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Abstract

This paper proposes a simple non-parametric framework to calculate income elasticities from a data

set of observed prices and consumed quantities without having to estimate any parameters. The

framework can be applied when the price-quantity data satisfies a revealed preference axiom called

the strong version of the strong axiom of revealed preference (SSARP). The framework is used

to calculate income elasticities for food and non-alcoholic drinks from a rich panel of household

expenditures. For this category, it is found that households are rather homogeneous in their demand

responses.

1 Introduction

Knowing the magnitude of income elasticities across the income distribution has significant implications

in several areas of economics. For example, in macroeconomics, policymakers that are responsible for

maintaining price stability (e.g., central banks) require reliable quantitative estimates of money demand.

If money demand is stable, the income elasticity equals the rate of money growth that is consistent with

long-run price stability (See e.g., Mulligen and Sala-i-Martin, 1992). In empirical microeconomics, quan-

tifying income elasticities for different categories of goods is important when making welfare comparisons

within or between countries (Almås, 2012). More specifically, estimating income elasticities for food is

important when analyzing patterns in cost of living indices since changes in the tariff structure and food

import quotas has led to large increases in relative food prices in some countries (Blundell et al., 2008).

As such, the income elasticity is often used as a key parameter when debating the level (or existence) of

indirect tax rates (e.g., value added taxes).

This paper proposes a simple non-parametric framework to calculate income elasticities from a flexible

demand system without having to estimate any parameters. The method is based on revealed preference

theory, and consequently, assumes only knowledge of data on prices and consumed quantities of the

goods.

The standard approach to calculate income elasticities in empirical consumption analysis is to pos-

tulate a parametric functional form for the indirect utility (or cost) function, and then estimate the

corresponding demand functions using observed price and quantity data. Income elasticities are calcu-

lated directly from the estimated demand functions. However, this procedure is only satisfactory when

∗I am grateful to Lanny Zrill for comments on an earlier draft. Financial support from Jan Wallander och Tom Hedelius

stiftelse and Marianne och Marcus Wallenberg stiftelse is gratefully acknowledged. E-mail: Per.Hjertstrand@ifn.se.
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the assumed parametric form is a good approximation of the correct one. Otherwise, elasticity estimates

may be severely biased and even inconsistent. In contrast, the framework proposed in this paper makes

no parametric assumptions for the utility function, and income elasticities can be calculated whenever

the price-quantity data satisfies the strong version of the strong axiom of revealed preference (SSARP),

an axiom only moderately more restrictive than the well-known strong axiom of revealed preference

(SARP).

An important element of the proposed framework is that the income elasticities are calculated from

a non-parametric utility function that, by construction, satisfies all theoretical regularity restrictions

(i.e., continuity, strict monotonicity and concavity). Thus, this non-parametric utility function is always

consistent with economic theory (provided that SSARP holds). In contrast, estimated parametric demand

systems rarely satisfy theoretical regularity restrictions, and it is generally considered diffi cult to impose

such conditions on parametric demand systems (Diewert and Wales, 1985; Barnett and Serletis, 2008).1

Another important element of the proposed framework is that, since no parameters are estimated, the

method avoids any problems associated with degrees of freedom. Hence, the method can be meaningfully

applied to datasets with any number of observations. This is especially advantageous when dealing with

household panel data, where consumption expenditures for each household are typically observed over

a few time periods, since the method can be applied to data from every individual household. Thus,

because income elasticities are calculated separately for every household, our framework escapes any

preference homogeneity assumptions across households and allows the researcher to optimally exploit

the structure of such data. In contrast, this is impossible using parametric demand systems, since

this approach requires more observations than free parameters (i.e., the demand system does not have

enough degrees of freedom to be applicable for each individual household). Hence, estimating income

elasticities in panel household data using parametric demand systems require some form of pooling, and

consequently, rest on preference homogeneity assumptions across households (e.g., based on observable

demographic factors).

Directly related to the previously described advantage of avoiding problems with degrees of freedom,

our method can also be applied to data with any number of goods, and therefore to very disaggregated

data. This is not possible for parametric demand systems, since the number of independent variables in

the system grows polynomially in the number of goods. Omission of relevant prices (i.e., independent

variables) creates an omitted-variables problem, which yields biased estimates. Thus, using the para-

metric approach require some kind of aggregation scheme, often in the form of separability assumptions

(See e.g., Deaton and Muellbauer, 1980). In contrast, since the proposed non-parametric framework is

applicable to any number of goods, no separability assumptions are needed.

The proposed framework is based on a revealed preference characterization of differentiable utility

maximization developed by Chiappori and Rochet (1987). Specifically, they show that a data set of prices

and quantities can be rationalized by a continuous, strictly increasing, strongly concave and infinitely

differentiable utility function if and only if the data satisfies SSARP. This utility function is very flexible

since it contains 2T parameters (which can be interpreted as utility and marginal utility values of the

utility function), where T denotes the number of observations in the data.2 In this paper, I simply propose

1 In particular, parametric demand systems generally lose their flexibility when theoretical regularity conditions are

imposed globally or even at every observation. Moreover, Barnett (2002) note that theoretical regularity is often equated

with concavity and argues that imposing monotonicity on the utility function is equally as important, which adds to the

complexity of estimating demand systems that are restricted to be consistent with all aspects of economic theory.

2Chiappori and Rochet’s (1987) rationalizing utility function is based on Afriat’s (1967) utility construction for the

generalized axiom of revealed preference (GARP) which also requires 2T parameters.
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to calculate income elasticities from Chiappori and Rochet’s rationalizing utility function. Remarkably,

although the utility function consists of 2T parameters, all these cancel out in the expression for the

income elasticity, and I show that this elasticity is a simple function of the observed price-quantity data.

Thus, there is no need to solve for any of the 2T parameters in Chiappori and Rochet’s rationalizing

utility function in order to calculate the income elasticities.3

Being based on a revealed preference theory, the proposed framework is deterministic in the sense

that it does not contain any stochastic element. This implies that the framework neither allows any

deviation from perfect utility maximizing behavior nor that the data is measured with errors, resulting

in violations of revealed preference (SSARP). However, observed price-quantity data is rarely perfectly

consistent with revealed preference restrictions. To deal with this, I propose two methods that make the

framework applicable in situations when revealed preference is violated. In the first method, I suggest

calculating the income elasticities from the largest subset of the data satisfying revealed preference.

Appendix A outlines an effi cient procedure to calculate the largest subset based on solving a mixed-integer

linear programming problem. In the second method, I suggest to calculate the minimal adjustment of

expenditure such that the data satisfies revealed preference. The income elasticities are then calculated

taking the adjustment into account.

I use the framework to calculate income elasticities for food and non-alcoholic drinks at home in

a rich panel of Spanish household consumption expenditures. The expenditures for each household

are recorded in five to eight consecutive quarters, making the proposed methods ideal for analyzing

heterogeneity in demand responses between households, since income elasticities are calculated for every

individual household. The average income elasticity across all households is approximately 0.2. Looking

at the entire distribution reveals that 75% of all households have an elasticity greater than 0.14 but only

25% of them have an elasticity larger than 0.21. Thus, based on these results, I find that households are

rather homogeneous in terms of their demand responses for the category food and non-alcoholic drinks

at home.

This paper is organized as follows. The next section provides the required revealed preference theory

to derive the income elasticity. Section 3 gives the expression for the income elasticity. Section 4 outlines

the two methods to deal with data violating revealed preference. Section 5 contains the application and

Section 6 concludes.

2 Revealed preference

Suppose a consumer chooses from K goods and assets, which are indexed by K = {1, ...,K}. The goods
and assets are observed in a finite number of time periods, which are indexed by T = {1, ..., T}. Let
xt = (x1t, ..., xKt) ∈ RK+ denote the observed quantity-vector at time t ∈ T with corresponding price-

3The income elasticities proposed here are point elasticities (i.e., calculated at a specific point on the demand curve).

Chavas and Cox (1997) propose calculating arc elasticities (i.e., over a range of the demand function) from two represen-

tations of preferences that bound the family of utility functions that rationalizes the data under the generalized axiom of

revealed preference (GARP). Their approach requires sizeable changes in prices or income, since both representations of

preferences under GARP are not everywhere differentiable (they consider demand responses from 20% changes in total

expenditure). Blundell et al. (2008) suggest a method to obtain non-parametric bounds on predicted consumer responses

to price changes, also in the form of arc elasticities. They consider a dataset that satisfies revealed preference and esti-

mate potential responses to a new combination of prices and incomes that would not violate revealed preference given the

observed data.
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vector pt = (p1t, ..., pKt) ∈ RK++.4 Throughout the paper, I refer to the list D = {pt,xt}t∈T as ’the
data’.

Consider the following definitions of the concept of revealed preferences (Varian, 1982). We say that

xt is directly revealed preferred to xs written xtRDxs if ptxt ≥ ptxs. This means that the bundle xt is
directly revealed preferred over the bundle xs if xt was chosen when xs also was affordable at prices pt.

xt is revealed preferred to xs written xtRxs if there exists a sequence of observations (t, u, v, ..., w, s) ∈ T
such that xtRDxu, xuRDxv, ..., xwRDxs. Thus, the relation R exploits transitivity of preferences.

Definition 1 Consider a data set D = {pt,xt}t∈T:

• D satisfies the Strong Axiom of Revealed Preference (SARP) if xtRxs and xt 6= xs implies psxs <

psxt.

• D satisfies the Strong version of the Strong Axiom of Revealed Preference (SSARP) if D satisfies
SARP and if pt 6= ps implies xt 6= xs for all s, t ∈ T.

SARP is well-known and states that it cannot be that the bundle xt is preferred over the distinct

bundle xs, when at the same time the cost of xs is strictly less than the cost of xt at prices ps. Chiappori

and Rochet (1987) introduced SSARP, which says that the data, in addition to satisfying SARP, cannot

contain situations when the same quantity bundle is purchased at two different price vectors.

Definition 2 Consider a data set D = {pt,xt}t∈T and a utility function u : RK+ 7−→ R. For any x ∈ RK+
and all t ∈ T such that ptxt ≥ ptx,

• the data D is strictly rationalized by u if u (xt) > u (x) whenever xt 6= x,

• the data D is strongly rationalized by u if u (xt) > u (x).

Matzkin and Richter (1991) provided a revealed characterization of SARP by showing that there

exists a continuous, strictly increasing and strictly concave utility function that strictly rationalizes D if
and only if D satisfies SARP. However, SARP does not ensure that there exists a differentiable utility
function that (strictly or strongly) rationalizes the data (See e.g., Figure 1 in Chiappori and Rochet,

1987). In contrast, empirical demand analysis is primarily concerned with calculation of point elasticities

and welfare comparisons, and consequently, is usually based on differentiable (indirect) utility (or cost)

functions. As a reaction to this, Chiappori and Rochet (1987) showed that adding to SARP the condition

that the same bundle cannot be purchased at two distinct price vectors ensures that there also exists an

infinitely differentiable utility function in the set of rationalizing utility functions.

Theorem 1 (Chiappori and Rochet, 1987) Consider a data set D = {pt,xt}t∈T. The following

conditions are equivalent:

• the data D can be strongly rationalized by a strictly increasing, strongly concave and infinitely

differentiable utility function u (x), whose Hessian matrix satisfies:

∇2xxu (xt) = −εIK , (1)

for all t ∈ T, where ε > 0 is a (suffi ciently) small scalar, and IK is the K ×K identity matrix.

4The following notation is used: The inner product of two vectors (x, y) ∈ RK is defined as xy =
∑K
l=1 xlyl. For

all (x, y) ∈ RK , x = y if xi ≥ yi for all i = 1, . . . ,K; x ≥ y if x = y and x 6= y; and x > y if xi > yi for all

i = 1, . . . ,K. We denote RL+ = {x ∈ RL : x = (0, . . . , 0)} and RL++ = {x ∈ RL : x > (0, . . . , 0)}. The gradient vector of a
differentiable function f (x) is denoted ∇xf (x). The Hessian matrix (i.e., matrix of second-order partial derivatives) of a
twice-differentiable function f (x) is denoted ∇2xxf (x).
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• the data D satisfies SSARP.

This result states that the data D satisfies SSARP if and only if there exists an infinitely differen-
tiable and well-behaved (i.e., strictly increasing and strongly concave) utility function that (strongly)

rationalizes D. Interestingly, Theorem 1 shows that the Hessian matrix of this utility function takes a

very simple form since it is diagonal with all non-zero (diagonal) entries equal to −ε < 0.5 Although

there may exist other utility functions that rationalizes the data, it is important to note that the utility

function in Theorem 1 does not rely on any parametric assumptions and is very flexible since it consists

of twice as many parameters as there are observations.

3 Income elasticity

This section shows that the income elasticities derived from the rationalizing utility function in Theorem

1 are simple functions of the data D = {pt,xt}t∈T. Define total expenditure as m = px, and let

h (p,m) = (h1 (p,m) , ..., hK (p,m)) denote the vector of (Marshallian) demand functions at prices p and

expenditure m = px. Also, define ∇mh (p,m) = (∂h1 (p,m) /∂m, ..., ∂hK (p,m) /∂m) as the gradient

of the demand function with respect to expenditure m = px. Using comparative statics ∇mh (p,m) can

be calculated from the Hessian of the utility function as:6

∇mh (p,m) =

(
∇2xxu (x)

)−1
p

p
(
∇2xxu (x)

)−1
p
. (2)

Let the income elasticity of good k ∈ K be defined as:

Ek (p,m) =
∂hk (p,m)

∂m

m

xk
.

Using the Hessian (1) to calculate the income elasticity for the rationalizing utility function in Theorem

1, evaluated at observation t ∈ T, yields:

Ekt (pt,mt) =
p2kt
ptpt

1

wkt
, (3)

where mt = ptxt is total expenditure at observation t ∈ T, and

wkt =
pktxkt
mt

,

denotes the budget share for good k ∈ K at observation t ∈ T.
The income elasticity, Ekt, is given by the product between the reciprocal of the budget share of

the kth good, 1/wkt, and the quadratic price of the kth good relative to the sum of quadratic prices,

p2kt/ptpt = p2kt/
∑
j∈K p

2
jt. Hence, Ekt is independent of any unknown (nuisance) parameters, and

consequently, can be calculated directly from the observed data D = {pt,xt}t∈T. Note, however, that
the expressions (3) are local in the sense that they only hold at the observed data points.

5The Hessian (1) is not explicitly stated in Chiappori and Rochet (1987) but can be derived from Lemma 1 and the last

two equations on page 690 in their paper.

6See, for example, Shone (1975, Ch. 4.2, p.82-91).
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4 The income elasticity when revealed preference is violated

A data set may violate SSARP, in which case there cannot exist any utility function that (strongly)

rationalizes the data. In this section, I outline two simple ways of calculating the income elasticities

when the data violates SSARP.

In the first method, called Method A, I propose to simply delete the observations that are causing

the violation of SSARP, and calculate the income elasticities from the remaining set of observations that

satisfies SSARP. Appendix A describes a computationally effi cient method based on solving a mixed

integer linear programming problem to calculate the maximal subset of the data consistent with SSARP.

In a second step, the income elasticities are calculated at every observation in this set from (3). Although

this method is simple and straightforward, it has the disadvantage that the maximal subset of consistent

observations may not be unique. In other words, there may be two (or more) distinct maximal subsets

of the same size that satisfies SSARP, and gives different income elasticities, but are impossible to

discriminate between.

The second method, calledMethod B, consists of applying the Afriat effi ciency index (AEI) to calculate

the minimal adjustment of expenditure such that the data satisfies a weaker form of SSARP, called

SSARP(e), and then use these adjustments when calculating the income elasticities. Let e ∈ (0, 1] be a

scalar, and define for all s, t ∈ T the relation RD (e) as xtRD (e)xs if eptxt ≥ ptxs, or equivalently (See
Appendix B):

K∑
k=1

wekt ≥
ptxs
ptxt

, (4)

where wekt = e × wkt for all goods k ∈ K and observations t ∈ T. Let R (e) be the transitive closure

of RD (e). Analogous to Definition 1, a data set D = {pt,xt}t∈T satisfies SARP(e) if xtR (e)xs and

xt 6= xs implies
∑K
k=1 w

e
ks <

psxt
psxs

(or equivalently epsxs < psxt), and satisfies SSARP(e) if: (i) D
satisfies SARP(e); and (ii) if pt 6= ps implies xt 6= xs for all s, t ∈ T. The AEI is defined as the maximal
value of e that satisfies SSARP(e).7 I propose the following adjusted version of the income elasticity:

EAEIkt (pt,mt) =
p2kt
ptpt

1

wAEIkt

,

where wAEIkt = AEI×wkt. The advantage of this method is that it is very easy to calculate the AEI
using a binary search algorithm; Appendix B provides the details. However, one disadvantage is that

the method is only applicable for a ”suffi ciently large”AEI, but what constitutes ”suffi ciently large” is

subjective. Varian (1990) suggests a lower bound of 0.95, but points out that the level should depend

on the problem at hand, that is, the number of observations, the power of the test, and the model under

consideration. Moreover, the AEI only accounts for the worst violation and neglects all other violations.

Consequently, a single large violation can make the AEI arbitrarily small even if there are no other

violations (Dean and Martin, 2016).

5 Do income elasticities differ between households?

This section applies the proposed framework to a large micro panel of households’consumption expen-

ditures. The purpose of this application is to answer the question how much income elasticities differ

7The AEI (also known as the critical cost effi ciency index, CCEI) was introduced by Afriat (1972) and Varian (1990),

and is a measure of wasted income: if a consumer has an AEI of e < 1, then he could have obtained the same level of

utility by spending only a fraction of e of what he actually spent to obtain this level.
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between heterogeneous households.

Data. I use data from the Spanish Continuous Family Expenditure Survey (Encuesta Continua de

Presupuestos Familiares, abbreviated ECPF). This panel is a quarterly budget survey, ranging from

1985-1997, that interviews Spanish households for up to a maximum of eight consecutive quarters on

their consumption expenditures. This data was obtained from Crawford (2010) and has previously

been analyzed in, among others, Browning and Collado (2001) and Cherchye et al. (2015). From this

data, I use a subsample of couples with and without children, where the husband is employed full-time

and the wife is outside the labor force. Moreover, I assume that durable goods are weakly separable

from nondurables and therefore only consider consumption expenditures on nondurable consumption

categories.8 The price data are national price indices for the corresponding expenditure categories.

Overall, there is data on 21,866 observations for 3,134 households.

I focus on consumption expenditures for the category ”food and non-alcoholic drinks at home”,

and calculate income elasticities for this category for every individual household.9 By analyzing each

household separately, I allow for maximal unrestricted heterogeneity between households since there is

no need to specify how the heterogeneity enters in the model.10 As such, the analysis even captures

nonobservable heterogeneity between households, and we avoid any (debatable) preference homogeneity

assumptions across households that share similar demographic factors. I follow the standard convention

in the demand literature and present mean income elasticities across all time periods.

Results. From the total 3,134 households, I exclude 14 households who did not record any purchases of

”food and non-alcoholic drinks at home”, leaving us with data on 3,120 households (21,772 observations).

Out of these 3,120 households, the consumption data for 2,916 (93.46%) households (20,266 observations)

satisfy SSARP. Hence, the data for 204 (6.54%) households (1,506 observations) violated SSARP.11 I

begin looking at those households who pass SSARP. The graph on the left-hand side in Figure 1 presents

the kernel density of the income elasticities (red solid line).12 The distribution is unimodal and marginally

positively skewed. It has a mode around 0.2, implying that the elasticities are clustered around this point.

The right tail vanish quickly and shows that the income elasticities very rarely exceeds 0.5. The graph on

the right-hand side in Figure 1 plots the kernel density of the budget shares (red solid line). This figure

shows that the shares are rather dispersed, with a mode around 0.5. Thus, households are heterogeneous

in how much they spend on ”food and non-alcoholic drinks at home”.

The first panel in Table 1 reports summary statistics of the budget share, the quadratic price of ”food

and non-alcoholic drinks at home” relative to the sum of all quadratic prices, p2FOOD/
∑
j∈K p

2
j (called

’Price share’), and the income elasticity. We see that 50% (Median) of the 2,916 households that satisfy

8The nondurables are aggregated into the following 15 consumption categories: (i) food and non-alcoholic drinks at

home, (ii) alcohol, (iii) tobacco, (iv) energy at home, (v) services at home, (vi) non-durables at home, (vii) non-durable

medicines, (viii) medical services, (ix) transportation, (x) petrol, (xi) leisure, (xii) personal services, (xiii) personal non-

durables, (xiv) restaurants and bars, and (xv) travelling.

9The analysis is based on a unitary model of household consumption. Note, however, that a recent literature has shown

that household behavior can potentially be better explained by a collective household model (e.g., Cherchye et al. 2007).

10The standard (parametric) approach in the literature is to pool the household data and perform the analysis conditional

on demographic factors to control for heterogeneity between households. However, this approach implicitly assumes that

most of the hetorogenity can be explained by the (observable) demographic factors.

11The data for the same 2,916 households also satisfy SARP.

12 Implemented using the default settings in the R package density (i.e., with a gaussian kernel).
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Figure 1: Kernel densities of the income elasticities (left) and budget shares (right).

SSARP have an income elasticity of 0.1719 or lower and that the elasticity is equal or less than 0.2136

for 75% (3rd quartile) of these households. In general, the results in the first panel in Table 1 mainly

reveal two things. First, the relative price of ”food and non-alcoholic drinks at home”is fairly constant

across households (its standard deviation is very low). Second, the income elasticities do not seem to

vary much across households, but when it does, the variation is almost entirely due to differences in the

fraction of expenditure that is spent on ”food and non-alcoholic drinks at home”, as indicated by the

budget shares. In our model, the income elasticity is inversely related to the budget share, implying that

the elasticity increases as the fraction of expenditure spent on ”food and non-alcoholic drinks at home”

decreases (the correlation between the income elasticity and the budget share is −0.3645).13

Consider next the 204 households that violated SSARP. The graph on the left-hand side in Figure

1 presents the kernel density of the income elasticities calculated using Method A (blue dashed line)

and Method B (green long-dashed line). As seen from this figure, the distributions are very close to the

distribution of the elasticities for households that satisfied SSARP. This can also be seen from the kernel

densities of the budget shares in the graph on the right-hand side in Figure 1. The second and third

panels in Table 1 reports summary statistics calculated using the two different methods. The second

panel reports the results from Method A. The HMI reported in the first row gives summary statistics

across all households of the maximal fraction of observations consistent with SSARP. These numbers

indicate that households are only making minor violations of SSARP. As seen from Table 1, the income

elasticities are very similar to those households that satisfy SSARP, which confirms what we see from

13Note that the budget share is also inversely related to the income elasticity in parametric demand models such as the

(quadratic) almost ideal demand system and the translog demand system.
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Table 1: Summary statistics across all households

Households Mean Std. Min 1st quartile Median 3rd quartile Max

Households that satisfy SSARP

Budget share 2,916 0.4570 0.1145 0.0683 0.3771 0.4539 0.5337 0.8347

’Price share’ 2,916 0.0735 0.0083 0.0596 0.0624 0.0763 0.0807 0.0827

Income elasticity 2,916 0.1973 0.1853 0.0853 0.1434 0.1719 0.2136 5.2822

Households that violate SSARP: Method A

HMI 204 0.8572 0.0333 0.6667 0.8571 0.8750 0.8750 0.8750

Budget share 204 0.4397 0.1036 0.1910 0.3629 0.4419 0.5126 0.7378

’Price share’ 204 0.0745 0.0080 0.0592 0.0676 0.0787 0.0810 0.0827

Income elasticity 204 0.1985 0.0724 0.1073 0.1538 0.1826 0.2253 0.6510

Households that violate SSARP: Method B

AEI 204 0.9963 0.0048 0.9698 0.9949 0.9980 0.9993 1.0000

Budget share 204 0.4395 0.1027 0.1682 0.3607 0.4372 0.5061 0.7525

’Price share’ 204 0.0746 0.0080 0.0596 0.0672 0.0787 0.0808 0.0825

Income elasticity 204 0.2056 0.1076 0.1070 0.1548 0.1867 0.2269 1.2945

the kernel densities in Figure 1. Consider next the results from Method B in the third panel. The AEI

is high across the 204 households, which supports the results from the HMI indicating that households

are only making minor violations of SSARP. Overall, the income elasticities are very similar to those

obtained using Method A.

Are the estimates of the income elasticity reasonable? A partial answer can be given by comparing

the results to previous studies that estimates the income elasticity for food and non-alcoholic beverages

at home. Also using the ECPF data, Christensen (2014) estimates a parametric demand model and

finds income elasticities in the range of 0.6 − 0.7. Seale et al. (2003) estimates income elasticities of

food and beverages for low, middle and high income countries at the macro level and finds an income

elasticity of 0.44 for Spain, and a mean elasticity (across all high income countries) of 0.34. Using U.K.

household data in repeated cross-sections, Blundell, Pashardes and Weber (1993) find estimates of the

income elasticity to be in the range 0.5 − 0.6. Using more recent household data covering the period

1998-2000 from the U.K. National Food Survey (NFS), Lechene (2001) estimates the income elasticity for

”food and beverages at home”to be 0.2. Also using U.K. household data from repeated cross-sections,

Paluch et al. (2012) applies a nonparametric framework to estimate micro and macro income elasticities,

and finds elasticities for food between 0.16 and 0.2. Based on the results from these studies, the income

elasticities seem reasonable, and match especially well with the latter studies on the demand for food

and non-alcoholic beverages in the U.K.
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6 Conclusion

This paper outlines a framework to calculate income elasticities from a flexible non-parametric utility

function. By construction, this utility function satisfies theoretical regularity conditions, and the frame-

work can be applied to any number of goods and to any number of observations. The income elasticities

are simple functions of the price-quantity data, and as such, are point identified from the data. In other

words, the income elasticities do not depend on any parameters that need to be estimated.

Usually, income elasticities are presented together with various types of price elasticities in empirical

demand analysis. In the current framework, Marshallian and Hicksian price elasticities are functions

of parameters that need to be calculated (i.e., utility and marginal utility indices in Chiappori and

Rochet’s (1987) rationalizing utility function). These parameters are not point identified, implying that

price elasticities are not point identified. However, under additional restrictions, for instance by imposing

that the utility function satisfies the law of demand at every observation, it is possible to show that price

elasticities are partially (set) identified. I leave further analysis of such price elasticities for future work.
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Appendix

A Procedure to find the maximal subset of observations satisfying SSARP

This appendix describes a computationally effi cient procedure to calculate the largest subset of the data

satisfying SSARP. Chiappori and Rochet (1987) showed that SSARP is equivalent to that there exist

numbers ut and λt > 0 for all t ∈ T such that the data D = {pt,xt}t∈T satisfies the following inequalities
(for all s, t ∈ T):

us − ut − λt (ptxs − ptxt) ≤ −εΨ, (A1)

where ε > 0 is a scalar and Ψ is defined as Ψ = maxs,t∈T

{
1
2

∑
k∈K (xkt − xks)2

}
. These inequalities

can be weakened by introducing a binary T−dimensional vector h = (h1, ..., hT ) ∈ {0, 1}T and multiply
total expenditure in each time period with the corresponding period t binary variable ht. Replacing

expenditure ptxt with the product htptxt for every t ∈ T in (A1) gives the weaker set of inequalities:

us − ut − λt (ptxs − htptxt) ≤ −εΨ. (A2)

The Houtman—Maks index (HMI) is defined as the maximal fraction of non-zero elements in the binary

vector h such that the inequalities (A2) hold. One way to calculate the HMI is to find the h closest to

the unit vector in the L1-norm, which consists of solving the nonlinear problem:

HMI = arg min
{ut,λt,ht}t∈T

1

T

∑
t∈T

(1− ht) s.t. us − ut − λt (ptxs − htptxt) ≤ −εΨ, (A3)

for all s, t ∈ T. Let ĥ =
(
ĥ1, ..., ĥT

)
be the optimal solution from this problem. The largest subset of

the data D consistent with SSARP (in the L1-norm) is given by set of observations for which ĥt = 1.

However, the problem (A3) is of limited empirical use since the constraints are nonlinear in the term

λthtptxt. A more convenient implementation can be obtained by noticing that the term λtht is the

product of a binary variable and a continuous variable and that the latter without loss of generality can

be bounded as 0 < L ≤ λt ≤ U with L 6= U . By defining the variable yt = λtht, it is easy to show that

the product is equivalent to the following set of linear inequalities:

Lht ≤ yt
yt ≤ Uht
L (1− ht) ≤ λt − yt
λt − yt ≤ U (1− ht)
0 ≤ yt ≤ U.

(A4)

This allow us to linearize the non-linear term in (A2) with the linear equalities (A4), and reformulate the

problem (A3) as a mixed integer linear programming (MILP) problem since the elements in h only takes

binary values. Specifically, I propose to calculate the HMI (in the L1-norm) by solving the following
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MILP problem (for a given ε > 0):

HMI = arg min
{ut,λt,ht,yt}t∈T

1

T

∑
t∈T

(1− ht) s.t. (A5)

us − ut − λtptxs + ytptxt ≤ −εΨ

Lht − yt ≤ 0

yt − Uht ≤ 0

yt − λt − Lht ≤ −L

λt − yt + Uht ≤ U

L ≤ λt ≤ U

ht ∈ {0, 1}

0 ≤ yt ≤ U.

This problem gives an exact and global solution (because every local solution to a MILP problem is a

global solution), and there exist effi cient algorithms for solving such problems in practice (e.g. branch

and bound, and cutting plane).

Finally, some remarks on the origins and generalizations of this procedure. Houtman and Maks

(1985) originally proposed the HMI as a measure of goodness-of-fit, or more precisely, as a measure of

how close a data set D = {pt,xt}t∈T comes to satisfying revealed preference. Heufer and Hjertstrand
(2015) propose a computationally effi cient procedure to calculate the HMI for the generalized axiom

of revealed preference (GARP). GARP is the standard model in empirical applications of consumer

rationality, and its significance is summarized by the well-known Afriat’s theorem, which states that

a data set D = {pt,xt}t∈T can be rationalized by a continuous, strictly increasing and concave utility
function if and only if D satisfies GARP, or equivalently, if and only if D satisfies the so called Afriat
inequalities (Varian, 1982). A close inspection of the inequalities (A1) show that these reduces to the

Afriat inequalities when imposing ε = 0. Hence, by setting ε = 0, the problem (A5) can be used to

calculate the HMI for GARP. Thus, in relation to Heufer and Hjertstrand (2015), the problem (A5)

(with ε = 0) provides an equivalent but alternative method to calculate the HMI for GARP.

B Calculating the income elasticities using the AEI

Derivation of Eq. (4). Recall that xtRD (e)xs if eptxt ≥ ptxt and that wkt denotes the budget

share for good k ∈ K at observation t ∈ T. We have:

eptxt ≥ ptxs
⇐⇒ e ≥ ptxs

ptxt

⇐⇒ e

K∑
k=1

wkt ≥
ptxs
ptxt

[since
K∑
k=1

wkt = 1]

⇐⇒
K∑
k=1

ewkt ≥
ptxs
ptxt

⇐⇒
K∑
k=1

wekt ≥
ptxs
ptxt

,

where wekt = e× wkt for all k ∈ K and t ∈ T.
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Binary search algorithm to calculate the AEI. Consider the relation RD (e). If RD (e) holds for

some e then it also holds for some e′ < e. This monotonicity condition implies that the maximal e such

that SSARP(e) holds can be calculated using a simple binary search algorithm. Let Fl denote an initial

feasible lower bound of e, i.e., a number e chosen suffi ciently small such that the data D = {pt,xt}t∈T
satisfies SSARP(e). Without loss of generality we can set Fl = 0. Analogously, let Fu denote an infeasible

upper bound, e.g. Fu = 1. The binary search consists of the following steps. Start with the midpoint

(Fu + Fl) /2 and check whether SSARP
(
e(1)
)
hold with e(1) = (Fu + Fl) /2. If an optimal solution is

found, then set Fl = e(1) (keeping Fu fixed) and check whether e(2) = (Fu + Fl) /2 satisfy SSARP
(
e(2)
)
.

On the other hand, if no optimal solution is found, set Fu = e(1) (keeping Fl fixed) and check whether

e(2) = (Fu + Fl) /2 satisfy SSARP
(
e(2)
)
. At each iteration of the binary search, the range [Fl, Fu], which

contains the solution, is halved. As such, the width of the interval decreases exponentially in the number

of iterations. A possible termination criterion of the binary search is when (Fu − Fl) /Fl ≤ ψ, for some

very small positive number ψ (in the application I set ψ = 10−12).
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