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Abstract

An important feature of post-secondary schooling is the experimentation that

accompanies sequential decision-making. Specifically, by entering college, a student

gains the option to decide at a future time whether it is optimal to remain in college

or to drop out, after resolving uncertainty that existed at entrance about factors

that affect the return to college. This paper uses data from the Berea Panel Study

to quantify the value of this option. The unique nature of the data allows us to

make a distinction between “actual” option values and “perceived” option values

and to examine the accuracy of students’ perceptions. We find that the average

perceived option value is 65% smaller than the average actual option value ($8,670

versus $25,040). A further investigation suggests that this understatement is not

due to misperceptions about how much uncertainty is resolved during college, but,

rather, because of overoptimism at entrance about the returns to college. In terms

of policy implications related to college entrance, we do not find evidence that

students understate the overall value of college, which depends on the sum of the

option value and expectations at entrance about the returns to college.
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1 Introduction

An important feature of post-secondary schooling is the experimentation that accompa-

nies sequential decision-making.1 Specifically, by entering college, a student gains the

option to decide at a future time (t = t∗) whether it is optimal to remain in college or

to drop out, after resolving uncertainty that existed at entrance (t = t0) about academic

ability or other factors that affect her return to college. This paper uses data from the

Berea Panel Study to contribute to a literature that has recognized the importance of

quantifying the value of this option (Heckman, Lochner, and Todd, 2006, Heckman and

Navarro, 2007, and Stange, 2012). The unique nature of the data allows an examination

of whether students’ perceptions about option values tend to be accurate by allowing, for

the first time, a distinction to be made between “actual” option values and “perceived”

option values.

For the purpose of illustration, consider a scenario where all that occurs between t0

and t∗ is that students resolve uncertainty that existed at entrance. In this scenario, in

the absence of the option to make decisions after receiving new information, the decision

of whether to enter college after high school is equivalent to a decision of whether to

commit to staying in school until college graduation.2 The value of the option quantifies

how beneficial it is to be able to delay the graduation decision until after some uncertainty

is resolved during the early portion of college. For a student who would not enter college

in the absence of the option, the expected lifetime utility at t0 of graduating is lower

than the expected utility at t0 of not graduating. Roughly speaking, the option value

for this student tends to be substantial when, given the magnitude of the (negative)

difference between these two expected utilities at t0, the information she will obtain

after entering college will often push her across the margin of indifference to a situation

where the expected utility at t∗ of graduating is non-trivially higher than the expected

utility at t∗ of not graduating. Similarly, for a student who would enter college in the

absence of the option, the expected utility at t0 of graduating is higher than the expected

utility at t0 of not graduating. Roughly speaking, the option value for this student tends

to be substantial when, given the size of the (positive) difference between these two

expected utilities at t0, the information she will obtain after entering college will often

push her across the margin of indifference to a situation where the expected utility at t∗

of graduating is non-trivially lower than the expected utility at t∗ of not graduating.

1This notion that education can be considered as a sequential choice that is made under uncertainty
has been widely accepted in the literature since the seminal work in Manski (1989) and Altonji (1993).

2If there are also direct net benefits/costs associated with staying in school between t0 and t∗ (e.g.,
tuition, utility or disutility of schooling, foregone earnings), students’ entrance decisions would also
depend on these benefits/costs. This could slightly complicate the illustrative discussion in the intro-
duction. If students derive substantial utility from staying in school between t0 and t∗, in the form of, for
example, amenities and consumption benefits (e.g., Jacob, et al., 2018, Gong, et al., 2019), they might
decide to start school and drop out after a couple of years even if they do not resolve uncertainty during
school. However, we note that our formal approach for quantifying the option value does not rely on the
assumption that there are no direct benefits/costs between t0 and t∗.
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The importance of quantifying the option value comes from its fundamental impor-

tance for understanding/interpreting college attendance and college dropout decisions;

while policy discussion often suggests that college attendance rates are too low or college

dropout rates are too high, it is difficult to reach an informed view of these rates without

understanding the option value’s importance.3 In terms of college entrance, as implied

by the discussion in the previous paragraph, the number of high school graduates who

should find it optimal to enter will depend directly on the option value; when option

values are close to zero, students will tend to enter college only if the expected utility

at t0 of graduating is greater than the expected utility at t0 of not graduating, while

substantially higher option values can induce entrance even for students for which the

difference between these expected utilities, hereafter referred to as the “initial expecta-

tions gap” at t0, is substantially negative. Further, this effect on who attends college also

leads to a very direct link between option values and dropout rates. Indeed, inconsistent

with policy discussion that tends to view dropout as inherently bad, if high option values

imply that students with substantial negative initial expectations gap find it useful to

enter college, then a non-trivial amount of dropout would be a natural part of a healthy

environment in which schools are providing useful information to students.

Our primary contribution comes from being able to compute both the actual option

value for each student and each student’s perceptions about the option value. We for-

malize the discussion above through the lens of a stylized college dropout model. We

show that the option value uniquely depends on (1) the initial expectations gap, which

measures how far away a student is from the margin of indifference at entrance and (2)

how much uncertainty the student resolves before making dropout decisions. Then, as

we discuss in Section 2, our ability to compare actual and perceived option values arises

from the fact that the unique combination of administrative data and expectations data

available in the Berea Panel Study allows perceived and actual values of (1) and (2) to

be constructed.

In a baseline scenario where students only resolve uncertainty about the pecuniary

benefits of college completion, we find that, on average, students’ perceptions about the

value of the option understate the actual value of the option substantially: The average

perceived option value is $8,670, roughly 65% smaller than the average actual option

value, $25,040. We examine whether there exist gender differences in option values by

conducting our analysis separately for male and female students. We find that while, on

average, males and females have similar perceptions about the option value ($8,440 for

males, $7,660 for females), there exists a substantial gender gap in the average actual

option value ($39,690 for males, $15,200 for females). Thus, while there do exist some

differences by gender, our general conclusion that students underestimate the option value

holds for both groups of students. As a robustness check, we examine the implications

3As one of many examples, Hess (2018) suggests, in a recent article in the Forbes (June 6, 2018),
that “The sad reality is that far too many students invest scarce time and money pursuing a degree they
never finish, frequently winding up worse off than if they’d never set foot on campus in the first place.”
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of allowing students to learn about non-pecuniary factors and also about the pecuniary

benefits associated with their non-college option.

One important aspect of our approach is that it allows us to examine why an under-

statement of the option value occurs. We find that it is not driven by an understatement

of the amount of earnings uncertainty that is resolved in college - both the actual and

the perceived fraction of initial earnings uncertainty that is resolved in college are 0.51.

Instead, we find that students’ perceptions tend to substantially overstate the initial ex-

pectations gap. Our findings about the reason for misperceptions about the option value

are important because, while it may seem at a first glance that an understatement of

the option value would necessarily lead to too few students entering college, in reality

whether this is true depends critically on why misperceptions exist.4 This is the case

because the overall value of college, which is the relevant object for the college entrance

decision, is strongly related but not identical to the option value. Under the illustrative

scenario in the second paragraph - where all that occurs between t0 and t∗ is that stu-

dents resolve uncertainty that existed at entrance - the overall value of college is equal

to the sum of the option value and the initial expectations gap, under the most likely

scenario where the initial expectations gap is positive. We find that the understatement

of the option value is more than offset by the optimism about the initial expectations

gap. Thus, once one takes into account both components of the overall value of college,

concerns that too few students enter college tend to dissipate.

.

2 Overview of Our Approach and Related Literature

The well-recognized difficulty of characterizing option values can be viewed as arising, to

a large extent, because of data issues. As noted in the introduction, in Section 4 we use a

stylized model to show that the option value is determined by (1) the initial expectations

gap and (2) the amount of uncertainty about the gap in expected utilities that will be

resolved before making the dropout decision at t∗. Then, because (1) and (2) completely

determine the dropout probability in the stylized model, what is needed to characterize

the option value is any two of (1), (2), and the dropout probability.

Unfortunately, while administrative data sources can provide direct evidence about

the dropout probability, they are not well-suited for providing direct evidence about the

other two objects. For example, it is hard to provide information about the initial ex-

pectations gap because this gap includes not only the financial return to schooling but

4The relevance of this concern is apparent in related research which, for example, examines whether
higher-education decisions are influenced by misperceptions about college costs (Bleemer and Zafar,
2018) or by misperceptions about available opportunities (Hoxby and Turner, 2013).
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also non-pecuniary benefits of schooling.5 As such, research characterizing option values

typically has turned to fully specified models (often dynamic discrete choice models) to

estimate the option value.6 In contrast, the Berea Panel Study data allow the option

value to be computed in a more direct way; in addition to containing information about

dropout, evidence about uncertainty resolution, which arises in our baseline model be-

cause of learning about pecuniary factors under the scenario in which a student graduates

from college, comes from the fact that the distribution describing beliefs about future

earnings is collected at multiple times during school.

A feature of the models traditionally used to estimate option values is that Rational

Expectations (RE) assumptions are employed to link actual outcomes to choices that de-

pend on students’ subjective expectations. Consequently, these approaches do not make

a distinction between students’ perceptions about option values (hereafter referred to as

“perceived” option values) and their values implied by rational expectations (hereafter

referred to as “actual” option values); roughly speaking, the option values computed

using these models are a mix of perceived and actual option values. Generally, the po-

tential importance of this distinction is highlighted by a recent expectations literature,

which has found that perceptions about objects of relevance for educational decisions are

often inaccurate.7 In the particular context of interest here, it seems quite possible that

students may not entirely appreciate the benefits of experimentation. Indeed, the impor-

tance of learning models was not even widely recognized in the economics of education

literature until quite recently, and policy discussion does not tend to extol the virtues of

experimentation.8 Our ability to differentiate between perceived and actual option values

comes from the fact that (1) in addition to observing actual dropout rates, the Berea

Panel Study collected information about perceived dropout rates and (2) in addition

to being able to characterize students’ actual uncertainty resolution from longitudinal

earnings expectations data, students’ perceptions about how much uncertainty will be

resolved can be estimated using a simple model describing the relationship between the

perceived dropout probability, the perceived initial expectations gap, and the perceived

5These non-pecuniary benefits are inherently difficult to observe directly. Instead, many re-
searchers have treated them as the “residual” in the contemporaneous utility function and have identi-
fied/estimated their values from the component of schooling attendance decisions that is not explained
by pecuniary factors (e.g., Keane and Wolpin, 1997, Cunha, Heckman, and Navarro, 2005, Heckman,
Lochner, and Todd, 2006, and Abbott, et al., forthcoming).

6Estimation of σi typically requires researchers to either impose or estimate the structure of agent
information sets at college entrance and the end of college. As one example of the former, Stange (2012)
assumes that students update their beliefs about the benefit of college mainly through observing grades
as signals. As one example of the latter, Heckman and Navarro (2007) estimate students’ information
sets using a method developed by Cunha, Heckman, and Navarro (2005).

7The importance of whether perceptions tend to be accurate can be seen in recent research empha-
sizing the value of supplementing expectations data with data on actual outcomes (e.g., Arcidiacono,
Hotz, Maurel and Romano, 2019, Stinebrickner and Stinebrickner, 2014a, Wiswall and Zafar, 2016,
D’Haultfoeuille, Gaillac, and Maurel, 2018, and Giustinelli and Shapiro, 2019).

8The Berea Panel Study was designed (in 1998) with the specific objective of understanding the im-
portance of learning in educational decisions. At the time, Altonji (1993) and Manski (1989) represented
some of the only research specifically focusing on the importance of learning models for understanding
dropout. See, e.g., Stinebrickner (2012, 2014a/b) for BPS analyses involving dropout.
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amount of uncertainty resolution.9

3 The Berea Panel Study

Our empirical analysis takes advantage of the Berea Panel Study (BPS). Initiated by

Todd Stinebrickner and Ralph Stinebrickner, the BPS is a longitudinal survey that closely

followed two cohorts of students at Berea College from the time they entered college, in

2000 and 2001, until 2014. We focus on the 2001 cohort because the 2000 cohort did not

answer the survey question about perceived dropout probability in the baseline survey.

Students were surveyed multiple times each year while in college. The baseline survey,

which took place immediately after students arrived for their freshman year, was com-

pleted in our presence after students received classroom training. Subsequent in-school

surveys were distributed through the campus mail system. Students returned completed

surveys to Ralph Stinebrickner, who, after ensuring that surveys were completed in a

conscientious manner, immediately provided compensation. We found that this survey

approach led to, not only high response rates, but also to, for example, virtually no item

nonresponse.10

The BPS had a specific focus on the collection of students’ expectations about var-

ious academic and labor market outcomes. Much of our previous work using the BPS

contributed to an early expectations literature that was interested in the quality of an-

swers to expectations questions. As one example, Stinebrickner and Stinebrickner (2012)

finds that a simple theoretical implication related to college dropout - that the dropout

decision should depend on both a student’s cumulative GPA and beliefs about future

GPA - is satisfied when beliefs are directly elicited through survey questions, but is not

satisfied when beliefs are constructed under a version of Rational Expectations. As a

second example, Gong, Stinebrickner and Stinebrickner (2019) propose and implement

a method for characterizing the amount of measurement error in responses to expec-

tations questions, which takes advantage of the fact that the BPS data often allow the

unconditional perceived probability of a particular outcome to be characterized using two

different sets of expectations questions.11 In the context here, of particular importance

are survey questions eliciting students’ perceptions about the probability of dropping out

9Our approach is related to the literature noting the usefulness of expectations data that allow
individuals to express uncertainty about outcomes that would occur in the future. The BPS data of this
type has been used in papers such as Stinebrickner and Stinebrickner (2014a) to study college major
and Stinebrickner and Stinebrickner (2012, 2014b) to study dropout. For other research recognizing this
use see, e.g., Blass, Lach, and Manski (2010), van der Klaauw and Wolpin (2008), and van der Klaauw
(2012), Wiswall and Zafar, (2014), Delavande and Zafar, (forthcoming).

10BPS response rates were very high. Approximately 90% of all students who entered Berea College
in 2001 responded to the baseline survey, and response rates were around 85% for subsequent in-school
surveys.

11Intuitively, differences in the unconditional probabilities computed using the two different sets of
expectations questions are informative about the amount of measurement error present in the underlying
survey questions.
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and perceptions about future earnings under a scenario in which the student graduates

and under a scenario in which the student drops out). Unless otherwise noted, the anal-

yses in the paper involve the 337 students (from the 2001 cohort) who provided complete

answers to these questions on the baseline survey. Providing evidence in support of the

notion that the elicited dropout probabilities contain useful content, we find that the null

hypothesis that perceived dropout probabilities are unrelated to actual dropout outcomes

is rejected at a .10 level of significance.12

Berea College is a four-year college located in central Kentucky. The college focuses on

providing educational opportunities to students from relatively low-income backgrounds,

and, as part of this focus, offers full-tuition scholarships to all students. This feature

supports our parsimonious conceptual setting in which dropout is a result of information

acquisition rather than, for example, a result of financial hardship (Stinebrickner and

Stinebrickner, 2003, 2008). Despite certain unique features, important for the notion

that the basic lessons from our work are likely to be useful for thinking about what takes

place elsewhere, Berea operates under a standard liberal arts curriculum and students

at Berea are similar in academic quality, for example, to students at the University

of Kentucky (Stinebrickner and Stinebrickner, 2008). Perhaps even more importantly,

academic decisions and outcomes that are closely related to the option value at Berea are

similar to those found elsewhere (Stinebrickner and Stinebrickner, 2014a). For example,

dropout rates are similar to the dropout rates at other schools (for students from similar

backgrounds) and patterns of major choice and major-switching are similar to those

found in the NLSY by Arcidiacono (2004).

4 Defining the Option Value in a Stylized Learning

Model

In this section, we define the option value in the context of a stylized model that captures

the key features of learning in the college environment of interest. When entering college

at t0, a student knows that she will have the option to choose between college completion

(s = 1) and dropping out (s = 0) at a future time t∗, after resolving a certain fraction of

her initial uncertainty (i.e., uncertainty at t = t0) about the discounted lifetime utility,

or value, of each alternative, which we denote as V1 and V0, respectively. We note that,

throughout this paper, a subscript on any object denotes the choice of the schooling

outcome s, where s = 0, 1.

Even after resolving a certain amount of uncertainty between t0 and t∗, some uncer-

12Of course, from a conceptual standpoint, a strong relationship between perceptions about an object
of interest and the actual outcomes of that object are not necessary for expectations data to be useful.
Indeed, much of the motivation for the direct elicitation of expectations comes from the possibility
that beliefs may be incorrect. Nonetheless, given the difficulty of providing evidence in support of the
quality of expectations data, much previous research has examined whether a relationship exists between
perceptions and actual outcomes.
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tainty may remain at t∗ about V1 and V0. Thus, standard theory implies that a student’s

decision at t∗ will be made by comparing the expected utilities associated with the two

alternatives at t∗. Given that these expected utilities at t∗ are simply expectations of V1

and V0 at t∗, we denote them V̄1 and V̄0, respectively. We stress that it is important to

keep in mind that these expectations are taken at t∗, but that adding an additional t∗

subscript to these terms is superfluous because decisions in our model are made only at

t∗.

At t0, a person knows that her decision at t∗ will be determined by V̄1 and V̄0, but,

because she will resolve uncertainty between t0 and t∗, there exists uncertainty at t0

about what these objects will turn out to be. Thus, the option value depends on the

distribution describing a student’s beliefs at t0 about V̄1 and the distribution describing

the student’s beliefs at t0 about V̄0. We refer to these two belief distributions as V̄ B
1 and

V̄ B
0 , respectively. We note that, throughout this paper, a superscript of B on any object

denotes students’ beliefs about the object at t0, unless otherwise specified.

Intuitively, the value of the option, OV B, comes from the fact that students can make

dropout decisions based on information available at t∗, rather than based on information

available at t0. Formally, OV B can be defined as:

OV B ≡ Et=t0 max(V̄ B
1 , V̄ B

0 )−max(Et=t0(V̄ B
1 ), Et=t0(V̄ B

0 )), for B = P,A. (1)

The first term shows, on average, how well a student would do if she were able to choose

s after seeing which option turned out to be the best at t∗. The second term shows, on

average, how well a student would do if she were forced to choose the s with the highest

expected value at t = t0, i.e., before any additional uncertainty is resolved. Note that,

while strictly unnecessary, we include a “t = t0” subscript to the expectation operators

to emphasize the point that V̄ B
s characterizes students’ beliefs at t0.

The fact that B is seen to take on two values (P and A) in Equation (1) relates to

our contribution of differentiating between the perceived option value (B = P ) and the

actual option value (B = A). This contribution requires that we examine two different

sets of belief distributions for B. When B = P , the distributions V̄ P
1 and V̄ P

0 represent

a student’s perceived distributions at t0 about V̄1 and V̄0. When B = A, the distribu-

tions V̄ A
1 and V̄ A

0 represent the actual distributions at t0 of V̄1 and V̄0. In general, the

assumption of Rational Expectations implies that an individual’s perceived distribution

of a future outcome coincides with the actual distribution of that outcome. Thus, in our

context, these two sets of belief distributions (V̄ P
s and V̄ A

s , s = 0, 1) are identical to each

other if and only if the students have Rational Expectations about V̄s.

Let ∆ = (V̄1 − V̄0) − Et=t0(V̄1 − V̄0) represent the new information received between

t0 and t∗. We let ∆B denote a student’s beliefs about ∆ at t0. Naturally, ∆B is given by:

∆B = (V̄ B
1 − V̄ B

0 )− Et=t0(V̄ B
1 − V̄ B

0 ), for B = P,A. (2)

8



We assume that ∆B is normally distributed for B = P,A.13 It has a mean of zero by

construction, and we denote its variance as (σB)2.14

At time t∗, the student chooses to drop out if and only if V̄0 > V̄1. Given the normality

assumed for ∆B, her belief about the dropout probability PB
0 is given by:

PB
0 = Φ(

−Et=t0(V̄ B
1 − V̄ B

0 )

σB
), for B = P,A, (3)

where Φ(·) is the cdf of the standard normal distribution.

In Equation (1), Et=t0 max(V̄ B
1 , V̄

B
0 ), which can be referred to as the continuation

value of college enrollment, is given by:

Et=t0 max(V̄ B
1 , V̄ B

0 ) = PB1 Et=t0(V̄ B
1 ) + PB0 Et=t0(V̄ B

0 ) + σBφ(
Et=t0(V̄ B

1 − V̄ B
0 )

σB
), (4)

where PB
1 ≡ 1− PB

0 = Φ(
Et=t0 (V̄ B1 −V̄ B0 )

σB
) is the probability of completing college, and φ(·)

is the pdf of the standard normal distribution.15

Combining Equation (1) and (4), we obtain the following expression for the option
value OV B as a function of Et=t0(V̄

B
1 − V̄ B

0 ), which we refer to as the initial expectations
gap hereafter, the student’s beliefs about the dropout probability PB

0 , and the amount
of uncertainty resolved σB:

OV B ≡ Et=t0 max(V̄ B1 , V̄ B0 )−max(Et=t0(V̄ B1 ), Et=t0(V̄ B0 ))

=

{
−PB0 Et=t0(V̄ B1 − V̄ B0 ) + σBφ(

−Et=t0 (V̄ B
1 −V̄ B

0 )

σB ) if Et=t0(V̄ B1 − V̄ B0 ) > 0

(1− PB0 )Et=t0(V̄ B1 − V̄ B0 ) + σBφ(
Et=t0

(V̄ B
1 −V̄ B

0 )

σB ) if Et=t0(V̄ B1 − V̄ B0 ) ≤ 0
. (5)

Equation (3) shows that any two of PB
0 , σB, and Et=t0(V̄

B
1 − V̄ B

0 ) uniquely determine

the third. Hence, Equation (5) shows that, as discussed in the introduction, the option

value is uniquely determined by σB and Et=t0(V̄
B

1 − V̄ B
0 ). However, because it is difficult

to obtain direct information about Et=t0(V̄
B

1 − V̄ B
0 ), we instead write OV B as a function

13Later in Section 5.2.1, to obtain baseline results, we impose an assumption that uncertainty resolution
in school is through learning about future earnings. In this case, the normality assumption for ∆B can
be motivated by the finding in Gong, Stinebrickner, and Stinebrickner (2019) that a normal distribution
fits students’ responses to earnings expectations question better than a log-normal distribution.

14For both B = P and B = A, we have Et=t0∆B = Et=t0(V̄ B1 − V̄ B0 ) − Et=t0 [Et=t0(V̄ B1 − V̄ B0 )] = 0.
We note that, if the student does not have rational expectations about V̄s, then Et=t0(V̄ P1 − V̄ P0 ) is not
necessarily equal to Et=t0(V̄ A1 − V̄ A0 ). In this case, the difference between these two terms measures
the systematic overoptimism of this student. By construction, such systematic overoptimism was not
anticipated by the student at t0. This is the case because, if it was anticipated, it should be incorporated
into Et=t0(V̄ P1 − V̄ P0 ), which would then be correct, on average.

15Equation (4) is equivalent to a well-known alternative formulation: Et=t0 max(V̄ B1 , V̄ B0 ) =
Et=t0(V̄ B1 |V̄ B1 ≥ V̄ B0 )PB1 +Et=t0(V̄ B0 |V̄ B0 > V̄ B1 )PB0 . A comparison between the two formulations reveals
that the last term in Equation (4) captures the difference between the conditional and unconditional
means of V̄ B1 and V̄ B0 .
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of PB
0 and σB:

OV B =

{
PB

0 σ
BΦ−1(PB

0 ) + σBφ(Φ−1(PB
0 )) if PB

0 < 0.5

(1− PB
0 )σBΦ−1(1− PB

0 ) + σBφ(Φ−1(1− PB
0 )) if PB

0 ≥ 0.5

≡

{
σBG(PB

0 ) if PB
0 < 0.5

σBG(1− PB
0 ) if PB

0 ≥ 0.5
, (6)

where G(P ) ≡ PΦ−1(P ) + φ(Φ−1(P )) is a known function of P , which has the easily

verifiable property:

Lemma 1. G(P ) is monotonically increasing in P for P ∈ (0, 1).

Lemma 1 implies the following propositions.

Proposition 2. The option value, OV B, has the following properties with respect to the

amount of uncertainty resolved before t∗, σB, and the probability of dropping out, PB
0 .

1. The OV B is uniquely determined by σB and PB
0 ;

2. The OV B is multiplicatively separable in σB and PB
0 ;

3. The OV B is linearly increasing in σB;

4. The OV B is monotonically increasing in PB
0 for PB

0 ∈ (0, 0.5) and monotonically

decreasing in PB
0 for PB

0 ∈ [0.5, 1).

Proposition 2.1 shows that data on the dropout probability, PB
0 , and the amount of

uncertainty resolved during college, σB, are sufficient for determining the option value,

with Equation (3) detailing how the initial expectations gap is uniquely characterized by

these two terms. Important for our analysis in Section 5, Proposition 2.2 shows that σB

and PB
0 enter the expression of OV B in a multiplicatively separable fashion. Proposition

2.3 and Proposition 2.4 qualitatively describe how σB and PB
0 affect the value of OV B.

5 Characterizing the Option Value

Proposition 2 shows that the option value OV B is uniquely determined by a student’s

beliefs about the dropout probability, PB
0 , and the amount of uncertainty that is resolved

during college, σB. In Section 5.1, we describe the direct information available in the

BPS about both the actual and perceived values of PB
0 . In Section 5.2, we impose more

structure on the general model described in Section 4 in order to estimate the actual

and perceived values of σB. In Section 5.3, combining information about PB
0 and σB, we

compute both actual and perceived option values for each student. Comparing actual

option values (obtained using PA
0 and σA) to perceived option values (obtained using PB

0

and σB) provides evidence about the accuracy of beliefs about the option value at the

time of entrance. Finally, in Section 5.4, we discuss the policy implications of potential

misperceptions.
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5.1 Actual and Perceived Dropout Probabilities

Both actual dropout outcomes and perceived dropout probabilities can be obtained di-

rectly from the BPS data. 218 out of the 337 students in the sample eventually gradu-

ated from Berea College, which implies a dropout rate, or equivalently an average actual

dropout probability PA
0 , of 0.353. Question 1 in Appendix A elicits a student’s perceived

probability of graduating from Berea College. Subtracting this number from 1 yields the

perceived dropout probability, P P
0 . We find that the average perceived dropout proba-

bility of students in our sample is 0.147, 58% smaller than the average actual dropout

probability.

Proposition 2 is useful for examining how the underestimation of the dropout prob-

ability influences the size of the perceived option value relative to the size of the actual

option value. Suppose students have correct perceptions about σB. Since the option value

is multiplicatively separable in PB
0 and σB, without loss of generality, we set σB = 1.

As implied by proposition 2.4, Figure 1 shows that the option value is increasing in the

dropout probability over the range (0, 0.5). Evaluating the option value at the average

actual dropout probability leads to an actual option value of 0.238. Evaluating the option

value at the average perceived dropout probability leads to a perceived option value of

0.076. Then, for a “representative” student, the perceived value of the option is 68%

lower than the actual value of the option.

Of course, in reality there is no reason that individuals would necessarily have Rational

Expectations about σB. Proposition 2.1 indicates that obtaining point estimates for the

actual and perceived values of the option requires knowledge of actual and perceived

values of σB. In the next section, we discuss our approach for taking advantage of

additional unique data to obtain these objects. Nonetheless, the evidence presented in

the previous paragraph strongly suggests that we are likely to find that students at Berea

College tend to underestimate the option value at the time of entrance. Indeed, using

Proposition 2.3, we see that the representative student would need to overestimate σB

by at least 214% in order to not underestimate the option value.

Before we turn to the characterization of σB for B = P,A, we note that, in order

to compute the option value for each student, individual-specific measures of actual and

perceived dropout probabilities are required. As mentioned earlier, individual-specific

perceived dropout probabilities can be directly obtained from students’ responses to

Question 1 in Appendix A. The sample standard deviation of perceived dropout proba-

bilities is 0.180. In contrast, individual-specific measures of actual dropout probabilities

are not directly available. We allow for individual heterogeneity by assuming that a

student’s actual dropout probability is equal to the predicted probability from a probit

regression of a dropout dummy on observables.16

16The observables in the probit regression include gender, race, high school GPA, ACT score, and a
student’s perceived dropout probability.
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5.2 Actual and Perceived Earnings Uncertainty Resolution

In this section, we describe the construction of the actual and perceived values of σB. In

Section 5.2.1, we show that, under the assumption that the learning of relevance during

college is about future earnings associated with college completion, σB can be computed

by combining: 1) data characterizing a student’s uncertainty at the time of entrance (i.e.,

initial uncertainty) about future earnings under the scenario in which she graduates from

college and 2) a parameter ρB capturing the fraction of this initial uncertainty that is

resolved between t0 and t∗. Section 5.2.2 describes how we can construct measures of

initial earnings uncertainty from survey questions eliciting subjective beliefs about future

earnings. Section 5.2.3 describes how we can consistently estimate the actual fraction

of uncertainty resolution, which we denote ρA, and therefore the actual σA, by taking

advantage of the longitudinal feature of our expectations data. Finally, Section 5.2.4

shows that, by taking advantage of data on students’ perceived dropout probabilities and

students’ initial subjective beliefs about future earnings, our model permits us to estimate

the perceived fraction of uncertainty resolution, which we denote ρP , and, therefore the

perceived σP .

5.2.1 Defining σB in a Fully Specified Model

We consider a model in which the value of alternative s, V̄s, is equal to the expectation,

at time t∗, of the sum of the discounted lifetime earnings associated with this alternative,

Ys, and an additional term γs summarizing a student’s overall non-pecuniary benefit from

s:

V̄s = Et=t∗(Ys + γs). (7)

We start by specifying the discounted lifetime earnings, Ys, for each alternative. If a

student chooses s = 1, the student stays in college until graduation (t = t̄), then starts to

work. For ease of notation, we index time t by a student’s age a. Y1 is then given by Y1 =∑T̄
a=t̄ β

a−t∗wa1 , where was represents the earnings that the student receives at age a given

her choice of s, β is the discount factor and T̄ is the age of retirement. Similarly, if the

student chooses s = 0, she leaves college and starts working immediately. The discounted

lifetime earnings associated with this alternative, Y0, is given by Y0 =
∑T̄

a=t∗ β
a−t∗wa0 .

Turning to the non-pecuniary benefit/utility associated with the choice of s, the

immediate exit from school that accompanies a choice of s = 0 implies that γ0 will tend

to capture a person’s preferences about working in jobs that do not require a college

degree. On the other hand, γ1 will capture not only preferences for working in the

types of jobs that are obtained with a college degree, but also a person’s non-pecuniary

costs/benefits from staying in college until graduation.

For our primary results, we make the simplifying assumption that the only updating

that occurs during college is about the future earnings that would be received under the

graduation scenario. That is, students learn only about Y1 while in college. Abstracting
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away from learning about earnings under the dropout scenario, Y0, allows for a more

transparent discussion of identification, but is also consistent with the intuitively appeal-

ing notion that college is best suited for providing information about one’s ability to

perform high skilled jobs. Further, when relaxing this assumption as a robustness check

in Appendix C, we find strong evidence in support of this notion; 1) Students resolve

substantially less uncertainty about earnings under the dropout scenario than under the

graduation scenario, and 2) our main results remain quantitatively similar when we relax

this assumption.

Abstracting away from learning about the non-pecuniary benefits, γs, while obviously

not literally correct, would tend to not be particularly problematic if students tend

to have a good sense of how much they like school by the end of high school or if

the overall non-pecuniary benefit of the graduation alternative (s = 1) arises largely

because a college degree affects the non-wage aspects of one’s work over her lifetime -

since individuals presumably learn the most about these non-wage aspects when they

actually hold these jobs after graduation.17 Nonetheless, in Appendix D, we discuss how

relaxing this assumption would affect our results. In particular, we show that, if, as in

Stinebrickner and Stinebrickner (2012), a common set of signals (e.g., grades) influences

what a student learns about both pecuniary and non-pecuniary benefits, our estimates of

actual option values tend to be downward biased while our estimates of perceived option

values remain consistent.

Assuming that students do not learn about non-pecuniary benefits implies that Et=t0(γs) =

Et=t∗(γs) for s = 0, 1. Assuming that students do not learn about earnings under the

non-graduation scenario implies that Et=t0(Y0) = Et=t∗(Y0). Then, the relevant new

information ∆ is given by:

∆ = (V̄1 − V̄0)− Et=t0(V̄1 − V̄0)

= Et=t∗ [(Y1 + γ1)− (Y0 + γ0)]− Et=t0 [(Y1 + γ1)− (Y0 + γ0)]

= Et=t∗(
T̄∑
a=t̄

βa−t
∗
wa1)− Et=t0(

T̄∑
a=t̄

βa−t
∗
wa1)

=
T̄∑
a=t̄

βa−t
∗
[Et=t∗(w

a
1)− Et=t0(wa1)]. (8)

Taking the variance of the last line of Equation (8) shows that variation in ∆ depends

on variation in how much a student updates her expectations about earnings under the

graduation scenario (Et=t∗(w
a
1) − Et=t0(w

a
1)), or equivalently, on the amount of initial

earnings uncertainty that is resolved between t0 and t∗. Recall that σB represents the

standard deviation of ∆B, which describes a student’s beliefs about ∆. Then, σB is de-

17While students do likely learn something about how much they like school after entrance, this
learning only affects utility for the short period of time between t∗ and t̄. In contrast, the non-wage
aspects of one’s future work would have a lifelong impact on her utility.
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termined by a student’s beliefs about variation in how much she updates her expectations

about earnings under the graduation scenario.

We begin the process of characterizing this updating by writing wa1 , without loss of

generality, as the sum of three independently distributed factors, εa,τ11 , εa,τ21 , and εa,τ31 , that

are observed by the student in the period before t0 (denoted τ1), in the period between

t0 and t∗ (denoted τ2), and in the period after t∗ (denoted τ3), respectively:

wa1 = εa,τ11 + εa,τ21 + εa,τ31 . (9)

At the time of entrance, there exists no uncertainty about εa,τ11 because, by definition,

students have observed its realization. On the other hand, uncertainty does exist about

εa,τ21 and εa,τ31 . Let εB,a,τ21 and εB,a,τ31 denote a student’s beliefs about these two factors at

t0. We assume that εB,a,τ21 and εB,a,τ31 are each normally distributed for B = P,A. We

denote their standard deviations as σB,a,τ21 and σB,a,τ31 , respectively. We also denote the

mean of σB,a,τ21 as µB,a,τ21 and normalize the mean of εB,a,τ31 to be zero. Then, Equation

(8) implies that ∆B ∼ N(0, σB) is given by:

∆B =
T̄∑
a=t̄

βa−t
∗
[Et=t∗(ε

a,τ1
1 + εB,a,τ21 + εB,a,τ31 )− Et=t0(ε

a,τ1
1 + εB,a,τ21 + εB,a,τ31 )]

=
T̄∑
a=t̄

βa−t
∗
(εB,a,τ21 )−

T̄∑
a=t̄

βa−t
∗
(µB,a,τ21 ), for B = P,A, (10)

where εa,τ11 does not appear on the last line because there does not exist any uncertainty

about this object at t0, and εB,a,τ31 does not appear because no uncertainty about this

object is resolved before t∗.

Motivated by the notion that, during college, learning about future earnings is mostly

through permanent factors such as innate ability, we assume that the εB,a,τ21 are perfectly

correlated across all future ages a. Under this assumption, computing the standard

deviation of ∆B from Equation (10) implies that σB is given by:

σB =
T̄∑
a=t̄

βa−t
∗
(σB,a,τ21 ), for B = P,A. (11)

As is standard, BPS survey questions, such as Question 2 in Appendix A, elicit

uncertainty about earnings in the future, but do not directly elicit information about

how quickly uncertainty is resolved. Thus, what is observed at t0 is students’ perceptions

about the distribution of wa1 = εa,τ11 +εa,τ21 +εa,τ31 . In our setting, the mean and the standard

deviation of this perceived distribution correspond to Et=t0(ε
a,τ1
1 + εP,a,τ21 + εP,a,τ31 ) =

εa,τ11 + µP,a,τ21 and stdt=t0(ε
a,τ1
1 + εP,a,τ21 + εP,a,τ31 ) =

√
(σP,a,τ21 )2 + (σP,a,τ31 )2, respectively.

Motivated by data availability, we proceed under the assumption that all students

expect to resolve a fraction ρP of their perceived initial uncertainty about earnings at
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age a before t∗, but actually resolve a fraction ρA of their perceived initial uncertainty

about earnings at age a before t∗. Formally, with B continuing to take on the values of

either P or A, we have:

σB,a,τ21 = ρB
√

(σP,a,τ21 )2 + (σP,a,τ31 )2. (12)

Then, Equation (11) becomes:

σB = ρB
T̄∑
a=t̄

βa−t
∗
(

√
(σP,a,τ21 )2 + (σP,a,τ31 )2), (13)

where parameters ρB and β are common across all students and variables σB, σP,a,τ21 , and

σP,a,τ31 are individual specific.

The computation of the components of Equation (13) is discussed in the remainder of

Section 5.2. Section 5.2.2 describes the computation of
∑T̄

a=t̄ β
a−t∗(

√
(σP,a,τ21 )2 + (σP,a,τ31 )2),

taking advantage of a sequence of survey questions eliciting subjective beliefs about earn-

ings at different future ages. Section 5.2.3 describes the estimation of ρA. Section 5.2.4

describes the estimation of ρP .

5.2.2 Computing
∑T̄

a=t̄ β
a−t∗(

√
(σP,a,τ21 )2 + (σP,a,τ31 )2) from Survey Data

In this section, we describe the computation of
∑T̄

a=t̄ β
a−t∗(

√
(σP,a,τ21 )2 + (σP,a,τ31 )2). Un-

der the assumptions in Section 5.2.1, this term corresponds to the standard deviation of

the random variable describing a student’s perceived distribution at t0 of the discounted

lifetime earnings associated with the graduation alternative, Y1. As a result, we denote

this term σ̃P,Y1 . Similarly, we denote
√

(σP,a,τ21 )2 + (σP,a,τ31 )2 as σ̃P,a1 . With this notation,

Equation (13) can be written as:

σB = ρBσ̃P,Y1

= ρB
T̄∑
a=t̄

βa−t
∗
σ̃P,a1 . (14)

Our approach for computing σ̃P,a1 , and therefore σ̃P,Y1 , takes advantage of a sequence

of survey questions that elicits information about a student’s perception at t0 about

the distribution of wa1 . Specifically, following the format of Question 2 in Appendix A,

a respondent reports, at t0, the three quartiles, Qk,a
s , k = 1, 2, 3, of the distribution

describing her subjective beliefs about what her earnings will be at a particular future

age a under choice s. Maintaining the assumption that this distribution is normal, the

standard deviation (σ̃P,as ) of the distribution is given by:

σ̃P,as = (Q3,a
s −Q1,a

s )/ [Φ(0.75)− Φ(0.25)] , (15)
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where Φ(·) is the standard normal cdf.

Equation (14) shows that the computation of σ̃P,Y1 requires taking into account a stu-

dent’s uncertainty about earnings, σ̃P,a1 , for all future ages a. As can be seen in Question

2, the earnings expectations questions in the BPS were asked for three specific ages a:

the first year after graduation (age 23), age 28, and age 38. Following Stinebrickner and

Stinebrickner (2014b), we assume that σ̃P,a1 grows linearly between the first post-college

year and age 28, grows linearly between ages 28 and 38, and does not change after age 38

(until the age of retirement, T̄ = 65). We operationalize our stylized model by assuming

that a student enters college at age 19 (t0 = 19), decides whether to drop out at the end

of the third year (t∗ = t0 + 3), and graduates at age 23 (t̄ = 23) if she chooses to remain

in school.18 Focusing on the case where s = 1, Equation (15), together with the inter-

polation and timing assumptions above, allows the computation of σ̃P,Y1 .19 We report all

values in 2001 dollars. The first column of Table 1 shows that the average value of σ̃P,Y1

is $226,000 for our primary sample.20

Table 1: Descriptive Statistics

# of Observations: 337 σ̃P,Y1 σ̃P,Y0 µ̃P,Y1 µ̃P,Y0

Sample Mean 226 163 954 680
Sample Std 201 145 436 333

Note: The unit of measurement is one thousand dollars.

5.2.3 Computing ρA from Longitudinal Beliefs Data

In this section, we describe the estimation of the actual fraction of perceived initial

earnings uncertainty that is resolved before t∗, ρA. Our approach takes advantage of the

fact that the longitudinal nature of the BPS expectations data provides direct evidence

about the extent to which uncertainty decreases over time.

Section 5.2.2 shows that σ̃P,Y1 , the standard deviation of a student’s perceived distri-

bution of Y1 at t0, can be constructed from the expectations data reported at the time of

entrance (t = t0). Using the same method, the expectations data collected at t∗ allows us

to also construct σ̃P
∗,Y

1 , the standard deviation of a student’s perceived distribution of Y1

at t∗. Of interest here is the relationship between these values. Our timing assumption

18Our choice of t∗ = t0 + 3 was informed by Gong, Stinebrickner and Stinebrickner (2019) who found
that the vast majority of uncertainty resolution during college takes place before the end of the third
year. However, perhaps more importantly, we find that, because uncertainty resolution tends to take
place rather quickly, our results change little if we assume that dropout takes place at the end of the
second year, i.e., t∗ = t0 + 2.

19We assume that the discount factor β is equal to 0.95.
20Using the same method, we can also compute σ̃P,Y0 ≡

∑T̄
a=t∗ β

a−t∗(σ̃P,a0 ), the standard deviation
of the random variable describing a student’s subjective beliefs about the discounted lifetime earnings
associated with the dropout alternative. As reported in the second column of Table 1, the sample average
of σ̃P,Y0 is $163,000, implying that students on average are more uncertain about earnings associated
with the graduation alternative.
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in Section 5.2.1 suggests that a student’s perceived distribution of Y1 changed between

t0 and t∗ because of the realization of
∑T̄

a=t̄ β
a−t∗(εa,τ21 ). Hence, the reduction in the per-

ceived uncertainty about Y1 between t0 and t∗ (measured by (σ̃P,Y1 )2 − (σ̃P
∗,Y

1 )2) is equal

to the variance of the actual distribution of
∑T̄

a=t̄ β
a−t∗(εa,τ21 ), which directly corresponds

to (σA)2 = [
∑T̄

a=t̄ β
a−t∗(σA,a,τ21 )]2. Formally, it implies that σ̃P

∗,Y
1 is given by:

σ̃P
∗,Y

1 =

√
(σ̃P,Y1 )2 − (σA)2

=
√

1− (ρA)2σ̃P,Y1 , (16)

where the second line in Equation (16) follows from the assumption that all students

actually resolve the same fraction of perceived initial earnings uncertainty, i.e. σA =

ρAσ̃P,Y1 for all students.

Equation (16) shows that
√

1− (ρA)2 can be computed using the ratio of the average

of σ̃P
∗,Y

1 to the average of σ̃P,Y1 for the same sample of students.21 Using the sample of

students who were still in school at t∗ = 3, the estimated value of
√

1− (ρA)2 is 0.86.22

Hence, the estimated value of ρA is 0.51.23 Then, Equation (14) can be used to compute

σA for each student in our sample.

5.2.4 Computing ρP Using a Dropout Model

In this section, we describe how the perceived fraction of initial earnings uncertainty that

is resolved before t∗, ρP , can be estimated using a simple model of dropout.

At the time of entrance (t0), a student reports her perceived dropout probability, P P
0 .

Equation (3) shows that this perceived probability depends on a student’s perceived initial

expectations gap, Et=t0(V̄
P

1 − V̄ P
0 ), and her perceived amount of uncertainty resolved

between t0 and t∗, σP .

21We choose to use the ratio of the average of σ̃P
∗,Y

1 to the average of σ̃P,Y1 rather than, for example,

the average of the ratio of σ̃P
∗,Y

1 to σ̃P,Y1 , because the former tends to be a consistent estimator of√
1− (ρA)2 even when individual uncertainty measures might potentially contain measurement error.
22In practice, some students dropped out of college before t∗ = 3, and, therefore, were not included

in the estimation of ρA. One might be concerned that those who dropped out before t∗ might have
resolved systematically different fractions of their initial uncertainty under the counterfactual in which
they stayed until t∗ than those who actually remained in our sample until t∗. As a robustness check,
it would be desirable to add students who dropped out before t∗ to our estimation sample. We do this
by using a student’s last observed earnings uncertainty as a proxy for what her earnings uncertainty
would have been at t∗. Given that students who dropped out before t∗ would have resolved additional
uncertainty between the time of dropout and t∗ if they had remained in school, the resulting estimator
should produce a lower bound for ρA. We find that this lower bound is 0.41 and that the corresponding
lower bound for the average actual option value is $19,990. As we show later in Section 5.3, this lower
bound is still substantially higher than the estimated average perceived option value, suggesting that
our main conclusion that students vastly underestimate the option value is robust to the selection issue.

23Our results about actual earnings uncertainty resolution are comparable in magnitude to what was
found in Gong, Stinebrickner, and Stinebrickner (2019), which also take advantage of the BPS dataset.
Using data for both the 2000 and the 2001 cohorts, they find that the sample average of the standard
deviation of the distribution describing students’ beliefs about w28

1 at the end of the third year (t = t∗)
is roughly 82% of the sample average of the standard deviation of the distribution describing students’
beliefs about w28

1 at the beginning of college (t = t0).
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Equation (7) implies that Et=t0V̄
P
s = Et=t0(Y

P
s + γPs ), where Y P

s and γPs describe

a student’s perceived distributions at t0 of the pecuniary and non-pecuniary benefits

of schooling alternative s, respectively. We denote Et=t0Y
P
s as µ̃P,Ys for s = 0, 1 and

let γ̃P ≡ Et=t0(γ
P
0 − γP1 ) represent the student’s subjective expectation at t0 about the

difference in the non-pecuniary benefits associated with the two alternatives. Thus, we

have Et=t0(V̄
P

1 − V̄ P
0 ) = −(µ̃P,Y0 − µ̃P,Y1 + γ̃P ).

Then, with the expression for σP coming from Equation (14), we obtain:

P P
0 = Φ(

µ̃P,Y0 − µ̃P,Y1 + γ̃P

ρP σ̃P,Y1

). (17)

The intuition underlying the role of ρP in Equation (17) is clear. The numerator in

the probability expression is the difference between the expected utility of s = 0 and the

expected utility of s = 1, at t0. Thus, for example, a negative numerator represents the

distance that a student is “above” the margin of dropping out at the time of entrance.

A larger denominator implies that a student resolves more uncertainty about earnings

between t0 and t∗, thereby increasing the probability that the new information she receives

will push her across the margin into a dropout decision; all else equal, in the seemingly

most likely scenario in which the numerator is negative, the dropout probability will tend

to be increasing in the denominator.24 Roughly speaking, identification of ρP comes from

the fact that the relationship between the amount of perceived uncertainty at the time of

entrance, σ̃P,Y1 , and the perceived dropout probability, P P
0 , will tend to be stronger when

ρP is high (than when ρP is low) because ρP maps the amount of initial uncertainty into

the amount of uncertainty that the students believes will be resolved.

As described in previous sections, P P
0 and σ̃P,Y1 can be obtained using students’ re-

sponses to survey Questions 1 and 2, respectively. Appendix B shows that µ̃P,Ys can

also be computed using survey Question 2, in a manner similar to that used for the

computation of σ̃P,Y1 . As reported in the last two columns of Table 1, at t0, the sample

average of expected lifetime earnings associated with the graduation scenario (µ̃P,Y1 ) and

the dropout scenario (µ̃P,Y0 ) are approximately $954,000 and $680,000, respectively.

The only components in Equation (17) that are yet known to us are a common

parameter ρP and individual-specific net non-pecuniary benefits γ̃P . To estimate the

value of ρP (and the distribution of γ̃P ), we rewrite Equation (17) as follows:

Φ−1(P P
0 )σ̃P,Y1 =

γ̄P

ρP
+ [µ̃P,Y0 − µ̃P,Y1 ]

1

ρP
+
γ̃P − γ̄P

ρP
, (18)

where γ̄P represents the population mean of γ̃P .

The only common unknown parameters in Equation (18) are ρP and γ̄P . Hence, if

all the expectations variables (P P
0 , µ̃P,Y1 , µ̃P,Y0 , and σ̃P,Y1 ) are measured perfectly, then γ̄P

ρP

and 1
ρP

can be estimated via an easy-to-implement OLS regression of Φ−1(P P
0 )σ̃P,Y1 on

24Of course, from a theoretical standpoint, when experimentation plays a role in the decision to enter
school, a student might enter even if she has a positive numerator.
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[µ̃P,Y0 − µ̃P,Y1 ]. However, it is worthwhile to address the concern that responses to survey

questions eliciting expectations may contain a non-trivial amount of measurement error

(e.g., Manski and Molinari, 2010, Ameriks et al., 2019, Giustinelli, Manski, and Molinari,

2019, and Gong, Stinebrickner, and Stinebrickner, 2019), which can lead to well-known

attenuation bias in the estimation of linear models such as Equation (18). We first modify

Equation (18) to accommodate measurement error:

Φ−1(P P
0 )σ̃P,Y1 + δy =

γ̄P

ρP
+ [µ̃P,Y0 − µ̃P,Y1 + δx]

1

ρP
+
γ̃P − γ̄P

ρP
. (19)

In this specification, the observed measure of the pecuniary component of the initial

expectations gap, µ̃P,Y0 − µ̃P,Y1 , contains individual-specific classical measurement error

δx. In addition, we also allow the computed value of Φ−1(P P
0 )σ̃P,Y1 to contain individual-

specific classical measurement error δy.25 In Appendix E.2, we show that, under these

assumptions, the attenuation bias in the estimation of γ̄P

ρP
and 1

ρP
can be corrected if

the variance of δx is known.26 In Appendix E.1, we describe how to utilize the method

developed in Gong, Stinebrickner and Stinebrickner (2019) to estimate var(δx).27 We

find that, after correcting for the attenuation bias, the estimate of ρP is 0.51, which is

almost identical to the second decimal to its actual counterpart, ρA.

5.3 Actual and Perceived Option Values

Given individual-specific actual and perceived values for students’ beliefs about σB and

PB
0 , we are able to compute the actual and perceived option value for each student using

Equation (6). The solid line in Figure 3 shows the cdf for the estimated actual option val-

ues. The sample average and standard deviation of the actual option values are $25,040

and $28,440, respectively. Our finding about the average actual option value is generally

similar to what has been found in the literature using very different methods. For ex-

ample, estimating a schooling decision model under Rational Expectations assumptions,

Stange (2012) finds that the option value is roughly $19,000 (in 2001 dollars) for an

average high school graduate in the United States.

The “+” line in Figure 3 shows the cdf for estimated perceived options values. The

sample average and standard deviation of the perceived option values are $8,670 and

25δy may be relevant because either answers to survey questions eliciting perceived dropout probabil-
ities or answers to survey questions eliciting earnings expectations (specifically, initial uncertainty) may
be measured with error.

26The presence of classical measurement error in dependent variable (δy) does not affect the consistency
of the OLS estimator.

27The BPS contains two sets of survey questions that can be used to compute a student’s unconditional
subjective expectation about earnings at age 28, µ̃P,28

1 . Intuitively, differences in the unconditional ex-
pectations computed using these two sets of expectations questions are informative about the amount of
measurement error, δP,28

1 , present in the observed measure of µ̃P,28
1 . Gong, Stinebrickner and Stinebrick-

ner (2019) formalize this intuition and develop a method to estimate var(δP,28
1 ) under the assumption

that the measurement error is classical. In Appendix E.1,, we adopt the same method to estimate
var(δP,28

1 ) using our sample (the 2001 cohort) and detail the assumptions that are required to compute

var(δx) using var(δP,28
1 )
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$16,400, respectively. Consistent with what was suggested by a comparison between

actual and perceived dropout probabilities in Section 5.1, students at Berea College do

indeed vastly underestimate the option value of college enrollment.

Perhaps the most tenuous parameter to estimate is the perceived fraction of initial

uncertainty that is resolved between t0 and t∗, ρP , which in turn determines σP . However,

the finding that students underestimate the option value is robust to the estimate of σP .

An upper bound on σP can be obtained from Equation (14) by assuming that students

believe they will fully resolve their initial uncertainty about lifetime earnings (ρP = 1).

Combining this upper bound of σP and data on the perceived dropout probability, we

can compute an upper bound for the perceived option value. As shown in Figure 2, the

upper bound for the average perceived option value would still be roughly $8,000 lower

than the average actual option value, due to the considerable underestimation of the

dropout probability.

Our results about actual and perceived option values are obtained under a simplifying

assumption that ρA and ρP are homogeneous across students. Motivated by Stinebrickner

and Stinebrickner (2012), who show that the amount of learning during college tends to

be different between males and females, we also redo our analysis separately for males

and females. We find that, while male students understate the amount of earnings

uncertainty resolution (ρA = 0.64, ρP = 0.40), female students overstate the amount of

earnings uncertainty resolution somewhat (ρA = 0.40, ρP = 0.56). We combine these

gender-specific estimates of ρA and ρP with information on dropout probabilities and

initial earnings uncertainty to compute actual and perceived option values. Our main

result that students underestimate the option value holds for both males and females.

However, we do find some gender differences; while, on average, perceptions about the

option value are similar for males and females ($8,440 for males, $7,660 for females),

there exists a substantial gender gap in the average actual option value ($39,690 for

males, $15,200 for females). 28

5.4 Policy Implications

Our finding that students’ perceptions understate the actual option value of college en-

rollment raises a question fundamental to the general policy concern that informational

problems may cause too few students to enter college: what would happen if misper-

ceptions about the option value were corrected? Importantly, our approach allows us

to examine not only whether misperceptions about the option value exist, but also why

28We also conducted a similar analysis to examine whether ρA and ρP depend on other observed
characteristics. For example, dividing students in our sample into two equal-sized subgroups based
on their high school GPA (HSGPA), we find that, while students with high HSGPA expect to resolve
a slightly larger fraction of initial earnings uncertainty (ρP = 0.60) than students with low HSGPA
(ρP = 0.46), the actual fraction ρA is very similar for these two groups of students (ρA = 0.51 for high
HSGPA, ρA = 0.52 for low HSGPA). For each group, we again find that, on average, perceptions about
the option value ($9,680 for high HSGPA, $8,310 for low HSGPA) understate the actual option value
($14,500 for high HSGPA, $37,420 for low HSGPA).
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they exist. As highlighted by the simple conceptual model in the second paragraph of

the introduction, the understatement of the option value could be caused by either an

understatement of how much uncertainty is resolved during college or an overly optimistic

view about the size of the initial expectations gap. Then, our finding that perceptions

about uncertainty resolution are accurate implies that individuals overstate the size of

the initial expectations gap. Correcting misperceptions about the option value would

involve providing information about, for example, the returns to college.

These findings about the reason for misperceptions about the option value are impor-

tant because, while it may seem at a first glance that an understatement of the option

value would necessarily lead to too few students entering college, in reality whether this is

true depends critically on why misperceptions exist. This is the case because the overall

value of college, which is the relevant object for the college entrance decision, is strongly

related but not identical to the option value. Under the illustrative scenario in the second

paragraph of the introduction - where all that occurs between t0 and t∗ is that students

resolve uncertainty that existed at entrance - the overall value of college is given by

the net continuation value (Heckman, Lochner, and Todd, 2006, Heckman and Navarro,

2007, and Heckman and Urzua, 2008).29 Defined as Et=t0 [max(V̄ B
1 , V̄

B
0 )] − Et=t0(V̄

B
0 ),

the net continuation value (NCV) captures the expected continuation value of college

enrollment net of the value of the outside option (dropout). In the scenario where the

initial expectations gap, Et=t0(V̄
B

1 − V̄ B
0 ), is negative, the net continuation value and the

option value are identical. However, in the more likely case where the initial expectations

gap is positive, the net continuation value is equal to the sum of the option value and

the initial expectations gap. Therefore, with the option value computed using methods

described in previous sections and Et=t0(V̄
B

1 − V̄ B
0 ) uniquely determined by data on σB

and PB
0 , we can compute the actual and perceived NCV for each student.30

We start by computing the perceived and actual value of Et=t0(V̄
B

1 − V̄ B
0 ) for each

student. Equation (3) implies that Et=t0(V̄
B

1 − V̄ B
0 ) is given by:

Et=t0(V̄
B

1 − V̄ B
0 ) = −Φ−1(PB

0 )σB. (20)

Using the actual dropout probability, PA
0 , and the actual amount of uncertainty resolu-

tion, σA, we find that, on average, the actual value Et=t0(V̄
A

1 − V̄ A
0 ) is $45,120. Similarly,

using perceived dropout probability P P
0 and the perceived amount of uncertainty reso-

lution, σP , we find that the average perceived value Et=t0(V̄
P

1 − V̄ P
0 ) is $160,930. Thus,

at the time of entrance, students overestimated the expected net benefit of college com-

pletion (i.e., the initial expectations gap) by more than $115,000. This implies that

misperceptions about the option value and misperceptions about the initial expectations

29In the more general case, the overall value of college continues to take into account the NCV, but
also takes into account the direct utility differences between the two options over the period t0 to t∗.

30Alternatively, similar to what we did for the option value, we can directly express the net continuation
value as a function of σB and PB0 . We can show that the NCV is increasing in σB and decreasing in
PB0 .
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gap work in an offsetting manner when computing the NCV. Taking both into account,

we find that perceptions about the NCV somewhat overstate its actual value; the actual

and perceived NCV are $76,130 and $173,110, respectively. Thus, while students under-

estimate the option value, once one considers the NCV, concerns that there might be too

few students attending college tend to dissipate.

6 Conclusion

From a student’s perspective, the return to college education is likely to be uncertain

when she makes the college attendance decision. Having the option to decide whether to

remain in college or to drop out after receiving relevant new information can potentially

help students insure against this uncertainty. Complementing administrative data on

college completion with data describing students’ beliefs, at the time of entrance, about

the probability of dropping out and data describing students’ beliefs, at multiple points

in college, about future earnings allows us to pay careful attention to the distinction

between perceived and actual option values.

We find strong evidence that students substantially underestimate the experimenta-

tion benefits of enrolling in college. However, importantly, we find that this underes-

timate is caused by an overly optimistic view about the size of the initial expectations

gap, rather than an understatement of the amount of uncertainty that is resolved during

college. This has important implications for whether inaccurate perceptions create a

situation where too few students are entering college. In the calculation of the overall

value of college, the underappreciation of the experimental benefit is more than offset by

overoptimism about the initial expectations gap. Once one considers the overall value of

college, concerns that there might be too few students attending college tend to dissipate.

As in our other work using the BPS, we feel it is important to be appropriately cau-

tious when thinking about exactly how the results from our study would generalize to

other institutions. Our results are perhaps most relevant for thinking about students

from low income backgrounds, who are a primary focus of the educational mission at

Berea College. This group is of particular policy interest, in part because they may be

more likely to be affected by informational problems. In addition, from a methodological

standpoint, we feel that our paper provides a concrete example of how unique expec-

tations data can be useful for characterizing difficult-to-identify objects of direct policy

relevance.
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Figure 1: Option Value and Dropout Probability

Figure 2: Perceived Option Value and ρP
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Figure 3: The CDF of the Option Value
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Appendices

A Survey Questions

Question 1. What is the percent chance that you will eventually graduate from Berea

College? Note: Number should be between 0 and 100 (could be 0 or 100).

Question 2. For ALL of question 2, assume that you graduate from Berea. Think

about the kinds of jobs that will be available for you and those that you would accept.

Please write the FIVE NUMBERS that describe the income which you would expect

to earn at the following ages or times under this hypothetical scenario.

I. Your income during the first full year after you leave school

| |
lowest highest

II. Your income at age 28 (note: if you are 20 years of age or older, give your income 10

years from now)

| |
lowest highest

III. Your income at age 38 (note: if you are 20 years of age or older, give your income 20

years from now)

| |
lowest highest

NOTE TO READER: In the paper, we also use close variants of Question 2, in which

students were asked to consider scenarios in which they leave Berea after three years of

study. Before answering Question 2, students received classroom training related to these

specific questions and received the following written instructions, which relate strongly

to the classroom training.

INSTRUCTIONS The following questions will ask you about the income you might

earn in the future at different ages under several hypothetical scenarios. We realize that

you will not know exactly how much money you would make at a particular point in time.

However, you may believe that some amounts of money are quite likely while others are

quite unlikely. We would like to know what you think. We first ask you to indicate the

lowest possible amount of money you might make and the highest amount of money you

might make. We then ask you to divide the values between the lowest and the highest

28



into four intervals. Please mark the intervals so that there is a 25% chance that your

income will be in each of the intervals.

Example To illustrate what we are asking you to do, consider the following example.

A student is asked to describe what she thinks about how well she will do on an exam

before taking it. Before the exam the person will not know exactly what grade she will

receive. However, she will have some idea of what grade she will receive. Suppose that

the person believes that the lowest possible grade she will receive is a 14 and the highest

possible grade is 100 (so she believes that there is no chance that she will receive less

than a 14 and some chance she will earn as high as 100).

1) The above person would begin by indicating the lowest and highest value on the line.

(We will provide the lines for you whenever they are needed.)

14 100

| |
lowest highest

2) The person would then divide the values between 14 and 100 into four intervals so

that she thinks that there is a 25% chance that her grade will be in each interval. For

example, suppose that the person marked three points between 14 and 100 and labeled

them 52, 80 and 92.

14 54 80 92 100

| | | | |
lowest highest

This would mean that the person thinks there is a 25% chance she will get a grade

between 14 and 52. Similarly, the person thinks there is a 25% chance she will get a

grade between 52 and 80, a 25% chance she will get a grade between 80 and 92, and

there is a 25% chance she will get a grade between 92 and 100. (This also means that

the person thinks that there is a 50% chance she will get a grade less than 80 and a 50%

chance that she will get a grade higher than 80.)

NOTE that the intervals do not have to have the same widths. For example, the interval

between 14 and 52 is wider than the other intervals. This suggests that the student

believes that she has a smaller chance of receiving a particular grade in this interval than

a particular grade in the higher intervals. For example, the person may think that she is

less likely to receive a 30 than 82.

A different person taking the exam might have very different views about how he

might do on the exam. For example, a student might fill in the line to look like

0 32 51 63 90

| | | | |
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lowest highest

This student thinks that the smallest possible grade is 0 and the highest possible grade

he will receive is 90. When compared to the other student, this student thinks he is more

likely to get a lower grade. For example, he thinks that there is a 25% chance he will

get a grade less than 32. There is a 25% chance he will get a grade between 32 and 51.

The chance that he gets a grade higher than 63 is only 25%. This person thinks there is

a 50% chance he will get less than 51 and a 50% chance he will get more than 51.

We will be asking you questions about income instead of grades. However, the process

will be the same as above. For each question, please do the following:

1) Write the lowest and highest possible incomes above the words lowest and

highest on the line. Give the salary in thousands of dollars. If you write 15, you will

mean $15,000. If you write 120, you will mean $120,000.

2) Mark three points on the line between the lowest and highest values and

write an income above each point. These income values should divide the line into

four intervals. As in the previous example, the numbers should be chosen so that there

is a 25% chance that your income will be in each interval. The middle value you write

should be the number such that there is a 50% chance that you will make more money

and a 50% chance you will make less money.

Note: For each line you should enter five numbers.

The following questions will ask you about the income you would expect to earn

under several hypothetical scenarios. Each of the questions will have the same format.

In particular, each question will be divided into three parts. Each part will ask you the

income that you will earn at a particular time in your life. The questions will differ

in their assumptions about how far you go in school an how well you do in classes. In

the first three questions, we will ask you about your income under several scenarios in

which you do not graduate. In the last four questions, we ask you about your income

under several scenarios in which you graduate with different grade point averages. When

reporting incomes, take into account the possibility that you will work full-time, the

possibility that you will work part-time, the possibility that you will not be working, and

(for the hypothetical scenarios which involve graduation) the possibility that you will

attend graduate or professional school. When reporting income you should ignore the

effects of price inflation.
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B Computation of µ̃P,Ys

In this appendix we show how µ̃P,Ys can be computed using students’ responses to Ques-

tion 2. Recall that Y1 =
∑T̄

a=t̄ β
a−t∗wa1 and Y0 =

∑T̄
a=t∗ β

a−t∗wa0 . Denoting the mean of a

student’s perceived distribution at t0 of was as µ̃P,as , we have:

µ̃P,Y1 =
T̄∑
a=t̄

βa−t
∗
µ̃P,a1 , µ̃P,Y0 =

T̄∑
a=t∗

βa−t
∗
µ̃P,a0 . (21)

Similar to σ̃P,as , we can obtain µ̃P,as using the reported quartiles of the distribution

describing a student’s subjective beliefs about what her earnings will be at a particular

future age a under choice s. Specifically, the normality assumption that we imposed

on this distribution implies that µ̃P,as is equal to Q2,a
s , the second quartile (median) of

the distribution. Hence, adopting the same interpolation and timing assumptions as in

Section 5.2.2, Equation (21) allows us to compute µ̃P,Ys for s = 0, 1.

C Robustness: Allowing for Learning about Y0

Our analysis in Section 5.2-5.4 assumed that students learn only about the future earnings

associated with the graduation alternative, Y1. The simplifying assumption that students

do not learn about the future earnings associated with the dropout alternative, Y0, has

the virtue of allowing for a more transparent discussion of identification and the virtue

of allowing results to be discussed in a straightforward manner. It is also consistent

with the intuitively appealing notion that college is best suited for providing information

about one’s ability to perform high skilled jobs. Nonetheless, this section recognizes the

benefit of providing some evidence that this is a reasonable assumption. We find that

this is the case. Both the actual and perceived amounts of uncertainty resolved about Y0

are much smaller than the corresponding amounts resolved about Y1. Further, in part

because of this result and in part because what a student learns about earnings under

the graduation scenario is informative about earnings under the dropout alternative,

allowing students to also resolve uncertainty about Y0 does not change our substantive

conclusion in Section 5.3 and Section 5.4 - that students underestimate the option value

and overestimate the net continuation value.

C.1 Defining σB in a Correlated Learning Environment

Allowing students to learn about the future earnings associated with the dropout alter-

native leads to a modification of Equation (10). A student’s beliefs about the relevant
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new information ∆B, is now given by:

∆B = [
T̄∑
a=t̄

βa−t
∗
(εB,a,τ21 )−

T̄∑
a=t̄

βa−t
∗
(µB,a,τ21 )]− [

T̄∑
a=t∗

βa−t
∗
(εB,a,τ20 )−

T̄∑
a=t∗

βa−t
∗
(µB,a,τ20 )],

(22)

where, analogous to εB,a,τ21 , εB,a,τ20 is the student’s beliefs at t0 about the component of

wa0 that is observed between t0 and t∗. Similarly, we assume that the εB,a,τ20 is normally

distributed with mean µB,a,τ20 and standard deviation σB,a,τ20 and are perfectly correlated

across all a.

Motivated by recent work suggesting the importance of correlated learning (Arcidia-

cono et al., 2016), we allow εB,a,τ21 − µB,a,τ21 and εB,a
′,τ2

0 − µB,a
′,τ2

0 to have correlation κB

for all a, a′ pairs. Under these assumptions, Equation (22) implies that the standard

deviation of ∆B, σB, is given by:

σB =

√√√√[ T̄∑
a=t̄

βa−t∗(σB,a,τ21 )

]2

+

[
T̄∑

a=t∗

βa−t∗(σB,a,τ20 )

]2

− 2κB

[
T̄∑
a=t̄

βa−t∗(σB,a,τ21 )

][
T̄∑

a=t∗

βa−t∗(σB,a,τ20 )

]
.

(23)

As shown in Section 5.2.2,
∑T̄

a=t̄ β
a−t∗(σB,a,τ21 ) can be written as a fraction ρB of

σ̃P,Y1 , the student’s perceived initial uncertainty about lifetime earnings associated with

alternative s = 1. Similarly, we can write
∑T̄

a=t∗ β
a−t∗(σB,a,τ20 ) as a fraction ρB0 of

σ̃P,Y0 ≡
∑T̄

a=t∗ β
a−t∗(σ̃P,a0 ), the student’s perceived initial uncertainty about lifetime earn-

ings associated with alternative s = 0. Equation (23) becomes:

σB =

√
(ρBσ̃P,Y1 )2 + (ρB0 σ̃

P,Y
0 )2 − 2κBρBρB0 σ̃

P,Y
1 σ̃P,Y0 . (24)

In Section 5.2.2, we showed how to obtain σ̃P,Y1 from students’ responses to earn-

ings expectations questions in the BPS. Since students report their beliefs about future

earnings under both alternatives (s = 0 and s = 1), σ̃P,Y0 can be obtained using the

same method. The second column of Table 1 shows that the sample average of σ̃P,Y0 is

$163,000, roughly 30% smaller than the sample average of σ̃P,Y1 , implying that, at t0,

on average there is more uncertainty about earnings under the graduation scenario than

there is about earnings under the dropout scenario.

With data on σ̃P,Ys for s = 0, 1, computation of σB, and therefore option values,

requires information on ρB, ρB0 , and κB. In the next two subsections we discuss how to

estimate the actual and perceived values of these objects.

C.2 Actual Option Values

Allowing for learning about the value of the dropout alternative has no bearing on our

estimation of ρA; the estimate of ρA remains 0.51. The value of ρA0 can be estimated in
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the same manner. We find an estimate of 0.28 for ρA0 , suggesting that students resolve

a smaller fraction of their initial uncertainty about Y0 than about Y1. Since students

were less uncertain about Y0 than about Y1 to begin with, we conclude that the actual

uncertainty resolution about Y0 is much smaller than that about Y1.

The actual correlation κA can be estimated from the evolution of individual earnings

beliefs. Appendix B shows that µ̃P,Ys , the mean of a student’s perceived distribution of

Ys at t0, can be constructed from the expectations data reported at the time of entrance

(t = t0). Using the same method, the expectations data collected at t∗ allows us to also

construct µ̃P
∗,Y

s , the mean of a student’s perceived distribution of Ys at t∗. Equation (9)

along with our timing assumptions imply that µ̃P,as = εa,τ1s +µP,a,τ2s and µ̃P
∗,a

s = εa,τ1s +εa,τ2s .

Hence, Equation (21) shows that:

µ̃P
∗,Y

1 − µ̃P,Y1 =
T̄∑
a=t̄

βa−t
∗
(εa,τ21 − µP,a,τ21 ) =

T̄∑
a=t̄

βa−t
∗
(εa,τ21 − µA,a,τ21 ) +

T̄∑
a=t̄

βa−t
∗
(µA,a,τ21 − µP,a,τ21 ),

µ̃P
∗,Y

0 − µ̃P,Y0 =
T̄∑

a=t∗

βa−t
∗
(εa,τ20 − µP,a,τ20 ) =

T̄∑
a=t∗

βa−t
∗
(εa,τ20 − µA,a,τ20 ) +

T̄∑
a=t∗

βa−t
∗
(µA,a,τ20 − µP,a,τ20 ),

(25)

where µA,a,τ2s − µP,a,τ2s measures the systematic bias in the student’s expectation at t0

about earnings at age a given schooling outcome s.

Note that the population distribution of εa,τ2s coincides with the actual belief distribu-

tion εA,a,τ2s . Hence, our assumptions on εA,a,τ2s in Section C.1 imply that 1) εa,τ21 − µA,a,τ21

and εa
′,τ2

0 − µA,a
′,τ2

0 have a correlation of κA for any pair (a, a′), and 2) εa,τ2s − µA,a,τ2s

are perfectly correlated across a (for a given s). Thus, the population correlation of∑T̄
a=t̄ β

a−t∗(εa,τ21 −µA,a,τ21 ) and
∑T̄

a=t∗ β
a−t∗(εa,τ20 −µA,a,τ20 ) is also κA. Under an additional

assumption that the systematic bias µA,a,τ2s − µP,a,τ2s is homogeneous across students for

s = 0, 1, we can show that the population correlation of µ̃P
∗,Y

1 − µ̃P,Y1 and µ̃P
∗,Y

0 − µ̃P,Y0

is κA as well. Hence, for a random sample of students, κA can be consistently estimated

by the sample correlation of µ̃P
∗,Y

1 − µ̃P,Y1 and µ̃P
∗,Y

0 − µ̃P,Y0 .

However, in practice, a complication exists because the sample of students who re-

mained at the end of third year is, by construction, not random. Indeed, in the context

of our model, students choose to remain in school precisely because the realization of∑T̄
a=t̄ β

a−t∗(εa,τ21 )−
∑T̄

a=t∗ β
a−t∗(εa,τ20 ) is sufficiently high. To deal with this selection issue,

we take advantage of the fact that selection should not be problematic when estimating

the correlation between µ̃
P (t0+1),Y
1 − µ̃P,Y1 and µ̃

P (t0+1),Y
0 − µ̃P,Y0 , where µ̃

P (t0+1),Y
s repre-

sents the mean of a student’s perceived distribution of Ys at the end of the first year

(t = t0 + 1). This is the case because very few students drop out before the end of the

first year (i.e., we have a random sample for the first year). Data on µ̃P,Ys and µ̃
P (t0+1),Y
s

are collected at the beginning and end of the first year, respectively. We compute this

correlation to be 0.63. In the end of this subsection (Section C.2), we show that, with
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additional assumptions on how uncertainty about future earnings is resolved over time

between t0 and t∗, this correlation represents a consistent estimator of κA.

With ρA, ρA0 , and κA estimated using the methods described above, we compute the

actual amount of uncertainty resolution, σA, for each student. The average value of σA

is $96,780. This is smaller than the value of $115,430 obtained using the values of ρA

and σ̃P,Y1 from Section 5.2 under the previous assumption that students only resolve un-

certainty about Y1. Hence, allowing students to also resolve uncertainty about Y0 leads

students to learn less about the gap between the value of the two alternatives. This is

primarily because students learn about the two alternatives in a positively correlated

fashion: a positive information shock to the graduation alternative is likely to be ac-

companied with a positive information shock to the dropout alternative. Consequently,

the actual option values computed under this correlated learning environment are also

somewhat smaller than their counterparts in the baseline scenario. The average actual

option value and NCV are now $21,020 and $63,720, respectively (versus $25,040 and

$76,130, respectively, in Section 5.3 and Section 5.4).

κA(1) = κA: Assumptions and Proof

We show that, with additional assumptions on how uncertainty about future earnings

are resolved between t0 and t∗, we can consistently estimate κA using the correlation

between µ̃
P (t0+1),Y
1 − µ̃P,Y1 and µ̃

P (t0+1),Y
0 − µ̃P,Y0 . We start by further decomposing εa,τ2s

into independently distributed factors that are realized in Year 1, Year 2 and Year 3,

respectively;

εa,τ2s =
3∑
j=1

εa,τ
j
2

s . (26)

As usual, we let ε
B,a,τ j2
s denote a student’s beliefs about the distribution of ε

a,τ j2
s at t0

and assume that ε
B,a,τ j2
s is normally distributed with mean µ

B,a,τ j2
s and standard deviation

σ
B,a,τ j2
s . It follows that:

µ̃
P (t0+1),Y
1 − µ̃P,Y1 =

T̄∑
a=t̄

βa−t
∗
(ε
a,τ12
1 − µA,a,τ

1
2

1 ) +
T̄∑
a=t̄

βa−t
∗
(µ

A,a,τ12
1 − µP,a,τ

1
2

1 ),

µ̃
P (t0+1),Y
0 − µ̃P,Y0 =

T̄∑
a=t∗

βa−t
∗
(ε
a,τ12
0 − µA,a,τ

1
2

0 ) +
T̄∑

a=t∗

βa−t
∗
(µ

A,a,τ12
0 − µP,a,τ

1
2

0 ), (27)

Similarly, we assume that 1) the correlation between ε
a,τ j2
1 −µA,a,τ

j
2

1 and ε
a′,τ j2
0 −µA,a

′,τ j2
0 ,

given any a, a′ pair, is κA(j), 2) ε
a,τ j2
s −µA,a,τjs are perfectly correlated across a (for a given

s), and 3) µ
A,a,τ j2
s − µP,a,τ

j
2

s is homogeneous across students for s = 0, 1. Under additional

assumptions that both the correlation κA(j) and the ratio of signal strength
σ
A,a,τ

j
2

1

σ
A,a,τ

j
2

0

are

constant over j, it can be shown that κA = κA(1).
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Proof. We first show that
σ
A,a,τ2
1

σ
A,a,τ2
0

=
σ
A,a,τ12
1

σ
A,a,τ12
0

;

σA,a,τ21

σA,a,τ20

=

√∑3
j=1(σ

A,a,τ j2
1 )2√∑3

j=1(σ
A,a,τ j2
0 )2

=

√√√√√√√
∑3

j=1(σ
A,a,τ j2
0 )2(

σ
A,a,τ

j
2

1

σ
A,a,τ

j
2

0

)2

∑3
j=1(σ

A,a,τ j2
0 )2

=

√√√√√√
∑3

j=1(σ
A,a,τ j2
0 )2(

σ
A,a,τ12
1

σ
A,a,τ12
0

)2

∑3
j=1(σ

A,a,τ j2
0 )2

=
σ
A,a,τ12
1

σ
A,a,τ12
0

. (28)

Then, we can show that:

κA = corr(εa,τ21 − µA,a,τ21 , εa,τ20 − µA,a,τ20 ) =
cov(εa,τ21 , εa,τ20 )√
var(εa,τ21 )var(εa,τ20 )

=
cov(

∑3
j=1 ε

a,τ j2
1 ,

∑3
j=1 ε

a,τ j2
0 )√

(σA,a,τ21 )2(σA,a,τ20 )2

=

∑3
j=1 cov(ε

a,τ j2
1 , ε

a,τ j2
0 )

σA,a,τ21 σA,a,τ20

=

∑3
j=1 κ

A
j σ

A,a,τ j2
1 σ

A,a,τ j2
0

σA,a,τ21 σA,a,τ20

= κA(1)

∑3
j=1(σ

A,a,τ j2
1 /σ

A,a,τ j2
0 )(σ

A,a,τ j2
0 )2

(σA,a,τ21 /σA,a,τ20 )(σA,a,τ20 )2

= κA(1)
(σ

A,a,τ12
1 /σ

A,a,τ12
0 )

∑3
j=1(σ

A,a,τ j2
0 )2

(σA,a,τ21 /σA,a,τ20 )(σA,a,τ20 )2

= κA(1) (29)
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C.3 Perceived Option Values

Analogous to Equation (17), substituting the new expression σP (shown in Equation 24

with B taking the value P ) into Equation (3), we obtain:

P P
0 = Φ(

µ̃P,Y0 − µ̃P,Y1 + γ̃P√
(ρP σ̃P,Y1 )2 + (ρP0 σ̃

P,Y
0 )2 − 2κPρPρP0 σ̃

P,Y
1 σ̃P,Y0

). (30)

Parallel to Section 5.2.4, here we rewrite Equation (30) as a linear equation and

explicitly allow for measurement error in expectations variables.

Φ−1(P P
0 )σ̃P,Y + δy =

γ̄P

ρP
+ [µ̃P,Y0 − µ̃P,Y1 + δx]

1

ρP
+
γ̃P − γ̄P

ρP
, (31)

where σ̃P,Y ≡
√

(σ̃P,Y1 )2 + (θP σ̃P,Y0 )2 − 2κP θP σ̃P,Y1 σ̃P,Y0 , and θP ≡ ρP0
ρP

. Similarly, we

assume that the observed measure of µ̃P,Y0 − µ̃P,Y1 contains individual-specific classical

measurement error δx and that the computed value of Φ−1(P P
0 )σ̃P,Y contains individual-

specific classical measurement error δy.

To apply the measurement-error-robust approach detailed in Section 5.2.4 and Ap-

pendix E, we need to compute σ̃P,Y for each student. Note that σ̃P,Y1 and σ̃P,Y0 can be

directly computed from the data. We impose the assumption that the perceived values

of the ratio of signal strength, θP , and the correlation, κP , are equal to their actual

counterparts, which have been estimated in Section C.2 (θA ≡ ρA0
ρA

= 0.55 and κA = 0.63).

With µ̃P,Y0 and µ̃P,Y1 directly constructed from the data and Φ−1(P P
0 )σ̃P,Y computed as

above, we consistently estimate γ̄P

ρP
and 1

ρP
using the approach described in Section 5.2.4.

The estimates of ρP and ρP0 are 0.55 and 0.29, respectively. Comparing ρP = 0.55 and

ρP0 = 0.29 to ρA = 0.51 and ρA0 = 0.28 (Section C.2), we continue to find, as in Section 5,

that students have quite accurate perceptions about the magnitude of uncertainty resolu-

tion. Then, as expected, the perceived amount of uncertainty resolution, σP , is equal to

$103,140, which is very close to its actual counterpart ($96,780). The resulting average

perceived option value and average perceived NCV are $7,680 and $155,590, respectively,

which are almost identical to the average values computed in Section 5. Comparing

these numbers to the actual analogs found in Section C.2, ($21,020 and $63,720), our

main conclusion that students underestimate the option value and overestimate the net

continuation value remains appropriate in this slightly modified learning environment.

D Robustness: Allowing for Learning about γ1

In this appendix, we examine the implications of allowing students to also obtain relevant

information about the non-pecuniary benefits associated with the graduation scenario,

γ1. In particular, we show that, under assumptions that are broadly consistent with the
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setting in Stinebrickner and Stinebrickner (2012, 2014b), our estimates of actual option

values in Section 5.3 tend to be downward biased while our estimates of perceived option

values in Section 5.3 remain consistent.

Recall that Section 4 shows that the option value is multiplicatively separable in

a student’s beliefs about the dropout probability PB
0 and the amount of uncertainty

resolved in college σB. Since both actual and perceived values of PB
0 are obtained from

the data in somewhat direct ways, we only need to examine whether our estimates of

the actual and perceived σB tend to be consistent when students are also learning about

γ1. For the purpose of clarity, here we denote the estimates of actual and perceived ρB

computed in Section 5.2 as ρA and ρP , respectively, and denote the estimates of actual

and perceived σB computed in Section 5.2 as σA and σP , respectively.

The relevant new information ∆ is given by:

∆ = (V̄1 − V̄0)− Et=t0(V̄1 − V̄0)

= [Et=t∗(Y1)− Et=t0(Y1)] + [Et=t∗(γ1)− Et=t0(γ1)]

≡ ∆Y1 + ∆γ1. (32)

Motivated by Stinebrickner and Stinebrickner (2012, 2014b), we consider a case where,

between t0 and t∗, students resolve uncertainty about Y1 and γ1 through a common signal.

For example, in their setting, grade performance is a signal that is found to influence both

beliefs about earnings and the non-pecuniary benefits of school. In this case, both ∆Y1

and ∆γ1 are functions of this signal. Under a linearity assumption for the two functions,

we have that ∆γ1 is proportional to ∆Y1. Let ∆Y B
1 and ∆γB1 represent the student’s

beliefs at t0 about ∆Y1 and ∆γ1, respectively. Then, we have ∆γB1 = α(∆Y B
1 ).31 It

implies that:

∆B = (1 + α)∆Y B
1 and σB = (1 + α)std(∆Y B

1 ) = (1 + α)ρBσ̃P,Y1 , for B = P,A. (33)

We first examine the consistency of our estimates of actual option values in Section

5.3. Recall from Section 5.2.3 that the actual fraction ρA is estimated using observed data

on σ̃P,Y1 and σ̃P
∗,Y

1 . Therefore, our estimates of ρA and ρAσ̃P,Y1 are consistent regardless

of whether students are also resolving uncertainty about non-pecuniary benefits γ1, i.e.

σA consistently estimates ρAσ̃P,Y1 . In the likely case where α > 0, the actual value of σ

would be greater than ρAσ̃P,Y1 .32 Thus, σA underestimates the actual value σA, which

implies that, for each student, our estimate of actual option value reported in Section 5.3

underestimates its true value.

We then examine the consistency of our estimates of perceived option values in Sec-

31Both ∆Y B1 and ∆γB1 have a mean of zero, by construction.
32This is consistent with a scenario where the common factor is grade performance; Having a high

realized grade would tend to positively influence a student’s perceptions about both the pecuniary and
non-pecuniary benefits associated with the graduation scenario.
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tion 5.3. Allowing students to learn about non-pecuniary benefits associated with the

graduation scenario leads to a modification of Equation (17).

P P
0 = Φ(

µ̃P,Y0 − µ̃P,Y1 + γ̃P

(1 + α)ρP σ̃P,Y1

). (34)

Consequently, the main estimation equation (Equation 19) can be modified as follows:

Φ−1(P P
0 )σ̃P,Y1 + δy =

γ̄P

(1 + α)ρP
+ [µ̃P,Y0 − µ̃P,Y1 + δx]

1

(1 + α)ρP
+

γ̃P − γ̄P

(1 + α)ρP
. (35)

The only difference between Equation (19) and Equation (35) is that (1+α)ρP shows

up in Equation (35) at places where ρP shows up in Equation (19). Therefore, ρP

consistently estimates (1 + α)ρP , which implies that σP consistently estimates σP as

well. Hence, for each student, the estimate of perceived option value reported in Section

5.3 consistently estimates its true value.

E Measurement Error Correction

E.1 Estimating the Variance of δx

Appendix B describes how to obtain measures of µ̃P,Y1 and µ̃P,Y0 using our measures of

µ̃P,a1 and µ̃P,a0 . Let δP,as denote the individual-specific measurement error that is present

in our measure of µ̃P,as . Equation (21) implies that var(δx) is given by:

var(δx) = var(
T̄∑
a=t̄

βa−t
∗
δP,a1 −

T̄∑
a=t∗

βa−t
∗
δP,a0 ). (36)

Recall that the unconditional earnings expectations questions in the BPS were asked

for three specific ages a: the first year after graduation (age 23), age 28, and age 38,

and for both schooling scenarios: graduation (s = 1) and dropout (s = 0). The linear

interpolation assumption we employed to impute µ̃P,as for other ages implies that δP,as is

a linear combination of a subset of {δP,23
s , δP,28

s , δP,38
s } for all a.

We further assume that (1) the distribution of measurement error is the same for

each of the six unconditional earnings expectations questions; (2) measurement errors are

uncorrelated across schooling scenarios s, but are perfectly correlated within schooling
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scenarios.33 Under these assumptions, we have:

var(δx) = var(
T̄∑
a=t̄

βa−t
∗
δP,a1 −

T̄∑
a=t∗

βa−t
∗
δP,a0 )

= var(
T̄∑
a=t̄

βa−t
∗
δP,28

1 ) + var(
T̄∑

a=t∗

βa−t
∗
δP,28

0 )

= var(δP,28
1 )[(

T̄∑
a=t̄

βa−t
∗
)2 + (

T̄∑
a=t∗

βa−t
∗
)2]. (37)

Following the method developed in Gong, Stinebrickner and Stinebrickner (2019), we

estimate the variance of the measurement error contained in students’ reported value

of µ̃P,28
1 ≡ Et=t0(w

P,28
1 ) for the 2001 cohort, δP,28

1 . The approach takes advantage of

the fact that the BPS includes two separate sets of expectations questions that can be

used to compute µ̃P,28
1 . The difference between the two computed values of µ̃P,28

1 provides

evidence about the magnitude of measurement error. The estimate of var(δP,28
1 ) is 109.54

(earnings measured in $1,000 units). Using Equation (37), we estimate that var(δx) is

67236 (earnings measured in $1,000 units).

E.2 ME Correction Formula

Let vector zi denote the independent variables that are accurately measured and xi

denote the independent variable that is measured with classical measurement error ηi.

We allow the variance of ηi to depend on observable gi and denote this variance σ2
ME(gi).

Let x̃i = xi + ηi denote the measured value of xi. Then, the dependent variable yi is

given by:

yi = z′ia + bxi + ε

= z′ia + bx̃i + (ε− bηi). (38)

By construction, x̃ and ε − bηi are correlated. Hence, the OLS estimator is biased.

To correct for this bias, we notice that:

E

[
(yi − (z′ia + bx̃i))

(
zi

x̃i

)
+

(
0

bσ2
ME(gi)

)]
= E

[
(ε− bηi)

(
zi

x̃i

)
+

(
0

bσ2
ME(gi)

)]
= 0.

(39)

Equation system (39) has the same number of equations and parameters which are

33Assumption (2) captures the notion that factors that affect students’ beliefs about earnings under
the college alternative (s = 1) are likely different from those affecting students’ beliefs about earnings
under the non-college alternative (s = 0).
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equal to the number of observables. Hence, it can be estimated using the Method of

Moments, i.e., the estimator of

(
a

b

)
is the solution to the sample analog of the moment

conditions defined by Equation (39). It is easy to show that this estimator has an easy-

to-implement matrix-form expression. Letting c denote

(
a

b

)
and qi denote

(
zi

x̃i

)
,

we have:

ĉ =

[
Q′Q−

(
0 0

0
∑

i σ
2
ME(gi)

)]−1

Q′Y, (40)

where and Y and Q are the matrices of yi and qi, respectively.
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