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Abstract. This paper introduces the Stata commands checkax, aei, and powerps

as a bundle within the package rpaxioms. The first command allows the user to
test whether consumer demand data satisfy a number of revealed preference axioms
at a given efficiency level; the second command calculates measures of goodness-of-
fit when the data violate these axioms; and the third command calculates power
against uniformly random behavior as well as predictive success for each axiom
at any given efficiency level. The commands are illustrated using individual-level
experimental data and aggregated household-level consumption data.
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1 Introduction

The standard way to check whether a finite set of consumer demand observations is
compatible with economic rationality, i.e., the hypothesis of utility maximization, is
to apply a revealed preference test. Such a procedure checks whether the data, which
consist of observed prices and quantities for a set of consumer goods, satisfy a given
revealed preference axiom, e.g., the generalized axiom of revealed preference (GARP).
Varian’s (1982) formulation of Afriat’s (1967) well-known theorem states that consumer
demand data obey GARP if and only if there exists a continuous, strictly increasing,
and concave utility function which rationalizes the data.

In general, revealed preference tests are ‘sharp’, in the sense that they deliver a binary
response as to whether the observed demand data are compatible with the underlying
behavioral model. However, given sufficiently rich data, an outright failure of even fairly
permissive notions of rationalizability should not be unexpected, and it may well be that
these same data are in fact very close to rationalizability. As noted by Varian (1990),
‘nearly optimizing’ behavior is often just as good as ‘optimizing’ behavior. Afriat (1973)
proposes to test for nearly optimizing behavior by allowing a part of the consumer’s
expenditure to be ‘wasted’. The fraction of expenditure that is not being wasted by the
consumer is usually referred to as the efficiency level of the test. Varian’s (1982) original
formulation of GARP implicitly assumes an efficiency level of 1, i.e., the consumer is
not allowed to waste any part of her expenditure.
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Varian (1982) proposes a simple combinatorial algorithm to test whether consumer
demand data obey GARP. This algorithm can be easily adapted to test GARP at any
efficiency level. Our first command, checkax, implements Varian’s algorithm to test
whether a data set satisfies GARP at any efficiency level specified by the user. The
command also allows a user to test whether the data obey the following revealed prefer-
ence axioms at any efficiency level: the strong axiom of revealed preference (SARP), the
weak generalized axiom of revealed preference (WGARP), the weak axiom of revealed
preference (WARP), the symmetric generalized axiom of revealed preference (SGARP),
the homothetic axiom of revealed preference (HARP), and cyclical monotonicity (CM).
All axioms and their behavioral implications are described in more detail in Section 2.4.

Afriat (1973) proposes that an upper limit on the efficiency level at which the data
satisfy GARP, or the critical cost efficiency, is a measure of approximate rationalizability.
Hence, this index, called the Afriat efficiency index (AEI, also known as the critical cost
efficiency index, CCEI), measures the severity of violations as the minimal expenditure
adjustment that is required in order for the data to comply with GARP. As such,
Varian (1990) later extends and interprets this measure as a ‘goodness-of-fit’ criterion.
The approach can also be applied to other axioms, and our second command, aei,
implements the AEI for each of the following seven axioms: GARP, SARP, WGARP,
WARP, SGARP, HARP, and CM. The AEI is discussed in more detail in Section 2.2.

In addition to goodness-of-fit, the outcome of a revealed preference test in many
empirical applications is often reported alongside some measure of power. The power of
a revealed preference test, say for GARP, is defined as the probability of rejecting GARP,
given that the data were generated from some type of ‘irrational’ consumption behavior.
Bronars (1987) proposes a power index where the irrational behavior is based on Becker’s
(1962) uniformly random consumption model. Thus, for this widely used power index,
the choices generated from an irrational consumer are uniformly distributed on the
frontiers of the budget sets. Our third command, powerps, implements the Bronars
power index for any of the axioms above and at any efficiency level. This command
also reports a measure of predictive success originally introduced by Selten (1991) and
adapted to the revealed preference framework by Beatty and Crawford (2011). This
measure is motivated by the idea that if the data satisfy a given revealed preference
axiom, then any robust conclusion on rationalizability should, at a minimum, require
the test to have high power against uniformly random behavior. As such, the predictive
success measure combines the pass rate of the revealed preference test with Bronars
power index. Power and predictive success are further discussed in Section 2.3.

We illustrate these three commands—checkax, aei, and powerps—on two types of
data sets that are commonly used in empirical applications of revealed preference. First,
using experimental data collected by Andreoni and Miller (2002), we test whether the
social allocations selected by subjects are compatible with basic utility maximization
and several different variants of this model. Second, using aggregated household con-
sumption data on four food categories from Poi (2002), we test whether these data can
be rationalized by preferences that are common across all households.1

1. Poi (2002) uses the same data to illustrate the estimation of parametric demand systems in Stata.
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2 Revealed preference

Suppose that there are T observations of the prices and quantities of K goods. At
observation t = 1, . . . , T , the prices and quantities are denoted by pt = (pt1, . . . , p

t
K)

and xt = (xt1, . . . , x
t
K), respectively. We assume that all prices are strictly positive,

and that all quantities are non-negative (i.e., some but not all quantities at any given
observation may be equal to zero).

2.1 The Generalized Axiom of Revealed Preference at efficiency e

Consider any number 0 < e ≤ 1. For any pair of observations (t, s), we say that xt is
directly revealed preferred to xs at efficiency level e, written xtRD

e xs if ept ·xt ≥ pt ·xs.
This means that xt is chosen even though the cost of the bundle xs (at prices pt) does
not exceed ept · xt. Analogously, we say that xt is strictly directly revealed preferred
to xs at efficiency level e, written xtPD

e xs if ept · xt > pt · xs. We say that xt is
revealed preferred to xs at efficiency level e, written xtRex

s, if there exists a sequence
of observations (t, u, v, . . . , w, s) such that xtRD

e xu,xuRD
e xv, . . . ,xwRD

e xs. Hence, Re is
the transitive closure of the direct revealed preferred relation RD

e . The number e can be
interpreted as a level of cost efficiency. When e = 1, which we refer to as ‘full’ efficiency,
these relations reduce to the usual revealed preference relations (Varian 1982).

A data set (pt,xt)t=1,...,T satisfies the generalized axiom of revealed preference at

efficiency level e, abbreviated eGARP, if xtRex
s implies eps · xs ≤ ps · xt.

Varian’s (1982) standard version of the generalized axiom of revealed preference
(GARP) can be obtained by setting e = 1. It is well known that GARP is necessary
and sufficient for a data set to be rationalized by a continuous, strictly increasing, and
concave utility function (Afriat 1967; Diewert 1973; Varian 1982). The eGARP axiom
can be tested at any efficiency level e by slightly modifying the algorithm proposed
by Varian (1982). First, the relations RD

e and PD
e are formed by constructing the

T × T matrices RD and PD, where the elements RDts and PDts are equal to 1 if
ept · xt ≥ pt · xs and ept · xt > pt · xs, respectively, and 0 otherwise. Second, the
relation Re is formed by calculating the transitive closure of the matrix RD, which gives
a T × T matrix RT with element RTts that is equal to 1 if xtRex

s, and 0 otherwise.
Varian (1982) suggests calculating RT using Warshall’s algorithm (Warshall 1962). The
command checkax constructs RT using a vectorized version of Warshall’s algorithm.
Third, eGARP is violated if RTts = 1 and PDst = 1 for any pair of observations
(t, s). The total number of violations is given by the number of pairs (t, s), with t 6= s,
such that RTts = 1 and PDst = 1. Therefore, in a data set of T observations, the total
possible number of eGARP violations is T (T − 1), and the fraction of violations is given
by the ratio of the number of violations to T (T − 1). At any user-specified efficiency
level e, the command checkax reports whether or not the data satisfy eGARP, as well
as the number and fraction of violations.2

2. Swofford and Whitney (1987) originally suggests using the number of violations as a goodness-of-fit
measure, while Famulari (1995) proposes a related metric, which can roughly be interpreted as the
fraction of violations.
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2.2 The Afriat Efficiency Index

The Afriat (1973) efficiency index (AEI) is defined as the maximal value of e (the
supremum, to be precise) such that the data obey eGARP. Varian (1990) interprets the
AEI as a measure of goodness-of-fit in terms of wasted expenditure: if a consumer has
an AEI of e∗ < 1, then she could have obtained the same level of utility by spending
only the fraction e∗ of what she actually spent. The command aei calculates the AEI
by implementing the binary search algorithm described in Varian (1990).

2.3 Power and predictive success

The notion of irrationality which underpins the Bronars (1987) power index is based on
a model of uniformly random consumption, in which all feasible consumption alloca-
tions (i.e., bundles along the frontiers of the budget sets) are equally likely to be chosen.
Bronars (1987) suggests implementing the index using Monte Carlo methods, which are
executed in the command powerps across three steps. The first step consists of generat-
ing artificial budget shares that are consistent with uniformly random consumption. At
each observation, this involves generating K random variables drawn from the Dirichlet
distribution with all parameters (characterizing this distribution) set equal to one. By
construction, at each observation, these random variables are uniformly distributed on
the (K − 1)-dimensional unit simplex, and consequently, can be interpreted as budget
shares in the uniformly random model. The second step solves for each uniformly ran-
dom consumption quantity (denoted by qtk) from the budget share equation given by
wt

k = ptkq
t
k/p

t · xt, where each wt
k denotes an artificial budget share generated in the

first step. (Notice that pt and xt are given in the original data set). Thus, the first two
steps generate a synthetic data set across K goods and T observations that is compatible
with uniformly random behavior. The third step repeats the first two steps many times,
and for each repetition checks whether the synthetic data set of prices and uniformly
random quantities satisfy, say, eGARP at a given efficiency level e. The power measure
is the fraction of these synthetic data sets which would then violate eGARP.

The command powerps allows the user to simultaneously calculate the power cor-
responding to several axioms at once, in order to simplify power comparisons across
axioms. The command also allows the user to choose the efficiency level and to specify
the number of repetitions involved in the third step. Moreover, it also allows the user
to set the random seed in the generation of the Dirichlet random variables in the first
step, in order to make any power calculations perfectly replicable.

The command powerps also reports Beatty and Crawford’s (2011) revealed prefer-
ence measure of predictive success. For a given data set, this measure is defined as
the difference between the pass/fail indicator and one minus the Bronars’ power index,
where the pass/fail indicator takes the value 1 if the original data obey some axiom at
a given efficiency level, and 0 otherwise, and where the power index corresponding to
that axiom is calculated at the same efficiency level. This measure of predictive success
can then be straightforwardly aggregated across individual data sets.
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2.4 Other axioms

The empirical content of utility maximization is entirely captured by eGARP. Varian
(1982) gives a revealed preference characterization of the utility maximization model
under full efficiency, i.e., when e = 1. Halevy et al. (2018) extends these results and
provides a characterization under partial efficiency, i.e., when e < 1.

Our commands are also implementable for other revealed preference axioms that
characterize a number of the common variants of basic utility maximization. The default
axiom in every command is eGARP (with e = 1), but each command can also be
executed for six other revealed preference axioms at any user-specified efficiency level.

• (Strong axiom of revealed preference) A data set (pt,xt)t=1,...,T satisfies the strong

axiom of revealed preference at efficiency level e, abbreviated eSARP, if xtRex
s

implies eps ·xs < ps ·xt whenever xt 6= xs. Matzkin and Richter (1991) shows that
SARP (full efficiency) is necessary and sufficient for a data set to be rationalized by
a continuous, strictly increasing, and strictly concave utility function. Notice that
the difference between GARP and SARP is that GARP allows for ‘flat spots’ of
indifference, which means that GARP can accommodate demand correspondences
while SARP requires demand functions. Like eGARP, there can be up to T (T −1)
violations of eSARP.

• (Weak generalized axiom of revealed preference) A data set (pt,xt)t=1,...,T satisfies
the weak generalized axiom of revealed preference at efficiency level e, abbreviated
eWGARP, if xtRD

e xs implies eps · xs ≤ ps · xt. Aguiar et al. (2020) shows
that WGARP (full efficiency) is necessary and sufficient for a data set to be
rationalized by a continuous, strictly increasing, piecewise concave, and skew-
symmetric preference function (see Aguiar et al. (2020) for the definitions of a
preference function and the relevant properties pertaining to preference functions).
Banerjee and Murphy (2006) shows that WGARP and GARP are equivalent when
the consumer chooses from among bundles of two goods, i.e., when K = 2. The
total possible number of violations of eWGARP is T (T − 1)/2.

• (Weak axiom of revealed preference) A data set (pt,xt)t=1,...,T satisfies the weak

axiom of revealed preference at efficiency level e, abbreviated eWARP, if xtRD
e xs

implies eps ·xs < ps ·xt whenever xt 6= xs. Aguiar et al. (2020) shows that WARP
(full efficiency) is necessary and sufficient for a data set to be rationalized by a
continuous, strictly increasing, piecewise strictly concave, and skew-symmetric
preference function. The difference between WGARP and WARP is analogous to
the difference between GARP and SARP. Furthermore, Rose (1958) shows that
WARP and SARP are equivalent when K = 2. Like eWGARP, there can be up
to T (T − 1)/2 violations of eWARP.

• (Symmetric generalized axiom of revealed preference) For any (t, s), we can modify
the definition of RD

e so that xtRD
e xs if ept ·xt ≥ pt ·ys, where ys is any permuta-
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tion of xs,3 and where the transitive closure Re of RD
e follows accordingly. A data

set (pt,xt)t=1,...,T satisfies the symmetric generalized axiom of revealed preference

at efficiency level e, abbreviated eSGARP, if xtRex
s implies eps · xs ≤ ps · yt

(where once again yt is any permutation of xt). Nishimura et al. (2017) shows
that eSGARP is necessary and sufficient for a data set to be rationalized by a
continuous, strictly increasing, concave, and symmetric utility function. Polisson
et al. (2020) implements eSGARP in the context of symmetric risk, i.e., the util-
ity function must also obey first order stochastic dominance (FOSD). The total
possible number of violations of eSGARP is T 2.

• (Homothetic axiom of revealed preference) A data set (pt,xt)t=1,...,T satisfies
the homothetic axiom of revealed preference at efficiency level e, abbreviated
eHARP, if for all distinct (s, t, u, . . . , v) we have (pt · xs) (ps · xu) · · · (pv · xt) ≥
(ept · xt) (eps · xs) · · · (epv · xv). Varian (1983) shows that HARP (full efficiency)
is necessary and sufficient for a data set to be rationalized by a continuous, strictly
increasing, concave, and homothetic utility function. Heufer and Hjertstrand
(2019) provide a characterization under partial efficiency, and refer to e∗ in this
case as the homothetic efficiency index (HEI). The command checkax implements
eHARP as described in Varian (1983) using the Floyd-Warshall algorithm. The
total possible number of violations of eHARP is T .

• (Cyclical monotonicity) A data set (pt,xt)t=1,...,T satisfies a cyclical monotonicity
condition at efficiency level e, abbreviated eCM, if for all distinct (s, t, u, . . . , v) it
must be the case that pt · (xs − ext) + ps · (xu − exs) + · · ·+ pv · (xt − exv) ≥ 0.
Brown and Calsamiglia (2007) shows that CM (full efficiency) is necessary and
sufficient for a data set to be rationalized by a continuous, strictly increasing,
concave, and quasilinear utility function. The command checkax implements
eCM in a similar manner to eHARP using the Floyd-Warshall algorithm. Like
eHARP, there can be up to T violations of eCM.

We conclude this section with two comments. First, notice that in general a data set
is ‘approximately rationalizable’ if it could have arisen from the maximization of some
utility/preference function subject to a modified budget set. Explicit theoretical support
for these relaxations of rationalizability has been developed in the case of eGARP,
eSGARP, and eHARP, but not for the other axioms.

Second, we note that smoothness/differentiability has no material empirical content
once cost inefficiency has been taken into account. For example, Chiappori and Rochet
(1987) shows that Strong SARP (SSARP) is necessary and sufficient for a data set to
be rationalized by an infinitely differentiable, strictly increasing, and strictly concave
utility function. Suppose that a data set obeys SARP, but fails SSARP, which amounts
to the same consumption bundle being chosen at two or more distinct price vectors.
If we set the efficiency level to 1 − ε, for some ε > 0 arbitrarily small, then we could
always find a smooth rationalization. Since the CCEI is defined as a supremum, the

3. For example, if xs = (3, 1, 2), then there are six permutations of xs: (1, 2, 3), (1, 3, 2), (2, 1, 3),
(2, 3, 1), (3, 1, 2), and (3, 2, 1).
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CCEI for SSARP would still be equal to 1. In other words, smoothness/differentiability
are ‘untestable’ in a meaningful way. See also the discussion in Polisson et al. (2020).

3 Stata commands

Our commands checkax, aei, and powerps do not require any additional Stata pack-
ages. The commands are available on SSC and can be installed by entering ‘SSC install
rpaxioms’ at the Stata command prompt. All three commands take as their two main
(required) arguments the T ×K price and quantity matrices:

price(string) specifies a T×K price matrix, where each row corresponds to an observa-
tion t and each column to a good k. All prices are required to be strictly positive. If
any of the elements in the price matrix are non-positive (or if the price and quantity
matrices have different dimensions), the commands return an error message.

quantity(string) specifies a T × K quantity matrix, where each row corresponds to
an observation t and each column to a good k. All quantities are required to be
non-negative. Some (but not all) quantities at a given observation may be equal to
zero. If the quantity matrix violates these conditions (or if the price and quantity
matrices have different dimensions), the commands return an error message.

3.1 Syntax of checkax

The syntax of checkax is as follows:

checkax, price(string) quantity(string)
[
axiom(string) efficiency(#)

]
The optional arguments are:

axiom(string) specifies the axiom(s) that the user would like to test. The default option
is axiom(eGARP). There are seven axioms that can be tested: eGARP, eSARP, eWGARP,
eWARP, eSGARP, eHARP, and eCM. The user may also test all axioms simultaneously
by specifying axiom(all).

efficiency(#) specifies the efficiency level at which the user would like to test the ax-
iom(s). The default option is efficiency(1). The efficiency level must be positive,
and no greater than one.

Running checkax produces a table with the following entries and return list:

Axiom returns the axiom(s) being tested. Given as the macro r(AXIOM) in return list.

Pass is a binary number indicating whether the data satisfy the axiom or not: Pass=1
if the data satisfy the axiom and Pass=0 if the data do not satisfy the axiom. Given
as the scalar r(PASS axiom) in return list.

#vio is the number of violations. Note that #vio>0 if Pass=0, and #vio=0 if Pass=1.
Given as the scalar r(NUM VIO axiom) in return list.
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%vio is the fraction of violations. Note that %vio>0 if Pass=0, and %vio=0 if Pass=1.
Given as the scalar r(FRAC VIO axiom) in return list.

Goods is the number of goods. Given as the scalar r(GOODS) in return list.

Obs is the number of observations. Given as the scalar r(OBS) in return list.

Eff is the efficiency level of the test. Given as the scalar r(EFF) in return list.

The following examples illustrate checkax. The price and quantity matrices are P

and X, respectively, where both data matrices are in Excel (.xls) format. The first
example runs checkax using its default options, i.e., for eGARP at the efficiency level
e = 1. The second example runs checkax for eGARP and eHARP at the efficiency level
e = 0.95. The output also contains the return list for the second example.

. import excel using "${datadir}/prices.xls", clear

. mkmat A B C D E, matrix(P)

. import excel using "${datadir}/quantities.xls", clear

. mkmat A B C D E, matrix(X)

. checkax, price(P) quantity(X)

Number of obs = 20
Number of goods = 5
Efficiency level = 1

Axiom Pass #vio %vio

eGARP 0 161 42.37

. checkax, price(P) quantity(X) axiom(eGARP eHARP) efficiency(0.95)

Number of obs = 20
Number of goods = 5
Efficiency level = .95

Axiom Pass #vio %vio

eGARP 0 104 27.37
eHARP 0 20 100

. return list

scalars:
r(FRAC_VIO_eHARP) = 100
r(NUM_VIO_eHARP) = 20

r(PASS_eHARP) = 0
r(EFF) = .95

r(GOODS) = 5
r(OBS) = 20

r(FRAC_VIO_eGARP) = 27.37
r(NUM_VIO_eGARP) = 104

r(PASS_eGARP) = 0

macros:
r(AXIOM) : " eGARP eHARP"
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3.2 Syntax of aei

The syntax of aei is as follows:

aei, price(string) quantity(string)
[
axiom(string) tolerance(#)

]
The optional arguments are:

axiom(string) is the same as in the checkax command specified above.

tolerance(#) sets the tolerance level of the termination criterion 10−n by specifying
the integer n. For example, tolerance(6) sets the tolerance level to 10−6. The
default option is tolerance(12), which gives a default tolerance level 10−12. The
integer n in the termination criterion 10−n cannot be less than 1 or greater than 18.

Running aei produces a table with the following entries and return list:

Axiom, Goods, and Obs are the same as in checkax.

AEI is the AEI. Given as the scalar r(AEI axiom) in return list.

Tol is the tolerance level of the termination criterion for the AEI calculation. Given as
the scalar r(TOL) in return list.

The following examples illustrate aei using the same data as above. The first ex-
ample runs aei using its default options, i.e., for eGARP with a tolerance level set to
10−12. The second example runs aei for eGARP and eHARP with the tolerance level
set to 10−6. The output also contains the return list for the second example.

. aei, price(P) quantity(X)

Number of obs = 20
Number of goods = 5
Tolerance level = 1.0e-12

Axiom AEI

eGARP .9055851

. quietly aei, price(P) quantity(X) axiom(eGARP eHARP) tolerance(6)

. return list

scalars:
r(TOL) = 1.00000000000e-06

r(GOODS) = 5
r(OBS) = 20

r(AEI_eHARP) = .844968318939209
r(AEI_eGARP) = .9055848121643066

macros:
r(AXIOM) : " eGARP eHARP"
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3.3 Syntax of powerps

The syntax of powerps is as follows:

powerps, price(string) quantity(string)
[
axiom(string) efficiency(#)

simulations(#) seed(#) aei tolerance(#) progressbar
]

The optional arguments are:

axiom(string) and efficiency(#) are the same as in checkax.

simulations(#) specifies the number of repetitions of the simulated uniformly random
data. The default number of repetitions is simulations(1000).

seed(#) specifies the random seed in the generation of the Dirichlet random numbers.
The default random seed is seed(12345).

aei specifies whether the user wants to compute the AEI for each simulated data set
and specified axiom. The default option is that aei is not specified.

tolerance(#) sets the tolerance level of the termination criterion 10−n by specifying
the integer n when computing the AEI. See Section 3.2 for a more detailed descrip-
tion. This option is only useful in combination with the aei option.

progressbar specifies if the user wants to display the number of repetitions that have
been executed. The default is that progressbar is not specified.

Running powerps produces a table with the following entries and return list:

Axiom returns the axiom(s) being tested. Given as the macro r(AXIOM) in return list.

Power is the power. Given as the scalar r(POWER axiom) in return list.

PS is the predictive success. Given as the scalar r(PS axiom) in return list.

PASS is a binary number indicating whether the actual data satisfy the axiom or not:
Pass=1 if the actual data satisfy the axiom and Pass=0 if the actual data do not
satisfy the axiom. Given as the scalar r(PASS axiom) in return list.

AEI is the AEI corresponding to the actual data. Given as the scalar r(AEI axiom) in
return list.

Sim is the number of repetitions of the simulated uniformly random data. Given as the
scalar r(SIM) in return list.

Eff is the efficiency level at which power and predictive success are computed. Given
as the scalar r(EFF) in return list.

Goods is the number of goods. Given as the scalar r(GOODS) in return list.

Obs is the number of goods. Given as the scalar r(OBS) in return list.

For each axiom being tested, the command also produces a table containing summary
statistics over all simulated data with the following entries and return list:
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#vio gives the mean (Mean), standard deviation (Std. Dev.), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) of the
number of violations. Given as the matrix r(SUMSTATS axiom) in return list.

%vio gives the mean (Mean), standard deviation (Std. Dev.), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) of the
fraction of violations. Given as the matrix r(SUMSTATS axiom) in return list.

AEI gives the mean (Mean), standard deviation (Std. Dev.), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) of the AEI.
Given as the matrix r(SUMSTATS axiom) in return list. This is only displayed if
the option aei is specified. The tolerance level of the termination criterion in the
AEI calculation is given as the scalar r(TOL axiom) in return list.

For each axiom being tested, the matrix r(SIMRESULTS axiom) in return list con-
tains, for every simulated uniformly random data set, the number of violations, the
fraction of violations, and the AEI (only if the option aei is specified).

The following examples illustrate powerps using the same data as above. The first
example runs powerps for the axioms eGARP and eHARP. All other options are set to
their defaults. The second example tests the same axioms but also includes the option
aei, which calculates the AEI for both eGARP and eHARP for each of the 1,000
simulated data sets. The output also contains the return list for the second example.

. powerps, price(P) quantity(X) axiom(eGARP eHARP)

Number of obs = 20
Number of goods = 5
Simulations = 1000
Efficiency level = 1

Axioms Power PS Pass AEI

eGARP .995 -.005 0 .9055851
eHARP 1 0 0 .8449687

Summary statistics for simulations:

eGARP #vio %vio

Mean 47.339 12.45762
Std. Dev. 29.45589 7.751351

Min 0 0
Q1 24 6.32

Median 45 11.84
Q3 68.5 18.025
Max 143 37.63

eHARP #vio %vio

Mean 20 100
Std. Dev. 0 0

Min 20 100



12

Q1 20 100
Median 20 100

Q3 20 100
Max 20 100

. powerps, price(P) quantity(X) axiom(eGARP eHARP) aei

Number of obs = 20
Number of goods = 5
Simulations = 1000
Efficiency level = 1

Axioms Power PS Pass AEI

eGARP .995 -.005 0 .9055851
eHARP 1 0 0 .8449687

Summary statistics for simulations:

eGARP #vio %vio AEI

Mean 47.339 12.45762 .842074
Std. Dev. 29.45589 7.751351 .0814885

Min 0 0 .5616643
Q1 24 6.32 .7924721

Median 45 11.84 .8516639
Q3 68.5 18.025 .9015748
Max 143 37.63 1

eHARP #vio %vio AEI

Mean 20 100 .7268926
Std. Dev. 0 0 .0760639

Min 20 100 .4819745
Q1 20 100 .6767944

Median 20 100 .7307337
Q3 20 100 .7845822
Max 20 100 .8955996

. return list

scalars:
r(POWER_eHARP) = 1

r(PS_eHARP) = 0
r(PASS_eHARP) = 0
r(AEI_eHARP) = .844968688899371

r(SIM) = 1000
r(TOL_eharp) = 12

r(POWER_eGARP) = .995
r(PS_eGARP) = -.005

r(PASS_eGARP) = 0
r(AEI_eGARP) = .9055851063826594
r(TOL_eGARP) = 12

r(EFF) = 1
r(GOODS) = 5
r(OBS) = 20
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macros:
r(AXIOM) : " eGARP eHARP"

matrices:
r(SUMSTATS_eHARP) : 7 x 3

r(SIMRESULTS_eHARP) : 1000 x 3
r(SUMSTATS_eGARP) : 7 x 3

r(SIMRESULTS_eGARP) : 1000 x 3

4 Empirical illustrations

This section illustrates how to implement our commands using two types of data that are
common in many revealed preference applications. The first type of data set contains the
individual choices of experimental subjects. Such controlled environments are desirable
from the perspective of empirical testing because relative prices can be calibrated across
observations in order to engineer a sufficiently powerful test of, say, utility maximization.
In our empirical illustration, we analyze the budgetary data collected in Andreoni and
Miller (2002); other prominent examples of experiments involving budgetary designs
include Choi et al. (2007, 2014), Andreoni and Sprenger (2012), and Halevy et al. (2018).
The second type of data set contains annual household food consumption within broad
categories. Aggregated household-level data have long been used to estimate parametric
demands systems (see, e.g., Deaton and Muellbauer (1980), Banks et al. (1997), and
Lewbel and Pendakur (2009)), and moreover, Poi (2002) makes use of the same data
set in order to illustrate the estimation of parametric demand systems in Stata.

4.1 Experimental data

Andreoni and Miller (2002) tests whether the social choices of experimental subjects
are rational, employing a dictator game in which one subject (the dictator) allocates
token endowments between himself and another subject (the beneficiary) according to
some rate of transfer. The payoffs of the dictator and the beneficiary are essentially two
distinct goods and the transfer rates are the price ratios. The experiment contains two
parts, where 142 subjects (Group 1) face T = 8 decision rounds, and where 34 subjects
(Group 2) face T = 11 rounds. In this illustration, we focus on subjects in Group 1.

Andreoni and Miller (2002) finds that 13 subjects in Group 1 violate rationality, and
for each of these 13 subjects reports the AEI (for GARP) and the number of violations
of eGARP, eSARP, and eWARP at the efficiency level e = 1 (see Table II in Andreoni
and Miller (2002)). Banerjee and Murphy (2006) complements this analysis and reports
the number of violations of eWGARP at the efficiency level e = 1 (see Table 1 in
Banerjee and Murphy (2006)). Using the commands checkax and aei, the following
code replicates these results:

. local axioms eGARP eWGARP eSARP eWARP

.

. forvalues subject = 1/142 {

. foreach axiom of local axioms {
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. checkax, price(P) quantity(Q`subject´) axiom(`axiom´)

. }

. aei, price(P) quantity(Q`subject´) axiom(eGARP)
}

(output omitted )

Table 1: Replication of results in Andreoni and Miller (2002, Table II) and Banerjee
and Murphy (2006, Table 1)

Number of violations (fraction)

Subject eGARP eWGARP eSARP eWARP AEI (GARP)

3 2 (3.57) 1 (3.57) 4 (7.14) 1 (3.57) 1.000∗

38 8 (14.29) 2 (7.14) 9 (16.07) 2 (7.14) 0.917
40 8 (14.29) 3 (10.71) 11 (19.64) 3 (10.71) 0.833
41 1 (1.79) 1 (3.57) 2 (3.57) 1 (3.57) 1.000∗

47 1 (1.79) 1 (3.57) 2 (3.57) 1 (3.57) 1.000∗

61 3 (5.36) 1 (3.57) 5 (8.93) 1 (3.57) 0.917
72 1 (1.79) 1 (3.57) 2 (3.57) 1 (3.57) 1.000∗

87 1 (1.79) 1 (3.57) 2 (3.57) 1 (3.57) 1.000∗

90 2 (3.57) 1 (3.57) 2 (3.57) 1 (3.57) 0.975
104 1 (1.79) 1 (3.57) 3 (5.36) 1 (3.57) 1.000∗

126 1 (1.79) 1 (3.57) 4 (7.14) 1 (3.57) 1.000∗

137 1 (1.79) 1 (3.57) 2 (3.57) 1 (3.57) 1.000∗

139 1 (1.79) 1 (3.57) 2 (3.57) 1 (3.57) 1.000∗

Notes: The number (and fraction) of violations are reported at the efficiency level
e = 1. ∗Indicates that an ε-change in choices eliminates all GARP violations.

The results from the preceding code are reported in Table 1. Next, in Figure 1, we
plot the fraction of the 142 subjects satisfying eGARP, eSGARP, eHARP, and eCM
for values of e between 0.85 and 1 in an equally spaced grid with an increment of 0.01.
The results used to generate Figure 1 are obtained by looping over all subjects, axioms,
and efficiency levels in the grid, and evaluating the command checkax for each subject,
axiom, and efficiency level. The following line of code illustrates one such evaluation:

checkax, price(P) quantity(Q`subject´) efficiency(0.7)
(output omitted )

Since subjects are choosing from among bundles of two goods, eGARP (eSARP) and
eWGARP (eWARP) are equivalent, and must by construction deliver identical empiri-
cal results (except for the number and fraction of violations). Furthermore, while the-
oretically possible, the empirical differences between eGARP (eWGARP) and eSARP
(eWARP) are negligible, implying that distinctions between demand correspondences
and demand functions are not of first order importance within these data. Since nei-
ther Andreoni and Miller (2002) nor Banerjee and Murphy (2006) reports any results
for eSGARP, eHARP, or eCM, we give these axioms more attention: we calculate the
mean, standard deviation, minimum, first quartile (Q1), median, third quartile (Q3),
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Figure 1: AEI distributions for eGARP, eSGARP, eHARP, and eCM

Table 2: Summary statistics for eSGARP, eHARP, and eCM

Number of violations (fraction) AEI

Statistic eSGARP eHARP eCM SGARP HARP CM

Mean 16.47 (25.74) 6.29 (78.61) 7.68 (96.04) 0.745 0.976 0.935
Std. dev. 16.80 (26.24) 2.90 (36.21) 1.03 (12.92) 0.288 0.049 0.035
Min 0 (0) 0 (0) 0 (0) 0.333 0.707 0.800
Q1 0 (0) 5 (62.50) 8 (100) 0.333 0.966 0.905
Median 8 (12.50) 8 (100) 8 (100) 0.875 1 0.957
Q3 37 (57.81) 8 (100) 8 (100) 1 1 0.957
Max 41 (64.06) 8 (100) 8 (100) 1 1 1

Notes: The number (and fraction) of violations are reported at the efficiency level e = 1.

and maximum of the number (and fraction) of violations and AEIs corresponding to
SGARP, HARP, and CM. The results are displayed in Table 2.

Finally, we turn to power and predictive success. By looping over all subjects,
axioms, and values of e between 0.4 and 1.0, we calculate the power and predictive
success for every subject, axiom, and efficiency level in the grid. The following line of
code illustrates one such evaluation:

powerps, price(P) quantity(Q`subject´) efficiency(0.4)
(output omitted )

We summarize the results in three different ways. First, Figure 2 plots the power
of eGARP, eSGARP, eHARP, and eCM for every efficiency level in the grid. Note
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Figure 2: Power of eGARP, eSGARP, eHARP, and eCM

that since all subjects face the same budgets, the power of each test is identical across
subjects. Second, Table 3 gives the mean, standard deviation, minimum, first quartile
(Q1), median, third quartile (Q3), and maximum of the number (and fraction) of viola-
tions and of the AEIs for SGARP, HARP, and CM, over all repetitions in the simulated
uniformly random data. Third, Figure 3(a) plots the mean predictive success across all
subjects at each efficiency level in the grid, and Figure 3(b) is a subject-level scatterplot
of eHARP versus eGARP at selected efficiency levels.

Table 3: Power summary statistics for eSGARP, eHARP, and eCM

Number of violations (fraction) AEI

Statistic eSGARP eHARP eCM SGARP HARP CM

Mean 17.53 (27.39) 7.96 (99.49) 7.93 (99.15) 0.693 0.763 0.761
Std. dev. 12.29 (19.21) 0.47 (5.83) 0.65 (8.10) 0.181 0.120 0.124
Min 0 (0) 0 (0) 0 (0) 0.335 0.358 0.358
Q1 8 (12.50) 8 (100) 8 (100) 0.551 0.684 0.675
Median 15 (23.44) 8 (100) 8 (100) 0.667 0.773 0.769
Q3 27 (42.19) 8 (100) 8 (100) 0.840 0.856 0.859
Max 53 (82.81) 8 (100) 8 (100) 1 1 1

Notes: The number (and fraction) of violations are reported at the efficiency level e = 1.
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Figure 3: (a) Mean predictive success for eGARP, eSGARP, eHARP, and eCM; (b)
Scatterplot of eHARP versus eGARP. In panel (b), the dashed line is the 45◦ line, and
the marker numbers refer to efficiency levels.

4.2 Aggregated household consumption data

In the second empirical illustration, we use aggregated household consumption data from
the 1987–1988 Nationwide Food Consumption Survey conducted by the United States
Department of Agriculture. This data set is used by Poi (2002) in order to illustrate
how Stata’s ml command can be used to fit the quadratic almost ideal demand system
(QUAIDS). This data set is named food.dta in the repository ‘Datasets for Stata
Base Reference Manual, Release 16’ (https://www.stata-press.com/data/r16/r.html),
and contains budget shares and prices for the following four aggregated food categories:
meats, fruits and vegetables, breads and cereals, and miscellaneous. As in Poi (2002),
we use a sample of 4,048 households.

To test whether the data can be rationalized by preferences that are common across
all households, we compute the AEI for GARP and WGARP:

. use http://www.stata-press.com/data/r16/food.dta, clear

. mkmat p1 p2 p3 p4, matrix(P)

. forvalues i = 1(1)4 {

. gen x`i´ = w`i´* expfd/p`i´

. }

. mkmat x1 x2 x3 x4, matrix(X)

. aei, price(P) quantity(X) tolerance(6)

Number of obs = 4048
Number of goods = 4
Tolerance level = 1.0e-06

Axiom AEI
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eGARP .459821

. aei, price(P) quantity(X) axiom(eWGARP) tolerance(6)

Number of obs = 4048
Number of goods = 4
Tolerance level = 1.0e-06

Axiom AEI

eWGARP .459821

We have chosen a higher tolerance level for the termination criterion equal to 10−6

because of the large number of observations in the data set. At a given efficiency level, we
find that testing for eGARP takes considerably longer than testing for eWGARP, which
suggests that the main computational burden in testing for eGARP is associated with
the calculation of the transitive closure of the revealed preference relation. Interestingly,
we find identical values of the AEI for GARP and WGARP, indicating that none of the
violations of GARP can be attributed to violations of transitivity.

Finally, because eWGARP is considerably faster to test than eGARP, we calculate
the power of eWGARP at an efficiency level equal to the AEI for WGARP:

. aei, price(P) quantity(X) axiom(eWGARP) tolerance(6)

Number of obs = 4048
Number of goods = 4
Tolerance level = 1.0e-06

Axiom AEI

eWGARP .459821

. return list

scalars:
r(TOL) = 1.00000000000e-06

r(GOODS) = 4
r(OBS) = 4048

r(AEI_eWGARP) = .4598209857940674

macros:
r(AXIOM) : " eWGARP"

. powerps, price(P) quantity(X) axiom(eWGARP) efficiency(`r(AEI_eWGARP)´)

Number of obs = 4048
Number of goods = 4
Simulations = 1000
Efficiency level = .46

Axioms Power PS Pass AEI

eWGARP .423 .423 1 .4598211
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Summary statistics for simulations:

eWGARP #vio %vio

Mean .832 0
Std. Dev. 1.790246 0

Min 0 0
Q1 0 0

Median 0 0
Q3 1 0
Max 39 0
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