
Reich, Stephanie K.; Hintermann, Beat; Zischg, Andreas

Working Paper

Informed by wet feet: How do floods affect property
prices?

WWZ Working Paper, No. 2020/18

Provided in Cooperation with:
Center of Business and Economics (WWZ), University of Basel

Suggested Citation: Reich, Stephanie K.; Hintermann, Beat; Zischg, Andreas (2020) : Informed
by wet feet: How do floods affect property prices?, WWZ Working Paper, No. 2020/18,
University of Basel, Center of Business and Economics (WWZ), Basel,
https://doi.org/10.5451/unibas-ep79633

This Version is available at:
https://hdl.handle.net/10419/240427

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5451/unibas-ep79633%0A
https://hdl.handle.net/10419/240427
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

 

 
 

Universität Basel 
Peter Merian-Weg 6 
4052 Basel, Switzerland 
wwz.unibas.ch 

Corresponding Author: 
Prof. Dr. Beat Hintermann 
Tel. +41 61 207 33 39  
b.hintermann@unibas.ch 
  
 
 
 
 
 

 
 
 

 
     December 2020 

 
 
 
 
 

   

  
Informed by wet feet: How do floods 

affect property prices? 
 
 
 
 
 
 
 

 
   
 WWZ Working Paper 2020/18                      Stephanie K. Reich, Beat Hintermann, Andreas Zischg 

 
A publication of the Center of Business and Economics (WWZ), University of Basel.  
 WWZ 2020 and the authors. Reproduction for other purposes than the personal use needs the permission of the authors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  



Informed by wet feet: How do floods affect property

prices?
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Abstract

We investigate the effect of multiple flood events on property prices in Zurich canton of

Switzerland. By merging property transaction data with records from universal and mandatory

building insurance, we are able to identify the effect of the informational content of floods

separately from the damage caused. Our rich data allows us to control for a wide range of

housing characteristics, thus reducing the bias from unobserved heterogeneity that routinely

plagues hedonic regressions. We find that houses located in flood hazard zones sell at a

discount relative to houses located outside, despite the presence of mandatory insurance

that covers most (but not all) costs. Providing flood hazard information increases the value of

houses that are assigned a low risk. Last, we look at the effect of floods on property prices and

find that in the aftermath of flood events, properties that narrowly escaped damage were sold

at a significant discount relative to houses located out of harm’s way. This pure information

effect decays shortly.
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1 Introduction

Floods are among the most important natural disasters worldwide. The largest flood impacts

tend to be located in coastal areas as a result of hurricanes or tsunami events, but flooding is also

important in inland areas. About 21 million people worldwide are affected by river floods each

year. Due to climate change and socio–economic developments, the number of affected people

is predicted to increase to 54 million by 2030 as the surface temperature continues to rise (Luo et

al., 2015; Willner et al., 2018). Switzerland, which is the focus of this paper, is no exception. In

2015, the damage to private property, infrastructure, forestry and agriculture caused by floods,

debris flows, landslides and rock falls amounted to CHF 135 million, 92 percent of which resulted

from floods (Hilker et al., 2009).1

Flood damages depend on the affected housing stock. For this reason, it is important that

flood risk be reflected in current and future housing development, for example in the form of

building restrictions or insurance mandates, but also in market prices. In this paper, we examine

the effect of flood events on housing prices in Switzerland. Our data allow us to control for a wide

range of housing characteristics, predicted flood risk and actual damages due to river floods in

the years 2007–2019 in the canton of Zurich. We find that flood events cause a drop in the price

of (spared) houses located in the proximity of damaged houses, relative to comparable houses

located further away. This implies that flood events contain information that causes home buyers

to update their expectations about flood risk.

A number of previous hedonic pricing studies estimated the effect of sea floods on housing

values. Table A.1 in the Appendix presents a comprehensive overview of the related literature.

Most of the studies focus on the USA that impose mandatory flood insurance via the National

Flood Insurance Program for properties located in a 100–year floodplain.2 A recent meta-analysis

by Beltrán et al. (2018b) finds an average price discount of 4.6% for houses located in an inland

100–year floodplain, which increases to 6.9% in the aftermath of a flood. The situation in Switzer-

land differs from the US context as home owners are required by law to buy a flat-rate building

insurance, which covers the full (estimated) monetary damages caused by flooding at a price

that does not depend on the risk of flooding associated with the location of the building. As

1 The Swiss Franc, or CHF, is currently at par with the US dollar.
2 For a survey of the older literature, see Boyle and Kiel (2001). Examples of more recent studies are Daniel et al.

(2009), Atreya and Ferreira (2015) and Bakkensen and Barrage (2017).
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a result, homeowners in safe areas cross-subsidize houses located in risky areas, for example

near rivers or in the mountains. This socialized insurance should, in principle, remove any price

differentials due to flood risk with the exception of uninsurable costs such as the possibility of

death, injury or being displaced, damage to municipality infrastructure, transactions costs or the

loss of personal items with sentimental value. This makes it more difficult to identify a risk-related

price differential in the Swiss real estate market. On the other hand, the presence of a socialized

insurance scheme means that we have accurate information about flood damages (via insurance

claims) and that there is no unobserved price component due to insurance fees (as the price is the

same for everyone). Despite the insurance scheme, we find a price discount for houses located in

flood-prone areas. This discount is temporary in nature and occurs in the aftermath of floods.

Most hedonic price models of flood risk estimate the price differential between houses based

on cross-sectional variation.3 However, the identification of the flood risk-component in such a

setting may suffer from omitted variable bias and from measurement error bias, because flood

risk tends to be imprecisely measured. The first contribution of our paper lies in improving the

estimate of the risk differential by including additional information about transacted houses

that are typically not available in most data sets. Furthermore, we use detailed hazard maps as

our ex-ante measure of risk. These maps assign flood risk to individual properties and should

thus reduce the measurement error problem that has plagued previous studies. Controlling for

attributes and flood risk zone, we find no stable flood risk differential in housing prices.

Another way to identify the impact of floor risk on property prices is the use of a Difference-

in-Difference (DiD) spatial hedonic model framework to exploit an exogenous variation in risk at

a given location.4 Most of the previous DiD studies use flood zones to estimate price differentials

for floodplain location before and after a flood (as the ex-ante risk of flooding usually does not

change discretely). The treatment group typically consists of houses located within a particular

floodplain, whereas the respective control group is located outside (see, e.g., Bin and Polasky,

2004; Daniel et al., 2007; Atreya and Ferreira, 2012; Bin and Landry, 2013; Atreya et al., 2013a; Hill,

2015). This design avoids the omitted variable bias, but the interpretation of the DiD-effect is not

3 See for example Barnard (1978); Skantz and Strickland (1987); Shilling et al. (1989); MacDonald et al. (1990); Fridgen
et al. (1999); Shultz and Fridgen (2001); Morgan (2007)

4 An example is Davis (2004), who focuses on house prices in a county where residents had recently experienced a
severe increase in pediatric leukemia. Housing prices are compared before and after the increase with a nearby
county acting as a control group. Billings and Schnepel (2017) estimate the benefits of lead-paint remediation on
housing prices adopting a DiD estimator that compares values among remediated properties with those for which
an inspection does not identify a lead paint hazard.
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obvious as it could be caused by at least three mechanisms: First, the price decrease (if any) could

be due to the flood damage itself, provided that damages are sufficiently widespread (Atreya and

Ferreira, 2015). Second, insurance premia could increase for houses located in the flood zone

due to a permanent upward adjustment of the expected flood risk by the insurance provider. And

third, home buyers could adjust their expectations about flood risk if a flood event increases the

salience of a risk (Hallstrom and Smith, 2005; Kellens et al., 2013; Burningham et al., 2008). For

example, price effects in the US disappeared around six years after Hurricane Floyd (Bin and

Landry, 2013) and eight to nine years after the flood of 1994 in Georgia (Atreya et al., 2013b).5

Without additional information about insurance premia and actual damages, these channels

cannot be distinguished from each other. Given our context of socialized building insurance,

however, we can rule out any changes in insurance premia. Furthermore, the universal coverage

leads to complete claims information on all houses. This allows us to identify the properties that

were damaged by the flood and differentiate them from houses that were merely at risk. Our

DiD estimator of “near–miss” events on prices of non-damaged properties in close proximity to

recorded damages relative to prices of properties located further away thus identifies the pure

effect of informational updating in the wake of a flood. This is the second contribution of our

paper. To our knowledge, there exist no previous studies that separately identify actual damages

from informational updating as a consequence of flood events. Some previous papers have used

information about the geographic extent of the flood to proxy for unobserved damages. Atreya

and Ferreira (2015), Beltrán et al. (2019) and Beltrán et al. (2018a) compare properties that were

actually flooded with nearby properties located outside of the region of inundation. Whereas

information on actual flooding is clearly a better proxy for damages than relying on hazard zones

alone, it is still imperfect as a property may be flooded yet escape actual damage due to protective

measures (e.g., stilts or flood walls).

Last, information about flood risk is a relatively recent phenomenon. Our third contribu-

tion consists in estimating the effect of introducing flood risk information and legally binding

preventive measures for houses located in risk-prone areas. The first hydrological hazard maps

were introduced in 1997, and coverage was gradually expanded throughout the canton thereafter.

5 Bakkensen and Barrage (2017) find that around 40% of households substantially underestimate coastal flood
risks. Bubeck et al. (2012) report that many individuals have no willingness-to-pay for insurance because they
underestimate the (low) probability of flood risk, and that the demand for flood insurance is determined to an
important degree by emotional fear. Risk mis-perception can result in spiking insurance take-up after a flood
(Gallagher, 2014).
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The introduction of a flood risk map provides new information that was previously not available,

or only at high transactions costs. Moreover, the risk maps were strictly informational in the

beginning but later became a binding component for each property transaction.

Our sample consists of house transactions in the canton of Zurich in the period 2007–2019.

Using geographic information software, we match the data with insurance claims, hazard maps

and a rich set of additional control variables. First, we analyze the effect of public risk information

via hazard maps and examine whether there is a stable price differential as a function of ex–ante

flood risk. To reduce the bias due to unobserved variables, we include standard amenities about

the building (year of build, surface area, nr. of rooms) and additional information such as the

positive amenity of living close to water (i.e., the distance of properties to water such as rivers

or lakes), hours of sun per day, distance to the woods and to downtown Zurich and local tax

multipliers, all of which turn out to be significant predictors for housing prices in Zurich canton.6

Next, we run two sets of DiD event study regressions. In the first approach, we define our treatment

group as houses located in areas that are subject to flood risk, whereas properties outside of these

zones serve as the control group. In the second specification, the treatment group consists of

houses located in close proximity to an actual flood damage, whereas properties located further

away serve as the control group. To cleanly separate the treated and nontreated properties and

thus mitigate a potential violation of the stable unit value treatment assumption (SUTVA), we

define a buffer zone of varying radius.

We find that being located in a flood-prone zone has a significant and negative effect on

housing prices. In the first specification using hazard zones as the treatment category, the DiD

estimates show a significant and negative effect shortly after a flood occurs. However, as only 10%

of the actually damaged houses are located in hazard zones, causality cannot be claimed as the

separation into treatment and control group is imperfect (in other words, some of the houses in

the control group were affected by the treatment as well).

Our preferred approach is the second specification, where we find a negative effect on values

of near–miss housing properties relative to houses not located near the flood. This effect is

statistically significant and strongest around 1 months after the flood and the effect disappears

after a few months. Results are robust to the use of different specifications. Our results imply an

6 We cannot control for unobserved amenities by using a fixed-effects regressions because most properties were only
sold once during our sample period.
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informational effect and that home buyers “forget” over time, which has been referred to as an

“availability bias” Tversky and Kahneman (1973).

Last, we find that the introduction of hazard maps has a differential effect on house prices

depending on the hazard location. Safe houses experience an increasing value, whereas houses

at risk are not affected. Our results highlight the value of better flood hazard information and can

help guide decision makers when assessing communal benefits gained through flood control and

mitigation projects.

The next section provides some more background information and section 3 presents our

theoretical model and the econometric specification. Section 4 presents the data and section 5

the results. The last section offers concluding remarks.

2 Background

The canton of Zurich, see figure 1, contains 168 political municipalities and is characterized by

its capital Zurich and its agglomeration, which occupies most of the canton. The largest body

of water is the elongated Lake Zurich, and the major rivers are Limmat, Sihl, Rhine, Glatt, Toess

and Thur.7 We concentrate on the real estate market in the canton of Zurich, which is one of

Winterthur

Zurich

0 5 102.5
km

France

Italy

Germany
AustriaSwitzerland

ThurRhine

Thöss

Glat t

Limmat

Sihl

Figure 1: Overview of the Canton of Zurich. Notes: Map of the canton with the main cities Zurich
& Winterthur. Map sources: SWISSTOPO (background map, reproduced by permission of

SWISSTOPO).

7 Greifensee and Pfaeffikersee are two other major lakes in the canton and there are various of smaller lakes.
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the most important flood risk areas in terms of damages in Switzerland due to its (relatively)

large population of close to 1.5 million and the industrial concentration (Tages-Anzeiger, 2012).

Between 2007 - 2019, major floods always occurred between April and August.8

The real estate market in Switzerland is mostly dominated by locals. Most real estate buyers

live in Switzerland as the sale of property to foreigners is restricted and cantonal authorization is

needed before gaining title.9 In Switzerland, buyers and sellers first agree on the price. Afterwards,

financing by banks has to be secured and a property transfer has to be made official which means

buying offers are held in escrow by a notary where they are signed by both parties. Only then, a

property changes ownership, i.e. the date of contract is always prior to the transaction date. On

average, the period between price determination and change in ownership is around one to three

months.10

Very special about Switzerland is its unique social insurance. All buildings in the canton

with a value > 5,000 CHF have to be insured at the GVZ11. Elementary damage by flooding as

a result of rainfall (if water penetrates the building on the surface), avalanches, snow pressure

and snowfall as well as rock fall and landslide are insured. The insurance is social, which means

that everyone pays the same price per building value independent of structural risk.12 Buildings

are socially insured with the structure, the structural cover, the installations and the interior

construction. In case of a damage, the GVZ covers the cost of immediate and emergency measures

and compensates for the effective demolition, clearing and disposal cost. The deductible is CHF

500 (GVZ, 2017).

In theory, every Swiss homeowner should be informed about possible flood risk at the place

of residence. Detailed flood maps in Switzerland (figure 2) indicate the precise location of each

property and they are online available to residents (see http://maps.zh.ch). The hazard map

classifies an examined area with respect to the magnitude and frequency of potential flood events

(Fuchs et al., 2017). The main criteria for classification of the hazard is the flood intensity13 and

8 The biggest floods in terms of estimated, caused damages and number of insurance claims are the floods of August
8-9, 2007; June 7, 2015 and May 30, 2018, see section 4.2.

9 Only EU or EFTA national with a Swiss residence permit residing in Switzerland or individuals with a Swiss C permit
can acquire property.

10We spoke with different real estate agencies to obtain this approximate time window.
11GVZ stands for Gebäudeversicherung Zürich, which is German for building insurance of Zurich.
12In 2017, the insurance premium was CHF 0.32 cents (about USD 0.34) for every CHF 1,000 of the insurance value,

which is an estimate of the cost to rebuild the house.
13The flood intensity with thresholds at 0.5 m or 0.5 m 2/s (yellow and blue), between 0.5 m and 2.0 m or 0.5m 2/s

and 2.0m 2/s (yellow and blue), or exceeding 2.0 m or 2.0 m 2/s (red) is used. The probability of occurrence of the
underlying flood hazard is used to further distinguish hazard zones for up to 30 year (blue and red), 30-100 year
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Figure 2: Online available hazard maps. Notes: The figure shows a map section of Zurich’s hazard
zones. Source: http://maps.zh.ch.

new real estate owners are pointed towards them during the purchasing process. Three main

hazard risk classes and related building restrictions exist (Canton of Zurich, 2014a):

Red zones (high hazard): Residents at risk inside and outside of buildings; sudden

destruction of a building is possible; any construction of

new houses is restricted 14

Blue zones (medium hazard): Residents at risk outside of buildings; moderate destruc-

tion of buildings may be possible. New houses only per-

mitted to be constructed if owner guarantees to imple-

ment protection measures. Existing houses have to be

adapted in case of modification or extension.

Yellow zones (low hazard): Flood hazard may lead to considerable monetary loss at

buildings, but people are rarely at risk; construction of

critical buildings, e.g. schools and public buildings is only

allowed after a specific sensitivity analysis. Private owners

have to declare that they are well aware of the potential

risk; protective measures are voluntary.15

Hazard maps have not always existed. Only since 1997, flood hazard maps are implemented

continuously by the municipalities and by the canton.16 Once the hazard map has been elaborated

(yellow, blue and red) and 100 to 300 year (yellow and red) return periods.
16The guidelines for the consideration of the hydrological hazards in land–use planning activities were approved in
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and delivered to the municipality (further referred to as “mapintro”), the information of the hazard

zones are known and municipalities are required to alert owners in the vulnerable areas to the

potential hazards, immediately after the hazard map has been established. But several months up

to a few year can pass from the delivery of the maps (i.e. mapintro) to the official implementation (

further referred to as “compliance”). Homeowners do have to comply legally with the zone-specific

requirements at the official implementation date.

Hazard maps do indeed come into play when evaluating real estate. The “Züricher Kantonal-

bank”, for example, takes into account any additional costs for protective measures and loss of

value due to restricted buildability, when evaluation real estate. In the case of existing properties,

it is also checked whether the buildings comply with the regulations and permits.

3 Theory

We use an illustrative hedonic model adapted to the Zurich real estate market to establish the

main hypotheses and to guide our empirical strategy, which we introduce in turn.

3.1 Hedonic pricing model

Our hedonic pricing model builds on Bin et al. (2008a). Households are perfectly rational and well

informed, both when buying and selling houses.17 We utilize a hedonic price function (Rosen,

1974), which can be represented as:

P = P (s , n (t ), r ) (1)

The price P is a function of structural characteristics s , such as the number of rooms or the age of

the house, but also location-specific characteristics such as the commuting distance to the next

main city using the existing rail and road network, the view, proximity to recreational facilities

1997 (BWW, BRP, and BUWAL, 1997). The municipalities must take into account the requirements of protection
against natural hazards in the context of land use planning, revisions of the building and zoning regulations as well
as design and district plans. This spatial planning implementation must be integrated into the running processes
immediately after the hazard map has been defined, in order to avoid creating new risks in areas at risk (Canton of
Zurich Construction Department, 2016).

17See Pope (2008) for a critical discussion about this assumption.
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and the number of sunlight hours.18 It also depends on municipality–specific public goods n (t )

and the flood risk r . The public goods are financed by linear municipality taxes t such that

∂ n (t )
∂ t > 0. The function P (·) is assumed to be twice continuously differentiable in all arguments

and will produce an estimate of the representative household’s marginal willingness to pay for an

additional unit of an attribute.

Households’ utility is strictly concave in all arguments and given by:

U (s , n (t ), c ) , (2)

with c representing a composite commodity that serves as the numeraire. Consumers are in-

formed about the location-specific flood risk r via the presence of hazard maps, (see figure 2).

These are publicly available and have to be acknowledged and singed by the buyer.

We use an expected utility framework in which consumers account for the risk information in

their decision making. The observed discount on property prices in an area with high flood risk,

relative to safe areas (but all else equal), thus reflects household’s willingness to pay to avoid such

risk.

The consumer maximizes expected utility over two states of the world. With a probability of

p , a flood–related damage occurs over a given period of time, whereas with a probability of 1−p

there is no damage. There exists insurance for the structure of the house and home owners have

to pay a deductible. But floods can also cause monetary and non-monetary losses which are not

covered by insurance such as personal injury, hassle of being displaced by flood damage, damage

to municipality infrastructure, the effort to contact insurance, destruction of items excluded

from insurance (such as damages to garden structures or vegetation) and loss of personal items

with sentimental value. The parameter m L represents the expected income in the loss state, i.e.,

income remaining for consumption of the numeraire, including any insurance settlement net of

insurance payments, deductibles and uninsured losses, and m N L represents expected income in

the no-loss state, with m L <m N L .

18This variable captures the share of the day during which the sun is blocked by nearby mountains and hills. It could
therefore also be described as an absence of shade.
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The expected utility can thus be written as

E [U ] =p (r ) ·U L [s , n (t ), m L −λ ·P (s , n (t ), r )− t ] (3)

+ (1−p (r )) ·U N L [s , n (t ), m N L −λ ·P (s , n (t ), r )− t ]

where p (r ) is the subjective probability of a flood event (based on available hazard maps) and

the utility function is state dependent across loss (L) and no-loss (N L). λ is a parameter which

converts the sales price to a per-period price.19 Consumers take the hedonic price schedule P (·) as

given and residual income is spent on consumption of the numeraire good. Taking the derivative

with respect to housing characteristic s , the optimality condition is given by

∂ P

∂ s
=

p (r ) ∂U L

∂ s + (1−p (r )) ∂U N L

∂ s

λ · [p (r ) ∂U L

∂ c + (1−p (r )) ∂U N L

∂ c ]
, (4)

which is positive if s is a desirable amenity, and negative otherwise. This states that the marginal

“implicit hedonic price” for amenity s is equal to the ratio of the expected amenity value and the

expected marginal utility of income.

The price for housing is also influenced by local tax rates. The optimality condition for t is

∂ P

∂ t
=

p (r )[ ∂U L

∂ n
∂ n (t )
∂ t −

∂U L

∂ c ] + (1−p (r ))[ ∂U N L

∂ n
∂ n (t )
∂ t −

∂U N L

∂ c ]

λ · [p (r ) ∂U L

∂ c + (1−p (r )) ∂U N L

∂ c ]
(5)

where we have applied ∂U L ,N L

∂ c
∂ P
∂ n (t )

∂ n (t )
∂ t =

∂U L ,N L

∂ c
∂ P
∂ t . If the marginal utility of income exceeds the

marginal utility of a tax increase financing the municipality–public good, i.e., ∂U L

∂ c >
∂U L

∂ n
∂ n (t )
∂ t , a

tax increase has a negative effect on housing prices, and vice versa.

Hypothesis 1 (H1) is motivated by the marginal effect of (exogenous) risk on housing prices,

which is given by
∂ P

∂ r
=

∂ p (r )
∂ r (U

L −U N L )

λ · [p (r ) ∂U L

∂m + (1−p (r )) ∂U N L

∂m ]
< 0. (6)

The marginal price for risk is equal to the difference in utility by the two states, weighted by

the marginal probability of risk ∂ p (r )
∂ r (U

L −U N L ) and divided by the expected marginal utility of

income. As m L <m N L such that U L >U N L , an increase in flood risk will have a negative price

19This period could be any number of years. Since the same period applies for both states of the world, neither the
length of the period nor the discount factor are relevant.
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effect, which constitutes H1. A finding of no price differential between risky and safe zones could

be due to a small difference between U L and U N L , which is the case if the uninsurable costs are

small, or if consumers underestimating flood risk at the time when they purchase a house.

In the absence of shocks, buyers can potentially become insensitive to environmental risk

factors, especially in the presence of socialized insurance that is insensitive to the actual risk.

Furthermore, without any risk information, e.g. in form of hazard maps, homeowners do not

have any prior knowledge about their potential flood risk. We know the specific date when home

owners learn their respective flood risk once the hazard maps are implemented (mapintro) and

the specific date, once compliance with the maps is binding. There are two possibilities, in which

direction a price adjustment can take place once information is available. If home owners learn

about a risk increase, we expect a negative effect on housing value, see equation (6). However, if

the safe location of a house is officially confirmed, we expect a positive effect. This establishes

our second hypothesis (H2). We also investigate whether there is a difference between the pure

information about the hazard zone (mapintro) and the associated future protective measures that

must be taken and the binding, legal obligation which comes once the hazard map is established,

that is only binding later (compliance).

The occurrence of a flood may lead to a revision of expectations based on hazard maps, as

new information is available. If this information was available before, but simply forgotten, then

this is called an availability bias. Since an availability bias has been shown in previous studies

Gallagher (2014), our third hypothesis (H3) states that the price differential should become larger

in the aftermath of a flood.

Finally, note that if the uninsurable costs are simply too small to matter empirically, then we

should see no effect after a flood or the introduction of hazard maps.

3.2 Empirical strategy

We introduce our empirical framework and identification strategy to investigate our hypotheses.

In a first step, we estimate a baseline hedonic price regression to learn if flood risk has a negative

price effect (H1). The equation takes the following form:

l n (Pi j d ) =β0+β1l n (Si ) +β2l n (Tj d ) +β3ha z a r di +ζ j +θd+µd+ηd+εi j d (7)

11



The dependent variable is the (log) price per square meter of the sold property (footprint) i in

zip code area j on date d .20 The independent variables are the following. The dummy variable

ha z a r di indicates whether the property is located in a flood hazard zone (low or medium). The

vector S k
i includes different structural characteristics such as the number of rooms, the actual

surface area of the house (allowing for the possibility that the price increases non-linearly), the

defined building zone, the house’s age and the calculated location–specific property attributes,

see below. We also include a dummy to indicate a damage based on insurance claims informa-

tion. We furthermore control for municipality taxes Tj d . To control for regional unobservable

characteristics that may determine housing prices, we include a set of zip code dummies ζ j . We

further include weekday fixed effects θd and month fixed effects µd to control for weekday and

month - specific seasonality. The term θd contains year fixed effects.

The standard errors are clustered on the municipality level, which can include several zip

codes.21

Our second hypothesis addresses the introduction of hazard maps (mapintro and compliance)

and the effect on house prices. We estimate the following regression:

l n (Pi j d ) =β0+β1l n (Si ) +β2l n (Tj d ) +β3ha z a r di +β4 ·d a t ed j+ (8)

α · (ha z a r di ×d a t ed j ) +ζ j +θd+µd+ηd+εi j d

We run two versions of equation 8. In the first version, the variable dated j specifies the data

when the hazard maps were delivered to the municipalities and the hazard zone information

was communicated to the homeowner (mapintro). In the second version dated j is equal to the

compliance date since guidelines for the hazard maps became binding. We interact this date with

the low, medium and no hazard zone to learn if the effect differs between hazard zones.

To identify the information effect (H3), we obtain insurance claims and match them with the

transaction prices (for details, see section 4) in order to use two different approaches to separate

treated from control units. In the first estimation, we follow the previous literature and define the

20Our data include all property transactions during our time frame. We do not have a panel, as only few properties
were sold more than once during our sample period, and any number of sales (including zero) can occur on a
particular d . To control for unobserved heterogeneity, we include regional and time dummies.

21All relevant local decisions are taken on the municipality level. We use zip code dummies to capture neighborhood
effects and thus to allow for more and less desirable regions within a municipality. The zip code level is the lowest
level of regional differentiation in Switzerland, as there is no equivalent to the “census tract” used in the USA.
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treatment group as those properties that are located in flood-prone areas defined by the hazard

maps, whereas the control group consists of properties located outside of flood hazard zones. In

our second approach, we compare the prices for Near–miss properties (treatment group) and

prices of all other properties further away, which are unaffected by flooding (control group) after

the major floods. This methodology is similar to Beltrán et al. (2018a), but we use actual damages

to identify the treatment rather than the zip code specific inundated locations as in that study.

In addition, to separate treatment and control group more precisely, we include a spacial buffer,

see section 4.2 for more details. If informational updating takes place as home owners might

underestimate flood risk, being a Near–miss after the occurrence of a flood should lead owners to

update their subjective probability of future flooding.

We use the following DiD event study design to estimate the effect of flood events on prices:

l n (Pi j d ) =β0+β1l n (Si ) +β2l n (Tj d ) +β3t r e a ti +β4 · f l o o d t
d+ (9)

α · (t r e a ti × f l o o d t
d ) +ηd×ζ j +θd+µd+εi j d .

Here, the dummy f l o o d d
t takes the value of one if date d is within t months of a flood event

(see below), and zero otherwise. The variable t r e a ti is either the Near–miss group or the hazard

group. The coefficient α on the DiD-term (t r e a ti × f l o o d d
t ) is the average treatment effect on

the treated (ATET).22

To elaborate on the time profile of the flood effects, we pool all flood events and construct a

series of t flood dummies f l o o d t
d , which take the value of 1 if the sale date d is within t months

after a flood event. Figure 3 provides an example of the construction of these dummies for the

years 2007 to 2009. Each flood dummy is specified to measure the effect within t months before

or after the flood event. For example, f l o o d 2
d = 1 on all dates for sale dates that occur 31-60

days after the flood event, whereas f l o o d 3
d = 1 for sale dates that occur 61–90 days after the

22 Following Wooldridge (2010), we can define ȳh1 as the sample average of the treatment (=hazard /NM) group
before a flood (period 1) and ȳh2 after the flood. ȳc 1 is the sample average of the control group in state period and
ȳc 2 after the flood. The ATET is given by:

α= ( ȳh2|Xh2
− ȳh1|Xh1

)− ( ȳc 2|Xc 2
− ȳc 1|Xc 1

)

Hence, we compare the time change in means for treatment and control group. This framework allows us to
isolate the effect from the flood from other contemporaneous characteristics (e.g. local housing market changes,
macroeconomic shocks). In order to reduce the bias potentially introduced by observable differences across groups,
we condition on observable covariates X = (S , T ) as discussed in the text.
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flood event. To limit the effect window to a finite number of leads and lags, we are binning the

endpoints of the window.23

Figure 3: Flood dummies and identification of flood effect. Notes: The dummies are used in
equation (9). The time window 2007 - 2008 is used as an example and we illustrate the the use of

the flood dummies and month–year FE. Month–year FE will be used as a robustness check.

To obtain unbiased estimates, we need the usual assumptions of common or parallel trends,

unconfounded assignment to treatment and stable unit treatment value assumption (SUTVA).

Adding the additional covariates in the regression, we assume that the control group serves

as an appropriate counterfactual for calibrating flood risk premiums in property prices over

time. This is true if any confounding omitted variables affect both treatment and control groups

similarly. Figure 5 and 6a show the raw data with approximately similar trends over time, but it is

important to note that this period includes several floods and is therefore not “pre-treatment”.24

This can further be tested indirectly by carrying out placebo tests using previous periods which

we do by showing the event study coefficients “before” the actual floods.

An unbiased estimation of the ATET requires that the floods are not systematically related to

unobservable price determinants that end up in the error term εi t . We follow Gallagher (2014)

and argue that, conditional on a municipality’s geography and time trends, whether or not a

municipality is flooded in a particular year is random and households do not anticipate the

specific timing of the event. In this sense, the assignment to the treatment is unconfounded.

For SUTVA to hold, it must be the case that the treatment does not affect the control units.

23The implementation of an event study design (implicitly) assumes that there is no effect after e.g. 8 months, treating
observations outside this range as control group like the observations at the flood event. This strong assumption
could be avoided by so-called binning of the endpoints, see Schmidheiny and Siegloch (2019).

24This applies even to the days before the first flood event in the sample, as there were previous floods that occurred
previous to our sample period.
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Taken at face value, this is unlikely to hold within the Zurich real estate market. If some properties

become less desirable due to a change in the risk assessment, it is of course possible that safe

locations experience an increase in demand. This would lead to a negative correlation of the

flood-related effect on the treatment and the control group, and thus to an over–estimate of

the effect. Although we cannot rule out this bias, we argue that the share of properties at risk

relative to safe locations is sufficiently small such as to dilute the potentially price-increasing

effect of a flood on the control group. For our Near–miss specification, we furthermore include a

spacial buffer to differentiate the control and treatment group more precisely, which improves

our argument for SUTVA to hold, see section 4.2.

4 Data

In this section, we describe our main data: Insurance claims, hazard maps, property prices and

location–specific property attributes.

4.1 House prices

We use GIS data on house prices for 2007–2019 provided by the Canton of Zurich Statistical Office

(2019b). The data contains information about the number of rooms, sales year, municipality, age

of the building, the building zone and the transaction certification date on a daily base. Defined

building zones are single family houses zone, business, mixed zone, remaining municipality

district, wood, farming zone, reserve zone, public zone, no-building zone, multiple family houses

zone. The location is given in the form of a point (x/y coordinates). We convert the nominal prices

to real prices using the CPI provided by the Federal Statistical Office (2019). We correct for outliers

by excluding the bottom and top 5 % of transactions.

4.2 Insurance data and flood events

The GVZ insurance company has a monopoly on the insurance of losses to the structure of

buildings in the canton of Zurich. Due to the mandatory nature of building insurance, the entire

housing stock of Zurich canton is insured by GVZ. We obtained confidential, geo-referenced

damage data from the GVZ that includes all claims made between 2006–2019, which are related to
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flooding (GVZ, 2019). The data is anonymous in the sense that no names or addresses are revealed,

only the geographical coordinates in the form of a point.25 To be precise, the data contain the

location, the date and a variable specifying the severity of the damage, i.e. whether the claim is a

loss above the median. The average claim between 2006 – 2019 values 10,586.40 CHF, see table

A.3 for more details.

To obtain information about the economic severity of flood events between 2007âĂŞ2019, we

rely on the Swiss flood and landslide damage database managed by the Swiss Federal Institute for

Fores, Snow and Landscape Research WSL (for more information, see Hilker et al. (2009)26

Table 1 lists the main flood events during out sample period with approximated economic

damages, the number of insurance claims and the number of paid claims.

Table 1: Main floods in the canton of Zurich 2007 - 2019

Flood Date Diff. in weeks Diff. in months Damage WSL
[Mio. CHF]

No. of all GVZ
Claims

No. of paid GVZ
Claims

21.06.2007 6.4 690 264
08.08.2007 6.9 1.7 10.1 1141 210
10.06.2008 43.9 11.0 1.8 512 297
10.07.2010 108.6 27.1 0.1 324 106
27.07.2011 54.6 13.6 1.9 225 168
01.07.2012 48.6 12.1 0.6 446 119
02.05.2013 43.6 10.9 5.7 726 430
12.07.2014 62.3 15.6 1.1 314 137
07.06.2015 47.1 11.8 8.4 599 386
30.05.2018 155.4 38.9 26.6 1378 1167

Notes: The table presents the main floods in the canton of Zurichthe difference between the
floods (weeks and months) and the number of approximated damages from Hilker et al. (2009)

combined with damage data from GVZ (2019).

We see that the biggest floods are by far the 8th of August flood 2007 and the 30th May Flood

2018 with over > 1100 claims. All main floods occured between May and August. We use the 10

biggest floods from table 1 to construct our f l o o d t
d dummy variables as described above (see

figure 3). This means in turn that there is an overlap for the effect of the two flood 2007 which enter

the flood dummies as we are carrying out a pooled event study. The shortest interval between two

floods (except for 2007), which do not directly follow each other, is around 11 months. Therefore,

25To protect the identity and valuation of individual properties, detailed data on monetary losses are confidential
and not available to us, only a dummy indicating whether a claim was filed and paid out and if the claim was above
the median.

26Total damage cost= total property damages+ total damage to infrastructure+ total damage to forest+ total damage
to agriculture. The damages provided by Hilker et al. (2009) are estimate aggregate damages based on newspaper
reports and the amounts of damage are as such incomplete.
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we only consider the time window of -2 – +9 months in our pooled event study.

To identify damaged houses, Near–misses as well as Non–Near–misses, we match the property

transactions with the dates and locations of the flood loss claims. Each house has a unique GVZ

insurance number which is provided by Canton of Zurich Statistical Office (2019b) as well as

by the GVZ (2019). This allows us to identify actual damaged houses very precisely. In a next

step, we compute the Euclidean distance between each house and the damaged houses using

the coordinates. Next, we need to separate the non–damaged properties into those that narrowly

missed a flood damage (Near–misses), and those that were located at a safe distance (Non–Near–

misses). There is a trade–off between sample size and accuracy when defining the radius of

the Near–miss specification. As the radius is increased, the number of treated observations

increases too, but we add an increasing number of houses that were not particularly close to

the damage and therefore did not receive the “treatment”. This dilutes the treatment effect as

more unaffected properties are lumped together with the treated ones, and is similar in spirit

to a classical measurement error. On the other hand, choosing a radius that is too narrow has

two different costs: First, the number of observations decreases quickly. For example setting the

radius at 100m leads to 462 observations, in which only 20 would be in the treatment group, for

example after two–three months. Second, and perhaps more importantly, some home buyers

may consider a distance of, say, 250 m from a damage a “near-miss” event. By classifying this as

a control unit, we violate SUTVA (the control group is affected by the treatment). To gain more

intuition about these effects, we start by specifying a distance of 50- <400 m as a Near–miss (i.e.,

no closer than 50 m but no further than 400 m from a recorded damage), whereas the control

properties are defined to be > 700m away and not damaged. This means we include a buffer of

a bandwidth of 300m. Precisely, we define near-miss as 50–500 m away, but the control houses

are at least more than 700 m away from the damage. The houses located between >400 and

<700 are excluded from the analysis, as it is not clear whether they belong to the treatment or the

control group. This reduces the number of observations, but likely improves our argument for

SUTVA to hold. Figure 5 confirms that the average yearly house and land prices differentiated by

Near–misses (400m) and non–near-misses follow roughly a similar trend.
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Figure 4: House price development by Near–miss 400m and non-Near–misses

Figure 5: Average house price development from 2007 - 2019. The solid lines are fitted using
kernel-weighted local polynomial regression, using a Gaussian kernel, a polynomial of degree

three, and a bandwidth of four quarters.

4.3 Hazard maps

We obtain the hazard maps from the Canton of Zurich Statistical Office (2019a). Their geographic

scale varies between 1:2,000 and 1:10,000. Using consistent GIS data, we attribute the hazard

zones to houses by georeferenced overlay (Fuchs et al., 2015; Röthlisberger et al., 2017). The

houses are represented spatially by a point while the hazard zones are represented by polygons.

Thus, the attribution of the hazard category to the houses can be done in two ways. The first

is a direct attribution by the location of the point. This could underestimate the number of

exposed buildings in the neighborhood of the hazard zones, especially for large buildings. Thus

we attribute the hazard zone to an auxiliary data set of the building footprints (Röthlisberger et al.,

2018), and consequently use these categorized building footprints to attribute the hazard zone

to the house represented by a point. The building footprint polygon thus act as a bridge for the

information attribution (Zischg et al., 2013). In the latter approach, the situation in which a house

is located with one edge in a flood zone but the centroid is located outside, is considered. We use

the latter approach in the main analysis.

In our analysis, we construct two versions of hazard dummies. First, we compute a categorical

variable, which differentiates between medium, low and no hazard zones. Since the treatment

18



group sample size would be to small to estimate a DiD, we further combine the blue and yellow

hazard zones and constructs an additional hazard dummy that is equal to one if a property is

located in a hazard zone (of any color), and zero otherwise.27

Several months up to a few year can pass from the delivery of the maps (i.e. the “mapintro”) to

the official implementation (“compliance”). We attributed both dates to our data set. The dates

of elaboration and implementation were collected from the cantonal authorities in Switzerland

(Bruchez, 2017). We construct the variables ma p i n t r o , which is a dummy equal to one if the date

when the hazard map has been elaborated and delivered to the municipality; and c o mp l i a n c e

is a dummy equal to 1 if the mandatory building restriction date is binding. The dates are available

on a yearly basis.

Figure 6a shows no clear indication whether the price level of the risky zones is significantly

below the no-hazard zones. Figure 6b illustrates the average number of houses sold per months

for the period 2007 – 2019 divided by hazard and non-hazard zone. We do not see graphical

evidence, which might suggest that houses sold after floods are so-called “fire-sales”.

4.4 Location-specific property attributes

Figure 5 and 6a show the raw data without controlling for potential confounding factors. The dif-

ference may capture the flood risk, but also other characteristics that are desirable characteristics

by themselves but likely correlated with the flood risk. Based on our geo–referenced data we can

calculate a rich set of control variables. Specifically, we control for location–specific amenities

such as the distance to water courses, the distance to recreational forests, the visible area, the

maximum distance of visibility towards the horizon, the distance to the center of Zurich, and the

average of yearly solar radiation.

The positive amenity of living near by the water can be highly correlated with risk location

(see Bin et al., 2008b, for a discussion).28 To obtain the measure distance to water, we compute

the Euclidean distance of each location to the next water polygon. Similarly, we capture distance

27Only one transaction point is partially located in the red zone and thus is dropped.
28Daniel et al. (2009) argue furthermore that "previous studies often fail to adequately take into account the positive

effect of a location close to the water and that the literature would benefit from alternative methodologies that
better incorporate this confounding variable." One simple variable capturing the location of a risky floodplain may
underestimate the value of the risk of river flooding, as the positive and negative amenities of living close to the
water are not separately identified, and can partly cancel out in house prices”.
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(a) House price development

(b) Number of houses sold

Figure 6: House price development by hazard zones. Notes: Figure 6a shows average house price
development from 2007 - 2019. Average house price development from 2007 - 2019. The green

line are the non-risky sqm prices and the red line are sqm house prices in hazard zones. The solid
lines are fitted using kernel-weighted local polynomial regression, using a Gaussian kernel, a

polynomial of degree two, and a bandwidth of seven quarters. Figure 6b shows monthly average
housing sales from 2007 - 2019 and the main flood events. The solid lines are nine months

moving averages and dots are observations.
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to recreational forests to capture the access to recreational areas.29

To control for the view, we compute the area that is visible from each location of the sold houses

(based on the centroid).30 From the mapped visible area for each location, we then extracted the

maximum distance to the horizon which is used as a control.31

We calculate the distance to the center of Zurich (central train station) by means of the shortest

path along the main road network, which we extract from the national terrain model of the Federal

Office for Topography (SWISSTOPO, 2018c). Moreover, we compute the solar radiation throughout

the year on the basis of the digital terrain model with a grid size of 25m (SWISSTOPO, 2018a)

following the method and parameter sets suggested by (Zgraggen, 2001). More precisely speaking,

this is the potential solar radiation due to (absence of) shading by nearby mountains and hills,

but it does not include meteorological phenomena such as clouds or fog. The micro–topography

of the structure itself and shadowing by nearby houses have not been considered as we do not

have data about the exact shape and height of the buildings, only about the footprint.

Because the fiscal conditions are an important determinant of locational choice and thus

of housing prices (see, e.g., Schmidheiny, 2006), we match our data with municipality–specific

personal tax shifters provided by the Canton of Zurich Statistical Office (2020). These linear tax

shifters are determined locally and define the percentage of the (progressive) cantonal tax that

has to be paid to the municipality. Property prices may also be affected by neighborhood effects

that capture, for example, the presence of local public goods or the “quality” of neighbors (see,

e.g., Ioannides and Zabel, 2008). To control for these unobserved characteristics, we include

zip–code dummies in our regressions, as discussed in section 3.2. Detailed summary statistics of

of the used variables can be found in the Appendix A.2, see table A.2.

5 Results

We start by presenting the results from the “difference” regressions, followed by the DiD regres-

sions.
29This data set was extracted from the national topographic map at the scale of 1 : 25000 of (SWISSTOPO, 2018b).
30The neighboring houses are not considered in these calculations. The visibility was calculated on the basis of the

digital terrain model.
31Maximum distance to the horizon depends on the observers height. For an observer on the ground with eye level

at e.g. 1.70 m, the horizon is at a distance of 4.7 km. For an observer standing on a hill with 30 m in height, the
horizon is at a distance of 19.6 km.
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5.1 Differences in risk levels and hazard information

Table 2 presents the results for equation (7). Being located in a flood hazard zone has a significant

negative effect on housing prices (column 1), which confirms hypothesis H1. When separating

the effect of being in a low vs. medium hazard group (column 2), we find a significant effect for

the former, but not the latter, which is presumably due to the fact that the low-hazard category

contains many more properties than the medium–hazard category (see table A.2). The price

discount implies that the mandatory building insurance is in fact not complete, and that the risk

related to the uninsurable costs of flooding is reflected in house prices.

A past flood damage (i.e., the dummy indicating that an insurance claim exists before the

house was sold) has a significant and positive effect on housing prices. This may be due to the fact

that by the time the house is sold, the damage has been repaired and better equipped as before,

such that the new buyer does suffer any costs from the damage. In fact, a house may be fully or

partially renovated in the wake of a flood damage, which increases the value. This could offset

the price discount of recently damaged houses.

The effects of the structural and location–specific characteristics are mostly as expected. The

price of a house increases, ceteris paribus, if it is newer, has more bedrooms, has a wider view, is

exposed to more hours of sunshine and is located in a more urban area (and hence further away

from the forest). The price per m 2 decreases with the size of the house which is consistent with

the results by Lin and Evans (2000). The maximum distance of visibility from the center pixel of

the house (excluding the neighboring houses, in meters) has a negative but insignificant effect on

housing prices.

In Zurich - the largest agglomeration in Switzerland - almost 774,000 people commute on an

average working day. The majority of them (535,284) are Zurich residents themselves who travel

to work in their own places of residence. In addition, there are over 166,000 people who commute

to work in Switzerland’s largest city (Wiget, 2017). It is not surprising that commuting distance to

Zurich negatively affect housing prices.

Municipality–specific tax rates have a significant positive effect. The positive tax effect can be

explained, if house buyers associate an increase in taxes with a corresponding increase in public

expenditure. If the marginal utility of public goods is higher than marginal utility of income, taxes

have a positive effect, see equation 5. This is consistent with Brülhart et al. (2017) who find that
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Table 2: Baseline results

Dependent v.: Ln price sqm, real

(1) Hazard, 2 cat. (2) Hazard, 3 cat.

Hazard −0.013**
(0.006)

Low hazard −0.016**
(0.008)

Med. hazard 0.009
(0.015)

damage 0.019** 0.019**
(0.008) (0.008)

Ln (rooms) 0.348*** 0.347***
(0.010) (0.010)

Ln (size) −0.586*** −0.586***
(0.006) (0.006)

Ln (age) −0.155*** −0.155***
(0.008) (0.008)

Ln (distZH) −0.246*** −0.246***
(0.086) (0.086)

Ln (distforest) 0.006 0.006
(0.005) (0.005)

Ln (radiation) 0.625*** 0.624***
(0.094) (0.094)

Ln (tax) 0.078** 0.078**
(0.038) (0.038)

Ln (vismaxdist) −0.002 −0.002
(0.003) (0.003)

Constant 10.213*** 10.213***
(0.995) (0.996)

Weekday FE Ø Ø
Month FE Ø Ø
Year FE Ø Ø
Zip code FE Ø Ø
Observations 21, 765 21, 765

Notes: Results from estimating (7). The dependent is the log price per square
meter. Standard errors (in parentheses) are clustered at the municipality
level. We restrict the sample to sales for which a hazard map was available
at the transaction time. No hazard is in both specifications the ref. category.
***, ** and * denote statistical significance at the 1%, 5% and 10% level.

higher-income households attach relatively more weight to publicly provided goods such that

they benefit more from an expenditure increase which is to some extent capitalized into (renting)

housing prices.

Hazard maps have not always been available. Table 3 shows how property prices were affected

by the introduction of flood hazard maps (mapintro) and their legal obligations (Compliance).

The introduction of hazard maps significantly increases the price of buildings outside the hazard

zone by almost 7%. Similarly, the binding legal guidelines associated with the hazard maps are

positive for non-risky houses. This is intuitive: Being officially cleared of flood risk is equivalent to

a decrease in risk, which increases the value of the property. This is partially in line with hypothesis

2.

In contrast, the effects of the introduction of hazard maps and the hazard map compliance on

low and medium hazard zones are negative but insignificant. We can think of two explanations
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for this result. First, it is possible that the expected flood risk is most similar to the category “low

or medium hazard”, such that the assignment into this category in a new hazard map does not

lead to an updating of the risk assessment for these properties. In other words, although the

flood risk is priced into property prices (see table 2), the prices remain stable if the perceived

risk remains constant. Another explanation, which may hold instead or in addition to the above

argument, is based to the rules associated with the hazard assignment. Being assigned to low flood

protection measures in low hazard zones are voluntary, such that assignment to this category

does not necessarily lead to an increase in costs. Although owning a house in medium flood

risk requires homeowners to implement flood protection measures, which are quite costly for

an existing structure, they might increase the value of the house at the same time such that the

net effect is zero. Overall, we conclude that the cantonal introduction of hazard maps is not

sufficiently capitalized into housing prices.

Table 3: Introduction of hazard maps

Dependent v.: Ln price sqm, real

(1) Mapintro (2) Compl.

Low hazard 0.004 −0.017*
(0.042) (0.010)

Med. hazard 0.080 0.016
(0.073) (0.020)

Mapintro 0.066***
(0.022)

Low h. ×Mapintro −0.018
(0.043)

Med. h. ×Mapintro −0.071
(0.074)

Compliance 0.021***
(0.007)

Low h. × Compl. 0.007
(0.014)

Med. h. × Compl. −0.011
(0.031)

Constant 10.547*** 10.541***
(0.515) (0.514)

Controls Ø Ø
Weekday FE Ø Ø
Month FE Ø Ø
Year FE Ø Ø
Zip code FE Ø Ø
Observations 22, 336 22, 336

Note: The table presents results from estimation equation (9), standard
errors in parentheses are clustered at the municipality level. Dependent
variable is the Ln price / sqm. Mapintro is the data once the hazard
maps were introduced but legal obligations were not binding and com-
pliance is the data when obligations were binding. We do not control
for distance for water due to collinarity with the hazard zone variable.
***, ** and * denote statistical significance at the 1%, 5% and 10% level.
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5.2 Difference-in-difference regressions

The estimates in table 2 – 3 may suffer from omitted variable bias if unobserved house price

determinants are correlated with the flood zone assignment. The trust we place in this estimator

depends on the extent to which we can control for the most important determinants of house

prices. To relax the assumption of being able to control for all relevant house price determinants,

we carry out two sets of DiD regressions.

Figure 7 visualizes the DiD event study results for estimating equation (9) following the previ-

ous literature using hazard zone location as the treatment group. The time window -30 - 0 days

before the flood serves as the reference category in figure 7. Table A.4 in Appendix A.4 provides

the results DiD event study results. Although the pattern of the coefficients suggests that prices

(a) House prices, hazard vs.
non-hazard zone, 2 cat.

(b) House prices, Low hazard vs.
non-hazard zone, 3 cat.

(c) House prices, Med. hazard
vs. non-hazard zone, 3 cat.

Figure 7: Flood Effects 2007 - 2019, hazard zones. Notes: The figures plot event time coefficients
from estimation of equation 9 with hazard zones (one, low, medium) as the treatment group on
the 2007-2019 house price panel. Each point illustrates the average effect after e.g. 1–2 months
(=2 on the x-axis). The bars show the 95 percent confidence interval. The vertical axis measures

ln house prices. The reference category is the time window of -1 - 0 months before the flood.
Endpoints are binned.

decrease slightly after floods, the effects are not significant and we conclude that there is no effect.

A variety of studies are based on the information contained in the flood hazard maps, which

is an ex-ante measure of risk. Price discounts in the aftermath of floods have been previously

identified, but according to Atreya and Ferreira (2015) this was largely driven by an inundation

effect or a damage effect rather than an information effect. Using our insurance data that contains

information about actual damages, we address this issue in our first DiD estimation. Controlling

for actually damaged properties, we can isolate the information effect from damages and we do

find no effect.

Only a small share of the properties in a hazard zone are usually affected by a flood, and
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damages also occur in zones designated as having no flood hazard.32 In this sense, the hazard

information from the official maps is an imprecise estimate of actual damages. The problem

of imprecise measurement using hazard maps can further be interpreted as a measurement

error: Hazard maps over–estimate the flood risk for non-affected properties in the hazard zone

and under–estimated it for affected properties in the zero-hazard zone. The latter is also a clear

violation of SUTVA, as the treatment also affects the control group. Addressing this issue, we can

cleanly identify treated and non–treated units by focusing on Near-misses in our second DiD

specification.

Figure 8 plots the event study point estimates of the DiD coefficients for house prices with -30

- 0 days as the reference category. The DiD effect on house prices in the months before a flood

is statistically not different from 0, which serves as a kind of placebo test. There is a significant

decrease in house prices between zero and one month after the flood time stamp. Afterwards, the

effect declines and becomes statistically insignificant. Recall that our data contain the date when

Figure 8: Near–misses (400m) vs. non Near–misses. Notes: The figure plots event time
coefficients from estimation of equation 9 with Near–misses as the treatment group on the

2007–2019 house price panel. We use the eleven biggest floods occurring between 2007–2019.
Each point illustrates the average effect after e.g. 1–2 months (=2 on the x-axis). The bars show
the 95 percent confidence interval. The vertical axis measures ln house prices. The reference

category is the time window of -1 - 0 months before the flood. Endpoints are binned.

the property actually changes ownership. Often, the selling price is agreed upon several weeks

32In our sample, 3,375 claims occurred in non-hazard zones and only 207 in hazard zones.

26



Table 4: Event study based on Near-misses

Dependent v.: Ln price sqm, real

(1) NM300 (2) NM400 (3) NM500

miss300m × flood+1 −0.035**
(0.014)

miss300m × flood+2 0.017
(0.018)

miss300m × flood+3 −0.019
(0.019)

miss300m × flood+4 0.004
(0.016)

miss400m × flood+1 −0.038***
(0.013)

miss400m × flood+2 0.016
(0.015)

miss400m × flood+3 −0.011
(0.021)

miss400m × flood+4 −0.010
(0.014)

miss500m × flood+1 −0.025*
(0.014)

miss500m × flood+2 0.014
(0.012)

miss500m × flood+3 −0.007
(0.014)

miss500m × flood+4 −0.002
(0.014)

Constant 9.556*** 9.187*** 9.693***
(1.505) (1.676) (1.889)

Weekday FE Ø Ø Ø
Month FE Ø Ø Ø
Zip code × year FE Ø Ø Ø
Controls Ø Ø Ø
Observations 18, 701 19, 290 19, 707

Note: Dependent variable is the Ln sqm. price. Results for a coefficient from estimation equation
(9), standard errors in parentheses are clustered at the municipality level. The reference are the
months -3 - 0 before and > 5 months after the flood. In each specification, we use a buffer exclud-
ing a radius of 300m. ***, ** and * denote statistical significance at the 1%, 5% and 10% level.

before this date, with the interim phase used to secure financing, drawing up the paperwork

etc. If this phase takes around one months, then the peak at mi s s × f l o o d +1 can be considered

consistent with an immediate effect of a flood event on the contract price.

The definition of Near–misses is somewhat arbitrary, and buyers may disagree about what

constitutes a close call in terms of a narrowly missed flood damage. To learn more about the

sensitivity of our results to the specification of the Near-miss dummy, we estimate equation (9) for

Near–misses computed using distance thresholds between 400–600 m. Table 4 provides the results

obtained from estimating equation (9) using < 400m , < 500m and < 600m radius Near–misses

as the treatment group and non–Near–misses (i.e. houses which are not damaged and further

away, excluding a buffer of 300 m radius) as the control group. The reference are all other months
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which are not explicitly shown. Likewise, there is a significant negative effect after one month in

all specifications, table 4 column 1 - 3.

Our findings are consistent with Beltrán et al. (2018a), who show that near–missed inland

properties (in terms of being located close to an inundated zone) experience a discount in the

immediate aftermath of inland flooding. Because we exclude damages, we can interpret the

negative discount on housing value as an information effect. After a damage occurs, prospective

buyers of a neighboring property will see the flood damage when inspecting the house they wish

to buy. Because the hazard zones are very imprecise, knowing that a nearby property was damaged

presumably leads to an update of the risk assessment, beyond the mean zonal risk (which is very

low as most houses are never damaged, even within hazard zones). Buyers might learn that the

property of interest is located at a risky place. In line with Tinsley et al. (2012) who study Hurricane

experience in the US, we learn that Near-misses might actually suggest vulnerability to a potential

negative outcome.

To strengthen our conclusion that home buyers consider the near–missed houses as being at

danger, we further calculate whether the evaluation of a Near-miss is evaluated above (“higher

Near-miss”) or below/equal (“Lower Near-miss”) relative to the damaged property. One would

expected that houses located above damaged properties are considered to be safer and houses at

an evaluation below to be perceived as riskier. Table 5 provides the results for 500m Near-misses.33

Column (1) shows the results for lower/ and equally evaluated Near-misses and column (2) for

higher Near-misses. These results support the idea that a possible or negative feeling of security

does indeed depend on the evaluation of the house. There is a significant negative effect for lower

/ equally evaluated near-miss but in contrast, we see a significant and positive effect after one to

two months after a flood for higher near-misses compared to lower near-misses.

There is a certain inaccuracy in our specifications as to when a flood effect is reflected in the

data. This inaccuracy can be explained by the fact that there is not an exact time span between

price determination and the notary appointment (i.e. our transaction date). Depending on the

buyer and seller, it may well be that a financially strong buyer only needs a month, whereas

another buyer needs more time to organize financing.

However, it turns out that the overall effect is very short (between one (table 4) and three

months after the flood (table 5)). One could argue that or findings support the presence of an

33We use the 500 m Near-miss radius to increase sample size for higher and lower Near-misses.
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Table 5: Higher / lower Near-miss DiD results

Dependent v.: Ln price sqm, real

(1) NM500, lower (2) NM500, higher

Lower miss500m × flood+1 −0.023
(0.025)

Lower miss500m × flood+2 −0.002
(0.022)

Lower miss500m × flood+3 −0.034*
(0.019)

Lower miss500m × flood+4 −0.014
(0.023)

Higher miss500m × flood+1 −0.023
(0.017)

Higher miss500m × flood+2 0.028**
(0.013)

Higher miss500m × flood+3 0.019
(0.014)

Higher miss500m × flood+4 0.010
(0.017)

Constant 9.708*** 9.669***
(1.877) (1.882)

Weekday FE Ø Ø
Month FE Ø Ø
Zip code × year FE Ø Ø
Controls Ø Ø
Observations 19, 707 19, 707

Note: Dependent variable is the Ln sqm. price. Results for a coefficient from estimation equa-
tion (9) where we seperate higher and lower /equal evaluation near–misses. Standard errors
in parentheses are clustered at the municipality level. The reference are the months -3 - 0 be-
fore and > 5 months after the flood. In each specification, we use a buffer excluding a radius
of 300m. ***, ** and * denote statistical significance at the 1%, 5% and 10% level.

availability bias. But potentially, owners will organize and carry out repairs, paid for by the building

insurance. Once these repairs are completed, prospective buyers have no way of knowing that

there was a flood damage nearby, unless the buyer explicitly informs them about this. However,

they have little incentives to do so. In this sense, our results do not necessarily require a deviation

from rationality as in the availability bias literature, but they could simply be driven by the

temporal visibility of the signal.

5.3 Robustness checks

To learn more about the sensitivity of our results to the specification of the near-miss dummy, we

further provide additional estimates for equation (9) for Near–misses computed using distance

thresholds between 700–1000 m.34 Figure 9 illustrates the event study results. There seems to

be a negative effect one month after the flood, but the effects are not significant. It can thus be

suggested that it depends very much on how close you are to a damaged house. The further away,

the more likely one will no longer find any effect.

34Sample size below 300 m is to low.
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Figure 9: Flood effect 2007 – 2019 for different Near-miss groups. Notes: The figure plots event
time coefficients from estimation of equation 9 with different near–misses as the treatment

group (700–1000m) on the 2007–2019 house price panel. Each color represents coefficients of a
separate estimation and each point illustrates the average effect after e.g. 1–2 months (=2 on the
x-axis). The bars show the 95 percent confidence interval. Standard errors are clustered at the

municipality level. The vertical axis measures ln house prices. The reference category is the time
window of -1 - 0 months before the flood. Endpoints are binned.

In our main DiD specifications, we include 12 months fixed effects but not months-year fixed

effects as there would be an overlap with our event study coefficients. One could argue, that

our results could thus be bias by year-specific trends. Thus, we further provide estimates with

month-of-year fixed effects. What is crucial for the identification of the flood effect in conjunction

with month–of–year fixed effects is that the floods did not occur on the first day of a a calendar

month, such that they are not absorbed by the month–year dummies, see figure 3. Table A.5

presents the results, which are robust.

One important referendum related to housing value took place in September 2014. There

was a cantonal referendum on the submission of a new planning and building law. Residents

had to decide whether there should be a minimum share of reasonably priced housing.35 The

referendum was accepted and municipalities should reserved a minimum proportion of specified

building zones for low-cost apartments. We include a dummy, which is one if the transaction took

35The submission template "Determination of minimum share of affordable housing" is intended to expand the
scope of action of municipalities in promoting low-cost housing construction and to create the necessary legal
basis. An amendment to the planning and construction act is intended to allow municipalities to impose low-cost
housing units in a given area, while at the same time improving their structural potential (Canton of Zurich, 2014b).
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place after the referendum. Table A.6 presents the results. The referendum has a significant and

negative effect on house prices, see table A.6. The main DiD estimation results do not change.

6 Concluding remarks

Negative effects on housing prices in the aftermath of disastrous hurricanes and floods in the US

are well established. Mandatory insurance for the most risky flood zones can explain a negative

effect on its own. However, less is known about a setting where socialized building insurance

exist. In addition, most of the existing studies use floodplain maps only as a flood risk measure,

suffering from problems, which should not be ignored. Our study utilizes both, flood maps as

well as insurance claims to determine the effect of the floods between 2007–2019 in the canton of

Zurich, Switzerland using not only hazard zones as a treatment but also Near–misses. This allows

us to identify very clearly whether a potential effect of floods on housing value is to informational

updating or due to actual damages.

To summarize, the first difference results of being located in a hazard zone is negative and

significant. Houses located in hazard zones sell at a discount relative to houses without flood

risk (H1). Although there is social insurance, we see that the uninsurable costs of flooding are

reflected in house prices

Exploring the influence of public information on designated hazard zones, reveals that the

effect on house prices varies with the degree of risk. When home owners learn, that they are

located in a “safe” zone, we find a positive and significant effect (H2). Being located in hazard

zone in turn does not seem to have any effect. Potentially, the cantonal introduction of hazard

maps is not sufficiently capitalized into housing prices.

Results for our first DiD specification using hazard maps as the treatment category violates

SUTVA, as only some actually damaged houses are located in hazard zones and we do not find an

effect in the aftermath of a flood. A more accurate strategy to assess the information effect of floods

is to calculate Near–misses, i.e., housing properties closely located to actual damages (but not

damaged themselves). In this DiD specifications, there is a drop shortly after a flood has occurred,

suggesting that there is evidence for informational updating (H3). We find that immediately after

the flood, near–missed housing values are sold for substantially less than equivalent properties

further away. The cantonal government of Zurich government decided in 2017 to implement
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a new project against extreme flooding of the river Sihl, which is expected to cost around 130

million CHF and would be completed in 2023 at the earliest (Amt fuer Abfall, Wasser, Energie und

Luft, 2017). The estimates of our study provide valuable information necessary in the context

of cost–benefit analyses of public investments in flood protection measures or of mandatory

insurance schemes, in which the price depends on risk. Clearly, people need information about

flood risk to be consider in their locational choice. Existing hazard maps are a first step, but they

are not sufficient. We learn that people are somewhat rational as flood risk is priced into housing,

despite socialized insurance. However, the effect is only temporary.

Our results are partially in line with the literature (Bin and Landry, 2013; Atreya et al., 2013b;

Gallagher, 2014). However, the time horizon of studied events as well as the setting is very different.

“Forgetting” related to house prices of large scale events in the US, i.e., hurricanes and related

floods, takes from six (Bin and Landry, 2013) to eight years (Atreya et al., 2013b) and up to nine

years if the outcome of interest is insurance take up (Gallagher, 2014). The setting in the canton of

Zurich is quite different. There exists social insurance and the floods are very unlike compared to

the US flood events in terms of caused damage. There remains work to be done assessing detailed

geological characteristics of river floods and the link to housing and land prices. What is the

critical threshold in terms of damages, such that a flood is of consequence for real estate prices?

In addition, “forgetting” of past flood events is rather fast, compared to tremendous hurricanes

in the US. It would be a fruitful task for future research to investigate whether social building

insurance alone can explain this fast and persistent “forgetting”.
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standing public awareness of local flood risk,” Disasters, 2008, 32 (2), 216–238. 3, 45

BWW, BRP, and BUWAL, “Beruecksichtigung der Hochwassergefahren bei raumwirksamen

Taetigkeiten.,” Technical Report, Biel und Bern: Bundesamt für Wasserwirtschaft, Bundesamt

fuer Raumplanung, Bundesamt fuer Umwelt, Wald und Landschaft 1997. 8

Canton of Zurich, “Gefahrenkarte Kanton Zürich Lesehilfe,” Technical Report, Zuerich 2014. 7

, “Vorlage Mindestanteil an preisgünstigem Wohnraum, Kantonale Volksabstimmung

28.September 2014,” Technical Report, Canton Zurich 2014. 30

Canton of Zurich Construction Department, “Umsetzung Gefahrenkarten, Leitfaden für

Gemeinden,” Technical Report, Amt fü Abfall, Wasser, Energie und Luft - Abteilung Wasserbau

2016. 8

Canton of Zurich Statistical Office, “Gefahrenkarte,” Online June 2019. 18

, “Prices for residential houses in the Canton of Zurich 2007–2019,” Confidential data contract,

requested and received by the authors 2019. 15, 17

, “Gemeindesteuerfuesse,” Online 2020. 21

Daniel, Vanessa E, Raymond JGM Florax, and Piet Rietveld, “Long term divergence between

ex-ante and ex-post hedonic prices of the Meuse River flooding in The Netherlands,” in “47th

Congress of the European Regional Science Association" Local Governance and Sustainable

Development"(Eds), Paris” 2007, pp. 1–20. 2, 45

35



, , and , “Flooding risk and housing values: An economic assessment of environmental

hazard,” Ecological Economics, 2009, 69 (2), 355–365. 1, 19, 46

Davis, Lucas W, “The effect of health risk on housing values: Evidence from a cancer cluster,”

American Economic Review, 2004, 94 (5), 1693–1704. 2

Dei-Tutu, Viewu Afua and O Bin, “Flood Hazards, Insurance, and House Prices-A Hedonic Prop-

erty Price Analysis,” East Carolina University, 2002. 44

Donnelly, William A, “Hedonic price analysis of the effect of a floodplain on property values,”

JAWRA Journal of the American Water Resources Association, 1989, 25 (3), 581–586. 43

Eves, Chris, “The long-term impact of flooding on residential property values,” Property Manage-

ment, 2002, 20 (4), 214–227. 44

Federal Statistical Office, “Swiss Consumer Price Index in September 2019,”

https://www.bfs.admin.ch/bfs/en/home/statistics/prices/consumer-price-

index.assetdetail.3522243.html 2019. 15

Fridgen, Patrick M, Steven D Shultz et al., “The Influence Of The Threat Of Flooding On Housing

Values In Fargo, North Dakota And Moorhead, Minnesota,” 1999. 2, 44

Fuchs, Sven, Margreth Keiler, and Andreas Zischg, “A spatiotemporal multi-hazard exposure

assessment based on property data,” Natural Hazards and Earth System Sciences, 2015, 15 (9),

2127–2142. 18

, Veronika Röthlisberger, Thomas Thaler, Andreas Zischg, and Margreth Keiler, “Natural haz-

ard management from a coevolutionary perspective: Exposure and policy response in the

European Alps,” Annals of the American Association of Geographers, 2017, 107 (2), 382–392. 6

Gallagher, Justin, “Learning about an infrequent event: evidence from flood insurance take-up

in the United States,” American Economic Journal: Applied Economics, 2014, 6 (3), 206–233. 3,

11, 14, 32, 49

GVZ, “Kundeninformation Gebaeudeversicherung Kanton Zurich Januar 2014,” 2017. 6

, “Ueberschwemmungsschaeden der Gebaeudeversichering Kanton Zurich vom 01.01.2006 bis

zum 31.12.2019,” confidential 2019. Requested and received by the authors. 16, 17

36



Hallstrom, Daniel G and V Kerry Smith, “Market responses to hurricanes,” Journal of Environ-

mental Economics and Management, 2005, 50 (3), 541–561. 3, 44

Harrison, David, Greg T. Smersh, and Arthur Schwartz, “Environmental determinants of hous-

ing prices: the impact of flood zone status,” Journal of Real Estate Research, 2001, 21 (1-2), 3–20.

44

Hilker, Nadine, Alexandre Badoux, and Christoph Hegg, “The Swiss flood and landslide damage

database 1972-2007,” Natural Hazards and Earth System Sciences, 2009, 9 (3), 913. 1, 16

Hill, Alison, “Do floodplain delineations decrease property values? Evidence from New York City

after Hurricane Sandy,” 2015. 2, 49

Holway, James M and Raymond J Burby, “The effects of floodplain development controls on

residential land values,” Land economics, 1990, 66 (3), 259–271. 43

Husby, Trond G, Henri LF de Groot, Marjan W Hofkes, and Martijn I Dröes, “Do floods have

permanent effects? Evidence from the Netherlands,” Journal of Regional Science, 2014, 54 (3),

355–377. 49

Ioannides, Yannis M and Jeffrey E Zabel, “Interactions, neighborhood selection and housing

demand,” Journal of Urban Economics, 2008, 63 (1), 229–252. 21

Kellens, Wim, Teun Terpstra, and Philippe De Maeyer, “Perception and Communication of

Flood Risks: A Systematic Review of Empirical Research,” Risk Analysis, 2013, 33 (1), 24–49. 3

Kousky, Carolyn, “Learning from extreme events: Risk perceptions after the flood,” Land Eco-

nomics, 2010, 86 (3), 395–422. 46

Lamond, Jessica and David Proverbs, “Does the price impact of flooding fade away?,” Structural

survey, 2006, 24 (5), 363–377. 45

, , and Adarkwah Antwi, “Measuring the impact of flooding on UK house prices: A new

framework for small sample problems,” Property Management, 2007, 25 (4), 344–359. 45

, , and Felix Hammond, “The impact of flooding on the price of residential property: A

transactional analysis of the UK market,” Housing studies, 2010, 25 (3), 335–356. 46

37



Lin, Tzu-Chin and Alan W. Evans, “The Relationship between the Price of Land and Size of Plot

When Plots Are Small,” Land Economics, 2000, 76 (3), 386–394. 22

Luo, Tianyi, Andrew Maddocks, Charles Iceland, Philip Ward, and Hessel Winsemius, “Worlds

15 Countries with the Most People Exposed to River Floods,” 2015. 1

MacDonald, Don N, Harry L White, Paul M Taube, and William L Huth, “Flood hazard pricing

and insurance premium differentials: evidence from the housing market,” Journal of Risk and

Insurance, 1990, pp. 654–663. 2, 43

, James C Murdoch, and Harry L White, “Uncertain hazards, insurance, and consumer choice:

evidence from housing markets,” Land Economics, 1987, 63 (4), 361–371. 43

McKenzie, Russell and John Levendis, “Flood hazards and urban housing markets: The effects

of Katrina on New Orleans,” The Journal of Real Estate Finance and Economics, 2010, 40 (1),

62–76. 47

Meldrum, James R, “Floodplain price impacts by property type in Boulder County, Colorado:

condominiums versus standalone properties,” Environmental and Resource Economics, 2016,

64 (4), 725–750. 50

Michel-Kerjan, Erwann O and Carolyn Kousky, “Come rain or shine: Evidence on flood insur-

ance purchases in Florida,” Journal of Risk and Insurance, 2010, 77 (2), 369–397. 47

Morgan, Ash, “The impact of Hurricane Ivan on expected flood losses, perceived flood risk, and

property values,” Journal of Housing Research, 2007, 16 (1), 47–60. 2, 45

Petrolia, Daniel R, Craig E Landry, and Keith H Coble, “Risk preferences, risk perceptions, and

flood insurance,” Land Economics, 2013, 89 (2), 227–245. 48

Pope, Jaren C, “Do seller disclosures affect property values? Buyer information and the hedonic

model,” Land Economics, 2008, 84 (4), 551–572. 8, 45

Posey, John and William H Rogers, “The impact of special flood hazard area designation on

residential property values,” Public Works Management & Policy, 2010, 15 (2), 81–90. 47

38



Pryce, Gwilym, Yu Chen, and George Galster, “The impact of floods on house prices: an imper-

fect information approach with myopia and amnesia,” Housing Studies, 2011, 26 (02), 259–279.

47

Rambaldi, Alicia N, Cameron S Fletcher, Kerry Collins, and Ryan RJ McAllister, “Housing

shadow prices in an inundation-prone suburb,” Urban Studies, 2013, 50 (9), 1889–1905. 48

Rosen, Sherwin, “Hedonic prices and implicit markets: product differentiation in pure competi-

tion,” Journal of Political Economy, 1974, 82 (1), 34–55. 8

Röthlisberger, Veronika Eva, Andreas Paul Zischg, and Margreth Keiler, “Identifying spatial

clusters of flood exposure to support decision making in risk management,” Science of the total

environment, 2017, 598, 593–603. 18

, , and , “A comparison of building value models for flood risk analysis,” Nat. Hazards Earth

Syst. Sci, 2018, 18, 2431–2453. 18

Samarasinghe, Oshadhi and Basil Sharp, “Flood prone risk and amenity values: a spatial hedonic

analysis,” Australian Journal of Agricultural and Resource Economics, 2010, 54 (4), 457–475. 47

Schmidheiny, Kurt, “Income segregation and local progressive taxation: Empirical evidence from

Switzerland,” Journal of Public Economics, 2006, 90 (3), 429–458. 21

and Sebastian Siegloch, “On event study designs and distributed-lag models: Equivalence,

generalization and practical implications,” 2019. 14

Shilling, James D, CF Sirmans, and John D Benjamin, “Flood insurance, wealth redistribution,

and urban property values,” Journal of Urban Economics, 1989, 26 (1), 43–53. 2, 43

Shultz, Steven D and Pat M Fridgen, “Floodplains and housing value: Implications for flood

mitigation projects,” JAWRA Journal of the American Water Resources Association, 2001, 37 (3),

595–603. 2, 44

Skantz, Terrance and Thomas Strickland, “House prices and a flood event: an empirical investi-

gation of market efficiency,” Journal of Real Estate Research, 1987, 2 (2), 75–83. 2, 43

39



Small, Garrick, Leonce Newby, and Ian Clarkson, “Opinion versus Reality: Flood-affected prop-

erty values in Rockhampton, Australia,” in “Proceedings of the Pacific Rim Real Estate Society

international conference” 2013. 48

Speyrer, Janet Furman and Wade R Ragas, “Housing prices and flood risk: an examination using

spline regression,” The Journal of Real Estate Finance and Economics, 1991, 4 (4), 395–407. 43

SWISSTOPO, “DHM25,” Online 2018. 21

, “LK25,” Online 2018. 21

, “The Topographic Landscape Model TLM,” Online 2018. 21

Tages-Anzeiger, “Stadt Zuerich ist eines der groessten Risikogebiete der Schweiz,” Tages-Anzeiger,

July 2012. 6

Tinsley, Catherine H, Robin L Dillon, and Matthew A Cronin, “How near-miss events amplify or

attenuate risky decision making,” Management Science, 2012, 58 (9), 1596–1613. 28

Troy, Austin and Jeff Romm, “Assessing the price effects of flood hazard disclosure under the

California natural hazard disclosure law (AB 1195),” Journal of Environmental Planning and

Management, 2004, 47 (1), 137–162. 44

Turnbull, Geoffrey K, Velma Zahirovic-Herbert, and Chris Mothorpe, “Flooding and Liquidity

on the Bayou: The Capitalization of Flood Risk into House Value and Ease-of-Sale,” Real Estate

Economics, 2013, 41 (1), 103–129. 49

Tversky, Amos and Daniel Kahneman, “Availability: A heuristic for judging frequency and prob-

ability,” Cognitive psychology, 1973, 5 (2), 207–232. 5

Wiget, Yannick, “Pendlerhauptstadt Zürich,” Tages-Anzeiger, April 2017. 22

Willner, Sven N, Anders Levermann, Fang Zhao, and Katja Frieler, “Adaptation required to pre-

serve future high-end river flood risk at present levels,” Science Advances, 2018, 4 (1), eaao1914.

1

Wooldridge, Jeffrey M, Econometric analysis of cross section and panel data, MIT press, 2010. 13

40



Zgraggen, L., “Strahlungsbilanz der Schweiz,” 2001. 21

Zhai, Guofang, Teruki Fukuzono, and Saburo Ikeda, “Effect of flooding on megalopolitan land

prices: a case study of the 2000 Tokai flood in Japan,” Journal of natural disaster science, 2003,

25 (1), 23–36. 44

Zischg, A, Stephan Schober, Norbert Sereinig, Marina Rauter, Christof Seymann, Franz Gold-

schmidt, R Bäk, and E Schleicher, “Monitoring the temporal development of natural hazard

risks as a basis indicator for climate change adaptation,” Natural hazards, 2013, 67 (3), 1045–

1058. 18

41



Appendix

A.1 Literature review

The following table provides a review of the previous literature. It provides the year of publication,

the place and sample period, the main methods used, the dependent variable, the proxy for flood

risk and the role of insurance. The column “Effect” describes the main effect shown in the paper,

or lack thereof if not statistically significant.
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Author Year Country Location Method used Dependent

variable

Flood risk Insurance Effect Time in

years

Specific

flood?

Barnard (1978) 1978 US Ralston Creek Standard hedonic

price model

Housing

prices

100-year floodplains NA urban expansion has in-

creased the runoff and flood

hazard in the Ralston Creek

watershed

1973 No

MacDonald et al. (1987) 1987 US Monroe,Louisiana Theoretical model

and hedonic price

regression

Housing

prices

Probability of flood-

ing determined

using the different

levels from the Flood

Insurance Rate Maps

Flood insurance

premiums re-

flect flood risk of

the area because

they are based

on elevation

negative effect 1985 No

Skantz and Strickland (1987) 1987 US Texas Standard hedonic

price model

and DiD

Housing

prices

100-year floodplains NFIP flood insur-

ance

Increase in flood insurance

rate one year after the flood

1977 - 1981 Yes, 1979

Donnelly (1989) 1989 US WI Standard hedonic

price model

Housing

sales dataă

100 year floodplain NFIP flood insur-

ance

negative effect 1983 - 1985 No

Shilling et al. (1989) 1989 US Lousiana Standard hedonic

price model

Housing

prices

100 year floodplain NFIP flood insur-

ance

negative effect 1982 - 1984 No

Bialaszewski and Newsome

(1990)

1990 US Homewood, Al-

abamaăand

Monroe,

Louisiana

Standard hedonic

price model

Housing

prices

100-year floodplains NFIP flood insur-

ance

negative effect for Monroe 1987 - 1989 No

Holway and Burby (1990) 1990

MacDonald et al. (1990) 1990 US Monroe,

Louisiana

Standard hedonic

price model

Housing

prices

100 year floodplain NFIP flood insur-

ance

negative effect 1988 No

Speyrer and Ragas (1991) 1991 US New Orleans,

Louisiana

Linear and semi-

logarithmic regres-

sions

Selling

prices

100-year floodplain NFIP flood insur-

ance

negative effect 1971-1986 1978, 1980,

and 1983

Bartosova et al. (2000) 1999 US WI Standard hedonic

price model

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect 1995 - 1998 Flood in

1997
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Fridgen et al. (1999) 1999 US ND,MI Standard hedonic

price model

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect for 100 year

flood plains

1995-1998 Flood 1997

Harrison et al. (2001) 2001 US Alachua County,

Florida

Hedonic pricing

techniques

Housing

prices

100-year floodplain NFIP flood insur-

ance

negative effect 1980Ű1997 No

Shultz and Fridgen (2001) 2001 US Fargo Moorhead Standard hedonic

price model

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

flood insurance premiums

were determined to account

for approximately 81 percent

of price depreciation

1995 - 1998 No

Dei-Tutu and Bin (2002) 2002 US NC Standard hedonic

price model

Housing

prices

100-year floodplain NFIP flood insur-

ance

negative effect 1998 - 2002 Flood in

1999

Eves (2002) 2002 Australia Sydney Standard hedonic

price model

Housing

prices

100-year floodplain No insurance negative effect 1994 - 2000 Flood 1990

Zhai et al. (2003) 2003 Japan Tokai region cross-sectional anal-

ysis, and hedonic ap-

proach based panel

analysis

Land prices actual damaged

houses

land prices in flood-prone ar-

eas are lower and

have less variance than in

other areas

2000 Tokai

flood in

Japan

Bin and Polasky (2004) 2004 US North Carolina Standard hedonic

price model, DiD

Housing

prices

100 year floodplain NFIP flood insur-

ance

negative effect , bigger effect

directly after the flood

1992 - 2002 Flood in

1999, after

Hurricane

Floyd

Bin (2004) 2004 US North Carolina Hedonic price

model, Semi-

parametric regres-

sion

Housing

prices

100-year floodplains NFIP flood insur-

ance

2000 - 2002 No

Troy and Romm (2004) 2004 US California DiD

spatial hedonic

model

Housing

prices

floodplain disclosure

under

AB 1195

negative effect 1996 - 2000 floodplain

disclosure

under

AB 1195

Hallstrom and Smith (2005) 2005 US FL DiD

spatial hedonic

model

Housing

prices

100-year floodplains NFIP flood insur-

ance

negative effect 21 years, Hurrican

Andrew

1992

Bin and Kruse (2006) 2006 US North Carolina Standard hedonic

price model

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect 2002 - 2004 No
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Lamond and Proverbs (2006) 2006 England Barlby, North

Yorkshire

Semi-logarithmic re-

gression

Housing

prices

UK flood maps,

Flood dummy

voluntary insur-

ance

no significant long-term

impact on prices of property

in the floodplain, in the short

term prices increased less

than in the rest of the market

2000-2005 Floods in

2000 and

2001

Baade et al. (2007) 2007 US Miami, New Or-

leans

MLE Taxable

sales

not relevant not relevant short-term positive effect on

the Miami economy

1987 Ű 2004 Hurricane

Andrew,

Hurricane

Katrina,

Rodney

King riots

Lamond et al. (2007) 2007 England Bewdley,

Worcestershire

Repeated sales

model

Housing

prices

Before and after 2000

floods

voluntary insur-

ance

Prices are discounted 7

Daniel et al. (2007) 2007 Netherlandsnear Meuse river Standard hedonic

price model, DiD

Housing

prices

Transition plains N/A local housing markets in the

Netherlands are

sensitive to flood risk

1990 - 2004 Floods of

Meuse river

Morgan (2007) 2007 US Florida Standard hedonic

price model

Housing

prices

100-year floodplains NFIP flood insur-

ance

positive effect, flood event ad-

justs the market downward

2000-2006 Hurricane

Ivan

Bin et al. (2008a) 2008 US North Carolina Standard hedonic

price model, spa-

tial autoregressive

model

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect 2000-2004 No

Bin et al. (2008b) 2008 US North Carolina Spatial autoregres-

sive hedonic model

Housing

prices

100 year floodplain NFIP flood insur-

ance

negative effect 1996 - 2002 No

Burningham et al. (2008) 2008 England Logistic regression

analysis of the fac-

tors predicting the

likelihood of aware-

ness of flood risk

Respondents

awareness

that prop-

erty was in

a flood risk

area

Social class has the most in-

fluence on predicting aware-

ness of flood risk, followed

by flood experience and then

length of time in residence

- Severe flood

events in

1998 and

2000

Pope (2008) 2008 US North Carolina Standard hedonic

price model, DiD

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect, buyer and

seller are differently informed

1995 - 1996 No
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Daniel et al. (2009) 2009 US Meta-study Housing

prices

different specifica-

tions

NFIP flood insur-

ance

overall negative effect

Daniel et al. (2009) 2009 US whole US Meta-study Housing

price esti-

mates

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect, avaerage

price of an otherwise similar

house of Ű0.6%.

1990 - 2004 No, several

flood events

Kousky (2010) 2010 US Missouri Standard hedonic

price model, DiD

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

1979 - 2006 1993 flood

on the Mis-

souri and

Mississippi

rivers

Lamond et al. (2010) 2010 England Variation of the

repeat sales index

model

Housing

prices

Four risk classes

significant (S), mod-

erate

(M), low (L) and out-

side the floodplain

(O)

In the UK, flood

risk has been

included as stan-

dard within the

general domes-

tic all risks

insurance policy

since the late

1960s. How-

ever, different

revisions to the

principles after

2000 allow for

removal of cover

from high risk

properties and

pricint to risk.

Flood impacts on property

prices are small and tempo-

rary

2000-2006 Flood

events of

autumn

2000
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McKenzie and Levendis (2010) 2010 US New Orleans Hedonic price regres-

sion, flooded vs non-

flooded subset, pre-

vs post- Katrina

Housing

prices

Elevation (in foots)

value in flood-

prone areas and

areas not subject to

flooding, pre- and

post-Katrina.

No information

found (see SAB

comment)

positive effect of elevation ,

which increased from 1.4% to

4.6% for flooded areas after

Katrina.

2.5, Jan-

uary 2004-

August 2006

Hurricane

Katrina

Michel-Kerjan and Kousky (2010) 2010 US Florida OLS regression Demand

for flood

insurance

100-year and 500-

year floodplains

NFIP flood insur-

ance

Analysis of flood insurance

market

2000 - 2005 No

Posey and Rogers (2010) 2010 US Missouri Standard hedo-

nic price model,

correction for au-

toregressive errors

Housing

prices

100-year floodplains NFIP flood insur-

ance

located in a flood zone re-

duces the value of a property

by about 8.6%, including both

direct and indirect effects

2000 No

Samarasinghe and Sharp (2010) 2010 New

Zealand

North Shore City Spatial autoregres-

sive hedonic model

Housing

prices

100-year floodplains No mandatory

insurance

Pryce et al. (2011) 2011 Theoretical model

Atreya and Ferreira (2012) 2012 US Georgia DiD Housing

prices

100-year and 500-

year floodplains,

actual inundated

area

NFIP flood insur-

ance

negative effect, more pro-

nounced by affected areas

1985 -Ű2010 1994 flood

in Albany

Atreya et al. (2013a) 2012 US Georgia DiD Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

Negative, short lived effect 1985 - 2010 1994

Atreya et al. (2013b) 2013 US Dougherty

County, Georgia

DiD Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

negative effect (significant for

the 100y FP)

1985 - 2004 1994 Şflood

of the centu-

ryŤ

Atreya et al. (2013b) 2013 US Georgia DiD Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

significant increase in the dis-

count for properties in the

100-year floodplain immedi-

ately after the flood.

1985 - 2004 1994, the

Flint River

overran
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Bin and Landry (2013) 2013 US Pitt County,

North Carolina

DiD Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

Negative effect, Change in

risk valuation after significant

flooding events found.

1992 - 2008 Hurricanes

Fran 1996

and Floyd

1999

Bin and Landry (2013) 2013 US Pitt County,

NorthCarolina

DiD Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

Prior to Hurricane Fran, we

detect no market risk pre-

mium for presence in a flood

zone, but we find significant

price differentials after signif-

icant flooding events

1992 - 2008 Hurricane

Fran and

Hurricane

Floyd

Petrolia et al. (2013) 2013 US U.S. Gulf Coast

and Floridas At-

lantic Coast

Experimental survey Flood in-

surance

purchase

decisions

100-year and 500-

year floodplains

NFIP flood insur-

ance

risk aversion over the loss do-

main, perceived expectations

of hurricane damage,

eligibility for disaster assis-

tance, and credibility of

insurance providers pos-

itively and significantly

correlates

with the decision to purchase

a flood policy

Rambaldi et al. (2013) 2013 Australia Brisbane Standard hedonic

price model

Housing

prices

100 year floodplain residences are

able to obtain

commercially

available flood

insurance

property-price discounting of

5.5 percent per metre below

the defined flood level

Small et al. (2013) 2013 Australia Rockhampton Mail survey of flood-

affected properties

and comparison to

market

Descriptive

analysis

N/A larger negative discount is

not supported in the data

2011 Rock-

hampton

floods
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Turnbull et al. (2013) 2013 US Louisiana, Ba-

ton Rouge

metropolitan

area

search model to

the flood hazard

situation; system es-

timation framework

Housing

price and

liquidity

100-year and 500-

year floodplains

NFIP flood insur-

ance

flood risks are capitalized into

both house price

and liquidity

1984 - 2005

Gallagher (2014) 2014 US Entire country Event study frame-

work

insurance

policies per

capita

100-year and 500-

year floodplains

NFIP flood insur-

ance

insurance take-up spikes the

year after a flood and then

steadily declines to baseline

1990Ű2007 Several

floods

Husby et al. (2014) 2014 Netherlands Dynamic DiD Population

growth

Areas affected by the

1953 flood

Long-term effects on pop-

ulation growth were most

likely not directly related to

the flood in 1953, the positive

long-term effects found were

instead due to the policy

interventions following the

flood

1947-2000 Great North

Sea Flood

of 1953

and the

construc-

tion of the

Deltaworks

Atreya and Ferreira (2015) 2015 US DiD Housing

prices

the flood inundation

map, 100-year and

500-year floodplains

the price discount for prop-

erties in the inundated area

is substantially larger than in

comparable properties in the

floodplain

Hill (2015) 2015 US New York DiD Housing

prices

100-year and 500-

year floodplains,

newly assigned flood

zones

NFIP flood insur-

ance

sale price of a property newly

placed in any flood zone after

2015 decreases by 8.6 percent

on average

2003 - 2015 Hurricane

Sandy 2012

Belanger and Bourdeau-Brien

(2018)

2016 England whole UK Linear mixed effects

model / hierachical

model

Housing

prices

UK flood maps,

Flood dummy

Insure price

insurance poli-

cies according

to individual

property flood

risk

negative effect 1995 - 2015 No
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Meldrum (2016) 2016 US Boulder County,

Colorado

Hedonic price

estimation and

non-parametric

matching estimation

Housing

prices

NFIP flood insur-

ance

strong price effect associated

with floodplain-designation

for condominiums

but no price differential for

standalone properties

1995 - 2012 No

Bakkensen and Barrage (2017) 2017 US North Carolina,

Rhode Island

Door-to-door survey

campaign and theo-

retical model

Fl?ood risk

perceptions

not relevant NFIP flood insur-

ance

selection into coastal homes

is driven by both lower risk

perceptions and higher

coastal amenity values

2016 No

Beltrán et al. (2018b) 2018 Meta-study, 37 stud-

ies and 349 point es-

timates

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

price discount lies anywhere

between -75.5 to a +61.0

Atreya and Czajkowski (2019) 2019 US Galveston

County, TX

Standard hedonic

model, FE model

Housing

prices

100-year and 500-

year floodplains

NFIP flood insur-

ance

hedonic price premium is de-

pendent upon the distance to

the coast

2001 - 2010 No
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A.2 Descriptives

Table A.2: Summary Statistics

Mean S.D. Min. Max.

Ln (Price) 7.617 0.814 −0 11

damage 0.054 0.225 0 1

Ln (rooms) 1.629 0.243 0 4

Ln (size) 6.357 0.789 3 13

Ln (age) 3.754 1.020 0 7

Ln (distwater) 5.199 0.923 −1 7

Ln (distZH) 9.684 0.645 6 11

Ln (distforest) 5.209 0.898 −0 8

Ln (radiation) 4.912 0.034 5 5

Ln (tax) 4.659 0.140 4 5

Ln (vismaxdist) 11.079 0.778 7 12

Unkown zone 0.000 0.020 0 1

Single familiy 0.589 0.492 0 1

Business 0.003 0.054 0 1

Mixed 0.258 0.437 0 1

Munic. district 0.000 0.019 0 1

Wood 0.001 0.024 0 1

Farming 0.033 0.179 0 1

Reserve 0.001 0.038 0 1

Public 0.000 0.017 0 1

No–building zone 0.002 0.045 0 1

Multiple familiy zone 0.112 0.315 0 1

miss500m 0.341 0.474 0 1

miss600m 0.395 0.489 0 1

miss700m 0.444 0.497 0 1

Lower miss500m 0.161 0.368 0 1

Lower miss600m 0.186 0.389 0 1

Lower miss700m 0.206 0.405 0 1

Higher miss500m 0.180 0.384 0 1

Higher miss600m 0.210 0.407 0 1

Higher miss700m 0.238 0.426 0 1

Buffer 500 - 1000m 0.220 0.415 0 1
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Mean S.D. Min. Max.

Buffer 600 - 1000m 0.166 0.372 0 1

Buffer 700 - 1000m 0.117 0.321 0 1

flood+1 0.070 0.255 0 1

flood+2 0.065 0.246 0 1

flood+3 0.069 0.254 0 1

flood+4 0.064 0.245 0 1

flood+5 0.063 0.244 0 1

flood+6 0.063 0.244 0 1

flood+7 0.057 0.232 0 1

flood+8 0.058 0.234 0 1

flood+9 0.916 0.278 0 1

flood−0 0.066 0.248 0 1

flood−1 0.062 0.241 0 1

flood−2 0.064 0.245 0 1

flood−3 0.061 0.240 0 1

Hazard 0.111 0.314 0 1

Hazard low 0.093 0.291 0 1

Hazard medium 0.017 0.131 0 1

mapintro 0.930 0.255 0 1

mandatory 0.523 0.499 0 1

weekday 3.145 1.462 0 6

Month 6.716 3.373 1 12

Zip codes 135.969 74.623 1 256

Year 2012.926 3.771 2007 2019

Total observations 36118

A.3 GVZ insurance
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Table A.3: GVZ claim statistic on a yearly base

Year Annual number of building damage Annual building damage [CHF] Average amount of damage per claim [CHF]

2006 132 954,323.0 7,230.0
2007 576 6,050,587.0 10,504.0
2008 368 3,903,027.0 10,606.0
2009 274 1,780,504.0 6,498.0
2010 215 1,946,096.0 9,052.0
2011 382 3,661,002.0 9,584.0
2012 297 2,397,430.0 8,072.0
2013 498 5,814,337.0 11,675.0
2014 335 3,756,345.0 11,213.0
2015 505 6,560,613.0 12,991.0
2016 233 1,966,285.0 8,439.0

Notes: The table show the aggregated values of GVZ insurance claims per year 2006 – 2017. Only
flood damage with the status "completed", "pending" or "reactivated" were taken into account.

The damage amounts include the deductible (i.e. the so-called gross damage).
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A.4 Additional Results

Table A.4: Near-miss DiD results

Dependent v.: Ln price sqm, real

(1) Hazard, 2 cat. (2) Low Hazard, 3 cat. (3) Med. Hazard, 3 cat.

hazard × flood+1 −0.015
(0.037)

hazard × flood+2 −0.016
(0.025)

hazard × flood+3 −0.033
(0.023)

hazard × flood+4 −0.029
(0.018)

hazard=2 × flood+1 −0.009
(0.042)

hazard=2 × flood+2 −0.032
(0.026)

hazard=2 × flood+3 −0.040
(0.029)

hazard=2 × flood+4 −0.037
(0.024)

hazard=3 × flood+1 −0.074
(0.050)

hazard=3 × flood+2 0.066
(0.051)

hazard=3 × flood+3 −0.007
(0.046)

hazard=3 × flood+4 −0.002
(0.054)

Constant 9.874*** 9.885*** 9.847***
(1.566) (1.591) (1.582)

Weekday FE Ø Ø Ø
Month FE Ø Ø Ø
Zip code × year FE Ø Ø Ø
Controls Ø Ø Ø
Observations 21, 514 21, 514 21, 514

Notes: Dependent variable is the Ln sqm. price. Results from estimation equation (7), standard errors in parentheses
are clustered at the municipality level. We restrict the sample to sales, where the hazard map was already availble at the
transaction time. Column (1) shows results using two hazard categories (hazard and non–hazard) and column (2) and (3)
print results using three categories (low and medium). No hazard is in all specifications the ref. category and the time
reference are the months -3 - 0 before and > 5 months after the flood. We do not control for distance for water due to
collinarity with the hazard zone variable. ***, ** and * denote statistical significance at the 1%, 5% and 10% level.

A.5 Robustness results
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Table A.5: Robustness Near-miss DiD results incl. month-of-year FE

Dependent v.: Ln price sqm, real

(1) NM300, all (2) NM400, all (3) NM500, lower (4) NM500, higher

miss300m × flood+1 −0.036**
(0.014)

miss300m × flood+2 0.014
(0.020)

miss300m × flood+3 −0.034*
(0.019)

miss300m × flood+4 0.001
(0.017)

miss400m × flood+1 −0.043***
(0.014)

miss400m × flood+2 0.010
(0.013)

miss400m × flood+3 −0.025
(0.020)

miss400m × flood+4 −0.014
(0.014)

Lower miss500m × flood+1 −0.018
(0.024)

Lower miss500m × flood+2 −0.007
(0.021)

Lower miss500m × flood+3 −0.044***
(0.016)

Lower miss500m × flood+4 −0.014
(0.022)

Higher miss500m × flood+1 −0.020
(0.020)

Higher miss500m × flood+2 0.029**
(0.014)

Higher miss500m × flood+3 0.013
(0.014)

Higher miss500m × flood+4 0.009
(0.018)

Constant 9.675*** 9.286*** 9.869*** 9.825***
(1.574) (1.702) (1.898) (1.905)

Weekday FE Ø Ø Ø Ø
Month-Year FE Ø Ø Ø Ø
Zip code × year FE Ø Ø Ø Ø
Controls Ø Ø Ø Ø
Observations 18, 701 19, 290 19, 707 19, 707

Note: Dependent variable is the Ln sqm. price. Results for a coefficient from estimation equation (9) including month-
of-year FE, standard errors in parentheses are clustered at the municipality level. The reference are the months -
3 - 0 before and > 5 months after the flood. In each specification, we use a buffer excluding a radius of 300m.
***, ** and * denote statistical significance at the 1%, 5% and 10% level.
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Table A.6: Robustness Near-miss DiD results incl. referedum

Dependent v.: Ln price sqm, real

(1) NM300, all (2) NM400, all (3) NM500, lower (4) NM500, higher

After 14 refer. −0.054*** −0.039*** −0.053*** −0.055***
(0.003) (0.003) (0.002) (0.002)

miss300m × flood+1 −0.036**
(0.014)

miss300m × flood+2 0.014
(0.020)

miss300m × flood+3 −0.033*
(0.019)

miss300m × flood+4 0.001
(0.017)

miss400m × flood+1 −0.043***
(0.014)

miss400m × flood+2 0.010
(0.013)

miss400m × flood+3 −0.024
(0.020)

miss400m × flood+4 −0.014
(0.014)

Lower miss500m × flood+1 −0.018
(0.024)

Lower miss500m × flood+2 −0.008
(0.021)

Lower miss500m × flood+3 −0.044***
(0.016)

Lower miss500m × flood+4 −0.014
(0.022)

Higher miss500m × flood+1 −0.020
(0.020)

Higher miss500m × flood+2 0.029**
(0.014)

Higher miss500m × flood+3 0.014
(0.014)

Higher miss500m × flood+4 0.009
(0.018)

Constant 9.696*** 9.305*** 9.895*** 9.852***
(1.573) (1.702) (1.898) (1.906)

Weekday FE Ø Ø Ø Ø
Month-Year FE Ø Ø Ø Ø
Zip code × year FE Ø Ø Ø Ø
Controls Ø Ø Ø Ø
Observations 18, 701 19, 290 19, 707 19, 707

Note: Dependent variable is the Ln sqm. price. Results for a coefficient from estimation equation (9), standard errors in paren-
theses are clustered at the municipality level. We include a variable controlling for the 2014 referendum. The reference are
the months -3 - 0 before and > 5 months after the flood. In each specification, we use a buffer excluding a radius of 300m.
***, ** and * denote statistical significance at the 1%, 5% and 10% level.
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