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Abstract

A persistent concern in the literature on climate policy is that the emissions abatement, which

is achieved via environmental regulation, has potentially adverse affects on firms’ economic per-

formance. I investigate this issue in the context of the European Union Emissions Trading Scheme

(EU ETS) and the German manufacturing sector. My investigation uses confidential data from

an administrative firm-level production census. As a measure of the economic performance, I esti-

mate cost efficiencies and their determinants for narrowly defined industries with a stochastic cost

frontier (SCF) analysis. In order to directly compare cost efficiencies across treatment groups, I

use a stochastic meta frontier (SMF) analysis. I provide additional evidence of the causal impact

of the EU ETS on various types of firms‘ costs with a difference-in-differences (DD) framework.

My results indicate that the EU ETS regulation has resulted in a small but significant increase

in costs across the German manufacturing sector. This increase is driven mostly by an increase

in energy and capital costs. I demonstrate that the potential to increase cost efficiency exists for

most industries in the German manufacturing sector. The analysis of the drivers of cost efficiency

confirms that in most industries, exporting firms are more cost efficient than their counterparts.

In contrast, the results show that innovating firms and firms that are regulated by the EU ETS

are less cost efficient than unregulated firms.
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1 Introduction

The European Union (EU) has continuously been at the forefront of international climate

policy, and the Paris Agreement has only consolidated the significance of its role. While the

EU addresses climate change with many different approaches and mandates, the 2005 European

Union Emissions Trading Scheme (EU ETS) stands as its single most important instrument

in its climate policy. A priori, theory cannot discern how firms respond to the EU ETS. This

is especially concerning if pollution abatement, which is the primary goal of this regulation,

diminishes firms’ economic performance. The relation between the EU ETS and the economic

performance of firms emerges most clearly through various compliance mechanisms. Namely, a

regulated firm may surrender allowances to legitimate its emissions or sell the surplus on the

market, in any case there are opportunity costs to emissions. A firm can also abate by changing

its input choice (e.g., switching fuels) or adjusting its production process (e.g., investment in

energy efficiency or a reduction of fuel usage). Alternatively, a firm may develop less emission

intensive products or reduce its output. Further, compliance options are heterogeneous among

firms and temporally different; some are viable in the short run, and some only in the long

run.1 Although all the abatement options will either demand an investment, reduce revenues,

or increase costs, the empirical evidence on the EU ETS’ impact on regulated firms is scarce.

Therefore, researchers have argued that “ a better understanding of the relationship between

firms’ behavior and the EU ETS is needed, not just for improving this specific climate policy,

but also other emerging cap-and-trade programs” (Martin et al. (2015)).2 This study is one

response to this need. I use cost efficiency as a measure of economic performance and analyze

its interplay with the EU ETS. This analysis is based on a unique and confidential dataset,

obtained by combining several micro-datasets and modules from AFiD over the period from

2003 to 2014 (T=12).3 For narrowly defined industries in the German manufacturing sector,
1 Several authors have previously recognized fuel-switching as the dominant type of short-term abatement

in the EU ETS, due to relatively low related costs (Christiansen et al., 2005; Kanen, 2006; Bertrand, 2014;
Calligaris et al., 2019).

2As of 2019, governments had implemented 57 carbon pricing initiatives, or had scheduled implementation,
around the globe. This comprises 28 emission trading systems (ETSs) in regional, national and subnational
jurisdictions, and 29 carbon taxes,primarily applied on a national level. Together these carbon pricing initiatives
cover 11 gigatons of carbon dioxide equivalent (GtCO2e) or 20 percent of global greenhouse gas (GHG) emissions
(World Bank Group, 2019)).

3AFiD stands for “Amtliche Firmendaten für Deutschland”, which translates to “Official Firm Data for
Germany”. The AFiD data are provided by the German Federal Statistical Office and the Statistical Offices of
the German Federal States. Official governmental statistics and reports on the activities of the manufacturing
sector are based on these data.
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I first examine to what extent the EU ETS affects firm’s overall costs using a difference-in-

differences (DiD) approach. Within this analysis I investigate whether additional regulatory

costs are reflected in energy, capital or labour costs.4 Because a change in costs is not necessarily

followed by a change in firm’s cost-containment capabilities I then proceed by investigating the

firm-level cost efficiency. First, I estimate industry-specific cost frontiers using a stochastic

cost frontier (SCF) analysis and determine time-varying firm-specific cost efficiencies.5 The

chosen empirical model allows me to explore the various potential drivers of cost efficiency: the

regulation by the EU ETS, activity in trading of emissions allowances, investments into research

and development, and exporting status. Most of the industries in the German manufacturing

sector comprise regulated and unregulated firms that potentially operate under heterogeneous

frontiers in the long run. This allows me to employ a stochastic meta frontier (SMF) analysis

in order to compare cost efficiencies across treatment groups within each industry. 6

My empirical strategy is rooted in two hypotheses. My first hypothesis states that the EU

ETS is not a significant driver of firm-level cost efficiency. The principal change that regulated

firms experience when participating in the EU ETS is a relative increase in their input price

because the regulation places a cost on their GHG emissions that unregulated firms do not

experience. Unlike in the existing EU ETS impact evaluation literature, I account for the di-

rect regulation of firms by the EU ETS in the frontier itself. I adjust the energy input price of

regulated firms by adding the carbon price to their energy price. This way, the regulated firms’

cost containment capabilities, are not by construction lower than their non-regulated coun-

terparts’. My second hypothesis recognizes that for the EU ETS to be dynamically efficient,

it must provide incentives for not only the emissions abatement but also for the innovation

in clean technologies. The development of low-carbon technologies will ensure a cheaper re-

duction in carbon emissions in the future (Martin et al. (2015)). With the fixed technology,

therefore, some abatement options, such as switching fuels, are limited. Furthermore, the EU
4In a future version of this paper the results of this analysis will be included in the paper.
5Throughout this paper, industries in the German manufacturing sector are classified according to the

International Standard Industrial Classification of All Economic Activities (ISIC Rev 4.) of the United Nations.
My narrow definition refers to 2-digit industry codes ranging from 10-33.

6In a future version of this paper my analysis of the interplay between the EU ETS and the cost efficiency
will be extended in various ways. I will estimate a model which does not account for the EU ETS regulation
in the frontier, and quantify the average treatment effect of the EU ETS on the cost efficiencies and metacost
effiiciencies of regulated firms for a subset of 2-digit industries in a Difference-in-Differences (DiD) framework.
Furthermore, I will present different ways of adjusting for the EU ETS regulation in a stochastic frontier
framework and show how the results differ based on the adjustment.
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ETS continuously decreases the cap on emissions to encourage stringent abatement behavior.

To keep reducing emissions, at least a subset of regulated firms will have to innovate, which

is in line with Hicks (1932), Porter (1991), and the widely popular Porter Hypothesis (Porter

and Van der Linde (1995)).7 Hence, for regulated firms in certain industries, their production

isoquants may change in response to higher relative input prices as they experience the tech-

nical change through the induced innovation.8 This dynamic can be described as divergence.

This study divides the firms of the industries in the German manufacturing sector into two

groups of firms: the group of "innovators" that comprises regulated firms, and the group of

"non-innovators" that comprises unregulated firms. The SMF analysis enables the direct com-

parison of cost efficiencies between groups of firms operating under different technologies. The

use of different technologies is embedded in my empirical setup in two different ways. First, in

the absence of any innovation, firms operate in various industries of the German manufacturing

sector that use different technologies to produce different types of products. This difference

requires the estimation of separate frontiers for each industry.9 Second, in the presence of strin-

gent environmental regulation, regulated firms operate in different cost environments than their

unregulated counterparts. These additional costs could potentially force them into changing

their production process (e.g., via innovation) and therefore to start operating under different

technology compared to their unregulated counterparts. To what extent, if at all, this materi-

alizes in reality will depend on a multitude of factors. The most important factor stimulating

innovation is the strength of the price signal in the EU ETS.Note, however that the effect of EU

ETS is not constrained just to regulated firms. Both regulated and unregulated firms operate

in the same market, provided they sell the same types of products. Due to increased prices for

regulated firms, market shares are likely to shift towards the unregulated firms that represents

indirect regulation by the EU ETS through competition. Both regulated and unregulated firms

buy energy inputs, but regulated firms can pass through the higher energy input costs, which in
7The Porter Hypothesis (PH) argues that a stringent environmental regulation does not necessarily harm

firms’ competitiveness, but actually even enhances it through enticing the restructuring of firms’ operations. As
Stadler and Di Maria (2018) point out, the PH inherently contrasts the traditional neoclassical view of firms’
optimal production behavior, and instead argues that "there are ample opportunities for firms to make efficiency
gains under the push of stringent environmental regulations." For an introduction to the PH, and an overview
of the related literature, see Ambec et al. (2013)

8This change can also be described as a "jump" to a new cost frontier, which is in line with Breustedt et al.
(2011).

9In theory, the meta-frontier approach allows me to compare cost efficiencies across different industries by
enveloping all industry-specific frontiers with a common sectoral meta-frontier. In the existing context, these
results do not warrant any important policy implications. Nevertheless, I present these results in the Appendix.
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turn again indirectly affects unregulated firms (see Hintermann (2016)). An additional concern

is knowledge spillovers that occur when regulated firms innovate. Nothing prevents unregulated

firms from adopting this new innovation. For all of the aforementioned reasons, the actual in-

novation effect of the EU ETS and resulting heterogeneity in production technologies across

treatment groups may be limited. In an empirical framework, the potential indirect treatment

of the control group is known as the violation of the Stable Unit Treatment Value Assumption.

In this paper I provide a robustness check that addresses at least some of these concerns. The

literature that evaluates the impact of the EU ETS identifies emissions, economic performance,

competitiveness, and innovation as the main outcomes of interest.10 This literature only briefly

addresses the firms’ performance in terms of productivity. Recent work by Calligaris et al.

(2019) combines the structural estimation of the firms’ production function and techniques for

policy evaluation to estimate the effect of the EU ETS on Italian manufacturing firms. Their

findings show a significantly positive effect of the policy on total factor productivity that ranges

from 12 to 18 percentage points with heterogeneous effects across industries. The manufactur-

ing of basic metals and fabricated metal products is the main driver of this effect. Stadler

and Di Maria (2018) focus on UK manufacturing and investigate the interplay between the

UK Climate Change Levy and firms’ technical efficiency. They estimate stochastic production

frontiers in four large manufacturing industries. Their results confirm that the levy had a sig-

nificantly positive impact on firms’ technical efficiency. Particularly relevant to my work are

the few studies that use the same confidential microdata for the German manufacturing sector

to investigate different measures of productivity. Lutz et al. (2017) estimate industry-specific

stochastic energy demand functions. For the period from 2003 to 2012, they identify determi-

nants of the energy demand function and analyze potential drivers of energy efficiency. They

find that energy use has increased over time across all industries, with a range of 2.7 to 6.2

percent per year. The estimated own-price elasticities of energy demand are estimated to range

from -0.39 to -0.80. Their results show that exporting firms are for the most part more energy

efficient than non-exporting firms. Lutz et al. (2017) also shows that firms that eventually fall

under the EU ETS are less energy efficient in most industries than their unregulated coun-

terparts. Investment into environmental protection and into research and development shows
10For comprehensive overviews of these studies, please see Martin et al. (2015), Ellerman et al. (2016), and

Joltreau and Sommerfeld (2019). Recent interesting papers analyzing these issues are Dechezleprêtre and Sato
(2017) and Dechezleprêtre et al. (2018).
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a positive association with energy efficiency. Löschel et al. (2019) combine the use of a SCF

analysis and a DD approach with parametric conditioning strategies to investigate the relation

between the EU ETS and firm-level technical efficiency in the period from 2003 to 2012. They

find no significant effect of the EU ETS on the technical efficiency of regulated firms. When

they analyze the treatment effects at the 2-digit industry level for four different industries, their

results range from 1.34 to -1.67 percent. Further, they only find statistically significant and

positive results for the paper industry. Lutz (2016) estimates the effects on firm-level total

factor productivity using a structural production function approach for the period from 1999

to 2012. His results indicate a significantly positive impact of the EU ETS on the productivity

during its first phase that ranges from 0.5 to 0.7 percent.

This study departs from the aforementioned literature along several dimensions. Existing

studies on productivity analysis only use the production frontier approach. Kumbhakar et al.

(2015) indicate that although helpful, this approach cannot address some of the key economic

questions and concepts that are still not discussed in this literature, as it focuses solely on the

technological input-output relation. Unlike prior efforts, I use a different measure of economic

performance, the cost efficiency. The cost efficiency, also known as economic efficiency, reflects

the embedded economic behavior of the cost frontier (firms’ cost minimization). This measure

is estimated with a SCF (Farell (1957)). In a cost minimizing framework, input allocation is

optimal if producers allocate inputs such that the input price ratio equals the ratio of their

marginal products. In that case, the actual cost differs from the optimal cost by the technical

efficiency. If, however, the input allocation is suboptimal, the cost is higher due to both tech-

nical and allocative inefficiencies. In the model applied in this study, I will assume that any

cost inefficiencies arise only due to technical inefficiency and that firms are allocatively fully

efficient.11 My contribution encompasses not only the identification of the potential to increase

cost efficiency at the firm and industry level, but also the analysis of previously unaddressed

potential drivers of cost efficiency. The most important driver that I analyze is the partici-

pation in the EU ETS. I find out whether the regulated firms can contain costs better, and I

analyze their cost-efficiency levels in relation to different phases of the EU ETS, investment in
11Using the so-called Primal System Approach one could empirically examine the sources of inefficiency by

decomposing cost efficiency into allocative and technical inefficiency. This could help identify how much of cost
reduction a firm can achieve through improvements in the production technology and how much through an
optimal mix of inputs. I leave this for future work. For more information, see Kumbhakar et al. (2015).
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R&D, and the export status. I also make use of the firm-specific transactions data from the

European Union Transactions Log (EUTL) to elucidate which regulated firms have strategically

accumulated excess allowances and how this active trading relates to their cost efficiency. My

approach is unique because I investigate the firms’ reactions to the EU ETS in both the short

and long run, thereby accounting for the fact that input factors are variable only to a certain

extent and that continuous emissions reductions must be supported with eventual innovation.

Therefore, my empirical strategy enables the testing of the PH in a SCF analysis, which to my

knowledge was previously done only by Stadler and Di Maria (2018). However, I argue that

the testing of the PH inevitably requires the use of the SMF analysis, as innovation likely leads

to a divergence into two different groups of firms operating under different frontiers.

Finally, in the SCF I account for the direct regulation of firms by the EU ETS. I adjust the

energy input price of regulated firms by adding the carbon price to their energy price. This

way, the treated firms are not by construction less cost efficient, as their total costs are higher

due to emission costs related to the EU ETS. As I analyze the regulation by the EU ETS as a

potential driver of cost efficiency, I am the first to measure an effect from the ETS that goes

above and beyond pricing emissions to address the potential SUTVA violation. Furthermore,

as a robustness check, I address the potential violation by carrying out cost frontier estimations

in less electricity-intensive industries in which the problem of an increased price for the energy

input for unregulated firms is less pronounced.12

My results indicate that the potential to increase cost efficiency still exists for most indus-

tries in the German manufacturing sector. The analysis of the cost efficiency drivers confirms

that in most industries, exporting firms are more cost efficient than their counterparts. In

contrast, innovating firms and firms that are regulated by the EU ETS are less cost efficient

than unregulated firms. A subsample DD analysis confirms that the EU ETS decreases the cost

efficiency of regulated firms in at least some 2-digit industries. Due to the statistical disclosure

issues of remotely accessed data and related time constraints, the current version of this study

does not contain robustness checks that address the endogeneity and SUTVA violation issues.

The remainder of the study is structured as follows: Section 2 provides some background to the

policy. In Section 3, I describe the methods used and outline my empirical strategy. In Section

4, I describe the AFiD data and additional data sources used. Section 5 presents the results of
12In a future version of this paper, I provide the results of this robustness check.
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my analysis. In Section 6, I conclude with a discussion.

2 Institutional Background

The EU ETS is the cornerstone of the EU’s climate policy. The instrument was enacted by

Directive 2003/87/EC in 2003 and implemented in 2005 to reduce GHG emmissions. The

regulation’s current target is a reduction of 40 percent to be achieved through a 27 percent

share or more from consumption of renewable energy and through a 27 percent energy savings

over the business-as-usual scenario. Both must be realized by 2030 and are relative to 1990

levels (European Council (2014b)). It operates on the cap-and-trade principle and nowadays

includes 31 countries: the 28 EU member states as well as Iceland, Liechtenstein, and Norway.

Regulated firms receive emission permits (EU Allowance Units (EUA)) that are fully tradable

across firms in all participating countries. One EUA represents one metric tonne of CO2

equivalent. At the end of each year, regulated firms must surrender their EUAs according

to their verified emissions. The program currently covers 45 percent of EU’s GHG emissions

and encompasses more than 11,000 heavy energy-using installations. The EU has implemented

the EU ETS in three consecutive compliance periods: Phase 1 (2005-2007) as the pilot phase,

Phase 2 (2008-2012) that corresponds to the commitment period of the Kyoto Protocol, and

Phase 3 (2013-2020) that implements the emission targets outlined in the 2020 Climate and

Energy Package. Phase 4 is set to start in 2021 and continue until 2030 (European Parliament

and Council (2009)). My analysis covers two pre-EU ETS years (2003 and 2004), the first two

phases (2005-2012), and the first two years of the third phase (2013 and 2014). The cap of

the EU ETS is currently annually lowered by 1.74 percent, which corresponds to a reduction

in emissions by 21 percent relative to 2005 in 2020. With the onset of Phase 4, the cap will

decrease by 2.2 percent annually (European Council (2014a)). The following figure describes

the evolution of the EUA prices since the inception of the EU ETS. In the manufacturing

sector, the EU regulates all combustion installations for the generation of electric power and

heat with a total thermal rated input above 20 megawatts (MW) as well as energy intensive

production processes. This production includes oil refining; the processing of ferrous metals; the

manufacture of cement; the manufacture of lime; the manufacture of ceramics including bricks

and glass; and the production and processes of pulp and paper.The EU ETS only regulates

7



Figure 1: The evolution of the daily EUA prices for the period 2005-2014. Source: Thomson
and Reuters, own depiction

large installations with capacities in excess of process-specific thresholds, which are determined

by regulation. The inclusion criteria creates variation in the treatment status, which is why

both regulated and unregulated firms exist within the same industry.13 I report on the number

of regulated and unregulated firms in my dataset across the sample years in Table 1.

3 Methodology

In large part, one can estimate the efficiency scores at the firm level by using two well-known

frontier techniques, the stochastic frontier analysis (SFA) or the data envelopment analysis

(DEA). The DEA is a non-parametric approach that was introduced by Charnes et al. (1978).

Contrary to the SFA, this approach suffers from the inability to separate variations in efficiency

from random noise. The latter is not directly attributable to the producer or the underlying

technology. These shocks may be attributable to weather changes, economic adversities, or

plain luck (Newhouse et al. (1994)). Wadud and White (2000) find that in most empirical

studies the selection of the method used to measure efficiency is arbitrary and mainly based on

the objective of the study, the data, and the personal preference of the researcher.
13For more details on the inclusion criteria of the EU ETS, please see European Parliament and Council

(2003).
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Table 1: The number of participating firms in the EU ETS across years

2005 2010 2014

ISIC Rev.4 Industry Total Unregulated Regulated Total Unregulated Regulated Total Unregulated Regulated

10 Food products 4877 4836 41 4878 4832 46 4988 4940 48
11 Beverages 619 610 9 519 507 12 492 478 14
12 Tobacco products 25 - - 21 - - 22 - -
13 Textiles 845 838 7 697 691 6 678 672 6
14 Wearing apparel 514 514 - 313 313 - 270 270 -
15 Leather and related products 188 188 - 137 137 - 122 122 -
16 Wood and products of wood and cork 1395 1380 15 1161 1139 22 1151 1127 24
17 Paper and paper products 858 772 86 825 723 102 794 687 107
18 Printing and reproduction of recorded media 1682 - - 1490 1487 3 1316 1311 5
19 Coke and refined petroleum products 51 36 15 45 29 16 50 33 17
20 Chemicals and chemical products 1204 1134 70 1218 1138 80 1286 1201 85
21 Pharmaceutical products 285 278 7 255 249 6 275 268 7
22 Rubber and plastic products 2799 2788 11 2749 2734 15 2871 2857 14
23 Other nonmetallic mineral products 1909 1743 166 1646 1469 177 1668 1490 178
24 Basic metals 941 882 59 924 857 67 938 865 73
25 Fabricated metal products 6358 6354 4 6750 6744 6 7287 7284 3
26 Computer, electronic and optical products 1772 1767 5 1632 1628 4 1764 1761 3
27 Electrical equipment 2063 2056 7 1906 1899 7 2011 2004 7
28 Machinery and equipment n.e.c. 6177 6167 10 5298 5283 15 5530 5516 14
29 Motor vehicles, trailers, and semitrailers 1190 1180 10 1093 1085 8 1063 1054 9
30 Other transport equipment 350 341 9 256 249 7 281 273 8
31 Furniture 1095 1095 - 981 981 - 1000 1000 -
32 Other manufacturing 1624 1620 4 1458 - - 1521 - -
33 Repair and installation of mach. and equip. 308 308 - 1494 1488 6 1647 1641 6

Total 39129 36887 535 37746 35662 605 39025 36854 628

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

Due to statistical disclosure and reidentification concerns, some information is missing.

3.1 Stochastic Cost Frontier Analysis

The SCF analysis originates from the seminal work by Aigner et al. (1977) and Meeusen and

van Den Broeck (1977) who introduced an econometric approach to frontier analysis with a

composed error structure. One of the error components represents the noise that one can

predominantly consider as a two-sided normally distributed variable, and the other represents

cost (in)efficiency (CE). Thus, departures from the best-practice frontier, as estimated by the

SCF analysis, may be either stochastic (random shocks) or deterministic (inefficiency). Unlike

the production frontier, which is used to estimate technical efficiency, the SCF identifies the

minimum costs at a given output level, input prices, and existing production technology. The

deterministic part of the distance to the SCF can be further decomposed into the allocative

efficiency (AE) and technical efficiency (TE). Thus, technically efficient firms are not necessarily

cost efficient. I use the SCF analysis to estimate a frontier for German manufacturing firms at

the 2-digit industry level as depicted in Figure 2. To estimate the SCF consistently, I apply the

pooled cross-section model to panel data, which is in line with Battese and Coelli (1993) and

9



Battese and Coelli (1995).14 Many other economic studies have used this model on efficiency

with the SCF analysis and MFA methods.15 In my econometric model, I assume that the

functional form of the SCF is Cobb-Douglas.16 Expressed in logs, the SCF can be written as:

lnTCit = α + β1lnYit + β2lnPLit
+ β3lnPKit

+ β4lnPEit
+ τT + vit + uit (1)

where TCit denotes total costs; Yit denotes the gross value of production; and PLit
, PKit

, and

PEit
are input factor prices for labor, capital, and energy, respectively. T represents the time-

trend variable that captures the technological change. α, β, and τ are technology parameters

to be estimated. vit is a normally distributed two-sided random-noise component with variance

σ2
v , and uit is a non-negative inefficiency component of the idiosyncratic composed error term

εit = vit + uit. I assume the uit to have a non-negative truncated normal distribution uit ∼

N+(µit, σ
2
ui

).17 Including my variables for cost-efficiency drivers, I can specify the model for

the stochastic cost inefficiency effects uit as:

uit = zitδ + wit, uit ∼ N+(zitδ, σ
2
u) (2)

where zit = (1, z1it, ...., z
L
it) represents a vector of factors that directly impact inefficiency. I use

the participation in the EU ETS (ETS) and the interaction between the participation in the EU

ETS and active trading (ACTTRADE) in the above model. I also include different EU ETS

compliance periods (PHASE1, PHASE2) the export status (EXP ), and the R&D (RANDD)

activity. δ denotes a vector of parameters to be estimated, and w are unobservable iid random

variables that are obtained by truncation of the normal distribution with a mean of zero and
14A future version of this paper will also contain results from a "true random- effects" model (TRE) that was

introduced in Greene (2005a) and Greene (2005b). This specification disentangles the time-varying inefficiency
from the firm-specific, time-invariant unobserved heterogeneity.

15See e.g. Fries and Taci (2005), Chapple et al. (2005), Estache and Rossi (2002), Zhang et al. (2003), Chen
et al. (2014).

16Alternatively, a translog functional form could be assumed. Although a translog cost function is more
flexible, it makes the later decomposition of cost efficiency very difficult due to the so-called "Greene-problem"
(Kumbhakar et al. (2015)). Furthermore, the translog specification includes second-order terms and is poten-
tially prone to multicollinearity (Farsi and Filippini (2008)).

17To correspond to a well-behaved production structure, the cost function must satisfy the following regu-
larity conditions: continuity, symmetry, linear homogeneity in prices, monotonicity in prices and outputs, and
concavity in prices. I satisfy the linear homogeneity restriction (

∑
n βn = 1.) by dividing total costs and all

input prices with PKit
. Prior to estimating the cost function with the SCF, various tests were carried out on

the skewness of the OLS residuals, monotonicity and concavity checks as well as the likelihood ratio test for
presence of cost inefficiency.
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an unknown variance, σ2
ui
. The parameters of the SCF (1) and the model for the cost efficiency

effects (2) are estimated by applying the maximum likelihood estimation method (MLE). The

appropriate likelihood functions and their partial derivatives with respect to the parameters of

the model are outlined in the appendix of Battese and Coelli (1993).18 The following equation

represents the cost efficiency of a firm, as the deterministic part of its distance relative to the

SCF:

CEit =
eXitβ+Vit

TCit

= e−uit (3)

It is estimated using the Battese and Coelli (1988) estimator.

Figure 2: Use of stochastic frontier analysis for industry-specific cost frontier estimations,
Source: Own depiction

3.2 Meta Frontier Analysis

There is often a considerable interest in measuring the performance of firms across different

production groups.19 While the efficiency of a firm‘s performance can be estimated by means

of frontier estimation methods (e.g. SCF), efficiency levels from one firm to another are not

directly comparable if firms‘ operations are based on different technologies (Lin (2011)). The
18To estimate equations 1 and 2 with a single-stage approach, I use the Stata commands provided in Belotti

et al. (2013).
19Nkamleu et al. (2006) compare agricultural productivity in different regions in Africa. Breustedt et al.

(2011) apply the MFA concept to compare efficiencies of organic and conventional dairy farmers under the EU
Milk Quota System. Bhandari and Ray (2012) apply the MFA to the Indian textiles industry and estimate
different group frontiers based on ownership type, state, and organization.
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MFA enables efficiency comparisons across groups of firms without assuming similar technolo-

gies. The concept behind MFAs was introduced in the seminal work by Hayami (1969), Hayami

and Ruttan (1970), and Hayami and Ruttan (1971). It relies on the critical assumption that

producers that operate in various production groups all have potential access to an array of

production technologies. For a multitude of reasons, firms in some groups cannot choose the

best technology from this array, instead they choose a sub-technology. The reasons may in-

clude specific circumstances, such as the regulation, the production environment, production

resources, relative input prices; for each production group, a gap can be estimated that is the

difference between the best technology and the chosen sub-technology. The best technology is

represented by the meta frontier that is common to all production groups and envelops group-

specific frontiers that represent the chosen sub-technologies. Efficiencies in the MFA framework

are estimated relative to the frontier. These are known as meta efficiencies. We can decom-

pose the meta-efficiency for each production group into a distance from the input-output point

to the group-specific frontier (group-specific efficiency) and the distance between the group-

specific frontier and the meta frontier (gap). By construction, meta efficiency is a product of

the group-specific efficiency and the gap.

3.2.1 Stochastic Meta Cost Frontier Analysis

The MFA was originally introduced using a production function approach. Sub-technologies

are represented by production frontiers and enveloped by a meta production frontier. A gap

between these frontiers is known as a production technology gap. In the many empirical appli-

cations since, the meta frontier concept was applied within the cost framework that is based

on the Shephard Duality Theorem ( Uzawa (1962), Shephard (2012)).20 In this case, we re-

fer to the gap between the group frontiers and the meta frontier as a cost gap ratio (CGR)

and in addition to the latter, estimate group-specific CE as well as the meta cost efficiencies

(MCE). Usually, the MFA approach proceeds in two steps. In the first step, group-specific

frontiers are estimated and then using these results, in the second stage the meta frontier is

calculated. Prior methods, by Battese et al. (2004) and O’Donnell et al. (2008), use a de-

terministic meta-frontier programming method, which can be perceived as a mixed approach.
20This was previously done by Chen et al. (2014) and Huang and Fu (2013), Huang et al. (2010), and Huang

et al. (2010).
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The first step involves a conventional stochastic frontier analysis, and in the second step the

use of linear (or quadratic) programming algebraic calculation to solve that the meta frontier

envelops these group-specific stochastic frontiers. Amsler et al. (2017) have recently shown that

such deterministic measurement methods of the meta-frontier distances are not appropriate.

Their findings show that the use of deterministic approaches in which the stochastic nature of

frontiers is neglected may result in smaller expected differences between the meta frontier and

the group-specific frontiers.21 In this study, I use the SMFA for two purposes. First, as depicted

in Figure 3, I use it in order to compare cost efficiencies between different 2-digit industries of

the manufacturing sector to learn which industry is most cost efficient. Second, I use it to test

my hypothesis that the EU ETS in the long-run results in the innovative and non-innovative

firms operating under heterogeneous cost frontiers within a 2-digit industry, by employing the

method that was introduced by Huang et al. (2014), henceforth referred to as the HHL model.22

Contrary to prior efforts, the HHL model uses a conventional maximum likelihood method to

Figure 3: Use of meta-frontier analysis for intra-industry comparisons, Source: Own depiction

estimate the parameters of the stochastic frontier regression in both stages. Hence, the SMFA

ensures that in the second-step statistical inferences can also be performed (in prior methods

this would not be possible without bootstrapping and simulations). Furthermore, the CGRs
21In addition to advocating for the SMFA for measuring various meta components (e.g. CGR, MCE), Amsler

et al. (2017) also show how to make predictions for these components and how to construct confidence intervals
accordingly. In a future version of this paper, the confidence intervals of meta components will be constructed.

22The empirical application of this model was previously, for example, carried out by Chen et al. (2014). In
their study, they analyze and compare the cost efficiencies of Taiwan biotech and pharmaceutical firms.
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can be directly estimated as conventional one-sided error terms, which enables the isolation of

idiosyncratic shocks (using prior methods, the gaps would be contaminated). Finally, the HHL

model further can specify the one-sided error term as a function of environmental variables

beyond the control of the firm, which is in line with Battese and Coelli (1995). Using the HHL

model in this study hence makes sense from a pragmatic perspective, as I can use the results

obtained from the method in the previous section, as my first-stage results, and subsequently

estimate the meta frontier.

First-step: Stochastic Cost Group Frontier Estimation

In the first stage, the cost frontier for each group, the regulated and unregulated firms, is

specified as in (1) and (2). After the maximum likelihood estimation of (1), the group-specific

cost efficiency relative to the SCF is estimated as outlined in equation (3). Finally, for each

group, the linear residuals are predicted.

Second-step : Stochastic Cost Meta Frontier Estimation

I assume that for each narrowly defined industry in the manufacturing sector, the two group-

specific SCFs are enveloped by the meta frontier. The meta frontier is estimated using the

following equation (4) :

ˆlnTCit = α + β1lnYit + β2lnPLit
+ β3lnPKit

+ β4lnPEit
+ τT + vMit + uMit (4)

where ˆTCit denotes the adjusted total costs; Yit denotes the gross value of production; and PLit
,

PKit
and PEit

are input factor prices for labor, capital, and energy, respectively. T represents

the time-trend variable, which captures the technological change. α, β, and τ are technology

parameters to be estimated. vMit is a normally distributed two-sided random-noise component

with variance σ2
v , and uMit is a non-negative meta inefficiency component of the idiosyncratic

composed error term εMit = vMit + uMit . I assume the uit to have a non-negative truncated

normal distribution uMit ∼ N+(µit, σ
2
ui

). I use the following environmental variables to model

group-specific cost inefficiency effects:

uit = a0 + a1RANDDit + a2EXPit + εit (5)
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The MCE can be estimated in the following way:

MCE∗it =
eXitβ

∗+Vit

ˆTCit

=
eXitβ

∗

eXitβ
× eXitβ+Vit

ˆTCit

(6)

I use the following environmental variables to model the meta cost inefficiency effects:

uMit = a0 + a1RANDDit + a2EXPit + a3PATENTSit + εMit (7)

The CGR represents the ratio between the expected total cost relative to the meta cost frontier

and the expected total cost relative to the group-specific cost frontier. That is,

CGRit =
eXitβ

∗

eXitβ
(8)

Therefore,

MCE∗it = CEit × CGRit (9)

3.3 Differences-in-differences Approach

3.3.1 Parametric DD approach with conditioning strategies

In this step of my empirical analysis I identify and quantify the impact of the EU ETS by com-

paring changes in cost efficiency across German manufacturing firms that are affected differently

by the EU ETS. Due to the inclusion criteria of the EU ETS, within narrowly defined industries,

both regulated and unregulated firms exist that enables a quasi-experimental framework.23 The

specification of the difference-in-differences model that I estimate for the full sample in period

2003-2014 is formulated in the following equation 10,

ln(CE)it = β0 + τ1ETSi × Phase1t + τ2ETSi × Phase2t + τ3ETSi × Phase3t

+zitΨ + αi + φt + γs + ηst + εit

(10)

where ETSi indicates if a firm is regulated by the EU ETS. The parameter τ1 on the interaction

terms between ETSi and the indicator (Phase1t) for the period between 2005 and 2007 give
23The identification strategy I use is established in the policy evaluation literature as the potential outcome

framework. For a notable empirical application of this strategy in terms of climate policy evaluation, see Fowlie
et al. (2012).
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the estimated effect of the EU ETS in the first phase. The parameter τ2 on the interaction

terms between ETSi and the indicator (Phase2t) for the period between 2008 and 2012 give

the estimated effect of the EU ETS in the second phase. The parameter τ3 on the interaction

terms between ETSi and the indicator (Phase3t) for the period after 2013 give the estimated

effect of the EU ETS in the third phase. I add control variables Ψ, namely capital stock,

emissions, energy use and output per employee. To account for the observed and unobserved

heterogeneities across regulated and unregulated firms, I additionally control for firm fixed-

effects, αi. The year fixed effects φt control for superior trends in cost efficiency in German

manufacturing. The inclusion of industry fixed effects γs adjusts for all constant unobserved

determinants of cost efficiency across industries. ηst denotes the full interaction terms between

the industry and year fixed effects and nonparametrically absorbs within industry-productivity

trends. The error term εit is assumed to have a mean of zero. When estimating the causal

impact of the EU ETS on cost efficiency for a subset of 2-digit industries, γs and ηst drop out

from the equation (10). I also investigate the average treatment effect of the EU ETS on the

meta cost efficiency for a subset of 2-digit industries. The specification is the same as in the

equation (10), except for the outcome variable being meta cost efficiency in logs, and γs and

ηst dropping out.

3.3.2 Non-parametric DD approach with nearest-neighbor matching

In the literature on cap-and-trade impact evaluation, the use of matching techniques is on

the rise (Fowlie et al. (2012), Gerster et al. (2020), Calel and Dechezleprêtre (2016), Löschel

et al. (2019)). Along with the parametric DD model with different conditioning strategies,

I estimate a model based on non-parametric matching to the nearest neighbor, which is in

line with Löschel et al. (2019). This way I do not have to pose any parametric assumptions

on the relation between the cost efficiency and the explanatory variables zit.24 The adequate

control group is identified using the Mahalanobis distance that determines similarity between

firms by a weighted function of observable covariates for each firm. The weight is based on

the inverse of the covariates’ variance-covariance-matrix. This weighting enables me to form a

control group using unregulated firms that resemble the firms in the treatment group and thus
24Remaining needed assumptions are the assumption of conditional unconfoundedness and SUTVA. The

common support assumption is critical to using matching. I assume that the conditional probability to be
treated is larger than zero and smaller than one: 0 < P[ETSi = 1|X] < 1.
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might be affected by unobservable confounding factors in the same way. I match the nearest

neighbor with replacements, that is, unregulated firms can be used multiple times as a match.

I match on the firms’ output, emissions, capital stock, number of employees, and energy use

in 2003. To form an adequate control group, when using the full sample, I match exactly on

2-digit industries, that is, within strata. The average treatment effect is estimated using the

difference-in-differences matching estimator, which is in line with Heckman et al. (1997).

τ̂ =
1

N

∑
j∈I1

{
(CEjt′(1)− CEjt0(0))−

∑
k∈I0

wjk(CEkt′(1)− CEkt0(0))

}
(11)

where I1 denotes the treated group of firms (in the EU ETS), and I0 denotes the group of

control firms (outside of the EU ETS). N represents the number of firms in the treatment

group. The regulated firms are indexed by j, whereas the unregulated firms are indexed by k.

wjk denotes the weight placed on firm k when constructing the counterfactual estimated for the

treated firms.25

4 Data

My analysis relies on the use of the AFiD dataset for the period 2003-2014.26 It contains

information on annual general characteristics and cost structure, and it is particularly detailed

in terms of fuel and electricity use.27 I construct this unique dataset by combining several

microdatasets and modules: the "AFiD Panel Industriebetriebe" (AFiD Panel Manufacturing

Plants), the “AFiD Modul Energieverbrauch” (AFiD Module on Energy Use), "AFiD Modul

Produkte" (AFiD Module on Products), the “Kostenstrukturerhebung” (Cost Structure Survey)

and the “Unternehmensregister” (Company Register). These modules are provided by the

German Federal Statistical Office and the Statistical Offices of the German Federal States and

the information disclosure is mandatory for all surveyed firms and plants.28 I additionally
25In a future version of the paper we will implement nearest-neighbour matching without replacement as an

additional matching techniques. As suggested by Abadie and Spiess (2019), this technique allows for a robust
post-matching inference by clustering the standard erros on matched-pair level .

26I also have data for the period from 1995 to 2002. However, the statistical offices have changed the survey
that gathered the information on energy use in 2003, which hinders the inclusion of data pre-2003.

27AFiD stands for "Amtliche Firmendaten für Deutschland", English: Official Firm Data for Germany.
28Detailed descriptions of the AFiD Panel Manufacturing Plants are provided by Koch and Migalk (2007) and

Wagner (2010). Cost structure survey is explained in depth by Fritsch et al. (2004) and Lutz (2016). Additional
information on Company Register can be found in Koch and Migalk (2007). Petrick et al. (2011) thoroughly
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combine the European Union Transaction Log (EUTL) data in order to identify which German

manufacturing firms are regulated by the EU ETS and other external data to calculate CO2

emissions and estimate capital stocks. The datasets are merged at the firm-level via plant

and firm-level identifiers. All monetary variables are deflated to 2010 Euros. For additional

information on the merger, see section C in the Appendix.29

4.1 SCF and SMF variables

My measure of total costs (TC) comes from the CSS.30 My measure of output (Y ) is the gross

value of production of the firm, retrieved from the AFiD Module on Products. The production

data is provided at the 9-digit product code level, which are listed in the List of goods from

production statistics by Statistisches Bundesamt (2019). We deflate the sales values using two-

digit ISIC Rev. 4. deflators.31 Firm-specific price of labor (PL) is calculated as the paid gross

yearly wages from the CSS divided by the annual average of the number of employees reported

monthly in the production census. The firm-specific price of capital (PK) is calculated as the

residual price of capital. The residual capital costs (total costs that are not related to labor

or materials) are divided by the capital stock and are computed with the perpetual inventory

method. The firm-specific price of energy (PE) is calculated as the total energy expenditure

from the CSS divided by its total energy use, and is retrieved from the AFiD-Module Use

of Energy. Energy costs are inflated by the emissions costs for treated firms in the period

from 2005 to 2014. This inflation leads to higher energy prices for regulated firms than for

unregulated firms. Emissions costs are calculated by multiplying annual emissions in tCO2

with the respective EUA price. Annual emissions are calculated using energy use and related

CO2 emission factors. All monetary values are deflated to the 2010 base value.32 Table 2

reports on descriptive statistics of variables across different industries in period 2003-2014. For

the model of cost inefficiency effects, the cost efficiency drivers are obtained in the following way:

Based on the commercial register number and the VAT number, I first match the European

inform on the AFiD Module on Energy Use.
29The AFiD data was previously used in the context of the EU ETS by Gerster et al. (2020), Lutz (2016),

Lutz et al. (2017), Richter and Schiersch (2017),Löschel et al. (2019).
30This measure does not include the material consumption nor the use of external energy and water.
31I use industry-specific price deflators to remove the price component from an overall value measure and

thereby isolate the volume component. The data on price deflators was retrieved from EU KLEMS (2017). The
year 2010 is the base value.

32Consumer Price Indices for Germany are retrieved from the World Bank Group. The base year is 2010.
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Table 2: Descriptive statistics of variables

ISIC Rev. 4 Total Costs Output Price of
Capital

Price of
Labour

Price of
Energy

Capital
Stock Number of Energy use Emissions Number of

(EUR
1000)

(EUR
1000)

(EUR
1000)

(EUR
1000) (EUR/kWh) (EUR

1000) Employees (Mwh) (tCO2) Firms

10 20161 20839 1,43 20,09 0,14 6391 99 11700 4050 8367
(63471) (79875) (4,03) (9,84) (1,02) (23000) (224) (81000) (22314)

13 10262 12405 1,29 26,32 0,11 5249 99 9611 3808 1289
(19241) (23556) (2,83) (9,62) (1,04) (10700) (131) (25900) (9388)

16 12715 1194 1,44 26,39 0,19 5362 67 16800 2821 2149
(24323) (29417) (4,19) (8,46) (1,65) (17000) (115) (102000) (15882)

19 1036800 677902 2,53 49,96 0,45 150000 388 1640000 468189 74
(2982053) (2198909) (4,58) (16,51) (3,37) (309000) (725) (4300000) (1230527)

20 67312 78205 1,96 39,82 0,35 36500 263 218000 67042 1968
(361984) (373298) (23,28) (12,96) (14,25) (184000) (1234) (2280000) (609983)

21 109414 104273 1,62 40,69 0,18 57300 452 26400 9325 450
(384318) (357973) (3,29) (13,61) (1,60) (258000) (1295) (92000) (27786)

22 22926 19327 1,14 29,36 0,14 7809 129 8548 4456 4218
(65626) (55109) (6,28) (9,29) (1,69) (23200) (319) (34500) (14938)

24 50556 86211 1,11 36,15 0,16 24500 268 265000 97588 1388
(191335) (365361) (3,40) (10,13) (2,15) (112000) (838) (2790000) (907727)

25 15104 12985 1,49 30,40 0,14 4737 91 4180 1942 10583
(31800) (31952) (16,93) (9,59) (1,29) (12600) (166) (25700) (12127)

26 36711 31159 1,68 37,48 0,47 12200 166 4650 2558 3029
(149353) (135456) (3,52) (13,69) (19,40) (90800) 497 (35400) (18439)

27 45680 35504 1,60 33,20 0,17 10700 234 5560 2759 3248
(534098) (339797) (3,28) (11,55) (1,35) (120000) 2604 (49400) (23655)

28 31269 29633 1,71 37,39 0,20 7912 165 4322 1934 9521
(151348) (120373) (12,79) (12,20) (6,20) (54100) (792) (34600) (14188)

29 164582 221849 1,79 33,10 0,50 60600 729 31900 15432 1807
(1256032) (2304456) (7,89) (12,02) (11,96) (584000) (5904) (282000) (133666)

30 71503 88776 1,56 35,37 0,19 24100 440 17800 7410 2171
(305896) (388130) (3,31) (12,77) (3,29) (142000) (1623) (189000) (84517)

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

Standard deviations in the parentheses.

Emissions Transactions Log to the German official Business Register. In the next step, I can

directly match the AFiD to the EUTL in the period from 2005 to 2014. This matching allows

me to generate the dummy variable for the participation in the EU ETS (ETS). I also create a

dummy variable for actively trading firms (ACTTRADE) by using information from EUTL. I

identify the firm as an active trader if its number of trades in a given year exceeds the median

of trades by all firms in that same year. I create dummy variables for the first (PHASE1)

and the second phase (PHASE2) to implicitly control for varying EUA prices. The dummy

variable for R&D activity (RANDD) is created by identifying firms whose R&D expenditure

are positive. For the model of meta cost inefficiency effects, I create a dummy (PATENTS),

that identifies a patent investing firm if investments into patents in a given year are positive.

Table 3 reports on descriptive statistics of cost efficiency drivers across different industries in

period 2003-2014.
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Table 3: Descriptive statistics of cost efficiency drivers

ISIC Rev. 4 ETS EXP RANDD ACTTRADE PHASE1 PHASE2 PATENTS

10 0.074 0.055 0.127 0.086 0.077 0.071 0.105
13 0.011 0.025 0.016 0.003 0.013 0.011 0.018
16 0.033 0.027 0.033 0.021 0.030 0.034 0.066
19 0.026 0.001 0.001 0.058 0.024 0.023 0.002
20 0.126 0.042 0.030 0.142 0.129 0.123 0.036
21 0.011 0.009 0.006 0.010 0.013 0.010 0.012
22 0.021 0.079 0.069 0.016 0.020 0.021 0.055
24 0.107 0.028 0.016 0.094 0.109 0.103 0.019
25 0.009 0.152 0.176 0.002 0.009 0.010 0.128
26 0.007 0.061 0.052 0.001 0.010 0.006 0.053
27 0.011 0.059 0.052 0.007 0.011 0.012 0.052
28 0.022 0.185 0.153 0.008 0.021 0.022 0.134
29 0.015 0.033 0.025 0.020 0.018 0.014 0.031
30 0.045 0.048 0.038 0.040 0.017 0.072 0.039

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

Standard deviations in the parentheses.

5 Results

In this section I present the estimated stochastic cost frontier as well as the simultaneously esti-

mated relations of different drivers and energy efficiency for 14 2-digit industries. I also present

results of the stochastic meta cost frontier analysis for in terms of intra-industry comparisons.

I conclude with preliminary results of the DD analysis.

5.1 Stochastic Frontier Analysis

Parameter estimates of the stochastic cost frontier model in Table 4 vary across industries,

reflecting heterogeneity. Estimates have plausible signs from an economic point of view. The

positive sign of output and normalized input prices can be interpreted as follows: given the

technology, a respective increase in these variables would increase total costs. Price of energy

accounts for a relatively small share of total costs, whereas the contrary can be observed for

the price of labor. The negative and highly statistically significant time trend hints at the

fact that the total costs decreased over time in all industries except for industries (19), (25),

(28), and (30). This decrease suggests that a change in the technology of production occurred

during the observation period, although the time-trend variable captures also other time-trend

effects. The results range from -0,005 in industry (16) to -0,031 in industry (27), which reflects

a decrease in total costs of 0.5 to 3% per year. Table 5 presents the relation between several

determinants and cost efficiency. I find that participation in the EU ETS is a significant driver
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Table 4: Estimation results for the stochastic cost frontier

ISIC Rev.4 lnY lnPE lnPL T

10 0.647*** 0.162*** 0.708***−0.013***

13 0.708*** 0.099*** 0.858***−0.013***

16 0.726*** 0.047*** 0.885***−0.005**

19 0.809*** 0.026 0.533*** 0.009
20 0.742*** 0.062*** 0.876***−0.021***

21 0.845*** 0.142*** 0.833***−0.006**

22 0.814*** 0.158*** 0.770***−0.020***

24 0.708*** 0.052*** 0.971***−0.013***

25 0.761*** 0.111*** 0.863*** 0.003***

26 0.779*** 0.038*** 0.929***−0.013***

27 0.807*** 0.087*** 0.854***−0.031***

28 0.801*** 0.085*** 0.913*** 0.001
29 0.772*** 0.060*** 0.940***−0.011***

30 0.671*** 0.013 1.000***−0.004
Notes: *p<0.10, **p<0.05,***p<0.01; Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey
years 2003-2014], own calculations.

of cost inefficiency in most industries, which means that regulated firms in these industries are

worse at containing costs than their non-regulated counterparts. EU ETS seems to regulate

less cost efficient firms. Investment into research and development is associated with increased

cost inefficiency in most industries, as well as, active trading with emission permits. I can show

for the first time that there is a positive relationship between exporting and cost efficiency of

manufacturing firms.

Table 5: Estimation results for the cost inefficiency drivers and variance parameters

ISIC Rev.4 ETS RANDD EXP ACTTRADE PHASE1 PHASE2 σu λu = σu/σv

10 0.838*** 0.482*** −0.392*** 0.192* −0.121 −0.080 0.455*** 0.882***

13 0.764 0.238*** −0.738*** 0.349 0.445 0.275 −0.592*** 1.622***

16 0.496*** 0.327*** −0.005 −0.217 0.125 0.156 0.573*** 1.809***

19 1.444*** −1.039*** −2.144*** 0.847** 0.455 0.116 1.353*** 5.050***

20 0.935*** 0.308*** −0.887*** 0.676*** 0.001 0.158 0.795*** 1.955***

21 1.723*** 0.450*** −1.408*** 0.361 −0.790 −0.701 0.946*** 2.700***

22 0.337** 0.338*** −0.189*** 0.196 −0.051 0.124 0.405*** 1.254***

24 0.301*** 0.428*** −0.074 0.316*** 0.078 0.127 0.230*** 0.480***

25 0.917*** 0.512*** −0.330*** 0.240 −0.303 −0.219 0.502*** 1.542***

26 2.319** 0.204*** −0.692*** −0.082 −0.245 0.160 0.776*** 2.148***

27 0.857** 0.246*** −0.447*** 0.622* −0.283 0.164 0.631*** 1.853***

28 1.138*** 0.216*** −1.165*** 0.060 −0.006 0.008 0.706*** 2.244***

29 1.246*** 0.647*** −1.265*** 0.194 0.196 0.104 0.699*** 1.764***

30 1.527*** 0.790*** −1.112*** −0.066 0.218 0.104 1.044*** 3.322***

Notes: *p<0.10, **p<0.05,***p<0.01; Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey

years 2003-2014], own calculations.

There are two indicators for cost efficiency in my model. First, the estimates of λ denote

the relative contribution of the variance in cost efficiency (σu) in proportion to the variance
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of the error (σv). The statistical significance of λ indicates the presence of cost efficiency. I

can identify cost inefficiencies for all of the industries presented. These inefficiencies suggest I

can reject the null hypothesis of λ = 0, as there are differences in cost efficiency between firms

within a specific narrowly defined industry. The second indicator is the cost efficiency score.

These scores are presented in Table 6. The highest possible score is one that indicates there

is no potential for cost efficiency improvements in a specific 2-digit industry. In the Appendix,

Figures 4 and 5 show the the development of mean cost efficiency scores over time and between

treatment groups for selected 2-digit industries.

Table 6: Average yearly cost efficiency for 2-digit industries

ISIC Rev.4 Industry CE sd p10 p50 p75 N

10 Food 0.734 0.095 0.615 0.748 0.802 20720
13 Textiles 0.752 0.110 0.610 0.776 0.830 4630
16 Wood and products of wood and cork 0.652 0.154 0.425 0.682 0.773 4622
19 Coke and refined petroleum products 0.547 0.273 0.128 0.638 0.784 488
20 Chemicals and chemical products 0.663 0.157 0.430 0.704 0.780 9396
21 Pharmaceutical products 0.675 0.157 0.452 0.711 0.777 2129
22 Rubber and plastic products 0.750 0.104 0.612 0.771 0.826 10247
24 Basic metals 0.792 0.111 0.641 0.843 0.868 7154
25 Fabricated metal products 0.724 0.121 0.570 0.747 0.810 21673
26 Computer, electronic and optical products 0.669 0.152 0.468 0.701 0.779 8351
27 Electrical equipment 0.691 0.136 0.516 0.716 0.789 10653
28 Machinery and equipment n.e.c. 0.748 0.122 0.591 0.776 0.832 26574
29 Motor vehicles, trailers, and semitrailers 0.730 0.126 0.575 0.760 0.817 7432
30 Other transport equipment 0.593 0.194 0.316 0.632 0.742 2622

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-

2014], own calculations.

5.2 Stochastic Meta Frontier Analysis

The results in Table 6 give some indication about cost saving potential of firms in a specific

industry. In order to make meaningful comparisons of cost efficiency between different industries

(inter-industry comparison), and different treatment groups within an industry (intra-industry

comparison), SMF analysis is required. As mentioned above, the results of inter-industry

comparisons are shown in the Appendix in Tables A.1

5.2.1 Intra-industry Comparison

The use of SMF analysis is also required if one wants to directly compare cost efficiency of firms

operating in different groups, under heterogeneous stochastic cost frontiers, using different tech-
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nologies. My second hypothesis stating that innovation, encouraged by the EU ETS regulation,

in some industries potentially causes a divergence of regulated and non-regulated firms, has thus

far been proven for industries (19) and (21). The Likelihood Ratio Test confirmed, that the use

Table 7: The comparison of mean cost efficiency scores between differently treated groups across
years

Year CE CGR MCE CE CGR MCE

ISIC Rev. 4 (19) treatment group control group

2003 0,8262 0,6259 0,5309 0,7023 0,8415 0,5915
(0,1816) (0,1767) (0,2168) (0,2264) (0,0515) (0,1915)

2005 0,8015 0,6382 0,5292 0,6878 0,8268 0,5714
(0,2162) (0,1753) (0,2365) (0,2107) (0,0670) (0,1825)

2010 0,7732 0,6972 0,5573 0,6865 0,8011 0,5662
(0,2416) (0,1500) (0,2444) (0,2357) (0,1069) (0,2103)

ISIC Rev. 4 (21) treatment group control group

2003 0,5709 0,5917 0,3378 0,6714 0,9773 0,6563
(0,1265) (0,1577) (0,1124) (0,1673) (0,0024) (0,1638)

2005 0,6228 0,6719 0,4190 0,6832 0,9776 0,6680
(0,1544) (0,1794) (0,1536) (0,1536) (0,0024) (0,1503)

2010 0,6431 0,6638 0,4259 0,6899 0,9786 0,6752
(0,1429) (0,2128) (0,1553) (0,1365) (0,0018) (0,1336)

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014], own

calculations. Standard deviations in parentheses.

of heterogeneous frontiers for the treated and non-treated group is superior to using a homo-

geneous/pooled stochastic cost frontier. Table 7 shows that in the case of industry (19), when

directly comparing cost efficiencies (CE), estimated using separate stochastic cost frontiers for

treated and control groups of firms, treated firms are more cost-efficient than control firms in

years 2003, 2005 and 2010. The latter direct comparison is not valid, as it requires the SMF ap-

proach. When comparing the meta cost efficiency scores (MCE), the treatment group actually

consistently demonstrates lower cost efficiency compared to the control group. Admittedly, the

difference decreases over time. For industry (21), the application of SMF analysis exposes big

differences between the cost efficiency of treatment and control group of firms. While the direct

comparison of CE scores would indicate a difference of roughly 10%, the comparison of MCE

scores indicates a difference of more than 30% in year 2003. This difference in MCE decreases

over time. Figure 7 in the Appendix depicts intra-industry comparison of yearly mean meta

cost efficiency scores across treatment groups for 2-digit industries (19) and (21).
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5.3 Difference-in-differences Analysis

Table 8 reports the results of the parametric DD model described in Section 3.3.1 for the full

sample (industries (10)-(33). The outcome variable is the cost efficiency, measured against a

pooled stochastic cost frontier in logs. Table 8 shows the estimates of specification that includes

control variables, fixed effects and full interaction terms on industry and year.

5.3.1 Cost efficiency measured against a stochastic cost frontier

Table 8: Parametric DD approach treatment effects of a full sample

Dependent Variable:
Cost efficiency in logs

Full sample

Phase1 -0.153*

Phase2 -0.161*

Phase3 -0.157*

Year FE yes
Firm FE yes
Industry FE yes
Industry × Year FE yes
Additional Controls yes

# Observations 175359
Standard errors are computed by employing the block bootstrap algorithm with 500 repli-
cations. *p<0.10, **p<0.05,***p<0.01; Source: RDC of the Federal Statistical Office and
Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

As shown by Bertrand et al. (2004), conventional standard errors in DD applications with

long time series and a high serial correlation in the outcome variable are inconsistent. There-

fore, I apply the block bootstrap procedure with 500 replications in order to obtain adequate

standard errors for the estimated treatment effects clustered at the firm-level. My results show

a significant negative effect of the EU ETS on firm-level cost efficiency of 15.3 percent during

the first compliance period. The estimated treatment effect for the second compliance period is

16.1 percent, and 15.7 percent for the third compliance period. Table 9 reports the treatment

effects estimated using the non-parametric DD approach with nearest-neighbor matching, de-

scribed in Section 3.3.2. When matching with the nearest neighbor, I obtain an average negative

treatment effect of 14 percent, for the first compliance period. When adding the five closest

neighbors to the control group, it increases the treatment effect to -15.4 percent. Adding the

twenty closest neighbours, further increases the negative treatment effect to -15.7 percent. Also
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Table 9: Non-parametric DD approach with matching: treatment effects for the full sample

Dependent Variable: Cost efficiency in logs

Full sample one neighbor five neighbors twenty neighbors

Phase1 -0.140*** -0.154*** -0.157***

Phase2 -0.143*** -0.166*** -0.171***

Phase3 -0.140*** -0.167*** -0.169***

Year FE yes yes yes
Firm FE yes yes yes
Industry FE yes yes yes
Industry × Year FE yes yes yes
Additional Controls yes yes yes

# Observations 7042 11529 19444
Standard errors are computed by employing the block bootstrap algorithm with 500 replications.
*p<0.10, **p<0.05,***p<0.01; Source: RDC of the Federal Statistical Office and Statistical Offices
of the Länder, [survey years 2003-2014], own calculations.

for the second and third compliance period, the nearest neighbor matching shows significantly

negative estimates. As the industries within the manufacturing sector produce very different

goods, face different market conditions on input and output markets, the effect of the EU ETS

on the regulated firms potentially varies across industries. The average treatment effect over

all industries, shown in Tables 8 and 9 therefore does not provide the full picture of the impact

of the EU ETS. For this reason, I analyze the effect of the EU ETS for selected subsample

of 2-digit industries: coke and refined petroleum products (19), pharmaceutical products (21),

rubber and plastic products (22) and basic metals industry(24). The results of the subsample

Table 10: Parametric DD approach treatment effects for selected 2-digit industries

Dependent Variable: Cost efficiency in logs

ISIC Rev.4 19 21 22 24

Phase1 -0.086 -0.092 ** -0.109*** -0.272***

Phase2 -0.034 -0.126*** -0.201*** -0.311***

Phase3 -0.117 -0.320*** -0.171*** -0.277***

Year FE yes yes yes yes
Firm FE yes yes yes yes
Additional Controls yes yes yes yes

# Observations 487 2129 10242 7154
Standard errors are computed by employing the block bootstrap algorithm with 500 replications.
*p<0.10, **p<0.05,***p<0.01; Source: RDC of the Federal Statistical Office and Statistical Offices
of the Länder, [survey years 2003-2014], own calculations.

analysis in Table 10 confirm the heterogeneity of the treatment effect, however this empirical

strategy also reduces the sample size. Consequently, the precision of the estimates decreases
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in comparison to the analysis using the full sample. The biggest negative average treatment

effect is found for industry (24), ranging from -27.2 percent in the first compliance period, to

-31.1 percent in the second compliance period and -27.7 percent in the third compliance period.

For industry (19), the impact of the EU ETS is negative but insignificant. Table 11 shows the

Table 11: Non-parametric DD approach with matching: treatment effects for selected 2-digit
industries

Dependent Variable: Cost efficiency in logs

ISIC Rev.4 19 21 22 24

# Neighbors 1 5 20 1 5 20 1 5 20 1 5 20

Phase1 -0.073 -0.071 -0.089* -0.064 -0.067 -0.075 -0.110*** -0.119*** -0.113*** -0.271*** -0.274*** -0.271***

Phase2 -0.091 -0.050 -0.045 -0.190** -0.178*** -0.103 -0.205*** -0.218*** -0.204*** -0.316*** -0.322*** -0.310***

Phase3 -0.175** -0.118 -0.105 -0.334*** -0.322*** -0.256*** -0.205*** -0.178*** -0.182*** -0.284*** -0.289*** -0.277***

Year FE yes yes yes yes yes yes yes yes yes yes yes yes
Firm FE yes yes yes yes yes yes yes yes yes yes yes yes
Additional Controls yes yes yes yes yes yes yes yes yes yes yes yes

# Observations 220 269 359 102 229 419 151 340 732 914 1496 2492

Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *p<0.10, **p<0.05,***p<0.01;

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

results of non-parametric DD approach for a subsample of industries. The biggest differences

are observed in industries (19) and (21). For industry 19, the EU ETS now demonstrates a

significant negative average treatment effect of -17.5 percent in the third compliance period

using the nearest-neighbor, and a significant negative average treatment effect of -8.9 percent

in the first compliance period using the next twenty neighbors. For industry (21), the average

negative treatment effects are lower than in table 10. The difference in outcomes is expected

as, applying the matching algorithm, I avoid the functional assumptions of the parametric DD

model and I only compare the regulated firms with very similar unregulated firms. Furthermore,

I am only able to compare firms that remain in the sample during the considered time.

5.3.2 Cost efficiency measured against a meta stochastic cost frontier

As the industries within the manufacturing sector also differ in terms of regulation, the average

treatment effect for specific industries shown in Table 11, fails to account for potential operation

under heterogeneous frontiers and overstates the impact of the EU ETS. For this reason, I also

analyze the effect of the EU ETS on meta-cost efficiency of treated firms in logs for industris (19)

and (21). As expected, Table 12 indicates drastically different results. The average treatment

effect of the EU ETS on firms in industry (19) is now much smaller, positive, and statistically
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Table 12: Parametric DD approach treatment effects for selected 2-digit industries

Dependent Variable:
Meta cost efficiency in logs

ISIC Rev.4 19 21

Phase1 0.018 -0.001
Phase2 0.051 -0.018
Phase3 0.002 -0.129*

Year FE yes yes
Firm FE yes yes
Additional Controls yes yes

# Observations 487 2129
Standard errors are computed by employing the block bootstrap algorithm
with 500 replications. *p<0.10, **p<0.05,***p<0.01; Source: RDC of the
Federal Statistical Office and Statistical Offices of the Länder, [survey years
2003-2014], own calculations.

insignificant. The average treatment effect of the EU ETS on firms in industry (21) is also

smaller, remains negative, and is slightly statistically significant only in third compliance period

(-12.9 percent).

6 Concluding discussion

This paper provides the first comprehensive analysis of the relationship between firm economic

performance and the regulation by the EU ETS in the context of the German manufactur-

ing sector, using official firm-level production census data for the period 2003-2014. German

manufacturing sector is the biggest European CO2 emitter, and the share of gross domestic

product (GDP) accounted for by manufacturing is higher in Germany than in any other Euro-

pean country (52%), which renders it important to investigate in the context of environmental

policy impacts. For 14 two-digit industries of the German manufacturing sector I estimate a

SCF to recover firm-specific cost efficiencies as a measure of economic performance. My results

indicate that the potential to increase cost efficiency exists in all industries and that the cost-

efficiency estimates are heterogeneous. Little is known about the determinants of cost efficiency

in the German manufacturing sector, the drivers were selected based on relevance for research

and policies. The analysis of drivers confirms a positive relationship between exporting and

the cost efficiency for most of the industries. On the contrary, the regulation by the EU ETS,

investments into research and development, as well as active trading of emission permits are all
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associated with lower cost containment capabilities. The latter rejects my first hypothesis, as

the regulation by the EU ETS seems to be a significant driver of cost-inefficiency, even-though

I have accounted for higher energy prices for regulated firms in my cost frontier model. These

results do not allow me to draw a clear conclusion about the relationship between the EU ETS

and the cost efficiency, but they might suggest that the EU ETS regulates less cost-efficient

firms, or that the impact of the EU ETS materializes in more than just an energy price increase

for regulated firms. For instance, higher R&D investments for regulated firms could increase

regulated firms’ total costs, which would make them appear less cost-efficient. One way to test

this claim would be to model this R&D investment as an additional output in the cost frontier.

Furthermore, if significant investments into R&D were actually made by most of the regulated

firms, then the unexpectedly low carbon prices would make most of them very unprofitable in

the short run. Using my adjustment for energy prices directly in the cost frontier, I could test

whether significantly higher carbon prices would confirm my first hypothesis.

In order to make cost-efficiency comparisons between between treatment groups within in-

dustries, I employed SMF analysis. The results of the intra-industry comparison suggest a

confirmation of my second hypothesis as regulated and non-regulated firms operate under het-

erogeneous frontiers in industries (19) and (21). In both industries, treated firms are confirmed

to be less cost-efficient than the control firms. However the difference in cost-efficiency levels

is found to be decreasing over time.

Combining the DDmodel with parametric conditioning strategies and non-parametric nearest-

neighbor matching allows me to isolate the average treatment effect of the EU ETS on firm-

specific cost efficiencies. Results suggest that the EU ETS does not homogeneously affect

various industries of the German manufacturing sector, but that the effect was predominantly

negative and mostly highly statistically significant in all three compliance periods. However, as

the estimation of cost efficiency using homogeneous frontiers for regulated and non-regulated

firms is potentially problematic in light of the EU ETS regulation, I also investigate the aver-

age treatment effect of the EU ETS on firm-specific meta cost efficiencies. As expected, the

results are very different. The negative treatment effect is slightly significant for just one of

the two industries, and only in the third compliance period. For the other industry, there is no

significant effect of the EU ETS on treated firms. Although these results are preliminary, they
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do confirm that the use of SMF is critical when evaluating the impact of the EU ETS.

The fact that I find a significant negative effect of the EU ETS on firm-level cost-efficiency is

surprising. Previous literature, although not directly related to cost-efficiency, found very small

and mostly insignificant impacts of the EU ETS in terms of firms productivity. At this stage of

my research, I cannot fully clarify the mechanisms at work for a number of reasons. First, when

interpreting my results I assumed that EU ETS only influences treated firms. Due to spillover

and equilibrium intra-industry effects, the SUTVA is likely violated, which is one of the obvious

limitations to my study. In a future version of this paper, the importance of SUTVA violation

will be addressed via robustness checks. Second, German manufacturing firms are not subject

solely to the EU ETS regulation. In my study I neglect to consider other regulatory instruments,

such as energy taxes and electricity price surcharges, that might interact with the effect of the

EU ETS. Third, in its current form, my stochastic cost frontier model suffers from potential

endogeneity concerns. My measure of output is potentially endogenous, as it is a choice variable

for most firms. Energy input prices are potentially endogenous because of negotiations between

firms and energy suppliers, e.g. fixed-term contracts between electricity generators and firms or

long-term gas contracts. My measure of labour costs, affecting the input price for labour, could

also be endogenous because of unobserved input quality. In the existing stochastic frontier

analysis literature, the use of solutions such as the control function for the unobservables,

introduced by Olley and Pakes (1996) and Levinsohn and Petrin (2003), is not straightforward,

due to non-linearities. For this reason, the issue of endogeneity in stochastic cost frontier

models has so far been somewhat ignored. Health economics and health services research, has

previously addressed these concerns using a two-stage residual inclusion approach.33 Recently,

Karakaplan and Kutlu (2015) and Karakaplan and Kutlu (2017) developed their own stochastic

frontier estimator, which has been proven to outperform standard stochastic frontier estimators,

as it can treat the endogeneity of both frontier and inefficiency variables. Their estimator is

easy to implement in Stata using their module. In a future version of the paper I will present

the results of using the latter approach, to address the endogeneity in my emprical application.

Finally, it is also possible that the observed negative effect is actually reflecting a short run

shock, as treated firms made considerable investments into research and development. Low

EUA prices have not made it possible to contain their costs better during my observed period,
33For more information, see Terza et al. (2008) and Garrido et al. (2012).
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but it would be interesting to check whether these strong effects are still present in recent years,

as the EUA prices have risen. Future work could tackle some of these issues.

Note: Parts of this is work are still in progress and as such subject to change. I kindly ask

the reader to refer to the most recent updates of our work by using the external link provided

at the beginning of the document.
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Appendix

A Additional Results

A.1 Inter-Industry Comparison

The results in Table A.1 confirm that the estimation of separate stochastic cost frontiers for

each industry in the period 2003-2014 is appropriate, as the cost efficiency, estimated using the

pooled cost frontier (CEpooled), consistently deviates from the cost efficiency estimated using

industry-specific cost frontiers (CEgroup). For industries (10), (13), (21), (22), (24) and (29),

estimation using the pooled cost frontier underestimates the actual cost efficiency, while the

opposite is true for the remaining industries. If one were to directly compare CEgroup scores

Table A.1: The comparison of mean cost efficiency scores using SCF and SMF analyses in years
2003, 2005 and 2010

Year 2003 2005 2010

ISIC Rev.4 CEpooled CEgroup CGR MCE CEpooled CEgroup CGR MCE CEpooled CEgroup CGR MCE

10 0,6291 0,7367 0,7328 0,5405 0,6323 0,7349 0,7387 0,5423 0,6223 0,7322 0,7305 0,5352
(0,1701) (0,0929) (0,1593) (0,1369) (0,1648) (0,0959) (0,1574) (0,1339) (0,1683) (0,0934) (0,1606) (0,1389)

13 0,6746 0,7509 0,7758 0,5828 0,6810 0,7527 0,7811 0,5884 0,6853 0,7535 0,7966 0,6008
(0,1205) (0,1033) (0,0647) (0,0926) (0,1292) (0,1136) (0,0647) (0,1005) (0,1231) (0,1065) (0,0632) (0,0974)

16 0,7041 0,6503 0,9228 0,5998 0,7068 0,6549 0,9222 0,6033 0,7010 0,6493 0,9190 0,5962
(0,1273) (0,1544) (0,0250) (0,1419) (0,1233) (0,1509) (0,0254) (0,1377) (0,1271) (0,1506) (0,0281) (0,1376)

19 0,6895 0,5834 0,9125 0,5598 0,6633 0,5540 0,9211 0,5309 0,6378 0,5349 0,9297 0,5126
(0,2743) (0,2751) (0,1683) (0,2835) (0,2597) (0,2588) (0,1515) (0,2665) (0,2616) (0,2767) (0,1358) (0,2774)

20 0,7004 0,6667 0,9363 0,6241 0,7103 0,6731 0,9423 0,6340 0,7139 0,6619 0,9522 0,6301
(0,1486) (0,1523) (0,0145) (0,1424) (0,1455) (0,1492) (0,0141) (0,1400) (0,1500) (0,1573) (0,0117) (0,1495)

21 0,6658 0,6675 0,8790 0,5870 0,6721 0,6790 0,8748 0,5941 0,6703 0,6859 0,8554 0,5879
(0,1597) (0,1703) (0,0528) (0,1568) (0,1541) (0,1571) (0,0543) (0,1447) (0,1404) (0,1403) (0,0563) (0,1307)

22 0,6904 0,7403 0,8454 0,6256 0,7037 0,7506 0,8519 0,6393 0,7126 0,7495 0,8678 0,6501
(0,1180) (0,1086) (0,0412) (0,0952) (0,1136) (0,1038) (0,0382) (0,0921) (0,1124 (0,1069) (0,0343) (0,0940)

24 0,7101 0,8053 0,8682 0,6970 0,7297 0,7969 0,8846 0,7021 0,7352 0,7896 0,9015 0,7096
(0,1256) (0,0864) (0,0505) (0,0680) (0,1219) (0,1071) (0,0451) (0,0836) (0,1234) (0,1142) (0,0378) (0,0948)

25 0,7353 0,7257 0,9204 0,6675 0,7299 0,7257 0,9133 0,6625 0,7131 0,7232 0,8889 0,6427
(0,1080) (0,1227) (0,0178) (0,1116) (0,1123) (0,1240) (0,0194) (0,1127) (0,1079) (0,1153) (0,0243) (0,1029)

26 0,7164 0,6574 0,9485 0,6236 0,7283 0,6700 0,9497 0,6362 0,7413 0,6797 0,9540 0,6485
(0,1322) (0,1511) (0,0110) (0,1437) (0,1296) (0,1490) (0,0124) (0,1418) (0,1282) (0,1481) (0,0084) (0,1415)

27 0,6829 0,6734 0,9061 0,6106 0,7076 0,6915 0,9175 0,6348 0,7392 0,6998 0,9422 0,6593
(0,1312) (0,1384) (0,0234) (0,1286) (0,1195) (0,1293) (0,0200) (0,1208) (0,1110) (0,1273) (0,0115) (0,1200)

28 0,7422 0,7305 0,9409 0,6874 0,7547 0,7520 0,9371 0,7048 0,7367 0,7413 0,9285 0,6883
(0,1066) (0,1282) (0,0114) (0,1218) (0,0998) (0,1183) (0,0121) (0,1121) (0,1047) (0,1221) (0,0149) (0,1144)

29 0,6938 0,7225 0,8871 0,6414 0,7067 0,7334 0,8897 0,6527 0,7111 0,7324 0,8990 0,6587
(0,1317) (0,1250) (0,0271) (0,1143) (0,1307) (0,1245) (0,0260) (0,1135) (0,1343) (0,1290) (0,0233) (0,1180)

30 0,6863 0,5967 0,9327 0,5558 0,6837 0,6011 0,9310 0,5606 0,6986 0,5924 0,9451 0,5590
(0,1654) (0,1996) (0,0384) (0,1851) (0,1721) (0,2070) (0,0543) (0,1930) (0,1400) (0,1849) (0,0304) (0,1736)

Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

Standard deviations in parentheses.
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between different industries, one could conclude that industry (24) is the most cost efficient

industry of the German manufacturing sector, and that industry (19) is the least cost-efficient

one in years 2003, 2005 and 2010. But such a direct comparison is not valid, as these cost

efficiency scores were estimated using different stochastic cost frontiers. As Table A.1 shows,

the estimation using SMF paints a different picture. The only valid direct comparison is the

one of meta cost efficiency scores (MCE), which ranks industry (24) as the most cost-efficient

industry in year 2003 and 2010, whereas the first place is overtaken by industry (28) in 2005.

The differences in ranking of firms over time, using SCF and SMF, are reported in Table A.2.

The development of mean meta cost-efficiency scores over time is depicted in Figure 6 in the

Appendix.

Table A.2: The comparison of rankings using SCF and MCF analyses across years

2003 2005 2010

Ranking SCF MCF SCF MCF SCF MCF

1. 24 24 24 28 24 24
2. 13 28 13 24 13 28
3. 22 25 28 25 22 27
4. 10 29 22 29 28 29
5. 28 22 10 22 29 22
6. 25 20 29 26 10 26
7. 29 26 25 27 25 25
8. 27 27 27 20 27 20
9. 21 16 21 16 21 13
10. 20 21 20 21 26 16
11. 26 13 26 13 20 21
12. 16 19 16 30 16 30
13. 30 30 30 10 30 10
14. 19 10 19 19 19 19

Source: RDC of the Federal Statistical Office and Statistical Offices of
the Länder, [survey years 2003-2014], own calculations.

B Additional Figures
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(a) Coke and refined petroleum products (b) Pharmaceutical products

(c) Rubber and plastic products (d) Basic metals

Figure A.1: Mean cost efficiency scores across the years for selected 2-digit industries (19), (21),
(22), (24). Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder,
[survey years 2003-2014], own calculations.

C Further data description

2-digit industry level classification:

In the period 2003-2008, the industry classification in my dataset ("Wirtschaftszweig") is based

on NACE Revision 1.1. After 2008, the classification has changed in accordance with the

European implementation NACE Revision 2 (Statistical Classification of Economic Activities

in the European Community) of the UN classification ISIC Revision 4. I reclassified the years

before 2008 using official reclassification guide of the statistical offices at the four-digit industry

code level, to be able to use the ISIC Rev.4 classification throughout. In the interest of having

enough observations, I carry out the final analysis on the two-digit industry level.

Merging of AFiD, EUTL and Orbis:

I combine different modules of AFiD data set via plant and firm-level identifiers. Matching

AFiD data with EUTL and Orbis, however, requires a three-step procedure. Firstly, EUTL
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(a) Coke and refined petroleum products (b) Pharmaceutical products

(c) Rubber and plastic products (d) Basic metals

Figure A.2: Regulated firms and unregulated firms mean cost efficiency scores across the years
for selected 2-digit industries (19), (21), (22), (24). Source: RDC of the Federal Statistical
Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

and Orbis information are combined in a single dataset. Then, this external dataset of firms is

combined with the German Business Register using information on commercial register number,

VAT number, address and emissions in order to obtain a unique company identification number.

Using the latter, external dataset can be combined with the AFiD dataset. I am able to match

83 percent (1117 firms) of the firms in the EUTL with the commercial register number. My

matching is 6 percent better than in previous attempts by authors using the same data. The

firms that are not matched mainly belong to non-manufacturing sectors.

D Perpetual Inventory Method for Capital Stock Estima-

tion

As is standard whenever data does not provide explicit capital stock information, I use perpetual

inventory method to compute capital stocks at the firm-level. In what follows we borrow from
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Figure A.3: Inter-industry comparison of yearly mean meta-cost efficiency scores. Source: RDC
of the Federal Statistical Office and Statistical Offices of the Länder, [survey years 2003-2014],
own calculations.

(a) Coke and refined petroleum products (b) Pharmaceutical products

Figure A.4: Intra-industry comparison of yearly mean meta cost efficiency scores across treat-
ment groups for selected 2-digit industries (19), (21). Source: RDC of the Federal Statistical
Office and Statistical Offices of the Länder, [survey years 2003-2014], own calculations.

Lutz (2016).

Perpetual inventory method relies on the following fundamental formula:

Kt = Kt−1(1− δ) + It, (A.1)

where K denotes capital stock, δ the geometric depreciation rate and I the investment. I derive
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the initial capital stock K1 from the equation (A.1):

K1 = I0 + I−1(1− δ) + I−2(1− δ)2 + . . . (A.2)

K1 =
∞∑
s=0

Is(1− δ)s (A.3)

I assume the real investments grow at rate g:

K1 = I0

∞∑
s=0

[
(1− δ)
(1 + g)

]s
(A.4)

K1 = I0
(1 + g)

(g + δ)
(A.5)

I can therefore define the capital stock in the first period as:

K1 = I1
1

(g + δ)
(A.6)

Lutz (2016) points out that in the "AFiD Panel Manufacturing Plants" investments fluctuate

greatly over time and this complicates the computation of inital capital stocks. To overcome

this, I need to compute the average It over all periods available and estimate I1:

Î1 =

∑n
t=0

It+1

(1+i)t

n
(A.7)

D.1 Data preparation

For information on investment in machinery and equipment, investment in buildings, and in-

vestment in properties without buildings. I use firm-level investment data from the AFiD-Panel

Industriebetriebe ("AFiD Panel Manufacturing Plants"). I deflate investments using industry-

specific deflators for machinery and equipment as well as general deflators for buildings and

property without buildings. I start from K1 and plug in firm-specific investments and the in-

dustry specific time-varying depreciation rates into equation (A.1) to compute the entire time

series of the firm’s capital stock. As I observe annual firm-level investment data for the period
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2003-2014, the growth rate of capital g and the depreciation rate δ can either be assumed to

take a certain value or estimated using aggregated data, e.g. industry-level data. We compute

industry-specific average growth and depreciation rates using aggregate data from the Destatis

portal GENESIS. I use the same source for the deflators information.34 In particular we use

the statistics with the following codes: 81000-0107 National Accounts Depreciation, 81000-

0115 Gross Investment, 81000-0116 Gross Capital Stock, 81000-0117 Net Capital Stock, and

61262-0001 Price Index Property.

Acknowledgements

This research is supported by the Swiss National Science Foundation under grant Nr.100010M_163054/1.

I gratefully acknowledge the Research Data Centre (FDZ) of the Federal Statistical Office and the Sta-

tistical Offices of the States for granting me access to the AFiD data and for the use of their research

facilities in Stuttgart. In particular, I would like to thank Michael Rössner, Kristin Nowak, Kerstin

Stockmeyer and Stefan Seitz for their technical support. I would like to thank Philipp Massier, Elisa

Rottner (ZEW), and Benjamin Johannes Lutz for helpful comments, suggestions and help with the

Perpetual Inventory Method. I thank my doctoral supervisors, Beat Hintermann, Corrado Di Maria

and Massimo Filippini, and my colleagues from University of Basel who provided insight and expertise,

as well as Santiago Alvarez for help with collection and preparation of the EUTL and Orbis data.

References

Abadie, A. and J. Spiess (2019). Robust post-matching inference. Working Paper .

Aigner, D., C. K. Lovell, and P. Schmidt (1977). Formulation and estimation of stochastic frontier

production function models. Journal of Econometrics 6 (1), 21–37.

Ambec, S., M. Cohen, S. Elgie, and P. Lanoie (2013). The porter hypothesis at 20: Can environmental

regulation enhance innovation and competitiveness? Environmental Economics and Policy .

Amsler, C., C. J. O’Donnell, and P. Schmidt (2017). Stochastic metafrontiers. Econometric Re-

views 36 (6-9), 1007–1020.

34For more information on this data, visit the Destatis portal GENESIS at https://www-
genesis.destatis.de/genesis/online.

37



Battese, G. E. and T. J. Coelli (1988). Prediction of firm-level technical efficiencies with a generalized

frontier production function and panel data. Journal of Econometrics 38 (3), 387–399.

Battese, G. E. and T. J. Coelli (1993). A stochastic frontier production function incorporating a

model for technical inefficiency effects, Volume 69. Department of Econometrics, University of New

England Armidale.

Battese, G. E. and T. J. Coelli (1995). A model for technical inefficiency effects in a stochastic frontier

production function for panel data. Empirical Economics 20 (2), 325–332.

Battese, G. E., D. P. Rao, and C. J. O’donnell (2004). A metafrontier production function for estimation

of technical efficiencies and technology gaps for firms operating under different technologies. Journal

of Productivity Analysis 21 (1), 91–103.

Belotti, F., S. Daidone, G. Ilardi, and V. Atella (2013). Stochastic frontier analysis using stata. The

Stata Journal 13 (4), 719–758.

Bertrand, M., E. Duflo, and S. Mullainathan (2004). How much should we trust differences-in-

differences estimates? The Quarterly Journal of Economics 119 (1), 249–275.

Bertrand, V. (2014). Carbon and energy prices under uncertainty: A theoretical analysis of fuel

switching with heterogenous power plants. Resource and Energy Economics 38, 198–220.

Bhandari, A. K. and S. C. Ray (2012). Technical efficiency in the indian textiles industry: A non-

parametric analysis of firm-level data. Bulletin of Economic Research 64 (1), 109–124.

Breustedt, G., U. Latacz-Lohmann, and T. Tiedemann (2011). Organic or conventional? Optimal

dairy farming technology under the EU milk quota system and organic subsidies. Food Policy 36 (2),

223–229.

Calel, R. and A. Dechezleprêtre (2016). Environmental policy and directed technological change:

evidence from the european carbon market. Review of Economics and Statistics 98 (1), 173–191.

Calligaris, S., F. M. D’Arcangelo, and G. Pavan (2019). The impact of the european carbon market

on firm productivity: Evidence from italian manufacturing firms. Working Paper .

Chapple, W., A. Lockett, D. Siegel, and M. Wright (2005). Assessing the relative performance of

UK university technology transfer offices: parametric and non-parametric evidence. Research Pol-

icy 34 (3), 369–384.

38



Charnes, A., W. W. Cooper, and E. Rhodes (1978). Measuring the efficiency of decision making units.

European Journal of Operational Research 2 (6), 429–444.

Chen, C.-M., T.-C. Sheng, and Y.-L. Yang (2014). Cost efficiency analysis of taiwan biotech and

pharmaceutical industry: The application of stochastic meta frontier model. International Journal

of Economics and Finance 6 (11), 131.

Christiansen, A. C., A. Arvanitakis, K. Tangen, and H. Hasselknippe (2005). Price determinants in

the EU emissions trading scheme. Climate Policy 5 (1), 15–30.

Dechezleprêtre, A., D. Nachtigall, and F. Venmans (2018). The joint impact of the european union

emissions trading system on carbon emissions and economic performance.

Dechezleprêtre, A. and M. Sato (2017). The impacts of environmental regulations on competitiveness.

Review of Environmental Economics and Policy 11 (2), 183–206.

Ellerman, A. D., C. Marcantonini, and A. Zaklan (2016). The european union emissions trading

system: Ten years and counting. Review of Environmental Economics and Policy 10 (1), 89–107.

Estache, A. and M. A. Rossi (2002). How different is the efficiency of public and private water companies

in asia? The World Bank Economic Review 16 (1), 139–148.

EU KLEMS (2017). Growth and Productivity Accounts: Statistical Module, ESA 2010 and ISIC Rev.

4 industry classification. Technical report.

European Council (2014a). Conclusion EUCO 189/14 of the European Council of 23 and 24 October

2004. Technical report, Official Journal of the European union,CO EUR 13.

European Council (2014b). A policy framework for climate and energy in the period from 2020 to

2030. Communication from the Commission to the European Parliament, the Council, the European

Economic and Social Committe and the Committe of the Regions, COM(2014) 15 final.

European Parliament and Council (2003). Directive 2003/87/EC of the European Parliament and of

the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading

within the Community and amending Council Directive 96/61/EC. Technical report, Official Journal

of the European union, L 275, 32-46.

European Parliament and Council (2009). Directive 2009/29/EC of the European Parliament and

of the Council of 23 April 2009 amending Directive 2003/87/EC so as to improve and extend the

39



greenhouse gas emission allowance trading scheme of the Community. Technical report, Official

Journal of the European union, L 140, 63-87.

Farell, P. (1957). DEA in production center: An input-output mode. Journal of Econometrics 3,

23–49.

Farsi, M. and M. Filippini (2008). Effects of ownership, subsidization and teaching activities on hospital

costs in switzerland. Health Economics 17 (3), 335–350.

Fowlie, M., S. P. Holland, and E. T. Mansur (2012). What do emissions markets deliver and to whom?

Evidence from Southern California’s NOx trading program. American Economic Review 102 (2),

965–93.

Fries, S. and A. Taci (2005). Cost efficiency of banks in transition: Evidence from 289 banks in 15

post-communist countries. Journal of Banking & Finance 29 (1), 55–81.

Fritsch, M., B. Gärzig, O. Hennchen, and A. Stephan (2004). Cost structure surveys for germany.

Schmollers Jahrbuch/Journal of Applied Social Science Studies 124 (4), 557–566.

Garrido, M. M., P. Deb, J. F. Burgess Jr, and J. D. Penrod (2012). Choosing models for health care

cost analyses: issues of nonlinearity and endogeneity. Health Services Research 47 (6), 2377–2397.

Gerster, A., S. Petrick, and U. J. Wagner (2020). The impact of carbon trading on industry: Evidence

from German manufacturing firms. Mimeo.

Greene, W. (2005a). Fixed and random effects in stochastic frontier models. Journal of Productivity

Analysis 23 (1), 7–32.

Greene, W. (2005b). Reconsidering heterogeneity in panel data estimators of the stochastic frontier

model. Journal of Econometrics 126 (2), 269–303.

Hayami, Y. (1969). Sources of agricultural productivity gap among selected countries. American

Journal of Agricultural Economics 51 (3), 564–575.

Hayami, Y. and V. Ruttan (1971). Induced innovation and agricultural development. Technical report,

University of Minnesota, Department of Applied Economics.

Hayami, Y. and V. W. Ruttan (1970). Agricultural productivity differences among countries. The

American Economic Review 60 (5), 895–911.

40



Heckman, J. J., H. Ichimura, and P. E. Todd (1997, 10). Matching As An Econometric Evaluation

Estimator: Evidence from Evaluating a Job Training Programme. The Review of Economic Stud-

ies 64 (4), 605–654.

Hicks, J. R. (1932). Marginal productivity and the principle of variation. Economica (35), 79–88.

Hintermann, B. (2016). Pass-through of CO2 emission costs to hourly electricity prices in Germany.

Journal of the Association of Environmental and Resource Economists 3 (4), 857–891.

Huang, C. J., T.-H. Huang, and N.-H. Liu (2014). A new approach to estimating the metafrontier

production function based on a stochastic frontier framework. Journal of Productivity Analysis 42 (3),

241–254.

Huang, M.-Y. and T.-T. Fu (2013). An examination of the cost efficiency of banks in taiwan and china

using the metafrontier cost function. Journal of Productivity Analysis 40 (3), 387–406.

Huang, T.-H., L.-C. Chiang, K.-C. Chen, and P. H. Chiu (2010). An application of the meta-frontier

cost function to the study of bank efficiencies and technology gaps in 16 European countries. Man-

agement Review 29 (3), 25–43.

Huang, Y.-J., K.-H. Chen, and C.-H. Yang (2010). Cost efficiency and optimal scale of electricity

distribution firms in Taiwan: An application of metafrontier analysis. Energy Economics 32 (1),

15–23.

Joltreau, E. and K. Sommerfeld (2019). Why does emissions trading under the EU Emissions Trading

System (ETS) not affect firms’ competitiveness? Empirical findings from the literature. Climate

policy 19 (4), 453–471.

Kanen, J. L. (2006). Carbon trading and pricing. Environmental Finance Publications.

Karakaplan, M. and L. Kutlu (2015). Handling endogeneity in stochastic frontier analysis. Working

Paper .

Karakaplan, M. U. and L. Kutlu (2017). Endogeneity in panel stochastic frontier models: an application

to the japanese cotton spinning industry. Applied Economics 49 (59), 5935–5939.

Koch, A. and F. Migalk (2007). Neue Datenquelle" Unternehmensregister": Mehr Informationen über

den Mittelstand ohne neue Bürokratie; Abschlussbericht an das Wirtschaftsministerium Baden-

Württemberg; Tübingen und Mannheim, im April 2007. IfM.

41



Kumbhakar, S., H. Wang, and A. Horncastle (2015). A Practitioner’s Guide to Stochastic Frontier

Analysis Using Stata. Cambridge University Press.

Levinsohn, J. and A. Petrin (2003). Estimating production functions using inputs to control for

unobservables. The Review of Economic Studies 70 (2), 317–341.

Lin, Y.-H. (2011). Estimating cost efficiency and the technology gap ratio using the metafrontier

approach for taiwanese international tourist hotels. Cornell Hospitality Quarterly 52 (3), 341–353.

Löschel, A., B. J. Lutz, and S. Managi (2019). The impacts of the EU ETS on efficiency and eco-

nomic performance–An empirical analyses for German manufacturing firms. Resource and Energy

Economics 56, 71–95.

Lutz, B. J. (2016). Emissions Trading and Productivity: Firm-level Evidence from German Manufac-

turing. pp. 36.

Lutz, B. J., P. Massier, K. Sommerfeld, and A. Löschel (2017). Drivers of energy efficiency in Ger-

man manufacturing: A firm-level stochastic frontier analysis. ZEW-Centre for European Economic

Research Discussion Paper (17-68).

Martin, R., M. Muûls, and U. J. Wagner (2015). The impact of the European Union Emissions Trading

Scheme on regulated firms: What is the evidence after ten years? Review of environmental economics

and policy 10 (1), 129–148.

Meeusen, W. and J. van Den Broeck (1977). Efficiency estimation from cobb-douglas production

functions with composed error. International Economic Review , 435–444.

Newhouse, J. P. et al. (1994). Frontier estimation: How useful a tool for health economics? Journal

of Health Economics 13 (3), 317–322.

Nkamleu, G. B., J. Nyemeck, and D. Sanogo (2006). Metafrontier analysis of technology gap and

productivity difference in african agriculture. Mimeo..

O’Donnell, C. J., D. P. Rao, and G. E. Battese (2008). Metafrontier frameworks for the study of

firm-level efficiencies and technology ratios. Empirical Economics 34 (2), 231–255.

Olley, G. and A. Pakes (1996). The dynamics of productivity in the telecommunications equipment

industry. Econometrica: Journal of the Econometric Society , 1263–1297.

42



Petrick, S., K. Rehdanz, and U. Wagner (2011). Energy use patterns in German industry: Evidence

from plant-level data. Jahrbücher fur Nationalökonomie und Statistik 231 (3), 379–414. cited By 5.

Porter, M. E. (1991). Towards a dynamic theory of strategy. Strategic Management Journal 12 (S2),

95–117.

Porter, M. E. and C. Van der Linde (1995). Toward a new conception of the environment-

competitiveness relationship. The Journal of Economic Perspectives 9 (4), 97–118.

Richter, P. M. and A. Schiersch (2017). CO2 emission intensity and exporting: Evidence from firm-level

data. European Economic Review 98, 373–391.

Shephard, R. W. (2012). Cost and production functions, Volume 194. Springer Science & Business

Media.

Stadler, B. and C. Di Maria (2018). Climate policy and the efficiency of firms: new evidence from UK

manufacturing. Mimeo.

Statistisches Bundesamt (2019). Güterverzeichnis für Produktionsstatistiken. Technical report,

DESTATIS.

Terza, J. V., A. Basu, and P. J. Rathouz (2008). Two-stage residual inclusion estimation: addressing

endogeneity in health econometric modeling. Journal of Health economics 27 (3), 531–543.

Uzawa, H. (1962, 10). Production Functions with Constant Elasticities of Substitution. The Review

of Economic Studies 29 (4), 291–299.

Wadud, A. and B. White (2000). Farm household efficiency in Bangladesh: a comparison of stochastic

frontier and DEA methods. Applied Economics 32 (13), 1665–1673.

Wagner, J. (2010). The Research Potential of New Types of Enterprise Data based on Surveys from

Official Statistics in Germany. Journal of Contextual Economics.

World Bank Group (2019). State and trends of carbon pricing.

Zhang, A., Y. Zhang, and R. Zhao (2003). A study of the R&D efficiency and productivity of Chinese

firms. Journal of Comparative Economics 31 (3), 444–464.

43


	Titelblatt_Hintermann_2020_12
	Zarkovic_2020
	Introduction
	Institutional Background
	Methodology
	Stochastic Cost Frontier Analysis
	 Meta Frontier Analysis
	Stochastic Meta Cost Frontier Analysis

	Differences-in-differences Approach
	Parametric DD approach with conditioning strategies
	Non-parametric DD approach with nearest-neighbor matching


	Data
	SCF and SMF variables

	Results
	Stochastic Frontier Analysis
	Stochastic Meta Frontier Analysis
	Intra-industry Comparison

	Difference-in-differences Analysis
	Cost efficiency measured against a stochastic cost frontier
	Cost efficiency measured against a meta stochastic cost frontier


	Concluding discussion
	Additional Results
	Inter-Industry Comparison

	Additional Figures
	Further data description
	Perpetual Inventory Method for Capital Stock Estimation
	Data preparation



