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Abstract

We develop a theoretical model in which technology adoption decisions are based on the information received
from others about the quality of a new technology and on their risk attitudes. We test the predictions of
this model using a randomized field experiment in Bangladesh. We show that the share of treated farmers
who receive better training in System of Rice Intensification (SRI) technology have a high positive impact on
the adoption rate of untreated farmers. We also find that untreated farmers who are more risk-averse tend
to adopt the technology less and are less influenced by their treated peers. Our results thus indicate that
spillover effects are important in technology adoption and that information transmission about the quality
of the technology matters.
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1 Introduction

In many developing countries, especially in South Asia and Sub-Saharan Africa, agricultural productivity
has remained low due to the sluggish adoption and diffusion of new efficient cultivation methods, which
are critical for food security and economic growth. Although most frictions impeding the adoption of new
agricultural technologies are rooted in imperfect information (i.e., they stem from farmers’ uncertainty),
the costs of learning, and the limited knowledge of these new technologies (Conley and Udry, 2010; Jack,
2011, 2013; Barrett et al., 2019; Fafchamps et al., 2020), we still know little about the role of information
transmission and risk attitudes in technology adoption decisions. Moreover, existing policy evaluations of
technology adoption programs mostly focus on the direct impact of “the treatment” on those who are treated,
ignoring the indirect spillover effects on the technology adoption behavior of the untreated.

In this study, we address these issues by examining from a theoretical and empirical perspective the
importance of farmers’ risk attitudes and role of the quality and accuracy of information on a new technology
transmitted by treated farmers on the adoption rate of untreated farmers in rural Bangladesh.

We first develop a theoretical model in which each farmer makes an adoption decision based on a noisy
signal received from his peers about the uncertain quality of a new technology. The key assumption of the
model is that individuals possessing better knowledge about the new technology (because of better training)
send less noisy signals about its quality.

When farmers are assumed to be risk-neutral, we show that the adoption rate of untreated (uninformed)
farmers increases with the proportion of treated (informed) farmers residing in the same village. Indeed, the
higher is the proportion of treated farmers in a village in which an untreated farmer lives, the higher is the
probability of meeting a treated (informed) farmer. This, in turn, implies a higher quality of information
about the new technology transmitted to untreated farmers. We also show that when treated farmers receive
longer training and thus send more precise signals about the quality of the technology, the impact of treated
farmers on the adoption rate of untreated farmers is higher. We use the variance in the noisy component of
a signal as an inverse measure of its accuracy.

We then test these predictions of the theoretical model by carrying out a randomized field experiment
by using a randomized saturation design. In particular, we randomly vary the number of trainees (treated
farmers) in each village, thereby generating exogenous variation in the degree to which farmers who were not
themselves trained (untreated farmers) on the System of Rice Intensification (SRI) were indirectly exposed
to this technology. Moreover, in a random subset of the villages, farmers were trained for two years in a
row, improving knowledge and sustaining adoption among these farmers and exploring the implications for
social diffusion.

We find that an increase of 10% in treated farmers in a village increases the average rate of the adoption of
SRI technology among untreated farmers in the same village by 2.2%. We then split the 120 villages into two
groups: T2−treated villages in which treated farmers received two years of training and T1−treated villages
in which treated farmers received one year of training and estimate the model separately. We show that
only treated farmers with two years of training have a significant impact on the adoption rate of untreated
farmers. According to our theoretical model, this is because T2−treated farmers provide untreated farmers
with accurate and precise information on SRI technology. Furthermore, the more trained a farmer is, the
lower is the variance in the noise of technology quality, the more accurate is the information transmitted to
an untreated farmer, and the more likely the latter adopts SRI technology.
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In order to test if the accuracy of information was the main mechanism behind our results, we conducted
surveys on the different principles of SRI before and after the farmers were trained. We found that the
accuracy of information about SRI increased after training for all farmers but it increased significantly more
for T2−farmers than T1−farmers. This shows that, indeed, T2−farmers have a more accurate and precise
information about the different principles of SRI technology and can thus better transmit this information
to the untreated farmers living in the their village. We also show that our results are stronger if we include a
subset of treated farmers such as those who discuss agricultural and financial issues with untreated farmers.
In summary, we demonstrate strong spillover effects in adoption of SRI technology and show that quality
and accuracy of information are very important in disseminating technology among those do not receive the
information directly.

One may wonder if our results are really because farmers with two years of training provide better and
more accurate information about SRI technology to their peers and not because they produce more rice
than farmers with one year of training so that their peers just imitate them. We rule out the latter by
showing that there are no differences in rice production and yields between T1 and T2 villages, even though
farmers in T2 villages have received more training on SRI technology. In fact, we show that there are
differences in rice production and yields only between adopters and non-adopters, confirming the benefits
of SRI technology. These results support the mechanism highlighted by our theoretical model that spillover
effects mainly operate through information transmission rather than imitating more productive farmers.
This is because the SRI is not a complex technology to adopt but it is based on certain principles that justify
particular practices, which are expected to be adapted empirically to local conditions. The information
involved in following SRI principles and practices needs to be followed carefully. Hence, there is a real “cost”
of adopting the SRI for farmers because it is a totally new way of thinking, leading to some resistance. In our
framework, farmers with two years of training are much more able to explain and convince their untreated
peers to adopt the SRI than those with less training because they provide them with accurate information
on how to implement the different principles and practices of the SRI.

We then extend our theoretical model to include risk-averse rather than risk-neutral farmers. We obtain
two new predictions: risk-averse farmers adopt less than risk-loving farmers (direct effect) and the higher
is the degree of risk aversion, the lower is the impact of the proportion of treated farmers on the adoption
rate of untreated farmers (cross-effect). We test these theoretical results using a direct measure of the
degree of riskiness of all farmers in a village. We find that our empirical results confirm the predictions
of the theoretical model. In particular, we show that risk-averse untreated farmers are less sensitive to
the influence of treated peers from T2 villages than risk-neutral untreated farmers. This is again consistent
with the way the SRI is adopted and the difficulty for farmers to implement the principles that underlie
the different practices of the SRI. As a result, it is not surprising that more risk-averse farmers are more
reluctant to adopt the SRI and are less influenced by their peers.

A large body of the empirical literature has demonstrated the importance of peer and network effects1 on
technology adoption (see Foster and Rosenzweig, 1995; Bandiera and Rasul, 2006; Conley and Udry, 2001,
2010; Oster and Thornton, 2012; Banerjee et al. 2013; Cai et al, 2015; Bonan et al., 2017; Fafchamps et al.
2020).2

How do peer effects operate? What is it that farmers have learned from their informed friends that

1Network economics is a growing field. For overviews, see Jackson (2008) and Jackson et al. (2017).
2See Munshi (2008), Chuang and Schechter (2015), and Breza (2016) for overviews of this literature.
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influenced their take-up decisions? Generally speaking, peers may influence the adoption of a new technology
or a financial product for three reasons: (i) people gain knowledge from their friends about the value of the
product (Conley and Udry, 2010; Kremer and Miguel, 2007), (ii) people learn from their friends how to use
the product (Munshi and Myaux 2006; Oster and Thornton, 2012), or (iii) people are influenced by other
individuals’ decisions (Bandiera and Rasul, 2006; Bursztyn et al., 2014; Golub and Jackson, 2012; Campbell
et al., 2020). In the last case, this could be social learning/imitation or the social utility effect.

Beaman et al. (2018) study social learning in diffusion by targeting seed farmers in Malawi and show
their effectiveness in promoting technology diffusion.3 Banerjee et al. (2018) further examine social learning
by comparing the diffusion outcomes between broadcasting and seedling. They find that if information
dissemination occurs in the scope of common knowledge (i.e., publicizing information), seedling improves
learning more than broadcasting does. Finally, social reinforcement, or peer effects, may motivate individuals
to reproduce the behavior of others. Banerjee et al. (2013) analyze the role of peer effects by exploring the
diffusion process of microfinance programs. They find that diffusion is independent of the number of adopters
surrounded by an agent. In other words, learning effects dominate peer effects.4

The contributions of our study to this large literature are as follows. First, we are the first to provide a
new theoretical model highlighting the importance of the quality and accuracy of information on the adoption
rate of a new technology. Second, we not only examine the effect of peers on technology adoption but also
how risk attitude affects this adoption, and the cross-effect of peers and risk attitude.5 Third, to test this
theory, we conduct different randomized controlled trials (RCTs ) using distinct treatments (in terms of
the duration of training) that provide farmers with different knowledge and accuracy of information about
the new technology.6 We also conduct surveys before and after training to check the famers’ knowledge
and accuracy about the different principles of SRI technology. Fourth, instead of directly testing the effect
of the treatment (technology training) on the adoption rate of treated farmers compared with the control
group (untreated farmers), we investigate how untreated farmers are positively affected by the proportion
of treated farmers in the village in which they live. Indeed, spillover effects can be identified by varying the
treatment intensity across space and time. Our results show large spillover effects from treated to untreated
farmers. This implies that the total effect of an intervention is usually underestimated because it takes into
account the impact of treated individuals on untreated ones (see also Miguel and Kremer, 2004; List et al.,
2019).

The rest of the paper is organized as follows. Section 2 develops the baseline theoretical model when
farmers are risk-neutral. Section 3 describes the background of the study and explains the experimental
design. Section 4 describes the data and econometric model, which tests the prediction of the theoretical
model. Section 5 presents the main empirical results and robustness checks. Section 6 explains the role

3See also Dar et al. (2019), who show that inducing conversation between farmers can be just as effective as
seeding central farmers.

4Studies in the literature on social diffusion have also considered the quality and accuracy of the information being
diffused. For example, Kondylis et al. (2017) and Benyishay and Mobarak (2019) distinguish between learning via
communication and observational learning. Maertens (2017) also finds that both acquiring knowledge and imitating
others are important for adoption, while Carter et al. (2018) shed light on how the availability and use of formal
savings services may affect the dynamic impacts of subsidies for agricultural technology adoption.

5To the best of our knowledge, few studies have investigated the effect of risk attitude on technology adoption
(exceptions include Ghadim et al., 2005; Koundouri et al., 2006; Genius et al., 2013; Bonan et al., 2019) and none
has examined the cross-effect of both risk and peers on technology adoption.

6Cai et al. (2015) also vary the information available about peers’ decisions but study very short-term effects
(three days), do not use a theoretical model, and do not investigate how risk aversion affects technology adoption.
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of risk aversion in technology adoption, both from theoretical and from empirical viewpoints. Section 7
concludes. Appendix A provides all the mathematical proofs of the theoretical model. Appendix B supplies
additional figures and tables. Appendix C provides another way of defining adoption based on the different
principles of SRI technology. Appendix D provides an additional way of measuring farmers’ risk attitudes.

2 Theory

2.1 Model and notations

Consider a finite number of locations, which we call villages. Each village is populated by a continuum of
agents, which we call farmers. As in our empirical analysis, there are three types of farmers: those not
treated, those who received one year of training in SRI technology, and those who received two years of
training in the SRI. Accordingly, we define a farmer’s type θ as follows: θ ∈ {NT, T}, where NT and T

stand, respectively for “Non-Treated” and “Treated” and where T = {T1, T2}, where T1 and T2 stand for
“Treated One Year” and “Treated Two Years.”

In each village v, there are treated and untreated farmers. There are two types of villages: those in which
treated farmers received one year of training, v = T1, and those in which treated farmers received two years
of training, v = T2. We want to study how, in each village, the decision to adopt the SRI of an untreated
farmer is affected by the percentage of treated farmers residing in the same village. Let p ≡ P{θ = T} be
the share of treated individuals in a given village.7 We refer to p as the exposure rate. An untreated farmer,
which we also refer to as an uninformed agent, does not precisely know the true benefit b (or rather, the
quality of the technology) of adopting SRI technology, while treated farmers, referred to as informed agents,
have received training that gives them some knowledge about the technology. The quality or the benefit of
the technology b is a random variable, which follows a normal distribution, that is,

b ∼ N
(
β, σ2

b

)
, (1)

where β > 0 is the mean and σ2
b > 0 is the variance. In other words, the average or expected benefit of

adopting SRI technology is equal to β. Importantly, when an untreated (uninformed) farmer meets a θ−type
(informed) farmer, he receives a noisy signal sθ about the benefit of adopting the new technology. This signal
has the following standard structure:

sθ = b+ εθ, (2)

where b satisfies (1), while εθ is an error term that follows a normal distribution,

εθ ∼ N
(
0, σ2

θ

)
, with Cov(b, εθ) = 0. (3)

The key idea of our model is that better trained farmers are better informed and thus send less noisy signals.

7Since we assumed a continuum of farmers in each village, from the law of large numbers, p (1 − p) can be
interpreted as the probability that an untreated farmer randomly meets a treated (untreated) farmer in the village.
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We capture this by imposing the following assumption:

σ2
NT > σ2

T1 > σ2
T2. (4)

Indeed, because of their training, treated farmers have more information about the new technology than do
untreated farmers. Furthermore, farmers with two years of training have better knowledge of the SRI than
those with one year of training; hence, they send less noisy signals.

We now describe the adoption behavior of an untreated farmer. Define A as a binary variable, where
A = 1 means that an untreated individual adopts the new technology, while A = 0 implies non-adoption.
Then, the probability of an untreated individual of adopting the new technology is as follows:

P{A = 1} = pP{A = 1 | θ = T}+ (1− p)P{A = 1 | θ = NT}, (5)

where P{A = 1 | θ = T} is the probability of adopting the new technology conditional on meeting a treated
individual, while P{A = 1 | θ = NT} is the probability of adopting the new technology conditional on meeting
an untreated individual. We can easily verify that

∂P{A = 1}
∂p

> 0 ⇐⇒ P{A = 1 | θ = T} > P{A = 1 | θ = NT}. (6)

In other words, there is a positive relationship between p, the proportion of treated farmers in a village,
and P{A = 1}, the individual probability of an untreated farmer adopting the new technology if and only if
interacting with a treated farmer is more beneficial for adoption than interacting with an untreated farmer.

To proceed, we must structure the problem further by making assumptions about individual behavior
and the utility function.

2.2 Model predictions with risk-neutral farmers

Assume that all farmers are risk-neutral.8 Define z, the net payoff, as follows:

z :=

b− c, if A = 1,

0, if A = 0,
(7)

where c > 0 is the fixed cost of adopting the new technology. We have the following utility function:

Uθ(A) := E [z | sθ] =

E (b | sθ)− c, if A = 1,

0, if A = 0.
(8)

Risk neutrality implies that only the expected difference between the benefit and cost of adoption matters.
Throughout this section, we assume that

c > β; (9)

otherwise, the problem would be uninteresting. This assumption means that in the absence of interactions
with treated (informed) farmers, a risk-neutral untreated farmer will never adopt the technology. Clearly, if

8We consider risk-averse farmers in Section 6.
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c < β, the technology will be easy to adopt, without the need for information transmission. In our data, the
SRI technology is sufficiently difficult to implement that most individuals would not adopt it on their own.
For example, Table 1 below shows that even when influenced by treated farmers, only 7–10% of untreated
farmers adopt SRI technology.

For θ = {T,NT}, using (8), the conditional probabilities defined in equation (5) are given by

P{A = 1 | θ} = P{E (b | sθ) > c}, (10)

where E (b | sθ) is the expected benefit of adopting the new technology for an untreated individual conditional
on receiving signal sθ. Owing to the normality assumptions in (1) and (3), we have (e.g., DeGroot, 2004,
Theorem 1, p. 167):

E (b | sθ) =
σ2
θ

σ2
θ + σ2

b

β +
σ2
b

σ2
θ + σ2

b

sθ. (11)

Combining (1) and (3) with (11), we can readily verify that

E (b | sθ) ∼ N

(
β,

σ4
b

σ2
θ + σ2

b

)
. (12)

Using (12), (10) can be written as follows:

P{A = 1 | θ} = 1− Φ

(
(c− β)

σ2
b

√
σ2
b + σ2

θ

)
,

where

Φ(x) :=
1√
2π

x∫
−∞

exp

(
− y2

2

)
dy

is the cumulative distribution function of the standard univariate normal distribution. Hence,

P{A = 1 | θ = T} − P{A = 1 | θ = NT} = Φ

(
(c− β)

σ2
b

√
σ2
b + σ2

NT

)
− Φ

(
(c− β)

σ2
b

√
σ2
b + σ2

T

)
. (13)

We have the following results.

Proposition 1 Assume that (4) and (9) hold and that agents are risk-neutral. Then,

(i) In each village, the adoption rate of untreated farmers increases with the exposure rate, i.e.,

∂P{A = 1}
∂p

> 0.

(ii) In a T2-treated village, the impact of the exposure rate on the adoption rate of untreated farmers is
higher than that in a T1-treated village, i.e.,

∂P{A = 1 | v = T2}
∂p

>
∂P{A = 1 | v = T1}

∂p
.

Part (i) of Proposition 1 shows that if c > β, the larger the quantity and better the precision of infor-
mation about the quality of the technology, the more likely an untreated farmer will adopt SRI technology.
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Indeed, when p increases, the untreated farmer is more likely to meet a treated farmer, who has more precise
information about the technology, since σ2

NT > σ2
T . Part (ii) of Proposition 1 compares different villages

with different treatments. If an untreated farmer resides in a village in which treated farmers received two
years of training, then, for the same p, the precision of information on the quality of the technology is higher
than that in a village in which treated farmers received one year of training. Therefore, the untreated farmer
is more likely to adopt the new technology.9

3 Background and experimental design

We now empirically test parts (i) and (ii) of Proposition 1. This section describes the specific features of
Bangladesh that make it particularly suitable for our empirical exercise and experimental design.

3.1 Background

In Bangladesh, improving agricultural productivity has been critical to facilitating poverty alleviation and
food security. Rice is Bangladesh’s largest crop and the main staple food for the 180 million people in the
country. Furthermore, rice cultivation accounts for 48% of all rural employment (Sayeed and Yunus, 2018).
It also provides two–thirds of the caloric needs of the nation, along with half the protein consumed. Its
contribution to agricultural GDP is about 70%, while its share of national income is one–sixth. In other
words, rice plays a critical role in Bangladesh (Faruqee, 2012).

Moreover, demand for rice has been constantly rising in recent years due to the rising population. Despite
sustained rice production, flood, drought, and high population density are creating challenges for the rice
production sector in Bangladesh. In 2010, of the 180 million inhabitants in Bangladesh, 33 million were
classified as lacking food security. By 2020, this number is estimated to have increased to 37 million. Crop
yields in Bangladesh remain low because of the limited adoption of new innovations by farmers.

3.2 System of Rice Intensification (SRI)

SRI technology is a climate-smart, agro-ecological methodology aimed at increasing the yield of rice by
changing the management of plants, soil, water, and nutrients (Uphoff, 2003; Africare, 2008). Specifically,
the SRI involves early careful planting of single seedlings with wide spacing in fields that are not continuously
flooded and have optimum water management, with actively aerated soil containing a higher proportion of
organic matter. Over time, the expansion of the SRI occurs with much more flexibility, promoting a package
of practices for farmers to test, modify, and adopt as they see fit. While a number of specific practices
are associated with the SRI, these should always be tested and varied according to the local conditions
rather than being simply adopted (Uphoff, 2003). Proponents of the SRI claim that its use increases yields,
saves water, reduces production costs, and increases income and that its benefits have been observed in 40
countries (Africare, Oxfam America, WWF-ICRISAT Project, 2010).

9Observe that we can easily extend the results of Proposition 1 when untreated farmers have heterogeneous costs
c, namely if c ∼ G(·), where G(·) is a cumulative distribution function. In this case, the condition c > β can be
replaced by the assumption that the share G(β) of highly productive agents (i.e., for whom the adoption cost is lower
than the expected value of the adoption benefit) is sufficiently low.
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To be more precise, the SRI is a management strategy for crop improvement (Stoop et al., 2002). As
Uphoff (2016) puts it, “it is a set of ideas and insights for beneficially modifying agronomic practices that
are based on validated knowledge for increasing the production of irrigated rice.” Although the SRI is not
complex, many farmers have found it difficult to adopt because it implies a drastic change in the way they
cultivate rice. In some sense, it is not a new technology because the SRI does not require or depend on
the use of improved or new varieties or on the use of synthetic fertilizers and agrochemical crop protection
to raise output. These inputs can be used with SRI management practices, but they are not necessary to
improve crop productivity. For this reason, the SRI offers an exceptional candidate for studying the spillover
effects of technology diffusion.

Despite these clear benefits, the adoption of the SRI has been slow and farmers rarely implement SRI
technology on more than half of their land (Fafchamps et al., 2020). There are various reasons for this
sluggish adoption of the SRI. First, the SRI is a methodology for growing rice that differs from traditional
practices. There is evidence that farmers are constrained by the information and skills necessary for local
adaptation and must bear greater risks under the SRI than when using traditional cultivation methods
(Barrett et al., 2019). Second, SRI fields visibly differ from traditional rice fields; hence, social norms and
conformity pressures could also discourage the ultimate adoption decision.

The SRI is new among most farmers in Bangladesh, with only limited scale experimentation by BRAC.
The pilot study by Islam et al. (2012) finds higher yields of around 50% among those who adopt the SRI
in Bangladesh.10 The SRI has been widely practiced in many developing countries, and studies based on
observational data show significant yield gains and increased profits associated with its adoption (e.g., Stoop
et al., 2002; Sinha and Talati, 2007; Stygler et al., 2011).

3.3 Measuring SRI adoption in our study

As stated above, SRI does not require innovative fertilizers nor seedlings. It is the modification of man-
agement practice that contributes to high yields. SRI is more appropriate for use during Boro season in
Bangladesh, as irrigation management is easier during this period.11 For the purpose of this study, we follow
the following interdependent six key principles adopted by BRAC on SRI practices in Boro season:

(1) Early transplanting of seedlings: It is preferable to have 15-20 days old seedlings.
(2) Shallow planting : Shallow planting (1âĂŞ2 cm) of one or two seedlings, i.e., planting single seedling,

per hill.
(3) Transplanting in wider spacing : Seedlings should be planted singly and in square pattern (25 × 20

cm). This method gives plants more room to grow and spread, obtaining more sunlight and nutrients.
(4) Intermittent irrigation: Soil in the field is kept moist but not continuously flooded, intermittently

wetted and dried, so that the soil is mostly aerobic, never hypoxic.
(5) Nutrient management : Enhance soil organic as much as possible, adding compost or other biomass

to the soil. That is, feed the soil system so that it can feed the plant and reduce the use of synthetic chemical
fertilizers

10These results are not surprising. Sinha and Talati (2007) find that average yields increase by 32% among farmers
who partially adopt the SRI in West Bengal, India. Stygler et al. (2011) show a 66% increase in SRI yields relative
to experimentally controlled plots when using farming methods similar to local rice farmers in Mali.

11Boro season is the dry season in Bangladesh from October to March. The word “Boro” in Bengali means rice
cultivation on residual or stored water in low-lying areas (Singh and Singh, 2000).
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(6) Complementary weed and pest control : Control weeds with repeated use of a mechanical hand weeder.
This will aerate the soil better than possible with hand weeding or use of herbicides.

Given these six principles, which are applied at different stages of the rice cultivation, we have various
measures of adoption.

First of all, the first round of information collection about adoption situation occurred in transplantation
period in order to figure out the extent of adoption. BRAC staff visited the rice field to check if the first three
principles (seedling age, number of seedling and spacing of plantation) were properly followed by farmers.
In this early transplantation stage, BRAC enumerators only checked these three principles because the next
three principles could only be observed during the harvest period. Therefore, a second round of adoption
check occurred in the harvest season. The aim was to observe whether farmers followed the next three
principles including irrigation, nutrient and weed management.

As a result, there are different ways of measuring SRI adoption: one following immediately after trans-
plantation, another following harvest. In terms of assessment, we have two ways of assessing whether farmers
adopt SRI. The first is enumerator assessment. That is, enumerator visit the field and observe whether farm-
ers applied each principle. A second assessment method is self report. Farmer have their own assessment
about whether they follow each principle.

As the SRI adoption requires following certain principles and practices, we measured the SRI adoption
using verification in the planting and pre-harvesting periods by enumerators’ field visits.12 The research team
hired enumerators who worked with BRAC field staff to verify the SRI adoption. Enumerators, supported by
BRAC field staff, identified farmers in the villages as well as went to the rice fields to observe the adoption.
Specifically, we conducted a field survey to observe compliance with SRI practices and principles. We then
determined the SRI adoption on the basis of plot visits by enumerators and BRAC field officers, who helped
verify visually whether the farmer adopted SRI techniques on any of his cultivable rice plots during Boro
season.

In this paper, we measure SRI adoption by having a dummy variable, A = 1, 0 in the theoretical model,
which is equal to 1, i.e., a farmer is considered to be an SRI adopter, if both the enumerator and the BRAC
field officer observed that the farmer practiced at least three out of the six principles described above on at
least one plot of land. Indeed, we surveyed information only for their three plots of land. If farmers had
more than three plots, we randomly picked three plots at the baseline (before SRI was known to the farmers)
and followed them. As a result, as long as a farmer has followed at least three principles in any of his three
plots of land, he will then be considered as an SRI adopter.

As a robustness check, in Section 5.2.5 below, we will use another measure of adoption, denoted by APR.
It is not a {0, 1} variable, but a percentage, which is equal to the proportion of principles that a famer has
adopted in the plot of land that has adopted the highest number of principles. Since there are six principles,
APR =

{
0, 1

6 ,
2
6 , · · · , 1

}
, where, for example, 2

6 is the fraction of principles adopted in the plot of land for
which the farmer has adopted the highest number of principles, here 2 principles. This means that the farmer
has not adopted more than 2 principles in any of his plots of land. In this definition, APR is an effort of
adoption.

12This is because it is a more objective and unbiased evaluation. Our analysis have also been conducted using
farmers’ self-reported evaluation and the results are similar. They are available upon request.
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3.4 Experimental Design

In collaboration with BRAC, our RCT was conducted over two years (2014/15 and 2015/16) in 182 villages
across five districts in rural Bangladesh: Kishoreganj, Pabna, Lalmonirat, Gopalgonj, and Shirajgonj. The
blue areas in Figure B1 in Online Appendix B depict the location of these districts in Bangladesh. The 182
villages were randomized into 62 villages randomly assigned to a control treatment without training and 120
villages randomly assigned to each of the two treatments (T1 and T2).

Among the 120 villages selected for SRI training, we randomly selected about 30 farmers (28–35 farmers)
from each village. A census was conducted by BRAC local offices in 2014 before Boro season to generate a
list of all farmers in these villages who cultivated rice in the previous Boro season and owned at least half
an acre but not more than 10 acres of land.13 Following the selection of farmers for training, local BRAC
staff members and enumerators visited farmers’ homes and invited them to SRI training with a letter from
BRAC. Farmers were also briefly informed about the purpose of the training. All farmers received a fee
(BDT 300) for their participation in the training. This fee is slightly more than the rural agricultural daily
wage. Trainers were existing BRAC agricultural officers at the field level. Agricultural scientists who had
previously worked on the SRI elsewhere in Bangladesh trained these trainers. Enumerators and field workers
supported the trainers in conducting the training sessions and the pre- and post-training interviews.

The 120 villages were randomly divided into one year and two years of training. Sixty villages were
randomly allocated to one year of training (referred to as T1 villages) and treated farmers only received
one-time training in year 1. This training lasted for a day, and was disseminated via a media presentation
and video demonstration to teach farmers about the principles of SRI technology. For the other 60 villages
(referred to as T2 villages), treated farmers received the same training twice, namely they received training in
both the first and the second years. There were two training sessions in year 2. In the first session, the topics
of discussion were case studies of successful adoption from the first year of the intervention. The session also
included discussions with local farmers about the training in year 1 and rice cultivation practices as well as
constraints that affected their decision to adopt the SRI in year 1. In the second session, BRAC trainers
provided the same training as in year 1 and attempted to ensure that farmers had a clear understanding of
the key principles and practices of the SRI. Hence, farmers who were trained twice in T2 villages had a much
better understanding of the rules and principles of the SRI, which imply changing practices for irrigated rice
cultivation.

In Figure 1, we describe the timeline of our experiement where we see when the first and second training
sessions took place and when the BRAC visited the fields in order to verify whether or not the farmers
adopted the SRI technology.

As the objective of this study is to analyze how treated farmers influence untreated farmers, in each
village, the 30 farmers were randomly divided into two groups: treated (one year T1 or two-year T2) and
untreated (NT ). To guarantee that the variation in the number of treated farmers across villages was purely
random, the number of treated farmers randomly selected in each village was different, varying between 10
and 30. Although untreated farmers did not receive any training, they live in the same villages as their
treated peers.14 On average, there were 18 treated farmers and 12 untreated farmers in each village. Table

13Farmers with less than half an acre of land were excluded, as they are usually seasonal farmers. Similarly, farmers
with more than 10 acres were not considered for SRI training, as they are land-rich farmers in Bangladesh.

14The selection of farmers was based on geographical location; thus, we usually surveyed one neighborhood from
each village to guarantee that farmers are geographically close to each other. As farmers are invited to attend training
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Figure 1: Timeline of the experiment

B1 in the Online Appendix B displays the number of farmers randomized into the treated and untreated
groups within the treatment villages. Among the 3,630 farmers in these 120 villages, 2,226 were treated
(1,060 for one year of training and 1,166 for two years of training) and 1,404 were untreated.

4 Data and econometric model

4.1 Data and balance checks

In this study, we use data from 120 SRI treatment villages. Initially, a baseline survey was conducted among
the 3,630 farmers in these 120 villages, focusing on collecting individual characteristics such as age, income,
education, amount of cultivable land, household size, and occupation (see Figure 1). Table B2 in Online
Appendix B presents the different characteristics of treated and untreated farmers. We see that the level
of education is low (on average, farmers attend school up to year 4), household size is relatively high (five
members on average), and farmers tend to work on their own farms.

To check if the randomization between treated and untreated farmers is successful, we examine whether
their characteristics are the same for treated and untreated farmers within villages and for T1 and T2 farmers
between villages. As is standard, we conduct a t−test to compare the group means of these characteristics.

Table B2 reports the balance checks of the observable characteristics between treated and untreated
farmers, while Table B3 reports the same results but between T1− and T2−treated farmers. We observe no
significant differences in the observable characteristics between these different treatments. Overall, treated
and untreated farmers are observationally similar within the treatment villages and treated farmers are
observationally similar between T1 and T2 villages.

4.2 Outcome variable

Our outcome variable is the adoption decision of untreated farmers, which we denoted by the binary variable
A = 1, 0 in the theoretical model. In the econometric model, we denote it by yNTi,v,t. This is a dummy variable
that takes a value of 1 if untreated (NT ) farmer i, residing in village v = T1, T2, decides to adopt SRI

sessions on the SRI, their proximity makes it easier to organize and collect responses from participants.
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technology in year t = 1, 2 and 0 otherwise. As stated in Section 3.3, yNTi,v,t = 1 if the untreated farmer i, v, t
has adopted at least three SRI principles in one of his plots of land, and yNTi,v,t = 0, otherwise. In Section
5.2.5, we will conduct some robustness checks by using an alternative definition of adoption, which is not a
{0, 1} variable but an effort variable.

Observe that we use time t as a subscript because we want to compare the adoption rate of untreated
farmers residing in T1−treated villages (in which treated farmers received one year of training) and in
T2−treated villages (in which treated farmers received two years of training). Consequently, in both T1−
and T2−treated villages, yNTi,v,t takes two values, one at t = 1 and one at t = 2. Thus, given that the random
allocation of training of farmers occurred either once in year 1 (treatment T1) or twice in years 1 and 2
(treatment T2), we have a panel in which the same 3,630 farmers are observed for two years.

Table 1 reports the average adoption rate by treatment group and time. First, on average, significantly
more treated farmers adopt SRI technology (between 32% and 48%) than untreated farmers (between 7%
and 10%). This difference means that training has a direct impact on adoption. Second, at the end of
year 2, farmers with two years of training adopt more than those with one year of training (45.8% versus
32.6%), even if this difference is not significant after one year, as in that case, both farmers received the same
training. Third, and more importantly for our analysis, untreated farmers do not adopt more when residing
in T2−treated villages than T1−treated villages after one year. However, they do significantly adopt more
after two years (on average, yNTi,T2,2 = 9.53% > 6.89% = yNTi,T1,2). This suggests that exposure to farmers
receiving more training makes an untreated farmer more likely to adopt SRI technology.

Table 1: Adoption rates of farmers by treatment group and time

End of year 1 End of year 2 Observations

Treated farmers in T1 villages 47.98% 32.6% 1,060

Treated farmers in T2 villages 47.25% 45.8% 1,166

Untreated farmers in T1 villages 7.03% 6.89% 745

Untreated farmers in T2 villages 7.59% 9.53% 659

Finally, many treated farmers in T1−villages in year 2 dis-adopt. This does not contradict our mechanism
since we are explaining the adoption rate of the untreated farmers and not the treated ones. Indeed, Table
1 shows that there is no statistical difference in the untreated farmers’ adoption rate between years 1 and 2
for T1−villages while, in T2−villages, they increase their adoption rate from 7.59% and 9.53%. This is in
accordance with our mechanism that untreated farmers benefit more from treated farmers’ spillover effects
in T2 than in T1−villages and this is why their adoption rate increases between years 1 and 2. However, one
may wonder why 15% of treated farmers in T1−villages dis-adopt at the end of year 1. To understand this,
we need a more detailed definition of adoption based on the percentage of principles adopted rather than a
{0, 1} adoption variable as it is here. We will explicitly address this issue in Section 5.2.5 below.

Table 1 also indicates that the adoption rates are relatively high, especially for treated farmers. Let us
now show that SRI technology is, indeed, beneficial for farmers in terms of yields. Table 2 shows that there
is a significant positive difference in terms of yields between the 120 villages that were treated (T1 or T2)
and the 62 villages that were not (control villages).

Within the 120 treated villages, Table 3 reports that the farmers who adopt the SRI do produce higher
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Table 2: Yield difference between treated (T1 and T2) and control villages

Treated Control T-statistic P-value

Mean S.D Mean S.D

Yield (kg per decimal of land) 25.38 (6.01) 22.13 (4.95) 26.33 0.000
Observations 3,630 1,856

Notes: Yield is defined as the amount of rice cultivated in one decimal of land, measured in kg. It is the total amount of rice
cultivated (kg) divided by the total amount of land (decimal).

yields than the farmers who do not. As a result, SRI technology does provide more rice production and yield
to adopters. This is direct evidence that SRI technology is beneficial for farmers, which has also been shown
by Islam et al. (2012) for Bangladesh and by others for different countries (see footnote 10).15

Table 3: Yield difference between adopters and non-adopters in treated villages

Adopters Non-Adopters T-stat P-value

Mean S.D Mean S.D

Yield (kg per decimal of land) 25.84 (6.16) 25.16 (5.96) 4.23 0.000
Observations 1,615 2,015

Notes: Yield is defined as the amount of rice cultivated in one decimal of land, measured in kg. It is the total amount of rice
cultivated (kg) divided by the total amount of land (decimal). A farmer is defined as an adopter if he adopted in year 1, year
2, or both.

4.3 Exposure rate

Following our theoretical model, our main explanatory variable is the exposure rate p measured as the
percentage of treated farmers in a village. For untreated farmer i living in village v = T1, T2, his exposure
rate is defined as

p := pTi,v =
NT
i,v

NT
i,v +NNT

i,v

× 100%, (14)

where NT
i,v and NNT

i,v refer, respectively to the number of treated farmers and untreated farmers in village v
in which untreated farmer i resides. Thus, pTi,v is the percentage of treated farmers in village v. According to
our experimental setting, there are two key properties of p := pTi,v. First, pTi,v is not indexed by time because
the randomization is implemented only once; therefore, the exposure rate does not change over time. As a
result, pTi,v is a time-invariant variable that is the same for a given untreated farmer for two years. Second,
according to the questionnaire results, 99.99% of our farmers know each other in the same village because
we select them from the same neighborhood. Therefore, for all untreated farmers residing in village v, their
exposure rate pTi,v should be the same.

Figure B2 in Online Appendix B shows the distribution of pTv between T1 villages (blue dashed curve)
and T2 villages (red solid curve) to see if they are the same across villages. We observe that they look
similar and (roughly) normally distributed. To test this similarity, in Table B4, we perform a t−test and
the Kolmogorov–Smirnov (K-S) test.16 We see that there is no significant difference in pTv between T1 and

15Similar figures as in Tables 2 and 3 were obtained when looking at profits intead of yields.
16The K-S test is a non-parametric test of the equality of continuous, one-dimensional probability distributions

that can be used to compare two samples.
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T2 villages and that the p−value of each test is greater than 0.05. As a result, we can conclude that the two
distributions of pTv between T1 and T2 villages are similar.

4.4 Econometric model

We now empirically test parts (i) and (ii) of Proposition 1. The econometric equivalent of these two results
can be written as a pooled OLS model, which is given by17

yNTi,v,t = α0 + α1p
T
i,v +X

′

i,vβ + θt + εi,v,t, (15)

where yNTi,v,t is a dummy variable equal to 1 if untreated farmer i residing in village v = T1, T2 adopts SRI
technology in year t = 1, 2 and 0 otherwise. This corresponds to A ∈ {0, 1} in the theoretical model and
captures the binary choice of untreated farmer i residing in village v who decides whether to adopt SRI
technology in year t. Moreover, pTi,v is defined in (14), X

′

i,v are the exogenous characteristics of farmer i
residing in village v,18 including age, income, land size, household size, occupation, and education, εi,v,t is
an error term, and θt are the year fixed effects. Indeed, to account for a year-specific aggregate shock, we
use a year dummy such that t = 0 corresponds to year 1 and t = 1 represents year 2. In all our regressions,
standard errors are clustered at the village level.

According to part (i) of Proposition 1, we expect that α1 > 0. Second, according to part (ii) of
Proposition 1, if we run (15) separately for the two samples of treated villages, we expect the α1 obtained
for the 60 T2−treated villages to be larger and more significant than the α1 obtained for the 60 T1−treated
villages.

5 Empirical results

5.1 Main Results

Table 4 displays the results of the estimation of equation (15). Columns (1), (2), and (3) report these results
for the 120 villages by increasing the number of control variables. We see that the main coefficient of interest,
α1 in (15), is highly significant (at the 1% level), does not change when we add controls, and is equal to 0.22.
Thus, an increase of 10% in treated farmers in a village increases the average adoption rate for an untreated
farmer residing in the same village by 2.2%. According to our model, this means that untreated farmers
tend to adopt more when they receive reliable information about SRI technology from treated farmers who
have received either one or two years of training.

Next, we split the 120 villages into two groups, namely T1−treated villages in which farmers received
one year of training and T2−treated villages in which farmers received two years of training, and estimate
equation (15) separately for each sample of 60 villages. As predicted by part (ii) of Proposition 1, α1 becomes
insignificant for T1−treated villages (columns (4), (5), and (6)) and is positive and significant at the 1%
level for T2−treated villages (columns (7), (8), and (9)). In fact, the coefficient α1 is larger in magnitude

17All our results remain the same if we estimate a pooled probit model instead of the pooled OLS model (15).
These results are available upon request.

18As stated in footnote 9, we can easily extend our theoretical model by including farmers with heterogeneous costs
of adopting c. In that case, this heterogeneity captures the heterogeneity in characteristics Xi,v described in (15).
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Table 4: The impact of trained farmers on the adoption rate of untreated farmers

120 villages 60 villages (T1) 60 villages (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

pTi,v 0.222*** 0.222*** 0.231*** 0.0641 0.0644 0.0709 0.404*** 0.404*** 0.423***

(0.0730) (0.0730) (0.0732) (0.0910) (0.0911) (0.0866) (0.0982) (0.0985) (0.0984)

Year dummy 0.00252 0.00119 -0.00418 -0.00528 0.0111 0.00886

(0.0115) (0.0115) (0.0135) (0.0136) (0.0195) (0.0192)

Age/10 -0.00933* -0.0195*** 0.000243

(0.00475) (0.00601) (0.00710)

log(Income) -0.0300** -0.0428** -0.0203

(0.0121) (0.0174) (0.0172)

log(Land) 0.0208** 0.0136 0.0368**

(0.00907) (0.0107) (0.0155)

Education 0.000952 0.000652 0.000971

(0.00160) (0.00227) (0.00205)

Household size 0.00574 0.00900 0.00357

(0.00371) (0.00549) (0.00501)

Occupation 0.0162 0.00176 0.0367*

(0.0167) (0.0244) (0.0207)

Total farmers/1000 0.0344 0.191 0.0300

(0.101) (0.141) (0.164)

Observations 2,808 2,808 2,808 1,490 1,490 1,490 1,318 1,318 1,318

Notes: The dependent variable is the adoption decision of an untreated farmer across two years. It is a dummy variable that
equals 1 if an untreated farmer adopted in year t (t = 1, 2) and 0 if he did not. Standard errors are clustered at the village level
and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

than for the general regression, since an increase of 10% in T2−treated farmers in a village now increases
the rate of adopting SRI technology for an untreated farmer residing in the same village by 4.21%.19

To visualize these results, we report the 95% confidence intervals of each regression for the whole distri-
bution of pTi,v. Figure 2 displays this distribution for the 120 villages (blue curve), 60 T1 villages (red curve),
and 60 T2 villages (green curve). If we consider this distribution for the 120 villages, we see that in villages
in which pTi,v, the percentage of treated farmers is 40%, the (predicted) adoption rate of untreated farmers
is 5%, and when pTi,v is equal to 80%, the (predicted) adoption rate is close to 22%. For T1 villages, these
numbers are, respectively 6% and 10%, while for T2 villages, we obtain 3% and 36%. In other words, the
effect of increasing pTi,v on the adoption rate is small and the curve is flat for T1 villages, while the effect is
large and the curve is steep for T2 villages.

Remember (see Section 3.2) that although SRI technology is not complex, the practices for using it

19In Table 4, we control for the total number of farmers (treated plus untreated plus other farmers) in each village.
Indeed, the number of farmers does vary from village to village. Figure B3 in Online Appendix B displays the
distribution of farmers, showing that it differs between T1 and T2 villages.
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Figure 2: Distribution of pTi,v,t between different villages

differ from those of traditional methods. As a result, many farmers have found it difficult to adopt because
it implies a drastic change in the way farmers are used to cultivate rice. Therefore, farmers are naturally
reluctant to adopt SRI technology. Remember also that we are studying the behavior of farmers in the
neighborhood of a village; therefore, these farmers know each other (treated and untreated) and form close-
knit communities. Table 4 shows that providing longer training on the SRI has not only a direct impact
on trained farmers (Fafchamps et al., 2020), but also spills over to other farmers in the village who did not
receive any training (untreated). This effect is important. The more an untreated farmer is “exposed” to
farmers with two years of training, the more likely he is to adopt SRI technology. 20

According to our model, this is because T2−treated farmers provide untreated farmers with more accurate
and more precise information on the SRI since the lower is the variance σ2

θ in the “noise” εθ of the quality
of the technology, the more accurate is the information transmitted to the untreated farmer and the more
likely the latter is to adopt SRI technology. Indeed, when farmers are trained two years in a row, they are
more able to explain the principles involved in SRI practices, which need to be followed carefully because,
unlike most current agricultural technologies, the SRI is not based on material inputs. Instead, it involves
mostly mental changes and new ways of thinking.

5.2 Understanding the mechanisms of adoption

Our primary results show that the more an untreated farmer is “exposed” to well-trained farmers in the village
in which he lives, the more likely he is to adopt SRI technology. The accuracy of information transmission
regarding SRI technology is the primary channel through which this occurs. In this section, we provide more
evidence on this mechanism. Then, we run regressions on different subsamples, and rule out other possible

20Recall that our RCT was conducted in five poor rural districts of Bangladesh (Kishoreganj, Pabna, Lalmonirat,
Gopalgonj, and Shirajgonj), where the main farming activity is rice cultivation. Consequently, when SRI technology
was introduced in these districts, farmers could not switch to cultivating other crops.
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mechanisms.

5.2.1 Do T2−farmers have more accurate information on SRI technology than T1−farmers?

The model in Section 2 postulates that there are more spillovers to untreated farmers from T2 rather than
T1−farmers because the former have better information on how to use and implement the SRI technology.
We can actually test this because we have conducted a survey on the SRI technology before the treatment
(i.e., at t = 0) but also two years after the treatment (i.e., at t = 2).

Indeed, at t = 0, before they were treated but were already allocated to different treatments, we asked
both T1 and T2− farmers six questions about different practices of SRI, which correspond to the principles
described in Section 3.3. The questions are: (1) What are the days of the plant before they are moving from
seedbed to soil? (principle 1); (2) how many seedlings should you plant together in the same hill? (principle
2); (3) what is the distance between plant to plant in cm? (principle 3); (4) what type of fertilizer should
you use more in SRI fields? (principle 5) (principle 5); (5) after transplanting and before flowering, should
the surface of the field be allowed to dry out at any time? (principle 4); (6) how many times do you need to
remove weeds during the season? (principle 6). Table 5 compares the farmers’ answers by treatment group
at t = 0, i.e., before each farmer receives any training. We see that there are no (statistically significant)
differences between T1 and T2− farmers, which means that, before they were treated, their knowledge of
the principles of SRI technology were the same.

Table 5: Knowledge test on SRI principles of treated farmers by treatment group at t = 0

Question Accuracy rate p-value
T1 T2

(1) 0.4% 0.2% 0.36(0.06) (0.04)
(2) 14% 13% 0.28(0.35) (0.34)
(3) 3.3% 1.5% 0.14(0.17) (0.12)
(4) 15.3% 15.8% 0.75(0.36) (0.36)
(5) 44.7% 42.8% 0.38(0.50) (0.49)
(6) 12% 15% 0.50(0.32) (0.35)

Average accuracy 14% 14% 0.62(0.15) (0.15)
Observations 1,490 1,318

Notes: The knowledge test was performed at t = 0. The “accuracy rate” is the percentage of farmers that answer
a given question correctly. The “average accuracy” is the average percentage of questions that is answered correctly
in each treatment group. It is equal to the number of questions answered correctly divided by 6, the total number
of questions. The reported p values are from the two-tailed test with the null hypothesis being that group accuracy
means are equal, while the reject rule is p < 0.05. Standard deviations are reported in parentheses.

We conducted a similar survey two years after (at t = 2) where both types of farmers were trained on the
SRI technology. We asked both T1 and T2− farmers eight questions about different practices of SRI, which
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correspond to the principles described in Section 3.3. This includes exactly the same six questions as in t = 0

(Table 5), numbered from (1) to (6) as above, plus two extra questions: (7) How deep should the seedlings
be planted? (principle 2); (8) what should be the depth of water each time for irrigation? (principle 4).

Table 6 compares the farmers’ answers by treatment group. First, in comparison to Table 5, we see a
huge increase in the accuracy of the answers. In particular, before training, the average accuracy rate was
14% while, after training, it increases to 71% for T1− farmers and to 75% for T2− farmers. Second, and more
importantly, contrary to Table 5, we see that, now, T2−farmers have a much more accurate knowledge of
the SRI technology than T1−farmers. In most questions, their answer is more accurate and the difference is
statistically significant. On average, T2−farmers have a 4 percentage higher accurate rate and the difference
is significant. This evidence shows that T2−farmers have a more accurate information on the SRI technology
than T1−farmers, and this is why they can provide untreated farmers with more accurate and more precise
information on the SRI technology to untreated farmers.

Table 6: Knowledge test on SRI principles of treated farmers by treatment group at t = 2

Question Accuracy rate p-value
T1 T2

(1) 65% 70% 0.04(0.47) (0.46)
(2) 72% 75% 0.22(0.45) (0.43)
(3) 86% 91% 0.00(0.33) (0.28)
(4) 89% 95% 0.00(0.31) (0.22)
(5) 94% 96% 0.05(0.23) (0.19)
(6) 23% 30% 0.00(0.42) (0.46)
(7) 85% 91% 0.00(0.34) (0.28)
(8) 51% 54% 0.25(0.49) (0.49)

Average accuracy 71% 75% 0.01
(0.16) (0.14)

Observations 1,490 1,318
Notes: The knowledge test was performed at t = 2. The “accuracy rate” is the percentage of farmers that answer
a given question correctly. The “average accuracy” is the average percentage of questions that is answered correctly
in each treatment group. It is equal to the number of questions answered correctly divided by 8, the total number
of questions. The reported p values are from the two-tailed test with the null hypothesis being that group accuracy
means are equal, while the reject rule is p < 0.05. Standard deviations are reported in parentheses.

5.2.2 Effect of frequency of communication

In our baseline survey, we collected data on the frequency of communication among farmers. Specifically, we
asked if they interact daily, weekly, monthly, yearly, or never. The discussion involves communicating crop
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experience (which includes the price and type of crop) or other agricultural issues (which include weather,
agricultural inputs, and field practices). Table B5 in Online Appendix B provides the interactions between
farmers in the 120 villages. We find that 69% of farmers discuss agricultural issues at least once a month and
39.8% discuss them daily or weekly. Therefore, unsurprisingly, there is much interaction between farmers,
as they all belong to the same neighborhood.

We now estimate equation (15) using a different definition of pTi,v than the one in (14). We define the
exposure rate as follows:

pTi,v,d =
NT
i,v,d

NT
i,v +NNT

i,v

× 100%,

where d = {daily, weekly,myn} (myn means either monthly, yearly, or never) is the frequency of discussion
between farmers, so that pTi,v,d is the percentage of treated farmers in village v who interact at frequency d
with untreated farmer i who also resides in village v. Clearly, Ni,v,d ≤ NT

i,v, since among all treated farmers
residing in village v as i (i.e., NT

i,v), Ni,v,d is the number of farmers who discuss with i at frequency d. This
implies that pTi,v,d ≤ pTi,v,d. We estimate (15) but with pTi,v,d instead of pTi,v. Table 7 presents the results .

First, in comparison to Table 4, we find that the general effect of exposure (columns (1), (2), and
(3)) is highly significant only when farmers interact either daily or weekly but not when they interact
monthly, yearly, or never. In addition, the coefficient is much larger for pTi,v,daily than for pTi,v,weekly. Second,
distinguishing between one year and two years of training, we find that compared with Table 4, even in
T1−treated villages, there is a significant effect of pTi,v,d on the adoption rate of an untreated farmer for
weekly interactions. Finally, the magnitude of the coefficient α1 always decreases when farmers interact less
frequently.

All this evidence seems to confirm our information story, as formally modeled in Section 2. Indeed, when
untreated farmers obtain accurate information from treated farmers through frequent interactions, they are
more likely to adopt the SRI methodology. Interestingly, even if treated farmers only receive one year of
training, they may still have a positive and significant impact on the adoption rate of those untreated farmers
who discuss with their peers at a sufficiently high frequency.

These results can be interpreted as follows: the more treated farmers interact with untreated farmers
and/or the more trained are treated farmers, the lower is the variance σ2

θ in the “noise” εθ of the quality of
the technology and the more accurate is the information transmitted to the untreated farmer. In particular,
they are more able to explain the advantages of the SRI technology and how to implement it.

5.2.3 Effect of financial relationships

In our baseline survey, we collected information on another important social interaction between farmers in
a village, that is, the financial relationship. We suppose that two farmers have a financial relationship if they
have borrowed or lent money to each other or have discussed financial issues in the last six months. Table B6
in Online Appendix B supplies some summary statistics. On average, each untreated farmer has 4.5 peers
with whom he has borrowed or lent money or discussed financial issues. Furthermore, 70% of farmers have
lent or borrowed money from each other and 52% have at least two finance-related peers. Therefore, most
farmers in these villages have some kind of financial relationship with each other.
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Table 7: Impact of the frequency of interactions on the adoption rate of untreated farmers

120 villages 60 villages (T1) 60 villages (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

pTi,v,daily 0.234* 0.108 0.359*

(0.120) (0.116) (0.200)

pTi,v,weekly 0.185*** 0.220*** 0.169***

(0.0412) (0.0573) (0.0586)

pTi,v,myn 0.0442 0.0209 0.0963

(0.0496) (0.0629) (0.0682)

Observations 2,808 2,808 2,808 1,490 1,490 1,490 1,318 1,318 1,318

Notes: The dependent variable is the adoption decision of untreated farmers across two years. This is a dummy variable that
equals 1 if an untreated farmer adopted in year t (t = 1, 2) and 0 if he did not. Each regression includes year dummies and all
six control variables in Table 4. Standard errors are clustered at the village level and reported in parentheses. *** p<0.01, **

p<0.05, * p<0.1.

We now define the exposure level as follows:

pTi,v,finance =
NT
i,v,finance

NT
i,v +NNT

i,v

× 100%,

where NT
i,v,finance is the number of treated farmers who borrowed or lent money or discussed financial issues

in the last six months with farmer i residing in village v. As above, we estimate (15) but with pTi,v,finance
instead of pTi,v. Table 8 presents the results.

We obtain similar results to the case of farmers who frequently discuss agricultural issues with untreated
farmers (Table 7). Indeed, contrary to Table 4, famers with one year of training have a significant impact
on the adoption rate of untreated farmers. In addition, the magnitude of the effect is larger than that in
the general case (Table 4) because untreated farmers focus more on farmers with whom they interact than
a “random” farmer in the village. Consequently, when a farmer with one year of training, who discusses
financial issues with untreated farmers, provides information about SRI technology to an untreated farmer,
the latter considers this information to be accurate and is therefore more likely to adopt SRI technology.

Table 8: Impact of finance-related peers on adoption rate of untreated farmers

120 villages 60 villages (T1) 60 villages (T2)

pTi,v,finance 0.296*** 0.196*** 0.433**

(0.104) (0.054) (0.185)

Observations 2,808 1,490 1,318

Notes: The dependent variable is the adoption decision of untreated farmers across two years. This is a dummy variable that
equals 1 if an untreated farmer adopted in year t (t = 1, 2) and 0 if he did not. Each regression includes year dummies and all
six control variables in Table 4. Standard errors are clustered at the village level and reported in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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5.2.4 Alternative mechanism

So far, we have shown that the quality of information is crucial in encouraging untreated farmers to adopt
SRI technology. There may be another mechanism. For example, farmers who have two years of training (T2

villages) may produce more rice and have higher yields than farmers with one year of training (T1 villages).
In that case, untreated farmers would adopt more in T2 villages than in T1 villages not because of better
information quality about SRI technology but because they observe higher rice production. Let us rule out
this possibility.

Table 9 shows no difference in two-year average rice production (yields) between T1 and T2 villages.
Table B7 in the Online Appendix B displays the same table by year and also shows no difference. This
confirms the idea that spillover effects operate mainly through information transmission rather than imitating
more productive farmers. This is intuitive since the training only helps farmers understand SRI technology
and decide whether to adopt it. However, once someone adopts, independently of his training, the production
of rice using SRI technology is the same. It is also higher than the rice production of farmers who did not
adopt SRI technology (Table 3). In other words, farmers with two years of training in T2 villages are not
better at using the SRI than farmers with one year of training in T1 villages but are better at explaining
how to use it to their untrained peers by providing more accurate information about the technology and
thus convincing their peers to adopt it.

Table 9: Average yield difference between T1 and T2 villages

Yield (kg) T1 T2 p-value

All farmers 25.23 25.24 0.98

(0.48) (0.47)

Farmers who receive training 25.49 25.26 0.75

(0.51) (0.50)

Farmers who adopt 25.35 25.57 0.80

(0.64) (0.55)

Farmers who are trained and adopt 25.40 25.57 0.84

(0.64) (0.57)

Note: Yield is defined as the amount of rice cultivated in one decimal of land, measured in kg. It is calculated as the total
amount of rice cultivated (kg) divided by total amount of cultivable land (decimal). The yield reported in this table is the
average yield of years 1 and 2. Standard errors are clustered at village level and reported in parentheses.

5.2.5 Understanding adoption behavior

So far, we have measured adoption by having a dummy variable, yNTi,v,t, which takes a value of 1 if an untreated
(NT ) farmer i, residing in village v = T1, T2, has adopted at least three SRI principles in one of his plots of
land in year t = 1, 2, and 0 otherwise. As a robustness check, we use another measure of adoption, which has
been defined in Section 3.3 by APR. It is an “effort” variable, which is equal to the proportion of principles
that a farmer has adopted in the plot of land that has adopted the highest number of principles. Since there
are six principles, APR =

{
0, 1

6 ,
2
6 , · · · , 1

}
. To use the same notation as in econometric model, we denote
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this variable by yPR,NTi,v,t . This measure, which provides more detailed information about adoption will help
us understand some aspects of the results and the mechanisms.

As stated above, Table 1 in Section 4.2 shows a (puzzling) difference between year 1 and year 2 between
T1 and T2 villages: many treated farmers from T1−villages (15%) in year 2 dis-adopt. We would now like to
check if this result is due to our definition of adoption yNTi,v,t and if it is modified if we measure adoption rate
by yPR,NTi,v,t . Indeed, it may be that many T1−farmers “adopt” in the first year because they have adopted
at least three SRI principles in one of their plot of land but still use some of the principles (less than three)
in the second year but we consider them as non-adopters.

In Tables C1 and C2 in Appendix C, we provide information on the percentage of principles adopted in
the three first-ranked plots (in terms of principles adopted) on treated farmers A1,0, who are farmers who
adopt in year 1 and dis-adopt in year 2, and treated farmers A1,1, who are farmers who adopt in both years
1 and 2 for T1−villages (Table C1) and for T2−villages (Table C2). Denote by A1,PR, A2,PR and A3,PR,
the percentage of principles adopted in, respectively, first-ranked plot, second-ranked plot and third-ranked
plot. Consider, for example, Table C1 for T1−villages. We see that, for A1,0−farmers, even though in year
2 they are considered as non-adopters since the average value in year 2 of APR is below 0.5, we still have
A1,PR = 0.17, A2,PR = 0.16 and A3,PR = 0.14. This means that they are still adopting, on average, between
1 (1/6 = 0.167) and 2 (2/6 = 0.333) principles in the second year in their three highest-ranked plots. These
figures are a little higher for A1,0− farmers in T2−villages. Consider now A1,1− farmers in both villages.
We see that the number of principles adopted in the first-ranking plot do not change between years 1 and
2 in T1−villages but increase in T2−villages. So, going back to Table 1, we see that mostly T1−farmers
reduce the number of principles adopted (roughly 15%) but still keep some SRI principles in year 2 (Table
C2). For T2−farmers, less than 2% of them dis-adopt (Table 1) but also keep some SRI principles in year 2
(Table C2). As a result, this shows that training twice make treated farmers trusting more the SRI principles
adopted while, when treated farmers are only trained once, they tend to reduce the number of principles
adopted but not dis-adopt totally.

In order to better understand these issues, we look at the observable baseline differences (before our
intervention) between A1,0−farmers and A1,1− farmers in all villages. Table C3 in Appendix C reports the
results by performing a t−test between these different variables. Compared to A1,1− farmers, A1,0−farmers
have significantly higher income, do other activities than farming activities, are more risk averse, have higher
profit and higher yields before our intervention. So the result in Table 1 showing that some treated farmers
dis-adopt in year 2 could be explained by the fact that they have different characteristics that may negatively
affect their adoption behavior.

To summarize, despite the fact that Table 1 showed that 15% of T1−farmers dis-adopt in the second
year, we have seen that, in fact, these farmers just reduce the number of SRI principles adopted (from 3 to 2
or 1 in their three highest-ranked plots). We have also seen that the reason of this reduction in the number
of principles is not due to the fact that their yields and rice production decrease after adopting the SRI
principles (see Tables 9 and Table B7), but to the fact that they have higher income, are more risk-averse
and have higher profits and yields before our intervention. Finally, observe that, in this paper, we explain
the adoption rate of untreated farmers and not of treated farmers, and the former do not dis-adopt after one
year. Also, treated farmers in T2−villages do not dis-adopt after one year and thus can transmit accurate
information to untreated farmers in their villages.
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As a robustness check, in Table C4 in Appendix C, we reproduce the results of Table 4 using as a
dependent variable yPR,NTi,v,t instead of yNTi,v,t, which is defined as the percentage of principles adopted in the
first-ranked plot. The results are similar, showing, in particular, that the effect of pTi,v on yPR,NTi,v,t is positive
and significant for all the 120 villages and for the 60 T2−villages only.

6 The role of risk aversion in technology adoption

Thus far, our analysis has explained how and why untreated farmers adopt SRI technology. However, the
analysis has lacked one crucial element: the degree of risk aversion of untreated farmers. Risk aversion plays
an important role in technology adoption (e.g., Ghadim et al., 2005; Koundouri et al., 2006; Genius et al.,
2013), especially in the poor districts in Bangladesh in which we conduct our experiment. This is what we
want to investigate both theoretically and empirically.

6.1 Extending the theory

Let us extend our model presented in Section 2 by considering risk-averse instead of risk-neutral farmers.
For simplicity, we assume that conditional on meeting a θ−type agent (θ = {T,NT}), all individuals share
the same constant von Neumann–Morgenstern utility function with constant absolute risk aversion:

U(A | θ) := E [u(z) | sT ] , u(z) :=
1− exp(−δz)

δ
, (16)

where z is defined by (7), while δ > 0 is the risk aversion parameter.21 As each farmer faces a conditional
distribution, b | sT , of the benefit of adoption, the utility level U(. | θ) is a random variable, and its value
depends on the type of farmer (treated or untreated) with whom an untreated farmer interacts.

Since payoffs are normally distributed, we can show (e.g., Sargent, 1987, pp. 154–155) that preferences
(16) can be equivalently represented by the following utility function:

U(A | θ) =

E(b | sθ)− c− δ
2Var (b | sθ) , if A = 1,

0, if A = 0.
(17)

Equation (17) implies that the expected utility U(A | θ) of adoption conditional on meeting a θ−type agent
is mean-variance utility, namely it only depends on the conditional mean and conditional variance in the
uncertain adoption benefit b. Throughout this section, we assume that

δ > δ := max{0, 2(β − c)/σ2
b}, (18)

which becomes (9) in the limit case of risk-neutral agents (δ → 1). (18) is less demanding than (9) since the
latter implies the former. This is because, now, a farmer who has other information than the distribution of
the benefits will not adopt if he is sufficiently risk-averse. In particular, if c > β, a risk-neutral farmer will
not adopt, and a fortiori, a risk-averse farmer will be even less willing to adopt.

21In the limit case when δ → 0, we fall back to the case of risk-neutral agents. Indeed, as δ → 0, the Bernoulli
function u(z) becomes linear: limδ→0 u(z) = z, which is equivalent to risk neutrality.
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For θ = {T,NT}, the conditional probabilities of adoption are now given by

P{A = 1 | θ} = P
{
E(b | sθ) > c+

δ

2
Var (b | sθ)

}
. (19)

The following proposition shows how taking risk aversion into account affects the main predictions of
the model.

Proposition 2 Assume that (4) and (18) hold and that all farmers exhibit risk aversion captured by mean-
variance utility (17).

(i) In each village, the adoption rate of untreated farmers increases with the exposure rate.

(ii) In each village, the adoption rate of untreated farmers decreases with δ, the degree of risk aversion.

(iii) In a T2-treated village, the impact of the exposure rate on the adoption rate of untreated farmers is
higher than that in a T1-treated village.

(iv) When farmers are sufficiently risk-averse, the higher the degree of risk aversion, the lower is the impact
of the exposure rate on the adoption rate of untreated farmers,

∂2P{A = 1}
∂p ∂δ

< 0. (20)

Parts (i) and (iii) of Proposition 2 share the same intuition as parts (i) and (ii) of Proposition 1. With
risk aversion, we have two new results. First, according to part (iii), when agents become more risk-averse,
they are less likely to adopt the new technology. This is because since the outcome is uncertain, more risk-
averse farmers prefer the “safe” lottery, which is to not adopt.22 In part (iv), we investigate the cross-effect
of p and δ on the adoption rate of an untreated farmer. Indeed, if farmers are sufficiently risk-averse, when
risk aversion increases, the impact of the proportion of treated farmers (the exposure rate) on the adoption
rate of untreated farmers is lower. This is because when a farmer is very risk-averse, his treated peers in the
village do not have a large impact on his adoption rate and therefore the marginal effect is smaller.

6.2 Empirical test and results

Let us now test these theoretical results, especially parts (ii) and (iv) of Proposition 2, which are new.

6.2.1 Measuring risk attitude of farmers

We asked all farmers in our field experiment to answer two questions about their risk-taking attitudes.23

The first question is: “In daily life how much risk do you like to take?” The answers range from 1 to 10. If

22Formally speaking, the higher the risk aversion δ, the lower is the certainty equivalent of the lottery associated
with the adoption tradeoff.

23Contrary to the literature that shows that risk aversion has a negative effect on technology adoption (e.g., Ghadim
et al., 2005; Koundouri et al., 2006; Genius et al., 2013; Bonan et al., 2019), where risk is indirectly measured through
the variation in each farmer’s production or profit, we here directly measure the risk attitudes of farmers through
a survey. For example, Koundouri et al. (2006) measure the “production” risk of each farmer by calculating the
variance in each farmer’s profit and by assuming that farmers who experience high variance in their current profits
face higher production risk.
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a farmer answers 1, it indicates that his risk attitude is low and he is willing to take little risk in his daily
life. On the contrary , if a farmer answers 10, it means that his risk attitude is high and he is ready to take
risk in his daily life. The second question is: “When cultivating, how much risk do you like to take?” The
answers also range from 1 to 10, where a higher number means more risk-taking.

Figure B4 in Appendix B provides the distribution of the 3,630 farmers’ risk attitudes in the 120 treatment
villages. We see that 28% of farmers report a 9 or 10 for their risk-taking in daily life. On average, they
report taking a risk of 7.6 in daily life. Figure B5 shows a similar figure but for risk attitudes in cultivation
activity. The numbers are relatively similar even though 31% of farmers report a 9 or 10. Figures B6 and
B7 display the same distributions but for the 1,404 untreated farmers only. The numbers are similar but the
percentages of (untreated) farmers with high risk attitudes are lower.

6.2.2 Defining risk attitudes

We say that a farmer is risk-loving if he answered a 9 or 10 to both questions. Otherwise, he is considered to
be risk-averse. Table B8 in Appendix B shows that the percentage of risk-loving farmers is slightly smaller
for untreated farmers (19.66%) than for treated farmers (24.17%).

We also run another analysis in which we defined a risk-loving farmer as someone who answered a 10 to
both questions. In this more extreme definition, only 10.83% and 12.04% of untreated and treated farmers
are risk-loving, respectively. Using this definition, the results of the empirical analysis are qualitatively the
same as in Table 10 and can be found in Table B11 in Appendix B.

In order to show that our measure of risk attitude is meaningful, let us show that it correlates with
some characteristics of the farmers. By using our definition of risk attitude, i.e., a farmer is risk loving if
he answers 9 or 10 in both questionnaires, we examine the correlation between these risk attitudes and four
measures that capture different dimensions of farmers’ charateristics, that is their well-being status, their
personality, their ability and their confidence. Each of these characteristics is constructed as an index that
stems from several questions, which are listed in Table B9 in Appendix B. The results are reported in Table
B10 in Appendix B.24 It is found that risk-loving farmers have better well-being status, are more outgoing,
have open personality, have higher ability and are more confident than risk-averse farmers. Even though
these results are just correlations, they show that our measure of risk attitude makes sense.

6.2.3 Econometric model

We can now test Proposition 2 by extending our pooled OLS model (15) to

yNTi,v,t = α0 + α1p
T
i,v + α2δ

NT
i,v + α3(δNTi,v × pTi,v) +X

′

i,vβ + θt + εi,v,t, (21)

where δNTi,v indicates the risk attitude of untreated farmer i in village v = T1, T2. δNTi,v is a dummy variable:
it is equal to 0 (δNTi,v = 0) if the farmer is risk-loving (i.e., if he answered a 9 or 10 to both questions) and
1 (δNTi,v = 1) if the farmer is risk-averse (i.e., if he answered otherwise). All the other variables are defined
as in (15). According to Proposition 2, we should expect α1 > 0, α2 < 0, α3 < 0 and a higher value of α1

when comparing the 60 T2−treated villages with the 60 T1−treated villages.

24Note that all four indexes have been standardized so the coefficients in Table B10 are comparable.
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6.2.4 Empirical results

Table 10 displays the results of the estimation of equation (21), which has the same structure as Table 4 in
terms of dividing the total sample into the 60 T1 villages and 60 T2 villages. There are two columns for
each regression. The first columns (i.e., columns (1), (3), and (5)) report the results without the cross effect
while the second columns (i.e., columns (2), (4), and (6)) report the results with the cross effect.

Table 10: The effect of risk on the adoption rate of untreated farmers

120 villages 60 T1 villages 60 T2 villages

(1) (2) (3) (4) (5) (6)

pTi,v 0.221*** 0.245*** 0.0628 0.158*** 0.412*** 0.352***

(0.0382) (0.0421) (0.0505) (0.0551) (0.0581) (0.0642)

δNTi,v -0.0478*** -0.124** -0.0388** -0.347*** -0.0664*** -0.123

(0.0133) (0.0578) (0.0172) (0.0758) (0.0208) (0.0884)

δNTi,v × pTi,v -0.341*** -0.551*** -0.328**

(0.0992) (0.132) (0.149)

Observations 2,808 2,808 1,490 1,490 1,318 1,318

Notes: The dependent variable is the adoption decision of an untreated farmer. This is a dummy variable that takes the value
of 1 if an untreated farmer adopted the technology at time t (t = 1, 2) and 0 if he did not. A farmer is risk-loving (δNTi,v = 0)
if he answered a 9 or 10 to both risk questions in terms of daily life and rice activities. A farmer is risk-averse (δNTi,v = 1)
otherwise. Each regression includes year dummies and all six control variables in Table 4. Standard errors are clustered at the
village level and reported in parentheses. ***p<0.01, **p<0.05, *p<0.1.

We see that there is a significant negative direct effect of δNTi,v , the degree of the risk aversion of an
untreated farmer, on yNTi,v,t. As predicted by Proposition 2, the more risk-averse is an untreated farmer (i.e.,
higher δNTi,v ), the less likely he is to adopt SRI technology. This is because adopting the SRI is risky, as it
involves mostly mental changes and new ways of thinking. When looking at the cross-effect δNTi,v × pTi,v, as
predicted by Proposition 2, we find a significant and negative effect. That is, when the proportion of treated
farmers increases, more untreated farmers adopt SRI technology; however, the more risk-averse they are, the
lower is this impact on the adoption rate of untreated farmers.

As a robustness check, in Appendix D, we measure farmers’ risk attitudes by making them play a lottery
game similar to that of Binswanger (1980). Unfortunately, as only treated farmers played this game, we
could directly measure risk attitudes only for treated farmers. However, because untreated and treated
farmers were randomly assigned and the distribution of their observable characteristics is similar, we could
then predict the risk attitudes of untreated farmers by matching their observable characteristics with those
of treated farmers. The estimation results in Table C4 in Appendix D show that the results are similar to
those in Table 10.

More generally, our results show that risk aversion deters untreated farmers from adopting SRI technology
and can reduce the impact of the information transmission of treated farmers on the adoption rate of
untreated farmers. As stated above, this is because the SRI imposes a certain set of rules and practices (e.g.,
planting young seedlings, having wider spacing between plants, having the soil in the field kept moist but
not continuously flooded; see Section 3.3) that are not standard and thus involves mental changes and new
ways of thinking. Risk-averse farmers are therefore reluctant to adopt it and are also less likely to listen to
other farmers, even if the latter have been trained on the SRI.
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7 Conclusion

Uphoff (2016) tells the story of farmer Miyatty Jannah from Crawuk village in East Java, Indonesia. When
Miyatty first learned about the SRI in 2004, she invited SRI trainers to her village and personally covered
the costs of their stay to provide four days of training. Of the 25 farmers they trained, only 10 were willing
to try out the methods and there was a lot of resistance initially, even abuse. She told Norman Uphoff in
2008 the following: “The whole village was against us at first. ‘You are stupid,’ they said when they saw the
tiny planted SRI seedlings: ‘You will get nothing.’ But when harvesting was done, people came and said,
‘Wow. How did that happen from such small seedlings?’ All the people were surprised. With less water and
less money, we had 40–50% more paddy.”

This story by Miyatty Jannah is typical of the SRI adoption. Because it is so unusual and involves
a different way of thinking, most farmers are initially reluctant to adopt the technology. However, when
exposed to well-trained farmers who can explain them the benefits of the SRI and how to implement it, they
tend to change their opinions and adopt the SRI. Moreover, when some farmers adopt, other farmers also
tend to adopt because of effects and social norms.

In this study, we investigate this issue both theoretically and empirically in rural Bangladesh. This is
an important issue in a country in which rice cultivation accounts for 48% of rural employment, provides
two–thirds of the caloric needs of the nation along with half the protein consumed, and its contribution to
agricultural GDP is about 70%, while its share of national income is one–sixth (Sayeed and Yunus, 2018).

We provide a simple theoretical model in which risk-neutral untreated farmers adopt this new technology
when they are “exposed” to trained (treated) farmers who can provide accurate and reliable information about
SRI technology. Further, we consider risk-averse untreated farmers also influenced by trained farmers residing
in the same village but whose degree of risk aversion has both a direct negative effect on their adoption rate
and a cross-effect by reducing the effect of peers on the adoption decision.

We test these predictions by conducting a field experiment on 3,630 farmers in 120 villages in rural
Bangladesh, where rice is the main crop. We consider two types of treatments: farmers trained only once
(T1 villages) and those trained twice (T2 villages). Clearly, farmers with two years of training (i.e., repeated
training) should provide more accurate and reliable information about SRI technology than those with one
year of training. We use the exogenous variation across villages in terms of both the treatment and the
percentage of treated farmers by studying how the exposure rate (i.e., the proportion of treated farmers in
each village) of an untreated farmer affects his decision to adopt SRI technology.

We find that the percentage of farmers with two years of training in a village has a significant and
positive impact on the adoption rate of untreated farmers living in the same village, while those with one
year of training have no significant impact. We checked if the accuracy of information is the main mechanism
behind our results by conducting surveys on the different principles of SRI before and after the farmers have
been trained. We find that the accuracy of information about SRI increases after training but it increases
significantly more for T2−farmers compared to T1−farmers. Furthermore, when we consider the intensity of
interactions between farmers or treated farmers who have a professional relationship (discussing agricultural
or financial issues) with untreated farmers, the length of training becomes less important: both one-year- and
two-year-trained farmers have a significant and positive impact on the adoption rate of untreated farmers,
although we observe higher effects for two years of training.

Finally, we examine the effect of risk aversion on the adoption rate of untreated farmers and find that
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more risk-averse untreated farmers are less likely to adopt SRI technology. We also find that for more risk-
averse farmers, the effect of two-year-trained farmers on the adoption rate of untreated farmers is smaller
than that for less risk-averse untreated farmers.

As in the story of Miyatty Jannah, we believe that the primary incentive for untreated farmers in
rural Bangladesh to adopt SRI technology is “exposure” to farmers who have received sufficient training in
this technology. The more they trust these farmers, the more they believe the accuracy and reliability of
information on the quality of SRI technology and its ease of adoption. Moreover, given the risk and cost in
terms of new ways of thinking about the SRI, it is not surprising that more risk-averse farmers are less likely
to adopt the SRI but also are less “influenced” by their peers who have been trained and/or have adopted
this technology.

In terms of policy implications, when a new technology is as different as the SRI is from standard rice
technologies, most farmers would be reluctant to adopt it. This study finds that information and training
policies on the new technology are the easiest ways to help farmers decide to adopt it.
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Appendix

A Proofs of the propositions in the theoretical model

Proof of Proposition 1
(i) Combining (13) with (4) and (6) and taking into account that Φ(·) is an increasing function, we find

that
∂P{A = 1}

∂p
= P{A = 1 | θ = T} − P{A = 1 | θ = NT} > 0 ⇐⇒ c > β.

(ii) We need to show that
P{A = 1 | θ = T2} > P{A = 1 | θ = T1},

which is equivalent to

Φ

(
(c− β)

σ2
b
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σ2
b + σ2

T2

)
< Φ

(
(c− β)

σ2
b

√
σ2
b + σ2
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)
.

If c > β, this is true since σ2
T2 < σ2

T1. �

Proof of Proposition 2
(i) Because (b, sθ) follow a bivariate normal distribution, one can show that

Var (b | sθ) =
σ2
θ σ

2
b

σ2
θ + σ2

b

.

Combining this with (12) yields

P{A = 1 | θ} =
1√
2π

∞∫
∆(δ,σθ)
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)
dx, (A.1)

where

∆(δ, σθ) := (c− β)
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Hence,

P{A = 1 | θ = T} − P{A = 1 | θ = NT} =
1√
2π

∆(δ,σNT )∫
∆(δ,σT )

exp

(
− x2

2

)
dx.

Combining this with (4) and (6), we obtain

∂P{A = 1}
∂p

> 0 ⇐⇒ ∆(δ, σNT ) > ∆(δ, σT ). (A.3)

Since σNT > σT , a sufficient condition for ∆(δ, σNT ) > ∆(δ, σT ) to hold is that ∆(δ, σθ) increases with
σθ. Differentiating ∆(δ, σθ) w.r.t. σθ yields after simplifications:
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Setting δ := max{0, 2(β − c)/σ2
b}, we find that

δ > δ =⇒ ∂∆(δ, σT )

∂σT
> 0.

(ii) We now show that when risk aversion is higher, untreated individuals adopt less:

∂ P{A}
∂ δ

< 0. (A.4)

Using (5), (A.1), and (A.2), we obtain

∂ P{A = 1}
∂ δ

= −1

2

[
ϕ (∆(δ, σT ))

p σ2
T√

σ2
b + σ2

T

+ ϕ (∆(δ, σNT ))
(1− p)σ2

NT√
σ2
b + σ2

NT

]
, (A.5)

where ϕ(·) is the standard normal distribution density:

ϕ(x) :=
1√
2π

exp

(
− x2

2

)
.

Since the expression in squared brackets is strictly positive, we obtain (A.4).
(iii) Let us show that residing in a T2−treated village has a larger impact on the adoption probability

of an untreated farmer than residing in a T1−treated village. This situation can be captured in the model
as a reduction in the variance in the noise: farmers exposed to T2−treated farmers receive a more precise
signal about the quality of the technology than those exposed to T1−treated farmers. When δ > δ, where δ
is defined in (18), we have

∂ P{A = 1}
∂ σT

= −ϕ (∆(δ, σT ))
∂∆(δ, σT )

∂σT
< 0.

Hence, more training (i.e., a lower σT ) implies more adoption.
(iv) We now study the cross-effect of stronger risk aversion (higher δ) and more exposure to treated

individuals (higher p). Differentiating both sides of (A.5) with respect to p, we obtain

∂2 P{A = 1}
∂δ ∂p

= −1
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T√

σ2
b + σ2

T

− ϕ (∆(δ, σNT ))
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σ2
b + σ2

NT

]
. (A.6)

Factorizing ϕ (∆(δ, σT )) on the right-hand side of (A.6), we find that (20) holds if and only if the following
inequality holds:

σ2
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σ2
b + σ2

T

− σ2
NT√

σ2
b + σ2

NT

ϕ (∆(δ, σNT ))

ϕ (∆(δ, σT ))
> 0. (A.7)

From the definition of standard normal density, we have

ϕ (∆(δ, σNT ))

ϕ (∆(δ, σT ))
= exp
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.

Combining this with (A.7), we find that (20) is equivalent to

∆2(δ, σNT )−∆2(δ, σT ) > ln
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T
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Using (4) and (A.2), it is readily verified that the left-hand side of (A.8) is a strictly convex quadratic
function. Thus, there must exist a threshold value δ0 ≥ 0 of risk aversion such that (A.8), and hence (20)
holds true for all δ > δ0. This completes the proof. �
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B Additional figures and tables

Figure B1: Districts in the field experiment

Note: Notes: The five blue areas are the districts in which the RCT experiments were conducted.
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Figure B2: Density distribution of pTv

Figure B3: Distribution of total number of farmers between villages
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Figure B4: Distribution of risk taking attitudes in daily life for all farmers

Note: Notes: The sample includes all 3,630 farmers in the 120 treatment villages. The risk-taking attitude measure ranges from
1 to 10, where 1 indicates the lowest degree of risk and 10 implies the highest degree of risk.

Figure B5: Distribution of risk taking attitudes in cultivation activity for all farmers

Notes: The sample includes all 3,630 farmers in the 120 treatment villages. The risk-taking attitude measure ranges from 1 to
10, where 1 indicates the lowest degree of risk and 10 implies the highest degree of risk.
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Figure B6: Distribution of risk attitudes in daily activities for untreated farmers

Notes: The sample includes all 1,404 untreated farmers in the 120 treated villages. The risk-taking attitude ranges from 1 to
10, where 1 indicates the lowest degree of risk and 10 implies the highest degree of risk.

Figure B7: Distribution of risk attitudes in cultivating activities for untreated farmers

Notes: The sample include all the 1,404 untreated farmers in the 120 treated villages. The risk taking attitude is ranging from
1 to 10, where 1 indicates the lowest degree of risk and 10 implies the highest degree of risk.
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Table B1: Sample distribution of treatment villages

Treatment Villages Total farmers Treated farmers Untreated farmers
Year 1 (2014-15) T1 60 1,805 1,060 745

T2 60 1,825 1,166 659

Year 2 (2015-16) T1 60 1,805 No training
T2 60 1,825 1,166 659
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Table B2: Balance checks between treated and untreated farmers

Treated villages only

Household Characteristics (Baseline) Treated Untreated p-value

Mean Mean

Age (years) 46.47 46.62
0.73

(0.41) (0.39)

Household Income (Taka) 12222.95 11933.42
0.54

(459.84) (353.54)

Amount of cultivable land (Decimal) 159.08 161.29
0.68

(5.23) (4.52)

Education (Years) 4.01 4.21
0.17

(0.108) (0.137)

Household size 5.23 5.12
0.15

(0.06) (0.06)

Occupation 0.87 0.87
0.92

(0.01) (0.01)

Agricultural Characteristics (Baseline)

Production cost (Taka) 368.09 368.66
0.85

(121.00) (117.92)

Profit (Taka) 512.08 509.59
0.69

(220.43) (229.57)

Yield (kg per decimal of land) 22.69 22.66
0.78

(5.11) (5.03)

Observations 2,226 1,404
Notes: Taka is the unit of Bangladesh currency. The reported p-values are from the two tailed test with the null hypothesis
that group means are equal. Standard errors are clustered at village level and reported in parentheses. Occupation equals to 1
if the participant’s primary occupation is agriculture related, and 0 if his primary occupation is not related to agriculture.
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Table B3: Balance checks between T1−and T2−treated farmers

Treated villages only

T1 T2 p-value

Household Characteristics (Baseline) Mean Mean

Age (years) 46.31 46.72
0.59

(0.47) (0.59)

Household Income (Taka) 12058.10 12113.12
0.93

(480.69) (446.94)

Amount of cultivable land (Decimal) 161.12 158.36
0.73

(5.92) (5.50)

Education (Years) 4.29 4.15
0.53

(0.15) (0.16)

Household size 5.18 5.18
0.97

(0.07) (0.06)

Occupation 0.86 0.87
0.89

(0.01) (0.01)

Agricultural Characteristics (Baseline)

Production cost (Taka) 366.31 369.76
0.33

(118.31) (123.48)

Profit (Taka) 515.95 508.53
0.31

(212.08) (227.82)

Yield (kg per decimal of land) 22.80 22.59
0.14

(4.97) (5.24)

Observations 1,805 1,825
Notes: Taka is the unit of Bangladesh currency. The reported p-values are from the two tailed test with the null hypothesis
that group means are equal. Standard errors are clustered at village level and reported in parentheses. Occupation equals to 1
if the participant’s primary occupation is agriculture related, and 0 if his primary occupation is not related to agriculture.

Table B4: Test of pTv between T1 and T2 villages

Treatment Group Means
T1 0.59

(0.02)

T2 0.63

(0.02)

t-statistic of the t-test −1.54

P-value of the K-S test 0.18

Notes: A t-test examines the difference in the mean pTv between T1 and T2 villages. A K-S test tests the equality of the
distributions between T1 and T2 villages. The rejection criteria of both tests is p<0.05.
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Table B5: Percentage of farmers who discuss by type of frequency

Category % of farmers
Daily 8.82
Weekly 31.02
Monthly 29.26
Yearly 25.9
Never 5
Observations 1,404

Table B6: Number of finance-related peers for untreated farmers

Category Value
Mean 4.5
Median 2
Mode 0
Standard deviation 5.4
Observations 1,404
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Table B7: Yield difference between T1 and T2 villages by year

End of year 1 End of year 2
T1 T2 p-value T1 T2 p-value

All farmers 25.80 25.56 0.75 24.38 24.61 0.74
(0.54) (0.53) (0.50) (0.47)

Farmers who receive training 26.21 25.59 0.45 24.49 24.71 0.76
(0.58) (0.58) (0.54) (0.49)

Farmers who adopt 26.62 25.97 0.52 23.78 24.67 0.31
(0.73) (0.69) (0.69) (0.51)

Farmers who are trained and adopt 26.66 25.97 0.50 23.84 24.67 0.34
(0.74) (0.70) (0.61) (0.54)

Notes: Yield is defined as the amount of rice cultivated in one decimal of land, measured in kg. It is calculated as
the total amount of rice cultivated (kg) divided by total amount of cultivable land (decimal). Yield is reported by
year. Standard errors are clustered at village level and reported in parentheses.

Table B8: Percentage of risk-loving farmers

Percentage Risk loving

Treated farmers 24.17%

Untreated farmers 19.66%

Total farmers 22.42%
Notes: We define a farmer as risk-loving if he answers a 9 or 10 in his risk-taking attitude to both daily life and cultivating
activities.
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Table B9: The construction of each index that correlates with risk aversion

Well-being (Range 1 to 10)
How much satisfied you are about your personal relations
How much satisfied you are about your security?
How much satisfied you are being a part of your society?
How much satisfied you are about your future security?
How much satisfied you are in your religion?
How much happy do you think you are in your life?
How much happy you are about your livelihood?
How much satisfied you are about your health?
How much happy you are about your life’s achievement
Ability (Range 1 to 5)
Everyone knows I am a good farmer
Everyone says that I am good at farming
I don’t have any problem using new cultivation technique
I can successfully solve any cultivation related problem
I can produce more crop than other farmer
In the competition of producing yield, I am a successful farmer
No one can defeat me in producing crop
I can understand any discussion on cultivation
Whether rain or drought, I can produce crop
I am willing to work more to get more crop
I am proud of my success as a farmer
I follow other successful farmers
I deeply think about how can I produce more crops
Personality (Range 1 to 7)
Cultural/art activity is highly appreciated
Strong imagination power
Does everything with skill and successful
Respondent is hard working
Can start communicating with people easily and likes to talk
Likes to travel and very social
Sometimes roughly behaves with others
Easily forgives people
Respondent is introvert
Sympathetic and merciful
Worry a lot about small matters
Get anxious easily
Calm, can easily solve problems, pressure
Confidence (Range 1 to 10)
Respondent’s confidence in himself
Respondent confidence in cultivation

Notes: This is the list of questions that we collected in order to construct the four indexes that describe a farmer’s characteristics.
It includes wellbeing, personality, ability and confidence. Each index is calculated as the average score of the questions. Then,
we standardize each index by substracting it from the mean of the distribution and dividing it by the standard deviation of the
distribution.
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Table B10: The impact of risk attitude on farmer’s characteristics

120 villages

(1) (2) (3) (4)

Well-being Personality Ability Confidence

δi,v -0.0934** -0.329*** -0.238*** -0.447***

(0.0394) (0.0221) (0.0178) (0.0502)

Observations 3,630 3,630 3,630 3,630
Notes: Each dependent variable captures an aspect of the farmer’s characteristics, which include well-being, personality, ability
and confidence. The questions measuring these variables can be found in Table B9. A farmer is risk-loving (δi,v = 0) if he
answered a 9 or 10 to both risk questions in terms of daily life and rice activities. A farmer is risk-averse (δi,v = 1) otherwise.
***p<0.01, **p<0.05, *p<0.1.

Table B11: The effect of risk on adoption for extreme risk-loving farmers

120 villages 60 T1 villages 60 T2 villages

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

pTi,v 0.229*** 0.229*** 0.273*** 0.0713 0.0708 0.130** 0.421*** 0.421*** 0.441***

(0.0382) (0.0382) (0.0405) (0.0504) (0.0504) (0.0536) (0.0583) (0.0583) (0.0615)

δNTi,v -0.00835 -0.00657 -0.224*** -0.00726 -0.00636 -0.274*** -0.0135 -0.0129 -0.127

(0.0156) (0.0155) (0.0684) (0.0200) (0.0200) (0.0863) (0.0246) (0.0241) (0.110)

pTi,v × δNTi,v -0.387*** -0.484*** -0.200

(0.119) (0.152) (0.189)

Observations 2,808 2,808 2,808 2,808 1,490 1,490 1,490 1,490 1,318 1,318 1,318 1,318

Notes: The dependent variable is the adoption decision of an untreated farmer. This is a dummy variable that takes the value
of 1 if an untreated farmer adopted the technology at time t (t = 1, 2) and 0 if he did not. A farmer is risk-loving (δNTi,v = 0) if
he answered a 10 to both risk questions in terms of daily life and rice activities. A farmer is risk-averse (δNTi,v = 1) otherwise.
Each regression includes year dummies and all six control variables in Table 4. Standard errors are clustered at the village level
and reported in parentheses. ***p<0.01, **p<0.05, *p<0.1.
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C Another way of defining adoption

So far, we have measured adoption by having a dummy variable, yNTi,v,t, which takes a value of 1 if an untreated
(NT ) farmer i, residing in village v = T1, T2, has adopted at least three SRI principles in one of his plots of
land in year t = 1, 2, and 0 otherwise. As a robustness check, we use another measure of adoption, which has
been defined in Section 3.3 by APR. It is an “effort” variable which is equal to the proportion of principles
that a farmer has adopted in the plot of land that has adopted the highest number of principles. Since there
are six principles, APR =

{
0, 1

6 ,
2
6 , · · · , 1

}
. To use the same notation as in econometric model, we denote

this variable by yPR,NTi,v,t . This measure, which provides more detailed information about adoption will help
us understand some aspects of the results and the mechanisms.

C.1 Differences between adopters in both years and adopters in year 1 only

Table C1: Extent of applying SRI principles for 60 T1 villages

60 T1 villages

First-ranked plot Second-ranked plot Third-ranked plot

End of year 1 End of year 2 End of year 1 End of year 2 End of year 1 End of year 2

A1,0 0.58 0.17 0.23 0.16 0.18 0.14

(0.10) (0.15) (0.17) (0.14) (0.15) (0.14)

A1,1 0.61 0.61 0.32 0.42 0.24 0.35

(0.10) (0.10) (0.21) (0.23) (0.19) (0.24)

Observations 473 435 373
Notes: The extent of applying SRI principles is defined as the number of principles they applied on this plot of land divided by
total number of applicable principles, which is six. A1,0 farmers refer to the adopters who adopted in year 1 only but terminated
in year 2. A1,1 farmers refer to adopters who adopted in both years. The total number of A1,0 and A1,1 adopters is 473, each
of them has at least one plot of land land. 435 of them has at least two plots of land, and 373 of them has three plots of land.
For each farmer, we rank their plots of land according to the extent of applying SRI principles; first-ranked plot refers to the
plot of land that they applied most principles, and third-ranked plot is the plot of land for which they adopted the least number
of principles. Standard errors are reported in parentheses.
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Table C2: Extent of applying SRI principles for 60 T2 villages

60 T1 villages

First-ranked plot Second-ranked plot Third-ranked plot

End of year 1 End of year 2 End of year 1 End of year 2 End of year 1 End of year 2

A1,0 0.58 0.19 0.18 0.17 0.14 0.15

(0.09) (0.16) (0.18) (0.16) (0.15) (0.14)

A1,1 0.60 0.63 0.25 0.37 0.20 0.28

(0.10) (0.11) (0.18) (0.22) (0.17) (0.20)

Observations 487 444 353
Notes: The extent of applying SRI principles is defined as the number of principles they applied on this plot of land divided by
total number of applicable principles, which is six. A1,0 farmers refer to the adopters who adopted in year 1 only but terminated
in year 2. A1,1 farmers refer to adopters who adopted in both years. The total number of A1,0 and A1,1 adopter is 487, each of
them has at least one plot of land land. 444 of them has at least two plots of land, and 353 of them has three plots of land. For
each farmer, we rank their plots of land according to the extent of applying SRI principles; first-ranked plot refers to the plot
of land that they applied most principles, and third-ranked plot is the plot of land for which they adopted the least number of
principles. Standard errors are reported in parentheses.
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Table C3: Baseline characteristics of adopters

120 treatment villages

A1,1 A1,0 p-value

Age 44.32 45.51 0.17

(11.97) (12.78)

Household Income 10653 13518 0.013

(7466.36) (10116.29)

Education (years) 8.47 8.70 0.37

(3.17) (3.37)

Amount of cultivable land(decimals) 176.07 175.68 0.97

(139.82) (190.96)

Household size 5.30 5.22 0.493

(1.85) (1.93)

Occupation 0.93 0.88 0.007

(0.25) (0.32)

Risk aversion (Daily life and cultivation) 0.71 0.77 0.02

(0.02) (0.018)

Risk aversion (Cultivation only) 0.52 0.66 0.000

(0.02) (0.02)

Production cost 581 575 0.74

(312.19) (294.88)

Profit 394 444 0.009

(298.48) (273.62)

Yield 22.96 24.07 0.007

(6.31) (5.99)
Notes: All farmer’s characteristics are baseline data. Education is the maximum years of education in a household. Occupation
is a dummy that equals to 1 if the primary occupation of this participant is farmer or agricultural related, and 0 otherwise. Risk
aversion (daily life and cultivation) is a dummy that takes the value of 1 if a farmer answers 9 or 10 in both life and cultivation
activities. Risk aversion (cultivation only) is a dummy that equals to 1 if a participant answers 9 or 10 in cultivation activities.
The reported p-values are from the two-tailed test with the null hypothesis that the group means are equal.
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C.2 Reproducing the main regressions with a different definition of adoption

Table C4: The impact of trained farmers on the adoption rate (based on principles) of untreated farmers

120 villages 60 T1 villages 60 T2 villages

(1) (2) (3)

pTi,v 0.0690** 0.0113 0.122***

(0.0309) (0.0420) (0.0458)

Constant 0.185*** 0.204*** 0.178***

(0.0152) (0.0200) (0.0233)

Observations 2,111 1,109 1,002
Note: The dependent variable is the percentage of principles that an untreated farmer adopted on the first ranking plot at time
t (t=1,2). First ranking plot is defined as the plot where a farmer used most principles. Percentage of principles equals to the
number of principles a farmer used on this first ranking plot divided by total number of principles, which is 6. All regressions
control for baseline characteristics including age, years of education, occupation, land size, household size and household income.
Standard errors are clustered at village level, standard errors are reported in parentheses. The number of observations is slightly
different with table 4 as we collect adoption data at different times.*** p<0.01, **p<0.05, *p<0.1.
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D Another way of measuring risk attitudes

D.1 Measuring risk

To capture the risk attitudes of farmers, in the baseline survey, a simple gamble choice task was introduced to
all treated farmers across the 120 villages. The design of the lottery game was similar to that of Binswanger
(1980). Specifically, this gamble game was a one-period incentivized game that involved assigning different
payoffs to each option. Table C1 summarizes the payoffs and risk classification. In the baseline survey, each
treated farmer was given a form with the first three columns of the payoffs in Table C1. They were then
asked to choose from alternatives 1 to 6. Once this choice was made, a coin toss decided if farmers received
the low payoff (heads) or the high payoff (tails). In other words, in each option, a farmer had a 50/50 chance
of winning a high or low payoff.

Table C1: Payoffs and corresponding risk classification

Choice Heads (low payoff) Tails (high payoff) Expected payoff Risk aversion Proportion
1 100 100 100 Extreme 13.84%
2 80 200 140 Severe 8.80%
3 70 250 160 Moderate 11.13%
4 60 300 180 Inefficient 14.03%
5 50 350 200 Slight to Neutral 21.45%
6 0 400 200 Negative 30.77%

As shown in Table C1, farmers could be classified into different risk attitudes according to their choices.
For example, farmers who chose option 1 were classified as extremely risk-averse people. Indeed, choosing
option 1 gave a 100-taka payoff with probability 1. Although this payoff was the lowest across of six
alternatives, it was a guaranteed payment (i.e., it was risk-free). On the contrary, farmers who chose option
6 were classified as risk-loving, or having negative risk aversion. In option 6, they had a 50% chance of
earning an extremely high payoff of 400 taka or getting nothing. Although options 5 and 6 had the same
expected payoff, option 6 had a higher payoff variance; therefore, only risk-loving farmers would choose
option 6.

A (treated) farmer was described as risk-loving if he chose option 6 and risk-averse otherwise. We
find that 30.77% of farmers are risk-loving, while the rest (69.23%) are risk-averse. This is higher than
the percentage of risk-loving farmers when we used the survey (see Table B8 in Appendix B, where the
percentage of risk-loving treated farmers was 24.17%.

However, untreated farmers did not participate in this game; therefore, we do not know their risk
attitudes. To predict the risk attitudes of untreated farmers, we rely on our randomization process by
assuming that the distribution of risk preferences is the same between treated and untreated farmers (as
they were chosen at random). Indeed, Table B2 in Appendix B shows that treated and untreated farmers
have on average similar observable characteristics such as education, age, income, amount of cultivable land,
household size, and occupation. Therefore, it is reasonable to conclude that the distribution of risk attitude
is also similar between these two groups. To predict the risk attitudes of untreated farmers, we thus run a
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Table C2: Relationship between risk attitude and the characteristics of treated farmers

Age 0.0026***
(0.0009)

log(Income) -0.0372*
(0.0202)

log(Land) -0.005*
(0.0141)

Education -0.0065
(0.0072)

Household size 0.0014
(0.0059)

Occupation 0.0076
(0.0338)

Education2 -0.0013**
(0.0006)

Observations 2,226
Notes: The dependent variable is the dummy variable, which is 1 if a farmer is risk-averse, namely who chose options 1–5 in
Table C1, and 0 if a farmer is risk-loving, who chose option 6. Education 2 is the squared value of education. The regression
contains village dummies to capture the village-level fixed effects. Standard errors are clustered at the village level and reported
in parentheses.

regression on the risk attitudes of treated farmers, as a function of their observable characteristics, as follows:

δTi,v = γ0 +X
′

i,vβ + θv + εi,v, (D.1)

where δTi,v is a dummy variable that takes the value of 1 if the treated farmer is risk-averse (i.e., chose options
1–5 in Table C1) and 0 if he is risk-loving (i.e., chose option 6 in Table C1). The vector Xi includes all the
household- and individual-level characteristics likely to be predictors of risk-taking behavior (i.e., education,
age, income, amount of cultivable land, household size, and occupation), while εi,v and θv are defined as in
equation (15).

Table C2 displays the results of the estimation of equation (D.1). The signs obtained are intuitive: older
farmers are more risk-averse, while farmers that are more educated and farmers with larger families are less
risk-averse.

Let γ̂0 and β̂ be the OLS estimates of γ0 and β in equation (D.1). Then, untreated farmer i’s risk
attitude, δ̂NTi,v , is estimated as follows:

δ̂NTi,v = γ̂0 +X
′

i,vβ̂. (D.2)

Equation (D.2) relies on our assumption that farmers who have similar individual characteristics (e.g., age,
income, household size, amount of cultivable land, education, and occupation) have similar risk attitudes. In
Table C3 in Appendix B, we check the number of farmers predicted correctly, according to (D.1), where δ̂Ti,v
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Table C3: Predicted and real values of risk attitude

δ̂Ti,v

0 1 Total
δTi,v 0 438 176 614

1 646 966 1612
Total 1,084 1,042 2,226

Notes: δTi,v = 1 means risk-averse and δTi,v = 0 means risk-loving

Figure C1: Density distribution of the predicted riskiness of treated and untreated farmers

gives the estimated value of the risk attitude of treated farmers from the estimation of (D.2), while δTi,v gives
the “real” value of the risk attitude of treated farmers. Remember that δTi,v equal to 1 means risk-averse,
while δTi,v = 0 means risk-loving. All the values on the diagonal of Table C3 mean that the prediction is
correct. Specifically, of the 1,612 risk-averse farmers, the model predicts that 966 are risk-averse, with a hit
rate of 60%. Moreover, of the 614 risk-loving farmers, the model predicts 438 correctly, with a hit rate of
71.3%. The overall hit rate is 63.1%, which is high, providing us with confidence in our measure of the risk
attitudes of untreated farmers.

Figure C1 displays the distribution of (predicted) risk preferences for treated (dashed curve) and un-
treated (solid curve) farmers. Overall, the risk preferences for both groups are similar.1 This suggests that
there is no difference in risk preference between treated and untreated farmers in the villages.

After we calculate the predicted riskiness of the attitude δ̂NTi,v for all 1,330 untreated farmers, we rank
this riskiness index from low to high. Given that the share of risk-loving people among treated farmers is

1A K-S test is conducted to compare whether the distribution of estimated riskiness is identical between treated
and untreated farmers. We find that the combined difference is 0.0303 and is insignificant at the 95% confidence
level. Therefore, the distribution of δ̂i,v for treated farmers is similar to that for untreated farmers.
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30.77%, we define the first 69.23% untreated farmers as risk-averse and assign them a value of 1, with the
remaining 30.77% of untreated farmers categorized as risk-loving and assigned a value of 0.2

D.2 Econometric model and empirical results

As in the main text, we estimate the following model:

yNTi,v,t = α0 + α1p
T
i,v + α2δ̂

NT
i,v + α3(δ̂NTi,v × pTi,v) +X

′

i,vβ + θt + εi,v,t. (D.3)

The difference between equations (21) and (D.3) is that in the former the risk attitude is directly measured
by the survey and thus denoted by δNTi,v , while in the latter it is indirectly measured and thus denoted by
δ̂NTi,v .

Table C4 displays the results of the estimation of equation (D.3). We see that the direct and cross-effects
of risk aversion on the adoption rate of untreated farmers are roughly similar to those in Table 10 where we
measured risk using the survey.3

Table C4: The effect of risk on the adoption rate of untreated farmers

120 villages 60 T1 villages 60 T2 villages

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

pTi,v 0.229*** 0.365*** 0.0713 0.268** 0.421*** 0.467***

(0.0382) (0.101) (0.0504) (0.126) (0.0583) (0.148)

δ̂NTi,v -0.0288** 0.121* -0.0133 0.172** -0.0446** 0.0289

(0.0127) (0.0683) (0.0173) (0.0834) (0.0207) (0.105)

δ̂NTi,v × pTi,v -0.193* -0.291** -0.0158

(0.116) (0.142) (0.177)

Observations 2,808 2,808 2,808 2,808 1,490 1,490 1,490 1,490 1,318 1,318 1,318 1,318

Notes: The dependent variable is the adoption decision of an untreated farmer. This is a dummy variable that takes the value
of 1 if an untreated farmer adopted the technology at time t (t = 1, 2) and 0 if he did not. We determine the risk attitudes
of treated farmers through a lottery game and then predict the risk attitudes of untreated farmers. A farmer is risk-loving
when δ̂NTi,v = 0) and risk-averse when δ̂NTi,v = 1. Each regression includes year dummies and all six control variables in Table 4.
Standard errors are clustered at the village level and reported in parentheses. ***p<0.01, **p<0.05, *p<0.1.

2This is higher than the percentage of risk-loving farmers when we used the survey (see Table B8 in Appendix B,
where the percentage of risk-loving untreated farmers was 19.66%.

3In the columns in which δ̂NTi,v has a positive sign, the net effect of risk aversion on adoption is negative, since the
negative cross-effect of δ̂NTi,v × pTi,v is much higher than the direct effect of δ̂NTi,v .
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