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Abstract

This paper investigates the impact of financial liberalization on the relationship between consump-

tion and total wealth (i.e., the sum of asset wealth and human wealth). We propose a heterogeneous

agent framework with incomplete markets where financial liberalization, by signalling a future reduc-

tion in the incomplete markets component of consumption growth, increases the current consumption-

wealth ratio. From the model, an aggregate long-run relationship is derived between consumption,

total wealth and financial liberalization which is estimated by state space methods using quarterly

US data. The results show that the trend in the consumption-wealth ratio is well-captured by our

baseline liberalization indicator. We find that the increase in this indicator over the sample period

has increased the consumption-wealth ratio with about ten to sixteen percent. Additional estimations

suggest that financial liberalization has predictive power for aggregate consumption growth, a result

that provides support for the incomplete markets channel put forward in the paper.
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1 Introduction

In a recent paper, Carroll et al. (2019) attribute the structural decline observed in the US saving rate from

the late 1970’s until the Great Recession to financial liberalization, i.e., over this period the expanding

credit supply has decreased the fraction of disposable income that households save by about eight per-

centage points. Additionally, the time series behavior of another important US macroeconomic ratio, the

ratio between consumption and total wealth (the sum of asset and human wealth), has recently received

renewed scrutiny. Bianchi et al. (2017) argue that the commonly used proxy ’cay’ for this unobserved

ratio is non-stationary, which they attribute to regime shifts caused by monetary policy changes.1,2 Given

the importance of financial deregulation to explain the structural trend in the US saving rate, however,

the question remains whether the non-stationarity in the consumption-wealth ratio can similarly be linked

to financial reform, i.e., it is conceivable that financial liberalization has not only decreased the fraction

of income that households save but that it has also increased the fraction of wealth that they consume.

This paper therefore investigates the impact of financial liberalization on the relationship between

consumption and total wealth, i.e., on the consumption-wealth ratio. To this end, we use a heteroge-

neous agent framework with incomplete markets stemming from the presence of a precautionary saving

motive and a potentially binding liquidity constraint. This setting implies the existence of an incomplete

markets component in the growth rate of an individual agent’s consumption (see e.g., Parker and Preston,

2005). As the economy-wide financial liberalization process is persistent, it signals a future reduction

in the incomplete markets components of consumers and therefore a reduction in their expected future

consumption growth rates which, through their intertemporal budget constraints, increases their current

consumption to wealth ratios. From this model, we derive a long-run relationship between consumption,

total wealth and financial liberalization at the aggregate level. We then estimate this relationship using

quarterly US data. With respect to the data, the estimations are conducted with two different measures

of consumption - total personal consumption expenditures and expenditures on nondurables and services

- which, as noted by Rudd and Whelan (2006), are both valid from a theoretical perspective. Following

Lettau and Ludvigson (2001), we use labor income to proxy unobserved human wealth. To measure finan-

cial liberalization, we use the so-called ’credit easing accumulated’ (CEA) index as our baseline indicator

(see e.g., Carroll et al., 2019, and references therein) as well as two alternative liberalization indicators,

namely the household debt to disposable income ratio and Abiad et al. (2008)’s index of financial re-

1The proxy ’cay’ is constructed as the residual from a time series regression of log consumption on a constant, on log

assets and on log labor income where the latter serves as a proxy for log human wealth (see Lettau and Ludvigson, 2001).
2While other authors have argued that ’cay’ is non-stationary, they attribute this to data issues and methodological

issues and do not give an economic interpretation to the non-stationarity (see e.g., Rudd and Whelan, 2006).
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form. With respect to the estimation method, we note that the long-run regression equation implied

by the model consists of stochastically trended variables with a regression error term that, for different

reasons, could be non-stationary as well. Estimations therefore occur within a state space framework

(see Harvey, 1989; Durbin and Koopman, 2001). This framework allows to test and control for a poten-

tially non-stationary error term by adding an unobserved stochastic trend to the regression equation and

estimate it jointly with the regression parameters (see e.g., Harvey et al., 1986; Canarella et al., 1990;

Planas et al., 2007; Everaert, 2010). We further empirically investigate the incomplete markets channel

through which, according to our model, financial liberalization affects the consumption-wealth ratio by

investigating whether, as our model suggests, financial liberalization has predictive power for aggregate

consumption growth. We check whether the estimates obtained from these predictive regressions are

consistent with the estimates obtained from the long-run regressions between consumption, wealth and

liberalization. Finally, we also investigate an alternative cost of capital channel, not incorporated in the

model, whereby financial liberalization could affect the consumption-wealth ratio through its impact on

expected returns on wealth.

When estimating the regression model without the financial liberalization variable included, we find

strong evidence in favor of the presence of an unobserved stochastic trend in the regression error. This

supports recent evidence reported by Bianchi et al. (2017) on the non-stationarity of the traditional ’cay’

variable as a proxy for the consumption to wealth ratio. Our baseline financial liberalization indicator,

i.e., the CEA index, succeeds in capturing this non-stationarity and therefore the trend in the estimated

consumption-wealth ratio. We find that the increase in this indicator over the sample period has increased

the consumption-wealth ratio with about ten to sixteen percent. The model with financial liberalization

further provides estimates for the ratio of human wealth over total wealth that are considerably higher

than those typically reported in papers that use ’cay’ as a proxy for total wealth and in line with the

recent findings that report estimates for this ratio as high as 90% (see Lustig et al., 2013, and references

therein). Finally, we find that financial liberalization has predictive power for aggregate consumption

growth, i.e., it reduces expected future consumption growth. This evidence, combined with the finding

that liberalization has no predictive ability for returns on wealth over the sample period, supports the

incomplete markets channel put forward in this paper to explain the relationship between liberalization

and the consumption-wealth ratio.

The structure of the paper is as follows. Section 2 presents and discusses the theoretical framework

that forms the basis of the empirical sections. Section 3 deals with the estimation of the long-run

relationship between consumption, total wealth and financial liberalization that is implied by the model.

Section 4 investigates the incomplete markets channel that is put forward in this paper to explain the
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impact of financial liberalization on the consumption-wealth ratio. Section 5 concludes.

2 Theoretical framework

This section presents the theoretical framework used to investigate the impact of financial liberalization

on the long-run relationship between aggregate consumption and total wealth. First, we consider a simple

heterogeneous agent consumption model with incomplete markets for consumption insurance caused by

the existence of a precautionary saving motive and the presence of a liquidity constraint. Second, we

use the model to argue that financial liberalization can - by reducing the incomplete markets component

in expected future consumption growth - increase the current consumption to total wealth ratio. Third,

since our focus lies on the long-run aggregate time series relationship between the considered variables,

we aggregate the derived relationship and implement steps to obtain an estimable regression equation.

2.1 Incomplete markets and the consumption-wealth ratio

2.1.1 Set-up

Each consumer faces uncertain future labor income and chooses consumption by maximizing expected

utility given by,

Eit

∞∑
j=0

δjU(Ci,t+j) (1)

where Eit is the rational expectations operator conditional on consumer i’s period t information set,

where 0 < δ ≤ 1 is the discount factor that reflects the rate of time preference, where U(.) is an

isoelastic contemporaneous utility function and where Cit is consumer i’s real consumption in period t.

Maximization occurs subject to the budget constraint,

Ai,t+1 = (1 + ri,t+1)(Ait + Yit − Cit) (2)

and the liquidity constraint,

Ai,t+1 ≥ 0 (3)

where Ait denotes real asset (or financial) wealth at the beginning of period t, where Yit denotes real

disposable labor income in period t and where rit is the period t real rate of return.3 Consumer i’s total

real wealth Wit at the beginning of period t consists of asset wealth Ait and human wealth Hit, i.e.,

Wit ≡ Ait +Hit (4)

3We note that our framework makes no distinction between the real return on asset wealth and the return on human

wealth, i.e., rit denotes the real return on Ait and Hit and therefore also on total wealth Wit. The framework can easily

be extended to incorporate a distinction between the returns on Ait and Hit but this offers no additional insight.
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where human wealth is defined as the present discounted value of future real disposable labor income,

i.e.,

Hit ≡ Yit + Eit

∞∑
j=1

Yi,t+j∏j
k=1(1 + ri,t+k)

(5)

2.1.2 Intertemporal budget constraint and the consumption-wealth ratio

We now use the log-linearized intertemporal budget constraint of each consumer i to obtain an expression

for the log of the consumption to total wealth ratio. Eq.(5) can be written as Hit = Yit +
Hi,t+1

1+ri,t+1
in

ex-post terms. After substituting this into eq.(2) and using eq.(4), we obtain the budget constraint for

total wealth, i.e.,
Wi,t+1

1+ri,t+1
= Wit−Cit. After log-linearizing and solving forward this constraint, imposing

a transversality condition and taking expectations at t of the resulting expression, we obtain,

cit − wit = Eit

∞∑
j=1

(ρc)
j

(ri,t+j −∆ci,t+j) (6)

where cit = lnCit, wit = lnWit, where 0 < ρc < 1 is a discount factor which equals W−C
W with C and

W the steady state values of consumption and total wealth and which is expected to be close to one.

Note that the unimportant linearization constant is omitted. We refer to Appendix A for the derivation.

Eq.(6) states that if consumer i’s consumption-wealth ratio is high in period t, subsequent rate of return

increases or lower growth rates of consumption are necessary for this consumer’s budget constraint to

hold intertemporally.

By applying the same steps to the equation Hit = Yit +
Hi,t+1

1+ri,t+1
, we obtain a log-linear relationship

between human wealth and labor income which is given by,

hit − yit = Eit

∞∑
j=1

(ρy)
j

(∆yi,t+j − ri,t+j) (7)

where hit = lnHit, yit = lnYit, where 0 < ρy < 1 is a discount factor which equals H−Y
H with Y and

H the steady state values of labor income and human wealth and which is expected to be close to one.

Again, the unimportant linearization constant is omitted.

2.1.3 First-order condition

The maximization problem given by eqs.(1)-(3) implies the following first-order condition,

Eit

(
δ(1 + ri,t+1)

U ′(Ci,t+1)

U ′(Cit)

)
+ λit = 1 (8)

where λit ≥ 0 is the (normalized) Langrange multiplier associated with the liquidity constraint which

is positive when the constraint is binding and zero when the constraint is not binding (see e.g., Zeldes,
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1989). Eq.(8) can also be written as,(
δ(1 + ri,t+1)

U ′(Ci,t+1)

U ′(Cit)

)
= 1− λit + εi,t+1 (9)

where εi,t+1 is an expectation error uncorrelated with period t information, i.e., we have Eitεi,t+1 = 0.

Using the isoelastic utility function U(C) = C1−θ

1−θ with coefficient of relative risk aversion θ > 0, we can

rewrite eq.(9) as, (
δ(1 + ri,t+1)

C−θi,t+1

C−θit

)
= 1− λit + εi,t+1 (10)

After taking logs of both sides of this expression and solving for the growth rate in consumption ∆ci,t+1,

we obtain,

∆ci,t+1 =
1

θ
ln δ +

1

θ
ri,t+1 +

1

θ
νi,t+1 (11)

where νi,t+1 ≡ − ln(1− λit + εi,t+1).

The term 1
θ ri,t+1 captures intertemporal substitution in consumption with respect to changes in the

rate of return on wealth. The unexpected part of νi,t+1 reflects new information available to the consumer

while the expected part of νi,t+1, i.e., the term Eitνi,t+1 = −Eit ln(1−λit+εi,t+1), reflects the incomplete

markets component of consumption growth which is due to the presence of a precautionary saving motive

and a liquidity constraint (see Parker and Preston, 2005). These reduce period t consumption and

augment period t + 1 consumption thereby raising consumption growth from t to t + 1, i.e., we have

Eitνi,t+1 > 0.4 It is straightforward to see, upon combining eqs.(6) and (11), that when the incomplete

markets term in consumption growth is expected to fall, the current consumption to wealth ratio cit−wit

may go up. In the next section, we link the incomplete markets term in consumption growth to the

process of financial liberalization to obtain an expression for cit − wit as a function of liberalization.

2.2 Financial liberalization and the consumption-wealth ratio

Financial liberalization is expected to lift the restrictions that consumers face to transfer resources across

time or across uncertain states of the world and therefore to improve consumption smoothing opportuni-

ties. Hence, we expect financial liberalization to reduce the incomplete markets component Eitνi,t+1 in

consumer i’s first-order condition. To capture this, we write,

νi,t+1 = ai + biflt +$i,t+1 (12)

4To see this, we suppress subscripts and note that ln(E(1 − λ + ε)) = ln(1 − λ) ≤ 0 (this follows from E(ε) = 0,

E(λ) = λ and λ ≥ 0). For the concave log function, we have that ln(E(.)) > E(ln(.)) so that E(ln(1 − λ + ε)) < 0 and

−E(ln(1− λ+ ε)) > 0.
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where flt denotes the economy-wide financial liberalization process and where $i,t+1 is an unobserved

component that captures all other factors affecting νi,t+1. We expect bi ≤ 0, i.e., liberalization increases

market completeness. From the liberalization measures presented below in Section 3.2 - in particular,

our baseline credit easing accumulated (CEA) index - we observe that liberalization is trended over the

considered sample period. As such, we model financial liberalization as a stochastically trended variable

using a random walk process. This gives,

flt+1 = flt + ξt+1 (13)

where Eitξt+1 = 0.

By inserting eqs.(11), (12) and (13) into eq.(6), we can write the log consumption-wealth ratio of

consumer i as,

cit − wit = γiflt + εcit (14)

where εcit = Eit
∑∞
j=1 (ρc)

j [
(1− 1

θ )ri,t+j − 1
θ$i,t+j

]
is an unobserved component. We note that we

omit the constants in the equation, the derivation of which is provided in Appendix A. The parameter

γi = − biθ
ρc

1−ρc captures the impact of financial liberalization on consumer i’s consumption to total wealth

ratio. Since θ > 0, 0 < ρc < 1 and bi ≤ 0, we have γi ≥ 0, i.e., financial liberalization increases the

consumption-to-wealth ratio over time. As the liberalization process is persistent, it signals a future

reduction in the incomplete markets component of consumption growth and therefore a reduction in

expected future consumption growth which, through the intertemporal budget constraint, increases the

current consumption to wealth ratio.

2.3 Aggregation

2.3.1 Long-run relationships

We denote by N(t) the number of people alive in periods t and t + 1. Averaging eq.(14) over N(t)

consumers gives,

ct − wt = γflt + εct (15)

where γ = 1
N(t)

∑
i γi, ct = 1

N(t)

∑
i cit − τ ct , wt = 1

N(t)

∑
i wit − τwt and εct = 1

N(t)

∑
i ε
c
it − τ ct + τwt with

τ ct and τwt denoting Theil’s entropy measures (see e.g., Attanasio and Weber, 1993).

The entropy measures are introduced to capture the discrepancy between how the model variables are

expressed starting from the level of the individual consumer, i.e., as averages of logs, and how the model

variables are expressed in the aggregate, i.e., as logs of averages. The latter are in accordance with how
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the aggregate data used in estimation are constructed.5,6

We also aggregate the relationship between human wealth and labor income given by eq.(7), i.e.,

hit − yit = εyit where εyit = Eit
∑∞
j=1 (ρy)

j
(∆yi,t+j − ri,t+j) is an unobserved component. Aggregation

gives,

ht − yt = εyt (16)

where ht = 1
N(t)

∑
i hit−τht , yt = 1

N(t)

∑
i yit−τ

y
t and εyt = 1

N(t)

∑
i ε
y
it−τht +τyt with τht and τyt denoting

Theil’s entropy measures.

2.3.2 First-order condition

We also aggregate the first-order condition. After substituting eq.(12) into eq.(11) and then averaging,

we obtain,

∆ct+1 =
1

θ
ln δ +

1

θ
rt+1 +

1

θ
a+

1

θ
bflt +

1

θ
$t+1 (17)

where ∆ct+1 = 1
N(t)

∑
i ∆ci,t+1 −∆τ ct+1 with τ ct+1 being Theil’s entropy measure, rt+1 = 1

N(t)

∑
i ri,t+1,

$t+1 = 1
N(t)

∑
i$i,t+1 − θ∆τ ct+1, a = 1

N(t)

∑
i ai and b = 1

N(t)

∑
i bi. We note that 1

θ b ≤ 0 since θ > 0

and bi ≤ 0 (∀i).

Eq.(17) thus shows that the model implies that financial liberalization has predictive power for ag-

gregate consumption growth. Financial liberalization - by increasing market completeness through the

relaxation of liquidity constraints of consumers and through the reduction of the precautionary saving

motive of consumers - is expected to reduce future aggregate consumption growth. This channel, through

which financial liberalization affects the consumption to wealth ratio, is investigated in Section 4.

2.4 Deriving an estimable relationship between consumption, wealth and

financial liberalization

Eq.(15) cannot be estimated since log total wealth wt is unobservable. After aggregating eq.(4), we have

Wt = At + Ht where Wt = 1
N(t)

∑
iWit, At = 1

N(t)

∑
iAit and Ht = 1

N(t)

∑
iHit. Hence, aggregate

total wealth equals the sum of aggregate asset wealth and aggregate human wealth where the former is

observed but the latter is not. Log-linearizing this sum, we write,

wt = αat + βht (18)

5In particular, for any variable zi = lnZi, Theil’s entropy measure is given by τz =
(

1
N

∑
i zi
)
− ln

(
1
N

∑
i Zi

)
which

also equals ln
(
(
∏
i Zi)

1/N
)
− ln

(
1
N

∑
i Zi

)
, i.e., the difference between the log of the geometric mean of Zi and the log of

the arithmetic mean of Zi. Defining z ≡ ln
(

1
N

∑
i Zi

)
, we then have z =

(
1
N

∑
i zi
)
− τz .

6The entropy measures are relegated to the error term in estimation as they cannot be constructed for all variables over

the desired period and at the desired frequency.
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where at = lnAt, ht = lnHt, α = A
W > 0 and β = H

W > 0 with A and H the steady state values of

aggregate asset wealth and aggregate human wealth. Substituting eq.(18) into eq.(15), we obtain,

ct = αat + βht + γflt + εct (19)

Then, following Lettau and Ludvigson (2001, 2004), we use eq.(16) to replace the unobserved log human

capital variable ht with the observed log labor income variable yt to obtain,

ct = αat + βyt + γflt + εt (20)

where εt = εct + βεyt is the error term. In the next section, we discuss the estimation of this equation and

the obtained results.

3 Estimating the long-run relationship between consumption,

wealth and financial liberalization

Regression equations containing non-stationary variables such as the equation put forward in eq.(20)

do not necessarily have a stationary error term. At the most fundamental level, the finding of a non-

stationary error term may suggest that the theoretical model considered is incomplete as one or more

relevant non-stationary variables have been omitted from the derived long-run regression equation and are

therefore relegated to the error term. Alternatively, a non-stationary error term could occur because some

model assumptions - i.e., the validity of the transversality condition - do not hold or because some model

approximations - i.e., the applied linearizations - are inaccurate. Finally, even if the model is complete

and its assumptions are valid, the error term εt of eq.(20) may be non-stationary if one or more variables

and components that constitute this error term are non-stationary. For example, a non-stationary error

term may be the result of the presence of the entropy measures that result from aggregation as discussed

in Section 2.3.7

As such, we use an estimation methodology that allows to test and control for a potentially non-

stationary error term. To this end, we employ an unobserved component or state space framework

(see Harvey, 1989; Durbin and Koopman, 2001) through which we can reliably estimate the long-run

relationship of eq.(20) even if its error term is non-stationary. We do this by explicitly adding an

unobserved stochastic trend - i.e., a random walk component - to the regression equation and estimate

it jointly with the model parameters (see e.g., Harvey et al., 1986; Canarella et al., 1990; Planas et al.,

7Suppose that we model the entropy measures τ jt (with j = j = c, w, y, h) in Section 2.3 as simple random walks, i.e.,

τ jt = τ jt−1+ςjt with innovation variances σ2
ςj

. Provided the components εcit and εyit are stationary for all i, then the aggregate

terms εct and εyt and therefore also εt are stationary only if σ2
ςj
≈ 0.
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2007; Everaert, 2010). We also test for the presence of an unobserved stochastic trend in the regression

error using the methods of Frühwirth-Schnatter and Wagner (2010). While stationarity of the error term

is not required to estimate the parameters of eq.(20), concluding in favor of stationarity provides support

for the model and its assumptions.

Section 3.1 presents the empirical specification. Section 3.2 elaborates on the data while the estimation

methodology is discussed in Section 3.3. The results are presented in Section 3.4.

3.1 Empirical specification

We write eq.(20) in general form as,

ct = xtφ+ εt (21)

where xt =
[
at yt flt

]
and φ =

[
α β γ

]′
. We also estimate the model without including the

financial liberalization variable flt, in which case we have xt =
[
at yt

]
and φ =

[
α β

]′
.

The unobserved error term εt is modelled as the sum of a non-stationary unobserved component or

stochastic trend µt and a stationary unobserved component vt. As such, we have,

εt = µt + vt (22)

The non-stationary component µt is modelled as a random walk process µt = µt−1 + ηt with ηt ∼

iidN
(
0, σ2

η

)
. A random walk provides a simple but flexible way to capture the potential non-stationarity

in the regression error term. Following Frühwirth-Schnatter and Wagner (2010), we write down this

process in non-centered form as,

µt = µ+ σηµ
∗
t (23)

µ∗t = µ∗t−1 + η∗t (24)

where µ is the initial value of µt, where µ∗0 = 0 and where we η∗t ∼ iidN (0, 1). We discuss the advantages

of using this non-centered specification in Section 3.3 below.

The stationary component vt is modelled as consisting of an error term et and lags, leads and con-

temporaneous values of the first difference of the regressors xt, i.e.,

vt =

p∑
j=−p

∆xt+jκj + et (25)

where et ∼ iidN
(
0, σ2

e

)
. This specification follows the literature where dynamic OLS is typically applied

to the estimation of regression equations between consumption, earnings and assets (see e.g., Bianchi

et al., 2017). For all the estimations conducted in the paper, we set p = 6. The main conclusions

presented in the paper are not affected however when using alternative values for p.
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3.2 Data

We estimate eq.(21) using quarterly US data. Full details on the sources and the exact construction of

the data are provided in Appendix B.

We consider two datasets for the variables ct, at and yt. We refer to Rudd and Whelan (2006) for

a discussion on why both these datasets are valid when estimating long-run regressions containing con-

sumption, labor income and asset wealth. The first dataset, which we denote by PCE, uses total personal

consumption expenditures as a measure for consumption while the second dataset, which we denote by

NDS, uses expenditures on nondurable goods and services (minus clothing and footwear) as a measure

for consumption. In the PCE dataset, asset wealth consists of household net worth excluding consumer

durables (as durables are included in the consumption measure) while consumption, disposable labor in-

come and assets are all deflated by the price deflator for total personal consumption expenditures.8 In the

NDS dataset, asset wealth consists of total household net worth (which includes consumer durables) while

consumption, disposable labor income and assets are all deflated by the price deflator for nondurables

(excluding clothing and footwear) and services. Once expressed in real terms, consumption, disposable

labor income and asset wealth are divided by total population to obtain per capita variables. Finally,

the natural logarithm of the resulting series are taken which gives us the variables ct, yt and at. Both

datasets are calculated over the period 1951Q4− 2016Q4.

To measure financial liberalization flt, our main baseline indicator is the ’credit easing accumulated’

(CEA) index considered also by Carroll et al. (2019). It is constructed from a survey that inquires

on the willingness of US banks to make consumer installment loans. This measure is advantageous

because of its availability - from 1966 onward - and because it captures credit supplied to consumers

while being relatively less driven by credit demand. A second indicator for flt that we consider, i.e., the

household debt to disposable income ratio, has even better availability - i.e., from 1951 onward - but it is

conceptually less appealing as a measure of liberalization and expanding credit supply as it is determined

by both supply and demand.9 The third considered measure for flt is the index of financial liberalization

of Abiad et al. (2008) which is a mixture of financial development indicators and hence reflects credit

supply conditions. The downside of this measure is its limited availability - i.e., only over the period

1973 − 2005 - and its limited variability as it is a step function that takes on only six values. All three

8Our PCE dataset does not correspond completely with the dataset based on personal consumption expenditures used

recently by Lettau and Ludvigson (2015) and Bianchi et al. (2017) who conduct regressions of consumption on assets and

labor income. In these studies, the asset variable does include consumer durables. We find that using this alternative asset

variable in our PCE dataset has a negligible impact on our conclusions.
9Justiniano et al. (2015) discuss the limitations of this indicator to measure liberalization, in particular in the context

of housing.
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measures used for flt are presented in Figure 1. All measures suggest that liberalization in the US has

increased drastically over the considered period. Our preferred CEA indicator - and, to a lesser extent,

also the household debt to income ratio - also reveals a clear cyclical pattern, i.e., during recessions, credit

availability diminishes.

Figure 1: Indices of financial liberalization
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Notes: Depicted are the CEA index (period 1966Q3− 2016Q4), the household debt to income ratio (period 1951Q4− 2016Q4)

and Abiad et al. (2008)’s index of financial liberalization (period 1973Q1− 2005Q4). The grey shaded areas are the NBER

recessions. Details on the construction of these indices are provided in Appendix B.

3.3 Methodology

Eqs.(21)-(25) constitute a state space system that we estimate using Bayesian methods. In particular,

we use a Gibbs sampling approach which is a Markov Chain Monte Carlo (MCMC) method used to

simulate draws from the intractable joint posterior distribution of the parameters and the unobserved

state using only tractable conditional distributions. The general outline and technical details of the Gibbs

sampling algorithm together with a convergence analysis of the sampler are provided in Appendix C. In

the following subsections, we discuss how we test for a stochastic trend in the error term of the regression

equation and we discuss which prior distributions we employ for the fixed parameters of the state space

system.

3.3.1 Testing for a stochastic trend in the regression error term

We test whether to include or exclude the stochastic trend or unobserved random walk component in

the regression equation using the stochastic model selection approach for Bayesian state space models

as developed by Frühwirth-Schnatter and Wagner (2010). In a Bayesian setting, a prior probability can

be assigned to each of two potential models - i.e. one with and one without an unobserved stochastic
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trend in the error term - and the posterior probability of each model is then calculated conditional on

the data. Testing whether or not the unobserved component µt is present in eq.(21) amounts to testing

σ2
η > 0 against σ2

η = 0. This is a non-regular testing problem from a classical viewpoint as the null

hypothesis lies on the boundary of parameter space. To this effect, the non-centered parameterization

of the unobserved random walk put forward in eq.(23) is useful as the transformed component µ∗t , in

contrast to µt, does not degenerate to a static component if the innovation variance equals zero. This

means that if the variance σ2
η = 0, then ση = 0 in eq.(23) and the time-varying part µ∗t of the unobserved

component µt drops out of the equation. Hence, using the non-centered parameterization, the presence

or absence of a non-stationary unobserved component can be expressed as a standard variable selection

problem. In particular, we rewrite eq.(23) as,

µt = µ+ ισηµ
∗
t (26)

where ι is a binary inclusion indicator which is either zero or one. If ι = 1, there is an unobserved random

walk in the regression error, µ is the initial value of µt and ση is estimated from the data. If, on the

other hand, ι = 0, there is no unobserved random walk, µt becomes constant as µt = µ and ση is set

to zero. The binary indicator ι is sampled together with the other parameters so that from its posterior

distribution we can calculate the posterior inclusion probability of an unobserved stochastic trend in the

regression equation.

3.3.2 Parameter priors

In Table 1, we report the prior distributions assumed for the regression parameters. For the binary

indicator ι used to calculate the posterior inclusion probability of a stochastic trend in the regression,

we assume a Bernoulli prior distribution with probability p0 = 0.5. Using the alternative prior inclusion

probabilities p0 = 0.25 and p0 = 0.75 does not affect the conclusions of the paper.10 For the variance

σ2
e of the error term et, we use an inverse gamma (IG) prior with belief equal to 0.1 and a low strength

equal to 0.01 which implies a prior distribution that has support over a relatively wide range of parameter

values (see Bauwens et al., 2000, for details on prior beliefs and strengths). For the intercept parameter

µ and for the parameters in κ, i.e., the coefficients on the contemporaneous values and leads and lags of

the first differences of the regressors, we assume Gaussian prior distributions with mean zero and unit

variance. This relatively high prior variance implies relatively flat priors for these parameters.

From Table 1, we further note that we also use Gaussian prior distributions for the regression coeffi-

cients in φ, i.e., the coefficient α on assets, the coefficient β on disposable labor income and the coefficient

10Results unreported but available upon request.
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γ on financial liberalization. We set the prior mean for γ, our main coefficient of interest, equal to zero

to let the data fully determine the direction of the impact of financial liberalization. From Section 2.4,

we know that, theoretically, the coefficients α and β reflect the weight in steady state of respectively

financial and human wealth in total wealth. Previous estimates for the ratio of human wealth to total

wealth in the US vary from about 0.60 (see e.g., Lettau and Ludvigson, 2001, 2004) to about 0.90 (see

e.g., Lustig et al., 2013). Hence, we set the prior mean for β to the average of these values which is 0.75,

and this then implies a prior mean for α equal to 0.25. A relatively high variance equal to one is chosen

for all parameters in φ, again implying relatively flat priors.

Finally, we elaborate on the prior choice for the parameter ση of the unobserved random walk com-

ponent µt, i.e., the square root of its innovation variance σ2
η. Using the non-centered parameterization

for the random walk µt implies that ση is basically a regression coefficient in the consumption equation.

Hence, rather than using a standard IG prior for the variance parameter σ2
η, we use a Gaussian prior

centered at zero for ση.11 As noted by Frühwirth-Schnatter and Wagner (2010), this approach avoids the

shortcomings of using an IG prior distribution on the innovation variance of a random walk component

when we want to decide on the inclusion or exclusion of this component in the regression.12 We again

impose a unit variance so that the prior distribution has support over a wide range of parameter values.

11Centering the prior distribution at zero makes sense as the posterior distribution for ση is also symmetric around zero,

both when σ2
η = 0 and when σ2

η > 0. In the former case, it is unimodal at zero; in the latter case, it is bimodal at ±|ση |.
12In particular, when using the standard IG prior distribution for variance parameters, the choice of the shape and scale

hyperparameters that define this distribution has a strong influence on the posterior distribution when the true value of

the variance is close to zero. More specifically, as the IG distribution does not have probability mass at zero, using it as

a prior distribution tends to push the posterior density away from zero. This is of particular importance when estimating

the variance σ2
η of the innovation to the unobserved random walk µt as we want to decide whether or not to include this

component in the regression equation. Frühwirth-Schnatter and Wagner (2010) show that the posterior density of ση is

much less sensitive to the hyperparameters of the Gaussian distribution and is not pushed away from zero when σ2
η = 0.
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Table 1: Prior distributions of parameters regression equation ct = xtφ+ µt + vt

Gaussian priors N (b0, V0) Percentiles

mean (b0) variance (V0) 5% 95%

Coefficient on at α 0.25 1.00 −1.39 1.89

Coefficient on yt β 0.75 1.00 −0.89 2.39

Coefficient on flt γ 0.00 1.00 −1.64 1.64

Initial value random walk/regression intercept µ 0.00 1.00 −1.64 1.64

Square root variance random walk error ση 0.00 1.00 −1.64 1.64

Coeff. on lags/leads of ∆xt (DOLS terms) κ 0.00 1.00 −1.64 1.64

Inverse Gamma prior IG(ν0T, ν0Tσ
2
0) Percentiles

belief (σ2
0) strength (ν0) 5% 95%

Variance error term et σ2
e 0.1 0.01 0.03 1.2

Bernoulli prior B(p0)

mean (p0) variance (p0(1− p0))

Binary indicator ι 0.50 0.25

Notes: The regression equation is either ct = αat+βyt+µt+vt (model without financial liberalization) or ct = αat+βyt+γflt+µt+vt

(model with financial liberalization). The random walk component (stochastic trend) is µt = µ + ισηµ
∗
t with µ∗

t = µ∗
t−1 + η∗t . The

stationary component is vt =
∑p
j=−p ∆xt+jκj + et where either xt =

[
at yt

]
or xt =

[
at yt flt

]
.

3.4 Results

In this section we first discuss the calculated probabilities that there is an unobserved stochastic trend in

the regression error for all considered regression models. Then, we present the estimation results for the

model without financial liberalization. Next, we report the baseline results for the regression equation

with the CEA index used as an indicator for financial liberalization. Finally, we discuss the findings

obtained with two alternative measures of financial liberalization.

3.4.1 Results of the test for a stochastic trend in the regression error

As noted above, the presence of a non-stationary error term in our long-run regression equation may reflect

model misspecification due to one or more variables that are missing from the model or because one or

more imposed model assumptions are violated. Table 2 therefore presents the posterior probabilities

that the regression error term of different estimated regression models contains a stochastic trend, i.e., a

random walk component. The prior probability is set to 50% in all cases. We consider both the estimation

of eq.(21) without financial liberalization in which case we have xt =
[
at yt

]
and φ =

[
α β

]′
and

with financial liberalization in which case we have xt =
[
at yt flt

]
and φ =

[
α β γ

]′
. In the

latter case, three different variables are used as indicators for financial liberalization, i.e., our baseline

’credit easing accumulated’ (CEA) index, the household debt to disposable income ratio and Abiad et al.

(2008)’s indicator of financial reform. We refer to Section 3.2 above for a discussion of these indicators.

15



Results are reported for both datasets which are also detailed in Section 3.2, i.e., the PCE dataset

(with consumption measured through total personal consumer expenditures) and the NDS dataset (with

consumption measured through expenditures on nondurables and services).

Table 2: Posterior inclusion probabilities p(ι = 1) of an unobserved stochastic trend in

the regression error

(a) (b)

PCE dataset NDS dataset

Model without financial liberalization (γ = 0) 0.99 1.00

Model with financial liberalization (γ 6= 0)

1) Baseline CEA index for flt 0.33 0.03

2) Household debt to income ratio for flt 0.97 1.00

3) Abiad et al. index for flt 0.02 0.02

Notes: The regression equation is either ct = αat+βyt+µt+vt (model without financial liberalization)

or ct = αat + βyt + γflt + µt + vt (model with financial liberalization). Reported is the posterior

inclusion probability of the unobserved random walk component µt = µ + ισηµ
∗
t . It is calculated as

the average of the 10.000 binary indicators ι with each ι sampled in a Gibbs iteration. The prior

distribution of ι is Bernoulli with probability p0 = 0.5. Details on the datasets PCE (with consumption

measured through total personal consumer expenditures) and NDS (with consumption measured through

expenditures on nondurables and services) are provided in Section 3.2. For the model without financial

liberalization or for the model with household debt to income used for flt, data are available over the

period 1951Q4− 2016Q4. The effective sample period is 1953Q3− 2015Q2 and the effective sample size

is T = 248, i.e., 261 observations minus 1 for first-differencing and minus 12 for constructing leads and

lags since p = 6. For the model with the CEA index used for flt, data are available over the period

1966Q3 − 2016Q4 (with effective sample period 1968Q2 − 2015Q2 and effective sample size equal to

T = 189). For the model with the Abiad et al. index used for flt, data are available over the period

1973Q1 − 2005Q4 (with effective sample period 1974Q4 − 2003Q2 and effective sample size equal to

T = 119).

From the posterior probabilities reported in Table 2, we conclude that, irrespective of the considered

dataset, there is strong evidence in favor of the presence of an unobserved stochastic trend in the regression

error term for the model without the liberalization variable flt included. This result supports the recent

evidence reported in the literature on the non-stationarity of the traditional ’cay’ variable as a proxy

for the consumption to wealth ratio (see e.g., Bianchi et al., 2017). The CEA and Abiad indices of

liberalization seem to provide an adequate characterization of the non-stationarity of the regression error

as the posterior probabilities that a stochastic trend is present in the error term are well below 0.5 and

sometimes close to zero when these indicators of financial liberalization are included in the regression.

The probabilities close to one obtained for the model with the household debt to income ratio used as

an indicator for liberalization, on the other hand, suggest that this variable does not capture the non-
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stationarity of the regression error term. This shows that not just any proxy of liberalization or, more

generally, not just any upwardly trended variable is capable of capturing the non-stationarity that is

present in the consumption-wealth ratio.

3.4.2 Results without financial liberalization

The results obtained when estimating the model without the financial liberalization variable flt included -

i.e., when in eq.(21), we have xt =
[
at yt

]
and φ =

[
α β

]′
- are presented in Table 3. In particular,

we report the means and 90% highest posterior density (HPD) intervals of the posterior distributions of

the fixed regression parameters of eqs.(21), (22), (25) and (26) with the exception of the coefficients κj

which are excluded due to space constraints. Results are reported for both datasets detailed in Section

3.2, i.e., the PCE dataset (with consumption measured through total personal consumer expenditures)

and the NDS dataset (with consumption measured through expenditures on nondurables and services).

Furthermore, we present results both with the binary indicator of the random walk component in eq.(26)

set to one and with the binary indicator set to zero. Setting ι = 1 is in line with posterior inclusion

probabilities for the unobserved random walk component that are close to one as reported in Table 2,

i.e., the stochastic trend is found to be relevant so it is included in the model and estimated. Setting

ι = 0 is in line with the ’cay’ models estimated in the existing literature, i.e., the non-stationarity in the

error term of eq.(21) is typically not accounted for.

From the table, we note that the estimates for the elasticities α and β are close to the values typically

reported in the ’cay’ literature. The estimates vary somewhat according to whether or not the unobserved

stochastic trend is included in estimation. When excluding the stochastic trend by setting ι = 0 (although

the posterior inclusion probability is very close to one), the impact of log assets at on log consumption

ct is overestimated, in particular when we make use of the NDS dataset. Further, when estimating

the regression model under the restriction ι = 1, we include and estimate an unobserved random walk

component in the regression error term with the innovation standard deviation |ση| reported in Table 3.

We find that it is larger than zero which reflects the presence of time-variation in µt. This is in line with

the finding of a posterior inclusion probability p(ι = 1) close to one for the unobserved stochastic trend

in the regression error as reported in Table 2.
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Table 3: Model without financial liberalization: posterior distributions parameters of

equation ct = αat + βyt + µt + vt

(a) (b)

PCE dataset NDS dataset

(1) (2) (3) (4)

ι = 0 ι = 1 ι = 0 ι = 1

α 0.2241 0.2065 0.3089 0.2141

[0.1692,0.2790] [0.1239,0.2906] [0.2473,0.3706] [0.1230,0.3052]

β 0.7972 0.7737 0.7313 0.7511

[0.7344,0.8610] [0.6722,0.8740] [0.6608,0.8031] [0.6411,0.8619]

µ -0.4472 -0.0345 -0.9103 -0.0382

[-0.5706,-0.3235] [-0.2595,0.1893] [-1.0676,-0.7523] [-0.2690,0.1959]

|ση| - 0.0033 - 0.0039

[-,-] [0.0020,0.0049] [-,-] [0.0026,0.0055]

σ2
e 0.0024 0.0021 0.0028 0.0021

[0.0021,0.0028] [0.0018,0.0024] [0.0024,0.0033] [0.0018,0.0024]

Notes: Reported are the posterior mean with 90% HPD interval (in square brackets). The random

walk component is µt = µ + ισηµ
∗
t with µ∗

t = µ∗
t−1 + η∗t . The stationary component is vt =∑p

j=−p ∆xt+jκj +et where xt =
[
at yt

]
. The coefficients κj are excluded from the table due to

space constraints. Details on the datasets PCE (with consumption measured through total personal

consumer expenditures) and NDS (with consumption measured through expenditures on nondurables

and services) are provided in Section 3.2. Data are available over the period 1951Q4− 2016Q4 while

the effective sample period is 1953Q3 − 2015Q2 and the effective sample size is T = 248, i.e., 261

observations minus 1 for first-differencing and minus 12 for constructing leads and lags since p = 6.

Figure 2 then presents the time-varying part of the random walk component that we estimate when

setting ι = 1, i.e., the term σηµ
∗
t which, given µ∗0 = 0, is initialized at zero. We note from the figure

that this component shows a clear upward evolution. While this holds for both datasets, the evolution

is more outspoken for the NDS dataset. The presence of an unobserved upward stochastic trend in the

regression error suggests that the model that we consider in this section is not fully specified and therefore

incomplete.
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Figure 2: The unobserved stochastic trend in the model without financial liberalization
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Note: Depicted is the mean and the 90% HPD interval (shaded area) of the estimated component σηµ
∗
t . This is obtained from the

estimation of equation ct = αat + βyt + µ+ ισηµ
∗
t + vt under the restriction ι = 1, the results of which are reported in Table 3,

columns (2) and (4). Details on the datasets PCE (with consumption measured through total personal consumer expenditures)

and NDS (with consumption measured through expenditures on nondurables and services) are provided in Section 3.2. The

effective sample period is 1953Q3− 2015Q2.

We can proxy the evolution of the log consumption to total wealth ratio ct−wt in the model without

financial liberalization by calculating ct−µ−αat− βyt.13 We calculate this proxy for both datasets and

for the model with and without the unobserved stochastic trend included in the error term. Figure 3

shows the posterior means and 90% HPD intervals. The blue graphs depict the proxied log consumption-

wealth ratio obtained from the model without an unobserved stochastic trend (ι = 0). For the PCE

dataset, this almost completely corresponds to the standard ’cay’ variable reported recently by Bianchi

et al. (2017).14 The red graphs depict the proxied log consumption-wealth ratio obtained from the model

with an unobserved stochastic trend (ι = 1). These ratios show, as expected, a clearer upward trend as

they are not restricted to be stationary.15 Hence, a rather large discrepancy can be observed between

the consumption-wealth ratios calculated from regression equations with and without a trend in the error

term. For the NDS dataset, this discrepancy is even larger which is in line with the more outspoken

upward trend estimated when using this dataset as shown in Figure 2 above. These results suggest that

not dealing with the unobserved trend in the regression error term has important consequences for the

13The level of the log consumption to total wealth ratio is not identified in our model because, among other things, we

approximate human wealth through labor income. Hence, we can subtract the intercept µ when calculating the proxy for

log consumption-wealth ratio. It implies that our proxy is initialized around zero when ι = 1 or averages to zero when ι = 0.
14The main difference being that our PCE dataset excludes durable goods from the asset variable at, whereas in Bianchi

et al. (2017) these are included in at. We refer to Section 3.2 and Appendix B for details.
15From the figure, we note that the HPD interval for the log consumption-wealth proxy obtained under ι = 1 (red)

is wider than that obtained under ι = 0 (blue). This stems from the fact that the estimation of the former entails the

estimation of both fixed parameters and a time-varying state - i.e., the unobserved random walk component µ∗t - while the

estimation of the latter entails only the estimation of fixed parameters.
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estimation of the evolution of the consumption to total wealth ratio.

Figure 3: The log consumption-wealth ratio in the model without financial liberalization: model with (ι = 1)

and without (ι = 0) unobserved stochastic trend

(a) PCE dataset
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(b) NDS dataset
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Note: Depicted is the mean and the 90% HPD interval (shaded area) of the calculated log consumption-wealth ratio

ct − µ− αat − βyt for every case reported in Table 3. For the model with an unobserved random walk included (ι = 1), the ratio

is printed in red while for the model without an unobserved random walk included (ι = 0), the ratio is printed in blue. The grey

shaded areas are the NBER recessions. Details on the datasets PCE (with consumption measured through total personal

consumer expenditures) and NDS (with consumption measured through expenditures on nondurables and services) are provided

in Section 3.2. The effective sample period is 1953Q3− 2015Q2.

3.4.3 Baseline case: CEA index for financial liberalization

The results obtained when estimating the model with the ’credit easing accumulated’ (CEA) index used

as our baseline financial liberalization indicator flt are presented in Table 4. In the table, we report

the means and 90% highest posterior density (HPD) intervals of the posterior distributions of the fixed

regression parameters of eq.(21) - now with xt =
[
at yt flt

]
and φ =

[
α β γ

]′
- and eqs.(22),

(25) and (26) with the exception of the coefficients κj which are excluded due to space constraints. Again,

results are reported for both datasets detailed in Section 3.2, i.e., the PCE dataset (with consumption

measured through total personal consumer expenditures) and the NDS dataset (with consumption mea-

sured through expenditures on nondurables and services). And again, results are reported for both the

case with and without a stochastic trend included in the regression error. Setting ι = 0 is in line with

the posterior inclusion probabilities that we report in Table 2 for the model which uses the CEA index

as a measure of liberalization, which are well below 50%.
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Table 4: Model with financial liberalization: posterior distributions parameters of

equation ct = αat + βyt + γflt + µt + vt

(a) (b)

PCE dataset NDS dataset

(1) (2) (3) (4)

ι = 0 ι = 1 ι = 0 ι = 1

α 0.1147 0.1556 0.1252 0.1448

[0.0260,0.2040] [0.0597,0.2521] [0.0340,0.2171] [0.0479,0.2432]

β 0.8739 0.8268 0.8535 0.8289

[0.7683,0.9794] [0.7123,0.9419] [0.7446,0.9619] [0.7110,0.9462]

γ 0.0993 0.0879 0.1608 0.1330

[0.0630,0.1355] [0.0131,0.1600] [0.1286,0.1930] [0.0504,0.1920]

µ 0.0307 0.0081 -0.0170 -0.0086

[-0.2116,0.2741] [-0.2212,0.2443] [-0.2583,0.2252] [-0.2393,0.2283]

|ση| - 0.0030 - 0.0022

[-,-] [0.0014,0.0050] [-,-] [.0003,0.0045]

σ2
e 0.0023 0.0021 0.0022 0.0021

[0.0019,0.0027] [0.0018,0.0025] [0.0018,0.0026] [0.0018,0.0025]

Notes: The CEA index is used as a measure of financial liberalization. Reported are the pos-

terior mean with 90% HPD interval (in square brackets). The random walk component is µt =

µ + ισηµ
∗
t with µ∗

t = µ∗
t−1 + η∗t . The stationary component is vt =

∑p
j=−p ∆xt+jκj + et where

xt =
[
at yt flt

]
. The coefficients κj are excluded from the table due to space constraints.

Details on the datasets PCE (with consumption measured through total personal consumer expen-

ditures) and NDS (with consumption measured through expenditures on nondurables and services)

are provided in Section 3.2. Data are available over the period 1966Q3− 2016Q4 while the effective

sample period is 1968Q2 − 2015Q2 and the effective sample size is T = 189, i.e., 202 observations

minus 1 for first-differencing and minus 12 for constructing leads and lags since p = 6.

From the table, we note that our main parameter of interest γ, which captures the impact of financial

liberalization on the consumption-wealth ratio, is positive in all instances. Hence, we find that financial

liberalization, as measured through the CEA index, increases the consumption to wealth ratio. In par-

ticular, for the regressions without the unobserved stochastic trend (ι = 0), we find that the increase in

the CEA index from zero to one over the sample period (see Figure 1) has increased the consumption

to total wealth ratio with 10% when we consider the PCE dataset and with 16% when we consider the

NDS dataset. We further note that the elasticities α and β are of different magnitude as compared to

those obtained from the model without financial liberalization which are reported in Table 3 above. In

particular, the elasticity α - which reflects the ratio of asset wealth to total wealth in steady state - is

considerably lower, while the elasticity β - which reflects the ratio of human wealth to total wealth in
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steady state - is considerably larger. These values, in particular those obtained when we set ι = 0, are

in accordance with the human wealth to total wealth ratio estimates of about 90% and more reported

recently in the literature (see e.g., Lustig et al., 2013, and references therein).

Figure 4 presents the estimated time-varying part σηµ
∗
t of the unobserved random walk component

in the model that uses the CEA index as an indicator of financial liberalization, both with the PCE

dataset and with the NDS dataset. Although the posterior inclusion probabilities reported in Table 2

above suggest that it is not necessary to include a stochastic trend in this model (i.e., setting ι = 0 is

preferred over setting ι = 1 as the probabilities are well below 0.5), we are nonetheless interested to see

how the estimated trend in this model differs from the estimated trend in the model without liberalization

which is presented in Figure 2 above. From the figure, we note that for the NDS dataset, the unobserved

random walk component is almost constant. For the PCE dataset, there is still some time-variation in

this component in the model with financial liberalization. These findings are in line with the posterior

inclusion probabilities reported in Table 2 above for the model with the CEA index used for flt, i.e., the

probability equals only 3% for the NDS dataset but it is still substantial at 33% when the PCE dataset

is used. These findings are also in line with the estimated standard deviations |ση| of the error term

of the random walk component µt reported in Table 4. While still larger than zero, they are smaller

- substantially so, for the NDS dataset - than those reported in Table 3 above for the model without

liberalization. Importantly, for both datasets, the upward trend observed in Figure 2 in the random walk

component of the model without liberalization is no longer visible in Figure 4 and therefore seems to

have been well-captured by the inclusion of the CEA index to the regression model.
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Figure 4: The unobserved stochastic trend in the model with financial liberalization

(a) PCE dataset
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Note: Depicted is the mean and the 90% HPD interval (shaded area) of the estimated component σηµ
∗
t . This is obtained from the

estimation of equation ct = αat + βyt + γflt + µ+ ισηµ
∗
t + vt under the restriction ι = 1, the results of which are reported in

Table 4, columns (2) and (4). Details on the datasets PCE (with consumption measured through total personal consumer

expenditures) and NDS (with consumption measured through expenditures on nondurables and services) are provided in Section

3.2. The effective sample period is 1968Q2− 2015Q2.

Again, we can proxy the evolution of the log consumption to total wealth ratio ct−wt by calculating

ct−µ−αat− βyt for both datasets and for the model with and without the unobserved stochastic trend

included in the error term. Figure 5 shows the posterior means and 90% HPD intervals. As before,

the blue graphs depict the proxied log consumption-wealth ratio obtained from the model without an

unobserved stochastic trend (ι = 0) while the red graphs depict the proxied log consumption-wealth ratio

obtained from the model with an unobserved stochastic trend (ι = 1). The discrepancy observed between

both is very small which suggests that, in the model with financial liberalization, whether or not an

unobserved stochastic trend is included in the regression makes little difference. This again confirms that

the CEA index as an indicator of financial liberalization does a good job of capturing the non-stationarity

and therefore the trend that is present in the proxied consumption to total wealth ratio. Figure 5 also

depicts the US recessions as determined by the NBER (grey shaded areas). From these, we can further

observe that the calculated consumption-wealth ratios are cyclical, i.e., the consumption-wealth ratio

tends to falls during and/or shortly after a recession. The cyclicality of the consumption-wealth ratio is

driven by the relative cyclical evolution in the consumption, assets and labor income variables that are

used in its construction as well as by the cyclicality of the CEA index which we documented in Section

3.2 above (see Figure 1).
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Figure 5: The log consumption-wealth ratio in the model with financial liberalization: model with (ι = 1) and

without (ι = 0) unobserved stochastic trend

(a) PCE dataset
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(b) NDS dataset
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Note: Depicted is the mean and the 90% HPD interval (shaded area) of the calculated log consumption-wealth ratio

ct − µ− αat − βyt for every case reported in Table 4. For the model with an unobserved random walk included (ι = 1), the ratio

is printed in red, while for the model without an unobserved random walk included (ι = 0), the ratio is printed in blue. The grey

shaded areas are the NBER recessions. Details on the datasets PCE (with consumption measured through total personal

consumer expenditures) and NDS (with consumption measured through expenditures on nondurables and services) are provided

in Section 3.2. The effective sample period is 1968Q2− 2015Q2.

3.4.4 Alternative financial liberalization measures

In Section 3.2, we also discussed alternative proxies of financial liberalization, namely the household debt

to disposable income ratio (hhd) and the Abiad et al. index of financial reform (abiad). While the CEA

index is our preferred indicator, it is nonetheless interesting to investigate to what extent these alternative

measures have an impact on the relationship between consumption and wealth. Table 5 presents the

results obtained when estimating eq.(21) with the variables hhd and abiad used as proxies for flt. To

save space, in line with the posterior probabilities reported in Table 2 above, the hhd results are based

on a regression that includes an unobserved stochastic trend (ι = 1) while the abiad results are based on

a regression that does not include an unobserved stochastic trend (ι = 0). As before, results are reported

for both datasets detailed in Section 3.2, i.e., the PCE dataset (with consumption measured through total

personal consumer expenditures) and the NDS dataset (with consumption measured through expenditures

on nondurables and services). From the table, we note that the parameter of interest γ is positive in all

instances. Only for the abiad indicator of liberalization, however, do we find that the highest posterior

density interval (HPD) for γ does not contain the value of zero. The results obtained with the abiad

measure therefore confirm the earlier findings obtained with the CEA index. Results obtained with the

hhd variable do not point towards an important impact of liberalization on the consumption-wealth ratio.

To put this result in perspective, we reiterate that while the hhd variable has the advantage of being
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available over a long period, it is not a conceptually appealing measure of liberalization as it is affected

by both credit supply and demand, as well as variations in collateral values.

Table 5: Model with financial liberalization (alternative measures): posterior distri-

butions parameters of equation ct = αat + βyt + γflt + µt + vt

(a) (b)

PCE dataset NDS dataset

(1) (2) (3) (4)

hhd abiad hhd abiad

α 0.1936 0.2327 0.2052 0.2309

[0.1087,0.2778] [0.1134,0.3562] [0.1160,0.2927] [0.1088,0.3565]

β 0.7840 0.7371 0.7543 0.7218

[0.6839,0.8848] [0.5936,0.8784] [0.6500,0.8604] [0.5752,0.8657]

γ 0.0307 0.1213 0.0768 0.1984

[-0.0458,0.1047] [0.0318,0.2100] [-0.0050,0.1540] [0.1126,0.2819]

µ -0.0052 -0.0506 -0.0053 -0.0578

[-0.2342,0.2229] [-0.2782,0.1779] [-0.2325,0.2260] [-0.2884,0.1737]

|ση| 0.0032 - 0.0035 -

[0.0018,0.0048] [-,-] [0.0021,0.0052] [-,-]

σ2
e 0.0021 0.0022 0.0021 0.0022

[0.0018,0.0024] [0.0018,0.0027] [0.0018,0.0024] [0.0017,0.0027]

Notes: The household debt to income ratio (hhd) and the Abiad et al. index of financial liberalization

(abiad) are used as measures of financial liberalization. Given the results reported in Table 2, the

reported estimations using the measure hhd are for ι = 1 while those using the measure abiad are

for ι = 0. Reported are the posterior mean with 90% HPD interval (in square brackets). The

random walk component is µt = µ + ισηµ
∗
t with µ∗

t = µ∗
t−1 + η∗t . The stationary component is

vt =
∑p
j=−p ∆xt+jκj+et where xt =

[
at yt flt

]
. The coefficients κj are excluded from the

table due to space constraints. Details on the datasets PCE (with consumption measured through

total personal consumer expenditures) and NDS (with consumption measured through expenditures

on nondurables and services) are provided in Section 3.2. For estimations using hhd for flt, data

are available over the period 1951Q4−2016Q4 while the effective sample period is 1953Q3−2015Q2

and the effective sample size is T = 248, i.e., 261 observations minus 1 for first-differencing and

minus 12 for constructing leads and lags since p = 6. For estimations using abiad for flt, data

are available over the period 1973Q1− 2005Q4 (with effective sample period 1974Q4− 2003Q2 and

effective sample size equal to T = 119).

4 Investigating the channel: financial liberalization, expected

returns and expected consumption growth

The model presented in Section 2 implies that financial liberalization affects the consumption to wealth

ratio via an incomplete markets channel, i.e., financial liberalization reduces the incomplete markets
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component of expected future consumption growth which, through the intertemporal budget constraint,

increases the current consumption-wealth ratio. An alternative channel, not incorporated in the model

above, would be the possibility that financial liberalization affects the consumption-wealth ratio through

its impact on expected returns, i.e., financial liberalization reduces expected returns because it reduces the

cost of capital (see e.g., Arouri et al., 2010, pages 45-47 and references therein). The impact of financial

liberalization on the consumption-wealth ratio via expected returns could be direct, i.e., through the

intertemporal budget constraint as can be seen from eq.(6), or could be indirect, i.e., through the impact

of returns on consumption growth as can be seen from eqs.(11) and (17). This section presents empirical

evidence that supports the incomplete markets channel and refutes the expected returns channel, hence

providing further support for the model presented above. First, reduced form regressions are estimated

that investigate the impact of financial liberalization on expected returns and on expected aggregate

consumption growth. Next, we use the structural model of Section 2 to check whether the estimates

obtained in this section are consistent with the long-run regression estimates reported above in Section

3.

4.1 Estimating reduced form regressions for returns and consumption growth

4.1.1 Specification, data and methodology

If financial liberalization affects the consumption-wealth ratio through the incomplete markets channel put

forward in the model of Section 2 rather than through an alternative cost of capital channel, we should

find that, at least over the sample period, financial liberalization has predictive power for aggregate

consumption growth but that it does not have predictive ability for returns on wealth. To investigate

this, we estimate reduced form predictive regressions of the following form,

zt+1 = Ψz
0 + Ψz

1flt + χzt+1 (27)

where the predicted variable zt+1 is either aggregate returns on wealth rt+1 or aggregate consumption

growth ∆ct+1 and where the predictor variable is the financial liberalization indicator flt. The unobserved

component χzt+1 captures all other factors affecting zt+1 and is assumed to follow an AR(1) process given

by

χzt+1 = πzχzt + ozt+1 (28)

with the error term ozt+1 given by ozt+1 ∼ iidN
(
0, σ2

oz
)
.16 The parameter of interest is Ψz

1. We expect

this parameter to be zero when zt+1 = rt+1, i.e., we expect Ψr
1 = 0 which suggests the absence of a cost

16Higher-order AR processes were also considered, but the additional lags were found to be close to zero.
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of capital channel. We expect this parameter to be negative if zt+1 = ∆ct+1, i.e., we expect Ψ∆c
1 < 0

which suggests the presence of an incomplete markets channel. From the structural equation, eq.(17),

derived for aggregate consumption growth ∆ct+1 in the model of Section 2, we note that, provided that

the impact of flt on rt+1 is zero, the overall impact of flt on ∆ct+1 stems from the unobserved incomplete

markets component. This impact is negative as financial liberalization increases market completeness and

therefore reduces expected aggregate consumption growth.17

As far as the data are concerned, for the financial liberalization variable flt we use, as before, the CEA

index which is detailed in Section 3.2 and Appendix B. For real per capita aggregate consumption growth

∆ct+1, we use both total personal consumption expenditures (PCE) and expenditures on nondurable

goods and services (NDS) as measures for consumption. We again refer to Section 3.2 and Appendix

B for details. Finally, to proxy real returns on wealth rt+1, we use real stock returns which constitute

the data that are conventionally used to proxy returns on wealth. As Lustig et al. (2013) argue that

returns on wealth may be better approximated by bond returns, we also estimate the regression using

real returns on 10-year government bonds. We refer to Appendix B for more details on the construction

of both returns series.

We estimate the regression eqs.(27)-(28) using Gibbs sampling with the general outline and technical

details of the sampler provided in Appendix D. In Table 6, we report the prior distributions assumed

for the regression parameters. The prior distributions of the parameters Ψz
0, Ψz

1 and πz are assumed

to be standard Gaussian while that of the variance parameter σ2
oz is inverse gamma (IG). The numbers

reported in the table imply relatively flat priors for all parameters.

Table 6: Prior distributions of parameters regression equation zt+1 = Ψz
0 + Ψz

1flt + χzt+1

Gaussian priors N (b0, V0) Percentiles

mean (b0) variance (V0) 5% 95%

Intercept Ψz
0 0.00 1.00 −1.64 1.64

Coefficient on CEA index Ψz
1 0.00 1.00 −1.64 1.64

AR coefficient regression error πz 0.00 1.00 −1.64 1.64

Inverse Gamma prior IG(ν0T, ν0Tσ
2
0) Percentiles

belief (σ2
0) strength (ν0) 5% 95%

Variance error term ozt σ2
oz .0001 0.01 .0000 .0019

Notes: The regression equation is zt+1 = Ψz0 + Ψz1flt + χzt+1 where either zt+1 = rt+1 or zt+1 = ∆ct+1. The error term χzt+1 =

πzχzt + ozt+1 follows an AR(1) process with AR parameter πz and innovation variance σ2
oz .

17By estimating reduced-form regressions instead of estimating the first-order condition eq.(17) directly, we avoid the

complications related to the estimation of the intertemporal elasticity of substitution parameter (see Havranek et al., 2015,

and references therein).
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4.1.2 Results

The estimation results are reported in Table 7. From the table, we note that the impact of financial

liberalization on future returns is not different from zero, i.e., the HPD interval for the parameter Ψz
1

(with z = r) contains the value of zero. The impact of flt on future aggregate consumption growth is, as

expected, different from zero and negative. This is particularly the case for the NDS dataset. From the

structural model eq.(17), we note that these results suggest that financial liberalization has an impact

on expected consumption growth that is not related to its impact on expected returns but rather stems

from its impact on the (unobserved) incomplete markets term in aggregate consumption growth. In

particular, financial liberalization reduces expected aggregate consumption growth because it decreases

the incomplete markets component in consumption growth.

Table 7: Predictive impact of financial liberalization on returns and aggregate con-

sumption growth: posterior distributions parameters of equation zt+1 =

Ψz
0 + Ψz

1flt + χzt+1

(a) (b)

zt+1 = rt+1 zt+1 = ∆ct+1

(1) (2) (3) (4)

stocks bonds PCE NDS

Ψz
0 0.0003 0.0055 0.0066 0.0060

[-0.0207,0.0215] [-0.0045,0.0158] [0.0044,0.0088] [0.0042,0.0077]

Ψz
1 0.0154 0.0074 -0.0029 -0.0034

[-0.0217,0.0524] [-0.0105,0.0251] [-0.0067,0.0008] [-0.0065,-0.0003]

πz 0.0734 0.0234 0.3377 0.4888

[-0.0429,0.1902] [-0.0937,0.1411] [0.2248,0.4515] [0.3790,0.5990]

σ2
oz 0.0075 0.0019 .00004 .00001

[0.0064,0.0088] [0.0016,0.0023] [.00003,.00005] [.00000,.00002]

Notes: The CEA index (cea) is used as a measure of financial liberalization flt. Reported are

the posterior mean with 90% HPD interval (in square brackets). The error term χzt+1 = πzχzt +

ozt+1 follows an AR(1) process with AR parameter πz and innovation variance σ2
oz . Details on the

data used for stock and bond returns as well as details on the datasets PCE (with consumption

measured through total personal consumer expenditures) and NDS (with consumption measured

through expenditures on nondurables and services) are provided in Section 3.2 and in Appendix

D. Data are available over the period 1966Q3 − 2016Q4 with the effective sample period being

1966Q4− 2016Q4 (i.e., T = 201).

Figure 6 presents the fit of both regressions conducted for aggregate consumption growth, i.e., for the

PCE and NDS datasets. From the figure, we note that a low frequency downward evolution is present in

aggregate consumption growth which can be captured by our preferred baseline financial liberalization
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measure, i.e., the CEA index.

To conclude, the evidence presented in this section suggests that financial liberalization negatively

affects expected consumption growth. Since we find no evidence that liberalization exerts its influence

through the expected returns on wealth, this finding supports the incomplete markets channel that we

put forward in this paper to explain the impact of liberalization on the consumption-wealth ratio. In

the next section, we check whether the estimates obtained from estimating the reduced form eq.(27) and

those obtained from estimating the long-run regression eq.(21) of the previous section are consistent with

each other.

Figure 6: Fit regression of aggregate consumption growth on the lagged CEA index of financial liberalization

(a) PCE dataset

1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3
·10−2

(b) NDS dataset

1970 1980 1990 2000 2010
−2

−1

0

1

2
·10−2

Note: Depicted is actual aggregate consumption growth ∆ct+1 (blue line) and the fitted value of the regression Ψ∆c
0 + Ψ∆c

1 flt

(red line) where the CEA index (cea) is used as a measure of financial liberalization. Details on the datasets PCE (with

consumption measured through total personal consumer expenditures) and NDS (with consumption measured through

expenditures on nondurables and services) are provided in Section 3.2. The effective sample period is 1966Q4− 2016Q4.

4.2 Link with the structural model

In this section, we check the consistency of the estimates obtained in Section 3 for γ, i.e., the impact of

financial liberalization flt on the consumption-wealth ratio ct−wt (see eq.(15) above), and the estimates

obtained in Section 4.1 for Ψ∆c
1 , i.e., the total impact of flt on aggregate consumption growth ∆ct+1. Since

the estimations conducted in the previous subsection imply that flt affects ∆ct+1 directly through the

incomplete markets component of ∆ct+1 rather than through returns, we can write, using the structural

model eq.(17) above, that Ψ∆c
1 = 1

θ b with θ > 0 the coefficient of relative risk aversion and b ≤ 0 the

aggregate impact of financial liberalization on the incomplete markets component of consumption growth.

Similarly, we can write γ as a function of the model parameters since from the model in Section 2, we have

γ = − b
θ

ρc

1−ρc with ρc the discount factor which reflects the relative steady states values of total wealth and

consumption. As such, the estimates obtained for γ and Ψ∆c
1 imply values for the structural parameter
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ρc, i.e., we have ρc = γ
γ−Ψ∆c

1
. As noted in Section 2 above, this discount factor is theoretically expected to

be slightly smaller than one. This is confirmed by Figure 7 which reports the posterior distribution of ρc

calculated as implied from the posterior distributions of γ and Ψ∆c
1 . For both considered datasets (PCE

and NDS), the posterior mean of ρc lies slightly below one, i.e., it equals 0.97 for the PCE dataset and

it equals 0.98 for the NDS dataset. These are theoretically sound values that confirm that the estimates

obtained in Sections 3 and 4 of the paper are consistent with each other. This result provides further

support for the incomplete markets channel put forward in the paper as an explanation for the estimated

impact of financial liberalization on the long-run relationship between consumption and wealth.

Figure 7: Posterior distribution of the discount factor ρc

(a) PCE dataset
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Note: Depicted is the posterior distribution of the discount factor ρc. For the PCE dataset, the mean equals 0.9702 with 90%

HPD interval [0.9289, 1.0080] while for the NDS dataset, the mean equals 0.9791 with 90% HPD interval [0.9596, 0.9979]. The

discount factor ρc is calculated from the distributions of the parameters γ and Ψ∆c
1 (see Tables 4 and 7) as ρc = γ

γ−Ψ∆c
1

. Details

on the datasets PCE (with consumption measured through total personal consumer expenditures) and NDS (with consumption

measured through expenditures on nondurables and services) are provided in Section 3.2.

5 Conclusions

We investigate the impact of financial liberalization on the relationship between consumption and total

wealth, i.e., on the consumption-wealth ratio. The theoretical framework consists of a heterogeneous

agent model in which the presence of a precautionary saving motive and a liquidity constraint imply

the existence of an incomplete markets component in consumption growth. Financial liberalization is

persistent and signals a future reduction in this incomplete markets component. This implies a reduction

in expected future consumption growth which, through the consumer’s intertemporal budget constraint,

increases the current consumption to wealth ratio. From the model, an estimable aggregate long-run

relationship is derived between consumption, total wealth and financial liberalization. Estimation using

quarterly US data is conducted within a state space framework which allows to reliably estimate the

long-run relationship between the stochastically trended variables in the regression even in the presence
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of a non-stationary error term. We find that our baseline financial liberalization indicator, i.e., the

’credit easing accumulated’ (CEA) index, adequately captures the trend in the estimated consumption-

wealth ratio. Moreover, we find that the increase in this indicator over the sample period has increased

the consumption-wealth ratio with about ten to sixteen percent. We then check the incomplete markets

channel through which financial liberalization affects the consumption-wealth ratio according to our model

by testing whether, as our model suggests, financial liberalization has predictive power for aggregate

consumption growth. Our estimates confirm that this is the case.
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Appendices

Appendix A Derivations theoretical framework of Section 2

A.1 Derivation of eq.(6)

This appendix briefly describes the steps in the derivation of eq.(6) in Section 2 (see e.g., Lettau and

Ludvigson, 2005). We can write the per period constraint Wi,t+1 = (1+ri,t+1)(Wit−Cit) as
Wi,t+1

Wit
= (1+

ri,t+1)
(

1− Cit
Wit

)
. After taking logs, this gives ∆wi,t+1 = ri,t+1 +ln (1− exp(cit − wit)) with wit = lnWit

and cit = lnCit. We linearize this equation through a first-order Taylor approximation which gives,

∆wi,t+1 = ri,t+1 +

(
1− 1

ρc

)
(cit − wit) (A-1)

where we ignore the unimportant linearization constant and where ρc = W−C
W with 0 < ρc < 1 and with

W and C the steady state values of Wit and Cit.
1 We note that ρc is expected to be close to one. Further,

we can write ∆wi,t+1 as ∆wi,t+1 = ∆ci,t+1 + (cit − wit)− (ci,t+1 − wi,t+1). Upon combining this result

with equation (A-1) and rearranging terms, we obtain,

cit − wit = ρc(ri,t+1 −∆ci,t+1) + ρc(ci,t+1 − wi,t+1) (A-2)

Solving equation (A-2) forward ad infinitum, imposing the transversality condition (ρc)∞(ci,t+∞ −

wi,t+∞) = 0 and taking expectations at period t then gives eq.(6) in the text.

A.2 Derivation of eq.(14)

This appendix briefly describes the steps in the derivation of eq.(14) in Section 2. Substituting eq.(12)

into eq.(11) and writing down the resulting expression for period t+ j, we obtain,

∆ci,t+j =
1

θ
ln δ +

1

θ
ri,t+j +

1

θ
ai +

1

θ
biflt+j−1 +

1

θ
$i,t+j (A-3)

Taking expectations at time t of eq.(A-3) and using the result Eitflt+j−1 = flt which follows from the

random walk process assumed for flt+1 in eq.(13), we obtain,

Eit∆ci,t+j =
1

θ
ln δ +

1

θ
Eitri,t+j +

1

θ
ai +

1

θ
biflt +

1

θ
Eit$i,t+j (A-4)

Substituting eq.(A-4) - where we leave out the constants 1
θ ln δ and 1

θai for simplicity - into eq.(6) gives,

cit − wit = −1

θ
biflt

∞∑
j=1

(ρc)j + Eit

∞∑
j=1

(ρc)
j

[
(1− 1

θ
)ri,t+j −

1

θ
$i,t+j

]
(A-5)

Upon noting that
∑∞
j=1(ρc)j = ρc

1−ρc and using this in eq.(A-5), we obtain eq.(14) in the text.

1The linearization occurs around the point cit − wit = c− w with c− w = ln
(
C
W

)
.
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Appendix B Data

B.1 Data for the consumption, labor income and asset variables ct, yt and at.

We collect data for the period 1951Q4 − 2016Q4. Quarterly seasonally adjusted data for consumption,

disposable labor income, population and the price deflator are collected from the National Income and

Product Accounts (NIPA) from the Bureau of Economic Analysis (BEA) at the US Department of

Commerce. The assets (financial wealth) data are collected from the Flow of Funds Accounts of the

Board of Governors of the Federal Reserve System.

For the PCE dataset, consumption is measured as total personal consumption expenditures (line 1 of

NIPA Table 2.3.5). For the NDS dataset, consumption equals nondurable goods expenditure (line 8 of

NIPA Table 2.3.5) minus clothing and footwear (line 10 of NIPA Table 2.3.5) plus services expenditures

(line 13 of NIPA Table 2.3.5), with the sampling mean matching the sampling mean of total personal

consumption expenditures.

For both datasets, disposable labor income is calculated as the sum of compensation for employees

(line 2 of NIPA Table 2.1) plus personal current transfer receipts (line 16) minus contributions for domestic

government social insurance (line 25) and minus personal labor taxes. Personal labor taxes are derived

by first calculating the labor income fraction of total income, and subsequently using this ratio to back

out the share of labor taxes from the total personal current taxes (line 26). The labor income to total

income ratio is defined as the ratio of wages and salaries (line 3) to the sum of wages and salaries (line

3), proprietors’ income (line 9), rental income (line 12) and personal income receipts on assets (line 13).

For the PCE dataset, asset wealth is calculated as the net worth of households and nonprofit organiza-

tions minus the households’ and nonprofit organizations’ holdings of consumer durable goods as durable

goods in the PCE dataset are already accounted for in the consumption measure. For the NDS dataset,

asset wealth is calculated as the net worth of households and nonprofit organizations which includes

households’ and nonprofit organizations’ holdings of consumer durable goods.

For the PCE dataset, all calculated series are deflated with the price index for total personal con-

sumption expenditures (line 1 of NIPA Table 2.3.4). For the NDS dataset, the price index used to deflate

all series is based on the price developments of the nondurable goods (excl. clothing and footwear) and

services (i.e., the ratio of nominal to real nondurable goods and services). The base year is 2009 = 100.

The variables are further expressed in per capita terms using population data collected from the NIPA

(line 40 of Table 2.1).
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B.2 Data for the financial liberalization variable flt

The baseline indicator used for the financial liberalization variable is the ’credit easing accumulated’ or

CEA index (see Carroll et al., 2019). This index can be calculated over the period 1966Q3 − 2016Q4.

It is based on the question from the Senior Loan Officer Opinion Survey (SLOOS) on bank lending

practices, i.e., it asks whether domestic US banks are more willing to make consumer installment loans

now as opposed to three months ago. The survey scores are accumulated after being weighted using the

household debt to personal disposable income ratio (see below for its construction) and then normalized

to lie between zero and one.

A second variable used to measure financial liberalization is the household debt to personal disposable

income ratio. This ratio is calculated for the period 1951Q4 − 2016Q4. Quarterly seasonally adjusted

nominal personal disposable income is taken from the NIPA (line 27 of NIPA Table 2.1). Quarterly

seasonally adjusted nominal liabilities of households and nonprofit organizations are taken from the

FRED database (Federal Reserve Bank of St.Louis).

A third proxy for financial liberalization is Abiad et al. (2008)’s index of financial reform. This index

covers the period 1973Q1− 2005Q4. It is available at the annual frequency but we construct a quarterly

series by allocating the value for a given year to every quarter in that year. It includes seven different

dimensions of financial sector policy: credit controls and reserve requirements, interest rate controls,

entry barriers, state ownership, policies on securities markets, banking regulations and restrictions on

the capital account. Liberalization scores for each category are combined in a graded index which lies

between zero and one.

B.3 Data for returns rt

Returns data are taken from the Center for Research in Security Prices (CRSP) collected via Wharton

Research Data Services (WRDS). Stock returns are calculated from the value-weighted CRSP index.

Government bond returns are calculated from the 10-year government bond index. All returns are deflated

using the inflation rate as calculated from the price index for total personal consumption expenditures

(line 1 of NIPA Table 2.3.4).

Appendix C Estimation details state space model of Section 3

This appendix discusses the estimation of the state space system given by eqs.(21)-(26). First, we present

the general outline of the Gibbs sampler in Section C.1. Then, the technical details about the different

steps of the sampler are discussed in Section C.2. Finally, a convergence analysis is provided in Section
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C.3.

C.1 General outline

We collect the constant parameters in a vector Γ, i.e., Γ = (ι, φ, κ, µ, ση, σ
2
e). The Gibbs approach allows

us to simulate draws from the intractable joint posterior distribution of parameters Γ and state µ∗, i.e.,

f(Γ, µ∗|data), using only tractable conditional distributions. In particular, given the prior distribution

of the parameter vector f(Γ) and an initial draw for µ∗ taken from its prior distribution, the following

steps are implemented:

1. Sample the constant parameters Γ conditional on the unobserved state µ∗ and the data

(a) Sample the binary indicator ι marginalizing over the parameter ση for which variable selection

is carried out (see Frühwirth-Schnatter and Wagner, 2010).

(b) If ι = 1, sample the parameters φ, κ, µ, ση, σ2
e . If ι = 0, sample the parameters φ, κ, µ and

σ2
e . In the latter case, we set ση = 0.

2. Sample the unobserved state µ∗ conditional on the constant parameters Γ and the data. To this

end, if ι = 1, we use the multimove sampler for state space models of Carter and Kohn (1994)(see

also Kim and Nelson, 1999). If ι = 0, we draw µ∗ from its prior distribution.

These steps are iterated 20.000 times and in each iteration Γ and µ∗ are sampled. Given 10.000 burn-

in draws, the reported results are all based on posterior distributions constructed from 10.000 retained

draws. From the distribution of the binary indicator ι, we calculate the posterior probability that there

is an unobserved stochastic trend in regression eq.(21) as the fraction of ι’s that are equal to 1 over the

10.000 retained draws of the Gibbs sampler.

C.2 Details on the steps of the sampler

C.2.1 Regression framework

The parameters contained in Γ can be sampled from a standard regression model,

Z = Xrζr + ϕ (C-1)

where Z is a T × 1 vector containing T observations on the dependent variable, X is a T ×M matrix

containing T observations of M predictor variables, ζ is the M × 1 parameter vector and ϕ is the T × 1

vector of error terms for which ϕ ∼ iidN
(
0, σ2

ϕIT
)
. If the binary indicators ι equal 1, then the parameter

vector ζr and the corresponding predictor matrix Xr are equal to the unrestricted ζ, respectively X.
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Otherwise, the restricted ζr and Xr exclude those elements in X and ζ for which the corresponding

binary indicators ι equal 0. The prior distribution of ζr is given by ζr ∼ N
(
br0, B

r
0σ

2
ϕ

)
with br0 a Mr × 1

vector and Br0 a Mr ×Mr matrix. The prior distribution of σ2
ϕ is given by σ2

ϕ ∼ IG (s0, S0) with scalars

s0 (shape) and S0 (scale). The posterior distributions (conditional on Z, Xr, and ι) of ζr and σ2
ϕ are

then given by ζr ∼ N
(
br, Brσ2

ϕ

)
and σ2

ϕ ∼ IG (s, Sr) with,

Br =
[
(Xr)′Xr + (Br0)−1

]−1

br = Br
[
(Xr)′Z + (Br0)−1br0

]
(C-2)

s = s0 + T/2

Sr = S0 +
1

2

[
Z ′Z + (br0)′(Br0)−1br0 − (br)′(Br)−1br

]
The posterior distribution of the binary indicators ι is obtained from Bayes’ theorem as,

p(ι|Z,X, σ2
ϕ) ∝ p(Z|ι,X, σ2

ϕ)p(ι) (C-3)

where p(ι) is the prior distribution of ι and p(Z|ι,X, σ2
ϕ) is the marginal likelihood of regression eq.(C-

1) where the effect of the parameters ζ has been integrated out. We refer to Frühwirth-Schnatter and

Wagner (2010) (their eq.(25)) for the closed-form expression of the marginal likelihood for the regression

model of eq.(C-1).

Sample the binary indicator ι

There is one binary indicator ι in our model which we sample by calculating the marginal likelihoods

p(Z|ι = 1, X, σ2
ϕ) and p(Z|ι = 0, X, σ2

ϕ) (see Frühwirth-Schnatter and Wagner, 2010, for the correct

expressions). Upon combining the marginal likelihoods with the Bernoulli prior distributions of the binary

indicators p(ι = 1) = p0 and p(ι = 0) = 1 − p0, the posterior distributions p(ι = 1|Z,X, σ2
ϕ) and p(ι =

0|Z,X, σ2
ϕ) are obtained from which the probability prob(ι = 1|Z,X, σ2

ϕ) =
p(ι=1|Z,X,σ2

ϕ)

p(ι=1|Z,X,σ2
ϕ)+p(ι=0|Z,X,σ2

ϕ) is

calculated which is used to sample ι, i.e., draw a random number r from a uniform distribution with

support between 0 and 1 and set ι = 1 if r < prob(.) and ι = 0 if r > prob(.).

Sample the other parameters in Γ

We then sample the regression coefficients φ, κ, µ and ση and the regression error variance σ2
e conditional

on ι, the data and the unobserved component µ∗t . The dependent variable is Z = c where c is the T × 1

vector containing consumption ct stacked over time while the error term is ϕ = e with e containing

et stacked over time and where the variance is given by σ2
ϕ = σ2

e . When ι = 1, we have Xr = X =[
x ∆x−p ... ∆x+p % µ∗

]
and ζr = ζ =

[
φ′ κ′−p ... κ′+p µ ση

]′
where % is a T × 1
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vector of ones and µ∗ is a T × 1 vector containing µ∗t stacked over time. We note that x and every ∆xj

(for j = −p...+ p) are T × k matrices where either k = 2 (model without financial liberalization variable

included) or k = 3 (model with financial liberalization variable included). Then, φ and every κj are k×1

vectors and we have M = k(2p + 2) + 2. When ι = 0, we have Xr =
[
x ∆x−p ... ∆x+p %

]
and

ζr =
[
φ′ κ′−p ... κ′+p µ

]′
(and ση is set to zero). In this case, we have Mr = k(2p+ 2) + 1. Once

the matrices of eq.(C-1) are determined, the parameters ζr and σ2
ϕ can be sampled from the posterior

distributions given above with the prior distributions as specified in Table 1 in the text.2

C.2.2 State space framework

If ι = 0, the unobserved component is drawn from its prior distribution. In particular, µ∗t is drawn from

eq.(24), i.e., as a cumulative sum of standard normally distributed shocks η∗t so µ∗t =
∑t
s=1 η

∗
s . If ι = 1,

the unobserved component µ∗t is sampled conditional on the constant parameters and on the data using a

state space approach. In particular, we use the forward-filtering backward-sampling approach discussed

in detail in Kim and Nelson (1999) to sample the unobserved state. The general form of the state space

model is given by,

Yt = ASt + Vt, Vt ∼ iidN (0, H) , (C-4)

St = BSt−1 +KEt, Et ∼ iidN (0, Q) , (C-5)

S0 ∼ iidN (s0, P0) , (C-6)

(where t = 1, ..., T ) with observation vector Yt (n×1), state vector St (ns×1), error vectors Vt (n×1) and

Et (nss × 1 with nss ≤ ns) that are assumed to be serially uncorrelated and independent of each other,

and with the system matrices that are assumed to be known (conditioned upon) namely A (n × ns), B

(ns×ns), K (ns×nss), H (n×n), Q (nss×nss) and the mean s0 (ns×1) and variance P0 (ns×ns) of the

initial state vector S0. As eqs. (C-4)-(C-6) constitute a linear Gaussian state space model, the unknown

state variables in St can be filtered using the standard Kalman filter. Sampling S = [S1, . . . , ST ] from its

conditional distribution can then be done using the multimove Gibbs sampler of Carter and Kohn (1994).

Given our state space system presented in eqs.(21)-(26), we have n = ns = nss = 1. The matrices are

then given by Yt = ct − xtφ − µ −
∑p
j=−p ∆xt+jκj , A = ση, St = µ∗t , Vt = et, H = σ2

e , B = 1, K = 1,

Et = η∗t , Q = 1. Moreover, we have s0 = µ∗0 = 0 and P0 = 10−6, i.e., the initial state is fixed at zero.

2We note that s0 = ν0T and S0 = ν0Tσ2
0 with the values for ν0 and σ2

0 given in Table 1. We note that br0 is a Mr × 1

vector containing the values of b0 given in Table 1. Further, Br0 is an Mr ×Mr diagonal matrix containing as elements the

variances 1 - i.e., the variable V0 in Table 1 - divided by the prior belief for σ2
e - i.e., the variable σ2

0 in Table 1.
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C.3 Convergence analysis

We analyse the convergence of the MCMC sampler using the simulation inefficiency factors as proposed

by Kim et al. (1998) and the convergence diagnostic of Geweke (1992) for equality of means across

subsamples of draws from the Markov chain (see Groen et al., 2013, for a similar convergence analysis).

For each fixed parameter and for every point-in-time estimate of the unobserved component, we

calculate the inefficiency factor as IF = 1 + 2
∑m
l=1 κ(l,m)θ̂(l) where θ̂(l) is the estimated the l-th order

autocorrelation of the chain of retained draws and κ(l,m) is the kernel used to weigh the autocorrelations.

We use a Bartlett kernel with bandwidth m, i.e., κ(l,m) = 1− l
m+1 , where we set m equal to 4% of the

10.000 retained sampler draws (see Section C.1 above). If we assume that d draws are sufficient to cover

the posterior distribution in the ideal case where draws from the Markov chain are fully independent,

then d × IF provides an indication of the minimum number of draws that are necessary to cover the

posterior distribution when the draws are not independent. Usually, d is set to 100. Then, for example,

an inefficiency factor equal to 20 suggests that we need at least 2.000 draws from the sampler for a

reasonably accurate analysis of the parameter of interest. Additionally, we also compute the p-values of

the Geweke (1992) test which tests the null hypothesis of equality of the means of the first 20% and last

40% of the retained draws obtained from the sampler for each fixed parameter and for every point-in-time

estimate of the unobserved component. The variances of the respective means are calculated using the

Newey and West (1987) robust variance estimator using a Bartlett kernel with bandwidth equal to 4%

of the respective sample sizes (i.e., the first 20% and the last 40%).

In Tables C-1 and C-2, we present the convergence analysis corresponding to the results reported in

Tables 3 and 4 in the text. The convergence results are reported for individual parameters or for groups

of parameters. Groups are considered when the parameters can be meaningfully grouped which is the

case for the k parameters in φ (with k = 2 or k = 3 depending on whether xt =
[
at yt

]
or xt =[

at yt flt

]
), for the k× (p+ 1) parameters κ of the DOLS specification of the stationary component

vt (where, given p = 6, we have 26 or 39 parameters depending again on whether xt =
[
at yt

]
or

xt =
[
at yt flt

]
), and for the unobserved component µ∗ which is a state, i.e., a time series of length

T = 248 (Table C-1) or T = 189 (Table C-2). In both tables, we report statistics of the distributions of

the inefficiency factors for every parameter or parameter group, i.e., median, minimum, maximum, and -

for the state µ∗ - the 5% and 10% quantiles. Obviously, these statistics are identical for the non-grouped

parameters. The tables also report the rejection rates of the Geweke tests conducted both at the 5% and

10% levels of significance. These rates are equal to the number of rejections of the null hypothesis of the

test per parameter group divided by the number of parameters in a parameter group. These rates can
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only be zero or one for individual (non-grouped) parameters but can lie between zero and one for the

grouped parameters.

Table C-1: Inefficiency factors and convergence diagnostics (results Table 3)

Inefficiency factors Convergence

(Stats distribution) (Rejection rates)

Dataset Trend Parameters Number Median Min Max 5% 10% 5% 10%

PCE ι = 0 φ 2 0.83 0.83 0.83 - - 0.00 0.00

µ 1 0.78 0.78 0.78 - - 0.00 0.00

σ2
e 1 1.03 1.03 1.03 - - 0.00 0.00

κ 26 0.95 0.84 1.20 - - 0.08 0.11

ι = 1 φ 2 6.72 5.08 8.36 - - 0.00 0.00

µ 1 9.06 9.06 9.06 - - 0.00 0.00

|ση| 1 8.48 8.48 8.48 - - 0.00 0.00

σ2
e 1 1.06 1.06 1.06 - - 0.00 0.00

κ 26 1.01 0.84 1.27 - - 0.08 0.11

µ∗ 248 0.94 0.81 1.19 0.90 1.14 0.00 0.01

NDS ι = 0 φ 2 0.83 0.83 0.83 - - 0.00 0.00

µ 1 0.78 0.78 0.78 - - 0.00 0.00

σ2
e 1 1.03 1.03 1.03 - - 0.00 0.00

κ 26 0.95 0.84 1.20 - - 0.04 0.08

ι = 1 φ 2 8.92 7.35 10.50 - - 0.00 0.00

µ 1 5.89 5.89 5.89 - - 0.00 0.00

|ση| 1 19.14 19.14 19.14 - - 0.00 0.00

σ2
e 1 1.01 1.01 1.01 - - 0.00 0.00

κ 26 1.02 0.83 1.41 - - 0.04 0.11

µ∗ 248 0.98 0.80 1.17 0.90 1.12 0.00 0.00

Notes: The convergence analysis corresponds to the results reported in Table 3 and Table 4. The statistics of the distribution of

the inefficiency factors are presented in columns 5 to 9 for every parameter or group of parameters. These statistics are identical

when parameters are considered individually as only one inefficiency factor is calculated in these cases. The inefficiency factors

are calculated for every fixed parameter and for every point-in-time estimate of the unobserved component using a Bartlett kernel

with bandwidth equal to 4% of the 10.000 retained sampler draws. The rejection rates of the Geweke (1992) test conducted at

the 5% and 10% levels of significance are reported in columns 10 and 11. These rates are equal to the number of rejections of the

null hypothesis of the test per parameter group divided by the number of parameters in a parameter group. These rates are either

zero or one for parameters that are considered individually. They are based on the p-value of the Geweke test of the hypothesis

of equal means across the first 20% and last 40% of the 10.000 retained draws which is calculated for every fixed parameter and

for every point-in-time estimate of the unobserved component. The variances of the respective means in the Geweke (1992) test

are calculated with the Newey and West (1987) robust variance estimator using a Bartlett kernel with bandwidth equal to 4% of

the respective sample sizes (i.e., the first 20% and the last 40%).
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Table C-2: Inefficiency factors and convergence diagnostics (results Table 4)

Inefficiency factors Convergence

(Stats distribution) (Rejection rates)

Dataset Trend Parameters Number Median Min Max 5% 10% 5% 10%

PCE ι = 0 φ 3 0.95 0.84 0.98 - - 0.00 0.00

µ 1 0.81 0.81 0.81 - - 0.00 0.00

σ2
e 1 0.98 0.98 0.98 - - 0.00 1.00

κ 39 0.99 0.83 1.34 - - 0.08 0.13

ι = 1 φ 3 1.59 1.47 11.45 - - 0.00 0.00

µ 1 1.00 1.00 1.00 - - 0.00 0.00

|ση| 1 1.29 1.29 1.29 - - 0.00 0.00

σ2
e 1 0.94 0.94 0.94 - - 0.00 0.00

κ 39 0.97 0.77 1.31 - - 0.00 0.02

µ∗ 189 1.02 0.89 1.26 0.94 1.20 0.05 0.10

NDS ι = 0 φ 3 0.95 0.85 0.98 - - 0.00 0.00

µ 1 0.81 0.81 0.81 - - 0.00 0.00

σ2
e 1 0.98 0.98 0.98 - - 1.00 1.00

κ 39 0.99 0.83 1.34 - - 0.05 0.13

ι = 1 φ 3 1.26 1.20 4.70 - - 0.00 0.00

µ 1 0.94 0.94 0.94 - - 0.00 0.00

|ση| 1 1.87 1.87 1.87 - - 0.00 0.00

σ2
e 1 0.91 0.91 0.91 - - 0.00 0.00

κ 39 0.96 0.75 1.27 - - 0.00 0.00

µ∗ 189 0.92 0.82 1.24 0.85 1.12 0.00 0.00

Notes: See Table C-1.

The calculated inefficiency factors suggest that the MCMC sampler performs well and that all param-

eters are well converged using our retained 10.000 draws. In fact, an accurate analysis could have been

conducted with less than 10.000 draws. From Table C-1, we note that more draws of in particular the

parameters φ and µ are required when the unobserved random walk component is included in the model

and estimated, i.e., when ι = 1 as compared to ι = 0 (irrespective of the dataset used). As discussed

in the text, once the financial liberalization variable is included in the model, the unobserved stochastic

trend is less relevant. This is reflected by the more similar inefficiency factors for ι = 1 and ι = 0 in Table

C-2. Our findings for the inefficiency factors are corroborated by the results for the Geweke (1992) test

for equality of means across subsamples of the retained draws. The rejection rates reported in the tables

are, with few exceptions, very close to or equal to zero and therefore strongly suggest that the means

of the first 20% and last 40% of the retained draws are equal. In a few instances, higher rejection rates
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are observed, in particular for the parameters κ and σ2
e . We argue that these rejection rates are due to

the particular sample of draws and are not indicative of non-convergence as these rejection rates are not

withheld when we rerun the sampler using another seed. Hence, in general, we can conclude that the

convergence of the sampler for the retained number of draws is satisfactory.

Appendix D Estimation details regression model of Section 4

This appendix discusses the estimation of the regression eqs.(27)-(28) through Gibbs sampling. First, we

present the general outline of the Gibbs sampler in Section D.1. Then, the technical details about the

different steps of the sampler are discussed in Section D.2. We do not report the convergence analysis,

but it is available from the authors upon request.

D.1 General outline

We collect the parameters in a vector Γ, i.e., Γ = (πz,Ψz
0,Ψ

z
1, σ

2
oz ). The Gibbs approach allows us to

simulate draws from the intractable joint posterior distribution of the parameters in Γ, i.e., f(Γ|data),

using tractable conditional distributions. In particular, given the prior distribution of the parameter

vector f(Γ), the following steps are implemented:

1. Sample the AR parameter πz conditional on the parameters Ψz
0, Ψz

1, σ2
oz and the data

2. Sample the regression coefficients Ψz
0 and Ψz

1 and innovation variance σ2
oz conditional on πz and

the data

These steps are iterated 20.000 times and in each iteration the parameters in Γ are sampled. Given

10.000 burn-in draws, the reported results are all based on posterior distributions constructed from 10.000

retained draws.

D.2 Details on the steps of the sampler

D.2.1 Regression framework

The parameters contained in Γ can be sampled from a standard regression model,

Z = Xζ + ϕ (D-1)

where Z is a T × 1 vector containing T observations on the dependent variable, X is a T ×M matrix

containing T observations of M predictor variables, ζ is the M × 1 parameter vector and ϕ is the

T × 1 vector of error terms for which ϕ ∼ iidN
(
0, σ2

ϕIT
)
. The prior distribution of ζ is given by
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ζ ∼ N
(
b0, B0σ

2
ϕ

)
with b0 a M × 1 vector and B0 a M ×M matrix. The prior distribution of σ2

ϕ is given

by σ2
ϕ ∼ IG (s0, S0) with scalars s0 (shape) and S0 (scale). The posterior distributions (conditional on

Z and X) of ζ and σ2
ϕ are then given by ζ ∼ N

(
b, Bσ2

ϕ

)
and σ2

ϕ ∼ IG (s, S) with,

B =
[
X ′X +B−1

0

]−1

b = B
[
X ′Z +B−1

0 b0
]

(D-2)

s = s0 + T/2

S = S0 +
1

2

[
Z ′Z + b′0B

−1
0 b0 − b′B−1b

]
D.2.2 Sample πz

To sample πz conditional on the parameters Ψz
0, Ψz

1, σ2
oz and the data, we note that eq.(28) in the text

can be cast in the framework of eq.(D-1). We calculate χzt+1 ≡ zt+1 −Ψz
0 −Ψz

1flt so that the dependent

variable is Z = χz+1 where χz+1 is the T × 1 vector containing χzt+1 stacked over time. The regressor is

X = χz where χz contains χzt stacked over time. The regression coefficient is ζ = πz. The error term is

ϕ = oz+1 where oz+1 contains ozt+1 stacked over time. The variance σ2
ϕ = σ2

oz is assumed to be given in this

step (it is sampled in the next step). Once the matrices of eq.(D-1) are determined, the parameter ζ can

be sampled from the Gaussian posterior distribution given above with the prior distribution as specified

in Table 6 in the text.3

D.2.3 Sample Ψz
0, Ψz

1 and σ2
oz

To sample the parameters Ψz
0, Ψz

1 and σ2
oz conditional on the parameter πz and the data, we first

transform eq.(27) in the text so that it can be cast in the framework of eq.(D-1). First, we write eq.(27)

as zt+1 = xtΨ
z + χzt+1 where xt =

[
% flt

]
(with % a vector of ones) and where Ψz =

[
Ψz

0 Ψz
1

]′
.

Second, we premultiply both sides of zt+1 = xtΨ
z+χzt+1 by (1−πzL) (with L the lag operator) to obtain

z̃t+1 = x̃tΨ
z + ozt+1 where z̃t+1 = (1−πzL)zt+1 and x̃t = (1−πzL)xt. Equation z̃t+1 = x̃tΨ

z + ozt+1 is in

accordance with eq.(D-1). The dependent variable is Z = z̃+1 where z̃+1 is the T × 1 vector containing

z̃t+1 stacked over time. The regressor is X = x̃ where x̃ contains x̃t stacked over time. The regression

coefficient is ζ = Ψz. The error term is ϕ = oz+1 where oz+1 contains ozt+1 stacked over time. The variance

σ2
ϕ = σ2

oz . Once the matrices of eq.(D-1) are determined, the parameters ζ and σ2
ϕ can be sampled from

the posterior distributions given above with the prior distributions as specified in Table 6 in the text.4

3The prior distribution depends on b0 and B0 = V0/σ2
0 with the values for b0, V0 and σ2

0 given in Table 6.
4We note that s0 = ν0T and S0 = ν0Tσ2

0 with the values for ν0 and σ2
0 given in Table 6. Note that b0 is a 2× 1 vector

containing the values of b0 for Ψz0 and Ψz1 given in Table 6. Further, B0 is an 2× 2 diagonal matrix containing as elements

the variances 1 - i.e., the variable V0 in Table 6 - divided by the prior belief for σ2
oz - i.e., the variable σ2

0 in Table 6.
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