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Abstract

Policymakers and researchers see in�ation characterized by cyclical �uctuations driven

by changes in resource utilization and temporary shocks, around a trend in�uenced by in-

�ation expectations. We study the in-sample in�ation dynamics and forecast in�ation out-

of-sample by analyzing a New Keynesian Phillips Curve (NKPC) in the frequency domain.

In-sample, while in�ation expectations dominate medium-to-long-run cycles, energy prices

dominate short cycles and business-to-medium cycles once expectations became anchored.

While statistically signi�cant, unemployment is not economically relevant for any cycle. Out-

of-sample, forecasts from a low-frequency NKPC signi�cantly outperform several benchmark

models. The long-run component of unemployment is key for such remarkable forecasting

performance.

Keywords: in�ation dynamics, in�ation forecast, New Keynesian Phillips Curve, frequency
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1 Introduction

Policymakers typically see in�ation characterized by i) a trend strongly in�uenced by in�ation

expectations that, in turn, are shaped by the conduct of monetary policy, and ii) deviations from

that trend caused by persistently high or low resource utilization, as well as temporary movements

in energy prices and other shocks (see e.g. Yellen, 2016).

In the economics literature, this general description of the in�ation dynamic is referred to as

the expectations-augmented Phillips curve. The state-of-the-art empirical (micro-founded) New

Keynesian Phillips Curve (NKPC) relates in�ation (πt) to in�ation expectations (πet+1), a measure

of economic activity (such as the unemployment gap, ugapt), and measures of supply shocks (such

as energy in�ation, sst) (see e.g. Coibion and Gorodnichenko, 2015):

πt = c+ α1 π
e
t+1 + α2 ugapt + α3 sst + εt , (1)

where c is a constant and εt the error term.

The NKPC and the policymakers' view of in�ation dynamics are close, but not equivalent. For

example, agents' expectations of next-period in�ation (πet+1 in the NKPC) are not long-run expec-

tations, and not necessarily shaped by the central bank's in�ation target. Energy in�ation may

a�ect expectations and may, on occasions, have persistent impacts. The unemployment gap may

result from various types of shocks and its �uctuations may exhibit varying persistence over time.

Hasenzagl, Pellegrino, Reichlin, and Ricco (2021) have reconciled these two views through a multi-

variate semi-structural time series model with endogenous trend in�ation, natural unemployment,

and potential output.

In this paper, we take a di�erent approach by using a frequency-domain decomposition of the

time series of in�ation and its NKPC determinants. To understand our approach, consider the

decomposition of the time series of in�ation (πt) and of its NKPC determinants into four cyclical
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components � high frequency (HF, less than 2 years), business cycle frequencies (BCF, 2 to 8

years), medium frequencies (MF, 8 to 16 years), and low frequencies (LF, more than 16 years) � so

that πt = πHFt + πBCFt + πMF
t + πLFt . The low-frequency (long-run) component of in�ation should

be closely related with in�ation expectations, especially with their low-frequency component, and

probably less so with resource utilization and energy shocks. At the other end of the frequency

spectrum, the high-frequency (short-run) movements of in�ation should be closely related with

energy prices shocks, especially their dominant high-frequency component, and less so with cycles

of unemployment and expectations. At intermediate frequencies (BCF and MF), unemployment is

expected to play a key role, with the relevance of in�ation expectations and supply shocks possibly

changing during speci�c episodes.

We begin by decomposing the time series of in�ation and its NKPC determinants with discrete

wavelet tools. We then use standard linear regression and forecast methods to study the in-sample

dynamics of in�ation, and to forecast in�ation out-of-sample in a consistent framework based on

the NKPC.

Our �rst main contribution is to provide new stylized facts on in�ation dynamics. Using a frequency

domain approach is important in light of the controversies surrounding the Phillips curve's ability

to explain in�ation dynamics. The instability and �attening of the Phillips curve in the 1980s

or 1990s (see e.g. Ball, Mazumder, Dynan, and Stock, 2011, Coibion and Gorodnichenko, 2015,

and Del Negro, Lenza, Primiceri, and Tambalotti, 2020) has been often associated with phenom-

ena related to speci�c frequencies such as the low-frequency anchoring of in�ation expectations.

Relatedly, some authors (e.g. Cogley and Sbordone, 2008) have analyzed the interaction between

low-frequency and high-frequency variations in in�ation dynamics. Moreover, the theoretical liter-

ature using Dynamic Stochastic General Equilibrium (DSGE) models emphasizes the importance

of properly modeling medium- and low-frequency movements of in�ation (Del Negro, Giannoni,

and Schorfheide, 2015), and capturing interactions between macro variables at di�erent frequencies

(see e.g. Comin and Gertler, 2006, Beaudry, Galizia, and Portier, 2020 and Angeletos, Collard,
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and Dellas, 2020). Against this background, we analyze the dynamics of in�ation in the frequency

domain and provide answers to the following questions: Is the magnitude and (in)stability of the

NKPC di�erent across cyclical frequencies? Is there any �attening of the NKPC? If so, at which

cycles? What is the contribution of each NKPC determinant in explaining in�ation across cycles

and over time?

We emphasize the following results about in�ation dynamics. First, the estimates of the NKPC

slopes for the three frequency bands comprising cycles up to 16 years (HF, BCF, and MF) are

quite similar to the standard time series estimate, while the estimate for cycles longer than 16 years

(LF) is three times larger. Second, the NKPC slope is remarkably stable for medium frequencies

and increasingly stronger after the Great Recession for low frequencies, which suggests that the

Phillips trade-o� is highly relevant in the medium-to-long run. Third, there is some evidence of

�attening after the Great Recession, and, more recently, during the Covid recession, but only

distinctly for very short cycles (HF) and quite mildly for business cycles (BCF). Fourth, when

assessing the contribution of each NKPC determinant in explaining in�ation over time, we �nd

that expectations dominate at cycles longer than 8 years, while energy in�ation dominates at

short cycles (HF). Moreover, energy in�ation become highly relevant at the business and medium

cycles once expectations became anchored around 2000. Most importantly, unemployment fails to

account for a substantial part of the variation of in�ation � even at business-cycle frequencies.

The second main contribution of this paper is the use of a frequency-domain approach in making

out-of-sample forecasts of in�ation. This contribution is important in light of the inability of

standard NKPCs to beat simple time-series models in forecasting in�ation out-of-sample (see e.g.

Canova, 2007, Stock and Watson, 2007, Dotsey, Fujita, and Stark, 2018, and Berge, 2018), and

implying that the Phillips curve is an unreliable model for in�ation forecasting. The consensus

in the literature is that good in�ation forecasts must account for a slowly varying local mean for

in�ation (see e.g. Faust and Wright, 2013 and Chan, Clark, and Koop, 2018), which, of course, has

clear frequency-domain implications. Moreover, the data indicate that a large part of the variance
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of in�ation is due to its low-frequency �uctuations. This is not the case for all NKPC variables,

implying that a �exible use of frequency-domain information across variables may improve the

in�ation forecast. In this context, we attempt to answer the following questions: Can frequency-

domain NKPC-based forecasts not only beat those of the usually most successful benchmarks, but

those of a standard time-series NKPC as well? Are all in�ation frequencies equally important to

forecast? Which NKPC determinants of in�ation matter most? How does the forecast performance

of the frequency-domain NKPC evolve over time?

Our main results for the out-of-sample in�ation forecast can be summarized as follows. First, the

best forecast of in�ation (for di�erent forecasting horizons) is one based solely on the forecasts of

the low-frequency component of in�ation. In other words, the key to a good in�ation forecast is to

forecast well its low frequency and ignore the other frequencies of in�ation. This model consistently

outperforms both the standard benchmarks and the forecasts with the time-series NKPC over the

21 years of our out-of-sample exercise. Its relative performance is particularly good for the later

stages of the Great Recession and throughout the recovery. Second, it is also important to use the

low frequency of the unemployment gap as a predictor. Adding other frequencies of the predictors

further improves the forecasts of in�ation, but only marginally.

Overall, our frequency-domain approach to in�ation provides a re�ned analysis of in�ation dy-

namics and an improved method for forecasting in�ation. While unemployment may seem of little

relevance in-sample, a key insight of this work is that it remains crucial in predicting in�ation out-

of-sample due to its role at cycles longer than typical business cycles. The Phillips curve is alive

and well � as long as both time-domain and frequency-domain information is taken into account.

Our approach has a number of highly convenient features and a methodological innovation. First,

the time series are decomposed into frequency-domain components that have clear economic mean-

ing � high frequency (less than 2 years), business cycle frequency (2 to 8 years), medium frequencies

(8 to 16 years), and long-run frequencies (longer than 16 years). Second, each time series is decom-

posed into frequency components that add up precisely to the original time series. This assures that
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we are neither ignoring nor overlapping information. Third, our approach to forecast is �exible as

the forecast of each frequency component of in�ation may depend on other frequency components

of the predictors. Our method allows for forecasting a speci�c frequency of in�ation using infor-

mation of expectations, slack, and supply shocks from the same and possibly other frequencies.

This methodological contribution should be quite useful in applications in which predictors have

very di�erent relative power across cyclical bands.

The rest of the paper is organized as follows. In section 2, we brie�y discuss the studies that laid

the groundwork for this work. In section 3, we present the data and the method. Sections 4 and

5 present the results for our in-sample analysis of in�ation dynamics and for our out-of-sample

forecasts. Section 6 concludes.

2 Related literature

This paper relates to three strands of literature, i.e. speci�cation of the NKPC, frequency-domain

analyses of Phillips curves, and the frequency-domain approach to forecasting.

2.1 The New Keynesian Phillips Curve

Empirically, the history of the Phillips curve is one of �seemingly stable relationships falling apart

upon publication� (Stock and Watson, 2010), as well as of strong speci�cation and sampling un-

certainty (Mavroeidis, Plagborg-Moller, and Stock, 2014).

Here, we use a state-of-the-art empirical NKPC (equation 1) in the spirit of Coibion and Gorod-

nichenko (2015), Fuhrer (2017), and Coibion, Gorodnichenko, and Kamdar (2018).1 This NKPC

1 Given our purpose of describing and forecasting in�ation with an integrated framework that explores the
frequency-domain information in the data, we follow the vast literature focusing on reduced-form Phillips curves,
where identi�cation depends upon the ability of expectations and energy in�ation to control for changes in the
position of the curve. Alternative and more sophisticated identi�cation strategies that have recently gained pop-
ularity include the use of instrumental variables or cross-sectional (micro or regional) data to isolate the e�ect of
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relates to a vast literature that gradually re�ned the micro-founded full information rational ex-

pectations NKPC (described by e.g. Woodford, 2003), replacing the labor share (e.g. Gali and

Gertler, 1999) with the unemployment (or outputs) gap (e.g. Rudd and Whelan, 2007 and King

and Watson, 2012) as proxy for marginal costs, adding controls for supply shocks (in the spirit of

Gordon, 2011), and replacing rational expectations with survey expectations (e.g. Roberts, 1995).

Households survey in�ation expectations, given by the Michigan survey of consumers, became the

state-of-the-art in recent empirical NKPC for both theoretical and empirical reasons. Most notably,

household expectations have been shown to be the closest possible to �rm expectations, which while

relevant according to micro foundations, are still unavailable (see Coibion and Gorodnichenko,

2015, Coibion, Gorodnichenko, and Kumar, 2018, and Pfajfar and Roberts, 2018). Moreover, the

Michigan survey of household in�ation expectations features intrinsic inertia due to the micro-

founded ine�ciency with which agents revise expectations, and thus dispenses of ad hoc inertial

mechanisms (Fuhrer, 2017 and Coibion, Gorodnichenko, and Kamdar, 2018).2

While equation (1) has often been used to study the dynamics of in�ation, it has rarely been used

to forecast in�ation out-of-sample. The literature of in�ation forecasting based on Phillips curves

mostly relies on some version of the Friedman-Phelps accelerationist speci�cation (see e.g. Stock

and Watson, 1999, Canova, 2007 and Dotsey, Fujita, and Stark, 2018). The notable exception is

Berge (2018), who forecasts US in�ation with several models, including speci�cations of the NKPC

with expectations of in�ation taken from the Michigan survey of consumers. The key di�erence

between our paper and Berge (2018) is that we run the forecasts in the frequency domain, which

represents a novelty in the literature of Phillips curve-based in�ation forecasting.3

demand shocks on real activity (see e.g. McLeay and Tenreyro, 2020, Hazell, Herreno, Nakamura, and Steinsson,
2020, Hooper, Mishkin, and Su�, 2020, and Barnichon and Mesters, 2021).

2 See Aguiar-Conraria, Martins, and Soares (2019) for more details on the foundations and empirical advantages
of using the Michigan households survey of expected in�ation and, overall, a thorough review of the speci�cation
of the state-of-the-art empirical NKPC.

3 Another (less relevant) di�erence with Berge (2018) is that we include a proxy for supply shocks.
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2.2 The Phillips curve in the frequency domain

Our paper is by no means the �rst to explore the idea that the Phillips curve di�ers across

frequencies.

Some authors have used spectral analysis, ultimately based on Engle (1974), to study wage and

price in�ation Phillips curves. For instance, Reinbold and Wen (2020) identify demand shocks

and improve the identi�cation of a static Phillips curve across frequencies using spectral analysis.

Other papers use band-pass �lters and focus on the Phillips relation at business-cycle frequencies

(e.g. King and Watson, 1994). Overall, this literature has found a signi�cant relationship between

in�ation and unemployment at business-cycle frequencies, but not at shorter or longer cycles in

the context of static or accelerationist Phillips curves.

Another group of papers use frequency-dependent regression models (see Ashley and Verbrugge,

2009, 2020) to assess the (non)linearity of the Phillips curve. They �nd that accelerationist Phillips

curves exhibit di�erent slopes over the business cycle, with in�ation reacting di�erently to persis-

tent and non-persistent �uctuations of the unemployment gap.

Our paper most closely relates to studies that use wavelet tools to study the dynamics of in�ation

in the framework of Phillips curves. Using the continuous wavelet transform (CWT), Aguiar-

Conraria, Martins, and Soares (2019) show that there is considerable variation of the coe�cients

of a US NKPC identical to (1), both across frequencies and over time. Using the discrete wavelet

transform (DWT), Gallegati, Gallegati, Ramsey, and Semmler, 2011 not only �nd a structural

break in the mid-1990s and a signi�cant slope in the US accelerationist wage Phillips curve at

business cycle frequencies, but also at cycles longer than 8 years. Combining DWT and CWT

approaches, Fratianni, Gallegati, and Giri (2019) �nd that estimates of the UK wage Phillips

curve have been more stable and consistently signi�cant over time at medium-run cycles than at

business cycle frequencies.

Our paper o�ers several contributions to this �eld. First, we innovate in studying in�ation with
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the Maximal Overlap Discrete Wavelet Transform (MODWT) using a state-of-the-art empirical

NKPC. Second, we innovate by using such framework to consistently study both the in-sample

dynamics and the out-of-sample forecast of in�ation. Third, we are the �rst to build in�ation

forecasts from its frequency-speci�c forecasts.4

2.3 Frequency-domain forecasts

Our approach extends the use of discrete wavelet methods to forecast out-of-sample economic and

�nancial time series. This area of research includes Rua (2011) and Rua (2017), who forecasts GDP

growth and in�ation using a factor-augmented wavelets approach; Zhang, Gençay, and Yazgan

(2017), Faria and Verona (2018, 2020b, 2021), who focus on forecasting stock market returns;

Caraiani (2017), who forecasts exchange rates; and Faria and Verona (2020a), who forecast the

bond risk premium and the equity risk premium.

Our paper relates closely to the work of Faria and Verona (2018, 2021) on improving forecasts of

a variable of interest by summing the forecasts of its frequency components rather than directly

forecasting the aggregate. In those papers, each frequency component of the variable of inter-

est is forecasted using only information from the same frequency component of the predictors.

We contribute to this literature by allowing � but not imposing � that each frequency compo-

nent of in�ation may depend on other frequency components of the predictors. For instance, the

business-cycle frequencies or medium-term frequencies of, say, the unemployment gap, is allowed

to a�ect low-frequency �uctuations of in�ation. Our generalization of the wavelet-based approach

to forecasting is potentially useful for many economics problems, and seems particularly valuable

in the case of in�ation in light of the di�erent patterns of variance across frequencies of in�ation,

expectations, unemployment, and energy prices.

4 Rather than decomposing the aggregate time series into frequencies, a recent alternative strategy involves
splitting the price index into its components and empirically identifying the speci�c price categories sensitive to
the degree of resource utilization. This cyclically sensitive in�ation is then used in a Phillips curve framework to
analyze in�ation dynamics and forecast in�ation (see Zaman, 2019 and Stock and Watson, 2020).
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3 Data and method

Our data are US quarterly time series for 1978Q1�2020Q4 of in�ation, the unemployment gap,

expectations of in�ation, and energy in�ation. Let Pt be the consumer price index (CPI) provided

by the US Bureau of Labor Statistics in quarter t. The annualized quarter-on-quarter in�ation rate

is computed as πt = 400 ln (Pt/Pt−1). Energy in�ation is the annualized quarterly rate of growth

of the respective component of the CPI. In�ation expectations are the median expected changes

in prices on average during the next 12 months reported by households in the Michigan survey of

consumers (MSC). The unemployment gap is the di�erence between the quarterly average of the

civilian unemployment rate provided by the US Bureau of Labor Statistics and a linear trend.

To analyze the Phillips curve in the frequency domain, we use wavelet �ltering methods to de-

compose our time series into individual components that can be associated with �uctuations at

di�erent frequencies. The wavelet method used in this paper allows for decomposing any time

series into a trend (or permanent) component and cyclical (or transitory) movements in a manner

similar to the traditional time series trend-cycle decomposition approach (e.g. Beveridge and Nel-

son, 1981), or �ltering methods as the Baxter and King (1999) bandpass �lter or the Hodrick and

Prescott (1997) �lter.5

Speci�cally, we use the MODWT with the Haar �lter. Hence, a time series yt can be decomposed

as:

yt =
J∑
j=1

y
Dj

t + ySJ
t , (2)

where

y
Dj

t =
1

2j

2j−1−1∑
i=0

yt−i −
2j−1∑
i=2j−1

yt−i

 (3)

5 See Verona (2020) for a description of the advantages of wavelet �lters over other band-pass �ltering techniques.
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are the J wavelet detail components and

ySJ
t =

1

2J

2J−1∑
i=0

yt−i (4)

is the wavelet scaling component.

Expression (2) shows that the original time series yt can be decomposed in di�erent time series

components, each representing the �uctuations of the original variable within a speci�c frequency

band. For small j, the j wavelet detail components (expression (3)) represent the higher frequency

�uctuations of the time series (i.e. its short-term dynamics). As j increases, the j wavelet detail

components represent lower frequencies movements of the series. Finally, the wavelet smooth

component (expression (4)) captures the lowest frequency �uctuations (i.e. its trend).

The wavelet components resulting from the MODWT with Haar �lter are easy to interpret as they

are simply di�erences of moving averages. When J = 1, a time series yt is decomposed into a

transitory component (yD1
t ) and a persistent scale component (yS1

t ) as:

yt =
yt − yt−1

2︸ ︷︷ ︸
y
D1
t

+
yt + yt−1

2︸ ︷︷ ︸
y
S1
t

.

When J = 2, the decomposition results in two detail components (yD1
t and yD2

t ) and a scale

component (yS2
t ) such that:

yt =
yt − yt−1

2︸ ︷︷ ︸
y
D1
t

+
yt + yt−1 − (yt−2 + yt−3)

4︸ ︷︷ ︸
y
D2
t

+
yt + yt−1 + yt−2 + yt−3

4︸ ︷︷ ︸
y
S2
t

.

The �rst detail component (yD1
t ) remains unchanged, while the prior persistent component (yS1

t )

is divided into an additional transitory component (yD2
t ) and a new persistent one (yS2

t ).

Here, we compute a J=5 level decomposition of our time series. As we use quarterly data, the
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�rst component (D1) captures �uctuations with a period between 2 and 4 quarters, while the

components D2, D3, D4 and D5 capture �uctuations with periods of 1�2, 2�4, 4�8, and 8�16 years,

respectively. Finally, the smooth component S5 captures �uctuations with a period longer than 16

years.6 Subsequently, the high-frequency (HF) component of each variable (e.g. πt) is computed

as πHFt = πD1
t + πD2

t , the business-cycle-frequency (BCF) component (πBCFt ) is computed as

πBCFt = πD3
t + πD4

t , whereas its medium frequency (MF) and the low frequency (LF) components

correspond to πD5
t and πS5

t , respectively.

The original time series of our variables and their frequency components are reported in Figures 1

to 4. These �gures highlight the fact that the original time series are the result of the aggregation

of several underlying frequency components that exhibit quite di�erent dynamics. Table 1 reports

the variance decomposition by frequency of our variables. About half of the volatility of in�ation

occurs at the LF band, while a quarter of its volatility is due to HF �uctuations. Almost two-

thirds of the variance of in�ation expectations occurs at the LF band, and almost all their variance

occurs at the three lower frequency bands (BCF, MF, and LF). The unemployment gap exhibits a

more even distribution of its variance across the three lower frequency bands. Two-thirds of energy

in�ation variance, in contrast, is concentrated in the HF band.

4 In�ation dynamics

In this section we assess the in-sample dynamics of in�ation through the lenses of the NKPC

across cyclical frequencies and over time. In the �rst sub-section, we focus on the estimates and

statistical signi�cance of the NKPC coe�cients. In the second sub-section, we turn our attention

to the economic relevance of each NKPC determinant of in�ation.

6 In the MODWT, each wavelet component at frequency j approximates an ideal high-pass �lter with passband
f ∈

[
1/2j+1 , 1/2j

]
. Hence, they are associated to �uctuations with periodicity

[
2j , 2j+1

]
(quarters, in our case).
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4.1 Time- and frequency-varying NKPC coe�cients

We start by analyzing how di�erent are the estimates of the NKPC across cyclical frequencies.

Table 2 shows linear regressions of the NKPC for our US quarterly data for 1978Q1�2020Q4.

The �rst row displays the standard time series estimates, which are generally consistent with the

literature (see e.g. Coibion and Gorodnichenko (2015). The second to �fth rows present estimates

of the NKPC for the four frequency bands, i.e. estimates of OLS regressions

πft = cf + αf1π
e,f
t+1 + αf2ugap

f
t + αf3en

f
t + εft , (5)

where f=HF, BCF, MF, LF.

The estimate of the NKPC slope (αf2) is quite similar for high frequency (HF), business-cycle

frequencies (BCF) and the medium-term frequencies (MF), and all are identical to the time series

estimate. Yet, the slope is much more precisely estimated for business cycles and medium-run

cycles. For the long run (LF), the estimate of the slope is three times that of the time series and

other frequencies. Hence, the Phillips tradeo� is not merely a business cycle relationship � it is

highly relevant in the medium-run and even longer cycles. This result comports with the �ndings

of e.g. Del Negro, Giannoni, and Schorfheide (2015), Beaudry, Galizia, and Portier (2020), and

Angeletos, Collard, and Dellas (2020).

With the sole exception of the long run, the estimates of the energy price coe�cients are remarkably

identical to the time series estimates across all frequency bands.

The coe�cient associated with expectations di�ers the most across frequencies. In�ation reacts

essentially one-to-one to changes in expectations at business-cycle frequency and medium run, but

varies much less with expectations at high frequencies and much more at low frequencies. Overall,

the standard time series estimate appears to be an artifact, i.e. it averages out the heterogeneous

estimates across di�erent cycles � estimates that essentially indicate that the reaction of in�ation
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to expectations increases with the length of the cycle.

We now check whether the estimates of the NKPC coe�cients for our cyclical frequencies are more

or less stable over time than those of the standard time-series NKPC.

We do so by inspecting estimates obtained from expanding windows that start with the sample

1978Q1�1999Q4, and recursively add one quarter through 2020Q4.7 Figure 5 shows these estimates

and their statistical (in)signi�cance. The charts in the �rst column plot estimates of α1, the second

column those of the NKPC slope (α2), and the third column the coe�cients associated with energy

prices (α3). The graphs in the upper row report the results for the standard time-series NKPC,

and each subsequent row shows time-varying estimates for each frequency band, from HF through

LF.

We �nd no evidence of �attening of the time-series NKPC after 2000Q1. The estimate of the slope

features an abrupt change in the latter stages of the Great Recession, and becomes statistically

signi�cant after 2010 when it is larger (in absolute value) than in the previous ten years. While our

result is not strictly comparable with most literature on the �attening of the Phillips curve (which

dates it sometime between the mid-1980s and the early 1990s), it contrasts with papers that point

to a �atter curve after the Fed announced its 2% in�ation target in 2012 (e.g. Bundick and Smith,

2020). The sensitivity of in�ation to expected in�ation and energy prices changes abruptly at the

end of the Great Recession, but remains statistically signi�cant throughout. While the former is

fairly stable, the latter is stronger after the Great Recession.

There are considerable di�erences in the evolution over time of the estimates of the NKPC co-

e�cients for the frequency bands. Focusing on the slope, we �rst note that it is more precisely

estimated for most frequency bands (HF, BCF, MR) than for the aggregate time series. There

is evidence of �attening after the Great Recession and during the Covid recession, but, as noted,

7 We set the minimum length of our samples at 22 years, and thus focus on estimates from 2000Q1 onwards as
estimates for frequency bands comprising medium- and long-run cycles would not be robust with shorter samples.
The choice of the initial sample period is also consistent with the forecast period used in the out-of-sample forecast
part of the paper.
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these are only distinct for short cycles and quite mild for business cycles. The estimate of the

NKPC slope is remarkably stable for medium frequencies and increasingly stronger after the Great

Recession for low frequencies. Overall, these results suggest that the Phillips trade-o� remains a

signi�cant business-cycle phenomenon and is increasingly a medium-to-long-run phenomenon in

the post-Great Recession era.

The estimates of the coe�cient associated to energy prices increase abruptly at the end of the

Great Recession for both the HF and BCF, suggesting that its variation for the time-series NKPC

is determined by these frequencies.

The estimates of the coe�cient associated to expectations drop somewhat at the end of the Great

Recession for the BCF and HF (recovering to much higher values during the Covid recession in

the latter case). Their variation is much smaller for MF and, similar to BCF, overall indicative

of a one-to-one change of in�ation with expectations. In contrast, the sensitivity of in�ation to

expectations increases steadily and substantially between 2009 and 2015 at LF.

Overall, the dynamics of in�ation is explained by the NKPC rather di�erently for the four frequency

bands, which implies that it is useful to assess it separately for the di�erent cycles.

4.2 Time- and frequency- varying NKPC determinants of in�ation

We now move from statistical signi�cance to economic relevance, conducting a full-sample decom-

position of in�ation using the coe�cient estimates of the NKPC in Table 2 and the actual data.

Figure 6 shows the contribution of each NKPC determinant to explain in�ation from 1978Q1 to

2020Q4.

The top graph relates to the time-series NKPC. It shows that the good �t of that model comes

essentially from expected in�ation (blue line) and somewhat less from energy prices (green line).

Notably, the explanatory contribution of unemployment (red line) to in�ation is apparently quite

limited throughout the entire sample.
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The results for each of the four frequency components are reported in the graphs in the second

and third row. Clearly, over the very short run, the NKPC explains in�ation almost entirely

through energy prices. Expectations and unemployment do not capture much of the high-frequency

movements of in�ation.

Over the long run, in�ation co-moves almost perfectly with expectations. At low frequencies,

energy prices and unemployment do not contribute visibly to a NKPC explanation of in�ation.

There is also a prominent role of expectations apparent over the medium run. Since the late 1990s,

however, there are several episodes in which expectations do not explain medium-run in�ation

as well as energy prices. This shift may be related to the anchoring of expectations and their

consequent limitation in explaining medium-run �uctuations of in�ation.

Results for business cycles are similar to those of medium frequency cycles in spite of the higher

volatility of all variables. Expectations and energy prices contribute most to explaining in�ation,

while the contribution of unemployment is marginal overall. Moreover, since the late 1990s, the

contribution of expectations to explain in�ation along the business cycle has often fallen consider-

ably short of the contribution of energy prices. Again, we view such result as consistent with the

anchoring of expectations, which is consistently dated by the literature at around 1999 (see e.g.

Jorgensen and Lansing, 2019 and Carvalho, Eusepi, Moench, and Preston, 2021).

Overall, our in-sample results con�rm the key role of expectations in explaining the low-frequency

�uctuations of in�ation. They attribute a somewhat larger than expected role to energy prices.

They are highly relevant at HF, BCF, and even at MF, once expectations become anchored. In

contrast, our results strongly suggest that unemployment has a very limited role in explaining

in�ation, even in the context of the NKPC, of which it should be a key determinant of in�ation.

This is apparent in the aggregate time-series NKPC and when we apply the NKPC to the frequency

components of the data at which the role of unemployment should be particularly relevant (business

cycles and medium-run cycles).
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Our results in this section motivate our next steps in the paper: is the NKPC an useful model to

forecast in�ation out-of-sample? Is there any role for unemployment in the forecast of in�ation?

5 In�ation forecast

In this section, we assess the performance of our frequency-domain approach to the NKPC to fore-

cast in�ation out-of-sample (OOS). This contrasts with the purely time-series benchmarks that

dominate the literature and the standard time-series NKPC. The �rst sub-section is methodolog-

ical. After brie�y reviewing how forecasts are computed with benchmark models, we describe

our method. In the second sub-section, we present our results in three steps. First, we compare

the overall precision of our forecasts with those of the benchmarks. Second, we describe how the

relative performance of our forecasting method evolves along time. Finally, we show which cyclical

frequencies and which NKPC determinants of in�ation actually improve forecasts.

Our OOS forecasting exercise targets the annualized h-period-ahead average in�ation rate: πht+h =

1
h

∑h
i=1 πt+i = 400

h
ln (Pt+h/Pt). We focus on the 1-quarter-, 4-quarters- and 8-quarters-ahead

(h=1,4,8) horizons as they are the most relevant for policymakers.

Our OOS forecasts are direct forecasts produced with a sequence of expanding windows. We start

by obtaining the �rst OOS forecasts with the sample 1978Q1�1999Q4. The sample is then increased

by one observation and a new set of OOS forecasts is produced. This procedure is repeated until

the end of the sample. Hence, the full OOS period runs from 2000Q1 to 2020Q4.

5.1 Forecasting models

5.1.1 Time series benchmarks

As is common in the literature on in�ation forecasting, we compare the forecasting performance of

the NKPC against two time series models. First, the random walk model of Atkeson and Ohanian
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(2001) (henceforth denoted AO), for which the h-period-ahead forecast is given by π̂ht+h = πht .

Second, the unobserved components model with stochastic volatility of Stock and Watson (2007)

(henceforth denoted UCSV), which is given by πt = τt + εt and τt = ψt−1 + ηt, where εt and ηt

feature stochastic volatility. The forecasts of the UCSV model are computed as π̂ht+h = τt.
8

5.1.2 Time-series NKPC

Ultimately, we want to assess the merit of our wavelet-based NKPC in forecasting US in�ation

relative to the time-series NKPC. Forecasts with the NKPC are obtained as follows.

At each step of the recursive sample and OOS period, for each h we �rst estimate a regression:

πht = ch + αh1π
e
t+1 + αh2ugapt + αh3ent + εht+h , (6)

and then compute the forecasts as:

π̂ht+h = ĉh + α̂h1π
e
t+1 + α̂h2ugapt + α̂h3ent . (7)

While in�ation, expectations, and energy in�ation are observed, the unemployment gap needs to

be computed. At each step of our recursive forecasting procedure, we compute the unemployment

gap by �tting a linear trend to the available unemployment data. Such procedure avoids any

�look-ahead� bias in the predictive regression forecast based on the NKPC. This model is denoted

henceforth as NKPC_TS.

8 In the UCSV model, we use non-centered parameterization as in Chan (2018).

18



5.1.3 Wavelet-based NKPC

Our wavelet-based NKPC forecast method builds on the NKPC and on the �ltered data obtained

with the MODWT decomposition.9

For each frequency component f, f=HF, BCF, MF, LF, we specify a Phillips curve such as:

πh,ft+h = ch,f + αh,f1 πe,ft+1 + αh,f2 ugapft + αh,f3 enft + εh,ft+h . (8)

In this baseline speci�cation, each frequency component of in�ation πh,ft+h depends only on the

same frequency component f of the NKPC determinants of in�ation. We then generalize this

speci�cation by allowing other frequency components of the predictors into the NKPC of in�ation

at frequency f, πh,ft+h. This methodological contribution should prove highly useful, given that

in�ation and its determinants have di�erent relative powers across cyclical bands. Moreover,

theory and practice both suggest that they may interact with each other across frequencies.

More formally and generally, we �rst estimate the following system of equations at each step of

the OOS period:

πh,ft = ch,f +αh
1π

e,f
t+1 +αh

2ugap
f
t +αh

3en
f
t + εh,ft . (9)

where πh,ft , πe,ft+1, ugap
f
t and enft are 4x1 vectors of observables, ch,f is a 4x1 vector of intercepts

and εh,ft is a 4x1 vector of residuals, while αh
1 , α

h
2 and αh

3 are 4x4 matrices of coe�cients.10 We

consider two cases of this wavelet-based model.

In a �rst case, matrices αh
m, with m = 1, 2, 3, are diagonal. In this baseline speci�cation, we

9 We use a two-sided version of the Haar �lter in the OOS exercise. To avoid a �look-ahead� bias, we compute the
�ltered time series of in�ation and its determinants recursively at each iteration of the OOS forecasting procedure
by using data from the start of the sample through the quarter at which we build the forecast. Therefore, our
forecasts are made with current and past information only. To deal with boundary e�ects, we use a re�ection rule,
i.e. we extend the time series symmetrically at the boundaries before computing the �ltered series.

10 Regarding the forecast with the NKPC_TS model, the unemployment gap is recomputed at each step of the
OOS period by �tting a linear trend to the data up to the quarter when the forecast is made.
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assume that only the components of the predictors at frequency f are used to forecast the frequency

component of in�ation at frequency f. We denote this model as NKPC_WAV_diag.

In a second case, we allow for interactions between in�ation and its determinants across frequencies.

In this model, all the coe�cients in matrices αh
m , m = 1, 2, 3, are allowed to be di�erent from 0.

We denote this model as NKPC_WAV_all.

The choice between NKPC_WAV_diag and NKPC_WAV_all is ultimately empirical.

NKPC_WAV_all is a generalization of NKPC_WAV_diag, including 12 predictors for each fre-

quency f of in�ation, rather than 3, and it should lead to better in-sample �t. However, it

remains to be seen whether relations between in�ation and its determinants across frequencies

are empirically so relevant that the improved in-sample �t does not harm the OOS performance.

NKPC_WAV_diag is more parsimonious and may achieve better OOS performance. Finding

which speci�cation predicts in�ation most accurately and robustly is a key contribution of our

approach.

Formally, after running regression equation (9), the forecasts of each frequency component of

in�ation are computed as:

π̂h,ft+h = ĉh,f + α̂h
1π

e,f
t+1 + α̂h

2ugap
f
t + α̂h

3en
f
t . (10)

Finally, given that πht+h = πh,HFt+h + πh,BCFt+h + πh,MF
t+f + πh,LFt+h , then the h-quarter-ahead in�ation

forecast is given by the sum of the h-quarter ahead forecasts given by each frequency component

of the NKPC:

π̂ht+h = π̂h,HFt+h + π̂h,BCFt+h + π̂h,MF
t+f + π̂h,LFt+h . (11)

In the context of forecasting stock market returns, Faria and Verona (2018) show that forecasts of

the variable of interest may be improved by disregarding the forecasts of some of its frequencies.
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In our context, this would mean that the h-quarter-ahead in�ation forecast given by

π̂ht+h = κHF π̂
h,HF
t+h + κBCF π̂

h,BCF
t+h + κMF π̂

h,MF
t+f + κLF π̂

h,LF
t+h , (12)

where κf are set to 0 (instead of being 1) for some frequencies f, could be better than that obtained

by summing all frequencies forecasts of in�ation (equation 11).

In principle, one could optimize the forecast by grid-searching the weights for each frequency that

minimize the root mean squared error (RMSFE) for the entire OOS period. Given that such a

procedure is not implementable in real-time, a simple method that considers only forecasts for the

low-frequency component has strong motivations in the literature of wavelet-based forecasts (see

Faria and Verona, 2018, 2021), as well as some motivation in the literature on in�ation forecasting

(e.g. Faust and Wright, 2013 and Chan, Clark, and Koop, 2018). Moreover, it �nds support in

the data � about half of the variance of in�ation occurs at the low frequency (Table 1).

Accordingly, we assess the forecasting performance of the model π̂ht+h = π̂h,LFt+h , i.e. κf = 0 ∀f =

HF,BCF,MF in (12). That is, we assess whether the forecast of in�ation may be improved by

using only the forecast of its low-frequency component. As in the more general case, we consider a

model strictly comprising the forecasts from the low frequencies of the predictors, which we denote

NKPC_WAV_diag (LF), and a model in which the whole elements of the last row of matrices

αh
m, with m = 1, 2, 3, are allowed to be non null, which we denote NKPC_WAV_all (LF). This is

the generalized version of our low-frequency forecast model. It allows for in�uence from the high-,

business-cycle- and medium-frequency �uctuations of the NKPC predictors into the low-frequency

of in�ation, which, as Table 1 suggests, may be especially useful in the case of the unemployment

gap and of energy in�ation. Hopefully, it remains parsimonious enough to e�ectively improve the

OOS forecasts of in�ation.
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5.2 Results

5.2.1 Forecast precision

We now compare the ability of the wavelet-based NKPC to forecast in�ation out-of-sample (OOS)

in the period 2000Q1�2020Q4. Following common practice, we assess the forecast accuracy by

computing the root mean squared error (RMSFE) for each model and computing the statistical

signi�cance of di�erences in RMSFE across methods. Table 3 reports our results.

Panel (a) shows the RMSFE of the AO random walk model and the UCSV model, the standard

benchmarks for in�ation forecasts. Panels (b) and (c) report the RMSFE of the time-series- and

wavelet-based NKPCs, respectively, relative to that of the AO model. A value below 1 indicates

the model outperforms the AO benchmark. Panel (d) reports the RMSFEs of the wavelet-based

NKPC models relative to those of the time-series NKPC. Asterisks indicate statistical signi�cance

according to the Diebold and Mariano (1995) test of relative predictive accuracy at the 10% (*),

5% (**), and 1% (***) levels.

The UCSV model yields in�ation forecasts that are noticeably better than those of the AO model

only at the 1 quarter-ahead horizon. Despite being much more sophisticated than the AO model,

the rather limited performance of the UCSV model at longer horizons is in line with the literature

(see e.g. Faust and Wright, 2013 and Jarocinski and Lenza, 2018).11

Panel (b) con�rms that the traditional time-series NKPC fails to outperform the AO model.

The �rst lines of panels (c) and (d) indicate that the forecasts of the wavelet-based NKPC model

that does not allow for interaction across frequencies (NKPC_WAV_diag) usually outperform

those of the benchmark, as well as those of the time-series NKPC. However, the di�erence is statis-

tically signi�cant only relative to the time-series NKPC at the 8-quarter horizon. The second lines

11 The UCSV model typically outperforms the AO model only in samples of highly volatile in�ation (in this case,
for h=1). In samples with relatively smooth time series, the estimated trend of the UCSV model is close to actual
in�ation. Thus, its in�ation forecasts are close to the previous period.
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of panels (c) and (d) indicate that the generalized wavelet-based NKPC model (NKPC_WAV_all,

allowing for interactions between all frequencies) does not perform signi�cantly better than the

AO and the NKPC_TS models.

The third and fourth lines of panels (c) and (d) report the key results of this sub-section. Consistent

with our conjecture, focusing solely on the low-frequency component of in�ation (LF) produces

forecasts for in�ation that are substantially and statistically more accurate than those of both the

AO and the NKPC_TS model.

The RMSFEs of the NKPC_WAV_diag (LF) model are 80%, 77% and 79% of those of the AO

benchmark, at the 1-, 4-, and 8-quarter horizons respectively, all statistically signi�cant at the 5%

level. In turn, they amount to 83%, 75% and 55% of the RMSFEs of the NKPC_TS at h=1,

h=4 and h=8, respectively, all signi�cant at the 10% level and the latter signi�cant at 5%.

The generalized low-frequency model, NKPC_WAV_all (LF), produces even better forecasts than

the NKPC_WAV_diag (LF) model: allowing in�uences from higher frequencies (HF, BCF and

MF) of the NKPC in�ation determinants produces wavelet-based NKPC forecasts of the low-

frequency of in�ation that are slightly even closer to actual in�ation. The RMSFEs from the

NKPC_WAV_all (LF) model are 79%, 76% and 77% of those of the AO benchmark (h=1, h=4,

h=8, respectively), which are all signi�cant at the 5% level; and they are 83%, 74% and 54% of

those of the time-series NKPC (signi�cant at 10% for h=1 and h=4, and signi�cant at the 5%

level for h=8).

Overall, the wavelet-based NKPC forecasts of the low-frequency of in�ation are substantially and

signi�cantly better forecasts of in�ation than time series benchmarks and the standard time-series

NKPC. Our frequency-domain approach to the NKPC e�ectively resurrects the forecast ability

of the Phillips curve. The gain in forecast accuracy is above 20% with regard to the naive time

series benchmark. It is as high as 25% at the 4-quarter horizon and 45% at the 8-quarter horizon,

regarding the time-series NKPC forecasts.
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Figure 7 shows actual in�ation, the forecasts obtained with our preferred model NKPC_WAV_all

(LF), and those from the time-series NKPC. The performance of the time-series NKPC deteriorates

markedly as the forecast horizon increases (to h=4 and h=8) and after the Great Recession, when

forecasts are consistently overshooting actual in�ation. Our in-sample results suggest that such

poor forecasting performance comes from a combination of two factors: the steadiness of in�ation

expectations and its determinant role in that model, and the minor relevance of the unemployment

gap, indicated by the low estimate of α2.

The favorable performance of our model comes from the smoothness of its forecasts, avoiding

excessively sharp �uctuations while still capturing the essence of the evolution of in�ation over

time. The �gure shows that the forecast gain, compared to the time-series NKPC, is less evident

for the 1-quarter ahead horizon, but remains notable for the 4-quarter and 8-quarter horizons,

especially after the Great Recession. In the following sub-sections, we explore these results in

detail. In the next sub-section, we assess whether our model outperforms the time-series NKPC

systematically or only in speci�c episodes. In the sub-section after that, we assess which NKPC

determinants of in�ation drive the forecast success of our model.

5.2.2 Forecast timing

To explore the timing of the outperformance of the NKPC_WAV_all (LF) model versus both

the AO model and the time-series NKPC model, in Figure 8 we show the cumulative di�erences

between the squared forecast errors (SFE) of the NKPC_WAV_all (LF) model and those of

the AO model (left-hand side charts) and the NKPC_TS (right-hand side charts) through the

OOS period. The top charts show cumulative di�erences in SFE for 1-quarter-ahead forecasts,

the middle charts relate to the 4-quarters-ahead forecasts, and the bottom charts relate to the

8-quarters-ahead forecasts.

In the plots in Figure 8, a rising line indicates the predictive regression of the NKPC_WAV_all
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(LF) model outperforms the alternative model at the relevant forecast horizon.

A broad conclusion drawn from Figure 8 is that, along the 21 years of the OOS forecasting exercise,

our NKPC_WAV_all (LF) model rarely underperforms any of the alternative models. Indeed,

the cumulative di�erence of SFEs rarely decreases for all forecast horizons and relative to both

models. Furthermore, the temporal pattern of forecasting outperformance of our model is rather

similar for all forecast horizons, irrespective of the alternative model.

For 1-quarter-ahead forecasts, the relative performance of our model is particularly favorable in

the late stages of the Great Recession and at the height of the 2020 Covid recession. At the 4-

quarter-ahead horizon, our model beats both alternative models in the early stages of the recovery

from the Great Recession until about 2012 in the case of the AO and until about 2017 for the

time-series NKPC. At the 8-quarter-horizon, our NKPC_WAV_all (LF) model forecasts in�ation

much better than both benchmarks during the entire recovery from the Great Recession up to

2015 in the case of the AO model and up to 2017 for the time-series NKPC.

Overall, it is particularly noteworthy that a method based on long-run movements of the NKPC

variables markedly improves 1-quarter-ahead forecasts of in�ation in periods of high instability

and uncertainty � the Great Recession and Covid recession � with no costs in its performance for

longer forecast horizons following those episodes.

5.2.3 Forecast determinants

Having established that our low-frequency NKPC signi�cantly and systematically outperforms the

relevant benchmarks in forecasting in�ation, we now ask whether these results resurrect the NKPC.

Recall that, in sub-section 4.2, we found that the low-frequency of in�ation is essentially explained,

in-sample, by the low-frequency of expectations. If this was the only driver of our out-of-sample

forecasting results, then the Phillips tradeo� would remain irrelevant.

In Table 4 we present in further detail the RMSFE of our low-frequency NKPC models relative to

25



those of the AO model. The last column shows the relative RMSFE of our NKPC_WAV_all (LF)

model, and the penultimate column shows the relative RMSFE of the NKPC_WAV_diag (LF)

model. Given that the results are similar, we focus on the latter for simplicity of presentation.

In the �rst three columns, we show the relative RMSFE that would be obtained if we restricted

the NKPC determinants to the low frequency of expectations (�rst column), of expectations and

unemployment (second column), or of expectations and energy prices (third column).

The comparison of the �rst and the second columns of Table 4 allows us to assess the contribution of

the low-frequency component of the unemployment gap above that of the low-frequency component

of expectations. At the 1-quarter-ahead forecast horizon, adding the unemployment gap to a

NKPC_WAV_diag (LF) model restricted to expectations reduces its relative RMSFE from 83%

to 80%. At the 4-quarter-ahead horizon, it decreases the relative RMSFE from 89% to 78%. At

the 8-quarter-ahead forecast horizon, it cuts the relative RMSFE from 109% to 78%. Furthermore,

the forecast gain given by the low-frequency of the unemployment gap is not just economically

relevant, but statistically signi�cant at the 5% level all forecasting horizons. The low-frequency of

energy prices, on the other hand, adds little, if anything, to the forecasts.

To see whether these �ndings apply to the entire OOS period, in Figure 9 we present, for the three

forecast horizons, actual in�ation (black lines) and the forecasts from the NKPC_WAV_diag (LF)

model (blue lines), from that model restricted to πe,LF (red lines), from that model restricted to

πe,LF and enLFt (yellow lines), and from that model restricted to πe,D6 and ugapLFt (green lines).

Figure 9 indicates that the gain in forecast accuracy given by the inclusion of the low-frequency of

the unemployment gap essentially starts at 2009 for h=1, at 2010 for h=4, and at 2011 for h=8.

There is also some gain in forecast accuracy at the 4-quarter-ahead and 8-quarter-ahead forecast

horizons in the �rst three to four years of the OOS period.

Overall, we conclude that the unemployment gap is of crucial importance to forecast in�ation

with a frequency-domain NKPC. The key role of the low-frequency of unemployment may be
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clearly understood by looking with further detail at the wake of the Great Recession. In�ation

falls substantially between 2011Q3 and 2016Q3 from 2.6% to 1.2%. In the same period, the low-

frequency of unemployment increases from -1.1% to 1.7%, and the estimates of αLF2 (reported in

Figure 5) become increasingly negative. As a result, the low-frequency of unemployment decisively

reduces the in�ation forecasts to levels closer to actual in�ation.

5.3 Robustness

We submitted our OOS forecast procedure to several robustness checks. First, we considered alter-

native proxies for slack: the unemployment rate (in levels) and the output gap (computed as the

di�erence between real GDP and its linear trend). Second, we forecast personal consumption ex-

penditure (PCE) in�ation using the corresponding component for energy price in�ation. Third, we

experimented with alternative wavelet �lters such as Daubechies and Coi�ets of di�erent lengths.

Fourth, we computed the forecasts using rolling window estimates rather than expanding window

estimates (with a window size of 88 quarters, the same as for our initial in-sample period). Fifth,

we considered expanding windows starting in 1985Q1, to avoid the period of disin�ation and skip

the potential structural break at the start of the Great Moderation.12

Results are reported in Table 5. Overall, the results of these robustness analyses indicate that our

conclusions are qualitatively � and often quantitatively � robust to all these changes.13

12 Given the reduction of the sample size, we use a J=4 level MODWT decomposition in this simulation. Therefore,
the results reported in the last two lines of panels c) and d) of Table 5 relate to forecasts of a smooth component
of in�ation that captures �uctuations with a period longer than 8 years. These are not strictly comparable to
those reported in the paper and in the other robustness checks, where the low-frequency component of in�ation
corresponds to cycles with a period longer than 16 years.

13 We ran several additional checks that we do not report here for the sake of brevity. The results were quite
similar. In particular, we ran forecasts i) for other measures of slack (quadratic detrended unemployment, CBO
detrended unemployment, quadratic detrended real GDP, CBO detrended real GDP), and ii) with the original
MODWT frequency decomposition rather than using the sum of D1 and D2 for HF, and of D3 and D4 for BCF.
The results are available upon request.
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6 Concluding remarks

In this paper, we used a frequency-domain approach to an empirical New Keynesian Phillips

Curve (NKPC) to study the in-sample dynamics of in�ation and forecast in�ation out-of-sample

in a consistent framework.

With regard to the dynamics of in�ation, we �nd that the unemployment gap is statistically

signi�cant at most cyclical frequencies. There are no signs of a �attening of the NKPC in the

period 2000Q1�2020Q4 at business-cycle, medium-run, or long-run frequencies. Unemployment

is, however, not economically relevant and the dynamics of in�ation is explained essentially by

expectations and energy in�ation, with in�ation expectations dominating in long cycles and energy

in�ation in short cycles. Furthermore, at business and medium-run cycles, energy in�ation becomes

dominant after 2000, when expectations become anchored.

We show that the key to obtaining a good forecast of in�ation is to forecast the low frequency

of in�ation well and ignore its other frequencies. Furthermore, unlike for the in-sample analysis,

the low-frequency component of the unemployment gap turns out to be crucial to realizing these

forecasting gains.

So is the Phillips curve alive and well? We argue that it depends on the cyclical frequency and

whether the NKPC is used to describe the dynamics of in�ation or to forecast in�ation.
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Figure 1: In�ation: time series and frequency decomposition

Top graph: time series of in�ation, US 1978Q1�2020Q4. Remaining graphs: four frequency-speci�c time

series resulting from the frequency decomposition of the in�ation time series. Gray bars denote NBER-

dated recessions.

Figure 2: In�ation expectations: time series and frequency decomposition

Top graph: time series of in�ation expectations, US 1978Q1�2020Q4. Remaining graphs: four frequency-
speci�c time series resulting from the frequency decomposition of the in�ation expectations time series.
Gray bars denote NBER-dated recessions.
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Figure 3: Unemployment gap: time series and frequency decomposition

Top graph: time series of unemployment gap, US 1978Q1�2020Q4. Remaining graphs: four frequency-
speci�c time series resulting from the frequency decomposition of the unemployment gap time series. Gray
bars denote NBER-dated recessions.

Figure 4: Energy in�ation: time series and frequency decomposition

Top graph: time series of energy in�ation, US 1978Q1�2020Q4. Remaining graphs: four frequency-speci�c
time series resulting from the frequency decomposition of the energy in�ation time series. Gray bars denote
NBER-dated recessions.
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Figure 5: Estimated coe�cients of the New Keynesian Phillips Curve over time and across fre-
quencies

Recursive estimates of the coe�cients of the Phillips curve ((1)) for the original time series data (upper
row) and �ltered data for di�erent frequency bands (remaining rows). HF: high frequency, cycles with
periods between 2 and 8 quarters; BCF: business cycle frequency, cycles with periods between 2 and 8
years; MF: medium frequency, cycles with periods between 8 and 16 years; LF: low frequency, cycles longer
than 16 years. Sample periods are expanding windows starting in 1978Q1�1999Q4, recursively including
one additional quarter through 2020Q4. Gray bars denote NBER-dated recessions. Statistically signi�cant
coe�cients (at 5%) are reported with a circled marker.
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Figure 6: Phillips curve-based decomposition of in�ation

Notes: The lines show the contributions of each variable for the period 1978Q1�2020Q4. Constant terms
omitted. Top graph: decomposition of the time series of in�ation. Remaining graphs: decomposition of
four frequency-speci�c time series of in�ation.
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Figure 7: New Keynesian Phillips Curve forecasts for di�erent forecasting horizons: time series vs
wavelet

Forecasts for h=1 (left) , h=4 (middle), and h=8 (right). Black lines: realized in�ation. Red lines:
forecasts with the NKPC_TS model. Blue lines: forecasts with the NKPC_WAV_all (LF) model. The
out-of-sample period is 2000Q1�2020Q4.
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Figure 8: Cumulative di�erences in squared forecast errors

Left side graphs: cumulative di�erence between the squared forecast errors of the NKPC_WAV_all (LF)
model and those of the AO model, for h=1 (top) , h=4 (middle), and h=8 (bottom). Right side graphs:
cumulative di�erence between the squared forecast errors of the NKPC_WAV_all (LF) model and those
of the NKPC_TS model, for h=1 (top) , h=4 (middle), and h=8 (bottom). Gray bars denote NBER-dated
recessions.
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Figure 9: New Keynesian Phillips Curve forecasts for di�erent forecasting horizons with wavelet:
importance of di�erent variables

Forecasts of πLF for h=1 (left) , h=4 (middle), and h=8 (right). Black lines: realized in�ation. Red lines:
forecasts using πe,LF . Green lines: forecasts using πe,LF and ugapLF . Yellow lines: forecasts using πe,LF

and enLF . Blue lines: forecasts with the NKPC_WAV_diag (LF) model. The out-of-sample period is
2000Q1�2020Q4.
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HF BCF MF LF

In�ation 27 17 10 47

In�ation expectations 5 16 16 63

Unemployment gap 14 32 28 26

Energy in�ation 66 24 4 6

Table 1: Variance decomposition by frequency

Each row presents the percentage of the variance of the corresponding time series explained by each

speci�c frequency band, for the U.S. 1978Q1-2020Q4. HF: high frequency, cycles with periods between 2

and 8 quarters; BCF: business cycle frequency, cycles with periods between 2 and 8 years; MF: medium

frequency, cycles with periods between 8 and 16 years; LF: low frequency, cycles longer than 16 years.

Percentages may not add up to 100 due to rounding.

c α1 α2 α3 R̄2

NKPC −1.39
(0.19)

1.27
(0.05)

−0.13
(0.05)

0.08
(0.005)

0.89

NKPC_HF −0.03
(0.05)

0.63
(0.14)

−0.15
(0.08)

0.09
(0.004)

0.82

NKPC_BCF −0.05
(0.03)

1.03
(0.04)

−0.13
(0.02)

0.08
(0.003)

0.94

NKPC_MF −0.07
(0.01)

1.05
(0.02)

−0.14
(0.01)

0.08
(0.005)

0.98

NKPC_LF −2.43
(0.10)

1.69
(0.03)

−0.45
(0.04)

−0.04
(0.01)

0.98

Table 2: Estimates of the New Keynesian Phillips Curve

Estimates of equation (1); US data, sample period 1978Q1�2020Q4. First row: estimates obtained with the
original time series data. Subsequent rows: estimates obtained from �ltered data for di�erent frequency
bands. HF: high frequency, cycles with periods between 2 and 8 quarters; BCF: business cycle frequency,
cycles with periods between 2 and 8 years; MF: medium frequency, cycles with periods between 8 and 16
years; LF: low frequency, cycles longer than 16 years. Standard errors in parenthesis.
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Forecasting horizon

Model h=1 h=4 h=8

a) Benchmarks

AO random walk 2.81 1.63 1.16

UCSV 2.33*** 1.62** 1.16

b) Time-series Phillips Curve (vs AO)

NKPC_TS 0.96 1.03 1.44

c) Wavelet-based Phillips Curves (vs AO)

NKPC_WAV_diag 0.95 0.94 0.98

NKPC_WAV_all 0.97 1.00 1.09

NKPC_WAV_diag (LF) 0.80** 0.77** 0.79**

NKPC_WAV_all (LF) 0.79** 0.76** 0.77**

d) Wavelet-based Phillips Curves (vs NKPC_TS)

NKPC_WAV_diag 0.99 0.91 0.68**

NKPC_WAV_all 1.01 0.97 0.76

NKPC_WAV_diag (LF) 0.83* 0.75* 0.55**

NKPC_WAV_all (LF) 0.83* 0.74* 0.54**

Table 3: Relative out-of-sample root mean squared forecast errors

Panel a): Root mean squared forecast errors (RMSFEs) at di�erent forecasting horizons (h=1, h=4, and
h=8) for the AO model and the UCSV model. Panels b) and c): RMSFEs relative to those of the AO
model (RMSFEj / RMSFEAO for model j). Panel d): RMSFEs relative to those of the NKPC_TS model
(RMSFEj / RMSFENKPC-TS for model j). Asterisks indicate statistical signi�cance of the Diebold and
Mariano (1995) test of comparative predictive accuracy at the 10% (*), 5% (**), and 1% (***) levels,
relative to the AO model (panels b and c) or the NKPC_TS model (panel d). The out-of-sample period
is 2000Q1�2020Q4.

WAV_diag (LF) WAV_all (LF)

predictors πe,LF πe,LF , ugapLF
t πe,LF , enLF

t πe,LF , ugapLF
t , enLF

t

forecasting horizon

h=1 0.83* 0.80** 0.83* 0.80** 0.79**

h=4 0.89 0.78** 0.87 0.77** 0.76**

h=8 1.09 0.78** 1.03 0.79** 0.77**

Table 4: On the importance of each low frequencies of the predictors

RMSFEs relative to those of the AO model. Asterisks indicate statistical signi�cance of the Diebold and
Mariano (1995) test of comparative predictive accuracy at the 10% (*) and 5% (**) levels, relative to the
AO model. The out-of-sample period is 2000Q1�2020Q4.
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Measure of slack Measure of in�ation Wavelet �lter

Unemployment rate Output gap PCE in�ation Daubechies length 4

Forecasting horizon Forecasting horizon Forecasting horizon Forecasting horizon

Model h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8

a) Benchmarks

AO random walk 2.81 1.63 1.16 2.81 1.63 1.16 1.93 1.23 0.91 2.81 1.63 1.16

UCSV 2.33*** 1.62** 1.16 2.33*** 1.62** 1.16 1.83 1.51** 1.12** 2.33*** 1.62** 1.16

b) Time-series Phillips Curve (vs AO)

NKPC_TS 0.96 1.02 1.34 0.94* 0.99 1.47 1.02 1.15 1.61* 0.96 1.03 1.44

c) Wavelet-based Phillips Curves (vs AO)

NKPC_WAV_diag 0.95 0.93 0.96 0.95 0.94 1.05 0.98 0.98 1.01 0.96 0.99 1.00

NKPC_WAV_all 0.97 1.01 1.11 0.96 0.98 1.06 1.01 1.05 1.19 0.97 1.04 1.10

NKPC_WAV_diag (only LF) 0.80** 0.78* 0.81* 0.79** 0.75** 0.78** 0.86* 0.84 0.91 0.80** 0.79** 0.81*

NKPC_WAV_all (only LF) 0.79** 0.77** 0.79** 0.79** 0.74** 0.77** 0.84* 0.81 0.86 0.80** 0.79** 0.81*

d) Wavelet-based Phillips Curves (vs NKPC_TS)

NKPC_WAV_diag 0.99 0.91* 0.72*** 1.01 0.95 0.72** 0.96 0.85** 0.63** 1.00 0.96 0.70*

NKPC_WAV_all 1 0.99 0.83 1.03 0.99 0.72 0.99 0.91 0.74 1.02 1.01 0.77

NKPC_WAV_diag (only LF) 0.83* 0.77* 0.61** 0.84* 0.76 0.53** 0.84 0.73 0.57** 0.83* 0.76 0.57**

NKPC_WAV_all (only LF) 0.82* 0.75* 0.59** 0.84* 0.75 0.52** 0.82 0.71* 0.54** 0.84* 0.77 0.56**

Table 5: Relative out-of-sample root mean squared forecast errors - robustness checks

Panel a): Root mean squared forecast errors (RMSFEs) at di�erent forecasting horizons (h=1, h=4 and h=8) for the AO model
and the UCSV model. Panels b) and c): RMSFEs relative to those of the AO model (RMSFEj / RMSFEAO for model j). Panel
d): RMSFEs relative to those of the NKPC_TS model (RMSFEj / RMSFENKPC-TS for model j). Asterisks indicate statistical
signi�cance of the Diebold and Mariano (1995) test of comparative predictive accuracy at the 10% (*), 5% (**), and 1% (***) levels,
relative to the AO model (panels b and c) or the NKPC_TS model (panel d). The out-of-sample period is 2000Q1-2020Q4.
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In-sample length In-sample start

Rolling window 1985:Q1

Forecasting horizon Forecasting horizon

Model h=1 h=4 h=8 h=1 h=4 h=8

a) Benchmarks

AO random walk 2.81 1.63 1.16 2.81 1.63 1.16

UCSV 2.33*** 1.62** 1.16 2.33*** 1.62** 1.16

b) Time-series Phillips Curve (vs AO)

NKPC_TS 0.98 1.00 1.05 0.98 1.05 1.17

c) Wavelet-based Phillips Curves (vs AO)

NKPC_WAV_diag 0.96 0.98 0.97 0.95 1 1.04

NKPC_WAV_all 0.97 1.00 1.03 0.95* 0.96 0.99

NKPC_WAV_diag (only LF) 0.79** 0.74** 0.76** 0.84** 0.88 0.94

NKPC_WAV_all (only LF) 0.79** 0.74** 0.76** 0.82** 0.83** 0.86*

d) Wavelet-based Phillips Curves (vs NKPC_TS)

NKPC_WAV_diag 0.99 0.98 0.92 0.98 0.96 0.89*

NKPC_WAV_all 1 1.01 0.98 0.97 0.92* 0.85

NKPC_WAV_diag (only LF) 0.81* 0.75* 0.73 0.86 0.84 0.81*

NKPC_WAV_all (only LF) 0.81* 0.74 0.73 0.84* 0.80* 0.73**

Table 5: continue

Panel a): Root mean squared forecast errors (RMSFEs) at di�erent forecasting horizons (h=1, h=4 and h=8) for the AO model
and the UCSV model. Panels b) and c): RMSFEs relative to those of the AO model (RMSFEj / RMSFEAO for model j). Panel
d): RMSFEs relative to those of the NKPC_TS model (RMSFEj / RMSFENKPC-TS for model j). Asterisks indicate statistical
signi�cance of the Diebold and Mariano (1995) test of comparative predictive accuracy at the 10% (*), 5% (**), and 1% (***) levels,
relative to the AO model (panels b and c) or the NKPC_TS model (panel d). The out-of-sample period is 2000Q1-2020Q4.
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