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Precision of Public Information Disclosures,

Banks�Stability and Welfare�

Diego Morenoy Tuomas Takaloz

March 2021

Abstract

We study the optimal precision of public information disclosures about

banks�assets quality. In our model the precision of information a¤ects banks�

cost of raising funding and asset pro�le riskiness. In an imperfectly competi-

tive banking sector, banks�stability and social surplus are non-monotonic func-

tions of precision: an intermediate precision (or low-to-intermediate precision

if banks contract their repayment promises on public information) maximizes

stability, and also yields the maximum surplus when the social cost of bank

failure c is large. When c is small and the banks�asset risk taking is not too

sensitive to changes in the precision, the maximum surplus (and maximum risk)

are reached at maximal precision. In a perfectly competitive banking sector

in which banks�asset risk taking is not too sensitive to the precision of infor-

mation, the maximum surplus (and maximum risk) are reached at maximal

precision, while maximum stability is reached at minimal precision.
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1 Introduction

In the aftermath of the global �nancial crisis, public information disclosure about

banks��nancial assets has emerged as a novel policy tool to promote �nancial stability.

In a stress test, for example, a regulatory authority acquires information about the

quality of a bank�s assets, which is totally or partially disclosed to the public. It is

well known that the disclosure of public information has complex e¤ects on investors�

con�dence, and hence on the banks�costs of funds and risk-taking incentives �see,

e.g., Goldstein and Sapra (2014). Thus, it is unclear how much information should

be revealed by a regulator maximizing stability or welfare.

We study how the precision of public information about bank�s asset quality a¤ects

both �nancial stability and social welfare. We show that some degree of opacity

is conducive to stability, whereas maximal precision maximizes welfare when social

costs of bank failures are small and banks�asset risk taking is not too sensitive to the

precision of public information. These conclusions are robust to various assumptions

about the structure of the banking sector and the contractibility of asset quality

review outcomes, although these features a¤ect optimal disclosure policies.

In our model, a bank chooses the level of risk of its assets� portfolio and, to

be able to raise additional funding to complete the investments, o¤ers investors a

repayment promise. Before investors decide whether to provide funds to the bank,

a regulatory authority discloses a signal of the quality of the bank�s asset portfolio.

This regulatory authority decides how informative (i.e., precise) is this signal, knowing

that the precision of the signal a¤ects the investors�willingness to invest, and hence

the bank�s cost of funds and asset risk pro�le.

The signal of the bank�s asset quality may be interpreted as being generated by

a stress test or a similar asset quality review. In practice, the purpose of regulatory

stress testing is to determine whether the bank has enough capital to sustain adverse

economic conditions �see, e.g., European Central Bank (2014) and Federal Reserve

Board (2018) for the details on bank stress testing practices in the euro area and the

United States, respectively. Banks that fail to pass these stress tests are forced to

enhance their capital bu¤ers, or even liquidated. In addition, public disclosures of
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information about a bank�s assets quality aim to introduce market discipline and fos-

ter investors�con�dence. Our model captures some of the main trade-o¤s associated

with the precision of public disclosures of information about banks�asset quality while

abstracting from the institutional details about the source of such information. Thus,

the implications of our analysis extend to information disclosures about the quality

of banks�asset portfolios from third parties such as credit-rating agencies, providing

answers to the question of how such information disclosures should be regulated to

promote stability and welfare.

We uncover two welfare e¤ects of public disclosures of information about banks�

asset quality: A direct e¤ect improving investors�ability to separate solvent from

insolvent banks, and an indirect e¤ect on banks�risk-taking incentives. The direct

e¤ect, reducing both false positives (allowing insolvent banks to raise funding) and

false negatives (preventing solvent banks from raising funding), improves the econ-

omy�s resource allocation when the signal is su¢ ciently precise that a¤ects investor

decisions, and has no e¤ect otherwise. The impact of the indirect e¤ect on welfare

and risk-taking incentives, however, depends on whether the environment is relatively

opaque or transparent, and can be either positive or negative.

We �nd that when a bank operates in a relatively opaque environment, i.e., when

the precision of public information about the quality of a bank�s asset portfolio is

below a certain threshold, the bank can re�nance its investments irrespective of public

information disclosure. As a result, the direct welfare e¤ect of public information

disclosures is absent. However, the indirect e¤ect provides market discipline: since

riskier banks pay more for their funding the more precise is the information, banks�

risk choice decreases with information precision.

When a bank operates in a more transparent environment, i.e., when the preci-

sion of public information about the quality of the bank�s asset portfolio is above

this threshold, it becomes too costly for a bank to re�nance its investments when

the news about the asset�s quality is bad: if public information signals that a bank�s

investments are unlikely to pay its return, the bank is unable to re�nance and fails.

Thus, a positive direct welfare e¤ect of public information disclosures emerges, steer-

ing investments to successful assets. However, the more precise is the information
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the lower is the cost of funding for a sound bank and therefore, due to limited liabil-

ity, the larger the bank�s incentives to choose riskier portfolios. Hence, more precise

information has an adverse indirect e¤ect on welfare. In other words, in this relative

transparent environment, more precise public information weakens market discipline,

and leads to high asset risk levels.

In an opaque environment, a bank only fails when its assets do not pay their

return, and asset riskiness decreases with the precision of public information. Hence,

maximal stability is reached in this environment at the threshold level of precision.

In a transparent environment, however, a bank fails either when the news about the

quality of its asset is bad (because the bank is unable to raise funding), or when the

news is good, but the asset pays no return. Moreover, a bank takes more risk than

in an opaque environment. Therefore, an intermediate level of precision maximizes

stability. Naturally, if the social costs of bank failures are su¢ ciently high, the pre-

cision that maximizes banking sector stability also maximizes welfare. However, we

show that if the social costs of bank failures are small enough and the bank�s asset

risk choice is su¢ ciently insensitive to changes in the precision of public information,

the bene�ts of more e¢ cient resource allocation outweigh the costs of increased asset

risk-taking. As a result, highly precise public information is optimal.

In our baseline model a bank does not condition its repayment promise on the

public information disclosures about its asset quality review. Enlarging the set of

contracts to allow a conditional repayment promise a¤ects equilibrium outcomes in

opaque environments, since banks receiving favorable asset quality reviews can raise

funds at lower costs. This e¤ect erodes market discipline, but also reduces the range

of parameter values for which banks fail to raise funding.

We also study whether the results change if competition erodes the market power

in the banking sector. We show how competition forces banks to gamble, i.e., to

choose risky assets in order to be able to promise high returns to investors, simul-

taneously hoping a favorable outcome of the asset quality review. Since gambling

is optimal irrespective of the precision of public information disclosures, the e¤ects

of changes in the precision of public information in a competitive banking sector

are similar to those it has for a bank with market power operating in a relatively
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transparent environment.

Our work contributes to the emerging literature on stress test design (see, e.g.,

Orlov et al. 2017, Williams 2017, Goldstein and Leitner 2018, Inostroza and Pavan

2020, Quigley and Walther 2020), and also relates to the literature on optimal bank

transparency (e.g., Chen and Hasan 2006, Bouvard et al. 2015, and Moreno and

Takalo 2016), as well as to the literature studying the e¤ects of information quality

on �nancial stability (e.g., Vives 2014, and Iachan and Nenov 2015). In our model the

optimal �nancing contract between banks and investors is a function of the precision

of information about banks�asset quality as in Goldstein and Pauzner (2005), and

our results support the �nding of Dang et al. (2017) that an opaque banking system

is conducive to investor con�dence. Our results also contribute to the question of how

competition a¤ects the design of optimal disclosure policies, studied in the context

of banking by, e.g., Matutes and Vives (2000) and Hyytinen and Takalo (2002) and,

in the context of credit-rating agencies, by Goel and Thakor (2015).

The rest of the paper is organized as follows: Section 2 introduces the basic model,

which features a bank, a group of investors, and a public disclosure of information

about the bank�s asset quality. In Section 3 we derive the main properties of the

unique equilibrium of the game in which the investors can condition their decisions

on the outcome of the asset quality review, but the bank cannot, and we study socially

optimal disclosures of the bank�s asset quality. Section 4 studies a variation of the

model in which the bank can condition its promised repayment rate on the asset

quality signal. Section 5 studies implications of competition among banks for the

optimal disclosure policies. Section 6 provides numerical examples illustrating our

main results, and Section 7 concludes. While we discuss the main arguments leading

to our results in the body of the paper, we relegate to the Appendix technical proofs

and calculations.

2 The Model

We consider a baseline setting in which a bank and a measure one of risk neutral

investors interact. The bank selects an asset from a collection of assets fR(�); � 2
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[�; ��]g, where 0 < � < �� � 1, and o¤ers to repay � 2 [0;1) monetary units for each
monetary unit invested in the asset. Assets have constant returns to scale: R(�) pays

r(�) per unit of investment if it is successful, which happens with probability �; and

pays 0 otherwise. Hence the expected return of asset R(�) is E[R(�)] = �r(�): Note

that � serves as an inverse measure of the asset�s risk. We impose the following mild

assumption on the return function r.

Assumption 1. The return function r : [�; ��] ! [0;1) is twice di¤erentiable,
strictly decreasing, and such that the expected return E[R(�)] is strictly concave and
satis�es E[R(~�)] > 1, where ~� := argmax�2[�;��] E[R(�)]:

Assumption 1 implies that E[R(�)] is twice di¤erentiable and satis�es

E0[R(�)] = r(�) + �r0(�) T 0, � S ~�;

and

E00[R(�)] = 2r0(�) + �r00(�) < 0:

Assuming that E[R(~�)] > 1 is required for the exercise to be non-trivial.
Once the bank has selected an asset � 2 [�; ��] and repayment promise � 2 [0;1),

an asset quality review (e.g., a stress test) is conducted, which yields a binary signal

S(q) of the likelihood that the asset will pay its return, where q 2 [1=2; 1] is the

signal�s precision. Speci�cally, regardless of the asset chosen by the bank, S(q) = h

(respectively, S(q) = l) with probability q 2 [1=2; 1] when the asset pays (does not
pay) a return; i.e.,

Pr[S(q) = h j R(�) = r(�)] = Pr[S(q) = l j R(�) = 0] = q:

Thus, the signal is correct with probability q; and is misleading with probability 1�q.
The signal S(q) is truthfully disclosed to the investors. (Disclosing is often mandatory

in practice. Even if it were voluntary, well known �unraveling� results � see, e.g.,

Grossman (1981), Milgrom (1981) � suggest that disclosure is the likely outcome

when information cannot be manipulated and the investors know that information

has been acquired. Also, hiding the signal S(q) may be too costly.)

6



Each investor owns one monetary unit and, upon observing the bank�s asset choice

and repayment promise (�; �) as well as the signal S(q), chooses whether or not to

invest it in the asset. (Alternatively, the investor�s decision could be viewed as whether

to rollover a loan whose payo¤ is endogenous, or withdraw and receive a monetary

unit.) As we show in Section 3, assuming that � is observed by investors is justi�ed

since the bank has incentives to disclose this information �see Remark 1. Also, we

assume that the bank cannot condition its repayment promise � on the signal S(q).

(In Sections 4 and 5 we study a version of the model in which this assumption is

relaxed.)

The payo¤ of an investor who chooses not to invest is 1, while the payo¤ of an

investor who chooses to invest when the bank o¤ers the contract (�; �) 2 [�; ��]�[0;1)
and the signal realization is s 2 fh; lg is

u(q; �; �; s) = Pr[R(�) = r(�) j S(q) = s] minf�; r(�)g; (1)

The probabilities that an asset � pays its return when the signal realization is either

h or l are readily calculated as

Pr [R (�) = r (�) j S(q) = h] =
q�

q� + (1� q)(1� �)
(2)

and

Pr [R (�) = r (�) j S(q) = l] =
(1� q)�

q (1� �) + (1� q)�
: (3)

The following inequalities, which are strict for q > 1=2, are easily veri�ed:

Pr [R (�) = r (�) j S(q) = h] � � � Pr [R (�) = r (�) j S(q) = l] : (4)

Equation (1) presumes that investors have seniority if the bank cannot honor its

contract. As we shall see, in equilibrium the bank is able to make the promised

repayment unless the asset fails to pay its return. We describe investors�behavior by

a vector (xh; xl) identifying the fractions of investors who choose to invest upon the

high and the low signal, respectively.

The bank�s expected payo¤ (pro�t) if it chooses (�; �) 2 [�; ��] � [0;1) and in-
vestors�behavior is described by (xh; xl) is

B(q; �; �; xh; xl) = � (qxh + (1� q)xl) (r(�)� �)+ ; (5)
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where, and throughout the paper, for z 2 R we write z+ := maxfz; 0g: In equation
(5), the term (qxh + (1 � q)xl) is the expected fraction of investors who invest, and

the term (r(�)� �)+ is the bank�s pro�t per unit of investment.

For q 2 [1=2; 1] we denote by �(q) the dynamic game describing the bank and
investors interactions. The game �(q) proceeds in three-stages: in the �rst stage the

bank chooses an asset and repayment promise, (�(q); �(q)) 2 [�; ��]� [0;1), which is
publicly observed. In the second stage, the realization of the signal S(q) is disclosed,

and investors choose whether to invest or not. Thus, investors�behavior when the

signal is s 2 fh; lg is described by a mapping x�s (q; �) identifying for each contract
o¤er (�; �) 2 [�; ��] � [0;1) the fraction of investors who invest x�s(q; �; �) 2 [0; 1] .
In the third stage the bank�s asset return is realized and investors are compensated

according to contract. The bank�s repayments to investors are veri�able.

In an pure strategy perfect Bayesian equilibrium of �(q) investors choose to invest

whenever their expected payo¤ to investing is at least 1; and do not invest otherwise,

while the bank chooses an asset and repayment promise that maximizes its expected

payo¤ given the investors�behavior. A formal de�nition follows.

De�nition 1. A pro�le (��(q); ��(q); x�h(q; �); x�l (q; �)) is an equilibrium of �(q) if it

satis�es:

(i) For all (�; �; s) 2 [�; ��]� [0;1)� fh; lg: u(q; �; �; s) � 1 implies x�s(q; �; �) = 1,
and u(q; �; �; s) < 1 implies x�s(q; �; �) = 0; and

(ii) (��(q); ��(q)) 2 argmax(�;�)2[�;��]�[0;1)B(q; �; �; x�h(q; �; �); x�l (q; �; �)):

While our model deals with a generic signal of the bank�s asset quality, its impli-

cations extend to stress testing exercises whereby a regulator inquires about a bank�s

estimated assets returns in a certain adverse scenario, and assesses the bank�s ability

to absorb the losses it may incur in given its estimated capital. The signal h (l) is

interpreted as meaning that the asset returns are su¢ ciently high (low), given the

bank�s capital, that it would (would not) survive such adverse scenario. The regulator

publishes the bank�s estimated asset returns directly or its capital ratio in the adverse

scenario. Sometimes the key results published are coarse, e.g., the signals l and h

may simply mean �fail�and �pass�, respectively. However, even coarse the signals
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can be misleading. (Months after passing the 2011 European stress-tests, two large

European banks, Bankia and Dexia, were on the verge of bankruptcy. The meltdown

of one of the largest banks in Spain, Banco Popular, in June 2017, after passing its

2016 stress test, led Morgenson (2017) to note that �... there is much for investors to

learn ... Lesson No. 1: Don�t trust bank stress-test results.�)

3 Analysis of the Model

In this section we study the equilibrium of the in the baseline setting, and show the it

is a well de�ned mapping on the set of possible precisions of the public signal. Then

we study the welfare properties of equilibrium.

3.1 Equilibrium

We show that the game �(q) has a unique equilibrium,

(��(q); ��(q); x�h(q; �
�(q); ��(q)); x�l (q; �

�(q); ��(q)))

on [1=2; 1]nf�qg. The level of precision �q is a threshold identifying a change of regime:
as q reaches �q from below the bank changes the nature of the contract it o¤ers,

switching the objective from attracting investors whatever the signal, to attracting

investors only when the signal is h: When the level of precision is exactly �q the bank

is indi¤erent between the two contracts, and hence two alternative equilibria arise.

In what follows, we present the key equations and results.

In equilibrium, the investors�propensity to invest in a bank is increasing in the

levels of asset quality signals and repayments �see Lemma 1 in the Appendix. Such in-

vestor behavior is intuitive and supported by laboratory evidence (see König-Kersting

et al. 2020). Thus, an expected pro�t-maximizing bank o¤ers the minimal repayment

promise that attracts investors regardless of the signal,

��(q) =
1

Pr [R (��) = r (��) j S(q) = l]
;
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and hence x�h(q; �
�; ��) = x�l (q; �

�; ��) = 1; or o¤ers the minimal repayment promise

that attracts investors only if the signal realization is h,

��(q) =
1

Pr [R (��) = r (��) j S(q) = h]
;

and hence x�h(q; �
�; ��) = 1 and x�l (q; �

�; ��) = 0: (For the proofs of these claims, see

Lemmas 1 and 2 in the Appendix.) Building on these observations, we de�ne two

auxiliary functions,

Bl(q; �) = �

�
r(�)� 1

Pr [R (�) = r (�) j S(q) = l]

�
(6)

= E[R(�)]� q (1� �) + (1� q)�

1� q
;

and

Bh(q; �) = q�

�
r(�)� 1

Pr [R (�) = r (�) j S(q) = h]

�
(7)

= qE[R(�)]� q� � (1� q)(1� �);

describing, respectively, the bank�s expected pro�t when it o¤ers the contract attract-

ing investors regardless of the signal realization, which is given by

B(q; �; 1=Pr [R (�) = r (�) j S(q) = l] ; 1; 1) = Bl(q; �)+;

and when it o¤ers the contract that attract investors only when S(q) = h, which is

given by

B(q; �; 1=Pr [R (�) = r (�) j S(q) = h] ; 0; 1) = Bh(q; �)+:

Note that as q approaches 1, Bl(q; �) diverges to �1, while Bh(q; �) approaches
E[R(�)]� �. Further,

Bl(1=2; �) = E[R(�)]� 1 = 2Bh(1=2; �);

and therefore both Bl(1=2; �) and Bh(1=2; �) reach their maximum value at ~� 2 (�; ��)
by Assumption 1. Also, both Bl(q; �) and Bh(q; �) are twice di¤erentiable and strictly
concave, and satisfy

@Bl(q; �)

@�
= E0[R(�)] +

2q � 1
1� q

; (8)
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and
@Bh(q; �)

@�
= qE0[R(�)]� (2q � 1): (9)

Hence @Bl(q; �)=@� > 0 for � 2 [�; ~�), and @Bh(q; �)=@� < 0 for � 2 (~�; ��].
We identify the bank�s asset risk choice. Let us write

�l(q) := arg max
�2[�;��]

Bl(q; �)

and

�h(q) := arg max
�2[�;��]

Bh(q; �):

As noted above, �l(1=2) = �h(1=2) = ~�: In the Appendix (Lemma 3), we estab-

lish that �l > �h on (1=2; 1]; and that as q increases, �l (respectively �h) increases

(decreases) until it reaches the value �� (�), remaining constant as q increases further.

The e¤ect of the signal precision on the bank�s asset risk-taking thus crucially

depends on whether the equilibrium asset risk choice is identi�ed by �l or by �h.

Since both Bl(1=2; �) and Bh(1=2; �) reach their maximum at ~� and 2Bh(1=2; ~�) =

Bl(1=2; ~�) = E[R(~�)]� 1 > 0, when the signal�s precision is close to 1=2 the equilib-
rium asset risk choice is ��(q) = �l(q): Moreover, for q near 1; Bl(q; �) < Bh(q; �),

and therefore ��(q) = �h(q). We show in the Appendix (Lemma 4) that there is

�q 2 (1=2; 1) such that ��(q) = �l(q) on (1=2; �q) and ��(q) = �h(q) on (�q; 1). At

�q, there are two equilibria, one in which ��(q) = �l(�q) and another one in which

��(q) = �h(�q). Since �l(�q) > �h(�q); the mapping �� has a discontinuity at �q: as q

crosses �q from below, �� experiences a discrete jump downwards, from �l(�q) > ~� to

�h(�q) < ~� �see Lemma 3 in the Appendix.

Consequently, the bank raises funding irrespective of the signal for levels of preci-

sion below �q, but raises funding only upon the high signal for levels of precision above

�q. Further, the level of risk decreases with q below �q, but increases with q above �q.

Thus, maximal (minimal) risk is reached at q = 1 (respectively, q = �q) �see Lemma

5 in the Appendix.

Write

B�(q) := B(q; ��(q); ��(q); x�h(q; �
�(q); ��(q)); x�l (q; �

�(q); ��(q)))
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for the bank�s equilibrium pro�t. This pro�t is positive irrespective of the signal�s

precision, i.e., B�(q) > 0 for all q � see Lemma 2 in the Appendix. Moreover,

B�(q)decreases below �q and increases above �q; reaching its maximum value at q = 1;

and its minimum value at q = �q �see Lemma 5 in the Appendix.

Proposition 1 summarizes these �ndings and describes the e¤ects of changes in

the level of precision over the bank�s payo¤ and risk choice. Figure 1 in Section 6

provides an illustration of these results for a linear return function r:

Proposition 1. There is �q 2 (1=2; 1) such that in an equilibrium of �(q) the bank

o¤ers the contract

(��(q); ��(q)) = (�l(q); 1=Pr [R (�l (q)) = r (�l (q)) j S(q) = l])

if q 2 [1=2; �q), and o¤ers the contract

(��(q); ��(q)) = (�h(q); 1=Pr [R (�h (q)) = r (�h (q)) j S(q) = h])

if q 2 (�q; 1], whereas both these contracts may arise if q = �q: Both the bank�s asset

risk and its expected pro�t decrease with the level of precision on (1=2; �q), and increase

on (�q; 1), reaching a minimum at q = �q and a maximum at q = 1.

The intuition for these result is as follows: Ignoring the cost, the bank would

always prefer to raise funding to complete its project. When the environment is

opaque (q is close to 1=2) the cost of raising funding upon the high and low signals

are similar. As q increases, it becomes more (less) costly to raise funding upon the

low (high) signal, because the likelihood that the asset will (will not) pay its return

decreases. Eventually, when q reaches �q, the cost di¤erential becomes too high, and

the bank switches its choice, forgoing to raise funding when the signal is low, and

increasing its asset riskiness.

In opaque environments (i.e., q < �q) increasing the precision imposes a market

discipline e¤ect, discouraging the bank�s asset risk-taking: the bank partially com-

pensates the impact of increasing q on the cost of raising funding by choosing a less

risky asset. However, in transparent environments (i.e., q > �q) increasing the preci-

sion reduces the cost of raising funding. This feature together with the bank�s limited
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liability encourages the bank to take more risk; i.e., this e¤ect reverses the direction

of market discipline. Proposition 1 thus reveals that in transparent environments

there is a mismatch between stability concerns and bank�s incentives to take risk:

increasing the precision leads to both greater riskiness and greater pro�ts.

We conclude our equilibrium analysis with an observation justifying our assump-

tion that the bank�s risk choice is observable: The bank�s pro�t is larger when the

risk choice is observable than when it is not. Thus, the bank has an incentive to

commit and reveal its risk choice.

Remark 1. The bank�s pro�t is larger when the asset risk is observable than when

it is unobservable.

As shown in the Appendix, by revealing (i.e., committing) its risk choice the

bank in�uences investors�decisions and increases its payo¤. Revealing the risk choice

gives the bank a �rst-mover advantage similar to that of a Stackelberg leader in a

duopolistic industry of quantity competition, and results in a payo¤ increase �just

as it does for the Stackelberg leader relative to its payo¤ in the Cournot equilibrium.

3.2 Welfare

Let us consider now the problem of a Regulator who can choose the precision of the

bank�s asset quality signal. For simplicity we assume that the set of feasible levels

of precision is the interval [1=2; 1]: (If the set of feasible levels of precision is any

closed subinterval of [1=2; 1], then solving the Regulator�s problem involves checking

additional corners.)

The problem of a Regulator exclusively concerned with the stability of the bank-

ing sector is straightforward: the stability maximizing precision is that minimiz-

ing asset risk in the region where the bank can raise funding irrespective of the

asset quality signal. Assuming that (�l(�q); 1=Pr [R (�l (�q)) = r (�l (�q)) j S(q) = l])

is the equilibrium arising in � (�q), the stability maximizing precision is �q: (Since

(�h(�q); 1=Pr [R (�h (�q)) = r (�h (�q)) j S(q) = h]) is also an equilibrium of �(�q) by Propo-

sition 1, the Regulator may alternatively choose a precision below but arbitrarily close
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to �q.)

Let us study next the problem of a Regulator who aims at maximizing social

surplus rather than bank stability. Following the literature �see, e.g., Matutes and

Vives (2000) and Freixas et al. (2007) �let us assume that the bank provides valuable

services to the economy, so that its closure, due to either a failure to raise funding or

a failure of its investments, creates an external social cost c > 0.

When the investors choose to invest regardless of the signal realization, the bank

fails only if the investment does not pay its return, and therefore the surplus is the

expected return net of the expected social cost of the bank failure, which given the

bank asset choice � is

Wl(c; �) = E[R(�)]� (1� �)c: (10)

When the investors choose to invest only when the signal�s realization is h and the

bank selects the asset � the surplus is

Wh(c; q; �) = qE[R(�)] + [(1� q)� + (1� �)q]� (1� q�)c: (11)

The �rst term in the right-hand side of equation (11) is the expected return assuming

that the investment is made only upon the signal realization S = h. The term in

the middle is the expected surplus realized when the investment is not made because

S(q) = l. The last term is the expected social cost of bank failure, which occurs

except when S(q) = h and the asset pays return.

By Proposition 1, for (c; q) 2 [0;1)� [1=2; 1] the equilibrium surplus is

W (c; q) =

8<: Wl(c; �l(q)) if q 2 [1=2; �q]
Wh(c; q; �h(q)) if q 2 [�q; 1]:

If the Regulator chooses a level of precision below �q, then the bank selects the asset

��(q) = �l(q); and attracts the investors regardless of the signal. As equation (10)

shows, in this relatively opaque environment the precision of public information a¤ects

welfare only indirectly via the bank�s asset risk choice �l(q). If the Regulator chooses

a level of precision above �q; then the bank selects the asset ��(q) = �h(q), and attracts

the investors only if the signal is h: In this relatively transparent environment the

precision of public information a¤ects the surplus both directly, and indirectly via the
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bank�s asset risk choice. The direct e¤ect arises because an increase in the precision

of public information increases the probability that investors can correctly separate

a solvent bank from an insolvent one. This direct e¤ect is absent in the relatively

opaque environment where the bank can re�nance its investments irrespective of the

asset�s quality signal S.

Let us identify the level of precision ql that maximizes Wl(c; �l(�)) on [1=2; �q].
Taking derivatives in equation (10) we get

@Wl(c; �l(q))

@�
�0l(q) = (E0[R(�l)] + c)�0l(q): (12)

Recall from Section 3 that �l(q) 2 [~�; ��] and �0l(q) > 0 whenever �l(q) < ��: Thus, if

�l(q) = ��; thenWl(c; �) is constant and maximal on [q; �q]: However, if �l(q) < ��, then
�l(q) solves the equation @Bl(q; �)=@� = 0; which using equation (8) implies

E0[R(�l)] = �
2q � 1
1� q

:= � (q):

Therefore
@Wl(c; q)

@�
�0l(q) = (� (q) + c)�0l(q):

Moreover, �0l(q) > 0 implies that either c =  (ql) <  (�q); or c �  (�q) and ql = �q.

Since  0 > 0; the level of precision that maximizes Wl(c; �(�)) on [1=2; �q] is the
mapping

ql(c) = minf �1(c); �qg; (13)

where  �1 is readily calculated as

 �1(c) =
c+ 1

c+ 2
:

Note  �1 (0) = 1=2 < �q; and hence ql(0) = 1=2; that is, if there are no social

externalities to bank failure, then maximizing Wl(c; �(�)) amounts to maximizing
expected returns. Since d �1(c)=dc = 1=(2 + c)2 > 0; the precision that maximizes

Wl(c; �(�)); ql(c), increases with c near c = 0: even though the signal has no e¤ect on
the investors�decision, increasing the precision reduces the level of risk, reducing the

probability of bank failure.
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We seek to identify the precision that maximizes Wh(c; �; �h(�)) on (�q; 1]: Taking
derivatives in equation (11) we get

@Wh(c; q; �)

@q
+
@Wh(c; q; �)

@�
�0h(q) = (qE0[R(�h)] + 1� 2q + qc)�0h(q)+�h(q)c+H(q);

(14)

where

H(q) := E[R(�h(q))]� �h(q) + 1� �h(q) > 0:

Thus, the direct e¤ect of an increase in q on welfare, captured by the two last terms

of equation (14), is positive: the direct e¤ect improves the resource allocation in

the economy by reducing both false positives and false negatives. As a result, if the

bank�s asset choice is the corner solution �h(q) = �; then �0h = 0 above q: (Recall

from Section 3 that �h(q) 2 [�; ~�] and �0h(q) < 0 whenever �h(q) > �.) Hence

@Wh(c; q; �)

@q
+
@Wh(c; q; �)

@�
�0h(q) = �h(q)c+H(q) > 0;

i.e., Wh(c; �; �h(�)) is increasing on (�q; 1], and therefore maximal precision of public
information is optimal.

However, if the bank�s asset choice is an interior solution �h(q) 2 (�; ��), then the
Regulator also needs to take into account the indirect e¤ect of q via the bank�s asset

risk choice �h(q). The equilibrium asset risk choice solves the equation @Bh(q; �)=@� =

0 which, by using equation (9), can be written as

qE0[R(�h)] = 2q � 1:

Substituting into equation (14) gives

@Wh(c; q; �)

@q
+
@Wh(c; q; �)

@�
�0h(q) = �0h(q)qc+ �h(q)c+H(q) (15)

= ("h(q) + 1) c�h(q) +H(q);

where

"h (q) :=
q�0h(q)

�h (q)

denotes the elasticity of the bank�s asset risk-taking with respect to the precision of

information disclosure.

16



Write

�e := �1� H(�q)

c�h(�q)
: (16)

Since r0 < 0 and �0h < 0;�
H

�h

�0
=

�
r +

1

�h
� 2
�0
= r0�0h �

�0h
�2h

> 0;

and therefore "h (q) > �e implies that the right-hand side of equation (15) is positive,

and the surplus reaches its maximum on (�q; 1] at q = 1: The intuition for this result

is clear: In a relative transparent banking environment, in which the investment is

made only upon a high signal, an increase in the precision of information disclosure

allows investors to separate more accurately a solvent from an insolvent bank, which

reduces the probability that either a solvent bank is liquidated or an insolvent bank

receives funding. There is a cost to increasing transparency as it leads to increasing

risk-taking. But unless the bank�s risk-taking is highly sensitive to changes in the

precision, the bene�ts of more e¢ cient resource allocation outweigh the incremental

cost of bank failure due to unsuccessful asset risk-taking. As a result, maximal

precision is optimal.

The maximum surplus W (c; �) on [1=2; �q] is W �
l (c) :=Wl(c; ql(c)); while the maxi-

mum surplusW (c; �) on [�q; 1] isW �
h (c) :=Wh(c; 1) when "h � �e. We show in the proof

of Proposition 2 in the Appendix that there exists �c > 0 such that W �
h (c) S W �

l (c) if

and only if c T �c:
Proposition 2 summarizes the implications of the results derived above.

Proposition 2: In the setting described by the game �(q) for q 2 [1=2; 1], the

precision �q maximizes stability. Moreover, if c < �c; then the maximum surplus is

reached at the precision ql(c): If c < �c and "h (q) � �e, then the maximum surplus is

reached at the maximal precision q = 1:

Stability requires a relatively opaque environment (i.e., involves an intermediate

level of precision no greater than �q) since in transparent environments (i.e., when

q > �q) the bank both takes more risk and fails to raise funding if the asset quality

signal is unfavorable. As for the surplus maximizing precision, when the social cost
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of bank failure is su¢ ciently small, i.e., c < �c, a maximally revealing asset quality

signal generates an e¢ cient allocation of resources: as q approaches 1 the bank raises

funding cheaply and invests in an highly risky asset, but completes the investment

when it is solvent, and is liquidated when it is not. The high riskiness of the bank�s

asset yields high returns in case of success and, even though the bank is more likely

to fail, such failure is not too costly to society. In contrast, when the social cost of

bank failure is su¢ ciently large, i.e., c � (2�q � 1) = (1� �q), the the precision that
maximizes surplus is ql(c) = �q; i.e., for su¢ ciently high social costs of bank failure,

choosing the stability-maximizing level of precision �q becomes optimal as well from

the surplus perspective.

Depending on the return function r, �c can be smaller or larger than  (�q) : If

�c <  (�q) ; then for intermediate values of the cost of bank failure c 2 (�c;  (�q)) a low
precision of the asset signal, ql(c) =  �1(c) = (c+ 1) = (c+ 2) ; is socially optimal:

for these intermediate values of c the signal must be su¢ ciently imprecise to allow

the bank to raise funding irrespective of the signal realization. Moreover, since in

this regime the bank�s asset risk-taking decreases with the precision of the signal,

it is optimal to increase the precision the greater is c. If  (�q) � �c; however, this

intermediate region vanishes, and the optimal precision is a binary variable, taking

the value 1 for c � �c and �q for c � �c: Nonetheless, whether �c is smaller or larger

than  (�q) the main message of Proposition 3 is the same: as the cost of bank failure

increases from zero, the socially optimal precision drops from maximal precision to

an intermediate level of precision. Figure 2 in Section 6 provides a numerical example

illustrating the results of Proposition 3 for the case  (�q) > �c:

Note that "h � �e is a su¢ cient condition for q = 1 being optimal for c 2 [0; �c].
If "h < �e, then an interior level of precision may be optimal for c 2 [0; �c]. However,
even in this case the optimal precision would be larger for c � �c than for c � �c.

Of course, were the right-hand side of equation (15) negative for all q on [�q; 1], the

optimal precision would be ql(c) for all c.
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4 Contingent Contracts

In our baseline model a bank does not condition its repayment promise on the public

information disclosure. While such contingent contracts are rare in practice, the as-

sumption violates the informativeness principle (due to Holmström 1979) according

to which informative signals should be included in contracts. We may also equiv-

alently think of a bank as raising funds after the information disclosure. Thus, in

this section we consider a variation of the setting of Section 2 in which the bank �rst

selects the asset � 2 [�; ��], and then chooses the repayment promise � 2 [0;1) after
the realization of the asset�s signal S(q) is observed. Although the payo¤s in this

modi�ed setting are as in the previous setting, it is useful to describe them explicitly.

If the bank chooses the asset � 2 [�; ��] and repayment promises (�h; �l) 2 [0;1)2,
and the fractions of investors who choose to invest upon the high and low signals are

(xh; xl) 2 [0; 1]2, then the bank�s expected payo¤ when the signal is s 2 fh; lg is

B̂s(q; �; �s; xs) = Pr [R (�) = r (�) j S(q) = s] (r(�)� �s)+ xs; (17)

whereas the bank�s expected payo¤ before the signal is realized is

B̂(q; �; �h; �l; xh; xl) = q� (r(�)� �h)+ xh + (1� q)� (r(�)� �l)+ xl: (18)

For q 2 [1=2; 1] we denote by �̂(q) the game describing the bank and investors
interactions in this modi�ed setting. The game �̂(q) proceeds in four-stages: in the

�rst stage the bank chooses an asset �̂(q) 2 [�; ��], which is publicly observed. In the
second stage the realization of the signal S(q) = s is disclosed, and the bank o¤ers

a repayment promise �s. Thus, the bank�s behavior at this stage when the signal

s 2 fh; lg is disclosed is described by a function �̂s (q; �) identifying for each asset
choice � 2 [�; ��] the bank�s repayment promise �̂s(q; �) 2 [0;1). In the third stage,
investors choose whether to invest or not upon observing the bank�s asset choice �̂(q);

the signal S(q) = s; and the bank�s repayment promise �s. Thus, investors�behavior

when signal s 2 fh; lg is disclosed is described by a function x̂s (q; �) identifying
for each contract o¤er (�; �) 2 [�; ��] � [0;1) the fraction of investors who invest
x̂s(q; �; �) 2 [0; 1]: In the fourth stage the asset return is realized and investors are
compensated according to the contract o¤er.
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In an pure strategy perfect Bayesian equilibrium of �̂(q) investors choose to invest

whenever their expected payo¤ to investing is at least 1; and do not invest otherwise,

while the bank�s choices at each stage maximize its expected payo¤ given investors�

behavior or its own prior choices, or both. A formal de�nition follows.

De�nition 2. A pro�le (�̂�(q); �̂�h(q; �); �̂�l (q; �); x̂�h(q; �); x̂�l (q; �)) is an equilibrium of

�̂(q) if it satis�es:

(i) For all (�; �; s) 2 [�; ��]� [0;1)� fh; lg: u(q; �; �; s) � 1 implies x̂�s(q; �; �) = 1,
and u(q; �; �; s) < 1 implies x̂�s(q; �; �) = 0.

(ii) For all (�; s) 2 [�; ��]� fh; lg, �̂s(q; �) 2 argmax�2[0;1) B̂s(q; �̂(q); �; x̂�s(q; �; �)).
(iii) �̂�(q) 2 argmax�2[�;��] B̂(q; �; �̂�h(q; �); �̂�l (q; �); x̂�h(q; �; �̂�h(q; �); x̂�l (q; �; �̂�l (q; �)):

We show that the game �̂(q) has a unique equilibrium on [1=2; 1]nfq̂g. The level
of precision q̂ is a threshold identifying a change of regime: for q below q̂ the bank

selects the asset ~� and attracts investors whatever the signal, whereas above q̂ the

bank selects a more risky asset, and forgoes attracting investors when the signal is

l: When the level of precision is q̂ the bank is indi¤erent between the two contracts,

and hence two alternative equilibria arise.

Given the bank�s asset choice �; upon observing the signal realization S(q) = s

it is a dominant strategy for the bank to o¤er the minimum repayment promise that

induces investors to invest, 1=Pr [R (�) = r (�) j S(q) = s]. Moreover, this strategy

is strictly dominant if

r(�) >
1

Pr [R (�) = r (�) j S(q) = s]
:

Hence for s 2 fh; lg,
1

Pr [R (�̂�) = r (�̂�) j S(q) = s]
= �̂�s(q; �̂

�):

Also, since

r(~�) >
1

~�
� 1

Pr [R (~�) = r (~�) j S(q) = h]
= �̂�h(q; ~�);

where the �rst inequality follows from Assumption 1 and the second from inequality

(4), the bank can secure a positive expected pro�t by choosing the asset ~� and repay-

ment promise �̂�h(q; ~�). Hence, in equilibrium the bank�s asset choice and repayment
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promises satisfy

r(�̂�) >
1

Pr [R (�̂�) = r (�̂�) j S(q) = h]
= �̂�h(q; �̂

�);

and therefore x̂�h = 1; since

1

Pr [R (�) = r (�) j S(q) = h]
� 1

Pr [R (�) = r (�) j S(q) = l]

would otherwise imply that the bank�s expected pro�t is zero. Hence, either r(�̂�) <

�̂�l (q; �̂
�) and x̂�l = 0; or r(�̂�) � ��l (q; �̂

�) and x̂�l = 1, and therefore the bank�s

equilibrium expected pro�t is

B̂(q; �̂�; �̂�h; �̂
�
l ; x̂

�
h; x̂

�
l ) = q�̂�

�
r(�̂�)� 1

Pr [R (�̂�) = r (�̂�) j S(q) = h]

�
+(1� q)�̂�

�
r(�̂�)� 1

Pr [R (�̂�) = r (�̂�) j S(q) = l]

�
+

:

Let us now discuss the bank�s asset choice. If r(�̂�) � �̂�l (q; �̂
�); then

q�

Pr [R (�) = r (�) j S(q) = h]
+

(1� q)�

Pr [R (�) = r (�) j S(q) = l]
= 1

(i.e., in expectation the bank pays to each investor exactly one monetary unit) implies

B̂(q; �̂�; �̂�h; �̂
�
l ; x̂

�
h; x̂

�
l ) = �̂�r(�̂�)� 1 = E[R(�̂�)]� 1;

and therefore �̂� maximizes E[R(�)], i.e., �̂� = ~�: If r(�̂�) < �̂�l (q; �̂
�), then

B̂(q; �̂�; �̂�h; �̂
�
l ; x̂

�
h; x̂

�
l ) = Bh(q; �̂

�);

where Bh is de�ned in equation (7) in Section 3. Hence �̂
� = �h(q).

Finally, let us identify the mapping �̂�(q): Because

Pr [R (�) = r (�) j S (1=2) = h] = Pr [R (�) = r (�) j S (1=2) = l] = �;

and

E[R(~�)]� 1 > 1

2
(E[R(�)]� 1) = Bh(1=2; �):

for all � by Assumption 1, �̂�(q) = ~� for q near 1=2. As Pr [R (~�) = r (~�) j S(q) = l]

decreases with q (reaching zero at q = 1); there exists ~q 2 (1=2; 1) such that

r (~�) =
1

Pr [R (~�) = r (~�) j S(~q) = l]
;
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and therefore

E[R(~�)]� 1 = Bh(~q; ~�) � Bh(~q; �h(~q)):

Therefore, as q increases from 1=2 to ~q, for some q̂ 2 (1=2; ~q] it becomes optimal for
the bank to select the asset risk that maximizes Bh, i.e., �̂

�(q) = �h(q) < ~� for q > q̂:

(In the proof of Lemma 3 in the Appendix it is shown that Bh is continuous and

increasing, while �h is continuous and decreasing.)

We summarize these results in Proposition 3.

Proposition 3. There is q̂ 2 (1=2; 1) such that if q 2 [1=2; q̂) in the unique equi-
librium of �̂(q) the bank chooses the asset ~�, whereas if q 2 (q̂; 1] in the unique

equilibrium of �̂(q) the bank chooses the asset �h(q) < ~�. Thus, the asset risk and

the bank�s expected pro�t are constant for levels of precision on [1=2; q̂), while they

increase with the level of precision on (q̂; 1), reaching their maximum at q = 1.

The welfare analysis in this setting is analogous to that of Section 3 for the base

model. Clearly, if the social objective is exclusively to maximize stability, then any

precision below q̂ achieves this objective. As for the surplus, it is given for (c; q) 2
[0;1)� [1=2; 1] by

Ŵ (c; q) =

8<: Wl(c; ~�) if q 2 [1=2; q̂]
Wh(c; q; �h(q)) if q 2 [q̂; 1];

where Wl and Wh are given in equations (10) and (11), respectively, in Section 3.

Thus, in an opaque environment, i.e., when q 2 [1=2; q̂]; the signal�s precision no

longer a¤ects the surplus, while in a transparent environment, i.e., when q 2 [�q; 1],
the surplus reaches its maximum W �

h (c) at q = 1 provided "h � �e, as established in

Proposition 2. We show in the Appendix that there exists a threshold on the cost

of bank failure, ĉ > 0; such that for c > ĉ any level of precision below q̂ yields the

maximum surplus, whereas if c < ĉ and "h � �e, then maximal precision yields the

maximum surplus. We summarize these results in Proposition 4.

Proposition 4. In the setting described by �̂(q) for q̂ 2 (1=2; 1) any level of precision
below q̂ maximizes stability, and also yields the maximum surplus if the cost of bank
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failure c is above a threshold ĉ: When c is below ĉ and "h (q) � �e, the maximum

surplus is reached at the maximal precision q = 1.

Considering repayment promises contingent on the signal realization, rather than

unconditional repayment promises, leads to di¤ering results only on relatively opaque

environments, in which the level of risk, the bank�s expected pro�t and the surplus

are invariant to changes in the precision. Thus, in this setting the market discipline

e¤ect of increasing precision is absent. Also, it can be shown that q̂ � �q. i.e., the

threshold level of precision is larger in this setting than when the repayment promise

is unconditional. The example presented in Section 6 illustrates these �ndings.

5 Competitive Banks

In the previous sections we study the interactions of a bank that exercises market

power and its investors. While the existence of market power in the banking sector

may be realistic, we also explore whether our main �ndings arise in a (perfectly)

competitive setting. Alternatively, interpreting the analysis of Sections 2-4 as cor-

responding to that of a banking sector in which depositors face prohibitively high

bank switching costs, we examine in this section the consequences of removing those

switching costs.

Assume that there is a measure one of banks identical to that described in the

previous sections. Each bank asset choice � 2 [�; ��] is subject to a review generating a
signal S(q) 2 fl; hg of the likelihood that the asset will pay its return. Bank�s signals,
which are independent and identically distributed, are then publicly disclosed. Since

there are constant returns to scale to investments, investors will invest in the banks�

assets who o¤er the best expected return given their signal.

As in Diamond and Dybvig�s (1983) seminal paper, in our setting competitive

pressure forces the banks to o¤er the contract that maximizes investors�payo¤. Since

there is a continuum of banks, by the law of large numbers an asset quality review

will result in a positive fraction of banks signaling h. Further, since banks signaling

h can match any repayment o¤er by banks signaling l, all banks must gamble that
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their asset will generate the signal h, and therefore choose the asset

�c(q) := arg max
�2[�;��]

E[R (�) j S = h]; (19)

and promise the repayment �c(q) = r(�c(q)). Since

E[R (�c (q)) j S(q) = h] � E[R (~�) j S(q) = h] � E[R(~�)] > 1:

where the strict inequality is part of Assumption 1, all investors invest their unit in

banks that generate the signal h, while banks that generate the signal l are unable

to raise funding and fail. Hence in the this setting it is irrelevant whether repayment

promises are unconditional or contingent on the signal.

Proposition 5 establishes the properties of the equilibrium contract in a competi-

tive banking sector, which involves a level of risk that increases with the precision of

the signal, regardless of whether the environment is opaque or transparent. Moreover,

this level of risk is always larger than that arising in the monopolistic banking sector.

(See the proof of Proposition 5 in the Appendix.) A numerical example illustrating

these results is given in Section 6.

Proposition 5. In a competitive banking sector asset risk is larger than in a monop-

olistic banking sector, i.e., �c(q) < �h(q) < ~� < �l(q), and increases with the level of

precision, i.e., �0c(q) > 0 for all q 2 [1=2; 1]:

The inequalities of Proposition 5 show that competitive pressure increases the

banks� asset risk-taking, a result well in line with the literature�s consensus � see

Vives (2016) for a survey. An often cited explanation for this result �see, e.g., Keeley

(1990) �is that competition eliminates the banks�charter value, making banks more

willing to gamble. In our setting, however, competition forces banks to gamble: to

take a high risk so as to be able to promise high returns to investors and to hope that

their asset choice will generate the signal h.

Proposition 5 also establishes that banks�risk-taking increases with the level of

precision of information disclosures: the more informative is the signal, the more likely

is that a bank�s asset signaling h will pay its return. The banks betting on S = h

will then increase their risk level so as to o¤er a higher repayment in the case of
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success. Thus, a Regulator minimizing banks�asset risk-taking will keep information

disclosure to a minimum.

Let us now identify the socially optimal precision under perfect competition. The

expected surplus generated by a perfectly competitive banking sector is

Wc(c; q) = E[R (�c(q)) j S(q) = h]� (1� q�c (q))c: (20)

The �rst term in the right hand side of equation (20) is the expected returns, which

come from to the assets of banks signaling h. The second term captures the expected

social losses resulting from bank failures. Note that only a fraction q� of banks

generate signal h and pay its return, while the remaining fraction 1 � q� of banks

fail either because they signal l and are unable to raise funds, or because they pay no

returns. As equation (20) shows, a change in q a¤ects the surplus both directly and

indirectly via the banks�asset risk choice, much as in the monopolistic setting when

the environment is relatively transparent.

The Regulator�s problem is to choose q 2 [1=2; 1] to maximize Wc(c; q). Tak-

ing derivative with respect to q in equation (20), and using the implications of the

Envelope Theorem applied to the problem described in (19) above, we get

@Wc(c; q)

@q
=
@E[R (�c(q)) j S(q) = h]

@q
+ ("c (q) + 1)�c (q) c; (21)

where, as in Section 3,

"c (q) := q
�0c(q)

�c(q)

denotes the elasticity of a competitive bank�s asset risk-taking with respect to the

signal�s precision.

All terms in the right-hand side of equation (21) are positive except for "c (q).

Thus, in a competitive banking sector in which asset risk-taking is not too sensitive

to the precision of the asset quality signal, maximal precision is socially optimal.

Proposition 6 establishes a result that uses an obvious bound on the elasticity "c:

(While @E[R (�c(q)) j S(q) = h]=@q is positive, it may be non-monotonic.) The

numerical example given in Section 6 illustrates these results.

Proposition 6. In a competitive banking sector minimal precision maximizes stabil-

ity. Maximal precision maximizes the surplus whenever "c (q) � �1.
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The banking technology of a perfectly competitive sector is quite di¤erent to that

of a monopolistic sector, and hence the conclusions of Propositions 2 and 4 cannot

be directly contrasted with those of Proposition 6. Nonetheless, the analysis o¤ers

qualitative similarities for levels of precision in the region (�q; 1]: In all cases, if asset

risk-taking is not too sensitive to the changes in the signal precision q, then maximal

precision of information disclosures is optimal. The mechanisms generating these

results are also similar: the investment is made only upon a high signal and, as a

result, an increase in the precision of information disclosure has both a positive direct

e¤ect and a negative indirect e¤ect on surplus: the direct positive e¤ect arises from

the investors�ability to separate more accurately a good bank from a bad one; the

indirect negative e¤ect is the banks�increased risk-taking.

If the asset risk-taking is su¢ ciently insensitive to the changes in q, then the

direct e¤ect dominates. If the su¢ cient condition for maximal precision to be socially

optimal in a competitive banking sector, "c � �1, fails to hold, then increased risk-
taking considerations might dominate at least for some parameter values, and some

q < 1 might be optimal. Moreover, the assumption implicit in the analysis, that the

social cost of a bank failure is the same regardless of whether it is due to the inability

to raise funds or because the asset pays no return, may not be innocuous.
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6 An Example

In this section we study the implications of our analysis for a linear return function

r(�) = b (a� �=2) ; (22)

where a 2 (�; ��) and b > 2=a: Then E[R(�)] = �b (a� �=2), E0[R(�)] = b (a� �),

E00[R(�)] = �b, and ~� = a: We derive the equilibrium contract for this example in

the alternative settings studied in the previous sections, and discuss our main results.

Detailed calculations are provided in the Appendix.

In the setting of Section 2, where a single bank interacts with a measure one

of investors o¤ering a contract unconditional to the signal realization, substituting

equation (22) in the formulae of Section 3, we get

�l(q) = a+
2q � 1
b (1� q)

; �h(q) = a� 2q � 1
bq

: (23)

Recall that the bank�s risk choice is ��(q) = �l(q) if q < �q and ��(q) = �h(q) if q > �q,

where �q solves the equation Bl(q; �l(q)) = Bh(q; �h(q)): Consistently with Proposition

1, asset risk increases on (1=2; �q); and decreases on (�q; 1): Using equations (22) and

(23), one can readily calculate the bank�s pro�t. Figures 1 to 4 provide a illustration

of our results for the numerical example a = 4=5; b = 120:
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Figure 1. The left and right panels depict the bank�s asset risk choice and pro�t,

respectively, as a function of the signal�s precision.

As Figure 1 shows, in the relatively opaque banking environment, i.e., when q 2
(1=2; �q]; where �q ' 0:94, the bank chooses a low risk asset ��(q) = �l(q), which results
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in the pro�t B�(q) = Bl(q):Both asset riskiness and pro�t decrease as the precision of

the asset quality signal increases. In this regime the bank promises a high repayment

that attracts investors regardless of the signal. There is a discontinuity in the asset

risk at �q; when the bank switches from attracting investors regardless of the signal

realization to attracting investors only when the signal is h. The maximal stability

and minimum pro�t are reached at �q: In the relatively transparent environment, i.e.,

when q 2 (�q; 1], the bank promises a low repayment and chooses a more risky asset,
�� = �h, the riskiness of which increases as the precision of asset quality signal

increases. Moreover, the bank�s pro�t also increases as the precision of the asset�s

quality signal increases. The asset risk and bank�s pro�t are maximal when the

signal is perfectly revealing. As established in Section 3, these features are general

properties.

We calculate the precision that maximizes the surplus. From (23) we get

"h := q�0h(q)=�h = �(aqb+ 1� 2q)�1 > �1 > �e:

Thus, for the linear return function (22) the premise of Proposition 2 holds. Figure

2 provides graphs of the optimal precision and maximum surplus for c 2 [0;1). The
surplus as a function of the signal�s precision is readily calculated using equations

(10), (11), (22), and (23). We obtain �c = 5
p
2 � 1 ' 6:07 and  (�q) ' 14:66. Hence

by Proposition 2, the optimal precision is 1 for c 2 [0; 6:07]; it is (c+ 1) = (c+ 2) for
c 2 (6:07; 14:66_]; and it is �q ' 0:94 for c > 14:66:
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Figure 2. The left and right panels depict the optimal precision and surplus, respec-

tively, as a function of the cost of bank failure.
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Naturally, the maximum surplus decreases with the social cost of bank failure

(the solid line in the right panel of Figure 2). The left panel depicts the socially

optimal precision. The maximal precision q = 1 is socially optimal when the social

cost of a bank failure is small. The socially optimal precision eventually drops to ql(c)

when this cost reaches the value �c = 6:07, which increases with c on (�c;  (�q)]; where

 (�q) ' 14:66: (Thus, �c <  (�q) in this example.) Once the social cost of a bank failure

reaches the value  (�q) ; the optimal precision settles on the stability maximizing value

�q and remains at this level for larger social costs. Thus, the socially optimal precision

is a non-monotonic function of the social cost of a bank failure. (For this linear return

function, taking a = 1=2 instead of a = 4=5; while keeping b = 120;we obtain  (�q) < �c

and, as a result, the socially optimal precision drops from q = 1 to q = �q when the

social cost of bank failure reaches the value �c > (2�q � 1) = (1� �q).)
Figure 1 also shows the equilibrium for this numerical example in the setting of

Section 4, where the bank�s contract involves a repayment promise conditional on the

signal realization: In the relatively opaque banking environment q 2 (1=2; q̂]; where
q̂ = 188=189 ' 0:9947, the bank chooses the asset ~� = 4=5 and is expected pro�t

is B̂�(q) = E[R(~�)] � 1 = 37:4 (the horizontal green dash lines in the right and left
panels of Figure 1, respectively); in the relatively transparent banking environment

q 2 (q̂; 1]; the bank chooses a more risky asset, �� (q) = �h (q) ; and obtains greater

expected pro�ts, Bh (q), and both risk and payo¤s increase with precision and are

maximal at q = 1; as shown in Figure 1.

In the setting of Section 4, if the social cost of bank failure c is below ĉ = 24:5; then

maximal precision is q = 1 is socially optimal, and yields a maximum surplus equal

to Ŵ �(c) = W �
h (c) = 1853=48 � (5=24) c; which is the green dashed line displayed

in the right panel of Figure 2. For larger values of c any level of precision below q̂

yields the maximum surplus Ŵ �(c) = E[R (~�)]� (1� ~�) c = 38:4� c=5; which is the

magenta line displayed in the right panel of Figure 2. Thus, for c > �c the maximum

surplus in this setting is below that in the base setting.

Finally, we calculate the equilibrium of perfectly competitive banking sector as

described in Section 5, assuming the return function given in (22). Using (19) we
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calculate the equilibrium level of risk, which is given by

�c(q) =

p
(1� q) (1� q + 2a(2q � 1))� (1� q)

2q � 1 : (24)

Figure 3 illustrates the results of Proposition 5 for the speci�c numerical example

a = 4=5; b = 120: As Figure 3 shows, in a competitive banking sector asset risk

increases (i.e., �c decreases) with the precision of the asset quality. Let us take

� = 1=5 as a lower bound for �, which �c reaches at q = 31=32 ' 0:97. Then for q
close to unity �c becomes independent of q: Comparing Figure 3 with the left panel

of Figure veri�es that �c < �h < ~� < �l for q 2 (1=2; 1]:
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Figure 3. The level of risk in a competitive banking sector as a function of the

signal�s precision.

For this numerical example risk-taking is sensitive to the precision of the asset

quality signal; speci�cally, "c(q) < �1 for q 2
�
0:62; q

�
; hence the su¢ cient condi-

tion of Proposition 6 for maximal transparency to maximize surplus does not hold.

Nonetheless, the left panel of Figure 4 shows that maximal precision maximizes sur-

plus also in this example: Using equations (20) and (24) we provide graphs of the

function Wc(c; q) for c = 1 (black curve), c = 10 (red curve), c = 20 (green curve),

c = 40 (blue curve), and c = 80 (magenta curve). These graphs suggest that Wc(c; �)
is increasing in q, and therefore that maximal precision is socially optimal. Note that

Wc(c; �) increases faster for q > q since banks�asset riskiness remains at �. The right

panel shows a graph of the maximum surplus W �
c (c) = Wc(c; 1) as a function of the

social cost of bank failure.
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Figure 4. The left panel depicts graphs of Wc(c; q) for c 2 f1; 10; 20; 40; 80g : The
right panel depicts the graph of W �

c (c) =Wc(c; 1):

7 Conclusions

We uncover two e¤ects of public disclosures of information about banks�asset port-

folio: A direct e¤ect on investors behavior, resulting from their improved ability to

distinguish between solvent and insolvent banks, and an indirect e¤ect on the banks�

risk-taking incentives. When information is imprecise, the direct e¤ect of increasing

precision is nil, whereas the indirect e¤ect induces banks to choose less risky assets,

providing market discipline and improving banking stability. When information is

precise, however, the direct e¤ect of increasing precision implies that banks re�nance

only when the news is good, and the indirect e¤ect induces banks to choose more

risky assets, impairing banking stability. Therefore, a certain degree of opacity might

be conducive to banking sector stability and welfare. While we derive these results

in a simple setting, the underlying e¤ects we identify arise as well under alternative

competitive environments and the contracting possibilities of public information.
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Appendix

A. Proofs

Proposition 1 follows from Lemmas 1 to 5. Lemma 1 identi�es investors�equilibrium

behavior.

Lemma 1. Let (q; �; s) 2 [1=2; 1]�[�; ��]�fl; hg. If r(�) � 1=Pr [R (�) = r (�) j S(q) = s] ;

then x�s(q; �; �) = 0 for � < 1=Pr [R (�) = r (�) j S(q) = s], and x�s(q; �; �) = 1 for

� � 1=Pr [R (�) = r (�) j S(q) = s] : Otherwise, x�s(q; �; �) = 0 for all �:

Proof: Assume that r(�) � 1=Pr [R (�) = r (�) j S(q) = s]. Let �; �0 2 [0;1) be
such that � < 1=Pr [R (�) = r (�) j S(q) = s] � �0: Then minf�; r(�)g = � and

minf�0; r(�)g � 1=Pr [R (�) = r (�) j S(q) = s] ; and therefore

u(q; �; �; s) = Pr [R (�) = r (�) j S(q) = s] �

< 1

� Pr [R (�) = r (�) j S(q) = s] minf�0; r(�)g

= u(q; �; �0; s);
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and hence x�s(q; �; �) = 0 and x
�
s(q; �; �

0) = 1:Assume r(�) < 1=Pr [R (�) = r (�) j S(q) = s].

Then for all � 2 [0;1); minf�; r(�)g < 1=Pr [R (�) = r (�) j S(q) = s] and

u(q; �; �; s) = Pr [R (�) = r (�) j S = s] minf�; r(�)g < 1;

and hence x�s(q; �; �) = 0. �

Lemma 2 shows that the bank�s equilibrium payo¤ is positive, and identi�es the

repayment promises that may arise in equilibrium.

Lemma 2. Let q 2 [1=2; 1]. If (��(q); ��(q); x�(q)) is an equilibrium of �(q), then

r(��(q)) > ��(q) and B�(q) := B(q; ��(q); ��(q); x�(q)) > 0: Moreover, either ��(q) =

1=Pr [R (�� (q)) = r (�� (q)) j S(q) = h], or ��(q) = 1=Pr [R (�� (q)) = r (�� (q)) j S(q) = l].

Proof: By Assumption 1, E[R(~�)] = ~�r(~�) > 1, where ~� := argmax�2[�;��] E[R(�)].

We show that the bank can secure a positive expected payo¤ by choosing (�; �) =

(~�; 1=Pr [R (~�) = r (~�) j S(q) = h]). Since

r(~�) > 1=~� � 1=Pr [R (�) = r (�) j S(q) = s]

1=Pr [R (~�) = r (~�) j S(q) = h] ;

x�h(q; ~�; 1=Pr [R (~�) = r (~�) j S(q) = h]) = 1 by Lemma 1. Also,

u(q; ~�; 1=Pr [R (~�) = r (~�) j S(q) = h] ; l) =
Pr [R (~�) = r (~�) j S(q) = l]

Pr [R (~�) = r (~�) j S(q) = h]
< 1;

and therefore x�l (q; ~�; 1=Pr [R (~�) = r (~�) j S(q) = h]) = 0. Hence

B�(q) = B(q; ��(q); ��(q); x�(q))

� B(q; ~�; 1=Pr [R (~�) = r (~�) j S(q) = h] ; x�(q; ~�; 1=Pr [R (~�) = r (~�) j S(q) = h]))

= q~� (r(~�)� 1=Pr [R (~�) = r (~�) j S(q) = h])

> q~� (r(~�)� 1=~�)

= q (E[R(~�)]� 1)

> 0:

Moreover,

B�(q) = (qx�h(q) + (1� q)x�l (q))�
�(q) (r(��(q))� ��(q)) > 0
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implies r(��(q)) > ��(q):

Since Pr [R (�) = r (�) j S(q) = h] � � � Pr [R (�) = r (�) j S(q) = l] ; for � <

1=Pr [R (�� (q)) = r (� (q)) j S(q) = h] Lemma 1 implies

x�h(q; �
�(q); �) = x�l (q; �

�(q); �) = 0;

and hence the bank�s payo¤is zero. Thus, B�(q) > 0 implies �� � 1=Pr [R (�� (q)) = r (� (q)) j S(q) = h].

Also, repayment promises � 2 (1=Pr [R (�� (q)) = r (� (q)) j S(q) = h] ; 1=Pr [R (�� (q)) = r (� (q)) j S(q) = l]))

or � > 1=Pr [R (�� (q)) = r (� (q)) j S(q) = l] are strictly dominated, since in either

case the bank can increase its payo¤ by slightly lowering the repayment promise.

Hence either ��(q) = 1=Pr [R (�� (q)) = r (� (q)) j S(q) = h] or ��(q) = 1=Pr [R (�� (q)) = r (� (q)) j S(q) = l].

�

Lemma 3 establishes some properties of the mappings �h(q) and �l(q):

Lemma 3. The mappings �l and �h are well de�ned functions on (1=2; 1) and satisfy

�0l � 0 and �0h � 0. Moreover, �l(1=2) = �h(1=2) = ~� and �l > �h for q 2 (1=2; 1] :

Proof: Recall that E[R(�)] is strictly concave and is maximized at ~� 2 (�; ��) by
Assumption 1. Also, as shown in Section 3, �h(1=2) = �l(1=2) = ~�:

Since Bl(q; �) is strictly concave, it has a unique maximizer. Hence �l is a function.
Di¤erentiating Bl we get

@Bl(q; �)

@�
= E0[R(�)] +

2q � 1
1� q

:

Because �l(1=2) = ~� 2 (�; ��); �l(q) is the solution the equation @Bl(q; �)=@� = 0 for
q near 1=2: Di¤erentiating this equation and rearranging we get

�0l(q) = �
�
(1� q)2E00

[R(�)]
��1

> 0;

i.e., �l is strictly increasing for all q such that �l(q) 2 (�; ��). If @Bl(q; �)=@� > 0

on (�; ��) for some q = q0 < 1; then �l(q) = �� and �0l(q) = 0 for all q 2 [q0; 1]. To
summarize, �l increases with q on [1=2; 1] from ~�: If it reaches the value �� for some

q < 1; then it remains constant at �� as q increases further.

36



SinceBh(q; �) is strictly concave, it has a unique maximizer. Hence �h is a function.
Di¤erentiating Bh we get

@Bh(q; �)

@�
= qE0[R(�)]� (2q � 1)

Because �h(1=2) = ~� 2 (�; ��), �h(q) is the solution the equation @Bh(q; �)=@� = 0
for q near 1=2: Di¤erentiating this equation and rearranging we get

�0h(q) =

�
q2
d2E[R(�)]

d�2

��1
< 0;

i.e., �h is strictly decreasing for all q such that �h(q) 2 (�; ��). If @Bh(q; �)=@� < 0 on
(�; ��) for some q = q1, then �h(q) = � and �0h(q) = 0 for all q 2 [q1; 1]. To summarize:
�h decreases with q on [1=2; 1] from ~�: If it reaches the value � for some q < 1; then

it remains constant at � as q increases further.

Therefore, for q 2 (1=2; 1]

�h(q) < �h(1=2) = �l(1=2) < �l(q): �

Lemma 4 identi�es a threshold value for q below which the bank�s repayment

promise attracts investors whatever the realization of the signal, and above which the

bank�s repayment promise attracts investors only when the realization is h.

Lemma 4. There exists �q 2 (1=2; 1) such that the unique equilibrium of �(q) is

(��(q); ��(q); x�(q)) = (�l(q); 1=Pr [R (�
� (q)) = r (� (q)) j S(q) = l] ; (1; 1))

if q 2 [1=2; �q); and it is

(��(q); ��(q); x�(q)) = (�h(q); 1=Pr [R (�
� (q)) = r (� (q)) j S(q) = h] ; (0; 1))

if q 2 (�q; 1].

Proof: We �rst show that the function

g(q) := Bh(q; �h(q))�Bl(q; �l(q))
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is increasing. Di¤erentiating Bh and noting that E[R(�h(q))] > 1 and

@Bh(q; �h)

@�
�0h(q) = 0;

we get

dBh(q; �h(q))

dq
=

@Bh(q; �h)

@q
+
@Bh(q; �h)

@�
�0h(q) (25)

= E[R(�h(q))] + 1� 2�h(q)

> 2� 2�h(q)

> 0:

Di¤erentiating Bl; and noting that

@Bl(q; �l(q))

@�
�0l(q) = 0;

we get

dBl(q; �l(q))

dq
=

@Bl(q; �l)

@q
+
@Bl(q; �l(q))

@�
�0l(q) (26)

= �1� �l(q)

(1� q)2
< 0:

Hence g is increasing.

By Lemma 3,

g(1=2) = Bh(q; �l(q))�Bl(q; �h(q)) = � (E[R(~�)]� 1) =2 < 0:

Hence ��(q) = �l(q) for q near 1=2. Also, because E[R(�)] and � are bounded,

g(q) becomes positive for q near 1; i.e., ��(q) = �h(q) for q near 1. Since g is

continuous and increasing there is �q such that

g(q) S 0, q S �q;

and therefore ��(q) = �l(q) for q < �q; and ��(q) = �h(q) for q > �q. �

Lemma 5 derives some properties of the bank�s equilibrium risk choice and payo¤.

Lemma 5. The functions �� and B� satisfy d��=dq > 0 and dB�=dq < 0 on (1=2; �q)

and d��=dq < 0 and dB�=dq > 0 on (�q; 1): Moreover, �� (respectively, B�) reaches

its minimal (maximal) value at q = 1; and its maximal (minimal) value at q = �q.
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Proof: Because �h(�q) < �l(�q) and �0h � 0 and �0l � 0 by Lemma 3, the minimal

(respectively, maximal) value of �� on [1=2; 1] is reached at q = 1 (q = �q): Since

B�(q) = Bl(q; �l(q)) on (1=2; �q) ; equation (26) implies that dB�=dq < 0 on (1=2; �q) ;

and since B�(q) = Bh(q; �h(q)) on (�q; 1) ; equation (25) implies that dB�=dq > 0 on

(�q; 1) : In order to establish that B� reaches its maximum value at q = 1 we show

that B�(1) > B�(1=2): We have

B�(1)�B�(1=2) = Bh(1; �
�(1))�Bl(

1

2
; ��(1=2))

= Bh(1; �
�(1))� (E[R(��(1=2))]� 1)

� Bh(1; �
�(1))� (E[R(��(1=2))]� ��(1=2))

= Bh(1; �
�(1))�Bh(1; �

�(1=2))

> 0;

where strict inequality follows since ��(1) uniquely maximizes Bh(1; �) and ��(1) <

��(1=2): �

Proof of Remark 1: For q 2 (1=2; 1] denote by ��(q) the game the bank and the
investors face when investors do not observe the bank�s risk choice. The game ��(q)

is identical to �(q) except that investors can only condition their decisions on the

repayment promise � and on the realization of the signal, i.e., the mapping describing

investors�behavior y(q) associates with every repayment promise � 2 [0;1) a pair
y(q; �) = (yh(q; �); yl(q; �)) 2 [0; 1]2: The formal de�nition of equilibrium in this

game is obtained by replacing the function x with the function y in the de�nition of

equilibrium in the end of Section 2.

Let (���(q); ���(q); �y�(q)) and �B�(q) be the strategies and the payo¤ of the bank,

respectively, in an equilibrium of the game ��(q): It is easy to see that

�y�(q; ���(q)) = x�(q; ���(q); ���(q)):

Therefore

�B�(q) = B(q; ���(q); ���(q); y�(q; ���(q)))

= B(q; ���(q); ���(q); x�(q; ���(q); ���(q)))

� B�(q):
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Furthermore, the inequality �B�(q) � B�(q) is generally strict. �

Proof of Proposition 2: The bank fails if either investors do not invest or

the asset pays no return. For q 2 (1=2; �q), ��(q) = �l(q) by Proposition 1; hence

x�(q) = (1; 1), and therefore the bank fails only if the asset does not pay its return,

i.e., it fails with probability 1���(q): Since �� is decreasing on (1=2; �q); this probability
is minimal at �q: For q 2 (�q; 1), ��(q) = �h(q); and hence x�(q) = (1; 0); by Proposition

1; therefore the bank fails either if S = l, or if S = h and the asset pays no return,

i.e., the bank fails with a probability greater than 1 � ��(q) = 1 � �h(q). Since

�h(q) < �l(q) for all q 2 (1=2; �q) (see Lemma 3 in the Appendix), the stability

maximizing precision is �q.

Next we show that there exists �c > 0, such that W �
h (c) S W �

l (c) if and only if

c T �c. Write
G(c) :=W �

h (c)�W �
l (c):

Recalling W �
h (c) =Wh(c; 1; �h(1)) and W �

l (c) =Wl(c; �(ql(c))) allows us to calculate

G(c) explicitly as

G(c) = E[R(�h(1))] + (1� �h(1))(1� c)� E[R(�l(ql(c)))] + (1� �l(ql(c)))c

= E[R(�h(1))] + 1� �h(1)� E[R(�l(ql(c)))]� c (�l(ql(c))� �h(1)) :

= H(�h(1)) + (1 + c)�h(1)� E[R(�l(ql(c)))]� c�l(ql(c)):

We next establish that G(c) is decreasing in c. We have

G0(c) = � (�l(q)� �h(1))� (E0[R(�l)] + c)�0l(ql(c))q
0
l(c):

Note that �h(1) < �l(q) and �0l � 0 by Lemma 3, and q0l � 0 �see equation (10).

Moreover, because ql maximizes Wl(c; �l(�)); E0[R(�l)] + c � 0 �see equation (11).

Hence

G0(c) � � (�l(ql(c))� �h(1)) < 0:
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Now, since �h(1) maximizes E[R(�)]� �; we have

G(0) = E[R(�h(1))]� E[R(�l)] + 1� �h(1)

= E[R(�h(1)))� �h(1)� (E[R(�l)]� 1)

> E[R(�h(1))]� �h(1)� (E[R(�l)]� �l)

> 0:

We next show that for c large, G(c) < 0: We may write

G(c) = E[R(�h(1))]� E[R(�l(ql(c)))] + 1� �h(1)� c (�l(ql(c))� �h(1))

= E[R(�h(1))]� �h(1)� (E[R(�l(ql(c)))]� 1)� c (�l(ql(c))� �h(1)) :

Since

E[R(�h(1))]� �h(1)� (E[R(�l(ql(c)))]� 1) < E[R(�h(1))]� �h(1);

for all c; then �l(ql(c))��h(1) > 0 and �l � �l(1=2) > �h(1) by Lemma 3. Therefore

for c such that

c(�l(1=2)� �h(1)) > E[R(�h(1))]� �h(1)

we have G(c) < 0:

Let �c be the unique solution to the equation G(c) = 0; i.e.,

�c =
E[R(�h(1))]� E[R(�l(ql(�c)))] + 1� �h(1)

�l(ql(�c))� �h(1)
> 0: (27)

Equation (27) de�nes �c implicitly as a function of q when  (�c) < �q; in which case

ql(�c) = (�c+ 1) = (�c+ 2), as implied by equation (13). Whenever  (�c) � �q; equation

(27) provides an explicit formula of �c, since in this case ql(�c) = �q, as implied by

equation (13). �

Proof of Proposition 4. First we show that there exists ĉ > 0, such that W �
h (c) S

E[R(~�)] + (1� ~�)c if and only if c T ĉ. Write

Ĝ(c) : = W �
h (c)� (E[R(~�)] + (1� ~�)c)

= (E[R(�h(1))] + (1� �h(1))(1� c))� (E[R(~�)] + (1� ~�)c)

= (E[R(�h(1))]� �h(1))� (E[R(~�)]� 1)� (~� � �h(1))c

= Ĝ(0)� (~� � �h(1))c
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Since �h(1) maximizes E[R(�)]� �; then

Ĝ(0) = (E[R(�h(1)))� �h(1))� (E[R(~�)]� 1)

> (E[R(�h(1))]� �h(1))� (E[R(~�)]� ~�)

> 0:

Moreover,

(E[R(�)]� �)0
��
�=~�

= �1;

implies ~� > �h(1); and therefore

Ĝ0(c) = �(~� � �h(1)) < 0:

Further, Ĝ(c) < 0 for c > Ĝ(0)=(~� � �h(1)). Hence there is ĉ such that Ĝ(c) T 0 for
c T ĉ:

Proof of Proposition 5: We proof the claims about asset risk. Let q 2 (1=2; 1]:
Since

E[R(�) j S(q) = h] = Pr [R (�) = r (�) j S(q) = h] r(�);

Using (2) and taking derivative we get

@E[R(�) j S(q) = h]

@�
=

@ Pr [R (�) = r (�) j S(q) = h]

@�
r(�)

+Pr [R (�) = r (�) j S(q) = h] r0(�)

=
q

q� + (1� q)(1� �)

�
(1� q) r(�)

q� + (1� q)(1� �)
+ �r0(�)

�
:

The �rst order condition for a solution to the competitive bank�s problem (19),

@E[ R(�)jS(q) = h]=@� = 0; yields the equation

0 =

�
(1� q) r(�)

q� + (1� q)(1� �)
� r(�)

�
+ r(�) + �r0(�) (28)

= �
�

2q � 1
q� + (1� q)(1� �)

�
E[R(�)] + E0[R(�)]:

Since E0[R(~�)] = 0 by Assumption 1, this equation implies �c(q) < ~� for all q 2
(1=2; 1] : Also, ~� < �l(q) for all q 2 (1=2; 1] by Lemma 3. Now, noting that

E[R(�c(q)) j S = h] � E[R(~�) j S = h] � E[R(~�)] > 1;
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equation (28) implies that for all q 2 (1=2; 1],

qE0[R(�c(q))] = (2q � 1)E[R(�c(q))]
�

q

q�c(q) + (1� q)(1� �c(q))

�
= (2q � 1) Pr [R (�c(q)) = r (�c(q)) j S(q) = h] r(�c(q))

= (2q � 1)E[R (�c (q)) j S(q) = h]

> 2q � 1

= qE0[R(�h)];

where the last substitution uses equation (9) derived in Section 3 and the condi-

tion @Bh(�h; q)=@� = 0. Since E[R(�)] is concave, E0[R(�c(q))] > E0[R(�h)] implies
�c(q) < �h(q): Therefore, for q 2 (1=2; 1] ;

�c(q) < �h(q) < ~� < �l(q):

Di¤erentiating equation @E[ R(�)jS = h]=@� = 0 implicitly de�ning �c(q) we get

d�c(q)

dq
= �@

2E[R(�c(q)) j S(q) = h]

@�@q

�
@2E[R (�c (q)) j S(q) = h]

@�2

��1
:

Thus, if �c(q) is an interior solution to the problem (19), then

@2E[R (�c (q)) j S(q) = h]

@�2
< 0:

Moreover,

@2E[R (�c (q)) j S(q) = h]

@�@q
=

��c(q)r(�c(q))
[q�c(q) + (1� q)(1� �c(q))]2

< 0:

Hence d�c(q)=dq < 0. �

B. Example: Calculations

We begin with calculations underlying Figure 1. Substituting b (a� �=2) from equa-

tion (22) for r(�) in equation (6) gives

Bl(q; �) = �b
�
a� �

2

�
� q (1� �) + (1� q)�

1� q
: (29)
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From this equation (29) we get

@Bl(q; �)

@�
= b (a� �) +

2q � 1
1� q

;

and solving for � the equation @Bl(q; �)=@� = 0 gives

�l(q) = a+
2q � 1
b (1� q)

: (30)

Likewise, substituting equation (22) for equation (7) gives

Bh(q; �) = q�b (a� �=2)� q� � (1� q)(1� �); (31)

from which we get
@Bh(q; �)

@�
= qb (a� �)� (2q � 1):

Solving for � the equation @Bh(q; �)=@� = 0 yields

�h(q) = a� 2q � 1
bq

: (32)

Equations (30) and (32) constitute the formulae in equation (23) of the main

text. To identify �q, we �rst substitute equations (30) and (32) for (29) and (31),

respectively, so as to obtain Bl(q) = Bl(q; �l(q)) and Bh(q) = Bh(q; �l(q)): Then,

solving Bl(q) = Bh(q) with a = 4=5 and b = 120 for q yields �q ' 0:94:
Using the values a = 4=5 and b = 120, the left panel of Figure 1 plots �l(q) of

equation (30) for q 2 [1=2; 0:94) and �h(q) of equation (32) for q 2 (0:94; 1]: Similarly,
the right panel of Figure 1 plots Bl(q) for q 2 [1=2; 0:94) and Bh(q) for q 2 (0:94; 1]
when a = 4=5 and b = 120:

Turning to calculations underlying Figure 2, the surplus as a function of the signal

precision is readily calculated using the formulae developed in Section 4. For q < �q;

using equations (10), (22), and (30), we get

Wl(c; �l(q)) = E[R(�l)]� (1� �l)c = �lr(�l)� (1� �l)c (33)

= b

�
a+

2q � 1
b (1� q)

�0@a�
�
a+ 2q�1

b(1�q)

�
2

1A� (1� a� 2q � 1
b (1� q)

)c:

44



Similarly, for q > �q; using equations (10), (22) and (32), we get

Wh(c; q; �h(q)) = qE[R(�h)] + (1� q)�h + (1� �h)q � (1� q�h)c

= q�hr(�h) + (1� q)�h + (1� �h)q � (1� q�h)c

= qb

�
a� 2q � 1

qb

��
a� 1

2

�
a� 2q � 1

qb

��
+(1� q)

�
a� 2q � 1

qb

�
+ (1�

�
a� 2q � 1

qb

�
)q � (1� q

�
a� 2q � 1

qb

�
)c:

Hence,

Wh(c; 1; �h(1)) =
1

2b

�
a2b2 � 1

�
� (1� a+

1

b
)(c� 1): (34)

As shown in the proof of Proposition 4, ĉ is a solution of the equation

Wh(c; 1; �h(1)) =Wl(c; �l(ql(c)));

where ql(c) is given by equation (13). Assume that ĉ < �c in which case equation (13)

implies that ql(c) = (c+ 1) = (c+ 2). Inserting a = 4=5 and b = 120 in equations

(33) and (34) and solving Wh(c; 11; �h(1)) = Wl(c; �l((c+ 1) = (c+ 2))) for c yields

�c = 5
p
2 � 1 ' 6: 07: Since �q ' 0:94, we have (2�q � 1) =(1 � �q) ' 14:67: Thus the

initial assumption that �c < (2�q � 1) =(1� �q) is ful�lled.
The left panel of Figure 2 plots the socially optimal precision identi�es in Proposi-

tion 2 for a case in which �c < 14:67. Using the values a = 4=5 and b = 120, the right

panel plots the maximum surplus W �(c) = Wh(c; 1; �h(1)) from equation (34) for

c � �c, W �(c) = Wl(c; �l((c+ 1) = (c+ 2))) and W �(c) = Wl(c; �l(�q)) from equation

(33) for c 2 (6:07; 14:67_] and c > 14:67, respectively.
Figure 3 is a result of the following calculations characterizing the equilibrium in a

perfectly competitive banking sector: Since E[ R(�)jS = h] = Pr [R (�) = r (�) j S(q) = h] r(�),

@E[R (�) j S(q) = h]

@�
=

@ Pr [R (�) = r (�) j S(q) = h]

@�
r(�) + Pr [R (�) = r (�) j S(q) = h] r0(�)

=
qb

q� + (1� q)(1� �)

�
(1� q) (a� �=2)

q� + (1� q)(1� �)
� �

2

�
;

where the second equality uses equations (2) and (22). The de�nition (19) thus

implies that the equilibrium level of asset risk solves the equation

(1� q) (a� �=2)

q� + (1� q)(1� �)
=
�

2
:
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Solving for � we get

�c(q) =

p
(1� q) (1� q + 2a(2q � 1))� (1� q)

2q � 1 ; (35)

which is equation (24) of the main text. Note from equation (35) that �c(1) = 0: Thus,

for q su¢ ciently large, �c(q) = �; otherwise �c(q) is given by equation (35). Letting

�c(q) = � = 1=5 and a = 4=5 in equation (35) and solving the resulting expression

for q gives q = 31=32: Figure 3 plots �c(q) of equation (35) for q 2 [1=2; 31=32) and
�c(q) = 1=5 for q 2 [31=32; 1]:
To construct Figure 3, we �rst observe from equation (20) that the surplus in the

case of a competitive banking sector is given by

Wc(c; q) = E[ R(�c(q))jS = h]� (1� q�c(q))c

= Pr [R (�c (q)) = r (�c (q)) j S(q) = h] r(�c(q))� (1� q�c(q))c:

Substituting from equations (2) and (22) the formulae for Pr [R (�c (q)) = r (�c (q)) j S(q) = h]

and r(�c(q)) in the above equation gives

Wc(c; q) =
q�c(q)b (a� �c(q)=2)

q�c(q) + (1� q)(1� �c(q))
� (1� q�c(q))c: (36)

The left panel of Figure 3 is plotted by letting a = 4=5 and b = 120 as follows:

For q 2 [1=2; 31=32); we substitute equation (35) for �c(q) in equation (36) and for
q 2 [31=32; 1]; we set �c(q) = 1=5 in equation (36).
Since taking q = 1, yields �c(q) = �; we obtain from equation (36) that

W �
c (c) =Wc(c; 1) = b(a� �=2)� (1� �)c:

For the numerical example a = 4=5; b = 120, and � = 1=5; we haveW �
c (c) = 84�4c=5;

which is depicted by the right panel of Figure 3.
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