ECONSTOR Make Your Publications Visible.

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Li, Weijia; Roland, Gérard; Xie, Yang

Working Paper Erosion of state power, corruption control, and political stability

BOFIT Discussion Papers, No. 5/2020

Provided in Cooperation with: Bank of Finland, Helsinki

Suggested Citation: Li, Weijia; Roland, Gérard; Xie, Yang (2020) : Erosion of state power, corruption control, and political stability, BOFIT Discussion Papers, No. 5/2020, ISBN 978-952-323-316-4, Bank of Finland, Institute for Economies in Transition (BOFIT), Helsinki, https://nbn-resolving.de/urn:nbn:fi:bof-202002262003

This Version is available at: https://hdl.handle.net/10419/240356

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

BOFIT Discussion Papers 5 • 2020

Weijia Li, Gérard Roland and Yang Xie

Erosion of state power, corruption control, and political stability

THE BANK OF FINLAND INSTITUTE FOR ECONOMIES IN TRANSITION BOFIT Discussion Papers Editor-in-Chief Zuzana Fungáčová

BOFIT Discussion Papers 5/2020 25.2.2020

Weijia Li, Gérard Roland and Yang Xie: Erosion of state power, corruption control, and political stability

ISBN 978-952-323-316-4, online ISSN 1456-5889, online

The views expressed in this paper are those of the authors and do not necessarily represent the views of the Bank of Finland.

Suomen Pankki Helsinki 2020

Erosion of State Power, Corruption Control, and Political Stability^{*}

Weijia Li^{\dagger} Gérard Roland[‡] Yang Xie[§]

February 24, 2020

Abstract

How do corruption and the state apparatus interact, and how are they connected to the political and economic dimensions of state capacity? Motivated by historians' analysis of powerful empires, we build a model that emphasizes the corrosive effect of corruption on state power. Under general assumptions about fat-tailed risk, we show that, if fiscal capacity is strong, then the optimal response for the head of the state apparatus will be an endogenous lexicographic rule whereby local corruption is maintained at such a level that no erosion of state power is tolerated. Comparative statics shows the impacts of additional risk of crisis on corruption. Implications of corruption at the head of the state apparatus are also analyzed. If fiscal capacity is not sufficiently strong, however, the state will have to over-tolerate corruption to retain its affiliates, risking its control in crises. Our model predicts that the correlation between state's political stability and corruption is non-monotonic across different levels of fiscal capacity, and this prediction is robustly consistent with recent cross-country panel-data.

Keywords: Corruption, state apparatus, state capacity, crisis, erosion of state authority, bureaucracy.

JEL codes: D73, H12, D02

^{*}We thank Chong-En Bai, Liang Bai, Ying Bai, Michael Bates, Dan Bogart, Jean-Paul Carvalho, Jackie Chan, Jiahua Che, Cheng Chen, Jidong Chen, Shuo Chen, Cheng Chou, Andrew Clausen, Mike Elsby, Leonardo Felli, Patrick Francois, Jan Grobovšek, Sergei Guriev, Bård Harstad, Guojun He, Ed Hopkins, Hanwei Huang, Ruixue Jia, Urmee Khan, Tatiana Kornienko, David Lagakos, Yu-Hsiang Lei, Ernest Liu, Peter Lorentzen, Xi Lu, Ramsay MacMullen, John Moore, Monika Nalepa, Barry Naughton, Anh Nguyen, Albert Park, Di Pei, Grigore Pop-Eleches, Yingyi Qian, Xue Qiao, Abdulaziz Shifa, Victor Shih, Stergios Skaperdas, Michael Song, Eik Swee, Teck Yong Tan, Ina Taneva, Francesco Trebbi, Jin Wang, Shaoda Wang, Shang-Jin Wei, Brian Wright, Yanhui Wu, Yinxi Xie, Daniel Xu, Guo Xu, Yiqing Xu, Bernard Yeung, Weijie Zhong, Li-An Zhou, Xueguang Zhou, and participants in seminars and workshops at BOFIT Finland, Columbia, Edinburgh, Fudan, NTU, NUS, NYU Shanghai, Princeton, SJTU, Tsinghua, UC Irvine, UCSD, and USC and the 2018 CESI, CM ES, NAM ES, NBER EASE, and WPSA and 2019 AM ES, ASSA, and SIOE Meetings for their valuable comments.

[†]Department of Economics, Monash University; weijia.li@monash.edu, ORCID: https://orcid.org/0000-0003-4189-2140.

[‡]Department of Economics, University of California, Berkeley, Center for Economic and Policy Research, and National Bureau of Economic Research; groland@econ.berkeley.edu, ORCID: https://orcid.org/0000-0003-1403-4351.

[§]Department of Economics, University of California, Riverside; yang.xie@ucr.edu, ORCID: https://orcid.org/0000-0002-7047-8902.

1 Introduction

Corruption is an important and pervasive phenomenon in human history and modern societies (Shleifer and Vishny, 1993, p. 599; MacMullen, 2015, pref., p. 11) that receives much attention in political and economic research. Economic analysis emphasizes mostly the efficiency implications of corruption: sometimes its effects on "greasing the wheels" of the economy, more often its effects in distorting resource allocation, preventing creative destruction, increasing agency costs, and so on.¹ Political scientists, on the other hand, have investigated how corruption affects the functioning of the political system but also how it damages people's support for corrupt regimes.² Relatively little formal analysis has been devoted, however, to how corruption erodes the power, authority, or control of the chain of command within the state apparatus.³

At the same time, analysis of the functioning of the state apparatus has gained much interest in the literature on state capacity.⁴ This literature focuses on the capacity of the state to extract revenue and support the market, as well as on the dynamics or failure to build these capacities. Very little attention has been paid to how state authority can decay, and even collapse, and how this process can depend on the other dimensions of state capacity.

At the intersection of these two lines of research, we attempt in this paper to investigate three interconnected questions. First, how does corruption erode state power? Second, how can this erosion shape corruption control and the tolerance of local corrup-

³Rose-Ackerman and Palifka (2016, p. 28) summarize the causes and consequences of corruption studied in the literature, and erosion of state power is not mentioned.

¹A very incomplete list of influential studies includes Leff (1964), Tullock (1967), Krueger (1974), Rose-Ackerman (1978), Lui (1985), Laffont and Tirole (1991), Shleifer and Vishny (1993), Mauro (1995), Acemoğlu and Verdier (1998, 2000), Tanzi and Davoodi (1998), Guriev (2004), Méndez and Sepúlveda (2006), Olken (2006), Bertrand et al. (2007), Fisman and Svensson (2007), Cai et al. (2011), Colonnelli and Prem (2017), and Allen et al. (2018). See also surveys by Bardhan (1997), Tanzi (1998), Wei (1999), Jain (2001), Aidt (2003, 2009), Rose-Ackerman (1999, 2007), Svensson (2005), Olken and Pande (2012), and Rose-Ackerman and Palifka (2016).

²For the effects of corruption in politics, see for example Key (1949), Merton (1968), Huntington (1968), Waterbury (1973, 1976), and Heidenheimer et al. (1989). For the damaging impact of corruption on regime support and legitimacy, see for example Banfield, 1967, Johnston (1979), Etzioni-Halevy (1983), Della Porta (2000), Seligson (2002), Anderson and Tverdova (2003), Chang and Chu (2006), Gilley (2006), Morris and Klesner (2010), and Rothstein (2011). Guriev and Treisman (2019) show however that in recent decades, instead of mass repression, autocrats have increasingly been manipulating information to convince the public about their competence and win genuine popularity despite prevailing corruption in the state apparatus.

⁴For example, see Acemoğlu (2005), Besley and Persson (2008, 2009, 2010), Acemoğlu et al. (2011, 2015), Dincecco and Prado (2012), Padró i Miquel and Yared (2012), Dal Bó et al. (2013), Gennaioli and Voth (2015), Muralidharan et al. (2016), and the survey by Cingolani (2013).

tion by the central government authority? Finally, how can this relation be influenced by fiscal capacity, one of the most important economic dimensions of state capacity?

Our primary approach is to build an applied-theoretical model and analyze how the head of the state apparatus, i.e., the Center, when equipped with a fiscal capacity to formally pay and retain its subordinates, would decide how much corruption to tolerate at the lower levels in the hierarchy. When modeling the Center's concerns in this decision, we highlight a particular mechanism through which corruption can erode state power. Our notion of corruption is primarily about exchange of bribes and the building of relational contracts between a local official and firms or members of the population in the official's jurisdiction.⁵ Our concept of state power, authority, and control relates to the success of the the Center in securing obedience of lower-level government authorities in times of *crises*, which we define as those exceptional times when the Center needs urgent support from within the apparatus to implement wellcoordinated responses. The crises that are the most relevant are 1) political – wars, secession, revolts, or revolutions – since they may threaten the survival of the incumbent or the regime itself (Tilly, 1990), 2) economic crises with high risk of contagion, and 3) important natural catastrophes, which can inflict severe damages. Answering the first question raised above, we show in our model how corruption can erode state power by creating local vested interests: in a crisis, corruption can push the local official to defy the Center's orders and secure local vested interests instead.

We focus on this specific effect of corruption because of its prominent relevance in theory and in history. The ability to respond to exceptional situations, i.e., crises, has been viewed by political philosophers as a fundamental attribute of state power (e.g., Hobbes, 1651; Schmitt, 1921, 1922; Agamben, 2003). This idea has been well understood by practitioners of power in the real world (e.g., Lincoln, 1953, originally 1861). This ability to react in times of crisis has repeatedly been eroded by corruption in powerful empires throughout history, precisely because corruption creates the aforementioned Center–local government incentive misalignment. For example, as discussed by renowned historian MacMullen (1988), when Roman officials were ordered to clean up the Isaurian threat in the mid-350s, these officials were busy seeking rents from the local population, did not attack the Isaurians, but tried instead to secure rents from

⁵For examples of the coverage of this type of corruption over clientelism, the administrative, police, military, judicial, and political realms, and state capture, see Ezrow and Frantz (2013, p. 257–273). We also discuss in Appendix A the applicability of our model to other types of corruption, such as diversion of funds or embezzlement.

their jurisdictions, sometimes even fighting against each other.⁶ This was quite common within the Roman regular army on other frontiers.⁷ This erosion of central authority was highlighted by the Battle of Adrianople in 378 between the Eastern Roman Emperor Valens and the Gothic rebels: as pointed out by MacMullen (1988, p. 185), "what ... appears most striking is the contrast between the supposed great forces available to Valens and his sorry performance in bringing them to bear." Beyond the Roman Empire, corruption eroding state power is also well documented across time, for example, in Ancient Egypt, the Mamluk Sultanate, the Ottoman Empire, late Valois France, Ming–Qing China, British India, and the Soviet Union (Itzkowitz, 1972; Critchlow, 1988; Staples, 1993; Finer, 1997a,b,c; Petry, 1998; Pavarala, 2004; Fukuyama, 2011).⁸

⁷For example, MacMullen (1988, p. 182) notices that Ammianus (c. 391) recorded the same situation on the Persian frontier in 356. According to Ammianus (c. 391) and MacMullen (1988, p. 175), all the "lust for plunder" generated likewise lack of "discipline, energy, and courage" inside the regular Roman army.

⁸Finer (1997a, p. 202–203, 208–209) documents how corruption in Ancient Egypt dislocated the command economy, thereby depriving the central authority of access to certain important resources when needed. In the Mamluk Sultanate, senior Mamluks employed their junior protégés to seek rents from the civilian population, accumulating such great fortunes that their loyalty toward the Sultan was replaced by economic calculus (Petry, 1998, p. 468; Fukuyama, 2011, p. 209). As a result, the Mamluks often intentionally delayed answering the Sultan's call for service and helped challengers supplant the Sultan (Petry, 1998, p. 468). The same causality from rent-seeking, creation of vested interests, to disloyalty applied to the relationship between the Janissaries and the Sultan in the Ottoman Empire (Itzkowitz, 1972, p. 89–92; Finer, 1997c, p. 1208; Fukuyama, 2011, p. 223–227). On late Valois France, Finer (1997c, p. 1309) argues that the rent-seeking behavior by the permanent civil service contributed to the "collapse" of "the entire edifice" of the king's power and its inability to respond to wars and resurgences. The Ming and Qing dynasties in Chinese history also show that corruption among civil and military officials seriously undermined and slowed down the royal court's response to invasions and rebellions (Finer, 1997b, p. 841–842, 848; Finer, 1997c, p. 1157). On British India, Pavarala (2004, p. 293, 295) observes that the trade interests of the East India Company were developed along with "the so-called 'Indian fortunes' made by East India Company officials," accompanied by "the struggle that marked most of the eighteenth century between the state [leadership in London] and the Company for control over India." On the Soviet Union, Critchlow (1988, p. 143-144) argued that, during Brezhnev's era, "irregularities," including corruption, "in the Central Asian republics [were] clearly widespread," so that they had "seriously eroded Moscow's ability to enforce directives" and created "de facto autonomy," when Moscow was worried about the looming economic, social, and

⁶MacMullen (1988, p. 182–183) examines why in the mid-350s the Isaurians, around southwestern Anatolia, "were well established as a quite uncontrollable force" threatening the Roman Empire. Citing Ammianus (c. 391)'s account and Jones (1964) and Rougé (1966)'s scholarships, MacMullen (1988, p. 182) states that Roman officials "were busy raking together their spoils from the subject population under them," defying the Emperor's will: "no one [among them did] say the Isaurians nay . . . [and these officials] were not very aggressive." In one infamous case, as told by Zosimus (c. 518) and Martindale (1980, p. 127–128) and cited by MacMullen (1988, p. 183), "the military Count Arbazacius, [who was] dispatched to the aid of villas and villages" but "wanting wealth and the pleasures of wealth," even "shook down' the Isaurian leaders for a part of their plunder [and] relaxed his military efforts." Officials also frequently went further to fight against each other – "behind their own walls" – to secure their own interests (Ammianus, c. 391; MacMullen, 1988, p. 182).

The consequence of this mechanism can be very severe. In the case of the Roman Empire, Valens was killed at Adrianople, "marked among the most inauspicious of the Roman Calendar" (Gibbon, 1781, p. 613), and the defeat "set in motion the chain of events that would lead, nearly a century later, to the fall of the Western Roman Empire" (Barbero, 2008, p. 1). Realizing the potential consequences, the Center should have taken corruption and its corrosive impact seriously. Indeed, answering the second above question, our model shows that, in the Center's choice of local corruption tolerance, a fundamental political–economic trade-off exists between losing control in crises and raising its own rents (and sometimes economic performance as well).⁹

Given this trade-off, we show that, under general conditions of fat-tailed risk of crises, if the Center's fiscal capacity allows, the Center should then follow an *endogenous lexicographic rule* when choosing its corruption tolerance: first, corruption must not exceed a critical threshold so that control is always secured in any possible crisis; second, given that the first condition is satisfied, the Center can tolerate corruption to a certain degree, raising its rents and economic performance as much as possible. Comparative statics of this rule also sheds lights on 1) why anti-corruption campaigns are often triggered by increased crisis risk, 2) why dominance of the Center over the local official under the status quo may make it more difficult to keep control over the government in times of crisis, and 3) the empirical correlation between corruption and personalistic rule where the Center places family associates and loyalists in the state apparatus.

The endogenous lexicographic rule predicts that corruption should only cautiously be tolerated so that erosion of state power can be prevented. This immediately raises the question of why we observe erosion of state power and over-tolerance of corruption as for example in the aforementioned historical cases. We further show in our model that whether the endogenous lexicographic rule would be feasible depends critically on the Center's fiscal capacity. When the capacity is not strong enough, the Center will have to over-tolerate corruption to retain its subordinates, risking the stability of the political status quo. This analysis suggests a complementarity between fiscal capacity and crisis control through the Center's choice of corruption tolerance, answering the third above question.

Besides providing historical narratives and contemporary examples, we also bring

demographic challenges at the time (Staples, 1993).

⁹The spirit of the trade-offs is consistent with the views of a few scholars in China and Soviet studies (e.g., Will, 1980; Huang, 1981; Critchlow, 1988; Kuhn, 1990; Clark, 1993; Staples, 1993; Zhou, 2008, 2012, 2017; Sng, 2014; Walder, 2015; Zhang, 2018).

our theoretical analysis to data. The main prediction of our model is a three-phase relationship between corruption, political stability, and fiscal capacity: political stability and corruption are negatively correlated only given medium fiscal capacity, and they are uncorrelated given strong or weak fiscal capacity. This prediction is consistent with the empirical pattern that emerges from various cross-country panel-data. The empirical analysis shows that our answers to the three questions above are not only prominent among historical and contemporary cases but also generally relevant in the current world.

The paper is organized as follows. Section 2 introduces and discusses the setup of the model. Section 3 analyzes the model, derives the theoretical results, and discuss their implications. Section 4 brings the theoretical analysis to data. Section 5 concludes.

2 Setup of the Model

The model is a sequential game, and Figure 1 presents its extensive form. There are two players: the Center, representing the highest level of the state apparatus, and a local official, representing all officials at lower levels of the hierarchy.

At Stage 1, the Center chooses the level of rents $R \ge 0$ that it allows the local official to obtain through corruption in his jurisdiction. Besides this corruption tolerance, the Center is equipped with some fiscal capacity to pay an exogenous salary w > 0 to the local official.

At Stage 2, the local official chooses to leave or stay in the state hierarchy, and we assume that he will stay if indifferent. If he chooses to leave, the state apparatus will be short of staff and the Center will face its downfall. The game will then end, with the Center getting an exogenous payoff D for its downfall, while the local official getting an exogenous reservation payoff x.

If the local official chooses to stay instead, he will receive the salary and obtain the corruption rents. Nature will then randomly draws a severity of a crisis L from an exogenous distribution. The crisis of this severity will then strike the Center, and the game will move into Stage 3.

At Stage 3, the local official chooses whether to comply with and help the Center survive the crisis, and we assume that he will defy if indifferent. If he does comply, the game will end with the status quo being maintained, in which we assume that the local official has to share an exogenous $\rho \in (0, 1)$ of his obtained rents, ρR in total, with the Center. The eventual payoff of the local official is then $w + (1 - \rho)R$. The Center is assumed to get a status quo payoff $\pi(R; \rho)$, depending on the prevalence of corruption R and the rent-sharing arrangement ρ .

If the local official chooses to defy instead, the game will end with the status quo ending and the local official no longer having to share his rents with the Center. The realization of L enters here as the loss that the local official will suffer in this scenario. The eventual payoff of the local official is then w + R - L. Since the Center has lost control of the state apparatus, we assume that the Center will eventually get the downfall payoff D.

We assume that all the payoffs are von Neumann and Morgenstern (1944) utilities so that the players maximize their expected payoffs, respectively. We also assume complete, perfect, and symmetric information. Therefore, we will use backward induction when solving the model.

Before analyzing the model, here we discuss more about the setup and interpretation of the model, along with three additional assumptions that will help keep our analysis within realistic scenarios:

Crisis and its severity. First, as introduced, the crisis severity L represents the loss that the local official will suffer if he defies the Center so that the status quo ends. It can be interpreted as the punishment that the Center can impose upon the local official for his potential defiance, or as the collateral damage that will incur after the Center's downfall. This is consistent with the idea that when a crisis strikes the Center, the Center's ability to enforce the local official to comply and help survive the status quo is weakened; and the severer the crisis, the smaller the ability.¹⁰ Note that a severer crisis is proxied by a smaller L.

In the model, we specify the distribution of L as follows:

Assumption 1 (Distribution of crisis severity). The cumulative distribution function $F(\cdot)$ and probability density $f(\cdot)$ of the crisis severity L satisfy:

when $L \leq \underline{L}$,	F(L) = 0;	
when $\underline{L} < L < \overline{L}$,	$F(L) \in (0,p)$ is differentiable and $f(L) > 0$ everywhere;	(1)
when $\bar{L} \leq L < \infty$,	$F(L) = p \in (0,1);$	(1)
when $L = \infty$,	F(L) = 1.	

In other words, with probability 1 - p, no real crisis will strike and the Center will be infinitely capable of enforcing the local official and maintaining the status quo; with probability p, however, a real crisis may strike, the severest crisis possible is denoted by $\underline{L} \in (0, \infty)$, and the least severe crisis possible is denoted by $\overline{L} \in (\underline{L}, \infty)$.

Whether a real crisis strikes, and how severe it is, can, in reality, be endogenous to existing corruption. We nevertheless keep the distribution of L exogenous. This is because we would like to highlight in our model the essence of power: power fundamentally means that the person at the lower level of the hierarchy will comply with the higher level, whatever the situation may be. This arbitrariness of the situation is exactly captured by the exogeneity of L. That said, in the analysis of Stage 3, we will discuss the case in which the distribution of L is endogenous to the level of corruption R; in Appendix A, we extend the model to introducing, in case of defiance, an additional loss to the local official that is dependent on R, and we discuss its implications.

¹⁰This idea can also be micro-founded by the Rubinstein (1982) protocol where a crisis makes the Center become much less patient, lose bargaining power, and, therefore, become weaker in enforcing the local official.

Also, note that although the crisis severity is assumed to be exogenous, whether a crisis is consequential to the Center or not is endogenous in our model, as we will show in our analysis.

Rent-sharing arrangement. Second, the rent-sharing arrangement ρ in the status quo has been assumed to be exogenous, and we can interpret a higher ρ as a more corrupt or dominant Center in the status quo of the central-local relationship. In the analysis of the Center's decision at Stage 1, we will analyze how ρ affects the Center's calculation and also how the Center would choose ρ if it had the choice.

Status quo payoff. Third, the dependence of the Center's status quo payoff $\pi(R; \rho)$ on the prevalence of corruption R can come from a few sources. For one, the Center can value the performance of the economy because, for example, a better economic performance can bring a greater tax revenue or stronger popular support, and there are arguments for both corruption "greasing" and "sanding the wheels" of the economy (e.g., Leff, 1964; Lui, 1985; Shleifer and Vishny, 1993; Mauro, 1995; Wei, 1999; Guriev, 2004; Méndez and Sepúlveda, 2006).¹¹ For another, and perhaps more importantly, the Center can also value the rents ρR that it reaps from the local official. Since the reaped rents ρR also depend on ρ , the status quo payoff also depends on the rent-sharing arrangement ρ and we has written ρ as a parameter in $\pi(R; \rho)$.

Note that if the Center's rent-seeking motive dominates its concern for economic performance, or if corruption is "greasing the wheels" of the economy so much, higher corruption tolerance R will raise the status quo payoff $\pi(R; \rho)$. For reasons of generality, we assume $\pi(R; \rho)$ is continuous and differentiable in R but leave the sign of the first derivative $\pi_R(R; \rho)$ unspecified.

Downfall payoff. Fourth, we make two additional assumptions that the Center's downfall payoff is sufficiently low:

Assumption 2 (Downfall bad for Center, the first). $D < \inf_{R \ge 0} \pi(R; \rho)$.

This assumption narrows our focus down only to the scenarios in which the Center always prefers the status quo to downfall, which we find reasonable. Assumption 2 itself, however, does not imply that the Center will never allow a downfall to happen.

¹¹Inspired by recent economic development in China, Bai et al. (2014, 2020) and Li et al. (2019) provide a micro-foundation for when the economic performance increases with corruption.

This is because, linked by its choice of the corruption tolerance, the Center's status quo payoff and survival probability could move in opposite directions, depending on the properties of the other parts of the model, i.e., $\pi(R; \rho)$, x, w, and F(L). It is then unclear yet whether the Center will always prefer the status quo to be totally or only partially secured.

Assumption 3 (Downfall bad, the second). $D < \frac{\inf_{R \ge 0} \pi(R;\rho) - (1-p) \cdot \sup_{R \ge 0} \pi(R;\rho)}{p}$.

Assumption 3 further narrows our focus down to the scenarios in which the Center also always prefers the status quo to the situation where it will lose control in any real crises, which we find reasonable, too. Assumption 3 does so because it is equivalent to

$$\inf_{R \ge 0} \pi(R;\rho) > p \cdot D + (1-p) \cdot \sup_{R \ge 0} \pi(R;\rho),$$
(2)

where the left-hand side is the minimum that the status quo can provide while the right-hand side is the maximum that can be provided by the situation that the Center will lose control in any real crises. Like Assumption 2, this assumption does not imply either whether the Center will always prefer the status quo to be totally or partially secured.

Fiscal capacity. Finally, the Center's fiscal capacity is modeled as its ability to pay and retain the local official without allowing him to be corrupt, measured by the relative amount of the local official's reservation payoff x and salary w. In the analysis of the model, we refer to the difference $x - w \in (-\infty, \infty)$ as the measure of the Center's fiscal capacity; the higher this difference, the weaker the capacity.

3 Analysis of the Model

3.1 Stage 3

At this stage, having received the salary w and corruption rents R and learned the realization of the crisis severity L, the local official will defy if and only if

$$w + (1 - \rho)R \le w + R - L.$$
 (3)

This is equivalent to ρR being sufficiently big, or to the crisis being sufficiently severe:

$$L \le \rho R \equiv \hat{L}(R) \tag{4}$$

where $\hat{L}(R)$ is the critical threshold of the crisis severity at which the local official will switch between complying and defying.

It is clear that a higher corruption tolerance R will increase the vested interests ρR for the local official to secure during any crisis. This raises the critical threshold of $\hat{L}(R)$. Given the distribution of L, this higher threshold then suggests a higher likelihood of the local official's defiance and of the Center's loss of control in a crisis. This is the corrosive effect of corruption on state power. More precisely, we have the following result:

Proposition 1 (Corrosive corruption). Just before nature draws the crisis severity L, the probability that the local official will comply at Stage 3 is $1 - F(\hat{L}(R))$. There exist $\underline{R} \equiv \underline{L}/\rho$ and $\overline{R} \equiv \overline{L}/\rho$ such that:

- when $0 \le R \le \underline{R}, 1 F(\hat{L}(R)) = 1;$
- when <u>R</u> ≤ R ≤ R

 R, 1 − F(L
 (R)) continuously, strictly decreases from 1 to 1 − p
 as R increases from <u>R</u> to R
- when $\bar{R} \leq R < \infty$, $1 F(\hat{L}(R)) = 1 p$.

The proposition directly follows the earlier result that the critical threshold of the crisis severity $\hat{L}(R) = \rho R$ and the distribution of L in Assumption 1. Figure 2 plots the result of the proposition. The threshold \underline{R} is the corruption level at which the Center just secures perfect control in any crisis, while the threshold $\overline{R} \equiv \overline{L}/\rho$ is the corruption level at which the Center just loses control in any real crisis. If the corruption tolerance $R \in [0, \underline{R}]$, the Center's will never lose control in any crisis; if $R \in [\underline{R}, \overline{R}]$, the Center starts to risk its crisis control and higher corruption will erode the control; if $R \in [\overline{R}, \infty)$, the Center will lose control in any real crisis and the status quo can only be maintained when no real crisis strikes.

The intuition behind Proposition 1 is that corruption creates vested interests, and the impulse to secure these interests can push officials at the lower levels of the hierarchy to defy the orders from the Center. Besides being consistent with the aforementioned historical accounts, for example, the cases of the Roman Empire, the Mamluk Sultanate, and the Ottoman Empire, this intuition also captures the understanding of the

Figure 2: Corrosive impact of corruption on Center's crisis control

current leader of the Communist Party of China Xi Jinping about the corrosive effect of corruption on the central authority of the party. In a well-known speech during the recent anti-corruption campaign, Xi (2014) asserted that "the gravest danger that challenges the Party comes from corruption within the Party," precisely because "when power seeks rents, people within the system hook up with people outside, group by vested interests, and challenge the leadership of the Party."

Although derived from a simple setting, the intuition behind Proposition 1 is robust to alternative settings. First, instead of rent-sharing, the status quo could require the local official to submit a fixed fee. In this setting, the probability that the local official will defy would still weakly increase with the corruption rents.¹² Second, one can argue that corruption can shift the distribution of crisis severity in the wrong direction by creating more social discontent, or through other channels generating similar effects. In that case, the corruption rents would further decrease the probability of the Center to keep control from an additional channel, thus not modifying the thrust of our result. Third, one can imagine that the crisis itself can affect the rents. As long as the postcrisis and pre-crisis rents are positively correlated given the crisis severity, the corrosive effect of corruption will still be there. Fourth, one can argue that during the collapse of the status quo the local official might lose a share of the corruption rents. As shown in Appendix A, the corrosive effect of corruption will hold, as long as this share is not too large. Appendix A further provides justifications for this condition.

Understanding his own Stage-3 decision as analyzed, the local official has to decide at Stage 2 whether to stay in the state hierarchy. We know step back to analyze this

¹²The defiance condition would become $w + R - \min\{M, R\} \le w + R - L$, where M is the fixed fee. Then the focal probability would be $F(\min\{M, R\})$, which weakly increases with R.

decision.

3.2 Stage 2

The local official will stay if and only if

$$x \le w + \mathbf{E}_L[\max\{(1-\rho)R, R-L\}] = w + R - \mathbf{E}_L[\min\{\rho R, L\}].$$
 (5)

If we denote the expected rents for the local official to eventually gain after Stage 3 as $X(R) \equiv R - \mathbf{E}_L[\min\{\rho R, L\}]$, this conditions is equivalent to

$$X(R) \ge x - w,\tag{6}$$

which means, for the local official to stay, his expected rents to gain must be able to cover the gap between his reservation payoff and salary.

To understand when this condition will hold, we take a closer look at the expected rents X(R):

Lemma 1 (Local official's expected rents). At Stage 2, the local official's expected rents to gain after Stage 3, which is X(R), continuously, strictly increases from 0 approaching ∞ as R increases from 0 approaching ∞ .

Proof. By the definition of X(R) and the distribution of L in Assumption 1, we have:

- when $R \in [0, \underline{R}], X(R) = (1 \rho)R;$
- when $R \in (\underline{R}, \overline{R}), X(R) = R \int_{\underline{L}}^{\rho R} L dF(L) \rho R (1 F(\rho R))$ and $X'(R) = 1 \rho (1 F(\rho R)) > 0;$

• when
$$R \in [\overline{R}, \infty)$$
, $X(R) = (1 - (1 - p)\rho)R - p \cdot \int_{\underline{L}}^{L} LdF(L)$.

The result then follows $\rho \in (0, 1)$.

This result is intuitive in the sense that the higher the rents that the local official will have obtained before Stage 3, which is R, the higher the local official's expected rents to gain after Stage 3, which is X(R). A characterization of Stage 2 then follows Lemma 1:

Proposition 2 (Scenarios depending on fiscal capacity). The model has two scenarios:

- 1. when $x w \leq 0$, the local official will always stay at Stage 2 regardless of the Center's choice of $R \in [0, \infty)$;
- 2. when x w > 0, the local official will stay at Stage 2 if and only if $R \ge r$, where r > 0 uniquely solves X(r) = x w and increases with x w.

This proposition suggests that, in Scenario 1 when the Center's fiscal capacity is sufficiently strong, there is no gap between the reservation payoff and salary to be covered, so the local official will always stay and the problem to retain the local official will be muted; In Scenario 2 when the Center's fiscal capacity not as strong as in Scenario 1, the Center will face a problem to retain the local official and, to solve it, its choice of corruption tolerance R has to be sufficiently high.

All the analysis above suggests that the Center's choice of the corruption tolerance R drives Stages 2 and 3: at Stage 3, it creates central-local incentive misalignment in crises; at Stage 2, it decides whether the expected rents X(R) can cover the gap between the local official's salary and reservation payoff. To understand the Center's choice of R, we now step back to analyze Stage 1. Given Proposition 2, we will first analyze Stage 1 in Scenario 1. By muting the retention problem at Stage 2, this scenario helps us isolate out the Center's concern about its crisis control at Stage 3. After that we will turn to Scenario 2, bringing the retention problem back and investigating the implications of weaker fiscal capacity.

3.3 Stage 1, Scenario 1

In this scenario, $x - w \leq 0$ and the local official will always stay regardless of the Center's choice of R. The Center's program is then

$$\max_{R} \quad \left(1 - S(R)\right) \cdot D + S(R) \cdot \pi(R;\rho) = D + S(R) \cdot \left(\pi(R;\rho) - D\right),\tag{7}$$

where

$$R \ge 0 \tag{8}$$

and the Center's political stability S(R), i.e., the probability that it will survive at the end of the game, is

$$S(R) = 1 - F(\hat{L}(R)), \text{ in which } \hat{L}(R) = \rho R.$$
(9)

This program suggests that, given Assumption 2 ($\pi(R; \rho) > D$) and a sufficiently strong fiscal capacity ($x - w \leq 0$), the Center can face a fundamental trade-off between keeping control and raising the status quo payoff: a higher R will lead to a higher probability $F(\hat{L}(R))$ to lose control in crises and, therefore, a lower political stability S(R), but it can grant a higher status quo payoff $\pi(R; \rho)$ if $\pi_R(R; \rho) > 0$. This trade-off is truly political–economic, since one side of the trade-off is about making sure that the local official will comply with the Center, whatever the severity of the crisis, which is political, and the other side is about the economic payoff under the status quo.

We now derive the main result about this trade-off – a sufficient condition about the risk distribution under which the political side of the trade-off dominates the economic side, and the Center therefore chooses a corruption tolerance that does not pose any risk to power at all:

Proposition 3. In Scenario 1, if the risk of crisis is sufficiently fat-tailed, then the Center will follow a lexicographic rule when choosing the corruption tolerance:

perfect crisis control first, status quo payoff second.

Further, if the Center's status quo payoff increases with corruption, then the Center will tolerate corruption as much as possible while securing perfect control. Mathematically, assume $x - w \leq 0$. If, for any $L \in (\underline{L}, \overline{L})$,

$$\frac{L \cdot f(L)}{1 - F(L)} \equiv \epsilon > \bar{\epsilon} \equiv \max_{R \in [\underline{R}, \bar{R}]} \frac{\pi_R(R; \rho) \cdot R}{\pi(R; \rho) - D},\tag{10}$$

then the Center's optimal choice $R^* \in \arg \max_{R \in [0,\underline{R}]} \pi(R;\rho)$, which implies $R^* \leq \underline{R}$ and $S(R^*) = 1$. Further if $\pi_R(R;\rho) > 0$ over $R \in [0,\underline{R}]$, then $R^* = \underline{R}$.

Proof. First, by Assumptions 2 and 3 and Proposition 1, the Center must prefer any $R \in [0, \underline{R}]$ to any $R \in (\overline{R}, \infty)$, because the former secures perfect crisis control and the latter loses any crisis control. Second, by $\hat{L}(R) = \rho R$, the Center's expected payoff will be strictly decreasing over $R \in (\underline{R}, \overline{R})$, if and only if the marginal gain from additional security brought by a slightly lower corruption tolerance dominates the marginal sacrifice in the status quo payoff, i.e.,

$$-S'(R) \cdot \left(\pi(R;\rho) - D\right) > S(R) \cdot \pi_R(R;\rho) \tag{11}$$

which, by $S(R) = 1 - F(\hat{L}(R))$, $\hat{L}(R) = \rho R$, and Assumption 2, is equivalent to

$$\frac{f(\hat{L}(R)) \cdot \hat{L}(R)}{1 - F(\hat{L}(R))} > \frac{\pi_R(R;\rho) \cdot R}{\pi(R;\rho) - D}.$$
(12)

By $\epsilon > \overline{\epsilon}$, this condition holds. Therefore, the Center's expected payoff is strictly decreasing over $R \in (\underline{R}, \overline{R})$. Therefore, the optimal choice $R^* \in [0, \underline{R}]$ must hold. The proposition then follows.

Figure 3: Center's choice of corruption tolerance (R^*) in Scenario 1 given crisis risk fat-tailed $(\epsilon > \bar{\epsilon})$ and status quo payoff increasing $(\pi_R(R; \rho) > 0)$ over $R \in [0, \bar{R}]$

Figure 3 illustrates the intuition of Proposition 3 for the case where the status quo payoff increases with corruption $(\pi_R(R; \rho) > 0)$ over $R \in [0, \overline{R}]$. Under Assumptions 2 and 3, the Center will prefer to avoid a total loss of crisis control, which means it will never tolerate corruption without limit (i.e. $R^* \leq \overline{R}$). The key trade-off is that higher corruption tolerance raises the status quo payoff while weakening control in a crisis. When the crisis risk distribution is sufficiently fat-tailed or thick-ended ($\epsilon > \overline{\epsilon}$), a severe crisis is sufficiently likely on the margin, so the gain from any additional control by lowering the corruption tolerance will always dominate the marginal sacrifice in the status quo payoff. Therefore, the Center will prefer to secure perfect control first $(R^* \leq \underline{R})$. Given that, the Center will tolerate corruption as much as possible to raise the status quo payoff, without sacrificing any control $(R^* \in [0, \underline{R}])$. For the case where the status quo payoff does not always increase with corruption $(\pi_R(R; \rho) > 0 \text{ not always true})$ over $R \in [0, \overline{R}]$, the condition of fat-tailed risk of crisis suffices to guarantee any additional control to dominate the marginal sacrifice, if any, in the status quo payoff, so that the Center will still prefer to secure perfect control first. The Center will then choose the corruption tolerance that maximizes the status quo payoff within the perfect-control range $(R^* \leq \underline{R})$.

Remarks. Before moving to comparative statics, we would like to make a few remarks on this result of the endogenous lexicographic rule. First, it is *lexicographic*, since it specifies that the Center foremost maximizes control in crises; given that perfect control is secured, the Center then adjusts the corruption tolerance to maximize the status quo payoff.

Second, it is a decision *rule*, not a *preference* between power, on the one hand, and the economic payoff in the status quo, on the other hand. In our model, there is only one thing that matters in the Center's preference, which is the payoff. Power, control, and authority have no intrinsic value to the Center; instead, they only have instrumental value because they can increase the Center's expected payoff.

Third, it is *endogenous*, different from the assumption of "power first" as an *axiom* for political agents and organizations (e.g., Downs, 1957; Roemer, 1985; Svolik, 2009). Instead, our model endogenizes this assumption with a consequentialist justification.

Fourth, the key condition for the endogenous lexicographic rule is the fat-tailed condition $\epsilon > \overline{\epsilon}$. Indeed, the following result shows that unsecured control will be optimal if the risk of crisis is instead sufficiently thin-tailed; it is exactly because the marginal sacrifice in the status quo payoff will dominate the marginal gain of better control in crises:

Proposition 4 (Unsecured control under thin-tailed risk). Under the same assumptions as in Proposition 3, if the risk of crisis is instead sufficiently thin-tailed, then the Center's optimal corruption tolerance will risk control in crises. Mathematically, assume $x - w \leq 0$ and $\pi_R(R; \rho) > 0$ over $R \in [0, \underline{R}]$. If there exists $\underline{R}' \in (\underline{R}, \overline{R})$ such that, for any $L \in (\underline{L}, \rho \underline{R}')$,

$$\epsilon < \underline{\epsilon} \equiv \min_{R \in [\underline{R}, \underline{R}']} \frac{\pi_R(R; \rho) \cdot R}{\pi(R; \rho) - D},\tag{13}$$

then the Center's optimal choice $R^* \in [\underline{R}', \overline{R})$, which implies $R^* > \underline{R}$ and $S(R^*) < 1$.

Proof. By Assumptions 2 and 3, $R = \underline{R}$ dominates any $R \geq \overline{R}$. By $\pi_R(R; \rho) > 0$ over $R \in [0, \underline{R}], R = \underline{R}$ dominates any $R \in [0, \underline{R})$. Therefore, $R = \underline{R}$ dominates any $R \in [0, \underline{R}) \cup [\overline{R}, \infty)$. Seen in the proof of Proposition 3, by $\epsilon < \underline{\epsilon}$ for any $L \in (\underline{L}, \rho \underline{R}')$, the Center's expected payoff is strictly increasing over $R \in [\underline{R}, \underline{R}']$. Then any $R \in [0, \underline{R}') \cup [\overline{R}, \infty)$ cannot be the optimal choice. The proposition then follows. \Box

Finally, the fat-tailed condition $\epsilon \equiv L \cdot f(L)/(1 - F(L)) > \bar{\epsilon}$ is hardly controversial and arguably general. It suggests that the Center's perceived probability of extremely bad situations does not decrease too quickly. This is consistent with the etymology of the word *crisis* – it comes from the Greek word $\kappa\rho i\sigma\iota\varsigma$, which means *decision*, and describes "a state of affairs in which a decisive change for . . . worse is imminent" (OED2, 1989); it is consistent with the notion that "crises are difficult to learn about because they are by definition infrequent, low-probability events" (Taylor, 2009, p. 1243), often described by practitioners of power as "black swans" (e.g., Xi in People's Daily, 2019); it is also consistent with the common approach to modeling crises in the literature across disciplines (e.g., Burroughs and Tebbens, 2001; Aban et al., 2006; Barro, 2006; Resnick, 2007; Taleb, 2007; Bremmer and Keat, 2009; Taylor, 2009; Weitzman, 2009, 2011; Barro and Jin, 2011; Pindyck, 2011; Nakamura et al., 2013; Cooke et al., 2014; Ackerman, 2017).¹³ Therefore, one can argue that, under sufficiently strong fiscal capacity as in Scenario 1, the endogenous lexicographic rule is quite general.

Comparative statics. We now turn to comparative statics of Proposition 3. We focus on the case where $\pi_R(R; \rho) > 0$, i.e. the Center's rent-seeking motive dominates or corruption "greases the wheels of the economy" so much that higher corruption raises the Center's status quo payoff, making the comparative statics more clear-cut:

Corollary 1 (Comparative statics). Under the same assumptions as in Proposition 3, if $\pi_R(R; \rho) > 0$ over $R \in [0, \underline{R}]$ so that $R^* = \underline{R} = \underline{L}/\rho$, then R^* will increase with \underline{L} and decrease with ρ .

Corollary 1 can help us understand corruption in authoritarian regimes where cronyism and rent-seeking dominate in the economy and in politics and when the Center does not face difficult retention problems about the affiliates in the state apparatus. A few important implications follow:

¹³The measure we use for the tail fatness or end thickness, i.e., $\epsilon \equiv L \cdot f(L)/(1 - F(L))$, is asymptotically equivalent to the tail index in the literature (e.g., Cooke et al., 2014, p. 2) and can also apply to the finite case (e.g., Aban et al., 2006).

Impact of additional risk of crisis. Corollary 1 first implies that the Center will crack down on corruption to cover any additional risk of crisis (a lower \underline{L}). This helps explain a few anti-corruption campaigns in reality. For example, if we understand the Chinese economy as in Bai et al. (2014, 2020) and Li et al. (2019) where corruption "greases the wheels," Corollary 1 is consistent with the Communist Party of China's narrative that "the major risks in the political, ideological, economic, scientific and technological, social, international-relation, and party-building realms" faced by the party was one of the primary motives behind the anti-corruption campaign since 2012 (e.g., Xi, 2017; People's Daily, 2019). Jiang and Xu (2015) recognize that between 1988 and 2014 "[a]nticorruption enforcement [was] tightened in years when there were significant economic/political events that have, or could have instigated considerable popular unrest." They also provide time-series evidence that higher intensity of anti-corruption enforcement was correlated with lower economic growth and higher inflation in the previous year, which they interpret as signs of greater social pressure and higher risk of political instability. All these observations are consistent with Corollary 1.¹⁴

As another example, in Brezhnev's Soviet Union, corruption "in many cases ... [was] necessary for even the meagre levels of growth enjoyed by the state economy" (Clark, 1993, p. 278). When Moscow faced increasing economic, social, and demographic challenges in the post-Brezhnev era (Staples, 1993), however, Yuri Andropov cracked down on corruption in the Central Asian republics as "a bid ... to recapture maverick party and state organs in the republics from partial control" (Critchlow, 1988, p. 142), consistent with Corollary 1.¹⁵

The paradoxical role of the Center's share of corruption rents. Second, Corollary 1 focuses on another important parameter in the model – the rent-sharing arrangement ρ . As discussed, a higher ρ proxies a more corrupt Center and a more dominant Center in the central–local relationship in the status quo. Its role in the Center's political–economic trade-off can be counterintuitive, however. On the one hand, although not modeled explicitly, the more dominant the Center is (higher ρ), the more rents it can reap from the local official (higher ρR), and the higher the status quo payoff

¹⁴For more theoretical and empirical analyses on the motivations behind Xi's anti-corruption campaign, see for example Francois et al. (2016), Lu and Lorentzen (2018), Xi et al. (2018), and Li et al. (2019).

¹⁵In the Russian context, Shlapentokh (2013) also discusses that, when situations were tightened during the Russo–Japanese War, the Russia Empire cracked down on corruption within the state and "drastically increased the punishment for bribing."

of the Center. On the other hand, our analysis of Stage 3 shows that precisely because the Center can reap more rents from the local official (higher ρR), the local official has more vested interests to secure in a crisis. The local official is more likely to defy the Center and end the status quo (higher $F(\hat{L}(R))$ and lower S(R)), and the Center has to control local corruption more tightly to secure perfect control (lower <u>R</u>). Therefore, this paradoxical role of ρ presents a fundamental conflict between crisis control and payoffs in ordinary times:

The Center's weakness in a crisis comes precisely from its share of rents under the status quo, while lower rent-sharing in the status quo helps bring the hierarchy under control in a crisis.

Facing this fundamental conflict, Corollary 1 suggests that, as long as the Center's status quo payoff increases with local corruption, since the Center will always tolerate corruption to the perfect-control limit, a more corrupt or dominant Center under the status quo will tolerate less corruption of local officials.

Given this result, what would the Center do, if it could choose not only R but also ρ ? Here we provide a result when local corruption "greases the wheels" of the economy:

Corollary 2. Under the same assumptions as in Proposition 3 and assuming $\pi(R; \rho) \equiv y(R) + \rho R$ over $R \in [0, \underline{R}]$ with y'(R) > 0, the Center's optimal choice of the rent-sharing arrangement is $\rho^* = \rho > 0$, where ρ is infinitesimal.

Proof. First note that $\pi(R; \rho) \equiv y(R) + \rho R$ and y'(R) > 0 suggest $\pi_R(R; \rho) = y'(R) + \rho > 0$. Proposition 3 then suggests that, given $\rho > 0$, the optimal choice of $R^* = \underline{R} = \underline{L}/\rho$, securing control in crises. Given this choice, the Center is then maximizing $\pi(R^*; \rho) = y(\underline{L}/\rho) + \underline{L}$ by choosing $\rho \in (0, 1)$. Given y'(R) > 0, the Center would then like to maximize \underline{L}/ρ . The result then follows.

The intuition of Corollary 2 is as follows. If corruption "greases the wheels" of the economy, then the Center's status quo payoff will increase with corruption, which leads to an optimal choice of corruption tolerance that is always just what is needed to secure crisis control. This corruption tolerance suggests that the rents that the Center can reap are limited to exactly \underline{L} , so that the Center maximizes its expected payoff as if it maximizes only the economic performance. To do that, the Center should choose a sharing scheme to tolerate corruption as much as possible. The Center then prefers to discipline itself and to decentralize corruption: this would allow more corruption at

the local level, simultaneously maximizing the Center's status quo payoff and securing perfect control in case of a crisis.

Complementarity between personalistic rule and corruption. Finally, Corollary 1 can shed some light on the relationship between personalistic rule and corruption. In recent years the world has seen a rising trend of personalistic regimes (e.g., Kendall-Taylor et al., 2017; Geddes et al., 2018). The common view is that corruption is more severe in these regimes compared to other types of non-democratic regimes and in democracies (e.g., Chang and Golden, 2010); in Appendix B, we confirm this view using cross-country panel-data that cover 134 countries between 1996 and 2010. This correlation is apparently intuitive, since a personalistic ruler often finds it less constrained or more necessary to tolerate officials' corruption in exchange for their support (e.g., Bueno de Mesquita et al., 2003; Chang and Golden, 2010).

This understanding ignores, however, a predominant feature of personalistic rule: personalistic rulers often place their personal associates, e.g., family members, close friends, and loyalists, in the state apparatus (e.g., Kendall-Taylor et al., 2017; Frantz et al., 2018; Geddes et al., 2018), and these officials who are personally tied to the ruler are usually especially corrupt.¹⁶ As pointed out by Frantz et al. (2018, p. 4), "[s]uch personnel choices ... link the fates of those in the ... apparatus with that of the leader." Considering this, if the primary purpose of tolerating corruption is to buy support, should not the ruler tolerate less, not more, corruption when the officials are personally tied or intrinsically more loyal to the ruler and, therefore, easier for the ruler to retain?

Our Corollary 1 provides an explanation to the complementarity between personalistic rule and corruption, through the comparative statics with respect to both \underline{L} and ρ . When the local official is personally tied to the ruler, one can argue that the Center has more personal leverage and, therefore, a stronger ability to enforce the local official to comply, suggesting a greater \underline{L} ; one can also interpret ρ as the net share of rents that the local official will gain by defying relative to complying, and a local official who is personally tied to the ruler can be assumed to incur additional loss of rents when the ruler loses power, suggesting a smaller ρ .¹⁷ As seen above, a smaller ρ suggests that

 $^{^{16}}$ Kendall-Taylor et al. (2017, p. 14–15) identify five indicators of personalistic rule, and the first and foremost two are to "install loyalists" and "promote family." Geddes et al. (2017, 2018) present an index to measure personalistic rule. The index is constructed by eight criteria, among which five concerns placing personal associates in the state apparatus.

¹⁷In the extension in Appendix A, this effect is explicitly modeled.

any given level of corruption R becomes less corrosive to the Center's control, since ρR becomes smaller; a greater \underline{L} also suggests that, given any ρR , the critical threshold of these interests for the Center to just start losing control in crises becomes higher. Both effects imply that, as suggested by Corollary 1, while still covering the worst possible crisis $(R^* = \underline{R} = \underline{L}/\rho)$, the Center can now tolerate more corruption R^* . In other words, personalistic rule tolerates more corruption because corruption poses less threat to personalistic rule.

3.4 Stage 1, Scenario 2

Proposition 3 in Scenario 1 predicts that the Center chooses corruption tolerance carefully so that corruption does not threaten the Center's control at all. As discussed above, this result is quite general if one accepts the fat-tailed condition on crisis risk. Indeed, MacMullen (2015, pref., p. 10–11) once remarked: "[a]lthough corruption has been pervasive in all times of history and even in the most powerful empires, more than often it has been under control and has not led to disastrous consequences comparable to the case of the Roman Empire."¹⁸ That said, in many historical examples, such as those cited in the introduction, state power was not fully shielded from the corrosive effect of corruption on state power, and in "a handful of examples in human history" corruption was "as consequential as in the case of the Roman Empire" (MacMullen, 2015, pref., p. 10). Why would the Center deviate from the lexicographic rule and over-tolerate corruption?

Scenario 2 of our model helps us to investigate whether fiscal capacity could play a role in the over-tolerance, since the weaker fiscal capacity in this scenario (x - w > 0) makes retaining the local official a real challenge for the Center. In this scenario, by Proposition 2, the Center's program at Stage 1 is

$$\max_{R} \quad (1 - S(R)) \cdot D + S(R) \cdot \pi(R;\rho), \tag{14}$$

where

$$R \ge 0 \text{ and } S(R) = \mathbf{1}_{R \ge r} \cdot \left(1 - F(\hat{L}(R)) \right), \tag{15}$$

¹⁸MacMullen (2015, pref., p. 11, fn. 12) further discussed references on examples of historical states and empires that survived in spite of pervasive corruption, including Britain, India, Russia, and China. Shlapentokh (2013) discusses how the state in Imperial and Soviet Russia kept corruption under control.

in which

$$\hat{L}(R) = \rho R$$
, and $r > 0$ uniquely solves $X(r) = x - w$. (16)

To solve the program, first note that if the Center's choice of R cannot retain the local official, the Center will face the downfall for sure. Second, by Assumption 2, we know that the Center will prefer any status quo to the downfall. Third, if the local official does stay at Stage 2, the Center can for sure maintain the status quo at the end of Stage 3 if no real crisis strikes, which will happen with probability 1 - p > 0. Therefore, the Center will prefer to retain the local official as long as it is feasible. It is indeed feasible, by Proposition 2, because the Center can always choose $R \ge r$.

Given this analysis, the Center's program is reduced to

$$\max_{R} \quad (1 - S(R)) \cdot D + S(R) \cdot \pi(R;\rho), \tag{17}$$

where

$$R \ge r \text{ and } S(R) = 1 - F(\hat{L}(R)), \tag{18}$$

in which

$$\hat{L}(R) = \rho R. \tag{19}$$

We then have the following result:

Proposition 5 (Retention problem comes in). In Scenario 2, assume that the risk of crisis is sufficiently fat-tailed as in Proposition 3. The Center's optimal corruption tolerance depends on its fiscal capacity:

- when the fiscal capacity is still sufficiently strong, the Center will choose the corruption tolerance that maximizes the status quo payoff, given that both retention and crisis control are secured;
- when the fiscal capacity is intermediate, the Center will over-tolerate corruption just enough to guarantee retention, risking some crisis control;
- when the fiscal capacity is weak, the Center will over-tolerate corruption to guarantee retention, losing all crisis control.

Mathematically, assume x - w > 0 and, for any $L \in (\underline{L}, \overline{L})$, $\epsilon > \overline{\epsilon}$. The Center's optimal choice R^* follows:

• when $0 < x - w < X(\underline{R})$, $R^* \in \arg \max_{R \in [r,R]} \pi(R;\rho)$, implying $S(R^*) = 1$;

• when
$$X(\underline{R}) \le x - w < X(\overline{r}), \ R^* = r, \ implying \ S(R^*) = 1 - F(\rho r) \in (1 - p, 1);$$

• when $x - w \ge X(\bar{r}), R^* \in \arg \max_{R \ge \max\{r, \bar{R}\}} \pi(R; \rho), \text{ implying } S(R^*) = 1 - p,$

where $\bar{r} \equiv \bar{R}$, if $\pi(\bar{R}; \rho) \ge \sup_{R > \bar{R}} \pi(R; \rho)$; if otherwise, $\bar{r} \in (\underline{R}, \bar{R})$ uniquely solves

$$F(\rho\bar{r}) \cdot D + \left(1 - F(\rho\bar{r})\right) \cdot \pi(\bar{r};\rho) = pD + (1-p) \cdot \sup_{R > \bar{R}} \pi(R;\rho).$$
(20)

We leave the proof of Proposition 5 to Appendix C and only discuss the intuition here. Figure 4 illustrates the case where the status quo payoff increases with corruption over $R \in [0, \bar{R}]$ and $\pi(\bar{R}; \rho) < \sup_{R > \bar{R}} \pi(R; \rho)$ holds. In Panel 4a, when the state is fiscally strong $(x - w < X(\underline{R}))$, i.e., $r < \underline{R})$, the optimal choice implied by the lexicographical rule in Proposition 3 is still feasible given successful retention, and it dominates any choice with even partial crisis control. By Assumption 3, this choice will dominate choices with a total loss of control, so the Center simply adopts the lexicographical rule and secures both retention and control $(R^* = \underline{R})$. In Panel 4b, given a medium fiscal capacity $(X(\underline{R}) \leq x - w < X(\overline{r}))$, i.e., $r \in [\underline{R}, \overline{r})$, the optimal choice implied by the lexicographical rule in Proposition 3 would not permit to retain the local official, so the Center has to over-tolerate corruption, risking crisis control. Since the fiscal capacity is not sufficiently weak either, the Center will still prefer an over-tolerance that is just enough to retain the official $(R^* = r)$ to any choice that would imply a total loss of crisis control. In Panel 4c, the fiscal capacity is so weak $(x - w \ge X(\bar{r}))$, i.e., $r \geq \bar{r}$) that the Center has to over-tolerate corruption so much that it will not have control in any real crisis. This yields a choice $R^* \in \arg \max_{R \ge \max\{r, \bar{R}\}} \pi(R; \rho)$.

For the case where $\pi(\bar{R}; \rho) \geq \sup_{R > \bar{R}} \pi(R; \rho)$, \bar{r} will be differently defined, and all the intuitions spelled out above go through. For the case where the status quo payoff does not always increase with corruption over $R \in [0, \bar{R}]$, when the state has strong fiscal capacity, it is not necessary that the Center chooses the just-perfect-control corruption tolerance level – it could choose a lower one that maximizes its status quo payoff while securing perfect control and retention. Except for this last point, all the rest of the intuitions go through.

Proposition 5 suggests that when the state is fiscally too weak to sufficiently pay its officials, the Center will choose to over-tolerate corruption to retain them within the apparatus, risking control in times of crisis. This link from weak fiscal capacity to over-tolerance of corruption through the retention problem has been noticed by historians. For example, citing Huang (1974, 1981)'s works on the history of Ming China, Finer

Figure 4: Center's choice of corruption tolerance (R^*) in Scenario 2 given crisis risk fat-tailed $(\epsilon > \bar{\epsilon})$, status quo payoff increasing $(\pi_R(R; \rho) > 0)$ over $R \in [0, \bar{R}]$, and $\pi(\bar{R}; \rho) < \sup_{R > \bar{R}} \pi(R; \rho)$

(1997b, p. 841–843) argues that, a primary reason for over-toleration of corruption in the late Ming dynasty was that "mandarins were grossly underpaid." He applies the same argument to the decay of the Qing dynasty starting from the late eighteenth century (Finer, 1997c, p. 1157–1159), supported by the data from Ch'ü (1962). Will (2004, p. 30–31) points out that this logical link dates back to the Song dynasty, about 300 years before the Ming dynasty. Beyond China, basing himself on the account by Rycaut (1668), Finer (1997c, p. 1208) shows that the fiscal difficulty–corruption channel manifested itself again during the decline of the Ottoman Empire.¹⁹

3.5 Two Scenarios Combined

Recall that, in Scenario 1, the Center's fiscal capacity is sufficiently strong $x - w \leq 0$ and the Center will choose the corruption tolerance such that perfect control will be secured. Therefore, by combining Proposition 3 in Scenario 1 and Proposition 5 in Scenario 2, we have the following prediction:

Corollary 3 (Correlations in equilibrium). In equilibrium, higher political stability and less corruption are correlated only when fiscal capacity is at an intermediate level, and they are uncorrelated when fiscal capacity is either strong or weak. Mathematically,

when
$$X(\underline{R}) \le x - w < X(\bar{r}),$$
 $S'(R^*) < 0;$
when $x - w < X(\underline{R})$ or $x - w \ge X(\bar{r}),$ $S'(R^*) = 0.$ (21)

4 Corruption, Political Stability, and Fiscal Capacity in Data

When bringing the model to the data, one way would be to directly test the comparative statics of our model in Corollary 1 by exploiting exogenous changes in the Center's perception of crisis risk, extent of personalistic rule, and Center–local power structure in the status quo. It is, however, difficult to locate these changes in a setting that is

¹⁹For more discussion on the relationship between corruption and the structure of pay and recruitment of civil service, see Rose-Ackerman and Palifka (2016, p. 168–172). On the statistical relationship between corruption and fiscal capacity, Van Rijckeghem and Weder (2001) show a negative correlation between the level of corruption and public-sector salaries relative to private-sector salaries in a cross-country data set of 31 developing countries and low-income OECD countries over the period 1982–1994; the survey by Schneider and Enste (2000) concludes that "the [statistical] relationship between the size of the shadow economy and the amount of corruption is strong and consistent, as different measures show." The statistical relationship is, however, open to different interpretations.

more general than a case study. We therefore turn to cross-country panel-data to check whether the empirical pattern is consistent with Corollary 3. As a disclaimer, we would by no means interpret the empirical pattern we identify as causal relationships. We will instead interpret them as endogenous equilibrium relationships, as stated in Corollary 3, since both corruption and political stability are indeed endogenous in our model.

For corruption and political stability, our main source of data is the World Bank's Worldwide Governance Indicators (WGI, Kaufmann and Kraay, 2018). These well-known data cover 214 countries and territories biannually for 1996, 1998, and 2000 and annually for 2002–2017. Detailed in Kaufmann et al. (2011), the methodology of the data construction allows the indicators to be used in cross-country and time-series comparisons. Kaufmann et al. (2007a,b,c, 2010a,b) further discuss the methodology and applicability of the data.

We use in particular the "control of corruption" variable to proxy negatively corruption tolerance in our model. Based on a large number of international surveys, this variable measures "perceptions of the extent to which public power is exercised for private gain" (Kaufmann et al., 2011, p. 223). A higher value indicates less corruption. This is the best cross-country data source for corruption over time.

For political stability, we use the "political stability and absence of violence/terrorism" variable. This variable captures "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means" (Kaufmann et al., 2011, p. 223). A higher value indicates higher political stability. As this definition can be seen to be rather broad, we later also proxy political instability by counts of irregular turnovers of governmental leaders up to 2014 in the well-known Archigos dataset (Goemans et al., 2015), where "irregular" means that "the leader was removed in contravention of explicit rules and established conventions" (Goemans et al., 2009, p. 273).

To measure fiscal capacity, we first use Medina and Schneider (2018)'s estimates of the share of the formal economy of a country in its GNP for 158 countries in 1995. A higher share proxies stronger fiscal capacity. We make this choice based on the following considerations. First, given that Besley and Persson (2011) adopt an early version of these estimates (Schneider, 2002) as a primary measure of fiscal capacity in their analysis, using these updated estimates puts us in the same empirical context as Besley and Persson (2011); second, the coverage of countries in that data set can yield a balanced set of panel-data that covers as many countries as possible; finally, the year 1995 is chosen to start one year before the WGI data that starts in 1996. As an alternative measure for fiscal capacity, we use in addition Besley and Persson (2011)'s data of the tax revenue/GDP ratio of the countries in 1999, which is from Baunsgaard and Keen (2005), where a higher ratio indicates stronger fiscal capacity. We also constructed by ourselves another two measures for fiscal capacity.

Merging all these data, we can use the WGI panel-data of political stability and corruption across 155 countries over the 1996–2017 period and use these countries' 1995 shares of the formal economy as the benchmark data for our empirical analysis. In robustness tests, we later incorporate a few other data. These data include the Archigos data of irregular turnovers up to 2014, all countries' 1995 GDP per capita (purchasing power parity adjusted) from the World Bank, their 1999 tax revenue/GDP ratio, and the Polity IV (Marshall et al., 2018) data on the countries' institutional characteristics over 1996–2017.

4.1 An Illustrative Example

We start by showing an illustrative example based on three representative countries: Vietnam has a big formal sector, representing countries with strong fiscal capacity; Indonesia has a medium-sized formal sector, representing countries with medium fiscal capacity; Nigeria has a small formal sector, representing countries with weak fiscal capacity.²⁰ Figure 5 shows that a country with high fiscal capacity like Vietnam sees corruption not much correlated with political stability; a country with low fiscal capacity like Nigeria sees corruption not much correlated with stability either; it is only for a country with medium fiscal capacity like Indonesia that less corruption and higher political stability are significantly correlated. These observations are consistent with Corollary 3.

4.2 Main Empirical Result

We now go beyond this illustrative example and test more formally Corollary 3. We first run the following regression for each country:

Political Stability_{it} =
$$\beta_i \cdot \text{Corruption Control}_{it} + \delta_i + u_{it}$$
, (22)

²⁰Vietnam, Indonesia, and Nigeria rank the 33rd, 38th, and 153rd among 155 countries, respectively in terms of size of the formal sector. They rank the 1st, 23rd, and 146th, respectively for conditional fiscal capacity as in Equation (29) below.

The horizontal axis indicates the WGI "control of corruption" index, where a higher value indicates less corruption. The vertical axis indicates the WGI "political stability and absence of violence/terrorism" index, where a higher value suggests higher stability. Measured by the 1995 share of the formal economy in GNP, Vietnam has a strong fiscal capacity, Indonesia has a medium fiscal capacity, and Nigeria has a weak fiscal capacity. A linear fit is shown for each country.

Figure 5: Political stability and corruption, three countries, 1996–2017

where Political Stability_{it} is country i's WGI "political stability and absence of violence/terrorism" index in year t, Corruption Control_{it} is the WGI "control of corruption" index, δ_i is the country-fixed effect, and u_{it} is the error term. We then estimate

$$\hat{\beta}_i = h(\text{Fiscal Capacity}_i) + v_i,$$
(23)

where $\hat{\beta}_i$ is the estimate of β_i in Equation (22), $h(\cdot)$ has a flexible, non-parametric specification, Fiscal Capacity_i is country *i*'s 1995 share of the formal economy in GNP, and v_i is the error term.

Figure 6 shows the result of this procedure when we use the benchmark data and specify $h(\cdot)$ as a fractional polynomial. In the figure, the best fitted fractional polynomial to the within-country correlations between control of corruption and higher political stability is statistically significantly positive only when the country has medium fiscal capacity, and the correlation is statistically insignificant when fiscal capacity is either weak or strong. This is consistent with Corollary 3.

The horizontal axis indicates fiscal capacity, measured by the 1995 share of the formal economy in GNP. The vertical axis indicates the estimate of β_i in Equation (22). Each dot represents a country; the best estimated fractional polynomial fitted to all scattered dots and its 95% confidence intervals are shown by the blue line and the shaded area, respectively.

Figure 6: Correlation between control of corruption and higher political stability as a function of fiscal capacity, 1996–2017

4.3 Tests Addressing Empirical Concerns

Within-country variation in the measure of political stability at strong fiscal capacity. Propositions 3 and 5 primarily argue that the Center adjusts the corruption tolerance such that corruption does not threaten political stability, if fiscal capacity makes this possible. This argument is consistent with the empirical result that, given strong fiscal capacity, corruption and political stability are uncorrelated in equilibrium. This empirical result could, however, be driven by a potential lack of within-country variation in the measure of political stability given strong fiscal capacity. To address this concern, we implement a placebo test: for each country, instead of Equation (22), we estimate

Political Stability_{it} =
$$\beta_i \cdot Z_{it} + \delta_i + u_{it}$$
, (24)

where Z_{it} is a variable different from corruption, in country *i*; we then use the estimates of β_i in Equation (24) to estimate Equation (23). If there exists Z_{it} such that β_i in Equation (24) is significantly different from zero at strong levels of fiscal capacity, we can then argue that the lack of within-country correlation between corruption and political stability at strong levels of fiscal capacity is less likely to be driven by a lack of within-country variation in the political stability measure.

The horizontal axes indicate fiscal capacity, measured by the 1995 share of the formal economy in GNP; the vertical axes indicate the estimate of β_i in Equation (24), where Z_{it} denotes a variable that is not about corruption; each dot represents a country; the best estimated fractional polynomials fitted to all scattered dots and their 95% confidence intervals are shown by the blue lines and the shaded areas, respectively.

Figure 7: Placebo test: Correlations between political stability and variables not about corruption as functions of fiscal capacity, 1996–2017

Figure 7 shows three examples of the estimated non-parametric relationship in Equation (23) in this placebo test. In Panel 7a, the alternative variable Z_{it} is the polity score in the Polity IV data (Marshall et al., 2018, p. 16–17), measuring where the country is located in the democracy–autocracy spectrum; in Panel 7b, Z_{it} is the "regime durability" measure, i.e., "the number of years since the most recent regime change ... or the end of ... the lack of stable political institutions," in the Polity IV data (Marshall et al., 2018, p. 17); in Panel 7c, Z_{it} is the "executive constraints" measure, i.e., "the extent of institutionalized constraints on the decision-making powers of chief executives," in the Polity IV data (Marshall et al., 2018, p. 24). In all the panels, the within-country correlation between political stability and Z_{it} is significantly different from zero at the higher end of fiscal capacity. Our empirical result that political stability and corruption are uncorrelated at strong fiscal capacity is, therefore, less likely driven by a lack of variation in the political stability measure.

Capacity-group specification. To test the robustness of the main result with respect to the non-parametric specification, we examine the benchmark data with an alternative flexible specification where we group the countries by their fiscal capacity. Specifically, we run the following regression instead of Equations (22) and (23):

Political Stability_{it} =
$$\sum_{k} \beta_k \cdot \text{Corruption Control}_{it} \cdot \text{Capacity Group}_i^k + \delta_i + \gamma_t + u_{it}$$
, (25)

where Capacity $\operatorname{Group}_{i}^{k}$ is a dummy variable that is equal to one if country *i*'s fiscal capacity is in group k, and γ_{t} is the year-fixed effect. To further control for the group-specific dynamics in political stability that is not correlated with corruption, we also run

Political Stability_{*it*} =
$$\sum_{k} \beta_k \cdot \text{Corruption Control}_{it} \cdot \text{Capacity Group}_i^k + \delta_i + \gamma_t^k + u_{it}$$
, (26)

where we replace γ_t with the group-year-fixed effect γ_t^k .

Also reported in Appendix D's Table 2, the results of these regressions are plotted in Figure 8 here. Only the groups of medium fiscal capacity have statistically significantly positive estimates of β_k , while the estimates are indistinguishable from zero for the groups of either weak or strong fiscal capacity. The main result is thus robust.

Irregular turnovers at the top leadership for political instability. To test the robustness of the empirical pattern with respect to the measure of political stability, we now use the number of irregular turnovers at the top leadership level from Goemans et al. (2015)'s Archigos data for political instability.

As our first look at the data, Figure 9 plots the moving average of frequencies of irregular turnovers across different levels of fiscal capacity. We see that countries

The horizontal axis indicates levels of fiscal capacity, measured by the 1995 share of the formal economy in GNP. The vertical axis indicates the estimates of β_k in Equations (25, "no trends," controlling for year-fixed effect) and (26, "flexible trends," controlling for group-year-fixed effect), and standard errors are clustered at the country level in the regressions. The 95% confidence intervals of the estimates are plotted. See Table 2 in Appendix D for detailed results.

Figure 8: Correlation between control of corruption and higher political stability across different levels of fiscal capacity, 1996–2017, capacity-group specification

whose formal economy share is greater than 75% are completely immune to irregular turnovers, while the other countries are not. This pattern is consistent with the key idea of our model: a country with sufficiently strong fiscal capacity will be able to manage corruption in a way to achieve perfect control.

We then run the regression

Irregular
$$\operatorname{Exits}_{it} = \sum_{k} \beta_k \cdot \operatorname{Corruption} \operatorname{Control}_{i,t-1} \cdot \operatorname{Capacity} \operatorname{Group}_{i}^{k} + \delta_i + \gamma_t + u_{it},$$
(27)

where $\text{Irregular Exits}_{it}$ is the number of irregular exits in country *i* in year *t*, and we use the lagged variable of corruption control, considering that the WGI corruption data in the year of irregular turnovers could be less indicative because of political turnoil.

As shown in Figure 9, irregular turnovers are such rare events that, for a more meaningful group analysis, we need to partition the data coarsely. Figure 10 reports the result of regressing Equation (27) when we partition the countries into only four fiscal capacity groups. The point estimates of the correlation between irregular turnovers

The horizontal axis indicates levels of fiscal capacity, measured by the 1995 share of the formal economy in GNP. The vertical axis indicates the group average of frequencies of irregular turnovers at the top leadership level. The 95% confidence intervals of the estimates are plotted.

Figure 9: Average of frequencies of irregular turnovers of the top leadership (times per country-year) across different levels of fiscal capacity, 1996–2014

and control of corruption are almost exactly zero for the groups of weak, mediumstrong, and strong fiscal capacity; although not statistically precisely estimated, the point estimate of the correlation for the group of medium-weak fiscal capacity is much more negative than the other three. This observation is consistent with Corollary 3.

Alternative measures for fiscal capacity. To test how sensitive the empirical pattern is with respect to our use of the size of the formal sector to measure fiscal capacity, we first examine the benchmark data by using the Baunsgaard and Keen (2005)–Besley and Persson (2011) data of the 1999 tax revenue/GDP ratio instead to measure fiscal capacity. Following the regression of Equation (22) for each country, instead of Equation (23), we estimate

$$\hat{\beta}_i = h\left(\frac{\text{Tax Revenue}_i}{\text{GDP}_i}\right) + v_i.$$
(28)

Figure 11 reports the result. The pattern is similar to Figure 6 and consistent with Corollary 3. We conclude that our main results are robust to using the tax revenue/GDP ratio as an alternative measure for fiscal capacity.

The horizontal axes indicate levels of fiscal capacity, measured by the 1995 share of the formal economy in GNP. The vertical axis indicates the estimates of β_k in Equation (27). Standard errors are clustered at the country level in the regression. The 95% confidence intervals of the estimates are plotted.

Figure 10: Correlation between control of corruption and irregular turnovers across different levels of fiscal capacity, 1996–2014

Can the heterogeneity within the stability–corruption correlation across fiscal capacity be explained by heterogeneities across other variables? Since fiscal capacity can be correlated with many other country characteristics, one could suspect that it could be some of these variables instead that are driving the empirical pattern across different levels of fiscal capacity. To address this concern, we control for a few observable variables in the analysis to check whether the main empirical result survives. When doing so, we first regress for each country

Fiscal Capacity_i = $\alpha_0 + \alpha_1 \cdot \text{Country Characteristics}_i + \text{Conditional Capacity}_i$, (29)

where Country Characteristics_i is a series of control variables that could correlate with fiscal capacity as noted by Besley and Persson (2011), including measures of the level of economic development, political institutions, reliance on resource rents, legal capacity, history of violence, value of public goods, political-economic cohesiveness, and legal origin; Conditional Capacity_i is the error term and measures country *i*'s fiscal capacity

The horizontal axis indicates the 1999 tax revenue/GDP ratio. The vertical axis indicates the estimate of β_i in Equation (28). Each dot represents a country; the best estimated fractional polynomial fitted to all scattered dots and its 95% confidence intervals are shown by the blue line and the shaded area, respectively.

Figure 11: Correlation between corruption control and political stability as a function of the tax revenue/GDP ratio (%), 1995–2017

conditional on all the controlled variables.²¹

Following this regression and the regression of Equation (22) for each country, instead of Equation (23), we estimate the relationship between the stability–corruption correlation and the fiscal capacity conditional on all the controls:

$$\hat{\beta}_i = h \left(\widehat{\text{Conditional Capacity}_i} \right) + v_i, \tag{30}$$

where Conditional Capacity_i is the estimate of Conditional Capacity_i in Equation (29).

Figure 12 plots the results. The better corruption control-higher political stability correlation is still positive only when the conditional fiscal capacity is at the medium level. This result is consistent with our main empirical result in Figure 6.

²¹These control variables include the GDP per capita, polity score in Polity IV, resource rents/GDP ratio, indices of contract enforcement, easiness of registering property, easiness of doing business, easiness of getting credit, proportions of years in repression over 1950–2000 and in external conflict up to 2000, ethnic fractionization from Fearon (2003), average executive constraints up to 2000, high executive constraints in Polity IV, and legal origin from La Porta et al. (2008).

The horizontal axis indicates the estimate of Conditional Capacity_i in Equation (29). The vertical axis indicates the estimate of β_i in Equation (22). In both panels, each dot represents a country; the best estimated fractional polynomial fitted to all scattered dots and its 95% confidence intervals are shown by the blue line and the shaded area, respectively.

Figure 12: Correlation between control of corruption and higher political stability as a function of fiscal capacity, 1996–2017, conditional on a series of control variables

5 Conclusion

Motivated by historical observations, we focus in this paper on the corrosive effect of corruption on power within the state apparatus. We build a model to analyze its implications and how fiscal capacity could play a role in the implications. We demonstrate that the head of the state apparatus can face a fundamental political–economic trade-off when deciding how much corruption to tolerate at the lower level in the hierarchy: more corruption can raise the Center's economic payoff in the status quo while threatening its control over the state apparatus during crises. Our model shows that a fat-tailed risk of crisis implies an endogenous lexicographic rule that the Center should follow when choosing corruption tolerance, implying perfect control in crises. Comparative statics further sheds light on the impact of additional crisis risk on corruption control, the complementarity between personalistic rule and corruption, and implications of corruption within the Center and the dominance of the Center in the status quo. This lexicographic rule is, however, not always feasible, and weak fiscal capacity can be a major reason behind over-tolerance of corruption. Our model primarily predicts that political stability and corruption are negatively correlated only at a medium level of fiscal capacity. Recent cross-country panel-data support this prediction.

Our analysis displays a close relationship between the *economic* dimension of state capacity in *ordinary times*, for example, the state's ability to extract revenue from the population, reap rents from its affiliates, and properly pay these affiliates, and the *political* dimension of state capacity during *states of exception*, which requires absolute compliance of the state apparatus in order to respond to crises. Corruption is at the core of this relationship.

References

- Aban, Inmaculada B., Mark M. Meerschaert, and Anna K. Panorska. 2006. Parameter estimation for the truncated Pareto distribution. *Journal of the American Statistical* Association 101: 270–277.
- Acemoğlu, Kamer Daron. 2005. Politics and economics in weak and strong states. Journal of Monetary Economics 52: 1199–1226.
- Acemoğlu, Kamer Daron, Camilo Garcia-Jimeno, and James A. Robinson. 2015. State capacity and economic development: A network approach. *American Economic Re*view 105: 2364–2409.
- Acemoğlu, Kamer Daron, Davide Ticchi, and Andrea Vindigni. 2011. Emergence and persistence of inefficient states. Journal of the European Economic Association 9: 177–208.
- Acemoğlu, Kamer Daron, and Thierry Verdier. 1998. Property rights, corruption and the allocation of talent: A general equilibrium approach. *Economic Journal* 108: 1381–1403.
- Acemoğlu, Kamer Daron, and Thierry Verdier. 2000. The choice between market failures and corruption. American Economic Review 90: 194–211.
- Ackerman, Frank. 2017. Worst-Case Economics: Extreme Events in Climate and Finance. London: Anthem Press.
- Agamben, Giorgio. 2003. Stato di Eccezione. Torino: Bollati Boringhieri.
- Aidt, Toke S. 2003. Economic analysis of corruption: A survey. *Economic Journal* 113: F632–F652.

- Aidt, Toke S. 2009. Corruption, institutions, and economic development. Oxford Review of Economic Policy 25: 271–291.
- Allen, Franklin, Jun Qian, and Lin Shen. 2018. Corruption and competition. Working paper, Center for Economic and Policy Research.
- Ammianus, Marcellinus. c. 391. Res Gestae.
- Anderson, Christopher J., and Yuliya V. Tverdova. 2003. Corruption, political allegiances, and attitudes toward government in contemporary democracies. American Journal of Political Science 47: 91–109.
- Bai, Chong-En, Chang-Tai Hsieh, and Zheng Michael Song. 2014. Crony capitalism with Chinese characteristics. Working paper, May 2014.
- Bai, Chong-En, Chang-Tai Hsieh, and Zheng Michael Song. 2020. Special deals with Chinese characteristics. In Eichenbaum, Martin S., Erik Hurst, and Jonathan A. Parker (eds.) NBER Macroeconomics Annual 2019, volume 34 of NBER Macroeconomics Annual. Chicago: University of Chicago Press.
- Banfield, Edward C. 1967. *The Moral Basis of a Backward Society*. New York: Free Press.
- Barbero, Alessandro. 2008. The Day of the Barbarians: The Battle That Led to the Fall of the Roman Empire. New York: Walker & Company. Translated by John Cullen from 9 Agosto 378: Il Giorno dei Barbari. 2005. Roma: Giuseppe Laterza & Figli.
- Bardhan, Pranab. 1997. Corruption and development: A review of issues. *Journal of Economic Literature* **35**: 1320–1346.
- Barro, Robert J. 2006. Rare disasters and asset markets in the twentieth century. *Quarterly Journal of Economics* **121**: 823–866.
- Barro, Robert J., and Tao Jin. 2011. On the size distribution of macroeconomic disasters. *Econometrica* **79**: 1567–1589.
- Baunsgaard, Thomas, and Michael Keen. 2005. Tax revenue and (or?) trade liberalization. International Monetary Fund Working Paper WP/05/112.
- Bertrand, Marianne, Simeon Djankov, Rema Hanna, and Sendhil Mullainathan. 2007. Obtaining a driver's license in India: An experimental approach to studying corruption. *Quarterly Journal of Economics* 122: 1639–1676.
- Besley, Timothy, and Torsten Persson. 2008. Wars and state capacity. *Journal of the European Economic Association* 6: 522–530.
- Besley, Timothy, and Torsten Persson. 2009. The origins of state capacity: Property rights, taxation, and politics. *American Economic Review* **99**: 1218–1244.

- Besley, Timothy, and Torsten Persson. 2010. State capacity, conflict, and development. *Econometrica* **78**: 1–34.
- Besley, Timothy, and Torsten Persson. 2011. *Pillars of Prosperity: The Political Eco*nomics of Development Clusters. Princeton: Princeton University Press.
- Bremmer, Ian, and Preston Keat. 2009. The Fat Tail: The Power of Political Knowledge in an Uncertain World. New York: Oxford University Press.
- Bueno de Mesquita, Bruce, Alastair Smith, James D. Morrow, and Randolph M. Siverson. 2003. *The Logic of Political Survival*. Cambridge: MIT Press.
- Burroughs, Stephen M., and Sarah F. Tebbens. 2001. Upper-truncated power laws in natural systems. *Pure and Applied Geophysics* **158**: 741–757.
- Cai, Hongbin, Hanming Fang, and Lixin Colin Xu. 2011. Eat, drink, firms, government: An investigation of corruption from the entertainment and travel costs of Chinese firms. Journal of Law and Economics 54: 55–78.
- Chang, Eric C. C., and Yun-han Chu. 2006. Corruption and trust: Exceptionalism in Asian democracies? *Journal of Politics* **68**: 259–271.
- Chang, Eric C. C., and Miriam A. Golden. 2010. Sources of corruption in authoritarian regimes. *Social Science Quarterly* **91**: 1–20.
- Ch'ü, T'ung-tsu. 1962. Local Government in China under the Ch'ing. Cambridge: Harvard University Press.
- Cingolani, Luciana. 2013. The state of state capacity: A review of concepts, evidence and measures. Working paper, United Nations University–Maastricht Economic and Social Research Institute on Innovation and Technology.
- Clark, William A. 1993. Crime and punishment in Soviet officialdom, 1965–90. *Europe–Asia Studies* **45**: 259–279.
- Colonnelli, Emanuele, and Mounu Prem. 2017. Corruption and firms: Evidence from randomized audits in Brazil. Working paper.
- Cooke, Roger M., Daan Nieboer, and Jolanta Misiewicz. 2014. *Fat-Tailed Distributions:* Data, Diagnostics and Dependence. London: John Wiley & Sons, Inc.
- Critchlow, James. 1988. 'Corruption', nationalism, and the native elites in Soviet Central Asia. *Journal of Communist Studies* 4: 142–161.
- Dal Bó, Ernesto, Frederico Finan, and Martín A. Rossi. 2013. Strengthening state capabilities: The role of financial incentives in the call to public service. *Quarterly Journal of Economics* **128**: 1169–1218.

- Della Porta, Donatella. 2000. Social capital, beliefs in government, and political corruption. In Pharr, Susan J., and Robert D. Putnam (eds.) Disaffected Democracies: What's Troubling the Trilateral Countries. Princeton: Princeton University Press, 202–228.
- Dincecco, Mark, and Mauricio Prado. 2012. Warfare, fiscal capacity, and performance. Journal of Economic Growth 17: 171–203.
- Downs, Anthony. 1957. An economic theory of political action in a democracy. *Journal* of Political Economy **65**: 135–150.
- Etzioni-Halevy, Eva. 1983. Bureaucracy and Democracy: A Political Dilemma. Boston: Routledge.
- Ezrow, Natasha M., and Erica Frantz. 2013. Failed States and Institutional Decay: Understanding Instability and Poverty in the Developing World. New York: Bloomsbury.
- Fan, C. Simon, Chen Lin, and Daniel Treisman. 2010. Embezzlement versus bribery. National Bureau of Economic Research Working Paper 16542.
- Fearon, James D. 2003. Ethnic and cultural diversity by country. Journal of Economic Growth 8: 195–222.
- Finer, Samuel Edward. 1997a. The History of Government from the Earliest Times, Volume I: Ancient Monarchies and Empires. New York: Oxford University Press.
- Finer, Samuel Edward. 1997b. The History of Government from the Earliest Times, Volume II: The Intermediate Ages. New York: Oxford University Press.
- Finer, Samuel Edward. 1997c. The History of Government from the Earliest Times, Volume III: Empires, Monarchies, and the Modern State. New York: Oxford University Press.
- Fisman, Raymond, and Jakob Svensson. 2007. Are corruption and taxation really harmful to growth? Firm level evidence. *Journal of Development Economics* 83: 63–75.
- Francois, Patrick, Francesco Trebbi, and Kairong Xiao. 2016. Factions in nondemocracies: Theory and evidence from the Chinese Communist Party. National Bureau of Economic Research Working Paper No. 22775.
- Frantz, Erica, Andrea Kendall-Taylor, Joseph Wright, and Xu Xu. 2018. Personalization of power and repression in dictatorships. Working paper, Pennsylvania State University.
- Fukuyama, Francis. 2011. The Origins of Political Order: From Prehuman Times to the French Revolution. New York: Farrar, Straus and Giroux.

- Geddes, Barbara, Joseph Wright, and Erica Frantz. 2014. Autocratic breakdown and regime transitions: A new data set. *Perspectives on Politics* **12**: 313–331.
- Geddes, Barbara, Joseph Wright, and Erica Frantz. 2017. A measure of personalism in dictatorships. Data description, Pennsylvania State University.
- Geddes, Barbara, Joseph Wright, and Erica Frantz. 2018. *How Dictatorships Work: Power, Personalization, and Collapse.* New York: Cambridge University Press.
- Gennaioli, Nicola, and Hans-Joachim Voth. 2015. State capacity and military conflict. *Review of Economic Studies* 82: 1409–1448.
- Gibbon, Edward. 1781. The History of the Decline and Fall of the Roman Empire: Volume the Second. London: William Strahan and Thomas Cadell.
- Gilley, Bruce. 2006. The determinants of state legitimacy: Results for 72 countries. International Political Science Review 27: 47–71.
- Goemans, Henk E., Kristian Skrede Gleditsch, and Giacomo Chiozza. 2009. Introducing Archigos: A dataset of political leaders. *Journal of Peace Research* **46**: 269–283.
- Goemans, Henk E., Kristian Skrede Gleditsch, and Giacomo Chiozza. 2015. Archigos, version 4.1. Dataset, University of Rochester.
- Guriev, Sergei. 2004. Red tape and corruption. *Journal of Development Economics* **73**: 489–504.
- Guriev, Sergei, and Daniel Treisman. 2018. Informational autocrats. *Journal of Economic Perspectives* **33**: 100-127.
- Heidenheimer, Arnold J., Michael Johnston, and Victor T. Le Vine (eds.). 1989. *Political Corruption: A Handbook*. New Brunswick: Transaction Publishers.
- Hobbes, Thomas. 1651. Leviathan or the Matter, Forme and Power of a Commonwealth Ecclesiasticall and Civil. London: Andrew Crooke.
- Huang, Ray. 1974. Taxation and Governmental Finance in Sixteenth-Century Ming China. Cambridge: Cambridge University Press.
- Huang, Ray. 1981. 1587, a Year of No Significance: The Ming Dynasty in Decline. New Haven: Yale University Press.
- Huntington, Samuel P. 1968. *Political Order in Changing Societies*. New Haven: Yale University Press.
- Itzkowitz, Norman. 1972. Ottoman Empire and Islamic Tradition. Chicago: University of Chicago Press, Phoenix 1980 edition.

Jain, Arvind K. 2001. Corruption: A review. Journal of Economic Surveys 15: 71–121.

- Jiang, Junyan, and Yan Xu. 2015. Popularity and power: The political logic of anticorruption in authoritarian regimes. Working paper.
- Johnston, Michael. 1979. Patrons and clients, jobs and machines: A case study of the uses of patronage. *American Political Science Review* **73**: 385–398.
- Jones, Arnold Hugh Martin. 1964. The Later Roman Empire, 284–602: A Social Economic and Administrative Survey. Oxford: Basil Blackwell.
- Kaufmann, Daniel, and Aart Kraay. 2018. Worldwide Governance Indicators. Dataset, World Bank.
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2007a. Growth and governance: A reply. Journal of Politics 69: 555–562.
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2007b. Measuring corruption: Myths and realities. World Bank Findings Report No. 273.
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2007c. The Worldwide Governance Indicators project: Answering the critics. World Bank Policy Research Working Paper 4149.
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2010a. Response to "The Worldwide Governance Indicators: Six, one, or none". Worldwide Governance Indicators document, World Bank.
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2010b. Response to "What do the Worldwide Governance Indicators measure?". European Journal of Development Research 22: 55–58.
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2011. The Worldwide Governance Indicators: Methodology and analytical issues. *Hague Journal on the Rule of Law* 3: 220–246.
- Kendall-Taylor, Andrea, Erica Frantz, and Joseph Wright. 2017. The global rise of personalized politics: It's not just dictators anymore. The Washington Quarterly 40: 7–19.
- Key, Valdimer Orlando, Jr. 1949. Southern Politics in State and Nation. New York: Vintage Books.
- Krueger, Anne O. 1974. The political economy of the rent-seeking society. American Economic Review 64: 291–303.
- Kuhn, Philip A. 1990. Soulstealers: The Chinese Sorcery Scare of 1768. Cambridge: Harvard University Press.

- La Porta, Rafael, Florencio Lopez de Silanes, and Andrei Shleifer. 2008. The economic consequences of legal origins. *Journal of Economic Literature* **46**: 285–332.
- Laffont, Jean-Jacques, and Jean Tirole. 1991. The politics of government decisionmaking: A theory of regulatory capture. *Quarterly Journal of Economics* **106**: 1089– 1127.
- Leff, Nathaniel H. 1964. Economic development through bureaucratic corruption. American Behavioral Scientist 8: 8–14.
- Li, Weijia, Gérard Roland, and Yang Xie. 2019. Crony capitalism, the party-state, and political boundaries of corruption. Working paper, University of California, Riverside.
- Lincoln, Abraham. 1953, originally 1861. Message to Congress in special session, July 4, 1861. In Basler, Roy P., Marion Dolores Pratt, and Lloyd A. Dunlap (eds.) The Collected Works of Abraham Lincoln, Volume 4. New Brunswick: Rutgers University Press, 422–441.
- Lu, Xi, and Peter L. Lorentzen. 2018. Personal ties, meritocracy, and China's anticorruption campaign. Working paper.
- Lui, Francis T. 1985. An equilibrium queuing model of bribery. Journal of Political Economy 93: 760–781.
- MacMullen, Ramsay. 1988. Corruption and the Decline of Rome. New Haven: Yale University Press.
- MacMullen, Ramsay. 2015. Corruption and the Decline of Rome. Beijing: China Fangzheng Press. Translated by Houliang Lü from Corruption and the Decline of Rome. 1988. New Haven: Yale University Press.
- Marshall, Monty G., Ted Robert Gurr, and Keith Jaggers. 2018. Polity IV project: Political regime characteristics and transitions, 1800–2017. Dataset users' manual, Center for Systemic Peace.
- Martindale, John Robert. 1980. Prosopography of the Later Roman Empire: Volume II, A.D. 395–527. London: Cambridge University Press.
- Mauro, Paolo. 1995. Corruption and growth. *Quarterly Journal of Economics* **110**: 681–712.
- Medina, Leandro, and Friedrich Schneider. 2018. Shadow economies around the world: What did we learn over the last 20 years? International Monetary Fund Working Paper WP/18/17.
- Méndez, Fabio, and Facundo Sepúlveda. 2006. Corruption, growth and political regimes: Cross country evidence. *European Journal of Political Economy* **22**: 82–98.

Merton, Robert King. 1968. Social Theory and Social Structure. New York: Free Press.

- Morris, Stephen D., and Joseph L. Klesner. 2010. Corruption and trust: Theoretical considerations and evidence from Mexico. *Comparative Political Studies* **43**: 1258–1285.
- Muralidharan, Karthik, Paul Niehaus, and Sandip Sukhtankar. 2016. Building state capacity: Evidence from biometric smartcards in India. American Economic Review 106: 2895–2929.
- Nakamura, Emi, Jón Steinsson, Robert Barro, and José Ursúa. 2013. Crises and recoveries in an empirical model of consumption disasters. American Economic Journal: Macroeconomics 5: 35–74.
- OED2. 1989. crisis, n. In Simpson, John Andrew, and Edmund S. C. Weiner (eds.) The Oxford English Dictionary, Second Edition. Oxford: Oxford University Press.
- Olken, Benjamin A. 2006. Corruption and the costs of redistribution: Micro evidence from Indonesia. *Journal of Public Economics* **90**: 853–870.
- Olken, Benjamin A., and Rohini Pande. 2012. Corruption in developing countries. Annual Review of Economics 4: 479–509.
- Padró i Miquel, Gerard, and Pierre Yared. 2012. The political economy of indirect control. *Quarterly Journal of Economics* **127**: 947–1015.
- Pavarala, Vinod. 2004. Cultures of corruption and the corruption of culture: The East India Company and the Hastings impeachment. In Kreike, Emmanuel, and William Chester Jordan (eds.) Corrupt Histories. Rochester: University of Rochester Press, 291–336.
- People's Daily. 2019. Strengthen the ability of prevention and control, focus on preventing and resolving major risks, and maintain sustained and healthy economic development and social stability. Pages 1–2, January 22, 2019.
- Petry, Carl F. 1998. The military institution and innovation in the late Mamlūk period. In Petry, Carl F. (ed.) The Cambridge History of Egypt, Volume I: Islamic Egypt, 640–1517. Cambridge: Cambridge University Press, 462–489.
- Pindyck, Robert S. 2011. Fat tails, thin tails, and climate change policy. *Review of Environmental Economics and Policy* 5: 258–274.
- Qian, Yingyi, and Gérard Roland. 1998. Federalism and the soft budget constraint. American Economic Review 88: 1143–1162.
- Resnick, Sidney I. 2007. *Heavy-tail Phenomena: Probabilistic and Statistical Modeling*. New York: Springer.

Roemer, John E. 1985. Rationalizing revolutionary ideology. *Econometrica* 53: 85–108.

- Rose-Ackerman, Susan. 1978. Corruption: A Study in Political Economy. New York: Academic Press.
- Rose-Ackerman, Susan. 1999. Corruption and Government: Causes, Consequences, and Reform. New York: Cambridge University Press.
- Rose-Ackerman, Susan (ed.). 2007. International Handbook on the Economics of Corruption. Cheltenham: Edward Elgar.
- Rose-Ackerman, Susan, and Bonnie J. Palifka. 2016. Corruption and Government: Causes, Consequences, and Reform. New York: Cambridge University Press, 2nd edition.
- Rothstein, Bo. 2011. The Quality of Government: Corruption, Social Trust, and Inequality in International Perspective. Chicago: University of Chicago Press.
- Rougé, Jean. 1966. L'histoire Auguste et l'Iaurie au IVe siècle. *Revue des Études Anciennes* 68: 282–315.
- Rubinstein, Ariel. 1982. Perfect equilibrium in a bargaining model. *Econometrica* **50**: 97–109.
- Rycaut, Paul. 1668. *The Present State of the Ottoman Empire*. London: John Starkey and Henry Brome.
- Schmitt, Carl. 1921. Die Diktatur: Von den Anfängen des Modernen Souveränitätsgedankens bis zum Proletarischen Klassenkampf. Leipzig: Duncker & Humblot.
- Schmitt, Carl. 1922. Politische Theologie: Vier Kapitel zur Lehre von der Souveränität. Berlin: Duncker & Humblot.
- Schneider, Friedrich. 2002. Size and measurement of the informal economy in 110 countries. Workshop of Australian National Tax Centre, Australian National University.
- Schneider, Friedrich, and Dominik H. Enste. 2000. Shadow economies: Size, causes, and consequences. *Journal of Economic Literature* **38**: 77–114.
- Seligson, Mitchell A. 2002. The impact of corruption on regime legitimacy: A comparative study of four Latin American countries. *Journal of Politics* **64**: 408–433.
- Shlapentokh, Vladimir Emmanuilovich. 2013. Corruption, the power of state and big business in Soviet and post-Soviet regimes. Communist and Post-Communist Studies 46: 147–158.

- Shleifer, Andrei, and Robert W. Vishny. 1993. Corruption. Quarterly Journal of Economics 108: 599–617.
- Sng, Tuan-Hwee. 2014. Size and dynastic decline: The principal-agent problem in late imperial China, 1700–1850. Explorations in Economic History 54: 107–127.
- Staples, John. 1993. Soviet use of corruption purges as a control mechanism: The Uzbekistan case. *Past Imperfect* **2**: 29–48.
- Svensson, Jakob. 2005. Eight questions about corruption. Journal of Economic Perspectives 19: 19–42.
- Svolik, Milan W. 2009. Power sharing and leadership dynamics in authoritarian regimes. American Journal of Political Science 53: 477–494.
- Taleb, Nassim Nicholas. 2007. The Black Swan: The Impact of the Highly Improbable. New York: Random House.
- Tanzi, Vito. 1998. Corruption around the world: Causes, consequences, scope, and cures. IMF Staff Papers 45: 559–594.
- Tanzi, Vito, and Hamid Davoodi. 1998. Corruption, public investment, and growth. In Shibata, Hirofumi, and Toshihiro Ihori (eds.) The Welfare State, Public Investment, and Growth: Selected Papers from the 53rd Congress of the International Institute of Public Finance, chapter 4. Berlin: Springer-Verlag, 41–60.
- Taylor, M. Scott. 2009. Environmental crises: Past, present, and future. Canadian Journal of Economics 42: 1240–1275.
- Tilly, Charles. 1990. Coercion, Capital, and European States, AD 990–1990. Cambridge: Basil Blackwell.
- Tullock, Gordon. 1967. The welfare costs of tariffs, monopolies, and theft. *Economic Inquiry* 5: 224–232.
- Van Rijckeghem, Caroline, and Beatrice Weder. 2001. Bureaucratic corruption and the rate of temptation: Do wages in the civil service affect corruption, and by how much? *Journal of Development Economics* 65: 307–331.
- von Neumann, John, and Oskar Morgenstern. 1944. *Theory of Games and Economic Behavior*. Princeton: Princeton University Press.
- Walder, Andrew G. 2015. *China Under Mao: A Revolution Derailed*. Cambridge: Harvard University Press.
- Waterbury, John. 1973. Endemic and planned corruption in a monarchical regime. World Politics 25: 533–555.

- Waterbury, John. 1976. Corruption, political stability and development: Comparative evidence from Egypt and Morocco. *Government and Opposition* **11**: 426–445.
- Wei, Shang-Jin. 1999. Corruption in economic development: Beneficial grease, minor annoyance, or major obstacle? World Bank Policy Research Working Paper No. 2048.
- Weitzman, Martin L. 2009. On modeling and interpreting the economics of catastrophic climate change. *Review of Economics and Statistics* **91**: 1–19.
- Weitzman, Martin L. 2011. Fat-tailed uncertainty in the economics of catastrophic climate change. *Review of Environmental Economics and Policy* 5: 275–292.
- Will, Pierre-Étienne. 1980. Bureaucratie et Famine en Chine au XVIIIe Siècle. Paris: École des Hautes Études en Sciences Sociales.
- Will, Pierre-Étienne. 2004. Officials and money in late imperial China: State finances, private expectations, and the problem of corruption in a changing environment. In Kreike, Emmanuel, and William Chester Jordan (eds.) Corrupt Histories. Rochester: University of Rochester Press, 29–82.
- Xi, Jinping. 2014. Speech in the Central Leading Group for Inspection Work's report to the Standing Committee of the Central Political Bureau of the Communist Party of China on the Central Inspection Groups' second-round inspections in 2014. October 16, 2014.
- Xi, Jinping. 2017. Report to the 19th National Congress of the Communist Party of China by Xi Jinping on behalf of the 18th Central Committee of the Party. October 18, 2017.
- Xi, Tianyang, Yang Yao, and Qian Zhang. 2018. Dilemmas of autocratic governance: Theory and evidence from the anti-corruption campaign in China. Working paper.
- Zhang, Fan. 2018. The Institutional Evolution of China: Government vs Market. Cheltenham: Edward Elgar Publishing.
- Zhou, Li-An. 2008. Local Government in Transition: Official Incentives and Governance. Shanghai: Truth & Wisdom Press.
- Zhou, Xueguang. 2012. Mechanism of campaigning governance: Rethinking the institutional logic of the Chinese state governance. *Open Times* **31**: 105–125.
- Zhou, Xueguang. 2017. The Institutional Logic of Governance in China: An Organizational Approach. Beijing: SDX Joint Publishing Company.

Zosimus. c. 518. Historia Nova.

Appendix to "Erosion of State Power, Corruption Control, and Political Stability"

A Endogenous Component in the Center's Ability to Enforce the Status Quo

We can extend Stage 3 of our model by introducing a second component in the Center's ability to enforce the status quo that is endogenous to corruption R. We model it as $sR \ge 0$, representing the rents that the local official will eventually lose after he defies the Center. This component can either be a punishment from the Center or some collateral damage. The share $s \in [0, 1]$ is assumed exogenous, so sR is exogenous at Stage 3; since R is eventually determined by the Center at Stage 1, sR is eventually endogenous in the model. The total loss that the local official will bear in case of defiance is then L + sR > 0. The defiance condition for the official then becomes

$$w + (1 - \rho)R \le w + (1 - s)R - L$$
, i.e., $L \le (\rho - s)R \equiv \hat{L}(R)$. (31)

Following this extension, all results from the model will hold, with ρ replaced by $\rho - s$, as long as we assume that the share of the rents that the local official will lose in case of his defiance and the ending of the status quo is relatively small, i.e., $s < \rho$. Our model in the main text is a special case in which $s \equiv 0$. If $s \ge \rho$ otherwise, given $R \ge 0$ and L > 0, the local official would never defy in any crisis, and corruption would then have no impact on the Center's crisis control at all – the model will become trivial.

We can further provide at least two justifications for the assumption $s < \rho$. First, if we expect the Center to lose its political power when the status quo cannot be maintained, it would then become extremely difficult for the Center to still be able to impose a punishment on the local official at that time. This means that s can be relatively small and even zero.

Second, given that our focus of corruption is on bribes and other exchanges of interests between the local official and the population and firms in his jurisdiction through relational building, the local official's control over the rent generation process can be relatively independent of the status quo, and the Center can be in an especially weak position to expropriate the rents in a crisis. The local official can then still keep most of the rents when the status quo ends, suggesting that s can be relatively small.

This second justification also links to two other remarks on the interpretation of the corruption and rents in our model. First, it is less applicable to corruption such as embezzlement and diversion of public funds, because these rent-generation processes are highly dependent on the status quo, and the ending of the status quo can totally destroy the source of the rents, suggesting a relatively high s.²² Second, one might want to interpret R as the local tax revenue in a formal fiscal arrangement, but this interpretation is less applicable, too. Since the fiscal arrangement is formal, the Center would still have the legitimacy and even more legitimacy to exert sufficient control over local tax revenue during a crisis, so s can be high. This distinguishes our model of corruption tolerance from fiscal decentralization.²³

B Corruption across Political Regimes

We run the regression

Corruption $\text{Control}_{it} = \kappa_k \cdot \text{Regime Type}_{it}^k + \ln (\text{GDP per capita}_{it}) + \delta_i + \gamma_t + u_{it}, \quad (32)$

where Corruption Control_{it} is the "control of corruption" index in the Worldwide Governance Indicators (Kaufmann and Kraay, 2018), as in Section 4, denoting how little corruption country *i* sees in year *t*; Regime Type^{*k*}_{*it*} is a series of dummy variables indicating the regime type, and the data are from Geddes et al. (2014); δ_i is the country-fixed effect; γ_t is the year-fixed effect; u_{it} is the error term. The data cover 134 countries over the period 1996–2010.

Table 1 reports the results of the regression, using democracy as the benchmark, with and without the fixed effects. We see first that the variation in corruption is largely explained by cross-country variation; second, personalistic rule and corruption are correlated: when controlling for the country and year-fixed effects, two most personalistic regime types, i.e., non-monarchic personalistic rule and monarchy, are the only regime types where corruption is statistically significantly more severe than under democracy.

 $^{^{22}}$ Fan et al. (2010) discuss the different efficiency implications of embezzlement and bribery.

²³Another difference between our model and the literature on fiscal decentralization is that this literature often involves central–local information asymmetry and externality of local policies (e.g., Qian and Roland, 1998), which are not necessary for our result.

	(1)	(2)	(3)	(4)
	Corruption control			
Non-monarchic personalistic regime	-0.568***	-0.560***	-0.299*	-0.307*
	(0.168)	(0.171)	(0.158)	(0.159)
Monarchical regime	-0.532***	-0.546***	-0.071***	-0.052**
	(0.178)	(0.184)	(0.006)	(0.017)
Military regime	-0.683***	-0.677***	0.032	0.015
	(0.170)	(0.166)	(0.091)	(0.090)
Party-based regime	-0.269	-0.268	-0.113	-0.160
	(0.167)	(0.168)	(0.132)	(0.130)
Failed state	0.053	0.067	0.001	0.007
	(0.123)	(0.118)	(0.047)	(0.047)
Democracy (as benchmark)	_	_	_	-
	-	-	-	-
ln(GDP per capita)	Y	Y	Υ	Y
Year-fixed effect	Ν	Υ	Ν	Υ
Country-fixed effect	Ν	Ν	Υ	Υ
N	1425	1425	1425	1425
R^2	0.590	0.604	0.976	0.977

Table 1: Corruption across political regimes, 1996–2010

Results are estimates of Equation (32). Standard errors are clustered at the country level and shown in parentheses. Levels of statistical significance are denoted by * for p-value < 0.1, ** for p-value < 0.05, and *** for p-value < 0.01.

C Proof of Proposition 5

Proof. First, consider the case in which $0 < r < \underline{R}$. By the proof of Proposition 3, $R = \underline{R}$ dominates any $R \in (\underline{R}, \overline{R}]$ because the objective function is strictly decreasing in this range. By Assumption 3, $R = \underline{R}$, which would guarantee crisis control, dominates any $R \ge \overline{R}$, which would induce a total loss of crisis control. Therefore, the Center will choose $R^* \in \arg \max_{R \in [r, \underline{R}]} \pi(R; \rho)$, so $S(R^*) = 1$.

Second, consider the case in which $r \in [\underline{R}, \overline{R})$. By the proof of Proposition 3, again, R = r dominates any $R \in (r, \overline{R}]$ because the objective function is strictly decreasing in this range. The Center will then choose R = r instead of any $R \ge \overline{R}$, if and only if

$$F(\rho r) \cdot D + \left(1 - F(\rho r)\right) \cdot \pi(r;\rho) \ge pD + (1-p) \cdot \sup_{R > \bar{R}} \pi(R;\rho).$$
(33)

Now examine this condition. Its right-hand side is a constant; the left-hand side is strictly decreasing for $r \in [\underline{R}, \overline{R})$, and it is equal to $\pi(\underline{R}; \rho)$ at $r = \underline{R}$, and $pD + (1-p)\pi(\overline{R}; \rho)$ at $r = \overline{R}$, respectively; also, by Assumption 3, we have $\pi(\underline{R}; \rho) > pD + (1-p) \cdot \sup_{R > \overline{R}} \pi(R; \rho)$. Therefore, if $\pi(\overline{R}; \rho) \ge \sup_{R > \overline{R}} \pi(R; \rho)$, the condition will hold for any $r \in [\underline{R}, \overline{R})$, and the Center will choose $R^* = r \in [\underline{R}, \overline{R})$, implying $S(R^*) = 1 - F(\rho r)$. If $\pi(\overline{R}; \rho) < \sup_{R > \overline{R}} \pi(R; \rho)$, instead, then there exists a unique $\overline{r} \in (\underline{R}, \overline{R})$ such that

$$F(\rho\bar{r}) \cdot D + \left(1 - F(\rho\bar{r})\right) \cdot \pi(\bar{r};\rho) = pD + (1-p) \cdot \sup_{R > \bar{R}} \pi(R;\rho), \tag{34}$$

and the Center will choose $R^* = r$ and induce $S(R^*) = 1 - F(\rho r)$, if $r \in [\underline{R}, \overline{r}]$, and $R^* \in \arg \max_{R \ge \overline{R}} \pi(R; \rho)$ and induce $S(R^*) = 1 - p$, if $r \in (\overline{r}, \overline{R})$, respectively.

Finally, consider the case in which $r \geq \bar{R}$. When $R \geq r$, the objective function becomes $pD + (1-p)\pi(R;\rho)$. The Center will then choose $R^* \in \arg \max_{R \geq r} \pi(R;\rho)$. Since $r \geq \bar{R}$, $S^*(R) = 1 - p$.

The proposition then follows by collecting the three cases, regrouping the last two cases by $R^* = r$ and $R^* \in \arg \max_{R \ge \max\{r, \bar{R}\}} \pi(R; \rho)$, and recalling Proposition 2 that r > 0 uniquely solves X(r) = x - w and Lemma 1 that X(r) is strictly increasing. \Box

D Results of the Capacity-group Specification

Table 2 reports the results of estimating Equations (25) and (26), on which Figure 8 is based.

Table 2: Correlation between	en control of	corruption	and higher	political stability	' across
different levels of fis	al capacity,	1996 - 2017,	capacity-gr	roup specification	

	(1)	(2)
	Political stability	
Corruption Control \times Capacity Group 1 (the weakest)	0.103	0.017
	(0.121)	(0.156)
Corruption Control \times Capacity Group 2	0.563^{***}	0.512^{*}
	(0.291)	(0.269)
Corruption Control \times Capacity Group 3	0.438^{***}	0.442^{**}
	(0.190)	(0.192)
Corruption Control \times Capacity Group 4	0.538^{***}	0.511^{***}
	(0.183)	(0.177)
Corruption Control \times Capacity Group 5	0.710^{***}	0.638^{**}
	(0.271)	(0.265)
Corruption Control \times Capacity Group 6 (the strongest)	-0.074	-0.077
	(0.152)	(0.125)
Country-fixed effects	Υ	Y
Year-fixed effects	Υ	Ν
Group-year-fixed effects	Ν	Υ
N	2945	2945
R^2	0.369	0.380

Columns (1) and (2) report the results of estimating Equations (25) and (26), respectively, on which Figure 8 is based. Capacity groups are ranked from weak to strong fiscal capacity. Standard errors are clustered at the country level and shown in parentheses. Levels of statistical significance are denoted by * for *p*-value < 0.1, ** for *p*-value < 0.05, and *** for *p*-value < 0.01.

BOFIT Discussion Papers

A series devoted to academic studies by BOFIT economists and guest researchers. The focus is on works relevant for economic policy and economic developments in transition / emerging economies.

- 2019 No 1 Çağatay Bircan and Orkun Saka: Lending cycles and real outcomes: Costs of political misalignment
 - No 2 Lucy Chernykh, Denis Davydov and Jukka Sihvonen: Financial stability and public confidence in banks
 - No 3 Yin-Wong Cheung and Shi He: Truths and myths about RMB misalignment: A meta-analysis
 - No 4 Yuping Deng, Yanrui Wu, Helian Xu: Political connections and firm pollution behaviour: An empirical study
 - No 5 Sophia Chen, Lev Ratnovski and Pi-Han Tsai: Credit and fiscal multipliers in China
 - No 6 Alexander Kostrov and Mikhail Mamonov: The formation of hidden negative capital in banking: A product mismatch hypothesis
 - No 7 Ning Cai, Jinlu Feng, Yong Liu, Hong Ru and Endong Yang: Government credit and trade war
 - No 8 Michael Funke and Andrew Tsang: The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach
 - No 9 Hamza Bennani: Does People's Bank of China communication matter? Evidence from stock market reaction
 - No 10 Alexei Karas, William Pyle and Koen Schoors: Deposit insurance, market discipline and bank risk
 - No 11 Gerard Roland and David Y. Yang: China's lost generation: Changes in beliefs and their intergenerational transmission
 - No 12 Abel François, Sophie Panel and Laurent Weill: Are some dictators more attractive to foreign investors?
 - No 13 Anna Pestova and Mikhail Mamonov: Should we care? The economic effects of financial sanctions on the Russian economy
 - No 14 Haiyue Yu, Jin Cao and Shulong Kang: Fertility cost, intergenerational labor division, and female employment
 - No 15 Max Breitenlechner and Riikka Nuutilainen: China's monetary policy and the loan market: How strong is the credit channel in China?
 - No 16 Yiping Huang, Xiang Li and Chu Wang: What does peer-to-peer lending evidence say about the risk-taking channel of monetary policy?
 - No 17 Heli Simola: Evaluating international impacts of China-specific shocks in an input-output framework
 - No 18 Sris Chatterjee, Xian Gu, Iftekhar Hasan and Haitian Lu: Ownership structure and the cost of debt: Evidence from the Chinese corporate bond market
 - No 19 Ke Song and Le Xia: Bilateral swap agreement and Renminbi settlement in cross-border trade
 - No 20 Aaron Mehrotra, Richhild Moessner and Chang Shu: Interest rate spillovers from the United States: expectations, term premia and macro-financial vulnerabilities
 - No 21 Zuzana Fungáčová, Eeva Kerola and Laurent Weill: Does experience of banking crises affect trust in banks?
 - No 22 Mustafa Caglayan, Oleksandr Talavera and Wei Zhang: Herding behaviour in P2P lending markets
 - No 23 Michael Funke, Xiang Li and Andrew Tsang: Monetary policy shocks and peer-to-peer lending in China
 - No 24 Gayane Barseghyan: Sanctions and counter-sanctions: What did they do?
 - No 25 Karlo Kauko: Benford's law and Chinese banks' non-performing loans
- 2020 No 1 Chang Ma, John Rogers and Sili Zhou: The effect of the China connect
 - No 2 Karlo Kauko: The vanishing interest income of Chinese banks
 - No 3 Mariya Hake and Philipp Poyntner: Keeping up with the Novaks? Income distribution as a determinant of household debt in CESEE
 - No 4 Risto Herrala and Fabrice Orlandi: Win-Win? Assessing the global impact of the Chinese economy
 - No 5 Weijia Li, Gérard Roland and Yang Xie: Erosion of state power, corruption control, and political stability