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Abstract

We investigate productivity and cost pass-through of German manufacturing
firms using administrative data from 2001 to 2014. Our framework allows for the
estimation of quantity-based production functions for multi-product firms while
controlling for unobserved productivity shocks and unobserved input quality. Using
our parameter estimates, we can compute total factor productivity, markups and
marginal costs. We find no effect of the EU ETS on firm productivity or profits for
the whole sector, and a positive effect for some industries. Firms pass on shocks to
materials costs completely, or even more than completely, whereas pass-through of
energy costs is around 35-60%. Although pass-through of energy costs is incomplete,
it nevertheless allowed firms to recover more than their total carbon costs due to
generous free allocation of allowances. Our results add to the recent literature
concerning the causal effects of climate policy on firms and are relevant for policy
makers when defining the level of free allowance allocation to industry.
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1 Introduction

The climate is changing. To limit emissions of greenhouse gases, the global community has

agreed on a series of international agreements such as the Kyoto Protocol and the Paris

Agreement. However, these international agreements did not establish legally enforceable

rules. As a consequence, individual countries and regions have instituted unilateral climate

policies in their own jurisdictions. The single largest climate policy instrument to date is

the EU Emissions Trading System (EU ETS).

The benefits of action against climate change are becoming increasingly obvious, but

there remain concerns that instituting climate policies that are sufficiently stringent to

decarbonize the economy will put EU firms at a disadvantage relative to their rivals

overseas that face no -or less restrictive- legislation about greenhouse gas emissions. For

this reason, the emissions cap in the EU ETS has remained relatively generous, and a

significant share of the allowances are allocated at no cost. On the other hand, there exist

arguments that environmental regulation may lead firms to re-optimize their activities

and become more productive (Porter and Van der Linde, 1995; Ambec et al., 2013).

In this paper, we add to the recent literature about the consequences of climate policy

on the firm-level and investigate three questions: (i) How are productivity, markups and

profits affected by the EU ETS; (ii) to what extent are ETS firms able to pass on their

carbon costs to consumers; and (iii) what are the implications for the incidence of the EU

ETS on producers, and for free allowance allocation at the sector-level?

We answer these questions using rich firm data from Germany, Europe’s largest emitter

of greenhouse gases and home to an internationally competitive manufacturing sector. We

estimate production functions in 4-digit manufacturing industries. A common feature in

these industries is that firms produce more than one product. Previous approaches have

relied on revenue-based production functions (e.g., De Loecker and Warzynski, 2012;

Lutz, 2016), as these accommodate multi-product production quite naturally by simply

adding up the revenue from different product lines. However, estimating revenue-based

production functions may lead to biased estimates because the quantity and price effects

cannot be individually identified (Foster et al., 2008; De Loecker, 2011). In other words, an
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increase in revenue could be the consequence of an increase in price and/or quantity. We

exploit the rich information in our data and estimate a quantity-based production function

following the methodology by De Loecker et al. (2016) that overcomes this problem. Our

framework allows us to estimate total factor productivity (TFP), markups and marginal

costs based on separately observed physical output quantities and product prices.

We quantify the extent of cost pass-through in the manufacturing sector by regressing

prices on our estimate of marginal costs, using an instrumental variables (IV) approach

to mitigate possible bias due to classical measurement error. By choosing different in-

struments, we exploit the variation of different types of costs. This allows us to estimate

cost pass-through for materials, energy and carbon costs separately. We find more than

complete pass-through for materials costs (measured by using lagged marginal costs as

an instrument), and pass-through on the order of 40-60% for energy costs shocks (mea-

sured by using energy prices as instruments). Cost pass-through significantly varies over

individual industries. This variation can likely be explained by the degree of competition

with firms from outside the EU ETS.

Using our model results, we can further identify the causal effect of the EU ETS on

economic outcomes (TFP, markups and profits) using a difference-in-difference approach,

in which firms not covered by the system serve as the control group. To control for

unobserved differences between treated and untreated firms we employ nearest-neighbor

matching. We find that on average, EU ETS coverage did not affect TFP and profits,

but some industries exhibited a positive response. This is good news for climate policy,

as firms appear not to suffer adverse economic consequences.

Our paper makes two main contributions to the literature. By estimating cost pass-

through for manufacturing firms, we provide new and important information to policy

makers about the incidence of climate policy. There is empirical evidence for high (or

even complete) cost pass-through in the electricity sector (Fabra and Reguant, 2014; Fell

et al., 2015; Hintermann, 2016), but very little is known about the other sectors of the

economy. After power generation, manufacturing is the most emissions-intensive sector

that is covered by the EU ETS and other carbon markets worldwide. An exception is
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a recent paper by Ganapati et al. (2020), who estimate the pass-through and incidence

of energy costs for U.S. manufacturing firms that produce six distinct products. Our

approach allows us to estimate cost pass-through for a much wider range of industries

and products. Importantly, our estimates are based on an ex-post analysis of actual

climate policy that has been put in place, rather than relying on variation in energy

prices to infer the consequences of a climate policy that has yet to be implemented. The

degree of pass-through of costs in general, and of carbon costs in particular, is crucial to

determine the level of free allocation required to combat carbon leakage. We find that

some of the industries that benefit from generous free allocation pass on a high share of

their costs to consumers, implying that the EU’s current rules are not optimal.

Second, we contribute to the literature on firm-level outcomes of climate policy. Un-

biased estimates of the causal effect of the EU ETS on productivity, markups and profits

is crucial for the future design of climate policy and the eventual decarbonization of the

economy. Using a matching approach, we estimate the causal effect of the EU ETS on

the main model outcomes (productivity and markups). Previous papers have focused on

different outcomes, e.g., on emissions (Jaraite and Di Maria, 2016; Colmer et al., 2020),

employment and revenue (Petrick and Wagner, 2014), innovation and adoption of new

technology (Calel and Dechezleprêtre, 2016; Calel, 2020), whereas the ones that have

focused on productivity do so within a revenue-based framework (Lutz, 2016; Calligaris

et al., 2019). By using a state-of-the art framework to estimate a quantities-based pro-

duction function, we obtain estimates about productivity and markups that avoid many

of the econometric problems that have plagued the previous literature. Our framework

controls for the “output price” bias of revenue-based approaches, the “simultaneity” bias

associated with unobserved productivity shocks and the “unobserved input quality” bias,

which is due to the recent contribution by De Loecker et al. (2016). We go beyond that

paper and estimate the production on the 4-digit industrial level, thus allowing for more

flexibility. We then use our estimates to investigate the effect of the EU ETS on firm-level

total factor productivity and profits, which is important to understand the implications

of climate policy for firms.
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In the next section, we provide some more background information and review the

literature that has studied the effect of this system on firms. Section 3 describes the data

that are the basis for our analysis. Section 4 contains our empirical model and describes

how we estimate total factor productivity, markups and cost pass-through, and section 5

presents our results.

2 Background

In this section, we briefly discuss the features of the EU ETS that are relevant for the

current context and provide more details about the literature that has focused on the

firm-level effects of this program and on cost pass-through.

2.1 The EU Emissions Trading System

The EU ETS is a cap-and-trade system in operation since 2005. It covers energy-intensive

installations from all EU members and from additional countries that have linked into the

system over time.1 Of these 32 countries, Germany is the largest emitter. Installations

covered by the EU ETS have to surrender one EU allowance, or EUA, for each metric

ton of CO2 equivalent that they emitted during the previous calendar year. Allowances

are fully tradable across participating firms. The total number of allowances that are

distributed each year, either for free or in auctions, constitutes the annual emissions

cap in the EU ETS. This cap is reduced every year relative to the 2008-2012 period at a

reduction rate of (currently) 2.4 percentage points. As the total number of EUAs available

is limited by the cap, they represent valuable assets, which creates an opportunity cost

for each ton of CO2 emitted by regulated installations. This is true regardless of the

method of allocation, because surplus allowances can be sold on the market. The market

for allowances was established at the very beginning of the system, and liquidity has

been high with the exception of the first two years. For an overview of the EU ETS, see

Ellerman et al. (2016).
1Currently, the EU ETS includes 32 countries: The 27 EU countries plus the UK, Norway, Iceland,

Liechtenstein and Switzerland.
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Participation in the EU ETS is mandatory for all combustion installations with a

rated thermal input in excess of 20 MW. Industrial installations specializing in certain

energy-intensive activities exceeding specific capacity thresholds are also regulated.2 The

inclusion criteria for the EU ETS apply at the installation level, whereas our unit of

analysis is the firm. We define a firm as covered by the ETS if it owns at least one

installation that is included in the system. This is somewhat problematic as firms may be

exposed to different treatment intensities. On the other hand, it means that despite the

inclusion thresholds that depend on size, treated and control firms are quite comparable

with respect to the observable outcomes. For example, a firm owning two installations

with 19 MW of installed capacity (and thus not covered by the EU ETS) will emit more

emissions than a firm that owns a single installation with a rated thermal input of 25

MW. This similarity on the firm level is an attractive property and has been exploited in

previous empirical work (see, e.g., Petrick and Wagner, 2014; Calel and Dechezleprêtre,

2016; Calel, 2020; Colmer et al., 2020).

The EU ETS has so far gone through three compliance periods, called “phases”. Phase

1 covered the years 2005-2007 and served as a pilot for phase 2 (2008-2012), which matched

the compliance period of the Kyoto Protocol. The (current) phase 3 ends in 2020, and

phase 4 will cover the years 2021-2030. The analysis below focuses on the first two phases

and the beginning of the third, as we have access to data only for the period 2001-2014.

The phases mainly differ in terms of their rules for banking (which is allowed since phase

2) and free allocation. In the first two phases, the allocation of permits was decentralized,

relying on National Allocation Plans (NAP) and grandfathering. Since phase 3, allocation

is carried out based on centralized benchmarking rules on the EU level, and an increasing

number of allowances are auctioned.3 Whereas power generators have had to purchase all

of their allowances on the market since phase 3 (with some exceptions), manufacturing

firms continue to receive a significant share of their needed emissions allocated for free.
2Details of the inclusion criteria can be found in European Parliament and Council (2003).
3The benchmarking is based on the emissions intensity of the 10% most efficient firms in a given

industry. This emission intensity is then multiplied by the historical level of output to obtain the bench-
mark level of free allocation for a particular firm. The non-EU countries in the EU ETS have retained
some autonomy to determine their firms’ level of free allocation. In practice, however, these rules are
very similar to those in the EU.
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In the course of phase 3, this share has been decreased, for most firms, from 80% of the

benchmark in 2013 to 30 % in 2020, and to zero by 2027.

There are, however, special rules for manufacturing subsectors that are deemed to be

exposed to carbon leakage. This classification is a function of a firm’s emission intensity

and its exposure to competition from outside the EU ETS.4 Firms in these subsectors

continue to receive up to 100% of their benchmark value allocated for free. The underlying

reasoning is that they are not able to pass on their costs to their consumers. In this paper,

we examine whether this is in fact the case.

Figure 1 shows the EUA price over time. At the beginning of phase 1, the price was

above 25 Euro, but later converged to zero as it became clear that the market overall was

over-allocated. After the start of Phase 2, the price recovered, but the decline in economic

activity due to the financial crisis once again resulted in a price collapse during the second

half of 2008. At the time, prices were also affected by the heavy use of Kyoto offsets.5

As banking was allowed in Phase 2, EUA prices did not converge to zero, remaining at

around 15 Euro until another price plunge below 10 Euro in the second half of 2011. In the

aftermath of the latest round of reforms in February 2018, the EUA price has appreciated

to over 20 Euro, but this increase happened after the end of our sample period.6

2.2 The effect of climate policy on firms

There is a growing literature about the effect of the EU ETS on firms, with recent reviews

by Martin et al. (2016) and Joltreau and Sommerfeld (2019).7 In what follows, we focus

on the effects related to cost pass-through, productivity and profits which is the subject of

our paper. Our data could also be used to examine the effect of the EU ETS on emissions
4Specifically, firms for which the value of emissions exceed 5% of their gross value added and whose

trade exposure to competitors from outside the EU ETS exceeds 10% are deemed to be at risk. An
intensity of either emissions or trade exposure of above 30 % alone also places sectors in the carbon
leakage risk group. In addition, there are qualitative criteria that can lead to an inclusion. The rules for
free allocation in the EU ETS are defined in European Commission (2010).

5For a review of the literature on price determination in the EU ETS, see Hintermann et al. (2016).
6In these reforms, the long-term cap was reduced by increasing the annual reduction factor from 1.74%

to 2.2%, and by introducing a rule whereby a portion of the allowances located in the “Market Stability
Reserve” (MSR) are not just temporarily removed, but actually invalidated. See Perino (2018); Gerlagh
and Heijmans (2019) for a discussion about the recent MSR reforms.

7For a more general literature on the worldwide consequences of environmental regulation on firms,
see Dechezleprêtre and Sato (2017).
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Figure 1: Daily EUA prices in phases 1-3; Source: Thomson Reuters Eikon.

and employment of German manufacturing firms, but this is being done in other, ongoing

work (Lehr et al., 2020).

The most direct consequence is that covered firms have to submit allowances for their

emissions. However, most ETS firms do not need to purchase all of the required al-

lowances. With a sufficiently high level of cost pass-through, this means that firms may

get compensated for allowances they never had to buy. This implies a transfer from tax-

payers to firms, as well as a degree of second-order inefficiency due to the lost revenue

that cannot be used to reduce existing taxes or to increase redistribution. So far, most

of the papers examining cost pass-through have focused on the power sector due to the

availability of high-frequency price data and the high emission intensity of this sector.

Power generators were found to pass on their emissions costs fully to consumers (Sijm

et al., 2008; Jouvet and Solier, 2013; Fabra and Reguant, 2014; Fell et al., 2015; Hinter-

mann, 2016). Free allowance allocation in the first two market phases, in combination

with inframarginal profits, led to significant windfall gains for power producers (Neuhoff

et al., 2006; Sijm et al., 2006). In general, the higher the rate of cost pass-through and

the share of inframarginal profits are, the lower will be the amount of free allocation that

keeps profits unchanged relative to the situation before the regulation.8

While there is a growing body of literature about cost pass-through in the power sector,

cost pass-through in manufacturing has received little attention in empirical research so
8In the case of power generators, this level of “profit-neutral” free allocation is negative for most large

power producers, as a significant share of generation is carbon-free (Hintermann, 2017).
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far, despite the importance it has for carbon leakage and, indirectly, for employment and

profits. The reason for the sparse empirical evidence lies in the multitude of products

produced in the manufacturing sector, which have a range of different production costs

and are traded on diverse markets. For this reason, the previous literature has focused

on individual products using a mixture of theory and empirical work.

For example, Smale et al. (2006) use a theory approach to examine the effect of

the EU ETS on firms profits in the cement, newsprint, steel, aluminum and petroleum

sectors. Their model assumes Cournot competition and linear demand which, along with

the distribution of rivals across EU and non-EU countries, determine the extent of cost

pass-through. With full grandfathering of allowances, all sectors except for aluminium

are expected to benefit from the introduction of the EU ETS. Demailly and Quirion

(2006) use a similar model for the cement sector and show that profit neutrality could

be achieved with 50% of free allocation. However, the rate of cost pass-through in these

models is not measured empirically but follows from the assumptions about the demand

curve and the market structure. Hepburn et al. (2013) and Nicolaï (2019) determine the

profit-neutral level of free allocation in an oligopolistic setting (which is appropriate, e.g.,

for the power, steel and cement sectors) and conclude that due to the likely presence of

cost pass-through, very low levels of free allocation can be sufficient to maintain profit

neutrality.9

De Bruyn et al. (2010) also rely on cointegration to estimate the effect of allowance

prices on the prices for eight generic products in the manufacturing sector (two types of

steel, three refinery products and three chemicals). Besides the EU prices for these goods,

the model also includes product prices from outside the EU to incorporate international

price adjustments. Using the average carbon content of these products, the authors

conclude that carbon costs are passed on fully to steel and refinery products, and to a

large extent also to chemicals. However, the confidence intervals are quite large. Using

a cointegration framework, Alexeeva-Talebi (2010) estimates the relationships between
9This finding is robust to different assumptions about the curvature of demand. The shape of the

demand curve matters because it co-determines the rate of cost pass-through. Nicolaï and Zamorano
(2018) show that if demand is iso-elastic and firms engage in Cournot competition, a cost shock that
affects all firms will generally increase profits.
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domestic (in this case, German) and foreign output prices for manufacturing goods, along

with prices for materials, labor and electricity. Her results imply positive rates of cost

pass-through. However, since these are reduced-form relationships, the degree of cost

pass-through cannot be established. Miller et al. (2017) estimate cost pass-through for

the Portland cement industry in the USA. They combine a reduced-form approach with

outside information about product markups and compute a rate of fuel cost pass-through

that exceeds unity.

Some previous papers have focused on the question of carbon leakage in manufactur-

ing, which is a closely related concept. Carbon leakage occurs when firms relocate some of

their production capacity abroad in response to unilateral climate policy. The underlying

reason is that they are not able to pass on their carbon costs to their customers if they are

competing with rivals that are subject to a less stringent climate policy (or no policy at

all). The threat of carbon leakage is the main reason for the free allowance allocation in

the EU ETS and other carbon markets. Based on a theoretical model complemented with

a survey of manufacturing firms covered by the EU ETS, Martin et al. (2014) demon-

strate that the current amount of free allocation significantly exceeds the level that would

be required if the goal were to limit the expected damage of relocation (including both

the probability and the magnitude of a potential downsize). The marginal effect of free

allocation on relocation risk varies significantly across firms depending on their ability

to pass on their costs to consumers. D’Arcangelo (2019) finds that the introduction of

carbon pricing has a statistically significant effect on the expected profits, and thus on

the investment decisions, of manufacturing firms in Europe. But since the effect is small,

he concludes that the scope of carbon leakage due to unilateral climate policy is rather

limited. This finding is consistent with at least some cost pass-through.

The paper closest to ours is by Ganapati et al. (2020). They compute marginal costs

for six manufacturing products (boxes, bread, cement, concrete, gasoline and plywood)

using a quantities-based production function similar to ours. Given the homogeneity of

their products, they do not control for unobserved input quality. They find cost pass-

through rates between 24 % (gasoline) and 99 % (boxes). The variation in pass-through
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rates can be explained by differences in market structure.

Muehlegger and Sweeney (2020) show that besides differing industry structures, a

variation in the degree of cost pass-through can also be explained by the nature of the

cost shock. They exploit the variation in fracking-induced costs shocks that vary locally

or regionally, and examine their effects on the output prices of petroleum refineries in

the USA. If the shock is idiosyncratic and only affects a particular firm, a lower share of

costs is passed on to consumers. In contrast, if more firms or even the entire industry is

affected, cost pass-through is higher, which is intuitive.

Besides cost pass-through, our paper is related to the literature that focuses on firm

productivity. Franco and Marin (2017) find beneficial effects of environmental regulation

on a productivity index for manufacturing firms in eight EU countries. The index is

an approximation of TFP based on growth accounting methods and is part of the EU-

KLEMS database. Marin et al. (2018) estimate the effect of the EU ETS on a range

of firm outcomes in 19 EU countries. They estimate a value-added production function

and find no adverse effects on TFP and a positive effect on labor productivity and on

(absolute) markups. The latter suggests that firms pass on at least some of their carbon

costs to consumers.

Calligaris et al. (2019) use administrative data from Italy to investigate the conse-

quences of the EU ETS on total factor productivity and find preliminary evidence for

a positive effect. Using the same administrative data on German manufacturing firms

as this paper, Lutz (2016) also reports an increase in TFP as a consequence of the EU

ETS. Klemetsen et al. (2020) examine Norwegian manufacturing firms and find a positive

impact on (labor) productivity in the second phase. In all three papers, productivity

measures are based on revenue and thus potentially subject to the price bias in the sense

that an increase in revenue could be due to either an increase in price or in quantity.

Dividing the revenue by an industry-wide price index does not solve the problem if firms

differ with respect to their marginal costs and their markups, such that TFP will be over-

estimated for some firms and under-estimated for others. We tackle this issue head-on

by using a quantities-based approach. Löschel et al. (2019) estimate firms’ distances to
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a common stochastic production frontier and find that the EU ETS did not move firms

away from this frontier, and in some subsectors even moved them towards it, which can

be interpreted as an increase in productive efficiency.

Overall, the available evidence on suggests positive cost pass-through for manufactur-

ing firms and a (modest) increase in the productivity of firms as a consequence of the EU

ETS.

3 Data

This study is based on a unique dataset, obtained by combining several micro-datasets

and modules from AFiD.10 The AFiD data are provided by the German Federal Statis-

tical Office and the Statistical Offices of the German Federal States. Importantly, this

is not a voluntary survey, as the information disclosure is mandatory for all surveyed

firms and plants. AFiD data provide very detailed information on plant- and firm-level

characteristics, production and energy inputs. The individual AFiD modules are merged

based on plant and firm identifiers. All monetary variables are deflated to 2010 Euros.

For additional information on the merging procedure, see section A in the Appendix.

The AFiD Panel Manufacturing Plants (“Industriebetriebe” in German) contains in-

formation on foreign sales, salaries and investments for all German manufacturing plants

with more than 20 employees. For a detailed description of this module, see Koch and

Migalk (2007) and Wagner (2010). We follow Lutz (2016) and use the perpetual inven-

tory method and investment information to calculate capital stocks. This method also

involves the use of external datasets. The procedure is described in detail in Appendix B.

The AFiD Module on Energy Use (“Energieverbrauch”) contains detailed information

on the annual fuel and electricity use at the plant-level. The data is provided in units of

energy content (kWh), which allows us to calculate firm-level energy use from 15 different

fuels including electricity, district heat and primary fuels (e.g. natural gas and different

types of oil and coal). For more information about this module, see Petrick et al. (2011).
10AFiD stands for “Amtliche Firmendaten für Deutschland”, which translates to “Official Firm Data

for Germany”.
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The AFiD Module on Products (“Produkte”) includes the information extracted from

the production surveys of the goods manufactured in the manufacturing sector. It can

be linked to other AFiD modules at both plant and firm-level. The production data is

provided at the 9-digit product code level, which are listed in the List of goods from pro-

duction statistics by Statistisches Bundesamt (2019). In addition to providing production

sales values, it also includes the quantities produced for sales and further processing. We

deflate the sales values using two-digit ISIC Rev. 4. deflators. An example of product

classification for leather and leather-products industry is listed in the Appendix in Table

A.11.

The Cost Structure Survey (“Kostenstrukturerhebung”) reports annual information

on various types of costs and inputs at the firm-level. The participation in the survey is

mandatory for all German manufacturing firms with more than 500 employees. Informa-

tion on smaller and medium firms (20 - 500 employees) are collected from a large random

sample, stratified at the two-digit industry level and size class level. This random sample

is redrawn every four years, and some SMEs are surveyed every time if they operate in

certain concentrated industries. We obtain our revenue, total costs, materials (including

energy) and labor expenditures from the CSS and deflate them using two-digit ISIC de-

flators.11 We also obtain information on the number of employees from this survey. The

cost structure survey is explained in more detail by Fritsch et al. (2004) and Lutz (2016).

We add data from the German company register (“Unternehmensregister”), which is

described in Koch and Migalk (2007), and from the European Union Transaction Log

(EUTL) in order to identify which German manufacturing firms are regulated by the EU

ETS and other external data to estimate capital stocks in accordance with Lutz (2016).

Table 1 shows the subsectors on the 2-digit-ISIC Rev.4 level that together constitute

the manufacturing sector in Germany, along with the summary statistics for total out-

put share, the number of firms, the number of single-product firms, and the number of

products produced by these industries. More than half of the firms in our sample produce

more than one product, implying that focusing on single-product firms would miss an
11The deflators are retrieved from Destatis portal GENESIS at https://www-

genesis.destatis.de/genesis/online. We use the statistics Producer Price Index 61241-0004.
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Table 1: Summary statistics of the German manufacturing sector

Nr. Industry description Output All Firms Single-product EU ETS Products
share (%) (Nr) firms (Nr.) firms (Nr.) (Nr.)

10 Food products 13.10 1,632 510 42 779
11 Beverages 2.40 211 50 4 137
13 Textiles 0.73 289 114 7 394
14 Wearing apparel 0.30 178 63 0 320
16 Wood and products of wood and cork 1.52 367 141 17 162
17 Paper and paper products 4.43 479 228 69 510
20 Chemicals and chemical products 16.08 804 235 82 1,430
22 Rubber and plastic products 5.83 953 350 13 504
23 Other nonmetallic mineral products 3.37 617 283 88 426
24 Basic metals 13.66 650 228 56 564
25 Fabricated metal products 7.71 1598 781 3 902
26 Computer, electronic and optical prod. 5.56 612 337 6 564
27 Electrical equipment 7.78 657 323 2 588
28 Machinery and equipment n.e.c. 16.68 1,590 905 9 1,544
32 Other manufacturing 0.86 174 121 1 232

Overall 100 10,811 4,669 399 9,056

Note: Columns 4, 5 and 6 report the number of all firms, single-product firms and EU ETS firms,
respectively. Column 7 reports the number of products by industry. Source: RDC of the Federal
Statistical Office and Statistical Offices of the Länder (survey years 2001-2014).

important part of the sector. Further information on industry level classification can be

found in A in the Appendix.

4 Empirical strategy

In this section, we describe our methodology to estimate the parameters of the produc-

tion function, total factor productivity, markups and marginal costs. The exposition is

intended to convey the economic intuition. A more detailed, step-by-step description is

provided in Appendix C. The methodology is based on De Loecker et al. (2016), and

accordingly we borrow some of their notation.

4.1 Model overview

Let Qfjt refer to the physical output quantity (in tons) of product j produced by firm f

in year t. Output is produced with three inputs: Capital K, labor L and materials M ,
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which includes energy.12 We write the production function as

Qfjt = Fj(Kfjt, Lfjt,Mfjt) · Ωfjt , (1)

where Ωfjt is a Hicks-neutral term that captures total factor productivity (TFP). The

production function is specific for each product and could in theory vary across time.13

Estimating production functions in the presence of a productivity shock that is known

to the firm, but unobserved to the researcher, has been the focus of the recent literature

on productivity analysis (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg

et al., 2015). De Loecker et al. (2016) extend the methodology to allow for unobserved

input quality.

Denoting V X
fjt as the price for input X ∈ (K,L,M), which the firm treats as given at

time t, the firm’s cost minimization problem for product j can be written as

min
Kfjt,Lfjt,Mfjt

V K
fjtKjft + V L

fjtLfjt + V M
fjtMfjt

s.t. Qfjt ≤ Qfjt(Kfjt, Lfjt,Mfjt; Ωfjt) ∀ j

This specification allows for the possibility that different firms pay different prices for

the same input, and that input quality (and thus the input price) varies across products.

Solving this problem leads to the following first-order condition, e.g., for material inputs:14

V M
fjt = λfjt

∂Qfjt

∂Mfjt

(2)

The interpretation of λfjt, which is the multiplier of the firm’s production constraint

in the cost minimization problem, is the cost of producing another unit of Qfjt, i.e., the
12Naturally, this model could be expanded to include an arbitrary number of factors. In one of our

extensions, we include energy as a separate factor of production. Adding a fourth factor increases the
number of interaction terms in the translog production function that we use.

13Given our relatively short sample, we abstain from estimating time-specific production functions and
thus omit the subscript t in F (·).

14The production function could include more than three inputs, and the first-order condition can be
derived using any of them. However, in terms of interpretation, it makes sense to choose an input that is
variable in the short run. We follow most of the production literature by assuming that there is at least
one input that is freely adjustable. In our setting, the most adjustable factor is material expenditure,
which includes all energy inputs.
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marginal cost. Multiplying both sides by Mfjt

Qfjt
and dividing by λfjt yields:

1

λfjt

V M
fjtMfjt

Qfjt

=
∂Qfjt

∂Mfjt

Mfjt

Qfjt

If we denote the product price by Pfjt and define the proportional markup as µfjt ≡

Pfjt/λfjt and substitute, we obtain the following expression:

µfjt =

(
∂Qfjt

∂Mfjt

Mfjt

Qfjt

)(
V M
fjtMfjt

PfjtQfjt

)−1

(3)

The markup has two components: The first term on the right-hand side is the elas-

ticity of output with respect to material inputs, which can be estimated using standard

econometric methods. The second term is the share of materials expenditure on prod-

uct Qfjt relative to the firm’s revenue from that product. For single-product firms, this

share collapses to the firm’s share of materials expenditures (or any other input used to

derive the first-order condition) relative to its revenue, which is observable. However, for

multi-product production, the share of inputs used for particular products is not recorded

even in highly disaggregated data such as AFiD. In our base specification, we use prod-

ucts’ revenue shares as a proxy for their expenditure share. This procedure departs from

De Loecker et al. (2016) who compute the expenditure share independently of the revenue

share, but it has four important advantages.

First, it allows us to use the full sample, which enables us to estimate the production

function at the 4-digit rather than the 2-digit level as is usually done. This is important

especially in the context of a quantity-based production function, since the technology to

convert capital, labor and materials into tons of output can be expected to vary across

product groups.15 Second, using the data from multi-product firms in the estimation

of the production function relaxes the constraint that single-product and multi-product

production uses the same technology, as De Loecker et al. (2016) necessarily have to

assume given their approach. This is unlikely, given that firms may become multi-product
15Ideally, we would estimate production functions at the most disaggregated level, which is 9 digits in

our data. However, this is impractical because there are not enough observations for most product codes
for the estimation procedure to converge.
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firms precisely to use synergies in production (for a detailed discussion, see Olley and

Pakes, 1996). We include the number of products as an explanatory variable in the

control function. Third, identifying the expenditure shares with the revenue shares allows

us to derive TFP at the product level (as opposed to the firm-level), which increases the

power of estimating the effect of the ETS on TFP, and which could also be useful in the

context of studying endogenous product selection (since firms presumably add products

that they can produce efficiently and drop those that they produce inefficiently). And

fourth, the computation of the shares requires around 17 hours of computing and, in

addition, can lead to multiple competing solutions per run. This renders a bootstrap

based on replicating the endogenous-share procedure impractical.16.

However, it is clear that from a theoretical point of view, expenditure shares need not

be identical to revenue shares. As a robustness test, we therefore apply the methodology

by De Loecker et al. (2016) by estimating the production coefficients based on single-

product firms only and then back out the expenditure shares based on the structural

form assumptions of the production function. As we show below, the expenditure shares

computed using that method are very similar to the revenue shares, such that we believe

the measurement error in our specification to be of second-order importance.

Based on the estimated markup µ̂fjt, we can compute marginal costs λfjt as

λ̂fjt =
Pfjt

µ̂fjt

. (4)

This marginal cost serves as the explanatory variable in our cost pass-through regres-

sions, which are discussed in more detail below.

We also use our estimates to learn something about the effect of the EU ETS on

productivity. Having estimated the production function, we derive an estimate for TFP

by dividing output by the production function estimate:

Ω̂fjt =
Q̂fjt

F̂f (Kfjt, Lfjt,Mfjt| β̂)
(5)

16The Indian data, on which De Loecker et al. (2016) ran this procedure, includes much fewer firms
than our data set
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The vector β̂ contains parameter estimates of the production function, and Q̂fjt is

an estimate of the output that is purged of idiosyncratic shocks. Using a difference-in-

difference framework and matching based on observable firm characteristics, we investigate

whether markups, TFP and profits are affected by the ETS.

4.2 Estimating the production function

We estimate translog specifications of the production function (1) for each 4-digit NACE

industry. Although the estimated parameters of this function are common across firms

within an industry and across years, the non-linear functional form with its various in-

teraction terms yields fitted markups, marginal costs and TFP that vary at the firm-

product-year level.

Estimating the production function using OLS is subject to two different types of bias.

The first is the well-known simultaneity bias first noted by Marschak and Andrews (1944),

which assumes that firms observe the productivity shock before choosing (some of) their

inputs. This implies that the input amounts and the error term in an OLS regression

(which includes ωfjt) may be correlated.17 The resolution of this econometric problem is

the focus of Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al.

(2015). We follow the latter to address the simultaneity bias. We assume that materials

can be adjusted in the short run and that productivity is a strictly increasing function

of material inputs. This allows for inverting materials demand and express productivity

as an increasing function of materials input. We then set up an equation of motion for

productivity and solve for the production parameters using the method of moments.

Besides the simultaneity bias, there is a second econometric challenge that needs to

be overcome. The actual input quantity is not recorded in the data (with the exception of

energy inputs) but has to be imputed by deflating input expenditure using an industry-

wide price index. But firms may use different input qualities for different products, and the

actual prices paid are presumably a function of this quality. De Loecker et al. (2016) show
17If all inputs were pre-determined, this would not be an issue. But in this case, the firm would not

have control over its current output, which is an assumption that seems highly implausible. In addition,
the coefficients of the production function are identified off different timing assumptions about various
inputs.
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that unobserved input quality lead to additional terms in the production function, which

precludes the identification of the production coefficients using standard methods. This

is particularly important when estimating quantity-based production functions because

the quantity of the output may well be a function not only of the quantity, but also the

quality of the input.18

The solution proposed by De Loecker et al. (2016), and which we follow here, is to add

additional terms to the estimating equation to account for the unobserved input quality.

We assume that high-quality inputs are related to high-quality outputs, which tend to

cost more (see, e.g., Kugler and Verhoogen, 2011; Manova and Zhang, 2012). Moreover,

we assume that a firm will use high-quality inputs throughout, in the spirit of the “O-ring

theory” (Kremer, 1993), rather than mixing inferior inputs of one kind with high-quality

inputs of another. This assumption justifies the application of the same price correction

to all inputs. Based on these arguments, we use the output price as our main proxy for

input quality. In addition, we include the market share of a product, the export status

(as exporting firms may have different opportunities to obtain inputs on the international

market), ETS coverage (to control for the fact that covered firms have to pay for emissions

allowances and therefore have higher energy costs than non-ETS firms) and a series of

product and measurement unit dummies. Because the output price and the market share

could be jointly determined with the input demand, we instrument for these variables by

using their lags. Based on the coefficients of the price control variables we then compute

an input price correction by which we adjust the input expenditure recorded in the raw

data. The exact steps are given in the appendix.
18As an example, consider the production of garments, which can be based on very different qualities

of materials and labor. Suppose that two firms purchase inputs of 1 million Euro each, but one mass-
produces T-shirts whereas the other produces haute couture. Without an input price correction, we
would translate the input expenditure into the same quantity (in tons) of garments, which is not correct.
The input price correction function uses the fact that haute couture is more expensive than T-shirts, by
introducing an adjustment factor to each firm’s input expenditure that reduces (increases) the quantity
of expensive (cheap) inputs.
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4.3 Causal effects of the EU ETS on profits and productivity

Although our chief interest in this paper is the quantification of cost pass-through in

manufacturing, it is worth noting that our estimation methodology yields estimates of

markups and TFP. Since these “by-products” are also policy relevant, we estimate the

effect of the EU ETS on them. The effect of the EU ETS on markups and TFP is an

important piece of information to evaluate the full societal impacts of unilateral climate

policy (besides the effect on emissions). To control for unobservable differences between

ETS and non-ETS firms that might bias our results, we use a semi-parametric matching

procedure in the spirit of Fowlie et al. (2012) and Colmer et al. (2020). We match on the

industry classification, emission intensity, capital, number of employees and energy use.

We perform a nearest-neighbor matching without replacement, as suggested by Abadie

and Spiess (2019).

We use the same framework to examine the effect on firm profits. These could be

negatively affected by the ETS due to the cost increase as a consequence of having to

pay for allowances. Profits could furthermore be affected via changes in markups and/or

TFP, and due to the combination of free allowance allocation and cost pass-through to

which we turn next.

4.4 Identifying cost pass-through

By definition, the output price is equal to marginal costs plus the absolute markup:

Pfjt = λfjt +MUfjt (6)

Here, MUfjt refers to the absolute markup given by MUfjt ≡ Pfjt − λfjt. We can

re-write (6) as

Pfjt = MU fj + λfjt +
[
MUfjt −MU fj

]
, (7)

where MU fj ≡
∑T

t=1MUfjt/T denotes the average markup needed to recover the fixed
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costs in the long run. The term in brackets is the deviation from this average; if the

markup is constant at all times, this term is zero. This is the case of complete cost pass-

through: If marginal costs increase by one Euro (e.g., due to an increase in energy prices),

the product price increases by the same amount, but the markup remains constant. A

special case is the situation where MUfjt = MU fj = 0, such that price equals marginal

costs at all times. In this “textbook” example, however, firms would not be able to recover

their fixed costs.

If markups are variable, then λfjt = Pfjt − MUfjt is correlated with the error term

in brackets and pass-through is different from unity. If the price elasticity of demand

increases with the price, then an increase in marginal costs (and thus in the product

price) leads to an increase in the price elasticity of demand, and thus a reduction of the

markup. In other words, the firm will absorb a part of the cost shock by lowering the

markup, rather than passing the full cost increase to the product price. If, on the other

hand, the elasticity of demand decreases sufficiently with the price (for example, if demand

is iso-elastic), then an increase in marginal costs will increase the markup, leading to more

than complete pass-through.19

Besides the curvature of demand, the nature of the cost shock is relevant for cost pass-

through. All else equal, firms pass on less of an idiosyncratic cost shock to consumers,

as full pass-through would hurt their market share given that their competitors’ costs

remain constant. In contrast, if all firms in the market experience the same cost shock,

pass-through will be higher (Muehlegger and Sweeney, 2020). The case of incomplete pass-

through is more likely in the context of German manufacturing, given that many firms

have competitors located outside the EU that are not subject to the same cost shocks.

For example, an increase in the allowance price leads to an increase in the production

costs for firms covered by the EU ETS, but not in the cost of firms that are not in the

system, which includes all firms from outside the 31 ETS countries. In order to protect

their market share, firms may not pass on the full carbon cost to the product price. This

is the main reason why manufacturing firms receive a proportion of their needed emissions
19For a discussion about the demand conditions under which we expect pass-through rates beyond one,

see Seade (1985).
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allowances allocated for free. The magnitude of the free allocation required to keep firms’

profits constant depends directly on the extent to which firms can pass on their carbon

costs to product prices.

If marginal costs were measured without error, then we could simply regress product

prices on a set of firm-product dummies and the marginal cost to identify the rate of cost

pass-through:

Pfjt = afj + γλfjt + ϵfjt (8)

The fact that E[λfjt ·ϵfjt] ̸= 0 is not a problem we need to be concerned about because

(7) is an identity. The “bias” in the coefficient on marginal costs, if markups are variable,

is precisely what we aim to capture when we estimate a cost pass-through regression. In

this sense, the endogeneity of marginal costs and variable markups is a feature rather

than a bug.20 However, we do not actually observe marginal costs but estimate them

with error. Let λ̂fjt = λfjt + ufjt where ufjt is the measurement error. Substituting into

(8) yields

Pfjt = afj + γλ̂fjt + [ϵfjt − ufjt] (9)

The presence of measurement error leads to a bias in the estimation of (9), as E[λ̂fjt ·

(ϵfjt−ufjt)] < 0. To address this problem, we use an instrumental variable approach. We

rely on three different instruments that we use separately in different regressions. Because

the IV estimate identifies the local effect of the exogenous variation in the underlying

instrument, the interpretation of the resulting cost pass-through depends on the choice of

the instrument. Our first instrument is the lagged marginal cost, which is appropriate as

long as the measurement error is not correlated over time. The interpretation based on

lagged marginal costs is that of materials costs pass-through, since we have constructed

marginal costs based on the markup derived from the materials elasticity.

Second, we use energy prices using a shift-share measure in the spirit of Bartik (1991).
20See De Loecker et al. (2016), p. 486f, for a more detailed explanation.
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Different variants of such instruments have been used successfully in recent research (e.g.,

Linn, 2008; Sato et al., 2015; Marin and Vona, 2017; Ganapati et al., 2020). Specifically,

we compute the quantity share (in kWh) of the most relevant energy inputs (coal, gas,

oil, electricity) in the first year of the sample. Using these (firm-specific) shares as fixed

weights, we then compute a weighted energy price using European prices for coal, gas

and oil, and the German wholesale price for electricity. The underlying assumption is

that these prices are unlikely to be influenced by individual firms. Because this approach

exploits the variation of energy prices, we interpret the estimate in the sense of energy

cost pass-through.

For the firms that are subject to the EU ETS, we employ a further instrument that

speaks to the extent of carbon cost pass-through, which is relevant in the context of free

allowance allocation as discussed above. To do this, we use the allowance price as the

instrument, multiplied by the share of allowance costs within total energy costs in the

first year of the system.

The exclusion restriction required for the second and third approach is that energy

and/or carbon prices must affect product prices only via marginal costs, but not directly.

However, it is possible that energy prices are correlated with demand shocks, which also

affect prices. To absorb demand shocks, we additionally include product-year fixed-effects

in the cost pass-through regressions.

To investigate whether cost-pass-through varies with export status and coverage by

the EU ETS, we also run regressions where we interact marginal costs with dummies for

being regulated under the EU ETS and for exporting goods to areas outside the Euro

zone, respectively.

5 Results

5.1 Average output elasticities, TFP and markups, by industry

Table 2 shows the average elasticities of output with respect to the three inputs labor,

capital and materials for each 2-digit industry. The results vary on the firm-level (despite
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Table 2: Average elasticities, TFP and markups, by industry

Nr. Industry Labour Capital Materials RTS TFP Markup
10 Food products 0.24 0.05 0.70 0.98 -1.10 1.42
11 Beverages 0.31 0.09 0.56 0.96 1.02 1.71
13 Textiles 0.32 -0.04 0.49 0.78 0.68 1.24
14 Wearing apparel 0.37 -0.05 0.57 0.89 -1.18 1.55
16 Wood and wood products 0.43 0.10 0.61 1.14 -4.68 1.24
17 Paper and paper products 0.32 0.06 0.62 1.00 -3.70 1.31
20 Chemicals and chemical prod. 0.36 0.08 0.56 1.00 -6.13 1.30
22 Rubber and plastic products 0.41 0.10 0.59 1.09 -2.15 1.34
23 Other nonmetallic mineral prod. 0.43 0.05 0.50 0.98 -3.63 1.36
24 Basic metals 0.31 0.03 0.63 0.96 -7.03 1.36
25 Fabricated metal products 0.46 0.03 0.50 0.98 -4.03 1.35
26 Electronic and optical prod. 0.44 -0.01 0.49 0.92 -3.76 1.33
27 Electrical equipment 0.46 0.06 0.57 1.09 -5.61 1.36
28 Machinery and equipment n.e.c. 0.46 0.09 0.52 1.07 -7.72 1.31
32 Other manufacturing 0.46 0.25 0.51 1.22 -4.76 1.77

Note: This table reports the average output elasticities from the production function, their
sum (returns to scale), total factor productivity and the proportional markup. Source: RDC
of the Federal Statistical Office and Statistical Offices of the Länder (survey years 2001-2014).

the fact that we estimate the production function on the 4-digit-level) due to the translog

production function: The elasticities are a function of the coefficient estimates the firm-

product specific input levels. The column labeled RTS (returns to scale) displays the sum

of the elasticities. Most industries appear to be operating near constant returns to scale,

with some exceptions.

The last column in the table shows the average proportional markups. They are

well in excess of unity, which is needed to recover the fixed costs that firms incur. The

average proportional markup ranges from 24 to 77%. Our estimates for the capital output

elasticity are very low and even negative for some industries. One possible explanation

for this may be the method we use to compute the capital stock. The AFiD data only

includes information about investments. To derive the capital stock, we use the perpetual

inventory approach (see Appendix). This approach is somewhat sensitive to fluctuations

in the per-period investment and the assumed depreciation rate. If the variation in the

imputed capital stock is significantly larger than the variation in the output quantity,

then this would lead to a low estimate of the capital elasticity, or even a negative one

if output surges in the years after an investment, but in which no new investment takes
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place. To test for the sensitivity of our results to the method used to compute the

capital stock, we also employed an alternative method proposed by Wagner (2010). This

methodology relies on the average life span of machinery and buildings, coupled with

industry-specific information about shares of these types of investments, and with firm-

specific information about depreciation rates. Overall, this did not lead to more credible

estimates for the materials elasticity, and we therefore rely on the perpetual inventory

method for the remainder of the paper.21

5.2 The effect of the EU ETS on profits and TFP

The first set of post-estimation analyses pertains to the causal effect of the EU ETS on

productivity (measured by our methodology) and profits.22 We do this for the subset of

industries that have a sufficient number of ETS firms. Figure 2 shows the development of

these outcomes over time. We see that matching on observable characteristics reduces the

absolute difference between the treated and untreated firms. While we cannot reject the

assumption of equal pre-treatment trends for profits after matching, matching actually

leads to diverging pre-trends for TFP. Since the assumption of parallel trends is essential

in a difference-in-differences analysis, we carry out the analysis on the full (i.e., non-

matched) sample for TFP, and use the matched sample for profits.

Tables 3 and 4 contain the results of a difference-in-difference regression of total fac-

tor productivity on a treatment dummy and including firm and year fixed effects. The

reported coefficients correspond to the average treatment effect on the treated (ATET).23

21We obtain negative materials elasticity estimates for 2% of the firm-product-year observations, which
we remove by trimming on both sides. Moving towards the methodology by Wagner (2010) leads to more
negative estimates.

22AfiD data does not provide information on profits directly, so we calculate them by subtracting
total costs from total revenues for each firm. Total revenue includes sales from own products, sales
from merchandise, sales from commissions through commercial brokerage and sales from other activities.
Total costs comprise gross wages paid, social costs, costs for contract workers and costs for contract work
carried out by other companies. Additional costs include costs for insurance, repairs, rental and leasing
costs, taxes as well as public fees and contributions, tax depreciation on property, plant and equipment
and interest on borrowed capital. This data is provided by the Cost Structure Survey.

23Strictly speaking, this is a differential effect because the ETS affects all firms to some extent via
its effect on electricity prices (Hintermann, 2016), such that the Stable Unit Treatment Assumption
(SUTVA) is likely violated. The effect we identify is thus the difference between being treated directly
by the ETS, and treated indirectly via electricity prices and possibly other market mechanisms.
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The results imply that the ETS had no statistically significant effect overall.24 For indus-

try 24 (metals) we find a positive effect. In tables A.1-A.6 in the Appendix, we show the

results from regressions that additionally include the ETS price as an interaction term.

The qualitative results remain unchanged.

Table 3: The effect of the EU ETS on Profits

Two-digit Industry
All 10 17 20 23 24

ETS 0.054
(0.037)

0.246
(0.162)

0.022
(0.074)

0.057
(0.117)

-0.019
(0.078)

0.187***
(0.060)

Matching 3 3 3 3 3 3

Year FE 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3

N 6874 504 980 1380 1238 1114

Note: This table displays the results of the fixed-effect difference-in-difference analysis re-
gressions of the EU ETS’ impact on profits. Standard errors (in parentheses) are clustered
on the matched pair. Industry codes: 10 – Food products, 17 – Paper and paper products,
20 – Chemicals and chemical products, 23 – Other nonmetallic mineral products, 24 – Basic
metals. Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder
(survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 4: The effect of the EU ETS on TFP

Two-digit Industry
All 10 17 20 23 24

ETS -0.087
(0.0966)

-0.138
(0.419)

-0.137
(0.124)

-0.037
(0.101)

-0.230
(0.356)

0.266**
(0.107)

Year FE 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3

N 466,073 97,480 13,885 73,049 19,660 23,208

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on TFP for the full sample. Standard errors in
parentheses. Industry codes: 10 – Food products, 17 – Paper and paper products, 20
– Chemicals and chemical products, 23 – Other nonmetallic mineral products, 24 –
Basic metals. Source: RDC of the Federal Statistical Office and Statistical Offices of
the Länder (survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.

Our findings thus do not support the Porter Hypothesis, nor do they imply that

German manufacturing firms have become less productive as a consequence of the EU
24We note at this point that the standard errors have not yet been bootstrapped.
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ETS. This is consistent with the neoclassic assumption that firms have optimized their

production process, and that being covered by an ETS does not fundamentally alter firm’s

profit-maximizing behavior. The lack of a negative impact on profits can be explained

by the countervailing effect that partial free allowance allocation, combined with cost

pass-through, has on profits. We turn to this next.

5.3 Estimates for cost pass-through

Table 5 reports the IV results from regressing product prices on a set of firm-by-product

dummies (to capture the average markup) and the marginal cost, instrumented for with

its lag. Because our marginal costs are based on materials, the results can be interpreted

as materials cost pass-through.

We carried out regressions in levels as in (7) and in logs (i.e., regressing the log price

on the log marginal cost). For the levels-regression, the first stage never reached statistical

significance, possibly due to the fact that marginal costs are never negative and thus a

model with a normally distributed error term is misspecified. Were therefore focus on the

log regressions. Regressing the log price on log marginal costs yields an estimate of the

elasticity. To transform this elasticity into a marginal effect, we multiplied the respective

elasticities in each industry by the industry-specific average markup. The log regression

results without this adjustment are shown in Tables A.7 and A.8 in the Appendix.

Table 5: Material cost pass-through (whole manufacturing sector)

mc 1.383*** 1.035*** 1.383*** 1.033*** 1.392*** 1.034***
(0.007) (0.230) (0.007) (0.229) (0.008) (0.231)

mc x ETS 0.000 0.001
(0.002) (0.003)

mc x EXP 0.002** 0.002**
(0.001) (0.001)

N 272,109 166,953 272,109 166,953 261,796 166,953
Notes: The marginal effects have been computed based on a regression in logs. Columns 2,
4 and 6 show the results with lagged marginal costs as instruments. Columns 3, 5 and 7
show the results using twice lagged marginal costs as instruments. Regressions with weak
instruments are labeled in grey. Standard errors (in parentheses) are clustered at the firm-
level. Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder
(survey years 2001-2014).
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The results show that the average materials cost pass-through in the manufacturing

sector is on the order of 140%, with relatively tight confidence intervals. We can easily

reject the null hypotheses of zero and complete pass-through.

In some regressions we also interact marginal costs with an ETS dummy and an

export dummy, which is equal to one for firms that belong to the top quartile in terms of

exports outside the EU. The coefficient on the ETS dummy is not statistically significant,

indicating that treated and non-treated firms did not engage in differential cost pass-

through. The coefficient on the export dummy is statistically significant, but so small

such as not to be economically meaningful. We note that the reduction in sample size for

the models with twice-lagged marginal costs is due to the fact that the product dummies

were updated twice during our sample period, such that we do not have one time series

of 14 years but three series of two, six and six years each. Given that some firms do not

report values for some years and that at least two observations per group are required

for the within-estimator to be identified, adding another lag leads to a significant loss in

sample size.25 The estimates that are greyed out are not to be trusted because we cannot

reject the null hypothesis of a weak instrument in the first step.

Table 6 shows materials cost pass-through for selected industries, based on the models

without interaction terms. The cross-industry variation is rather small.

The finding of more than complete pass-through is not what we expected, but it is

theoretically possible provided that the elasticity of the slope of the demand curve is

sufficiently high.26 It is furthermore consistent with the results by Miller et al. (2017),

who report more than complete cost pass-through for the cement sector.

An alternative interpretation of our results is that firms may choose a proportional

markup strategy. If firms keep this proportional markup constant, then a one-Euro in-

crease in marginal costs will lead to a price increase by the extent of the markup (e.g.,

1.40 Euro). The IV coefficient from the log model (i.e., the elasticities) are not statisti-
25In a future update of the paper, we will include firm-product group dummies defined at the 4-digit

level, which are stable over the entire sample period. This will increase the sample size, and hopefully
lead to an improved power in the first stage of the IV regression.

26If demand is highly convex, for example under the assumption of an iso-elastic demand curve, then
market power leads to a higher cost pass-through than under perfect competition (Seade, 1985).
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Table 6: Material cost pass-through (selected industries)

Two-digit Industry
10 17 20 23 24

mc 1.352*** 1.160*** 1.302*** 1.182*** 1.088***
(0.029) (0.044) (0.010) (0.041) (0.032)

N 59,060 8,053 46,237 10,814 14,570
Notes: The table displays the industry-specific results of the cost pass-through regressions
in logs. All regressions include firm-product fixed-effects and once-lagged marginal costs
as instruments. The marginal effects have been computed based on a regression in logs.
Standard errors (in parentheses) are clustered at the firm-level. Industry codes: 10 – Food
products, 17 – Paper and paper products, 20 – Chemicals and chemical products, 23 – Other
nonmetallic mineral products, 24 – Basic metals. Source: RDC of the Federal Statistical
Office and Statistical Offices of the Länder (survey years 2001-2014).

cally different from one, thus confirming the proportional markup strategy. In this sense,

our results are consistent with a constant proportional markup, which translates to more

than complete pass-through in an absolute sense. As far as we are aware, the distinction

between absolute and proportional markup cost pass-through has not received much at-

tention in the literature. If a firm has an average proportional markup of µ > 1, and its

marginal costs increase by one unit, then complete cost pass-through in an absolute sense

implies a price increase by one unit, whereas complete cost pass-through in a proportional

sense implies a price increase by µ units. Teh choice is not obvious, and different authors

have used different interpretations. For example, Fabra and Reguant (2014) Ganapati

et al. (2020) use the former interpretation, whereas De Loecker et al. (2016) use the

latter.

Next, we turn to the IV estimates where we use energy prices as the instrument, and

which therefore can be interpreted as energy cost pass-through. Table 7 shows the results

for the whole sector, again in absolute terms. The tables without the adjustment with

markups are shown in the Appendix in Tables A.9 and A.10. In models (1), (3) and (5),

we use current energy prices as the instruments. In the other models, we use a shift-share

instrument based on current energy prices multiplied by the share of the respective energy

source within total energy use. All models include firm-product fixed effects, and models

(7)-(9) additionally include product-year fixed effects to control for the possibility that
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energy prices are related to product prices via a demand shock, rather than exclusively

via marginal costs. In these regressions, however, the first stage fails in the sense that we

cannot reject the null hypothesis of weak instruments. For this reason, these columns are

greyed out. As above, the levels-regressions do not result in a valid first stage, and we

therefore focus on the estimates from the log model. The interaction terms involving the

ETS and export dummies are not statistically significant, indicating that ETS coverage

and export status do not meaningfully affect the degree of cost pass-through.

Table 7: Energy cost pass-through (whole manufacturing sector)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
mc 0.450*** 0.338*** 0.422*** 0.332*** 0.533*** 0.400*** 0.898 0.915 0.909

(0.048) (0.071) (0.043) (0.070) (0.037) (0.057) (0.601) (0.545) (0.934)
mc x ETS -0.005 0.000 -0.001

(0.003) (0.002) (0.002)
mc x EXP 0.003 0.003 0.002

(0.001) (0.001) (0.001)
N 400,835 278,857 400,835 278,857 342,953 227,453 268,028 268,028 217,996

Notes: The marginal effects have been computed based on a log specification. All models
include firm-product fixed effects, and (7)-(9) additionally include product-year fixed effects.
Models (1), (3) and (5) use energy prices as instruments, whereas the other models use
energy prices multiplied by their shares. Regressions with weak instruments are greyed out.
Standard errors (in parentheses) are clustered at the firm-level.

We find that on average, firms pass on only between 33 and 53 % of an energy cost

shock to consumers. This is significantly less than cost pass-through for materials. A

possible explanation for this result is that energy cost are more local or regional in nature

compared to material inputs, which are traded on global markets. As argued by Mueh-

legger and Sweeney (2020), the geographic scale of a cost shock can explain the degree of

cost pass-through and thus reconcile different empirical estimates. Intuitively, if a cost

shock only affects a small share of the overall market, the potential for cost pass-through

is more limited compared to a cost shock that is global and thus affects all firms. In other

words, firms fully pass on costs if their competitors are subject to the same shock, but

absorb a part of a more local cost shock by decreasing their margin.

Our estimates of cost pass-through are somewhat lower than the average values re-

ported by (Ganapati et al., 2020), who specifically rely on the regional disaggregation

of energy cost shocks to identify cost pass-through. In that paper, the average rate of
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marginal cost pass-through is 51-72%, depending on the specification. However, there is

a large variation in cost pass-through across the six considered products, which ranged

from 24 to 99%.

Table 8 reports results for the food, paper, and chemical industries to highlight the

pronounced heterogeneity across industries. The chemical industry even has an estimate

above unity for some specifications, although the model that includes product-year fixed

effects to control for the possible violation of the exclusion restriction leads to a pass-

through rate of 62 %.

Table 8: Energy cost pass-through (selected industries)

Food Paper Chemicals

mc 0.402*** 0.098 0.729*** 0.504*** 0.412*** 1.147*** 1.300*** 1.240*** 0.618***
(0.072) (0.135) (0.203) (0.104) (0.151) (0.270) (0.113) (0.144) (0.173)

N 85,690 55,200 54,422 11,935 9,131 8,375 64,553 41,605 39,972

Notes: The table displays the industry-specific results of the cost pass-through regressions
with firm-product fixed-effects. Columns 2, 5 and 8 report results using energy prices as
instruments. Columns 3, 6 and 9 report results using shift-share instruments. Columns 4, 7,
and 10 report results using energy prices as instruments and additional product-year fixed
effects. Standard errors (in parentheses) are clustered at firm-level. Source: RDC of the
Federal Statistical Office and Statistical Offices of the Länder (survey years 2001-2014).

In regards to the third IV strategy outlined in Section 4.4 above, none of the models

that use the carbon price as the instrument survives the first stage. In other words, carbon

prices are not significantly related to the marginal costs as computed in our model. This

somewhat surprising result led us to investigate the way carbon costs are reflected in the

AFiD data. As it turns out, emission allowances are listed not among energy costs, but

under financial assets and are thus part of capital. Since our marginal cost estimates

are based on materials costs, they do in fact not reflect the opportunity cost of carbon

emissions.27

Based on our estimates for energy cost pass-through, and assuming that the geographic

scope of carbon cost shocks is comparable to that of energy cost shocks, our analysis im-

plies that carbon costs are passed on to product prices an extent of 30-60 %. Considering
27This is work in progress. In a future update of our paper, we will transfer the value of emission

allowances (i.e., verified emissions times the allowance price) from capitals to materials and re-estimate
the model. This will hopefully lead to a valid first stage for carbon cost pass-through.
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that firms, on average, received more than 80% of their allowances allocated for free during

our sample period, this means that German manufacturing firms were over-compensated

for the carbon costs that they had to incur as a consequence of the EU ETS.

6 Conclusions and outlook

There are concerns that unilateral climate policy may adversely affect firms. In this paper

we show that these concerns are unfounded for German manufacturing firms covered by

the EU ETS for the first ten years of the system. We find that the program had no

effect on profits and productivity for the sector overall, and even a positive effect for some

industries.

We further estimate the degree of different types of cost pass-through. Our findings

indicate that firms use a fixed proportional markup and pass on materials costs fully in a

proportional sense, and more than completely in an absolute sense. In contrast, the rate

of absolute cost pass-through for energy cost shocks is on the order of 30-60 %. The lower

rate of pass-through could be explained by the more local nature of energy cost shocks,

relative to shocks to materials costs that tend to be traded more globally. Assuming that

carbon cost pass-through is similar to energy cost pass-through, our estimates imply that

manufacturing firms passed on their carbon costs sufficiently to insulate themselves from

profit losses during our sample period. On the other hand, the reduction of free allocation

to 30% of benchmark emissions by 2020 will likely lead to profit losses for the average

firm, which, given our current estimates, is able to pass on less than 70% of its carbon

costs to consumers.

Some (sub-)industries will continue to receive a much larger share free allocation due

to concerns of carbon leakage. In a future revision of this paper, we will investigate

whether the exemptions are justified by very low rates of pass-through.

Note: Since this is work in progress and the results may change, we ask the readers to

refer to the most recent update of our work by using the link provided at the beginning

of the document.
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Appendix

A Additional tables

Table A.1: The effect of the EU ETS on Profits

Nr. 10 17

ETS 0.007
(0.058)

0.246
(0.162)

0.136
(0.093)

0.256
(0.190)

0.123**
(0.049)

0.022
(0.751)

0.143**
(0.056)

0.058
(0.093)

ETS x PRICE -0.059**
(0.065)

-0.005
(0.924)

-0.009
(0.150)

-0.017
(0.059)

Matching 7 3 7 3 7 3 7 3

Year FE 3 3 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3 3 3

N 21698 504 21698 504 6225 980 6225 980

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on firm profits. Standard error in parentheses.
Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder
(survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.2: The effect of the EU ETS on Profits

Nr. 20 23

ETS -0.023
(0.061)

0.057
(0.117)

-0.048
(0.070)

0.071
(0.142)

0.110**
(0.053)

0.019
(0.078)

0.118*
(0.062)

-0.071
(0.095)

ETS x PRICE -0.011
(0.041)

-0.006
(0.171)

-0.004
(0.285)

0.024*
(0.040)

Matching 7 3 7 3 7 3 7 3

Year FE 3 3 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3 3 3

N 10667 1380 10667 1380 8799 1238 8799 1238

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on firm profits. Standard error in parentheses.
Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder
(survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.3: The effect of the EU ETS on Profits

Nr. 24 Sector

ETS 0.203***
(0.000)

0.187***
(0.060)

0.229***
(0.000)

0.166**
(0.072)

0.070***
(0.025)

0.054
(0.037)

0.088***
(0.028)

0.050
(0.044)

ETS x PRICE -0.012
(0.162)

0.009
(0.227)

-0.009*
(0.047)

0.002
(0.147)

Matching 7 3 7 3 7 3 7 3

Year FE 3 3 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3 3 3

N 8437 1114 8437 1114 150286 6874 150286 6874

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on firm profits. Standard error in parentheses.
Source: RDC of the Federal Statistical Office and Statistical Offices of the Länder
(survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.4: The effect of the EU ETS on TFP (industries nr. 10-17)

Nr. 10 17

ETS -0.138
(0.419)

0.744
(0.458)

0.060
(0.454)

0.937*
(0.502)

-0.137
(0.124)

0.044
(0.165)

-0.060
(0.120)

0.151
(0.179)

ETS x PRICE -0.090*
(0.049)

-0.087
(0.055)

-0.036
(0.023)

-0.049
(0.034)

Matching 7 3 7 3 7 3 7 3

Year FE 3 3 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3 3 3

N 97480 5960 97480 5960 13885 3251 13885 3251

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on total factor productivity. Standard error in
parentheses. Source: RDC of the Federal Statistical Office and Statistical Offices of
the Länder (survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.5: The effect of the EU ETS on TFP (industries nr. 20-23)

Nr. 20 23

ETS -0.037
(0.101)

0.048
(0.134)

-0.067
(0.111)

0.076
(0.155)

-0.230
(0.356)

0.040
(0.417)

-0.285
(0.377)

0.091
(0.455)

ETS x PRICE 0.014
(0.014)

-0.013
(0.025)

0.025
(0.035)

-0.023
(0.045)

Matching 7 3 7 3 7 3 7 3

Year FE 3 3 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3 3 3

N 73049 27266 73049 27266 19660 4407 19660 4407

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on total factor productivity. Standard error in
parentheses. Source: RDC of the Federal Statistical Office and Statistical Offices of
the Länder (survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.6: The effect of the EU ETS on TFP (industry nr. 24 and overall)

Nr. 24 Sector

ETS 0.266**
(0.107)

0.353***
(0.119)

0.332**
(0.131)

0.401***
(0.153)

-0.087
(0.097)

0.121
(0.119)

-0.097
(0.107)

0.144
(0.139)

ETS x PRICE -0.031
(0.220)

-0.022
(0.480)

0.004
(0.241)

-0.010
(0.277)

Matching 7 3 7 3 7 3 7 3

Year FE 3 3 3 3 3 3 3 3

Firm FE 3 3 3 3 3 3 3 3

N 23208 5018 23208 5018 466073 62004 466073 62004

Note: This table displays the results of the fixed-effect difference-in-difference analysis
regressions of the EU ETS’ impact on total factor productivity. Standard error in
parentheses. Source: RDC of the Federal Statistical Office and Statistical Offices of
the Länder (survey years 2001-2014). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.7: Material cost pass-through (whole manufacturing sector): Proportional CPT

mc 0.988*** 0.739*** 0.988*** 0.738*** 0.994*** 0.739***
(0.007) (0.230) (0.007) (0.229) (0.008) (0.231)

mc x ETS 0.000 0.001
(0.002) (0.003)

mc x EXP 0.002** 0.002**
(0.001) (0.001)

N 272,109 166,953 272,109 166,953 261,796 166,953
Notes: These are the results from regression in logs such that the coefficients correspond to
elasticities. Columns 2, 4 and 6 show the results with lagged marginal costs as instruments.
Columns 3, 5 and 7 show the results using twice lagged marginal costs as instruments.
Regressions with weak instruments are labeled in grey. Standard errors (in parentheses) are
clustered at the firm-level. Source: RDC of the Federal Statistical Office and Statistical
Offices of the Länder (survey years 2001-2014).
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Table A.8: Material cost pass-through (selected industries): Proportional CPT

Two-digit Industry
10 17 20 23 24

mc 0.952*** 0.886*** 1.001*** 0.869*** 0.800***
(0.029) (0.044) (0.010) (0.041) (0.032)

N 59,060 8,053 46,237 10,814 14,570
Notes: These are the results from regression in logs such that the coefficients represent
elasticities. All regressions include firm-product fixed-effects and once-lagged marginal costs
as instruments. The marginal effects have been computed based on a regression in logs.
Standard errors (in parentheses) are clustered at the firm-level. Industry codes: 10 – Food
products, 17 – Paper and paper products, 20 – Chemicals and chemical products, 23 – Other
nonmetallic mineral products, 24 – Basic metals. Source: RDC of the Federal Statistical
Office and Statistical Offices of the Länder (survey years 2001-2014).

Table A.9: Energy cost pass-through (whole manufacturing sector): Proportional CPT

(1) (2) (3) (4) (5) (6) (7) (8) (9)
mc 0.321*** 0.241*** 0.302*** 0.237*** 0.381*** 0.286*** 0.641 0.654 0.649

(0.048) (0.071) (0.043) (0.070) (0.037) (0.057) (0.601) (0.545) (0.934)
mc x ETS -0.004 0.000 -0.000

(0.003) (0.002) (0.002)
mc x EXP 0.002 0.002 0.001

(0.001) (0.001) (0.001)
N 400,835 278,857 400,835 278,857 342,953 227,453 268,028 268,028 217,996

Notes: These are the results from regression in logs such that the coefficients represent
elasticities. All models include firm-product fixed effects, and (7)-(9) additionally include
product-year fixed effects. Models (1), (3) and (5) use energy prices as instruments, whereas
the other models use energy prices multiplied by their shares. Regressions with weak instru-
ments are greyed out. Standard errors (in parentheses) are clustered at the firm-level.

Table A.10: Energy cost pass-through (selected industries): Proportional CPT

Food Paper Chemicals

mc 0.283*** 0.069 0.513*** 0.385*** 0.314*** 0.876*** 1.000*** 0.953*** 0.475***
(0.072) (0.135) (0.203) (0.104) (0.151) (0.270) (0.113) (0.144) (0.173)

N 85,690 55,200 54,422 11,935 9,131 8,375 64,553 41,605 39,972

Notes: These are the results from regression in logs, such that the coefficients represent elas-
ticities. The table displays the industry-specific results of the cost pass-through regressions
with firm-product fixed-effects. Columns 2, 5 and 8 report results using energy prices as
instruments. Columns 3, 6 and 9 report results using shift-share instruments. Columns 4, 7,
and 10 report results using energy prices as instruments and additional product-year fixed
effects. Standard errors (in parentheses) are clustered at firm-level. Source: RDC of the
Federal Statistical Office and Statistical Offices of the Länder (survey years 2001-2014).
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B Further Data Description

In the periods 1995-2014, the industry classification in our dataset (”Wirtschaftszweig”)

has changed three times. During the last change in our sample after 2008, the classifi-

cation has changed in accordance with the European implementation NACE Revision 2

(Statistical Classification of Economic Activities in the European Community) of the UN

classification ISIC Revision 4. We reclassify the years before 2008 using official reclassifi-

cation guide of the German Statistical Offices at the four-digit industry code level, to be

able to use the ISIC Rev. 4 classification throughout.28

We combine different modules of AFiD data set via plant and firm-level identifiers.

Merging AFiD data with information from EUTL requires a multi-step procedure. First it

is combined with the German Company Register using information on commercial register

number, VAT number and the address in order to obtain a unique company identification

number. Using the latter, the external dataset can be combined with the AFiD dataset.

We were able to assign 83 percent (1117 firms) of the firms in the EUTL a commercial

register number and merge it with AFiD. The firms that are not matched mainly belong

to non-manufacturing sectors. We proceed by dropping all non-EU ETS firms from the

final dataset.

As the AFiD dataset does not provide explicit capital stock information, we use the

perpetual inventory method to compute capital stocks on firm-level. In what follows

we borrow from Lutz (2016). The perpetual inventory method relies on the following

fundamental formula:

Kt = Kt−1(1− δ) + It, (A.1)

where K denotes capital stock, δ the geometric depreciation rate and I the investment.

We derive the initial capital stock K1 from the equation (A.1):

K1 = I0 + I−1(1− δ) + I−2(1− δ)2 + . . . (A.2)
28For more details on reclassification codes, see Statistisches Bundesamt (2008).
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K1 =
∞∑
s=0

Is(1− δ)s (A.3)

We assume the real investments grow at rate g:

K1 = I0

∞∑
s=0

[
(1− δ)

(1 + g)

]s
(A.4)

K1 = I0
(1 + g)

(g + δ)
(A.5)

We can therefore define the capital stock in the first period as:

K1 = I1
1

(g + δ)
(A.6)

Lutz (2016) points out that in the ”AFiD Panel Manufacturing Plants” investments fluc-

tuate greatly over time and this complicates the computation of inital capital stocks. To

overcome this, we compute the average It over all periods available and estimate I1:

Î1 =

∑n
t=0

It+1

(1+i)t

n
(A.7)

For information on investment in machinery and equipment, investment in buildings,

and investment in properties without buildings. we use firm-level investment data from

the AFiD-Panel Industriebetriebe (”AFiD Panel Manufacturing Plants”). We deflate

investments using industry-specific deflators for machinery and equipment as well as gen-

eral deflators for buildings and property without buildings. We start from K1 and plug

in firm-specific investments and the industry specific time-varying depreciation rates into

equation (A.1) to compute the entire time series of the firm’s capital stock. As we observe

annual firm-level investment data for the period 2003-2014, the growth rate of capital g

and the depreciation rate δ can either be assumed to take a certain value or estimated

using aggregated data, e.g. industry-level data. We compute industry-specific average

growth and depreciation rates using aggregate data from the Destatis portal GENESIS.
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We use the same source for the deflators information.29 In particular we use the statis-

tics with the following codes: 81000-0107 National Accounts Depreciation, 81000-0115

Gross Investment, 81000-0116 Gross Capital Stock, 81000-0117 Net Capital Stock, and

61262-0001 Price Index Property.

29For more information on this data, visit the Destatis portal GENESIS at https://www-genesis.
destatis.de/genesis/online.
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C Estimating markups, marginal costs and TFP

C.1 Estimating the production function

We use lower case variables to denote the natural logarithm of a variable and collapse

the three factors into the vector x = (k, l,m). This leads us to the following production

function:

qfjt = fj(xfjt; β) + ωfjt + ϵfjt (A.8)

The vector β contains the production coefficients, ωfjt is the log of TFP and ϵfjt is an

i.i.d. error term. We specify a translog production function that takes as arguments the

physical input quantities:

fj(xfjt; β) =βllfjt + βlll
2
fjt + βkkfjt + βkkk

2
fjt + βmmfjt + βmmm

2
fjt

+ βlklfjtkfjt + βlmlfjtmfjt + βmkmfjtkfjt (A.9)

We do not observe actual input quantities, but only input expenditures. Let xe
ft be

the log of firm f ’s expenditure on input x, and vfjt is the unobserved input price that this

firm pays in the production of product j. To deflate input expenditures, an industry-wide

price index v̄jt is used. The deflated log input expenditure is denoted by x̃ft ≡ xe
ft − v̄jt,

which can be computed from the data. Furthermore, let ρfjt refer to the log share of

inputs used in the production of product j. In our base specification, we approximate

this with the revenue share and compute x̃fjt = ρfjt + x̃ft. As an extension, we use the

methodology by De Loecker et al. (2016), who treat ρfjt as endogenous (see below).

We can then express the log physical quantity of input x used in the production of j
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by

xfjt =ρfjt + xe
ft − vfjt

=ρfjt + (xe
ft − v̄jt) + (v̄jt − vfjt)

=x̃fjt − vdfjt (A.10)

Here, vdfjt ≡ vfjt − v̄jt is the deviation of the firm- and product-specific input price

vector vfjt from the industry price index; if vdfjt = 0, the firm pays exactly the industry

average for input x in the production of good j. If it pays more, then a given amount of

input expenditure will lead to a lower input quantity, and vice versa.

Substituting (A.10) into (A.8), we can express the production function as

qfjt = fj(x̃fjt; β) + C(vfjt; δ) + ωfjt + ϵfjt . (A.11)

The term C(·) captures all components that are related to the unobserved input qual-

ity, captured by the firm-product specific price vfjt. Estimating this equation with OLS

would be problematic even abstracting from the simultaneity bias as vfjt is endogenous.

We therefore need to resort to a control function approach similar to that used for the

simultaneity bias.

To control for unobserved input quality, we need observable proxies. As discussed in

the main text, will assume complementarity such that high-quality products rely exclu-

sively on high-quality inputs and thus use the output price pt (along with its square) as

our main proxy for input quality.30 In addition, we include the market share of a product

msfjt (by itself and interacted with the product price); a EU ETS membership dummy

ETSft that is equal to one if a firm is included in the market and zero otherwise; and

a series of product and measurement unit dummies PDfjt. The firm-specific price (and

thus quality premium) in input prices can be written as

vfjt = v (pfjt,msfjt, ETSft, PDfjt; δ) (A.12)

30For a detailed rationalization of this approach, see De Loecker et al. (2016, Appendix A).
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When (A.12) into (A.11), we instrument for the current price and market share with

their lags, as well as with the lagged price interacted with the vector of input expenditures

x̃fjt in order to facilitate identification of the parameter vectors β (for the production

function) and δ (for the price correction).

We follow the methodology by Wooldridge (2009) and Ackerberg et al. (2015) to

identify the coefficients of the production function. Specifically, we assume that materials

are the input that is best adjustable in the short run, whereas labor adjusts a little more

slowly, and capital is a dynamic input in the sense that the stock of capital in period t

can be treated as given. Besides labor and capital, materials demand also depends on the

productivity shock and on the unobserved input price quality vft:

m̃fjt = m
(
ωfjt, k̃fjt, l̃fjt, pfjt,msfjt, ETSft, PDfjt

)
, (A.13)

where the tilde refers to the fact that these are expenditures (rather than amounts),

and the subscript j indicates that these have been converted to the product-level by

multiplying by ρfjt.

Inverting the function m(·) leads to

ωfjt = h(x̃fjt, pfjt,msfjt, ETSft, PDfjt) (A.14)

Following Ackerberg et al. (2015), we use the following equation of motion for the

productivity shock:

ωfjt = g(ωfjt−1, EXPft−1, NPft−1) + ξfjt , (A.15)

To predict the productivity shock, we include the export status as exporting firms

have been found to be more productive in many contexts (Melitz, 2003; Wagner, 2007;

De Loecker, 2013), including the German manufacturing sector (Arnold and Hussinger,

2005; Richter and Schiersch, 2017). In addition, we include the (lagged) number of prod-

ucts (NPft−1) that a firm produces to control for the possibility that high-productivity
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firms produce more products (or that they, by producing more products, become more

productive).

Identification is achieved via timing assumptions in a general methods of moments

framework. We assume that materials and labor are static inputs in the sense that they

can be adjusted in the short run, whereas the stock of capital is pre-determined at time

t. In practice, this means that we include current capital as a pre-determined regressors,

whereas we instrument for materials and labor by using their lags.

To form moments on the innovation ξfjt, the productivity has to be expressed as

a function of data and estimable parameters. To do this, we first purge output from

unobserved shocks by regressing it on all variables in f(·) and C(·), using lags wherever

an endogeneity problem may be expected and a series of product and unit dummies.

This semi-parametric regression yields an estimate for output, q̂fjt, that is independent

of idiosyncratic shocks ϵfjt in (A.11). The productivity shock can then be expressed as

ωfjt(β, δ) = q̂fjt − f(x̃fjt; β)− C(pfjt,msjft, ETSft, PDfjt; δ) (A.16)

The parameters are estimated by forming moments based on the error term in the law

of motion for ωfjt:

ξfjt(β, δ) = ωfjt(β, δ)− E [ωfjt(β, δ) |ωfjt−1(β, δ), EXPft−1, NPft−1] (A.17)

E [ξfjt(β, δ) · Yfjt] = 0 (A.18)

The vector Yfjt includes current capital, lagged materials and labor, their interaction

terms from the translog function (lagged where appropriate), as well as lagged output

prices and market shares, lagged export and ETS dummies, the lagged number of products

and a series of product dummies.

More precisely, we estimate the production function using an IV procedure based on

two-step GMM that contains two sets of endogenous regressors. The dependent variable

is the quantity of output. The set of endogenous regressors in the production function

contains all translog terms that include materials and/or labor. The endogenous regressors

53



in the price control function are the output price and its square, the market share, the

market share interacted with the output price and the ETS status. The set of (excluded)

instruments are the corresponding lagged variables, the interaction of the lagged output

price with all input terms from the translog function and the lagged export status. Finally,

the included exogenous regressors include current capital and its square, lags of higher-

order terms of capital (up to the cube), the lagged number of products produced by a

firm, the export status and a series of year and product dummies.

Having the regression estimates for β and δ, we can first compute the price correction

using (A.12) and then the productivity shock in (A.16). We compute the price correction

by

v̂fjt = γp · pfjt + γp2 · p2fjt + γms ·msfjt + γpms · pfjt ×msfjt + γETS · ETSft (A.19)

γy ≡
−δ̂y

θ̄m + θ̄l + θ̄k
for y ∈ (p, p2,ms, pms,ETS) (A.20)

θ̄m ≡ β̂m + 2βmmm̄+ βlml̄ + βmkk̄ (A.21)

θ̄l ≡ β̂l + 2βll l̄ + βlmm̄+ βlkk̄ (A.22)

θ̄k ≡ β̂k + 2βkkk̄ + βlk l̄ + βmkm̄ (A.23)

The correction parameters γy are equal to the negative of the coefficient estimates

δ̂ on the respective endogenous variables in (A.19) divided by the (translog) returns to

scale evaluated at the average values, as dented by the bars. Recall that we estimate the

regressions on the 4-digit level, such that the averages are taken within these subsectors.

Intuitively, we model a better input quality as if the firm had fewer inputs to generate a

given output, relative to a firm with a worse input quality. This input quantity adjustment

(over all inputs) affects the output quantity to the extent of the returns to scale. Suppose,

for simplicity, that the price correction only consisted in the output price. The marginal

effect of the (instrumented) price on the output quantity is then

∂qfjt
∂pfjt

= −δp =
∂qfjt
∂vfjt

∂vfjt
∂pfjt

= (θ̄m + θ̄l + θ̄k) · γp < 0 (A.24)
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The first equality represents the IV regression where we regress the quantity, among

other things, on the (instrumented for) product price. The coefficient on this is −δp, where

the negative sign is due to the specification of (A.10). In the second equality we simply

expand the marginal effect of price on quantity into a marginal effect of the output price

on the input price times the marginal effect of the input price on the output quantity.

The latter is given by the returns to scale, and the former by the coefficient γp as shown

in (A.19).

We estimate the regression using the ivreg2 command in Stata 15, using the option

gmm2s. The code is available upon request. The estimation takes place at the 4-digit-

level, such that the estimates for β and δ are the same for all firms that share the same

4-digit-code. Due to the interaction terms in the translog function, this results in estimates

for the labor, capital and materials elasticities that differ at the firm-product-year level.

For an example of how this works in the simplified setting of a Cobb-Douglas production

function, see De Loecker et al. (2016), Appendix B.

Having estimated v̂fjt, we de-mean it and derive the adjusted input quantities x̂fjt by

dividing the deflated input expenditures by v̂dfjt, as shown in (A.10). Last, having the

production coefficients and the adjusted input amounts, we obtain TFP by

ω̂fjt = q̂fjt − f(x̂fjt; β̂) , (A.25)

where q̂fjt is the output quantity that has been purged of idiosyncratic shocks via semi-

parametric regression.

C.2 Endogenous input shares

In our base model, we use revenue shares to approximate the input shares. The methodol-

ogy proposed by De Loecker et al. (2016) uses the structural form to derive an independent

estimate for the input shares. This method only allows for the estimation of TFP only

on the firm level (not the firm-product level) as will become clear below.

The key of this methodology is to divide the production function into two sub-
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functions: One that contains the (unknown) input shares, and one that does not:

qfjt = f1(x̃ft, β̂, v̂dfjt) + f2(x̃ft, β̂, v̂dfjt, ρfjt) + ωft (A.26)

The vector of deflated input expenditures, x̃ft does not have a product-subscript, as

the input quantities are given at the firm-year level only. The price correction is computed

as discussed above.31 The specification of f1 and f2 depends on the functional form of the

production function. For purposes of exhibition we will omit the “hats” in what follows,

with the understanding that all parameters are estimates.

For the translog production function, f1 and f2 are given by32

f1(·) =kftβk + k2
ftβkk + lftβl + l2ftβll +mftβm +m2

ftβmm

+ kftlftβlk + lftmftβlm + kftmftβmk

− vdfjt (βk + 2kftβkk + βl + kftβlk + lftβlk + 2lftβll + lftβlm)

− vdfjt (mftβlm + βm + kftβmk +mftβmk + 2mftβmm)

+ vd2fjt (βkk + βlk + βll + βlm + βmk) (A.27)

f2(·) =afjt · ρfjt + bfjt · ρ2fjt (A.28)

where

afjt =βk + βl + βm − 2vdfjt(βkk + βlk + βll + βlm + βmk + βmm)

+ lft · (βlk + 2βll + βlm)

+ kft · (2βkk + βlk + βmk)

+mft · (βlm + βmk + 2βmm) (A.29)

bfjt =βkk + βlk + βll + βlm + βmk + βmm (A.30)

31Note that De Loecker et al. (2016) use the returns to scale from a Cobb-Douglas production function
rather than the translog production function when computing vfjt. We believe this to be an error.

32To derive this, express the product-level inputs, corrected for input quality, as mfjt = ρfjt +mft −
vdft, lfjt = ρfjt + lft − vdft and kfjt = ρfjt + kft − vdft and use these terms in the production function.
Multiplying out and collecting terms yields the given expression.
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The definition of vdfjt is as in (A.19)-(A.23). Subtracting f1(·) from both sides in

(A.26) leads to a system of J + 1 equations in as many unknowns for each firm-year

combination:

qf1t − f1(vdf1t) = af1t · ρf1t + bf1t · ρ2f1t + ωft (A.31)

· ··

qfJt − f1(vdfJt) = afJt · ρfJt + bfJt · ρ2fJt + ωft (A.32)
J∑

j=1

ρfjt = 1 (A.33)

This system can be solved for the ρfjt and ωft. Here, it becomes clear why TFP is

restricted to the firm, rather than the firm-product level. If TFP were allowed to vary

across products as well, there would be (J+1) equations in (2J) unknowns. In this sense,

the restriction that ωft applies to all products of firm f allows for the identification of the

unobserved input shares.

Finally, having the input shares we can compute the corrected input quantities and

proceed as in the base model.
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