside

3As we mention in the main text, we have only information on product categories in the empirical
application.

4Note that store j does sell only few product categories, and therefore cij > 1.
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option, p̃0jt is a weighted price index, y0jt are deflated sales of product categories of

store j that are sold in the outside option, and yot denotes outside option sales. We

measure yot by total sales of stores in the outside option. Most importantly, for any

store j, we can write the term of the outside option in terms of total sales of the outside

option in the multiproduct sales function. If there are no stores in the outside option,

yot represents total sales in the market.

The next step is to regroup the remaining coefficients and determine how they are

affected by σ. We denote βq ≡ 1/σ, βl ≡ (1− 1
σ )β̃l and βk ≡ (1− 1

σ )β̃k. As we mention in

the main text, we are unable to identify the impact of inventory separately on demand

and supply without additional assumptions. Therefore, we sum up the net impact of in-

ventory on sales under parameter βa, i.e., we denote (1−
1
σ )βa ≡ (1− 1

σ )β̃a+
σa

σ

∑npjt
i=1 α̃i.

Furthermore, to shorten the notation, we denote βa ≡ (1− 1
σ )βa. Because ajt is part of

both supply and demand equations, we are unable to identify β̃a and σa separately. In

other words, we can identify only the net effect βa. In our case, xijt includes only market

variables and therefore we denote βx ≡
∑npjt

i=1 α̃iβ̃x and βx ≡ βx/σ. We also denote by

ωjt ≡ (1 − 1/σ)ω̃jt a measure of revenue (sales) productivity, and refer to it as simple

store productivity in what follows. Additionally, µjt is a weighted sum of all unobserved

product demand shocks at the store level, determined as µjt ≡ (1/σ)
∑npjt

i=1 α̃iµijt, and

measures store j’s specific demand shocks in period t, and upijt are i.i.d. remaining shocks

to sales that are mean-independent of all control variables and store inputs. Using this

notation we can write the multiproduct sales function as
∑npjt

i=1 [α̃iyijt+
(

1− 1
σ

)

α̃yYjt] =

βlljt + βkkjt + βaajt + βqyot + x′

jtβx + ωjt + µjt + upijt.

The combination of the service technology and a simple CES demand yields an ex-

pression for the sales technology where the left-hand-side is a linear combination of sales

per product category and the right-hand-side is a linear combination of store inputs, lo-

cal demand shifters, store revenue productivity, and demand shocks. This relationship

solves the aggregation problem across different products. How many output parameters

α̃i we can identify depends on the available data on products (categories) and the varia-

tion across stores. If there is large heterogeneity in products offered for sale across stores,

we need to reduce the number of parameters α̃i that can be identified. By choosing only

stores that sell similar products, we induce a selection problem. As a result, even if

we estimate many technology parameters, the overall inference of the empirical exercise

might be biased. In our Swedish data, there is large heterogeneity in product categories

stores offer for sale. Thus, since we solve the multiproduct aggregation problem across

product categories using sales instead of quantity, we rewrite the linear expression for

product sales to reduce the number of parameters. In other words, we focus on sales of

product category i and sales of other product categories. To obtain an estimable prod-

uct sales equation that includes the logarithm of sales of product category i, yijt, and
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the logarithm of sales of other product categories inside the store y−ijt, we rewrite the

linear sum of product category sales
∑npjt

i=1

[

α̃iyijt +
(

1− 1
σ

)

α̃yYijt

]

≡ αiyijt + αyy−ijt.

Using new transformations, we can rewrite the sales of product category i as5

yijt = −αyy−ijt + βlljt + βkkjt + βaajt + βqyot + x′

jtβx + ωjt + µjt + upijt, (40-a)

which is the equation we estimate in the main text.

In summary, it is important to discuss a few aspects of identification of the multi-

product technology. First, we focus on developing a simple multiproduct setting that

does not require detailed product data and that can be used to analyze trends and the

impact of policies in local markets. Second, we need product prices to identify the initial

quantity weights α̃i and variation in other product characteristics. Most importantly, in

empirical settings, even if we have access to detailed product data and prices, we need

data over a long period of time to consistently identify α̃i (solving a system of equations

at the firm/store level). In our setting, the scope parameter αy in the multiproduct

sales-generating function (40-a) includes the sum of weights α̃i. In other words, param-

eter αy provides information on the economies of scope in the store based on supply-side

information (the multiproduct service frontier) and demand (elasticity of substitution).

B.1: Monte Carlo simulation

Table B.1: Estimation of single and multiproduct production function
using two-step estimator (source: Maican and Orth (2019))

DGP: Single-product DGP: Multi-product
Estim. Std. Estim. Std.

Log of labor (βl) 0.599 0.008 0.601 0.026
Log of capital (βk) 0.400 0.005 0.401 0.031
Log of other products (αy) -0.854 0.078
NOTE: The two-step estimator uses non-parametric labor demand function to proxy
for productivity (Doraszelski and Jaumandreu, 2013; Maican and Orth, 2015; Maican
and Orth, 2017). Reported standard errors are computed based on 1000 simulations.
Monte Carlo simulations use βl = 0.6, βk = 0.4, αy = −0.85. Single-product function
is estimated at the firm level. Multi-product function is estimated at the product level
assuming the same production technology across products. The number of firms is
1000. For the multiproduct DGP, the number of products for each firm is 3. Labor
is simulated using first-order condition profit maximization. Investment is simulated
based on policy function that is increasing the in firms state variables. Capital stock
is constructed using perpetual inventory method Kjt = (1 − 0.2)Kjt−1 + Ijt−1.
Productivity follows an AR(1) process with the persistence ρ = 0.7 and it is simulated
to have constant variance over time (standard deviation 0.3). Wages follow an AR(1)
process with the persistence ρ = 0.3 and it is simulated to have constant variance
over time (standard deviation 0.3). The number of years is 10 (all variables are used
in steady state).

5We normalize αi = 1.
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Table B.2: Estimation of single output production when DGP
is a multiproduct production function (source: Maican and Orth (2019))

Estim. Std.

Log of labor (βl) 0.490 0.004
Log of capital (βk) 0.542 0.002
Distribution of productivity bias
Q25 Q50 Q75

-0.085 0.116 0.322
NOTE: The two-step estimator uses non-parametric labor demand
function to proxy for productivity (Doraszelski and Jaumandreu,
2013; Maican and Orth, 2015); Maican and Orth, 2017). Reported
standard errors are computed based on 1000 simulations. Monte Carlo
simulations use βl = 0.6, βk = 0.4, αy = −0.85. Single-product func-
tion is estimated at the firm level. Multi-product function is estimated
at the product level assuming the same production technology across
products. The number of firms is 1000. For the multiproduct DGP,
the number of products for each firm is 3. Labor is simulated us-
ing first-order condition profit maximization. Investment is simulated
based on policy function that is increasing the in firms’ state vari-
ables. Capital stock is constructed using perpetual inventory method
Kjt = (1 − 0.2)Kjt−1 + Ijt−1. Productivity follows an AR(1) pro-
cess with the persistence ρ = 0.7 and it is simulated to have constant
variance over time (standard deviation 0.3). Wages follow an AR(1)
process with the persistence ρ = 0.3 and it is simulated to have con-
stant variance over time (standard deviation 0.3). The number of
years is 10 (all variables are used in steady state).

Appendix C: Invertibility conditions with two unobserv-

ables

The general labor demand and inventory functions that arise from the stores’ dynamic

optimization problem are

ljt = l̃t(ωjt, µjt, kjt, njt, wjt)

ajt = ãt(ωjt, µjt, kjt, njt, wjt).
(41-a)

The main aim is to recover ωjt and µjt using this system of equations. The conditions

required for identification can be grouped as follows: (i) general conditions that the

policy functions of the dynamic programming problem have to satisfy; (ii) conditions

that the system of equations should satisfy to have a unique solution. In what follows,

we discuss these conditions.

First, to back out ωjt and µjt, the assumption 6 must hold, i.e., the policy functions

l̃t(·) and ãt(·) must be strictly monotonic in ωjt and µjt, which holds under mild reg-

ularity conditions on the dynamic programming problem (Pakes, 1994; Maican, 2016).

The static profits are assumed to be strictly increasing in ωjt, µjt, and kjt and con-

tinuously differentiable in these variables. Another condition is supermodularity of the
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static profits with respect to ωjt and µjt, i.e., the impact of productivity on profits is

increasing in µjt. In other words, stores with large demand shocks experience a larger

increase in profits due to productivity. This assumption is not restrictive since stores

that experience large demand shocks invest to increase their productivity to satisfy the

demand. Furthermore, static profits are assumed to be supermodular with respect to ωjt

(µjt) and kjt, i.e., marginal product of capital is increasing in productivity and demand

shocks. This condition can also be interpreted as, stores with larger capital stock have

higher profits due to an increase in productivity or demand shocks. All these conditions

(strict monotonicity and supermodularity) on static profits yield that value and policy

functions are strictly increasing in ωjt, µjt, and kjt (Pakes, 1994; Maican, 2016).

Second, we discuss the general properties that must be satisfied by labor demand

(l̃(·)) and inventory (ã(·)) functions such that the system (41-a) has a unique solution.

This system can be solved for ωjt and µjt in terms of kjt, njt, ljt, wjt, and ajt when cer-

tain partial derivatives are continuous and the 2×2 Jacobian determinant ∂(l̃, ã)/∂(ω, µ)

is not zero. In other words, the ratios between the impact of ω and µ on the invest-

ment and inventories should not be the same, i.e., (∂l̃/∂ω)/(∂l̃/∂µ) 6= (∂ã/∂ω)/(∂ã/∂µ).

Therefore, this condition requires that productivity and demand shocks have a different

impact on investment and inventory, and the relative impact is not the same.

We apply implicit function theorem to prove the invertibility of the system (41-a).

In our case, points in (2+5)-dimensional space R2+5 can be written in the form of (x;b),

where x = (ω, µ) and b = (k, n, l, a, w). We can rewrite the system as f1(x;b) = 0 and

f2(x;b) = 0 or simply as an equation F (x;b2) = 0. To understand the invertibility of

the policy functions, we need to know when the relation F (x;b) = 0 is a also a function.

In other words, what are the conditions such that F (x;b) = 0 can be solved explicitly

for b in terms of x obtaining a unique solution. The Theorem C.1 (implicit function

theorem) provides the conditions that for a given point (x0,b0) such that F (x0,b0) = 0

there exists a neighborhood of (x0,b0) where the relation F (x;b) = 0 is a function.

Theorem C.1. Let f = (f1, f2) be a vector of functions defined on the open set S in

R
2+5 with values in R

2. Suppose f ∈ C ′ on S. Let (x0;b0) be a point in S for which

f(x0,b0) = 0 and for which the 2×2 Jacobian determinant ∂(f1, f2)/∂(ω, µ) is not zero

at (x0,b0). Then there exists a 5-dimensional open set B0 that includes b0 and one and

only one vector based functions g defined on B0 and having values in R
2 such that

(i) g ∈ C ′ on B0

(ii) g(b0) = x0

(iii) f(g(b);b) = 0 for every b in B0.

PROOF: This theorem is, in fact, the implicit function theorem applied on our case.

The general proof of the theorem can found in Apostol (1974).
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Appendix D: Entry regulation: Plan and Building Act

(PBL)

The majority of OECD countries have entry regulations that empower local authorities

to decide on store entry. However, the regulations differ substantially across countries

(Boylaud and Nicoletti, 2001; Griffith and Harmgart, 2005; Schivardi and Viviano, 2011).

While some countries strictly regulate large entrants, more flexible zoning laws exist, for

instance, in the U.S. (Pilat, 1997).

The Swedish Plan and Building Act (PBL) regulates the use of land and water and

buildings. The PBL consists of the planning requirements for land and water areas as

well as buildings. The ultimate goal of PBL is to promote equal and adequate living

conditions and a lasting sustainable environment for today and future generations. The

regulation contains two documents/plans: (i) the comprehensive plan and (ii) the de-

tailed development plan. Municipalities are required to have a comprehensive plan that

covers the entire municipality and that guides decisions regarding the use of land, water

areas and the built environment. The comprehensive plan records public interests and

national interests. Municipalities also have to provide detailed development plans that

cover only a fraction of the municipality. Municipalities are divided into smaller areas.

These plans indicate and set limits on the use and design of public spaces, land and

water areas.

The purpose of the comprehensive plan is to provide an attractive public environ-

ment that is sustainable. It is the basis for decisions regarding the use of land, water

and the development and preservation of buildings. It reflects the public interest and

addresses important environmental and risk factors that must be taken into account in

the planning of any endeavor. Necessary features include the housing needs of the mu-

nicipal inhabitants, the protection of valuable natural and cultural environments, and

providing inhabitants with access to services.

The detailed development plan consists of a map with text that indicates what,

where and how one is allowed to build, as well as appropriate uses for the area. For

instance, it indicates the appropriate design and use of housing, nature and water areas.

Other examples include construction rights for real estate including the size and form

of structures, the possibility of opening a restaurant, work places and businesses, hous-

ing, hotels, housing (villa or apartments), pre-schools, elementary schools, health care,

energy- and water services, parks, streets, squares, etc.

The detailed development plan indicates whether retail stores are allowed. The right

to open and operate a retail food store is addressed in the detailed development plan.

Each store seeking to enter the market is required to file a formal application with the

local government. For the entry to occur, the municipality can accept a new detailed
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development plan or make changes in an existing one. First, in the application, the

store must state the purpose of the activity: retail, housing, offices, manufacturing, or

other. Second, the store must describe the main purpose of its activity and what it

is to contain, e.g., a new building of a certain size, wholesale provision with trucks,

parking places and is obligated to be as detailed as possible. Before the new detailed

development plan is approved, it must be made publicly available. Inhabitants of the

municipality are allowed to express their opinions and views on the proposed changes. If

some do not agree with the proposed plan, they can appeal. The municipality must then

perform a new evaluation and look for alternative solutions to the question at hand.

When a retail store seeks to enter a local market, the municipality evaluates the

consequences for exit, prices, local employment, availability of store types and product

assortments for different types of consumers, purchasing patterns and purchasing trips,

consumer travel behavior, traffic (e.g., generated traffic per square meter of the new

sales space) including the effect it has on noise and air pollution for nearby consumers,

as well as the number of individuals who will be affected - probable health effects, risk

evaluations, broader environmental issues, increased distance to the store, parking, wa-

ter, energy supply, etc.

In addition, the municipal council must evaluate the positive and negative conse-

quences of the new entrant for different inhabitants, the environment, traffic, public

transport, safety, etc. The municipality must consider whether new bus lines are nec-

essary, as well as walking and biking paths. This is to ensure each consumer in the

municipality has access to different types of stores, a broad product assortment and

reasonable prices. A store entrant is prohibited from hindering real estate developments

that will be useful for the public interest, i.e., housing, places of work, traffic infras-

tructure and leisure environments. The municipal council evaluates and gives an overall

assessment of the trade-offs between the public interest and private retail interests. This

assessment is based on contingency analysis, an investigation of alternative solutions and

developments, and strategic judgement. It is important to evaluate the effects that ac-

cepting a new detailed development plan and changing an existing one on the public

interest.

All stores are regulated by the PBL in Sweden, in contrast with, for example, the

U.K., which explicitly focuses on regulating large stores (Maican and Orth, 2015; Sadun,

2015). The PBL is considered one of the major barriers to entry and is the cause of a

diverse array of outcomes, e.g., price levels, across municipalities (Swedish Competition

Authority, 2001:4). Several reports stress the need to better analyze how entry reg-

ulation affects market outcomes (Pilat, 1997; Swedish Competition Authority, 2001:4;

Swedish Competition Authority, 2004:2).
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Appendix E: Additional policy experiments: Cost subsi-

dies

The last two counterfactual experiments introduce a subsidy to the marginal adjust-

ment cost of product categories. In CF5 all stores receive the same subsidy level per

product category, i.e., we set the intercept equal to zero in equation (17). The results

in Table E.3 (Panel A) show that approximately 16 percent of the stores adjust their

number of product categories as a result of the subsidy. Product repositioning occurs

both in terms of entry and exit of product categories. On average, the entry and exit

rates are approximately the same. There are also changes in the intensive product-

category margin. Sales per product category and incumbents’ long-run profits increase

by 3-5 percent. Profitability gains are driven by changes in the intensive and extensive

product-category margins and lower adjustment costs. The subsidy reduces adjustment

costs by 13 percent in rural markets and by almost 10 percent in restrictive markets,

whereas it only decreases by half as much for the other market types.

Policy experiment CF6 incentivizes large stores to adjust their product categories,

i.e., the subsidy level depends on the number of products offered. We subsidize the

part of marginal cost that is increasing in store variety by a 35 percent reduction of the

coefficient ϕ2 in equation (17). The CF6 is equivalent to the first counterfactual CF5 in

terms of aggregate cost savings, which is related to governmental cost, approximately

SEK 7 million on average per year. Table E.3 (Panel B) shows higher product-category

entry rates than exit rates in CF6 than in CF5. Product-category entry rates are higher

in rural and restrictive markets (approximately 3.5 percent) than in urban and liberal

markets (approximately 2.5 percent). Product-category repositioning increases sales per

product category by between 2.4 and 6.5 percent, on average. Incumbents offering large

variety benefit from the subsidy, especially in rural and restrictive markets. Profitability

gains are highest in rural markets with an average increase in store value of 7.6 percent.

Incumbents’ long-run profits increase by 1 percent in urban and restrictive markets and

by 3.6 percent in liberal markets. A subsidy design that targets the size of variety as in

CF6, rather than the same subsidy per product category, particularly improves variety

in rural and restrictive markets. The reason is that large incumbents better utilize ben-

efits from economies of scope to increase variety.

A comparison of the findings regarding the cost subsidy designs shows that the mag-

nitudes of the induced changes are lower when implementing CF5 and CF6 than when

implementing CF4 (discussed in the main text). For instance, the share of stores that

adjust their product categories is smaller and the profitability gains are lower in CF5

and CF6 than in CF4.
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Table E.3: Counterfactual experiments: Cost subsidies for product variety

Type of market
Rural Urban Restrictive Liberal

Mean Std Mean Std Mean Std Mean Std
Panel A: CF5 - Same subsidy per product category
Share of stores with product adjust. 0.1627 0.1607 0.1758 0.1462
Product category entry rate 0.0193 0.0788 0.0270 0.1216 0.0292 0.1346 0.0220 0.0918
Product category exit rate 0.0213 0.0754 0.0242 0.0872 0.0270 0.0894 0.0203 0.0807
Inventory before sales 0.0041 0.1039 0.0112 0.1464 0.0087 0.1572 0.0112 0.1201
Sales -0.0037 0.0751 0.0192 0.2879 0.0055 0.1730 0.0249 0.3297
Sales per product 0.0095 0.1351 0.0610 0.7237 0.0450 0.6006 0.0589 0.7144
Adjustment cost -0.1338 0.1961 -0.0681 0.6483 -0.0969 0.2463 -0.0623 0.8042
Value function 0.0517 0.2118 0.0432 0.3177 0.0344 0.1899 0.0550 0.3821
Panel B: CF6 - Subsidy per product category that varies with the number of product categories (CF5 cost equivalent)
Share of stores with product adjust. 0.1617 0.1538 0.1674 0.1432
Product category entry rate 0.0331 0.1233 0.0291 0.1265 0.0362 0.1503 0.0235 0.0954
Product category exit rate 0.0163 0.0801 0.0192 0.0787 0.0183 0.0747 0.0191 0.0830
Inventory before sales 0.0111 0.1530 0.0027 0.1225 0.0035 0.1324 0.0048 0.1244
Sales 0.0129 0.1080 0.0100 0.1733 0.0053 0.1436 0.0158 0.1813
Sales per product 0.0654 0.9125 0.0353 0.4947 0.0243 0.4975 0.0568 0.6691
Adjustment cost -0.1081 0.1704 -0.0813 0.5235 -0.0905 0.1958 -0.0817 0.6500
Value function 0.0761 0.3213 0.0133 0.3521 0.0123 0.2377 0.0364 0.4297
NOTE: Figures represent growth changes. All stores receive subsidies. All subsidy counterfactuals are based on the
marginal adjustment cost in product categories. The counterfactuals CF5 and CF6 are cost equivalent at the industry
level. In CF5, the subsidy per product category is equal to ϕ1, i.e., we set ϕ1 = 0. In CF6, the subsidy per product
category is 35 percent of ϕ2npjt).
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