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ABSTRACT 

We propose more general non-parametric revealed preference tests for weak separability and 

utility maximization with incomplete adjustment. Hence, these procedures account for a decision 

maker’s inability to adjust his optimal allocation of the demanded goods and assets. Incomplete 

adjustment is especially important when modelling preferences of durable goods and assets. The 

procedures are based on a computationally attractive integer programming approach.  Two 

empirical applications show that it is important to account for incomplete adjustment in 

consumer demand models of durable consumption goods and monetary assets. 

 
 Hjertstrand thank Jan Wallander och Tom Hedelius stiftelse and Marianne och Marcus Wallenberg stiftelse for 
financial support. Email: per.hjertstrand@ifn.se (P. Hjertstrand); jswoffor@southalabama.edu (J. Swofford); 
gwhitney@uno.edu (G. Whitney). 
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1. INTRODUCTION 

That decision makers cannot instantaneously adjust to their optimal long-term equilibrium 

demand of goods and assets has been recognized in economics since at least Böhm-Bawerk 

(1888) and Keynes (1936). Kydland and Prescott (1982) argue that incomplete adjustment is 

important when modelling the aggregate economy, while others have argued and shown that 

various microeconomic decisions including those on capital, monetary and financial assets, and 

consumer durables are characterized by incomplete adjustment (See e.g., the recent work by 

Swofford and Whitney, 1988; Fleissig and Swofford, 1996; Jones et al., 2005; Elger et al., 2008; 

Jha and Longjam, 2006).1 Incomplete adjustment may arise because of habit persistence, 

adjustment costs, the formation of expectations, or a combination of reasons. Koyck (1954) and 

Almon (1965) developed distributed lag models to account for incomplete adjustment in 

regression analysis.2 Swofford and Whitney (1994) allow for incomplete adjustment in revealed 

preference tests. 

In this paper, we propose more general and computationally efficient non-parametric 

revealed preference tests for weak separability and utility maximization that allow for incomplete 

adjustment. Utility maximization is a core concept in economics and the main underlying 

assumption for all rational choice theory. Weak separability is another key concept in economics: 

It establishes the fundamental link between aggregation of goods and the maximization 

principles, provides means of dividing the economy into sectors, and produces powerful 

parameter restrictions that enhance estimation of large scale demand systems.3 This led Barnett 

 
1 See Hillinger (1996) for a historical overview of the theory of dynamic disequilibrium in economics.  
2 The theory of cointegration can be seen as a statistical expression of a more general notion of (dis)equilibrium in 
economics (Engle and Granger, 1987). 
3 A group of goods is weakly separable if the demanded quantities of these goods depend solely on the prices of 
the goods in the group (and not on the price of any outside good other than through total expenditure). This 
allows for a separation of the separable goods into a sub-utility or aggregator function.  
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and Choi (1989) to argue that weak separability is fundamental to all empirical research in order 

to avoid the structure of the economy becoming prohibitively difficult to model empirically.   

Weak separability and utility maximization are often tested using revealed preference 

methods. These procedures are non-parametric in the sense that they are free from any 

assumption of the functional form of the utility function, and consequently, avoids any problems 

associated with model misspecification. Varian (1983) and Fleissig and Whitney (2003) 

proposed different revealed preference procedures to test for weak separability. More recently, 

Cherchye, Demuynck, De Rock and Hjertstrand (2015) introduced a computationally efficient 

test-procedure based on solving a mixed integer linear programming problem. However, none of 

these test-procedures is able to account for incomplete adjustment in the data.   

Swofford and Whitney’s (1994) revealed preference test for weak separability accounts for 

incomplete adjustment, but only allow the goods in the weakly separable block to be chosen with 

incomplete adjustment. In contrast, the revealed preference test proposed in this paper is very 

general since it allow goods in both the weakly separable and non-weakly separable blocks to be 

chosen with incomplete adjustment.4 

Our procedure is computationally efficient and shares many of the computational advantages 

of Cherchye et al.’s (2015) procedure. Specifically, like theirs, our procedure is based on solving 

a problem with linear restrictions. In practice, our procedure is computationally only marginally 

more involved since it is based on minimizing a quadratic objective function while the objective 

in Cherchye et al.’s (2015) problem is linear. Thus, compared to Swofford and Whitney’s (1994) 

 
4 Crawford (2010) give necessary and sufficient revealed preference conditions for the habits model, i.e., when lags 
of the demanded quantities enter as arguments in the utility function. Our framework is conceptually different 
from the habits model since it is based on a notion of disequilibrium. 



4 
 

procedure, which is based on finding a solution to a non-linear optimization problem with non-

linear restrictions, our new method is considerably easier to implement.5  

We apply our test-procedure for weak separability with incomplete adjustment to two data 

sets. The first application is to aggregated consumption and monetary U.S. quarterly data, partly 

used in Hjertstrand, Swofford and Whitney (2016). We test whether nine monetary and real-

sector/consumption aggregates are weakly separable from all other goods. We find that five of 

these aggregates are weakly separable with considerable amounts of incomplete adjustment. 

These results show that it is important to allow for incomplete adjustment when modelling weak 

separability of monetary assets and durable consumption goods using data sampled on a 

relatively short time frequency. We also aggregate our data to obtain yearly observations. In this 

case, we find that eight (of the nine) aggregates are weakly separable with essentially zero 

amounts of incomplete adjustment. Thus, we find that it is much more important to account for 

incomplete adjustment in quarterly than in yearly data. 

In the second application, we apply our test-procedure to disaggregated survey (micro) data 

over Spanish household expenditures for 25 durable and non-durable consumption goods and 

services for 1,585 households. It is common in empirical analyses of demand and consumption 

patterns over the life-cycle to assume that durable goods are weakly separable from non-durable 

goods and services.6 We test whether this is a valid assumption and find that the data for almost 

85 % of all households satisfy weak separability. 33 % of the households satisfy weak 

 
5 At the time of writing their article, Swofford and Whitney (1994) had to use a CRAY super-computer to 

implement their procedure, which included dividing the sample of 62 observations into two overlapping sub-

samples of 40 observations each. 
6 See, for example, Browning and Collado (2001), Demuynck and Verriest (2013) and Luengo-Prado and Sevilla 
(2012). 
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separability with incomplete adjustment, which, in our view, shows that it is important to 

account for incomplete adjustment in demand modelling of durable goods in micro survey data. 

In the next few sections, we present our general notion of weak separability with incomplete 

adjustment, discuss some special cases, and show by example how important incomplete 

adjustment can be.  Then we show how we account for incomplete adjustment in a standard 

utility maximization model (i.e., without assuming weakly separable preferences). 

2. INCOMPLETE ADJUSTMENT 

2.1 Weak Separability with Incomplete Adjustment 

Suppose that there are 𝑘 goods and assets observed in the market.7 Suppose that these 𝑘 goods 

are split into two mutually exclusive blocks. Let 𝒙 and 𝒎 denote column vectors of the quantity 

data of the first and second blocks, respectively. Let 𝒑 denote a row vector of the prices for the 

𝒙-goods and 𝒓 denote a row vector of the prices for the 𝒎-goods.  

We assume that each block may contain durable and non-durable goods, and that the durable 

goods may be subject to incomplete adjustment. That is, the decision maker (DM) may fail to 

adjust optimal consumption allocations for the durable goods. In contrast, we assume that the 

DM is able to fully adjust optimal consumption for the non-durable goods. Let 𝒙𝑫 and 𝒙𝑵𝑫 

denote the durable and non-durable goods in 𝒙, respectively. Let 𝒑𝑫 and 𝒑𝑵𝑫 denote the prices 

of 𝒙𝑫 and 𝒙𝑵𝑫. Analogously, let 𝒎𝑫 and 𝒎𝑵𝑫 denote the durable and non-durable goods in 𝒎, 

and let 𝒓𝑫 and 𝒓𝑵𝑫 denote the prices of 𝒎𝑫 and 𝒎𝑵𝑫. Suppose there are 𝑛 observations on the 

prices and quantities and let the ith observation of the prices be denoted 𝒑𝒊 = (𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ) and 𝒓𝒊 =

(𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ), while the ith observation of the quantities is denoted 𝒙𝒊 = (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ) and 𝒎𝒊 =

(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 ). We write: 

 
7 For compactness, we will refer to all goods and assets simply as “goods”. 
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𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

,                                                        

to signify all price-quantity observations and refer to 𝔻 as “the data”. 

The DM’s utility function is 𝑢(𝒙, 𝒎) = 𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫).  The utility function is  

weakly separable in the 𝒎 block of goods if there exists a macro function 𝑈 and a sub-utility 

function 𝑉 such that 𝑢 can be written as 𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫) = 𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)).  

Note that this model allows for durable and non-durable goods in the weakly separable block, 𝒎, 

as well as in the non-separable block of goods, 𝒙.  

Our general notion of weak separability with incomplete adjustment is based on the idea that 

the DM, at each observation 𝑖 = 1, … , 𝑛, solves an overall utility maximization problem and a 

sub-utility maximization problem involving a sub-set of the goods. Specifically, the DM solves 

the overall utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫,𝒙𝑵𝑫,𝒎𝑫 ,𝒎𝑵𝑫}

𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)),                                                                                 (1) 

subject to the three different budget constraints in (2)-(4). The standard overall budget constraint 

puts a restriction on the total outlay for all goods:  

𝒑𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + 𝒓𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝑌𝑖 ,                                                                           (2) 

where 𝑌𝑖is total expenditure on all nondurable and durable goods. The second restriction 

imposes a constraint on expenditure for the durable goods in the non-separable block 𝒙: 

𝒑𝐷
𝑖 𝒙𝑫 ≤ 𝑌𝐷

𝑖 ,                                                                                                                                       (3) 

where 𝑌𝐷
𝑖  denotes total expenditure on the durable goods 𝒙𝑫. Finally, the third restriction 

imposes a constraint on expenditure of the durable goods in the separable block 𝒎: 

𝒓𝐷
𝑖 𝒎𝑫 ≤ 𝐸𝐷

𝑖 ,                                                                                                                                     (4) 

where 𝐸𝐷
𝑖  is total expenditure on the durables 𝒎𝑫. 
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The sub-utility maximization problem solved by the DM is given by:  

             𝑚𝑎𝑥
                   {𝒎𝑫,𝒎𝑵𝑫}

𝑉(𝒎𝑫, 𝒎𝑵𝑫),                                                                                                                  (5) 

subject to the two budget constraints (4) and (6). The constraint (6) puts a restriction on total 

outlay for all separable goods (𝒎): 

𝒓𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝐸𝑖 ,                                                                                                               (6) 

where 𝐸𝑖 = 𝒓𝐷
𝑖 𝒎𝑫

𝒊 + 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝒊  is total expenditure on the separable goods. The constraint (4) is 

equivalent to equation (4) above and puts a restriction on expenditure of the durable goods in the 

sub-group. 

The Lagrangian to the overall utility maximization problem in (1)-(4) is: 

𝐿𝑈 = 𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)) + 𝜏𝑖[𝑌𝑖 − 𝒑𝐷
𝑖 𝒙𝑫 − 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫]   

+Ω𝑖[𝑌𝐷
𝑖 − 𝒑𝐷

𝑖 𝒙𝑫] + Θ𝑈
𝑖 [𝐸𝐷

𝑖 − 𝒓𝐷
𝑖 𝒎𝑫]                                          

= 𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)) +  𝜏𝑖[𝑌𝑖 − 𝒑𝐷
𝑖 𝒙𝑫 − 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫]                 

+𝜏𝑖 (
Ω𝑖

𝜏𝑖
) [𝑌𝐷

𝑖 − 𝒑𝐷
𝑖 𝒙𝑫] + 𝜏𝑖 (

Θ𝑈
𝑖

𝜏𝑖
) [𝐸𝐷

𝑖 − 𝒓𝐷
𝑖 𝒎𝑫].                                                                  (7) 

𝜏𝑖 is the Lagrange multiplier corresponding to the overall budget constraint 𝑌𝑖 = 𝒑𝐷
𝑖 𝒙𝑫

𝒊 +

𝒑𝑁𝐷
𝑖 𝒙𝑵𝑫

𝒊 + 𝒓𝐷
𝑖 𝒎𝑫

𝒊 + 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝒊 , and can be interpreted as the marginal utility of total expenditure 

(i.e., 𝜏𝑖 =  𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝑖). Ω𝑖 is the Lagrange multiplier for the budget 

constraint on the durable goods in 𝒙, 𝑌𝐷
𝑖 = 𝒑𝐷

𝑖 𝒙𝑫
𝒊 , and thus corresponds to the marginal utility of 

expenditure on these durable goods (i.e., Ω𝑖 = 𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝐷
𝑖 ). This number is 

a function of prices 𝒑𝐷
𝑖  and expenditure 𝑌𝐷

𝑖  and equals zero when expenditure on 𝒙𝑫 is optimally 

adjusted. If Ω𝑖 is negative then expenditure on these goods is greater than desired, and if Ω𝑖  is 

positive then expenditure is less than desired. 
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Analogously, Θ𝑈
𝑖  is the Lagrange multiplier for the budget constraint on the durable goods in 

𝒎, 𝐸𝐷
𝑖 = 𝒓𝐷

𝑖 𝒎𝑫
𝒊 , and corresponds to the marginal utility of expenditure on 𝒎𝑫 (i.e., Θ𝑈

𝑖 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝐸𝐷
𝑖 ). As such, it is a function of prices 𝒓𝐷

𝑖  and expenditure 𝐸𝐷
𝑖 , and 

negative (positive) when expenditure is greater (less) than desired. When expenditure on 𝒎𝑫 is 

optimally adjusted, then Θ𝑈
𝑖  is effectively zero. 

The multipliers Ω𝑖 and Θ𝑈
𝑖  may be seen as measures of deviations from the optimal levels of 

expenditure for the durable goods 𝒙𝑫 and 𝒎𝑫, respectively.  However, a problem with using Ω𝑖 

and Θ𝑈
𝑖  as measures of the degree of incomplete adjustment is that they are not invariant to 

monotonic transformations of utility and may therefore be difficult to interpret. Below, these 

numbers appear in the definition of a set of “virtual prices” as Ω𝑖/𝜏𝑖 and Θ𝑈
𝑖 /𝜏𝑖. Specifically, the 

ratios, Ω𝑖/𝜏𝑖 and Θ𝑈
𝑖 /𝜏𝑖 represents the increments of overall utility from spending an additional 

dollar on the durable goods 𝒙𝑫 and 𝒎𝑫 relative to the marginal utility of total expenditure for all 

goods, respectively. Since these measures are ratios of marginal utilities, they are, by 

construction ordinal, and consequently, invariant to any monotonic transformations of utility. 

Hence, we interpret Ω𝑖/𝜏𝑖 and Θ𝑈/𝜏𝑖 as the overall amounts of incomplete adjustment, and 

define:    

IAΩ
𝑖 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝐷
𝑖

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝑖
=

Ω𝑖

𝜏𝑖
,                                                                        (8) 

and, 

IAΘ
𝑖 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝐸𝐷
𝑖

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝑖
=

Θ𝑈
𝑖

𝜏𝑖
,                                                                      (9) 

for all observations 𝑖 = 1, … , 𝑛.  
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Using these definitions, we can write the first-order conditions of the Lagrangian, 𝐿𝑈, in (7) 

as: 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝒙𝑵𝑫
𝒊 = 𝜏𝑖𝒑𝑁𝐷

𝑖 ,                                                                                     (10) 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝒙𝑫
𝒊 = 𝜏𝑖 (1 +

Ω𝑖

𝜏𝑖
) 𝒑𝐷

𝑖 = 𝜏𝑖(1 + IAΩ
𝑖 )𝒑𝐷

𝑖 ,                                  (11) 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝒎𝑵𝑫
𝒊 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝑉(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)

𝜕𝒎𝑵𝑫
𝒊                              

= 𝜏𝑖𝒓𝑁𝐷
𝑖 ,                                                                                                                                          (12) 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝒎𝑫
𝒊 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝑉(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)

𝜕𝒎𝑫
𝒊                              

= 𝜏𝑖 (1 +
Θ𝑈

𝑖

𝜏𝑖
) 𝒓𝐷

𝑖 = 𝜏𝑖(1 + IAΘ
𝑖 )𝒓𝐷

𝑖 .                                                                                      (13) 

The Lagrangian of the sub-utility maximization problem in (4)-(6) is: 

𝐿𝑉 = 𝑉(𝒎𝑫, 𝒎𝑵𝑫) + 𝜇𝑖[𝐸𝑖 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫] + Θ𝑉
𝑖 [𝐸𝐷

𝑖 − 𝒓𝐷
𝑖 𝒎𝑫]                                    

= 𝑉(𝒎𝑫, 𝒎𝑵𝑫) + 𝜇𝑖 [𝐸𝑖 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫] + 𝜇𝑖 (
Θ𝑉

𝑖

𝜇𝑖
) [𝐸𝐷

𝑖 − 𝒓𝐷
𝑖 𝒎𝑫].                     (14) 

The Lagrange multiplier 𝜇𝑖 can be interpreted as the marginal utility of sub-group expenditure 

(i.e., 𝜇𝑖 =  𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝐸𝑖). The number Θ𝑉
𝑖  corresponds to the marginal utility of 

expenditure on the durable goods in the sub-group (i.e., Θ𝑉
𝑖 = 𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝐸𝐷

𝑖 ). Thus, Θ𝑉/𝜇 

represents the increment of sub-group utility from spending an additional dollar on the durable 

goods in the sub-group relative to the marginal utility of total expenditure of the 

goods in the sub-group. Hence, we interpret Θ𝑉/𝜇  as the amount of incomplete adjustment for 

the sub-group, and define: 
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IA𝑉
𝑖 =

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝐸𝐷
𝑖

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝐸𝑖
=

Θ𝑉
𝑖

𝜇𝑖
,                                                                                            (15) 

for all observations 𝑖 = 1, … , 𝑛.  

The first-order conditions of the Lagrangian, 𝐿𝑉, in (14) are: 

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)

𝜕𝒎𝑵𝑫
𝒊  

= 𝜇𝑖𝒓𝑁𝐷
𝑖 ,                                                                                                             (16) 

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)

𝜕𝒎𝑫
𝒊  

= 𝜇𝑖 (1 +
Θ𝑉

𝑖

𝜇𝑖
) 𝒓𝐷

𝑖 = 𝜇𝑖(1 + IA𝑉
𝑖 )𝒓𝐷

𝑖 .                                                          (17) 

The first-order condition (13) of 𝐿𝑈 gives the prices of the durable goods in the separable 

block, 𝒓𝑫, at which the optimal quantities, 𝒎𝑫 are demanded. Analogously, (17) gives a set of 

equivalent conditions. These prices, denoted by (1 + IAΘ
𝑖 )𝒓𝐷

𝑖  in (13) and (1 + IA𝑉
𝑖 )𝒓𝐷

𝑖  in (17) 

are so called “virtual prices” of the constrained goods 𝒎𝑫, and gives the prices at which the 

optimal bundle 𝒎𝑫 is demanded in long-run equilibrium. Clearly, these virtual prices must be 

the same, in which case we must have (1 + IAΘ
𝑖 )𝒓𝐷

𝑖 = (1 + IA𝑉
𝑖 )𝒓𝐷

𝑖 . Thus, this implies IAΘ
𝑖 =

IA𝑉
𝑖 , and we define the virtual prices as 𝒓̃𝐷

𝑖 = (1 + IA𝑖)𝒓𝐷
𝑖 = (1 + IAΘ

𝑖 )𝒓𝐷
𝑖 = (1 + IA𝑉

𝑖 )𝒓𝐷
𝑖 , 

where IA𝑖 = IAΘ
𝑖 = IA𝑉

𝑖 . 

Analogously, the virtual prices for the durable goods in the non-separable block, 

(1 + IAΩ
𝑖 )𝒑𝐷

𝑖 , in the first-order condition (11) of 𝐿𝑈, gives the prices at which the optimal bundle 

𝒙𝑫 is demanded in long-run equilibrium. We assume that the degree of incomplete adjustment, 

IAΩ
𝑖 , is the same as IAΘ

𝑖  and IA𝑉
𝑖 , and we define the virtual prices as 𝒑̃𝐷

𝑖 = (1 + IA𝑖)𝒑𝐷
𝑖 =

(1 + IAΩ
𝑖 )𝒑𝐷

𝑖 , where IA𝑖 = IAΩ
𝑖 .8 

 
8 This assumption is more restrictive than allowing the incomplete adjustment to vary between the separable and 
non-separable blocks.  Thus, in a sense, our test is sufficient but not necessary as there could be solutions where 
the incomplete adjustment is different for the two categories of durable goods. 
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Given the virtual prices 𝒑̃𝐷
𝑖  and 𝒓̃𝐷

𝑖 , the first-order conditions (10)-(13) and (16)-(17) has 

three important implications. First, substituting (16) into (12), and (17) into (13) gives for any 

good 𝑙 = 1, … , 𝑘: 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝑉(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )
=

𝜏𝑖

𝜇𝑖
.                                                                                            (18) 

Second, our model of incomplete adjustment defined by the overall utility and sub-utility 

maximization problems in (1)-(4) and (4)-(6) is identical to a model that solves the following 

overall utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫,𝒙𝑵𝑫 ,𝒎𝑫 ,𝒎𝑵𝑫}

𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 

𝒑̃𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + 𝒓̃𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝑌̃𝑖 ,                                                                        (19) 

where 𝑌̃𝑖 = 𝒑̃𝐷
𝑖 𝒙𝑫

𝒊 + 𝒑𝑁𝐷
𝑖 𝒙𝑵𝑫

𝒊 + 𝒓̃𝐷
𝑖 𝒎𝑫

𝒊 + 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝒊  is the “virtual expenditure” on all goods and 

also solves the following sub-utility maximization problem: 

𝑚𝑎𝑥
{𝒎𝑫 ,𝒎𝑵𝑫}

𝑉(𝒎𝑫, 𝒎𝑵𝑫)     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                                                            

𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫 + 𝒓̃𝐷

𝑖 𝒎𝑫 ≤ 𝐸̃𝑖 ,                                                                                                             (20)  

where 𝐸̃𝑖 = 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝑖 + 𝒓̃𝐷
𝑖 𝒎𝑫

𝑖  is the “virtual expenditure” on the goods in the sub-group. 

Third, the first-order conditions allow us to define and classify weak separability with 

complete or incomplete adjustment: We say that the 𝒎-goods are weakly separable with 

complete adjustment if the first-order conditions (10)-(13) and (16)-(17) hold with IA = 0. In this 

case, they reduce to the first-order conditions from the standard weakly separable utility 

maximization model.9 The 𝒎-goods are said to be weakly separable with incomplete adjustment 

 
9 Thus, for the standard weakly separable utility maximization model (i.e., with complete adjustment), the first-

order conditions (17), (11) and (13) becomes: 𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝒎𝑫
𝒊 = 𝜇𝑖𝒓𝐷

𝑖 , 𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝒙𝑫
𝒊 =

𝜏𝑖𝒑𝐷
𝑖  and 𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝒎𝑫

𝒊 = 𝜏𝑖𝒓𝐷
𝑖  (Varian, 1983, p.105). 
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if the first-order conditions (10)-(13) and (16)-(17) hold with IA ≠ 0 (and IA > −1). Finally, the 

𝒎-goods are not weakly separable if the first-order conditions fail to hold for any value IA >

−1. 

In order to calculate the amount of incomplete adjustment in empirical applications, it is 

convenient to define the number: 

Ψ𝑖 = Θ𝑉
𝑖 + 𝜇𝑖 ,                                                                                                                                (21) 

and express the amount of incomplete adjustment in terms of Ψ as: 

IA𝑖 =
Θ𝑉

𝑖

𝜇𝑖
=

Ψ𝑖 − 𝜇𝑖

𝜇𝑖
=

Ψ𝑖

𝜇𝑖
− 1.                                                                                              (22) 

Hence, by equation (22) we can interpret incomplete adjustment as a distance, since, in such 

case, it is defined as the difference between Ψ and 𝜇 normalized by 𝜇. Clearly, if Ψ𝑖 = 𝜇𝑖, or 

equivalently IA𝑖 = 0, for all 𝑖 = 1, … , 𝑛 then the 𝒎-goods are weakly separable with complete 

adjustment but if Ψ𝑖 ≠ 𝜇𝑖, or equivalently IA𝑖 ≠ 0, for at least some 𝑖, then weak separability 

holds with incomplete adjustment. 

In the example and applications of incomplete adjustment presented below we report the 

percentage incomplete adjustment (% IA𝑖) calculated as: 

% IA𝑖 = 100 × (
Ψ𝑖

𝜇𝑖
− 1).                                                                                                         (23) 

Thus, % IA is the percentage difference between 𝜇 and Ψ. Since incomplete adjustment concerns 

the DM’s inability to fully adjust his optimal consumption allocation of durable goods within the 

observed time period, we interpret % IA as a unit-free measure of the DM’s habit persistence, 

formation of expectations and adjustment costs. 

 2.2 Special cases 
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This section briefly discusses some special cases of our general model of incomplete adjustment. 

The first is when there are neither any durable goods in 𝒙 nor any non-durable goods in 𝒎, i.e., 

𝒙𝑫 = 𝒎𝑵𝑫 = ∅.  This special case corresponds to Swofford and Whitney’s (1994) model of 

incomplete adjustment. 

The second model is when there are neither any non-durable goods in 𝒙 nor any durable 

goods in 𝒎, i.e., 𝒙𝑵𝑫 = 𝒎𝑫 = ∅.  If one interchanges the prices and quantities of the durable 

goods with the prices and quantities of the non-durable goods, the testable condition becomes 

that of Swofford and Whitney (1994). Thus, this special case corresponds to a model which only 

accounts for incomplete adjustment in the non-separable block. 

The third model is when there are only non-durable goods in 𝒙 and 𝒎, i.e., 𝒙𝑫 = 𝒎𝑫 = ∅.  

This corresponds, of course, to the standard model of weakly separable utility maximization 

(with complete adjustment; See footnote 9).  

Finally, the fourth special case is when there are only durable goods in 𝒙 and 𝒎, i.e. 𝒙𝑵𝑫 =

𝒎𝑵𝑫 = ∅. In this case, the first-order conditions become: 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝒙𝑫
𝒊 = 𝜏𝑖 (1 +

Ω𝑖

𝜏𝑖
) 𝒑𝐷

𝑖 = 𝜏𝑖(1 + IAΩ
𝑖 ) = 𝜏𝑖(1 + IA𝑖 )𝒑𝐷

𝑖 ,                 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝒎𝑫
𝒊 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝑉(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)

𝜕𝒎𝑫
𝒊                              

= 𝜏𝑖 (1 +
Θ𝑈

𝑖

𝜏𝑖
) 𝒓𝐷

𝑖 = 𝜏𝑖(1 + IAΘ
𝑖 )𝒓𝐷

𝑖 = 𝜏𝑖(1 + IA𝑖)𝒓𝐷
𝑖 ,                                                                

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)

𝜕𝒎𝑫
𝒊  

= 𝜇𝑖 (1 +
Θ𝑉

𝑖

𝜇𝑖
) 𝒓𝐷

𝑖 = 𝜇𝑖 (1 + IA𝑉
𝑖 )𝒓𝐷

𝑖 = 𝜇𝑖(1 + IA𝑖)𝒓𝐷
𝑖 .                                   

By defining 𝜏̃𝑖 = 𝜏𝑖(1 + IA𝑖) and 𝜇̃𝑖 = 𝜇𝑖(1 + IA𝑖), we see that it is not possible to 

separately identify the degree of incomplete adjustment, IA, from the Lagrange multipliers. 
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Hence, with only durable goods, the weak separability model with incomplete adjustment is 

observationally equivalent to a model with complete adjustment. Consequently, in this case, 

incomplete adjustment does not have any testable implications, in which case, the model also 

corresponds to the standard model of weakly separable utility maximization (with complete 

adjustment). 

  2.3 A Parametric Example 

It is illustrative to consider the effects of incomplete adjustment by means of a parametric 

example. Suppose that there are two non-durable goods 𝒙 = 𝒙𝑵𝑫 = (𝑥1, 𝑥2) and two durable 

goods 𝒎 = 𝒎𝑫 = (𝑚1, 𝑚2), i.e., there are in total four goods (𝑘 = 4). Thus, this corresponds to 

a model of incomplete adjustment where there are only non-durable goods in the 𝒙- block, and 

only durable goods in the 𝒎- block.10 The prices for the 𝒙-goods are denoted 𝒑 = 𝒑𝑵𝑫 =

(𝑝1, 𝑝2) and the prices for the 𝒎-goods are denoted 𝒓 = 𝒓𝑫 = (𝑟1, 𝑟2). Suppose that the utility 

function is: 

𝑢(𝒙, 𝒎) = 𝑢(𝒙𝑵𝑫, 𝒎𝑫) = 𝑥1𝑚1𝑚2 + √𝑥2𝑚1𝑚2.                                                                         

This utility function is weakly separable in the (durable) 𝒎-goods since it can be written as: 

𝑢(𝒙, 𝒎) = 𝑢(𝒙𝑵𝑫, 𝒎𝑫) = 𝑈(𝒙𝑵𝑫, 𝑉(𝒎𝑫)) = 𝑥1𝑉(𝒎𝑫) + √𝑥2𝑉(𝒎𝑫),                                 

where 𝑉(𝒎𝑫) = 𝑉(𝑚1, 𝑚2) = 𝑚1𝑚2.  

Solving the sub-utility maximization problem in (4)-(6) gives the conditional demand 

functions: 

𝑚̃1 =
𝐸

2𝑟1
    𝑎𝑛𝑑   𝑚̃2 =

𝐸

2𝑟2
.                                                                                                                

The reduced form (overall) utility function is obtained by plugging in these solutions as: 

 
10 Thus, this setup corresponds to Swofford and Whitney’s (1994) model of incomplete adjustment. 



15 
 

𝑈 (𝒙𝑵𝑫, 𝑉̃(𝒓𝑫, 𝐸)) = 𝑥1𝑉̃(𝒓𝑫, 𝐸) + √𝑥2𝑉̃(𝒓𝑫, 𝐸) = 𝑥1

(𝐸)2

4𝑟1𝑟2
+ √𝑥2

(𝐸)2

4𝑟1𝑟2
,                            

where 𝑉̃(𝒓𝑫, 𝐸) = 𝑚̃1𝑚̃2 = (𝐸)2/4𝑟1𝑟2 is the indirect sub-utility function corresponding to the 

sub-utility function 𝑉(𝒎𝑫) = 𝑚1𝑚2. Solving the reduced form problem gives the optimal 

(unconditional) demand functions (𝑥̅1, 𝑥̅2) and the optimal allocation of sub-expenditure 𝐸̅: 

𝑥̅1 =
4𝑝2(𝑌)3(3 + IA) − 8𝑝2(𝑌)3 − (𝑝1)2𝑟1𝑟2(3 + IA)2

4𝑝1𝑝2(𝑌)2(3 + IA)
,                                                           

𝑥̅2 = (3 + IA)2
(𝑝1)2𝑟1𝑟2

4(𝑝2)2(𝑌)2
,                                                                                                                 

𝐸̅ =
2𝑌

(3 + IA)
.                                                                                                                                          

Plugging in the optimal allocation of sub-expenditure into the conditional demand functions 

(𝑚̃1, 𝑚̃2) gives the optimal (unconditional) sub-utility demand functions: 

𝑚̅1 =
𝑌

(3 + IA)𝑟1
    𝑎𝑛𝑑   𝑚̅2 =

𝑌

(3 + IA)𝑟2
.                                                                                     

The upper graph in Figure 1 plots the optimal demands (𝑥̅1, 𝑥̅2, 𝑚̅1, 𝑚̅2) (y-axis) for different 

values of percentage incomplete adjustment (i.e., % IA in (23)) (x-axis). We see that the demands 

vary quite considerably even for small amounts of incomplete adjustment (filled points 

correspond to optimal demands with complete adjustment, i.e., with % IA = 0). The lower plot 

in Figure 1 shows total expenditure (𝑌) and sub-expenditure for the separable 𝒎-goods (𝐸) for 

different values of % IA. Consistent with our theoretical results, when the amount of incomplete 

adjustment is negative, expenditure on the durable goods (𝐸) is greater than desired (and 

increases for lower values of IA). In contrast, when the amount of incomplete adjustment is 

positive, expenditure on the durable goods is less than desired (and will eventually approach 
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Figure 1: Optimal demands and expenditures as functions of incomplete adjustment in the 

parametric example. Prices are: p1 =15, p2 =0.5, r1 =5 and r2 =20. Total expenditure is Y =500. 

The percentage amount of incomplete adjustment (x-axis) vary between 99 and 300. Filled points 

are optimal demands and expenditures without incomplete adjustment. 

 

zero in the limit as IA → ∞). As in the upper plot, there can be quite large differences in the 

optimal allocation of sub-expenditure even for values of incomplete adjustment close to zero. 

These findings raise the question how much incomplete adjustment we should expect are 

present in observed data. In Section 4, we provide some empirical evidence to answer this 

question using both aggregated consumption and monetary (macro) data and disaggregated 

survey (micro) data. In the next section, we illustrate incomplete adjustment for utility 

maximization, that is, when the utility function is not weakly separable in the 𝒎-goods. 
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2.4 Utility maximization with incomplete adjustment 

Suppose that the 𝒎-goods are chosen with incomplete adjustment according to the standard 

utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫 ,𝒙𝑵𝑫 ,𝒎𝑫 ,𝒎𝑵𝑫}

𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                             

𝒑𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + 𝒓𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝑌𝑖    𝑎𝑛𝑑    𝒑𝐷
𝑖 𝒙𝑫 + 𝒓𝐷

𝑖 𝒎𝑫 ≤ 𝑌𝐷
𝑖 ,                   (24) 

𝜏 is the marginal utility of total expenditure (i.e., 𝜏 =  𝜕𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝑌) and Θ is the 

marginal utility of expenditure on the durable goods (i.e., Θ = 𝜕𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝑌𝐷). 

Analogous to the weak separability case, we define the amount of incomplete adjustment, IA𝑢
𝑖  as 

the extra increment of utility of spending one dollar more on the durable goods relative to the 

marginal utility of total expenditure, i.e., 

IA𝑢
𝑖 =

𝜕𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝑌𝐷
𝑖

𝜕𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝑌𝑖
=

Θ𝑖

𝜏𝑖
,                                                                                        

for all 𝑖 = 1, … , 𝑛.  

As in the weak separability model, the first-order conditions can be used to show that the 

model (24) is equivalent to a model that solves the following utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫 ,𝒙𝑵𝑫 ,𝒎𝑫 ,𝒎𝑵𝑫}

𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                             

𝒑̃𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + 𝒓̃𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝑌̃𝑖,                                                                        (25) 

where 𝑌̃𝑖 = 𝒑̃𝐷
𝑖 𝒙𝑫

𝒊 + 𝒑𝑁𝐷
𝑖 𝒙𝑵𝑫

𝒊 + 𝒓̃𝐷
𝑖 𝒎𝑫

𝒊 + 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝒊  with 𝒑̃𝐷
𝑖 = (1 + IA𝑢

𝑖 )𝒑𝐷
𝑖  and 𝒓̃𝐷

𝑖 =

(1 + IA𝑢
𝑖 )𝒓𝐷

𝑖 . As above, for empirical purposes, it is convenient to define the number Γ𝑖 = Θ𝑖 +

𝜏𝑖, and express the amount of incomplete adjustment as: 

IA𝑢
𝑖 =

Θ𝑖

𝜏𝑖
=

Γ𝑖 − 𝜏𝑖

𝜏𝑖
=  

Γ𝑖

𝜏𝑖
− 1.                                                                                                            

The percentage incomplete adjustment % IA𝑢
𝑖  is given by: 
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% IA𝑢
𝑖 = 100 × ( 

Γ𝑖

𝜏𝑖
− 1),                                                                                                        (26) 

for all 𝑖 = 1, … , 𝑛.  

3. TEST-PROCEDURES 

In this section, we propose efficient non-parametric revealed preference procedures to implement 

the models proposed in the previous section. 

3.1 Testing for weak separability with incomplete adjustment 

We begin by defining the concept of rationalization with incomplete adjustment.  

Definition 1. The data 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

 can be 

rationalized with incomplete adjustment if there exists a well-behaved (i.e., continuous, strictly 

increasing and concave) macro function 𝑈 and a well-behaved sub-utility function 𝑉, such that 

{(𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

 solves the overall utility maximization problem in equations (1)-

(4) and the sub-utility maximization problem in equations (4)-(6), or equivalently, solves the 

overall utility maximization problem in equation (19) and the sub-utility maximization problem 

in equation (20). 

Our non-parametric test-procedure is based on a revealed preference characterization for 

when the data 𝔻 can be rationalized with incomplete adjustment. This characterization consists 

of a set of conditions that can be implemented by checking whether there exist numbers 

satisfying some inequalities. A simple intuition for one of the testable conditions follows from 

that both the sub-utility function and the overall utility function must satisfy concavity (by the 

definition of rationalizability), in which case it holds for all 𝑖, 𝑗 = 1, … , 𝑛: 

𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ) ≤ 𝑉(𝒎𝑵𝑫
𝒋

, 𝒎𝑫
𝒋

) +
𝜕𝑉

𝜕𝒎𝑵𝑫
𝒋

(𝒎𝑵𝑫
𝒊 − 𝒎𝑵𝑫

𝒋
) +

𝜕𝑉

𝜕𝒎𝑫
𝒋

(𝒎𝑫
𝒊 − 𝒎𝑫

𝒋
),             (27) 

and, 
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𝑈 (𝒙𝑵𝑫
𝒊 , 𝒙𝑫

𝒊 , 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 )) ≤ 𝑈 (𝒙𝑵𝑫
𝒋

, 𝒙𝑫
𝒋

, 𝑉(𝒎𝑵𝑫
𝒋

, 𝒎𝑫
𝒋

)) +
𝜕𝑈

𝜕𝒙𝑵𝑫
𝒋

(𝒙𝑵𝑫
𝒊 − 𝒙𝑵𝑫

𝒋
)                  

+
𝜕𝑈

𝜕𝒙𝑫
𝒋

(𝒙𝑫
𝒊 − 𝒙𝑫

𝒋
) +

𝜕𝑈

𝜕𝑉(𝒎𝒋)
(𝑉(𝒎𝒊) − 𝑉(𝒎𝒋)).                                                                (28) 

Substituting the first-order conditions (10)-(13) and (16)-(17) gives: 

𝑉𝑖 ≤ 𝑉𝑗 + 𝜇𝑗𝒓𝑁𝐷
𝑗

(𝒎𝑵𝑫
𝒊 − 𝒎𝑵𝑫

𝒋
) + 𝜇𝑗 𝒓̃𝐷

𝑖 (𝒎𝑫
𝒊 − 𝒎𝑫

𝒋
),                                                      (29) 

𝑈𝑖 ≤ 𝑈𝑗 + 𝜏𝑗𝒑𝑁𝐷
𝑗 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + 𝜏𝑗𝒑̃𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) +
𝜏𝑗

𝜇𝑗
(𝑉𝑖 − 𝑉𝑗),                               (30) 

where 𝑉𝑖 = 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ) and 𝑈𝑖 = 𝑈 (𝒙𝑵𝑫
𝒊 , 𝒙𝑫

𝒊 , 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 )) are defined as utility indices. 

Theorem 1 states our characterization (the proof is given in the appendix). 

Theorem 1. Consider the data set 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

. 

Conditions (a)-(c) are equivalent: 

(a) The data 𝔻 can be rationalized with incomplete adjustment. 

(b) There exist numbers 𝑉𝑖 , 𝑈𝑖 , 𝜇𝑖 > 0, 𝜏𝑖 > 0 and Ψ𝑖 > 0 such that (for all 𝑖, 𝑗 = 1, … , 𝑛): 

𝑉𝑖 ≤ 𝑉𝑗 + 𝜇𝑗𝒓𝑁𝐷
𝑗 (𝒎𝑵𝑫

𝒊 − 𝒎𝑵𝑫
𝒋

) + Ψ𝑗𝒓𝐷
𝑗 (𝒎𝑫

𝒊 − 𝒎𝑫
𝒋

),                                                     (31)                                                                                                                  

𝑈𝑖 ≤ 𝑈𝑗 + 𝜏𝑗𝒑𝑁𝐷
𝑗 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) +
𝜏𝑗

𝜇𝑗
Ψ𝑗𝒑𝐷

𝑗 (𝒙𝑫
𝒊 − 𝒙𝑫

𝒋
) +

𝜏𝑗

𝜇𝑗
(𝑉𝑖 − 𝑉𝑗).                        (32) 

(c) There exist numbers 𝑉𝑖 , 𝑊𝑖 , 𝜇𝑖 > 0 and Ψ𝑖 > 0 such that (for all 𝑖, 𝑗 = 1, … , 𝑛): 

𝑉𝑖 ≤ 𝑉𝑗 + 𝜇𝑗𝒓𝑁𝐷
𝑗 (𝒎𝑵𝑫

𝒊 − 𝒎𝑵𝑫
𝒋

) + Ψ𝑗𝒓𝐷
𝑗 (𝒎𝑫

𝒊 − 𝒎𝑫
𝒋

),                                                     (33) 

𝑖𝑓 𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) ≥ 0   𝑡ℎ𝑒𝑛   𝑊𝑖 − 𝑊𝑗 ≥ 0, (34)  

𝑖𝑓 𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) > 0   𝑡ℎ𝑒𝑛   𝑊𝑖 − 𝑊𝑗 > 0. (35)  

The inequalities (31) and (32) in condition (b) in Theorem 1 are equivalent to (29) and (30) from 

the identity in equation (22). However, (31) and (32) are not very attractive from a computational 
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perspective since parts of them are highly non-linear; for example, the inequalities (32) contains 

the non-linear term 𝜏𝑗(𝑉𝑖 − 𝑉𝑗)/μ𝑗. Thus, any procedure to implement condition (b) is prone to 

solve a complex non-linear optimization problem with non-linear constraints (which grows 

quadratically in the number of observations). Consequently, the optimand in any such procedure 

may be badly behaved with saddle points and local optima.  

Instead, we base our procedure on condition (c) in Theorem 1. In contrast to the ones in 

condition (b), the inequalities in condition (c) are linear and therefore overcome the 

disadvantages with the non-linear procedures. However, the inequalities (34) and (35) are not 

practically operational in their current form since we need to capture the logical relation between 

the right- and left-hand sides of them. We follow a recent idea by Cherchye et al. (2015) and use 

binary variables to link the two sides. Specifically, it is straightforward to show that (34) and 

(35) are equivalent to that there exist binary numbers 𝑋𝑖𝑗  for all 𝑖, 𝑗 = 1, … , 𝑛 such that the 

following (linear) inequalities hold: 11 

𝑉𝑖 ≤ 𝑉𝑗 + 𝜇𝑗𝒓𝑁𝐷
𝑗 (𝒎𝑵𝑫

𝒊 − 𝒎𝑵𝑫
𝒋

) + Ψ𝑗𝒓𝐷
𝑗 (𝒎𝑫

𝒊 − 𝒎𝑫
𝒋

),                                                    (c. 1) 

𝑊𝑖 − 𝑊𝑗 − 𝑋𝑖𝑗 ≤ −𝜀,                                                                                                               (c. 2) 

(𝑋𝑖𝑗 − 1) ≤ 𝑊𝑖 − 𝑊𝑗 ,                                                                                                              (c. 3) 

𝜇𝑖 𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) − 𝑋𝑖𝑗 𝐴𝑖 ≤ −𝜀,                            (c. 4) 

(𝑋𝑖𝑗 − 1)𝐴𝑗 ≤ 𝜇𝑗𝒑𝑁𝐷
𝑗 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑗𝒑𝐷
𝑗 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗),                          (c. 5) 

0 ≤ 𝑉𝑖 ≤ 1,                                                                                                                                   (c. 6) 

0 ≤ 𝑊𝑖 ≤ 1 − 𝜀,                                                                                                                          (c. 7)   

𝜀 ≤ μ𝑖 ≤ 1,                                                                                                                                   (c. 8) 

 
11 Cherchye et al. (2015, Theorem 4) used this approach to formulate a new test for standard weakly separable 
utility maximization (with complete adjustment). 
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𝜀 ≤ Ψ𝑖 ≤ 1,                                                                                                                                  (c. 9) 

𝑋𝑖𝑗 ∈ {0,1}.                                                                                                                                 (c. 10)                                                                                                                      

Conditions (c.2) and (c.3) reproduce the right-hand side of the inequalities (34) and (35), 

while conditions (c.4) and (c.5) reproduce the left-hand sides of (34) and (35). 𝑋𝑖𝑗 are binary (0-

1) variables that captures the logical relation in (34) and (35), and equals one if and only if 𝑊𝑖 −

𝑊𝑗 ≥ 0. Moreover, 𝜀 is a small positive number and 𝐴𝑖 is a fixed number larger than 𝒑𝑁𝐷
𝑖 𝒙𝑵𝑫

𝒊 +

𝒑𝐷
𝑖 𝒙𝑫

𝒊 + 1.12 

We propose calculating the minimal amount of incomplete adjustment by minimizing the 

sum of squared deviations between Ψ𝑖 and 𝜇𝑖 as suggested by the definition of incomplete 

adjustment in equation (22) and the discussion in the paragraph following (22). More formally, 

we calculate the minimal amount of incomplete adjustment such that the 𝒎-goods are weakly 

separable from all other goods by solving the following mixed integer (binary) quadratic 

programming (MIQP) problem:13 

min
{𝑉𝑖,𝑊𝑖,𝜇𝑖,Ψ𝑖,𝑋𝑖𝑗 }

𝑖,𝑗=1,…,𝑛

∑(Ψ𝑖 − 𝜇𝑖 )
2

𝑛

𝑖=1

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (c. 1) − (c. 10).                                   (36) 

Let Ψ̂𝑖 and 𝜇̂𝑖 for all observations 𝑖 = 1, … , 𝑛 be the optimal solutions from this MIQP problem. 

We use Ψ̂𝑖 and 𝜇̂𝑖 to calculate the percentage amount of incomplete adjustment required to 

rationalize the data with incomplete adjustment from equation (23). 

3.2 Utility Maximization with Incomplete Adjustment 

 
12 We set 𝜀 = 10−6 and 𝐴𝑖 = 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫
𝒊 + 𝒑𝐷

𝑖 𝒙𝑫
𝒊 + 2 in our empirical applications in Section 4. 

13 A MIQP problem is very similar to a standard quadratic programming (QP) problem in the sense that it minimizes 
a quadratic objective function subject to a set of linear constraints, but in contrast to a QP problem some variables 
in a MIQP problem may also take binary (integer) values. 
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In this section, we present an analogous test-procedure for utility maximization with incomplete 

adjustment. We say that the data 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

 can 

be utility-rationalized with incomplete adjustment if there exists a well-behaved utility function 𝑢 

such that {(𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

 solves the utility maximization problem in equation 

(24), or equivalently, the utility maximization problem in equation (25). 

Theorem 2 states the non-parametric revealed preference characterization for utility 

maximization model with incomplete adjustment.14  

Theorem 2. Consider the data set 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

. 

The data 𝔻 can be utility-rationalized with incomplete adjustment if and only if there exist 

numbers 𝑈𝑖 , 𝜏𝑖 > 0 and Γ𝑖 > 0 such that (for all 𝑖, 𝑗 = 1, … , 𝑛): 

𝑈𝑖 ≤ 𝑈𝑗 + 𝜏𝑗𝒑𝑁𝐷
𝑗 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Γ𝑗𝒑𝐷
𝑗 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + 𝜏𝑗𝒓𝑁𝐷
𝑗 (𝒎𝑵𝑫

𝒊 − 𝒎𝑵𝑫
𝒋

)                            

+Γ𝑗𝒓𝐷
𝑗 (𝒎𝑫

𝒊 − 𝒎𝑫
𝒋

).                                                                                                                      (37) 

Note that the inequalities (37) reduce to the well-known Afriat inequalities (See Varian, 1983) 

whenever 𝜏𝑗 = Γ𝑗 holds for all 𝑗 = 1, … , 𝑛.15 The inequalities (37) are linear and therefore 

suitable for empirical implementations. The minimal amount of incomplete adjustment that 

rationalizes the data in the quadratic norm can be calculated by solving the following quadratic 

programming (QP) problem: 

min
{𝑈𝑖,𝜏𝑖>0,Γ𝑖>0 }

𝑖=1,…,𝑛

∑(τ𝑖 − Γ𝑖)
2

𝑛

𝑖=1

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (37).                                                            (38) 

 
14 The testable inequalities in Theorem 2 can be derived similarly to the testable inequalities (29) and (30) in the 
weak separability case.  
15 We show by example in the Supplementary material accompanying the paper that this model is refutable. Since 
the weak separability model is nested within the utility maximization model it follows that both models can be 
refuted with observed data. 
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Let τ̂𝑖 and Γ̂𝑖 for all observations 𝑖 = 1, … , 𝑛 be the optimal solutions from this QP problem. We 

use τ̂𝑖 and Γ̂𝑖 to calculate the percentage amount of incomplete adjustment required to rationalize 

the data with incomplete adjustment from equation (26).  

4. APPLICATIONS 

In this section, we illustrate the importance of incomplete adjustment by applying our test-

procedures to two data sets. The first application uses aggregated U.S. data over durable and 

non-durable consumption goods, services, leisure and monetary assets. The second application 

uses rich micro survey data of Spanish household expenditures for durable and non-durable 

goods and services. Our results show strong evidence that it is important to account for 

incomplete adjustment in consumer demand modelling of durable goods and monetary assets. 

In presenting our results, we use four summary statistics. Let % IÂ𝑖 for 𝑖 = 1, … , 𝑛 be the 

calculated percentage amount of incomplete adjustment for the 𝑛 observations. We define the 

mean percentage incomplete adjustment as: 

Mean % IA =  
1

𝑛
∑ % IÂ𝑖 ,

𝑛

𝑖=1

                                                                                                        (39) 

the maximum absolute percentage incomplete adjustment as: 

Max absolute % IA = 𝑚𝑎𝑥𝑖=1,…,𝑛{|% IÂ𝑖|},                                                                          (40) 

the percentage root mean squared incomplete adjustment as: 

% root mean squared IA = √∑(% IÂ𝑖 )
2

𝑛

𝑖=1

,                                                                         (41) 

and finally, the percentage number of adjusted time periods as: 

         % of adjusted periods = 100 ×
1

𝑛
∑ 𝐼% IÂ𝑖≠0,

𝑛

𝑖=1

                                                                        (42) 
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where 𝐼a≠0 denotes the indicator function: 𝐼 = 1 if a ≠ 0, and zero otherwise. 

 4.1 Applications to Aggregate Consumption and Monetary Data 

Hjertstrand et al. (2016) tested weak separability of durable and non-durable consumption goods, 

services, leisure and monetary assets in order to identify appropriate economic aggregates. Barnett 

(1980) showed that weak separability of monetary goods is a necessary condition to construct 

monetary aggregates that are broader than currency and consistent with the economic theory of 

aggregation over goods. This is important because theoretically valid monetary aggregates restrict 

the effect of money on real economic activity. Moreover, weak separability of major categories of 

consumption expenditure from leisure and monetary goods must hold in order for consumption to 

have a stable relationship with income. We add to this literature by identifying what monetary and 

consumption aggregates that are being used by the U.S. public by applying our new test-procedures 

with incomplete adjustment. In particular, since “money” is usually treated as a durable good with 

an infinite life-span and assumed to retain some utility beyond the holding period (Serletis, 2007), 

applying tests that account for incomplete adjustment in the money demand literature is important 

in order to draw accurate conclusions.  

We use U.S. quarterly data covering the period 2000Q1 – 2011Q3, which gives in total 𝑛 =

47 observations. Since a quarterly frequency may be considered as a relatively short time span 

for durable and monetary goods, we also aggregate our data into yearly observations ranging 

from 2000-2010. This gives in total 𝑛 = 11 observations and allows us to check whether there is 

more incomplete adjustment in quarterly than in yearly data.  

 The data on durable and non-durable consumption goods and other non-monetary goods are 

the same as in Hjertstrand et al. (2016), and are described in detail as goods (a)-(d) in Table 1.  
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Table 1: Goods and services in aggregated macro data 

 
Consumption goods 

 
(a)      NDUR:                                     Real expenditures on nondurables 
(b)      DUR:                                         Real expenditures on durables 

  
Other non-monetary goods 

 
(c)      SER:                                          Real expenditures on services 
(d)     LEIS:                                         Hours of leisure 

  
Monetary assets 

 
(e)     CUR+DD:                                  Currency plus demand deposits 
(f)      TC:                                             Traveler’s checks 
(g)     OCDCB and OCDTH:              Other checkable deposits at commercial banks and thrifts 

   (h)     SD-CB and SD-TH:                 Savings deposits at commercial banks and thrifts 
(i)      STDCB and STDTH:              Small time deposits at commercial banks and thrifts 
(j)     MMFR and MMFI:                 Retail and institutional money market mutual funds 
(k)     TB:                                            Treasury bills 
(l)     CP:                                            Commerical paper 
(m) LTD:                                         Large time deposits 
(n)     RP: Repurchase agreements 

 

The prices of services and nondurables are the respective implicit price deflators. The price 

of durables is a user cost. An annualized ten percent depreciation rate was applied each quarter to 

annualize expenditures on durables to make it compatible with annualized expenditures on 

services and nondurables. Leisure is calculated as 98 hours minus average hours worked per 

week during the quarter.16 

We use the same monetary assets as in Hjertstrand et al. (2016), which are described in Table 

1 as assets (e)-(m). Data on these assets were obtained from the Center for Financial Stability 

(CFS).17 In addition, we include repurchase agreements (RP) in our analysis, which is described 

 
16 See Hjertstrand et al. (2016) for the original sources of these data. 
17 www.centerforfinancialstability.org. 
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as asset (n) in Table 1.18 Hjertstrand et al. (2016) excluded RP from their analysis and thus 

assumed that the goods and assets (a)-(m) in Table 1 were weakly separable from RP. By 

including RP in our analysis, we avoid making any such assumption. 

Demand deposits, other checkable deposits and savings deposits were adjusted for retail 

sweeps.19 All monetary assets were deflated by the implicit price deflator to obtain real per capita 

balances. The user costs for the monetary assets were multiplied by the implicit price deflator to 

yield nominal prices of a dollar of real balances. 

We assume a representative agent with preferences over the 18 goods and assets in Table 1. 

Using the test-procedure specified in equation (38), we begin our analysis by testing whether the 

data can be rationalized by the utility maximization model with incomplete adjustment. The top 

left graph in Figure 2 plots the minimal amount of incomplete adjustment necessary to 

rationalize the data.20  

The filled blue points give the amount of incomplete adjustment at every yearly observation, and 

shows that the yearly data pass utility maximization with complete adjustment (i.e., with zero 

amount of incomplete adjustment). The solid (red) line gives the amount of incomplete 

adjustment for the quarterly data. As seen from the graph, this amount is essentially zero up until 

the beginning or slightly after the crises began in 2008, after which it increases slightly in the 

latter part of the sample. This is confirmed by the summary statistics of the amount of 

incomplete adjustment over all observations given in Table 2.  

 

 
18 Repurchase agreements are short terms loans of securities to financial institutions with the understanding that 
the securities will be repurchased at a higher price at a later (overnight or other) time.  
19 Jones, Dutkowsky and Elger (2005) found sweep adjustment to be important in identifying appropriate monetary 
aggregates. At one time the data could be adjusted for both retail and commercial sweeps. However, the CFS 
sweep adjusts on its own, using an econometric model. 
20 The CPU time to solve the QP problem (38) using the quarterly data (with 47 observations) was 6 seconds. 
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Figure 2: Minimal amount of incomplete adjustment for utility maximization and the weakly 

separable structures (i)-(ii) and (vii)-(ix) from Table 3. 

Utility maximization Structure (i): M1 

 

Structure (ii): Friedman and Schwartz money Structure (vii): Narrow consumption 

aggregate 

 

Structure (viii): Broader real sector aggregate Structure (ix): Real sector aggregate without leisure 
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Table 2: Summary statistics of the amount of incomplete adjustment for the utility maximization 

model using aggregated consumption and monetary data. 

 Mean % IA Max absolute % IA % root mean squared IA % of adjusted periods 
     
Quarterly data   0.0042 4.2596 0.8026 97.8723 
     
Yearly data  0 0 0 0 

 

Next, we continue our analysis by testing whether the preferences of the representative agent 

are weakly separable in the groups of monetary assets and durable and non-durable consumption 

goods that are defined in Table 3. Structures (i)-(vi) are different monetary aggregates. In 

particular, Structure (i) is the FED aggregate M1 and Structure (ii) is the modern analog of what 

Friedman and Schwartz (1963) called money in the U.S. Structure (iii) is equivalent to the FED 

old liquidity aggregate L. Structure (iv) is the FED M2 aggregate and Structure (v) is M3 as 

formerly designed by the FED. Structure (vi) is what is commonly known as MZero or an 

aggregate including all financial assets with zero capital risk. Structures (vii) and (viii) are 

narrow and broader real-sector consumption aggregates, respectively. Structure (ix) is a real-

sector consumption aggregate including services, durable and non-durable goods, but not leisure. 

Using the test-procedure for weak separability with incomplete adjustment in equation (36), 

we test if the nine utility structures in Table 3 are weakly separable using both the quarterly and 

yearly data. Let us first consider the results for the quarterly data. We find that the monetary 

aggregates in Structures (iii)-(vi) are not weakly separable from all other goods. In contrast, 

we find that the monetary aggregates in Structures (i) and (ii), M1 and “Friedman and Schwartz” 

money, and the real sector aggregates in Structures (vii)-(ix) are weakly separable 

withincomplete adjustment.21 Figure 2 plots the minimal amount of incomplete adjustment 

 
21 The average CPU time to solve the MIQP problem (37) over all Structures (i)-(ix) was 108.97 seconds for the 
quarterly data (47 observations) and 0.25 seconds for the yearly data (11 observations). 
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necessary to rationalize the data for these five structures. As seen from the plots, the amount of 

incomplete 

 

Table 3: Utility structures tested for weak separability 

 

Monetary aggregates 

(i) 𝑢(DUR, NDUR, SER, LEIS, 𝐕(𝐂𝐔𝐑 + 𝐃𝐃, 𝐓𝐂, 𝐎𝐂𝐃 − 𝐂𝐁, 𝐎𝐂𝐃 − 𝐓𝐇), SD − CB, SD −
TH, MMMF − R, STD − CB, STD − TH, MMMF − I, T − BILLS, CP, LTD, RP) 

 

(ii) 𝑢(DUR, NDUR, SER, LEIS, 𝐕(𝐂𝐔𝐑 + 𝐃𝐃, 𝐓𝐂, 𝐎𝐂𝐃 − 𝐂𝐁, 𝐎𝐂𝐃 − 𝐓𝐇, 𝐒𝐃 − 𝐂𝐁, 𝐒𝐃 −
𝐓𝐇), MMMF − R, STD − CB, STD − TH, MMMF − I, T − BILLS, CP, LTD, RP) 

 

(iii) 𝑢(DUR, NDUR, SER, LEIS, 𝐕(𝐂𝐔𝐑 + 𝐃𝐃, 𝐓𝐂, 𝐎𝐂𝐃 − 𝐂𝐁, 𝐎𝐂𝐃 − 𝐓𝐇, 𝐒𝐃 − 𝐂𝐁, 𝐒𝐃 −

𝐓𝐇, 𝐌𝐌𝐌𝐅 − 𝐑, 𝐒𝐓𝐃 − 𝐂𝐁, 𝐒𝐓𝐃 − 𝐓𝐇, 𝐌𝐌𝐌𝐅 − 𝐈, 𝐓 − 𝐁𝐈𝐋𝐋𝐒, 𝐂𝐏, 𝐋𝐓𝐃, 𝐑𝐏)) 

 

(iv) 𝑢(DUR, NDUR, SER, LEIS, 𝐕(𝐂𝐔𝐑 + 𝐃𝐃, 𝐓𝐂, 𝐎𝐂𝐃 − 𝐂𝐁, 𝐎𝐂𝐃 − 𝐓𝐇, 𝐒𝐃 − 𝐂𝐁, 𝐒𝐃 −
𝐓𝐇, 𝐌𝐌𝐌𝐅 − 𝐑, 𝐒𝐓𝐃 − 𝐂𝐁, 𝐒𝐓𝐃 − 𝐓𝐇), MMMF − I, T − BILLS, CP, LTD, RP) 

 

(v) 𝑢(DUR, NDUR, SER, LEIS, 𝐕(𝐂𝐔𝐑 + 𝐃𝐃, 𝐓𝐂, 𝐎𝐂𝐃 − 𝐂𝐁, 𝐎𝐂𝐃 − 𝐓𝐇, 𝐒𝐃 − 𝐂𝐁, 𝐒𝐃 −
𝐓𝐇, 𝐌𝐌𝐌𝐅 − 𝐑, 𝐒𝐓𝐃 − 𝐂𝐁, 𝐒𝐓𝐃 − 𝐓𝐇, 𝐌𝐌𝐌𝐅 − 𝐈, 𝐋𝐓𝐃), T − BILLS, CP, RP) 

 
(vi) (𝑢(DUR, NDUR, SER, LEIS, 𝐕(𝐂𝐔𝐑 + 𝐃𝐃, 𝐓𝐂, 𝐎𝐂𝐃 − 𝐂𝐁, 𝐎𝐂𝐃 − 𝐓𝐇, 𝐒𝐃 − 𝐂𝐁, 𝐒𝐃 −

𝐓𝐇, 𝐌𝐌𝐌𝐅 − 𝐑, 𝐌𝐌𝐌𝐅 − 𝐈), STD − CB, STD − TH, T − BILLS, CP, LTD, RP) 
 

Real-sector and consumption aggregates 

(vii) 𝑢(𝐕(𝐍𝐃𝐔𝐑, 𝐒𝐄𝐑), DUR, LEIS, CUR + DD, TC, OCD − CB, OCD − TH, SD − CB, SD −
TH, MMMF − R, STD − CB, STD − TH, MMMF − I, T − BILLS, CP, LTD, RP) 

 

(viii) 𝑢(𝐕(𝐃𝐔𝐑, 𝐍𝐃𝐔𝐑, 𝐒𝐄𝐑, 𝐋𝐄𝐈𝐒), CUR + DD, TC, OCD − CB, OCD − TH, SD − CB, SD −
TH, MMMF − R, STD − CB, STD − TH, MMMF − I, T − BILLS, CP, LTD, RP) 

 
(ix) 𝑢(𝐕(𝐃𝐔𝐑, 𝐍𝐃𝐔𝐑, 𝐒𝐄𝐑), LEIS, CUR + DD, TC, OCD − CB, OCD − TH, SD − CB, SD −

TH, MMMF − R, STD − CB, STD − TH, MMMF − I, T − BILLS, CP, LTD, RP) 

 

 

adjustment is higher for the quarterly data (solid line) than for the yearly data (filled points). This 

shows that while a year is enough for the representative agent to adjust his costs and form his 

expectations, a quarter of a year is too short. 
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Looking closer at the quarterly data in Figure 2, we see that the monetary aggregates can be 

rationalized with a very small amount of incomplete adjustment. This is confirmed by Table 4 

which presents the summary statistics (39)-(42) of the amount of incomplete adjustment over all 

observations. 

 

Table 4: Summary statistics of the amount of incomplete adjustment for the weak separability 

model using quarterly aggregated consumption and monetary data. 

 Mean % IA Max absolute % IA % root mean squared IA % of adjusted periods 
     
Structure (i) -0.0772 3.6270 0.5291 23.4043 
     
Structure (ii) 0.0936 4.3971 0.6414 2.1277 
     
Structure (vii) 2.4171 45.1655 8.4248 12.7660 
     
Structure (viii) 0.0614 21.3563 6.2686 55.3191 
     
Structure (ix) 0.6742 30.7887 9.0883 57.4468 

Note: Structure (i) is M1 with 3 components and Structure (ii) is Friedman and Schwartz money with 6 
components. Structures (vii), (viii) and (ix) are real-sector aggregates with 2, 4 and 3 components, 
respectively. Structures (iii)-(vi) were found not to be weakly separable. 

 

In contrast, as seen from Figure 2 and Table 4, the real sector aggregates require considerably 

higher amounts of incomplete adjustment to satisfy weak separability. 

For both the monetary and real sector aggregates, the amount of incomplete adjustment is 

usually higher in the latter part of the sample, and especially at the time of or slightly after the 

financial crises in 2008. This may not be surprising given the liquidity crises and the resulting 

loss of confidence in loan institutes which may have altered the expectations of creditors.  

Let us compare the results to Hjertstrand et al. (2016), which used the same quarterly data but 

excluded the monetary asset RP in their analysis. They found that the four aggregates in 

Structures (i)-(ii) and (vii)-(viii) in Table 3 were weakly separable. In contrast, they also found 
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that the broader monetary aggregate in Structure (iii) (Fed L) was weakly separable but that the 

real sector aggregate in Structure (ix) was not weakly separable. Thus, our results are overall 

consistent with and confirm the findings in Hjertstrand et al. (2016). 

Finally, consider the summary statistics for the yearly data in Table 5. 

 

Table 5: Summary statistics of the amount of incomplete adjustment for the weak separability 

model using yearly aggregated consumption and monetary data. 

 Mean % IA Max absolute % IA % root mean squared IA % of adjusted periods 
    

Structure (i) < 1.0e-10 < 1.0e-10 < 1.0e-10 36.3636 
     
Structure (ii) < 1.0e-10 < 1.0e-10 < 1.0e-10 18.1818 
     
Structure (iii) < 1.0e-10 < 1.0e-10 < 1.0e-10 9.0909 
     
Structure (iv) < 1.0e-10 < 1.0e-10 < 1.0e-10 18.1818 
     
Structure (v) < 1.0e-10 < 1.0e-10 < 1.0e-10 9.0909 
     
Structure (vii) 0 0 0 0 
     
Structure (viii) < 1.0e-10 < 1.0e-10 < 1.0e-10 9.0909 
     
Structure (ix) < 1.0e-10 < 1.0e-10 < 1.0e-10 36.3636 

Note: Structure (i) is M1 with 3 components; Structure (ii) is Friedman and Schwartz money with 6 
components and Structure (iii) is broad money with 13 components. Structures (iv) and (v) are FED M2 
and old FED M3 with 9 and 11 components, respectively. Structures (vii)-(ix) are real-sector aggregates 
with 2, 4 and 3 components, respectively. Structure (vi) was found not to be weakly separable. 

 

We see that all aggregates besides Structure (vi), MZero, are weakly separable. Structure (vii) is 

weakly separable without incomplete adjustment while the other structures are weakly separable 

with essentially zero amounts of incomplete adjustment. Thus, this provides further evidence that 

the amount of incomplete adjustment is higher in quarterly than in yearly data.22 

 
22 Given the convergence properties of numerical optimization procedures, it seems reasonable to classify an 
amount of incomplete adjustment less than 1.0e-10 as zero. 
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  4.2 Application to Household Survey Data 

Our second application is to panel survey data over disaggregated Spanish household 

expenditures on durable and non-durable consumption goods and services (Encuesta Continua de 

Presupuestos Familiares, abbreviated ECPF). The data was obtained from Crawford (2010) and 

is a quarterly budget survey ranging from 1985-1997 that interviews households for up to a 

maximum of eight consecutive quarters on their consumption expenditures.23 The data consists 

of 25 durable and non-durable goods and services and are specified in more detail in Table 6.24  

A common assumption in empirical models of demand and consumption patterns over the life-

cycle is that durable goods are weakly separable from non-durable goods and services. Our 

purpose is to test this assumption. We do so by testing whether the durable goods (a)-(g) and the 

service equivalents to durable goods, education (x) and medical services (y), are weakly 

separable from the other goods and services. We include education and medical expenditures in 

the separable group because they increase the stock of human capital and can therefore be 

“consumed” over a long time span.25 Since we test weak separability on time series data sets for 

each individual household, we avoid making any assumption of a representative agent. 

Moreover, by testing weak separability for each household, we avoid making any preference 

homogeneity assumption between households. We exclude households with less than 8 

observations which give us in total data on 1,585 households. 

 
23 These data has been used in a wide variety of applications in revealed preference. For example, Cherchye et al. 
(2015) used it to test whether households’ utility functions are weakly separable in food categories. 
24 We have classified all 25 goods and services into durables, non-durables and semi-durables and services using 
UN’s “classication of individual consumption according to purpose” (COICOP, 
https://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=5.).  
25 This reason for why these services should be regarded as durables is elaborated by the ILO, which in their 
consumer price index manual writes: “For some analytical purposes, it may be appropriate to treat certain kind of 
services such as education and health, as the service equivalent to durable goods. Expenditures on such services 
can be viewed as investments that augment the stock of human capital. Another characteristic that education and 
health services share with durable goods is that they are often so expensive that their purchase has to be financed 
by borrowing or by running down other assets” (ILO consumer price index manual, 2004, chapter 3.25). 
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Table 6: Classification of ECPF data according to COICOP. 

 
Durable goods 

 
(a)                Durables at home (e.g. furniture and appliances) 
(b)                Small durables at home 
(c)                Durable medicines (e.g. spectacles, crutches and wheelchairs) 
(d)                Cars 
(e)                Durables at home (e.g. tv and music) 
(f)                Small durables (e.g. books, toys and CDs) 
(g)                Personal small durables (e.g. hair-dryer, shavors, coams, lighters and suitcases) 

 
Non-durable and semi-durable goods 

 
(h)                Food and non-alcoholic drinks at home 
(i)                Alcohol 
(j)                Restaurants and bars 
(k)                Tobacco 
(l)                Non-durables at home (e.g. cleaning products) 
(m) Non-durable medicines 
(n)                Petrol 
(o)                Personal non-durables (e.g. toothpaste and soap)       
(p)                Clothing and footwear 
(q)                Energy at home (e.g. heating by electricity) 

 
Services 

 
(r)               Services at home (e.g. heating not electricity, water and furniture repair) 
(s)               Personal services 
(t)               House rent (includes imputed rent) 
(u)               Transportation 
(v)               Travelling 
(w)               Leisure (e.g. cinema, theatre and clubs for sports) 
(x)               Education 
(y)               Medical services 

 

Table 7 presents results of the fraction of households satisfying weak separability.26 

 

 
26 We also ran the utility maximization problem in equation (38). We found 1444 households that satisfied the 
utility maximization model with complete adjustment and 140 households that satisfied the model with 
incomplete adjustment. Thus, only one household failed to satisfy the utility maximization model (with or without 
incomplete adjustment). The average amount of incomplete adjustment over all time periods and households 
were 3.9214% and the average % root mean squared IA was 14.379%. Detailed results are available in the 
Supplementary material accompanying the paper. 
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Table 7: Summary statistics for pass rates of weak separability in the ECPF data 

Total number of households: 1585 
  
Number of households satisfying weak separability with complete adjustment: 904 (57.03 %) 
  
Number of households satisfying weak separability with incomplete adjustment: 440 (32.74 %) 

 

We find 904 households (~57 %) whose preferences can be rationalized by weak separability 

with complete adjustment, and a further 440 households  (~33 %) whose preferences can be 

rationalized by weak separability with incomplete adjustment.  

Figure 3 contains histograms of the various summary statistics (39)-(42) over the 440 

households satisfying weak separability with incomplete adjustment. We find that most 

households have an average incomplete adjustment close to zero, but that there are a few 

households with very large amounts of incomplete adjustment. This is more visible from the 

histograms of the maximum absolute values (upper right histogram) and the % root mean 

squared incomplete adjustment (lower left histogram). The lower right histogram shows that 

there are relatively few time periods containing incomplete adjustment for most households. 

Finally, Table 8 presents the mean, standard deviation, minimum, median, first and third 

quartiles and maximum values of the summary statistics over all 440 households. Looking, for 

example, at the third quartile for the max absolute % IA, we see that the maximal absolute value 

of IA for 75 % of the households is equal to 9.169 or less. The results in this table confirms the 

findings from Figure 3, and shows that most households have reasonable values of incomplete 

adjustment but that there are a few households with one of few time periods with very large 

values of incomplete adjustment. 
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Figure 3: Histograms of the summary statistics (39)-(42) over the 440 households satisfying 

weak separability with incomplete adjustment in the ECPF data. 

 Mean % IA Maximal absolute % IA 
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Table 8: Summary statistics over the 440 households satisfying weak separability with 

incomplete adjustment in the ECPF data 

 Mean % IA Max absolute % IA % root mean squared IA % of adjusted periods 
    

Mean -0.5747 10.1101 8.4753 22.9545 
     
Min -26.7958 0 0 12.5000 
     
First quartile -1.6695 0 1.3706 12.5000 
     
Median -0.2971 0 3.8244 25.0000 
     
Third quartile 0.7209 9.1690 9.3719 25.0000 
     
Max 215.3214 480.6327 291.6445 75.0000 
     
Std. dev. 11.9190 35.1413 18.0763 11.9351 

 

We believe that our two applications illustrate that incomplete adjustment is important when 

testing for weak separability of durable goods and monetary assets, and that modelling 

preferences for such goods should account for incomplete adjustment. 

5. CONCLUSIONS 

We propose a more general revealed preference test-procedures for weakly separable utility 

maximization and utility maximization with incomplete adjustment. The procedures are based on 

a computationally attractive integer programming approach. 

Two empirical applications show that it is important to allow for incomplete adjustment 

when modelling preferences with both micro-panel data and aggregate data.  With each type of 

data incomplete adjustment is important when testing for weakly separable utility maximization 

involving durable goods and assets. 
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APPENDIX: Proof of Theorem 1 

The proof that (i) implies (ii) essentially follows from the discussion in Section 3.1. By replacing 

derivatives with sub-gradients, it holds that (i) implies (ii) in the non-differentiable case (See 

Varian, 1983, p.104-105, for an analogous argument). The equivalence between conditions (ii) 

and (iii) follows from Cherchye et al. (2015, Theorem 2). Hence, it suffices to show that (ii) 

implies (i).  

Suppose that there exist numbers 𝑉𝑖 , 𝑈𝑖 , 𝜇𝑖 > 0, 𝜏𝑖 > 0 and Ψ𝑖 > 0 satisfying the inequalities 

(31) and (32) in condition (b). For all (𝒙𝑵𝑫, 𝒙𝑫, 𝒎𝑵𝑫, 𝒎𝑫) ∈ ℝ+
𝒌 , we define the functions: 

𝑉(𝒎𝑵𝑫, 𝒎𝑫) = 𝑚𝑖𝑛𝑗=1,…,𝑛{𝑉𝑗 + 𝜇𝑗𝒓𝑵𝑫
𝒋

(𝒎𝑵𝑫 − 𝒎𝑵𝑫
𝒋

) + Ψ𝑗𝒓𝑫
𝒋

(𝒎𝑫 − 𝒎𝑫
𝒋

)},                    

𝑈(𝒙𝑵𝑫, 𝒙𝑫, 𝑉(𝒎𝑵𝑫, 𝒎𝑫)) =                                                                                                               

𝑚𝑖𝑛𝑗=1,…,𝑛 {𝑈𝑗 + 𝜏𝑗𝒑𝑵𝑫
𝒋

(𝒙𝑵𝑫 − 𝒙𝑵𝑫
𝒋

) +
𝜏𝑗

𝜇𝑗
Ψ𝑗𝒑𝑫

𝒋
(𝒙𝑫 − 𝒙𝑫

𝒋
) +

𝜏𝑗

𝜇𝑗
(𝑉(𝒎) − 𝑉𝑗)}.             

It follows from Varian (1983) (and Afriat’s theorem) that the function 𝑉 is continuous, strictly 

increasing and concave. Moreover, we have 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ) ≤ 𝑉𝑖, since 

𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ) ≤ 𝑉𝑖 + 𝜇𝑖𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫

𝒊 − 𝒎𝑵𝑫
𝒊 ) + Ψ𝑖𝒓𝑫

𝒊 (𝒎𝑫
𝒊 − 𝒎𝑫

𝒊 ) = 𝑉𝑖 .                                  

Setting the weak inequality strict yields: 

𝑉𝑖 > 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ) = 𝑉𝑎 + 𝜇𝑎𝒓𝑵𝑫
𝒂 (𝒎𝑵𝑫

𝒊 − 𝒎𝑵𝑫
𝒂 ) + Ψ𝑎𝒓𝑫

𝒂 (𝒎𝑫
𝒊 − 𝒎𝑫

𝒂 ),                               

for some 𝑎 = 1, … , 𝑛, which violates the inequalities (31). Thus, 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ) = 𝑉𝑖. Next, we 

show that 𝑉(𝒎𝑵𝑫, 𝒎𝑫) rationalizes the data {(𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

. Suppose 

𝒓𝑵𝑫
𝒊 𝒎𝑵𝑫

𝒊 + 𝒓̃𝐷
𝑖 𝒎𝑫

𝒊 ≥ 𝒓𝑵𝑫
𝒊 𝒎𝑵𝑫 + 𝒓̃𝐷

𝑖 𝒎𝑫. For all (𝒎𝑵𝑫, 𝒎𝑫), we have 

𝑉(𝒎𝑵𝑫, 𝒎𝑫) ≤ 𝑉𝑖 + 𝜇𝑖𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫

𝒊 ) + Ψ𝑖𝒓𝑫
𝒊 (𝒎𝑫 − 𝒎𝑫

𝒊 )                                              

= 𝑉𝑖 + 𝜇𝑖𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫

𝒊 ) + 𝜇𝑖 (1 + IA𝑖 )𝒓𝑫
𝒊 (𝒎𝑫 − 𝒎𝑫

𝒊 )                                                       

= 𝑉𝑖 + 𝜇𝑖 𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫

𝒊 ) + 𝜇𝑖 𝒓̃𝐷
𝑖 (𝒎𝑫 − 𝒎𝑫

𝒊 )                                                                         

= 𝑉𝑖 + 𝜇𝑖 (𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫

𝒊 ) + 𝒓̃𝐷
𝑖 (𝒎𝑫 − 𝒎𝑫

𝒊 ))                                                                       
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≤ 𝑉𝑖                                                                                                                                                             

= 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 ),                                                                                                                                         

where the first equality follows from equation (22) and where we have defined 𝒓̃𝐷
𝑖 =

(1 + IA𝑖)𝒓𝐷
𝑖 . 

Consider next the function 𝑈(𝒙𝑵𝑫, 𝒙𝑫, 𝑉(𝒎𝑵𝑫, 𝒎𝑫)). Following Varian (1983), it can be 

verified that the function 𝑈(𝒙𝑵𝑫, 𝒙𝑫, 𝑉(𝒎𝑵𝑫, 𝒎𝑫)) is continuous, strictly increasing, and 

concave in (𝒙𝑵𝑫, 𝒙𝑫) and 𝑉. Also we have 𝑈 (𝒙𝑵𝑫
𝒊 , 𝒙𝑫

𝒊 , 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 )) = 𝑈𝑖 by using the same 

argument as above. Finally, we show that 𝑈(𝒙𝑵𝑫, 𝒙𝑫, 𝑉(𝒎𝑵𝑫, 𝒎𝑫)) rationalizes the data 𝔻 =

{(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

. Suppose 𝒑𝑵𝑫
𝒊 𝒙𝑵𝑫

𝒊 + 𝒑̃𝐷
𝑖 𝒙𝑫

𝒊 + 𝒓𝑵𝑫
𝒊 𝒎𝑵𝑫

𝒊 +

𝒓̃𝐷
𝑖 𝒎𝑫

𝒊 ≥ 𝒑𝑵𝑫
𝒊 𝒙𝑵𝑫 + 𝒑̃𝐷

𝑖 𝒙𝑫 + 𝒓𝑵𝑫
𝒊 𝒎𝑵𝑫 + 𝒓̃𝐷

𝑖 𝒎𝑫. For all (𝒙𝑵𝑫, 𝒙𝑫, 𝒎𝑵𝑫, 𝒎𝑫), we have: 

𝑈(𝒙𝑵𝑫, 𝒙𝑫, 𝑉(𝒎𝑵𝑫, 𝒎𝑫))                                                                                                                           

≤ 𝑈𝑖 + 𝜏𝑖𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) +
𝜏𝑖

𝜇𝑖
Ψ𝑖𝒑𝑫

𝒊 (𝒙𝑫 − 𝒙𝑫
𝒊 ) +

𝜏𝑖

𝜇𝑖
(𝑉(𝒎𝑵𝑫, 𝒎𝑫) − 𝑉𝑖)                       

≤ 𝑈𝑖 + 𝜏𝑖𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) +
𝜏𝑖

𝜇𝑖
Ψ𝑖𝒑𝑫

𝒊 (𝒙𝑫 − 𝒙𝑫
𝒊 )                                                                        

+
𝜏𝑖

𝜇𝑖
((𝑉𝑖 + 𝜇𝑖𝒓𝑵𝑫

𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫
𝒊 ) + Ψ𝑖𝒓𝑫

𝒊 (𝒎𝑫 − 𝒎𝑫
𝒊 )) − 𝑉𝑖)                                                

= 𝑈𝑖 + 𝜏𝑖𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) +
𝜏𝑖

𝜇𝑖
Ψ𝑖𝒑𝑫

𝒊 (𝒙𝑫 − 𝒙𝑫
𝒊 )                                                                        

+
𝜏𝑖

𝜇𝑖
(𝜇𝑖𝒓𝑵𝑫

𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫
𝒊 ) + Ψ𝑖𝒓𝑫

𝒊 (𝒎𝑫 − 𝒎𝑫
𝒊 ))                                                                        

= 𝑈𝑖 + 𝜏𝑖𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) +
𝜏𝑖

𝜇𝑖
Ψ𝑖𝒑𝑫

𝒊 (𝒙𝑫 − 𝒙𝑫
𝒊 ) + 𝜏𝑖𝒓𝑵𝑫

𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫
𝒊 )                           

+
𝜏𝑖

𝜇𝑖
Ψ𝑖𝒓𝑫

𝒊 (𝒎𝑫 − 𝒎𝑫
𝒊 )                                                                                                                          
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= 𝑈𝑖 + 𝜏𝑖(𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) +
Ψ𝑖

𝜇𝑖
𝒑𝑫

𝒊 (𝒙𝑫 − 𝒙𝑫
𝒊 ) + 𝒓𝑵𝑫

𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫
𝒊 )                                  

+
Ψ𝑖

𝜇𝑖
𝒓𝑫

𝒊 (𝒎𝑫 − 𝒎𝑫
𝒊 ))                                                                                                                            

= 𝑈𝑖 + 𝜏𝑖(𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) + (1 + IA𝑖)𝒑𝑫
𝒊 (𝒙𝑫 − 𝒙𝑫

𝒊 ) + 𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫

𝒊 )                      

+(1 + IA𝑖)𝒓𝑫
𝒊 (𝒎𝑫 − 𝒎𝑫

𝒊 ))                                                                                                                 

= 𝑈𝑖 + 𝜏𝑖 (𝒑𝑵𝑫
𝒊 (𝒙𝑵𝑫 − 𝒙𝑵𝑫

𝒊 ) + 𝒑̃𝐷
𝑖 (𝒙𝑫 − 𝒙𝑫

𝒊 ) + 𝒓𝑵𝑫
𝒊 (𝒎𝑵𝑫 − 𝒎𝑵𝑫

𝒊 ) + 𝒓̃𝐷
𝑖 (𝒎𝑫 − 𝒎𝑫

𝒊 ))   

≤ 𝑈𝑖                                                                                                                                                              

= 𝑈 (𝒙𝑵𝑫
𝒊 , 𝒙𝑫

𝒊 , 𝑉(𝒎𝑵𝑫
𝒊 , 𝒎𝑫

𝒊 )),                                                                                                                

where 𝒑̃𝑖 = (1 + IA𝑖)𝒑𝑖. This completes the proof. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


