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Non-technical Summary

Questions of convergence have received increasing attention in recent years, in light of the
pressure for greater integration and enlargement of the European Union [EU] to countries in
Central and Eastern Europe [CEE]. This paper looks at the evidence for convergence of per
capita income between regions in Europe in the second half of the 1990s, when economic
recovery in CEE gathered pace.

The analysis starts with the simplest of the models, the unconditional ß-convergence model.
ß-convergence measures the correlation between per capita output levels and growth rates of
cross-sections of regions. A negative correlation is taken as evidence of convergence. The
analysis of this paper shows that the classical test methodology is ill-designed due to two
reasons. First, it cannot identify groupings of regional economies that are converging. Second,
it neglects spatial effects that represent interregional interactions and spatial spillovers.

The paper suggests a much richer and theoretically more satisfactory approach that is in line
with both the notions of club convergence and spatial dependence, and reflects recent
developments in spatial econometrics. The two-club spatial error convergence model with
club-wise heteroskedasticity appears to be the most appropriate specification in view of the
data available.

In the paper, we find clear evidence for unconditional ß-convergence in Europe for the time
period of observation. The sample of regional economies belonging to club A converges in an
unconditional sense at a speed of 1.5 percent per year and those belonging to club B (regional
economies in CEE and Southern Europe) at a speed of 2.4 percent. It is important to
emphasise that a speed of 1.5 or 2.4 percent per year, even though in accordance with
previous findings of convergence studies, is very small. However, we identify a higher
convergence speed for regions in Central and Eastern Europe, thus indicating a process of
catching-up towards the richer Western regions.

The study also illustrates that the classical convergence test methodology that has been the
work-horse of most previous convergence studies in mainstream economics is ill-designed to
analyse regional convergence due to the existence of spatial autocorrelation. Ignoring the
presence of spatial error autocorrelation in convergence analysis carried out with cross-
sectional data can lead to wrong conclusions, for example, with respect to the assessment of
convergence speed. Thus, testing for the presence of spatial autocorrelation (heterogeneity) by
means of appropriate diagnostics and implementing alternative specifications of the
convergence test equation when needed are crucial issues in income convergence analysis.
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1 Introduction

At the beginning of the century, questions of convergence have become a matter of
increasing concern for policy makers in Europe, not only within the EU-15, but also in
the accession countries in Central and Eastern Europe. Measuring the extent to which
convergence exists is far from straightforward due to several reasons. First, there are
measurement problems. In particular, there is a lack of reliable gross regional product
[GRP] figures for CEE regions. This comes partly from the change in accounting
conventions now used in CEE economies. More important, even if reliable estimates of
the change in the volume of output produced did exist, it would be impossible to
interpret them meaningfully because of the fundamental change of production, from a
centrally planned to a market economy system. As a consequence, figures for GRP are
difficult to compare between CEE and EU regions until the mid 1990s (European
Commission, 1999).

Second, there does not exist a consensus methodological framework to guide empirical
work on testing for regional convergence. Instead, several distinct types of convergence
have been suggested in the literature, each implying different test equations. Broadly
considered, empirical tests fall into three categories. The first and dominating type of
test studies analyses the cross-section correlation between per capita output levels and
subsequent growth rates for countries or regions. A negative correlation is taken as
evidence of convergence as it implies that – on average – economies with low per capita
initial incomes are growing faster than those with higher initial per capita incomes. This
form of convergence has been termed ß-convergence.

The second type of test studies investigates whether the cross-section variance of per
capita output levels tends to decrease over time. This form of convergence has been
called σ-convergence. It is important to recognise that the existence of ß-convergence is
a necessary, but not sufficient condition for σ-convergence (see Bernard and Durlauf,
1996; Quah, 1996). The third type of tests focuses attention on the long-run behaviour
of differences in per capita output across economies. These tests interpret convergence
to mean that these differences are transitory in the sense that long-run forecasts of the
difference between any pair of economies converge to zero as the forecast horizon
grows. Convergence in this sense is called time series forecast convergence (Bernard
and Durlauf, 1996).

Contemporary expectations of catch-up in Europe largely rest on the implicit acceptance
of models of ß-convergence. This motivates to analyse whether regional economies
exhibit ß-convergence and if so to estimate the time needed to attain equilibrium. The
study considers the behaviour of output differences across 256 regions embracing all the
EU-15 countries and the CEE accession countries1. The study refers to the time interval
                                               
1 Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia. Malta

and Cyprus are excluded from the analysis due to their isolated location.
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1995-2000 and equates convergence with the tendency to narrow. Output is measured in
terms of per capita GRP. While the study shares ideas with much convergence analysis
in mainstream economics2, it differs from most studies in two major aspects. First, it
adopts a spatial econometric perspective to allow for spatial interactions and spillovers
between regions as mechanisms that may lead to convergence. Second, it relaxes the
implicit assumption of a single steady-state growth path which seems out of tune with
the reality of empirical dynamics [see Quah (1993)]. Instead the study allows groupings
of regional economies [so-called convergence clubs in the sense of Baumol (1986)] to
form so that regional economies within a group interact more with each other than with
those outside.

The rest of the paper is structured as follows. It is natural to start in Section 2 with a
definition of the notion of convergence and a brief outline of the test methodology for
classical cross-section ß-convergence analysis. We call the methodology classical
because it was the first in the literature, uses conventional techniques of classical
econometrics only and is widely spread in mainstream economics. Regions are
considered as isolated entities, as if their geographical location and potential in the
regional linkages would not matter. Section 3 extends the classical test methodology to
escape the criticism of assuming independently distributed observational units and to
more fully treating spatial effects in convergence processes. Section 4 continues to
describe the data and the empirical procedure suggested for identifying clubs of regional
economies from a spatial econometric perspective. Section 5 presents the estimation
results of the spatial econometric models in comparison to those of the classical models
of unconditional ß-convergence. We conclude the paper with a brief summary and some
further thoughts.

2 Convergence and Cross-Section Tests

The cross-section approach to convergence analysis considers the behaviour of the
output differences between regional economies over a fixed time interval and equates
convergence with the tendency of the difference to narrow. Following Bernard and
Durlauf (1996) we say regional economies j and j' converge over the time period (t, t+τ)
if the (log) per capita output disparity at t is expected to decrease in value.

Let yjt denote the log-normal per capita gross-regional product [GRP] of region j at t and
Ft all information available at this time then convergence between a pair of regional
economies (j, j') can be defined as follows: If yjt > yj't then

' '|jt j t t jt j tE y y y yτ τ+ +� �− < −� �F . (1)

                                               
2 Recent surveys of the literature can be found in Durlauf and Quah (1999), Temple (1999) and Fingleton (2003).
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This definition can easily be extended to convergence between a set of N regional
economies by requiring that every pair (j, j') within the set exhibits convergence. It is
worthwhile to note that in the context of the current paper the conditional expectation is
taken with respect to the linear space generated by current and lagged regional income
differences rather than in a general Ft sense. Therefore the definition is equivalent to
require that yjt - yj't is a linearly regular process.

Classical convergence tests, used by Baumol (1986), Barro (1991), Barro and Sala-i-
Martin (1991, 1992) and many others, investigate on the basis of the above definition
how an economy's average income growth co-moves with initial income. Defining the
average growth rate

( )1
j jt jtg y yτ ττ += − (2)

for a set of N regional economies then the basic test used has the following form3

j jt jg yτ τα β ε= + + (3)

for j=1, …, N, where τ is a fixed time horizon and E[ jτε | tF ]=0, y is the variable [log-
normal per capita GRP] being tested for convergence, ε a white noise error term, and α
and β parameters to be estimated. Empirical work using Equation (3) as testing
framework has equated convergence with a negative estimate of ß, treating ß≥0 as the
no convergence null hypothesis.

By drawing on reasoning given by Bernard and Durlauf (1996) the requirement may be
written as a constraint on the mean of output differences between two time series.
Observing that

1

1
j jt

t
g y

τ

τ τ
=

= ∆� (4)

where ∆ yjt = yjt+1– yjt then Equation (3) implies that
                                               
3 In some formulations of cross-section convergence tests, Equation (3) is modified to include a set of variables

allowing for differences in steady-states and asymmetric shocks [see, just to cite a few examples, Barro and Sala-i-
Martin (1991), (1992) and (1995), Sala-i-Martin (1996)]: 

j jt jt j
g y

τ τ
α β ε= + + ∏ +x , where xjt is a vector of

variables that influences the steady-state level of regional economy j. A negative ß means then that convergence
holds conditional on a set of exogenous variables such as savings and population growth for region j (conditional ß-
convergence). While potentially important in practice, for the discussion in this paper the differences between
conditional and unconditional convergence do add neither conceptual insights nor difficulties in modelling the
spatial dimension of the convergence process. Thus, we will not consider conditional convergence further in this
paper.
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( )1 1

1 1
.jt j t jt j t jt j t

t t
y y y y

τ τ

τ τ β ε ε
= =

∆ − ∆ = − + −� � ' ' ' (5)

If yjt– yj't is positive, then the requirement that ß is negative implies that the expected
value of the left hand side of Equation (5) is negative. From the perspective of bivariate
comparisons, the cross-section ß-test, thus, analyses whether the average change in per
capita GRP of an initially poorer region exceeds that of an initially richer one (Bernard
and Durlauf, 1996). Recall that the ordinary least squares estimator ß̂  can be written as

1

ˆ
N

j j
j

ß ϕ θ
=

=� (6)

where

( ) ( )2 2

1

N

j jt jt jt jt
j

y y y yϕ
=

= − −� (7)

( ) ( )j j j jt jtg g y yτ τθ = − − (8)

with

1

1

N

jt jtN
j

y y
=

= � (9)

1

1

N

j jN
j

g gτ τ
=

= � (10)

then it is evident that ß̂  equals a weighted average of the ratio of differences of growth
rates from the sample means to differences of initial incomes from the sample mean.
Thus, cross-section tests require that a weighted average of regional economies with
above average initial incomes grow at a slower rate than the mean growth of the cross-
section. In equating convergence with the neoclassical growth model, the testable
restriction of the model as analysed in cross-section tests implies that the first moments
of the stochastic processes governing growth rates differ for initially rich and poor
economies (Bernard and Durlauf, 1996).
Suppose that the estimate of ß is negative. Since ß̂  is a weighted average of jθ 's [see
Equations (6)-(10)], a negative estimate means that the output differences between some
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pairs of regional economies have declined over the sample. Thus, for tF  consisting
exclusively of a constant, some pairs of regions are converging in the sense of the above
convergence definition. But, the cross-section test defined by Equation (3) cannot
identify groupings of regions that are converging.

In equating convergence with the neoclassical growth model4 with its diminishing
returns to capital convergence mechanism [see Barro and Sala-i-Martin (1992),
Mankiw, Romer and Weil (1992) among others], the constant term, α, in Equation (3)
can be interpreted as an equilibrium rate of income growth, and ß is related to the rate of
convergence (say, ß*) to a region's steady-state, a measure of how fast regions attain
their long-run equilibrium path:

*1 1 exp( ) .τβ β τ� �= − − −� � (11)

Estimating Equation (3) jointly with Equation (11) constitutes the canonical
ß-convergence analysis in a neoclassical world5.

The existence of the equilibrium in a neoclassical world is due to the assumption that
there are diminishing returns to capital determined by the capital share coefficient in the
Cobb-Douglas production function. Whether or not convergence happens is a matter of
assumptions on the form of the production function and not of interactions across
economies (Durlauf and Quah, 1999). Canonical ß-convergence analysis does not take
into account other equilibrating mechanisms such as capital flows, labour migration or
technological spillovers across regional economies. Regions are treated as 'isolated
islands' [Quah (1993), Martin (2001), Rey (2001) among others].

3 A Spatial Econometric Approach to Convergence Analysis

A key limitation of the majority of empirical analyses of cross-sectional regional growth
has been that the assumption of a single steady-state has to hold for all regional
economies in the sample (Durlauf, 2001). If regional economies, for example, differ in
their basic growth parameters (such as technological innovativeness, human capital

                                               
4 Barro and Sala-i-Martin (1992) have shown that the growth regression Equation (3) may be derived – as a log-

linear approximation – from the transition path of the neoclassical growth model for closed economics. Many
studies of convergence empirics share this neoclassical underpinning. The assumption of diminishing returns that
drives the neoclassical convergence process is one that is particularly questionable for regional economies. But
there are solid empirical reasons why it makes sense to fit growth regression models in which there is a significant
convergence process even if the reasons for this convergence may be debated.

5 Instead of estimating Equation (3) and using Equation (11) to compute the speed, ß*, one can estimate a non-linear
least squares [NLS] relation directly.
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development, etc.), or knowledge spillovers between them are weak, they may not
converge to a common per capita income, but instead to different economic-specific
equilibrium levels of per capita income. Different regional economies may be
converging to different long-run growth rates, just because of different initial
conditions. Under such circumstances there might be convergence among similar types
of economies (club convergence), but little or no convergence between such clubs
(Martin, 2001).

This motivates to adopt a framework that enables testing for club convergence. We
allow 'natural groupings' of regional economies to form, in the sense that regional
economies within a group interact more with each other than with those outside. Club
identification in this study is performed with the help of exploratory spatial data
analysis [ESDA] focusing on the explanatory variable that defines the initial conditions
of the convergence process. This technique is a convenient way of detecting spatial
regimes in the data (for more details see Section 4). The virtue of the procedure lies in
its ability to uncover spatial effects and spillovers among regional economies on the
basis of initial incomes.

The discussion that follows will be easier to understand if one keeps in mind that the
basic test equation, the classical (unconditional) convergence model, can be
reformulated in matrix form as

= +g Yγ ε (12)

where g is a (N, 1)-vector of observations on the dependent variable [average log-
normal of per capita GRP growth rates] for the N regions. The (2, 1)-vector γ consists of
two components: α and β in the notation of Equation (3). The second component is the
coefficient of the explanatory variable: log-normal of initial per capita GRP. The
coefficient α is a constant term and can be interpreted as the coefficient of an exogenous
(explanatory) variable which takes the unit value for each of the N observations. Thus, Y
is a (N, 2)-matrix of observations on the two exogenous variables. ε is a (N, 1)-vector of
random disturbance terms. For the data-generating process it is assumed that the
elements of the random vector ε are identically and independently distributed (i.i.d.).
Thus, the error variance-covariance matrix is E[ε ε']=σ2 IN, where the scalar is σ2

unknown, IN a Nth-order identity matrix and ε' denotes the transpose of ε. The
parameter γ can be estimated by means of ordinary least squares [OLS].

It is straightforward to adopt this standard cross-section growth regression framework to
account for club convergence. For matter of representation let us consider two clubs
only, indicated by the indices A and B. These clubs correspond to subsets of the
observations for which the regression model follows a different set of coefficients. Each
club may be represented by a different cross-sectional equation. Then the two-club
growth regression model can formally be expressed as
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0
0

A A A A

B B B B

� � � � � � � �
= +� � � � � � � �

� � � � � � � �

g Y
g Y

γ ε
γ ε

(13)

where gA and gB are the dependent variables; YA and YB the explanatory variables; γA

and γB the coefficients; and εA and εB the errors in the respective clubs A and B of
regions. Let NA and NB denote the number of observations in club A and club B,
respectively. Then N=NA+NB.

The simple block structure of the two-club model (13) can be expressed more succinctly
in one equation

* * * *= +g Y γ ε (14)

where the boldface variables without subscript refer to combined variable, coefficient
and error matrices.

Since the full set of elements of the error variance matrix Ψ=E[ε* ε*'] is generally
unknown and cannot be estimated from the data due to a lack of degrees of freedom, it
is necessary to impose a simplifying structure. The most straightforward assumption is a
model with a constant error variance over the whole set of observations:

2
Nσ= IΨ (15)

where σ2 is the constant error variance. This specification leads to the so-called
classical two-club convergence model that conforms to the standard assumptions of the
classical test methodology.

But this assumption may be overly restrictive. Assuming an error variance that is
different in each of the clubs of regions results in a special form of heteroskedasticity

2

2

0
0

A A

B B

σ
σ

� �
= � �
� �

I
I

Ψ (16)

where 2
Aσ  and 2

Bσ  denote the club-specific constant error variances, IA and IB are
identity matrices of dimensions NA and NB. This specification results into the two-club
growth regression model with groupwise heteroskedasticity. Estimation and testing can
be carried out by means of fairly straightforward iterative techniques [so-called
estimated GLS] or in a maximum likelihood framework (Anselin, 1990).
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In both cases, the homoskedastic version and the heteroskedastic version of the two-club
convergence model, spatial error dependence6 is likely to be a problem. It can arise due
to several reasons. First, if there is a lack of independence between the observational
units. Second, spatial error dependence may reflect important aspects of phenomena
such as capital flows, labour migration or technological spillovers in the regional
growth process. Third, spatial dependence can also arise from a variety of measurement
problems, such as boundary mismatching between the administrative boundaries used to
organise the data series and the actual boundaries of the economic processes believed to
generate regional convergence or divergence. Finally, it should be noted that any
parsimonious regression model, in particular the club-specific version of the canonical
equation of ß-convergence leaves out many factors that would – from the perspective of
economic theory – be likely to affect the parameter of the initial income. When there are
omitted variables that are spatially autocorrelated, regression analysis will produce
spatially dependent residuals, given that the omitted variables are relevant and the
dependent variable is itself spatially autocorrelated.

When spatial dependence is present in the error term, the above two-club convergence
models are misspecified. Spatial autocorrelation may be modelled by specifying a
spatial process for the disturbance terms ε*. Different spatial processes lead to different
error covariances, with varying implications about the range and extent of spatial
interaction and spillovers in the model. The most common specification is a spatial
autoregressive [SAR] process in the error terms ε*:

* *ρ= +Wε ε µ (17)

where W is the spatial weights matrix7 of dimension N by N, ρ is a scalar spatial
autoregressive coefficient for the spatial error lag Wε*, and µ is a vector of i.i.d errors
with variance 2

µσ . The combination of Equation (14) and Equation (17) makes up the
two-club spatial error convergence model. The resulting error covariance will be non-
spherical. Thus, ordinary least squares estimation of this model would yield unbiased
estimates for the convergence parameter ß, but to a biased estimation of the residual
variance and inefficient estimates of the regression coefficients as well as unreliable
standard regression diagnostics (Anselin and Rey, 1991). Therefore, inferences about
the convergence process have to be based on the model estimated via maximum
likelihood [ML] or general methods of moments [GMM].
                                               
6 Cross-regional data are spatial data. Spatial data are characterized by dependence [spatial autocorrelation] and

heterogeneity [spatial heterogeneity] (Anselin, 1988). Spatial error dependence is the situation where the error term
at each region is correlated with values for the error term at other regions. We use the terms spatial dependence and
spatial autocorrelation interchangeable in this paper.

7 The spatial weights matrix consists of positive elements for pairs of locations (i, j), with wij ≠0 for 'neighbours' and
wij =0 for others. By convention, the diagonal elements wii are set to zero. For an extensive discussion see Anselin
(1988). In practice, the derivation of spatial weights from the location and spatial arrangements of observation is
carried out by means of a geographic information system.
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As is well-known in spatial econometrics Equation (17) can be rewritten as

* 1−= Aε µ (18)

with

( ).N ρ= −A I W (19)

Depending on the structure of the error variance in club A and club B, two model forms
of two-club growth regression may be distinguished. In the first, the homoskedastic
error case:

[ ] 2
NE µσ= I'µ µ (20)

and the overall variance-covariance matrix takes the form

( )-12
µσ= A A'Ψ . (21)

If the spatial structure is not constant across the geography, heteroskedasticity may
result, even though the initial process (17) is not heteroskedastic. In this case, the
heteroskedastic error case, it is reasonable to assume that the two clubs have different
error variances [ ] [ ]( )2 2var var

A BA Bµ µσ σ= ≠ =µ µ . Then the covariance matrix for the µ-

terms becomes

[ ]
2

2

0
0
A

B

A

B

E µ

µ

σ
σ

� �
= = � �

� �� �

I
I

'µ µ Ω . (22)

4 Data, Spatial Weights Matrix and Spatial Clubs

The data on per capita GRP8 used in this study are cross-section data in logarithmic
form. They are based on the European System of Accounts. The growth rate is observed
as an average over 1995 to 2000 rather than at a point of time. We focus on NUTS-2

                                               
8 The use of real GRP data would be preferable due to the large price differentials across the EU. However, no data

on regional price levels is available so far.
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regions9 which are formal (that is, administrative or political) rather than functional
spatial units and represent the boundaries of economic processes believed to generate
regional convergence or divergence.
Our sample includes 256 NUTS-2 regions across 25 countries in Europe:

� The member states of the European Union: Austria [9 regions], Belgium [11
regions], Denmark [1 region], Finland [6 regions], France [22 regions], Germany [40
regions], Greece [13 regions], Ireland [2 regions], Italy [20 regions], Luxembourg [1
region], the Netherlands [12 regions], Portugal [5 regions], Spain [16 regions],
Sweden [8 regions], and UK [37 regions]; and

� the accession countries in CEE: Bulgaria [6 regions], the Czech Republic [8 regions],
Estonia [1 region], Hungary [7 regions], Latvia [1 region], Lithuania [1 region],
Poland [16 regions], Romania [8 regions], the Slovak Republic [4 regions], and
Slovenia [1 region].

Spatial Weights Matrix

A spatial weights matrix is a N by N positive and symmetric matrix W which expresses
for each observation (row) those regions (columns) that belong to its neighbourhood set
as non-zero elements. The specification of which elements are non-zero is a matter of
considerable arbitrariness. We use the traditional approach that is based on the
geography of the observations, designating regions as 'neighbours' when they are within
a given distance of each other, i.e. wij=1 for dij ≤δ and i≠j, where dij is the great circle
distance between the capital cities of region i and j, and δ is a distance cut-off value
[distance-based contiguity]. The spatial weights matrix W* is, thus, defined by the
following equation

*

0 if
1 if for
0 if for .

ij ij

ij

i j
w d i j

d i j
δ
δ

=�
�= ≤ ≠�
� > ≠�

(23)

For ease of interpretation, the matrix is standardized so that the elements of a row sum
to one. Therefore, the elements of the row-standardized spatial weights matrix W equal
to

*

*

1

, 1, ...,ij
ij N

ij
j

w
w i j N

w
=

= =
�

. (24)

                                               
9 The European Commission uses NUTS regions as targets for the convergence process and has defined NUTS-2 as

the spatial level at which to measure convergence or divergence.
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This ensures that all weights are zero or one. δ, the critical cut-off value10, is chosen as
350 km on the basis of exploratory analysis and theoretical considerations.

Spatial Clubs

Economic theory does not provide guidance as to either the number of clubs or the way
in which the explanatory variable defining the initial conditions determines clubs
(Durlauf and Johnson 1995). Thus, it is reasonable to allow patterns of cross-section
interaction – clustering together in convergence clubs – to endogenously emerge. A
convergence club is a group of regional economies that interact more with each other
than with those outside and that exhibit initial conditions which are near enough to
converge towards the same long-run equilibrium. We use the Getis-Ord statistic *

itG , a
measure of spatial clustering, to determine clubs of regions on the basis of spatial
association in per capita GRP 1995 where spatial association reflects spatial
externalities among regions j within a distance δ of region i. The statistic allows to
identify spatial regimes in the data by use of the concept called proximal space (Getis
and Ord 1992, Ord and Getis 1995) and is formally defined as

( )
( )

*

1

N

ij jt
j i

it N

jt
j

w y
G

y

δ
δ =

=

=
�

�
(25)

where ( )ijw δ  are the elements of a spatial weights matrix as defined in (23)-(24), with
ones for all links defined as being within distance δ  of a region i, all other links are
zero. The numerator is the sum of all yjt (t=1995) within δ of i.

Any pattern of spatial association identified in terms of the computed ( )*[ ]itZ G δ -values
can be interpreted as spatial concentration of high or low values of GRP. A positive
[significant] ( )*[ ]itZ G δ -value indicates a spatial cluster of high values, whereas a
negative one indicates a cluster of low values. The information obtained from this
statistic for all i=1, ..., N is taken to determine two spatial clubs according to the
following simple rule: If ( )*[ ]itZ G δ  is positive, region i is allocated to spatial club A;

and if ( )*[ ]itZ G δ  is negative, region i becomes a member of spatial club B11. The result
of this procedure outlined in Figure 1 seems – overall considered – quite reasonable.
Richer regions tend to be clustered in club A and poorer regions in club B.

                                               
10 This means that above the critical value of 350 km spatial interactions are assumed to be negligible.

11  Spatial club A (club B) represents a strong pattern which suggests that around region i regions with high (low) GRP
tend to be clustered more often than would be due to random choice.
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Spatial club A consists of 173 regions and includes all the EU-15 regions except those
in Greece and Portugal, some Spanish regions [Galicia, Extremadura, Andalucia], some
Southern Italian regions [Calabria, Apulia and Sicilia], regions located in Eastern
Austria [Upper Austria, Lower Austria, Vienna, Burgenland, Styria], as well as Dresden
and Berlin; plus two regions located in CEE [Slovenia and the most Western region in
the Czech Republic].

Spatial club B [83 regions] is made up of all NUTS-2 regions in Central and Eastern
Europe, except Slovenia and the most Western Czech region [Jihozapad]; and,
furthermore, all the Greek and Portuguese regions; the Italian regions Calabria, Apulia,
and Sicilia; the Spanish regions Galicia, Extremadura and Andalucia; Upper Austria,
Lower Austria, Vienna, Burgenland, and Styria; Dresden and Berlin.

Figure 1: Two spatial regimes identified by using the Getis-Ord
statistics ( )*

itG δ  [GRP per capita 1995]

Spatial Club A
Spatial Club B
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5 Convergence Regression Results

Table 1 present the results of the classical test methodology to convergence analysis of
the 256 regional economies in Europe. The first column relates to the classical ß-
convergence test equation [see Equation (12)] and the second to the two-club model
specification [see Equations (13) and (15)]. Recall that both test equations assume iid
zero mean error terms. All estimation and specification tests were carried out with
SpaceStat Software (Anselin 1999).

TABLE 1 TO BE POSITIONED ABOUT HERE

The results of both models provide much support for ß-convergence in Europe as the
regressions yield highly significant and negative coefficients for the starting income
levels. The classical convergence model estimates an annual rate of 1.9 percent of
convergence. Note that this rate of convergence is slow in the sense that it would take
36.4 years (95 percent bounds: 29.9 – 46.4 years) to get half-way toward this one and
common steady-state level. This result is in accordance with most studies that have
yielded (un)conditional convergence rates for European regions of the order one to two
percent per year [see Martin (2001) for a survey].

We should, moreover, emphasize that this result does not mean that the uneven
distribution of income is shrinking (σ-convergence). This evidence only tells that
regional economies in Europe seem to approach some long-run level of income, that the
growth rate falls as the regional economy approaches this long-run level and that on
average poorer regional economies tend to grow faster than richer ones. This result is
interesting because it suggests that regional economies which are predicted to be richer
in a few decades from now on are not the same regions which are wealthy today (ß-
convergence).

Recall, however, that the results of the classical convergence model are based on the
assumption of a single steady-state for all regions which is largely at odds with reality.
We therefore refer to a differentiation of convergence regimes. The second column in
Table 1 reports the results obtained by the classical test methodology for the case of two
clubs of regions as identified in the previous section. The regression yields highly
significant and negative coefficients for the starting income levels ( ˆ

Aβ =–0.054 with
s.d.=0.007 and ˆ

Bβ =–0.021 with s.d.=0.004) confirming the view of two-club
convergence in Europe. Regions in club A (starting from an on average higher level of
income) saw faster GRP per capita growth over the period 1995-2000, indicating an
even further income disparity between the two clubs. The estimated speed of club A
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convergence is 4.8 percent per year and suggests that it will take 14.5 years (95 percent
bounds: 11.7-19.2 years) for half of the distance between the initial level of income and
the club A-specific steady-state level to vanish. In the case of club B the model estimates
an annual convergence rate of 2 percent. The associated half-time is 34.7 years with
approximate 95 percent bounds of 25.6-54.1 years.

The bottom portion of Table 1 reports three diagnostics for the presence of spatial
effects 12: a Moran's I test and two Lagrange multiplier tests. Moran's I of 22.517
(second column) is very significant (p=0.000)13. The test indicates strong evidence of
positive spatial dependence and, thus, misspecification of the two-club convergence
model. Unfortunately, it does not allow to discriminate between spatial lag and spatial
error forms of misspecification. But – as evidenced in extensive set of Monte Carlo
experiments (Anselin and Rey, 1991) – the joint use of the Lagrange multiplier tests for
a spatial lag and spatial error provides good guidance. Since the (robust) Lagrange
multiplier error test values exceeds the (robust) Lagrange multiplier lag test value, the
two tests point to the presence of spatial error autocorrelation rather than spatial lag
dependence. While there is very strong evidence for spatial dependence, the Koenker-
Bassett (1992) test for heteroskedasticity is not significant. Thus, we consider the spatial
error specification of the two-club convergence model next.

TABLE 2 TO BE POSITIONED ABOUT HERE

Column 1 in Table 2 reports the estimation results for the spatial error specification of
the two-club convergence model as defined by Equation (14) in combination with
Equation (17). Note that we assume homoscedasticity of the µ-error terms. Relative to
the OLS regression estimates, the spatial error model achieves a better fitting as
expected in terms of the log likelihood14, given the findings of the various diagnostic
tests from Table 1 and the high significance of the spatial autoregressive coefficient
( ρ̂ =0.908 with p=0.000). This highlights that the classical convergence test suffers
from a misspecification due to omitted spatial dependence.

                                               
12 The Jarque-Bera (19987) test that follows a χ2-square distribution with two degrees of freedom indicates that the

non-normality requisite for the heteroskedasticity in spatial dependence test is not achieved in the current
analysis.

13 Anselin and Rey (1991) show that Moran's I tends to be a catchball with power against a range of alternatives
including not only spatial dependence, but also non-normality and heteroskedasticity.

14 The conventional R2-measure of fit, based on the decomposition of total sum of squared into explained and
residual sum of squares is no longer appropriate. Proper measurs for goodness of fit for spatial error models are
based on likelihood function. Based on the values of log likelihood the fit considerably improves with the spatial
error specification of the convergence model. The improved fit is expected, since the spatial autoregression
coefficient turns out to be highly significant with an asymptotic p-value of p=0.000.
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The principal finding from the club convergence point of view is that modelling spatial
interactions and spillovers among regional economies drastically decreases the size of
the ß-convergence coefficient for club A ( ˆ

Aβ =–0.016 with s.d.=0.006), while slightly
increasing that for club B ( ˆ

Bβ =–0.026 with s.d.=0.004). This now leads to a higher
convergence speed for club B than for club A which means that poorer regions are on
their way of recovering towards the richer ones. The results imply an annual
convergence rate of 2.4 percent for regional economies belonging to club B and a
convergence rate of only 1.5 percent per year for those in club A. Regional economies in
Central and Eastern Europe only seem to take 14.5 years (95 percent bounds of 11.7-
19.2 years) for half of the distance between the initial level of income and the club-
specific steady-state level to vanish. In the case of club A the spatial error convergence
model estimates an annual convergence rate of 1.5 percent. The associated half time is
45 years with approximate 95 percent bounds: 26.8-141.4 years.

The Lagrange multiplier test on residual spatial lag dependence and the Likelihood ratio
test on the common factor hypothesis15 are not significant at the one percent level of
significance, indicating that the spatial error model specification is appropriate. But
there is one further point to consider, which suggests further elaboration of the spatial
error model. The Breusch-Pagan (1979) heteroskedasticity test against the regime
variable indicates some heteroskedasticity of the µ-term, although no residual spatial
dependence. One way to model heteroskedasticity is to assume 2 2

A Bµ µσ σ≠  (see Equation
(22)). The second column in Table 2 gives the GMM estimates and summarizes the
results of fitting the two-club spatial error convergence model with club-wise (group-
wise) heteroskedasticity, indicating no improvement in fit as a result of modelling
heteroskedasticity. The estimates of ßA and ßB are identical to those obtained by the
spatial error model with homoskedastic error.

Classical econometric estimates (Table 1) lead us to the result that convergence speed is
higher for club A (assembling the richer regions). Controlling for spatial autocorrelation
in the estimates now provides us with a higher convergence speed for regions in Central
and Eastern Europe in line with theoretical expectations. The extent to which the
differences between the ß-coefficients in the two clubs are statistically significant is
indicated by the asymptotic Wald statistic constructed out of the spatial version of the
Chow (1960) test (Anselin, 1990). Table 2 shows that the null hypothesis on the joint
equality of coefficients (αA=αB, ßA=ßB), however, cannot be rejected. Its value of 1.956
is not extreme for χ2-distribution with two degrees of freedom. The same indication is
provided by the tests on the individual coefficients. In other words, there is no
significant difference between the convergence parameters in each of the two clubs. The
convergence appears to be not so different across the clubs once controlling for spatial
autocorrelation.

                                               
15 See Burridge (1981) for technical details.
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6 Concluding Remarks

The paper has looked at the evidence for regional income convergence in the New
Europe along neoclassical lines. Convergence has been identified as a property of the
relation between initial income and growth over the sample period 1995-2000.
Admittedly, this is a short time period, while growth and convergence are long-run
processes. But the unavailability of longer homogenous time series data for the set of
CEE regions prevented such an analysis at the present time. Many cross-sectional
analyses of regional growth variations have detected significant evidence of
(un)conditional convergence of EU-regions. But the vast majority of such studies fail to
consider and model spatial dependence and heterogeneity [with very few exceptions
such as Fingleton (1999)], although it is evident from the current study that such an
approach may be necessary.

The focus has been on the simplest of the convergence models, the unconditional ß-
convergence model. In contrast to current practice we rejected the assumption of a
single stable steady-state in favour of a multiple-regime [club] alternative in which
different regional economies obey different linear convergence models when grouped
according to initial conditions. The use of the Getis-Ord statistics produced a grouping
that seems overall quite reasonable. We defined club convergence as the club-specific
process by which each region belonging to a club moves from a disequilibrium position
to its club-specific steady-state position. At the steady-state the growth rate is the same
across the regional economies of a club.

There are four major lessons to be gained from the paper. First, there is clear evidence
for unconditional ß-convergence in Europe for the time period of observation. The
sample of regional economies belonging to club A converges in an unconditional sense
at a speed of 1.5 percent per year and those belonging to club B (regional economies in
CEE and Southern Europe) at a speed of 2.4 percent. It is important to emphasise that a
speed of 1.5 or 2.4 percent per year, even though in accordance with previous findings
of convergence studies, is very small. It suggests that it will take, for example, 34.7
years in club A and 14.5 years in club B for half of the distance between the initial level
of income and the steady-state level of the respective club to vanish. In addition, a
higher convergence speed for regions in Central and Eastern Europe is evident, thus
indicating a process of catching-up towards the richer Western regions.

Second and closely related, this convergence process across regional economies is an
interesting finding. It suggests that regional economies in a club that are predicted to be
wealthier in a few decades from now on are not the same regions in the club that are
wealthy today (ß-convergence). This result does not mean, however, that the club-
specific uneven distribution of income is shrinking (σ-convergence).

Third, the study illustrates that the classical convergence test methodology that has been
the work-horse of most previous convergence studies in mainstream economics is ill-
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designed to analyse regional convergence due to several reasons. First, it cannot identify
groupings of regional economies that are converging at different speeds. Second, it
neglects spatial effects that represent spatial interactions and spillovers among the
regional economies. The paper suggests a much richer and theoretically more
satisfactory approach that incorporates spatial effects or externalities directly into the
model and reflects recent developments in spatial econometrics. The two-club spatial
error convergence model with club-wise heteroskedasticity appears to be the most
appropriate specification in the face of the data now available.

This leads to the final point to note, namely that ignoring the presence of spatial error
autocorrelation in convergence analysis carried out with cross-sectional data can lead to
wrong conclusions, for example, with respect to the assessment of convergence speed.
Thus, testing for the presence of spatial autocorrelation (heterogeneity) by means of
appropriate diagnostics and implementing alternative specifications of the convergence
test equation when needed are crucial issues in income convergence analysis.
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APPENDIX: List of the NUTS-Level 2 Regions by Country

Country Region Country Region

Austria Burgenland
Niederösterreich
Wien
Kärnten
Steiermark
Oberösterreich
Salzburg
Tirol
Vorarlberg

Belgium Région Bruxelles-Capitale
Antwerpen
Limburg (B)
Oost-Vlaanderen
Vlaams Brabant
West-Vlaanderen
Brabant Wallon
Hainaut
Liège
Luxembourg (B)
Namur

Bulgaria Severozapadan
Severoiztochen
Severozapad
Yugozapaden
Yuzhen Tsentralen
Yugoiztochen

Czech Republic Praha
Stredni Cechy
Jihozapad
Severozapad
Severovychod
Jihovychod
Stredni Morava
Moravskoslezsko

Denmark Denmark

Estonia Estonia

Finland Itä-Suomi
Väli-Suomi
Pohjois-Suomi
Uusimaa
Etelä-Suomi
Åland

France Île de France

Champagne-Ardenne
Picardie
Haute-Normandie
Centre
Basse-Normandie
Bourgogne
Nord-Pas-de-Calais
Lorraine
Alsace
Franche-Comté
Pays de la Loire
Bretagne
Poitou-Charentes
Aquitaine
Midi-Pyrénées
Limousin
Rhône-Alpes
Auvergne
Languedoc-Roussillon
Provence-Alpes-Côte d'Azur
Corse

Germany Stuttgart
Karlsruhe
Freiburg
Tübingen
Oberbayern
Niederbayern
Oberpfalz
Oberfranken
Mittelfranken
Unterfranken
Schwaben
Berlin
Brandenburg
Bremen
Hamburg
Darmstadt
Gießen
Kassel
Mecklenburg-Vorpommern
Braunschweig
Hannover
Lüneburg
Weser-Ems
Düsseldorf
Köln
Münster
Detmold
Arnsberg
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Country Region Country Region

Koblenz
Trier
Rheinhessen-Pfalz
Saarland
Chemnitz
Dresden
Leipzig
Dessau
Halle
Magdeburg
Schleswig-Holstein
Thüringen

Greece Anatoliki Makedonia, Thraki
Kentriki Makedonia
Dytiki Makedonia
Thessalia
Ipeiros
Ionia Nisia
Dytiki Ellada
Sterea Ellada
Peloponnisos
Attiki
Voreio Aigaio
Notio Aigaio
Kriti

Hungary Közép-Magyarország
Közép-Dunántúl
Nyugat-Dunántúl
Dél-Dunántúl
Észak-Magyarország
Észak-Alföld
Dél-Alföld

Ireland Border, Midland and Western
Southern and Eastern

Italy Piemonte
Valle d'Aosta
Liguria
Lombardia
Trentino-Alto Adige
Veneto
Friuli-Venezia Giulia
Emilia-Romagna
Toscana
Umbria
Marche
Lazio
Abruzzo
Molise

Campania
Puglia
Basilicata
Calabria
Sicilia
Sardegna

Latvia Latvia

Lithuania Lithuania

Luxembourg Luxembourg

The Netherlands Groningen
Friesland
Drenthe
Overijssel
Gelderland
Flevoland
Utrecht
Noord-Holland
Zuid-Holland
Zeeland
Noord-Brabant
Limburg (NL)

Poland Dolnoslaskie
Kujawsko-Pomorskie
Lubelskie
Lubuskie
Lódzkie
Malopolskie
Mazowieckie
Opolskie
Podkarpackie
Podlaskie
Pomorskie
Slaskie
Swietokrzyskie
Warminsko-Mazurskie
Wielkopolskie
Zachodniopomorskie

Portugal Norte
Centro (P)
Lisboa e Vale do Tejo
Alentejo
Algarve

Romania Nord-Est
Sud-Est
Sud

ctd. ctd.
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Country Region  Country Region

Sud-Vest
Vest
Nord-Vest
Centru
Bucuresti

Slovenia Slovenia

Slovak Republic Bratislavský kraj
Západné Slovensko
Stredné Slovensko
Východné Slovensko

Spain Galicia
Principado de Asturias
Cantabria
Pais Vasco
Comunidad Foral de Navarra
La Rioja
Aragón
Comunidad de Madrid
Castilla y León
Castilla-la Mancha
Extremadura
Cataluña
Comunidad Valenciana
Islas Baleares
Andalucia
Región de Murcia

Sweden Stockholm
Östra Mellansverige
Sydsverige
Norra Mellansverige
Mellersta Norrland
Övre Norrland
Småland med öarna
Västsverige

UK Tees Valley & Durham

Cumbria
Cheshire
Greater Manchester
Lancashire
Merseyside
East Riding & North
Lincolnshire
North Yorkshire
South Yorkshire
West Yorkshire
Derbyshire &
Nottinghamshire
Leicestershire, Rutland &
Northamptonshire
Lincolnshire
Herefordshire,
Worcestershire & Warkwick
Shropshire & Staffordshire
West Midlands
East Anglia
Bedfordshire & Hertfordshire
Essex
Inner London
Outer London
Berkshire, Buckinghamshire
Oxfordshire
Surrey, East & West Sussex
Hampshire & Isle of Wight
Kent
Gloucestershire, Wiltshire &
N. Somerset
Dorset & Somerset
Cornwall & Isles of Scilly
Devon
West Wales & The Valleys
East Wales
North Eastern Scotland
Eastern Scotland
South Western Scotland
Highlands and Islands
Northern Ireland

ctd. ctd.
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Table 1: Convergence Regression Results for the 256 European Regions, 1995-2000:
The Classical Test Methodology

The Classical
Convergence Model

[OLS]

The Classical Two-Club
Convergence Model

[OLS]

Parameter Estimates
(p-values in brackets)

Intercept
Club A
Club B

Beta
Club A
Club B

0.248 (0.000)

-0.020 (0.000)

0.580 (0.000)
0.250 (0.000)

-0.054 (0.000)
-0.021 (0.000)

The Time to Convergence
Annual Convergence Rate
(in percent)

Club A
Club B

Half-Distance to the Steady-State
(in years, 95% bounds in brackets)

Club A
Club B

   1.9

  36.4 (29.9-46.4)

 4.8
2.0

14.5 (11.7-19.2)
34.7 (25.6-54.1)

Performance Measures
R2

Log likelihood
Sigma sq.

0.239
513.949

          0.00106

0.307

              0.00098
Diagnostic Tests
(p-values in brackets)

Normality
Jarque-Bera

Heteroskedasticity
Koenker-Bassett

Structural Instability for the
Two Regimes

Chow-Wald
Stability of Individual
Coefficients

Constant
Beta

Spatial Error Dependency
Moran's I
Robust Lagrange Multiplier

Spatial Lag Dependency
Robust Lagrange Multiplier

 27.197 (0.000)

   1.928 (0.165)

26.590 (0.000)
145.639 (0.000)

    1.536 (0.216)

22.274 (0.000)

0.717 (0.397)

12.225 (0.000)

17.277 (0:000)
15.322 (0.000)

22.592 (0.000)
45.588 (0.000)

24.226 (0.000)

Notes: Rho [ρ] is the parameter of the autoregressive error process, Beta [ß] the convergence coefficient, R2 squared correlation
[ML] or R2 adjusted [OLS, GMM], Sigma sq. the error variance. The speed of convergence per year is computed as

*ˆ ˆln(1 ) /β τ β τ= − −  with * *ˆ ˆ ˆ. .( ) . .( ) / exp( )s e s eβ β β τ= − , where τ is the length of time. The half-distance to the steady-state

is computed as 
*ˆln(2) / β  with the approximate confidence interval defined as * * .ˆ ˆln(2) /( 2 . .( ))s eβ β±
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Table 2: Convergence Regression Results for the 256 European Regions, 1995-2000:
Spatial Error Specifications of the Two-Club ß-Convergence Model

The Two-Club Spatial Error Convergence Model
The Homoskedastic

Case
[ML]

The Heteroskedastic
Case

 [GMM]

Parameter Estimates
(p-values in brackets)

Intercept
Club A
Club B

Beta
Club A
Club B

Rho

0.204 (0.001)
0.297 (0.000)

-0.016 (0.004)
-0.026 (0.000)
0.908 (0.000)

0.206 (0.000)
0.296 (0.000)

-0.016 (0.001)
-0.026 (0.000)
0.904 (0.000)

The Time to Convergence
Annual Convergence Rate
(in percent)

Club A
Club B

Half-Distance to the Steady-State
(in years, 95% bounds in brackets)

Club A
Club B

1.5
2.4

45.0 (26.8-141.4)
14.5 (11.7-19.2)

1.5
2.4

45.0 (26.8-141.4)
14.5 (11.7-19.2)

Performance Measures
R2

Log likelihood
Sigma sq.

0.353
634.179
0.00037

0.345

Diagnostic Tests
(p-values in brackets)

Heteroskedasticity
Breusch-Pagan

Spatial Error Dependency
Likelihood Ratio

Spatial Lag Dependency
Lagrange Multiplier

Common Factor hypothesis
Wald

Structural Instability for the
Two Regimes

Chow-Wald
Stability of Individual
Coefficients

Constant
Beta

24.127 (0.000)

216.754 (0.000)

6.159 (0.013)

2.088 (0.352)

1.927 (0.382)

1.758 (0.185)
1.889 (0.169)

1.941 (0.379)

1.804 (0.179)
1.832 (0.176)

Notes: see Table 1.


